WorldWideScience

Sample records for cellulose pour applications

  1. Synthesis and study of nano-structured cellulose acetate based materials for energy applications; Synthese et etude de materiaux nanostructures a base d'acetate de cellulose pour applications energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F

    2006-12-15

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO{sub 2} supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO{sub 2} are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm{sup -3} together with a meso-porous volume of 3,40 cm{sup 3}.g{sup -1} was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m{sup -1}.K{sup -1}. In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  2. Cellulose nanocrystal properties and their applications

    Directory of Open Access Journals (Sweden)

    mahdi jonoobi

    2015-05-01

    Full Text Available The main purpose of this work is to provide an overview of recent research in the area of cellulose nonmaterials production from different sources. Due to their abundance, their renewability, high strength and stiffness, being eco-friendly, and low weight; numerous studies have been reported on the isolation of cellulose nanomaterials from different cellulosic sources and their use in high performance applications. This work covers an introduction into the nano cellulose definition as well as used methods for isolation of nanomaterials (nanocrystals from various sources. The rod-like cellulose nanocrystals (CNC can be isolated from sources like wood, plant fibers, agriculture and industrial bio residues, tunicates, and bacterial cellulose using acid hydrolysis process. Following this, the paper focused on characterization methods, materials properties and structure. The current review is a comprehensive literature regarding the nano cellulose isolation and demonstrates the potential of cellulose nanomaterials to be used in a wide range of high-tech applications.

  3. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    Science.gov (United States)

    Robert J. Moon; Gregory T. Schueneman; John Simonsen

    2016-01-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is...

  5. Electrospinning cellulose based nanofibers for sensor applications

    Science.gov (United States)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  6. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Science.gov (United States)

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  7. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    International Nuclear Information System (INIS)

    Fu, Jiapeng; Pang, Zengyuan; Yang, Jie; Huang, Fenglin; Cai, Yibing; Wei, Qufu

    2015-01-01

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors

  8. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiapeng, E-mail: firgexiao@sina.cn; Pang, Zengyuan, E-mail: pangzengyuan1212@163.com; Yang, Jie, E-mail: young1993@126.com; Huang, Fenglin, E-mail: flhuang@jiangnan.edu.cn; Cai, Yibing, E-mail: yibingcai@jiangnan.edu.cn; Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors.

  9. Applications of bacterial cellulose and its composites in biomedicine.

    Science.gov (United States)

    Rajwade, J M; Paknikar, K M; Kumbhar, J V

    2015-03-01

    Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

  10. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-12-01

    Full Text Available Cellulose is the most abundant biomass material in nature. Extracted from natural fibers, its hierarchical and multi-level organization allows different kinds of nanoscaled cellulosic fillers—called cellulose nanocrystals or microfibrillated cellulose (MFC—to be obtained. Recently, such cellulose nanoparticles have been the focus of an exponentially increasing number of works or reviews devoted to understanding such materials and their applications. Major studies over the last decades have shown that cellulose nanoparticles could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging is being investigated, with continuous studies to find innovative solutions for efficient and sustainable systems. Processing is more and more important and different systems are detailed in this paper depending on the polymer solubility, i.e., (i hydrosoluble systems, (ii non-hydrosoluble systems, and (iii emulsion systems. This paper intends to give a clear overview of cellulose nanoparticles reinforced composites with more than 150 references by describing their preparation, characterization, properties and applications.

  11. Cellulose Electro-Active Paper: From Discovery to Technology Applications

    Directory of Open Access Journals (Sweden)

    Zafar eAbas

    2014-09-01

    Full Text Available Cellulose electro-active paper (EAPap is an attractive material of electro-active polymers (EAPs family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.

  12. Cellulose Electro-Active Paper: From Discovery to Technology Applications

    Science.gov (United States)

    Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan; Kim, Joo-Hyung

    2014-09-01

    Cellulose electro-active paper (EAPap) is an attractive material of electro-active polymers (EAPs) family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.

  13. Biodegradable Cellulose-based Hydrogels: Design and Applications

    Science.gov (United States)

    Sannino, Alessandro; Demitri, Christian; Madaghiele, Marta

    2009-01-01

    Hydrogels are macromolecular networks able to absorb and release water solutions in a reversible manner, in response to specific environmental stimuli. Such stimuli-sensitive behaviour makes hydrogels appealing for the design of ‘smart’ devices, applicable in a variety of technological fields. In particular, in cases where either ecological or biocompatibility issues are concerned, the biodegradability of the hydrogel network, together with the control of the degradation rate, may provide additional value to the developed device. This review surveys the design and the applications of cellulose-based hydrogels, which are extensively investigated due to the large availability of cellulose in nature, the intrinsic degradability of cellulose and the smart behaviour displayed by some cellulose derivatives.

  14. Biodegradable Cellulose-based Hydrogels: Design and Applications

    Directory of Open Access Journals (Sweden)

    Marta Madaghiele

    2009-04-01

    Full Text Available Hydrogels are macromolecular networks able to absorb and release water solutions in a reversible manner, in response to specific environmental stimuli. Such stimuli-sensitive behaviour makes hydrogels appealing for the design of ‘smart’ devices, applicable in a variety of technological fields. In particular, in cases where either ecological or biocompatibility issues are concerned, the biodegradability of the hydrogel network, together with the control of the degradation rate, may provide additional value to the developed device. This review surveys the design and the applications of cellulose-based hydrogels, which are extensively investigated due to the large availability of cellulose in nature, the intrinsic degradability of cellulose and the smart behaviour displayed by some cellulose derivatives.

  15. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review.

    Science.gov (United States)

    Khan, Avik; Wen, Yangbing; Huq, Tanzina; Ni, Yonghao

    2018-01-10

    Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.

  16. Business plan pour une application Smartphone : du concept au lancement

    OpenAIRE

    Vriamont, Gilles

    2015-01-01

    Création d'une application mobile pour Smartphone. Description théorique concernant la rédaction d'un business plan dans une première partie suivi d'une description théorique des caractéristiques des applications mobiles. Dans une seconde partie, analyse de l'industrie des Smartphones et des applications mobiles suivi de la partie pratique et du développement du produit, partant de la description du produit jusqu'à l'analyse des coûts. Master [120] en Ingénieur de gestion, Université catho...

  17. Soudage des aciers pour application mécanique

    CERN Document Server

    Deveaux, Dominique

    2016-01-01

    Ce guide détermine les bonnes pratiques pour comprendre les risques d’une forme d’assemblage multimatériaux : celui par soudage de nuances à forte teneur en carbone avec des éléments en acier de construction. Dans un premier temps, le rapport passe en revue l’examen des avaries sur des assemblages soudés pour l’application mécanique mettant en cause les aciers. Fissuration par fatigue, rupture fragile, rupture ductile, fissuration à chaud ou à froid sont autant de causes qui seront analysées. Dans un deuxième temps, il se concentre sur la conception des joints soudés. Du choix des nuances à la tenue vis-à-vis de la rupture fragile en passant par l’analyse en fatigue des assemblages soudés, c’est l’ensemble de la problématique qui est pris en compte.

  18. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    Science.gov (United States)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-07-26

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  19. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Directory of Open Access Journals (Sweden)

    Asif Khan

    2016-07-01

    Full Text Available We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  20. Conception et calibration d'un sonoreacteur pour l'oxydation de la cellulose par le systeme TEMPO/NaOCl/NaBr

    Science.gov (United States)

    Paquin, Michel

    Avec le contexte economique actuel dans le domaine des pates et papiers au Canada, l'industrie se doit de diversifier ses produits mis en marche. La fermeture de plus de 20 usines depuis 2005, une baisse du PIB de l'industrie de 1,4 milliard CAD entre 1999--2008, une baisse de la demande de 2,4 %, une diminution du prix de la pate de 20,9 % depuis juillet 2009. La delocalisation du secteur vers l'Asie et l'hemisphere sud sont autant de raisons pour laquelle l'industrie se doit d'etre a l'avant plan de nouvelle technologie a base de fibre de bois. Pour augmenter leur rentabilite, l'industrie se doit de diversifier ses produits dans d'autres secteurs que le simple fabricant de papier impression-ecriture. Sa diversification passe par l'elaboration de nouveaux papiers a valeur ajoutee (papier conducteur, papier bioactif, etc.), par l'utilisation de la biomasse forestiere pour la production d'energie, par l'utilisation de la biomasse forestiere pour l'elaboration d'une plateforme de chimie verte, par l'utilisation de la lignine pour le developpement de polymeres et par l'utilisation de la fibre cellulosique pour la fabrication de nanomateriaux. La fabrication de nanofibrille de cellulose peut devenir un des produits qui servira a diversifier la production des usines de pates et papiers. Les nanofibrilles de cellulose possedent des proprietes mecaniques et chimiques exceptionnelles. Les nanofibrilles de cellulose sont fabriquees a partir d'une oxydation selective de la pate kraft de feuillu avec le systeme TEMPO-NaOCl-NaBr. L'oxydation selective de l'alcool primaire en C6 du monomere de glucose sous forme de carboxylates engendre une modification chimique de la cellulose qui accroit l'hydrophilicite des fibrilles. Suite a cette oxydation, nous devons effectuer une desintegration mecanique de la fibre kraft de feuillu oxydee pour separer les fibrilles. Le processus d'oxydation de la fibre par le systeme TEMPO-NaOCl-NaBr et sa defibrillation par la suite engendre une

  1. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications.

    Science.gov (United States)

    Qiu, Xiaoyun; Hu, Shuwen

    2013-02-28

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. "Smart" materials based on cellulose have great advantages-especially their intelligent behaviors in reaction to environmental stimuli-and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of "smart" materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of "smart" materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these "smart" materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.

  2. Terahertz Absorption by Cellulose: Application to Ancient Paper Artifacts

    Science.gov (United States)

    Peccianti, M.; Fastampa, R.; Mosca Conte, A.; Pulci, O.; Violante, C.; Łojewska, J.; Clerici, M.; Morandotti, R.; Missori, M.

    2017-06-01

    Artifacts made of cellulose, such as ancient documents, pose a significant experimental challenge in the terahertz transmission spectra interpretation due to their small optical thickness. In this paper, we describe a method to recover the complex refractive index of cellulose fibers from the terahertz transmission data obtained on single freely standing paper sheets in the (0.2-3.5)-THz range. By using our technique, we eliminate Fabry-Perot effects and recover the absorption coefficient of the cellulose fibers. The obtained terahertz absorption spectra are explained in terms of absorption peaks of the cellulose crystalline phase superimposed to a background contribution due to a disordered hydrogen-bond network. The comparison between the experimental spectra with terahertz vibrational properties simulated by density-functional-theory calculations confirms this interpretation. In addition, evident changes in the terahertz absorption spectra are produced by natural and artificial aging on paper samples, whose final stage is characterized by a spectral profile with only two peaks at about 2.1 and 3.1 THz. These results can be used to provide a quantitative assessment of the state of preservation of cellulose artifacts.

  3. Cellulose Fibre-Reinforced Biofoam for Structural Applications

    Directory of Open Access Journals (Sweden)

    Jasmina Obradovic

    2017-06-01

    Full Text Available Traditionally, polymers and macromolecular components used in the foam industry are mostly derived from petroleum. The current transition to a bio-economy creates demand for the use of more renewable feedstocks. Soybean oil is a vegetable oil, composed mainly of triglycerides, that is suitable material for foam production. In this study, acrylated epoxidized soybean oil and variable amounts of cellulose fibres were used in the production of bio-based foam. The developed macroporous bio-based architectures were characterised by several techniques, including porosity measurements, nanoindentation testing, scanning electron microscopy, and thermogravimetric analysis. It was found that the introduction of cellulose fibres during the foaming process was necessary to create the three-dimensional polymer foams. Using cellulose fibres has potential as a foam stabiliser because it obstructs the drainage of liquid from the film region in these gas-oil interfaces while simultaneously acting as a reinforcing agent in the polymer foam. The resulting foams possessed a porosity of approximately 56%, and the incorporation of cellulose fibres did not affect thermal behaviour. Scanning electron micrographs showed randomly oriented pores with irregular shapes and non-uniform pore size throughout the samples.

  4. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals.

    Science.gov (United States)

    Reiniati, Isabela; Hrymak, Andrew N; Margaritis, Argyrios

    2017-06-01

    Cellulosic nanomaterials provide a novel and sustainable platform for the production of high performance materials enabled by nanotechnology. Bacterial cellulose (BC) is a highly crystalline material and contains pure cellulose without lignin and hemicellulose. BC offers an opportunity to provide control of the products' properties in-situ, via specific BC production methods and culture conditions. The BC potential in advanced material applications are hindered by a limited knowledge of optimal BC production conditions, efficient process scale-up, separation methods, and purification methods. There is a growing body of work on the production of bacterial cellulose nanocrystals (BCNs) from BC fibers. However, there is limited information regarding the effect of BC fibers' characteristics on the production of nanocrystals. This review describes developments in BC and BCNs production methods and factors affecting their yield and physical characteristics.

  5. Pour on application of growth promoters in veal calves: analytical and histological results

    NARCIS (Netherlands)

    Schilt, R.; Groot, M.J.; Berende, P.L.M.; Rammazza, V.; Ossenkoppele, J.S.; Haasnoot, W.; Bennekom, van E.O.; Brouwer, L.; Hooijerink, H.

    1998-01-01

    To investigate the possibilities for screening and confirmation methods when the 'pour on' method of application is used for administration of growth promoters, an animal experiment was performed using a cocktail of a combination of growth promoters derived from (illegal) practice. Two cocktails

  6. Market projections of cellulose nanomaterial-enabled products- Part 1: Applications

    Science.gov (United States)

    Jo Anne Shatkin; Theodore H. Wegner; E.M. (Ted) Bilek; John Cowie

    2014-01-01

    Nanocellulose provides a new materials platform for the sustainable production of high-performance nano-enabled products in an array of applications. In this paper, potential applications for cellulose nanomaterials are identified as the first step toward estimating market volume. The overall study, presented in two parts, estimates market volume on the basis of...

  7. Production, property, and application of bacterial cellulose; Bakuteriaserurosu no seisan, butsusei no tokucho to sono riyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, S.; Watanabe, K. [Ajinomoto Co. Inc., Tokyo (Japan). Central Research Lab.; Iguchi, M. [Agency of Industrial Science and Technology, Tokyo (Japan)] Nishi, Y. [Sony Corp., Tokyo (Japan)

    1998-09-01

    Cellulose produced by bacterial is called bacterial cellulose (BC). The morphology and physical properties of BC are found to be quite unique in comparison with those of higher class plants. The properties are elucidated and a study is made to utilize the properties. The outline of this study is introduced in the sequence of BC production, BC morphology, elucidation of the physical property, and study on the application. BC consists of ultrafine fibers, and the widths of fibers are in the range from (1/199) to (1/1,000) of cotton fibers, forming distinctive network structure. It is assumed that the high Young`s modulus is based on the structural features of BC. Researches have been made on various applications to such fields as audio, paper, food, and compounds where the features of cellulose are utilized effectively. The morphology of cellulose can be varied by adding drugs which can change a part of the protein. It is expected that cellulose structure can be controlled in the future by the application of this technology. 18 refs., 6 figs., 2 tabs.

  8. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications

    Science.gov (United States)

    Qiu, Xiaoyun; Hu, Shuwen

    2013-01-01

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. “Smart” materials based on cellulose have great advantages—especially their intelligent behaviors in reaction to environmental stimuli—and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of “smart” materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of “smart” materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these “smart” materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review. PMID:28809338

  9. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Shuwen Hu

    2013-02-01

    Full Text Available Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. “Smart” materials based on cellulose have great advantages—especially their intelligent behaviors in reaction to environmental stimuli—and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of “smart” materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of “smart” materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these “smart” materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.

  10. Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications

    Science.gov (United States)

    Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong

    2016-01-01

    Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1–10 GHz. The dielectric...

  11. Cellulose acetate propionate coated titanium: characterization and biotechnological application

    Directory of Open Access Journals (Sweden)

    Guilherme da Silva Gomes

    2007-12-01

    Full Text Available Surfaces of pure titanium and Ti coated with cellulose acetate propionate (CAP have been characterized by means of scanning electron microscopy X ray coupled with elemental microanalysis (SEM-EDS, ellipsometry, atomic force microscopy (AFM and contact angle measurements. Coating Ti surfaces with CAP ultrathin films reduced original surface roughness. Surface energy and wettability of CAP covered Ti surfaces pure Ti surfaces were similar. The adsorption of lysozyme (LYZ, an antibacterial protein, onto Ti and CAP-coated Ti surfaces has been studied by means of ellipsometry and atomic force microscopy (AFM. The adsorption of LYZ was mainly driven by hydrophobic interaction between protein hydrophobic residues and CAP propyl groups. Pure Ti and CAP coated Ti surfaces presented no cytotoxicity effect and proved to be adequate substrates for cell adhesion. The biocompatibility of CAP coated Ti surfaces was attributed to the surface enrichment in glucopyranosyl residues and short alkyl side groups.

  12. Application of resistivity measurements to the control of protein elutions using cellulose ion-exchangers; Application de la mesure de resistivite au controle d'une elution de proteines a partir de celluloses echangeuses d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Duplaa, A M; Brandolin, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    The eluate obtained by chromatography of a mixture of proteins on columns of cellulose ion-exchangers (DEAE-cellulose and CM-cellulose) sometimes have very low proteins concentrations. The resistivity measurement gives more information than the UV control which is often inadequate. The modifications undergone by elution buffers are recorded and the best conditions for the extraction of an enzymatic protein are determined. The tests are performed without proteins on the columns; they consist in a double control of resistivity and ph of elution buffers after they pass on the exchangers columns. (author) [French] Apres chromatographie d'un melange de proteine; sur colonnes d'echangeurs d'ions tels que DEAE-cellulose et CM-cellulose, les eluats obtenus ont quelquefois des concentrations en proteines tres faibles. Au controle en UV souvent insuffisant, on a ajoute la mesure de resistivite apportant des donnees complementaires. Des essais, realises en l'absence de proteines et consistant a effectuer un double controle de resistivite et de pH des tampons d'elution apres leur passage sur colonnes d'echangeurs, ont permis d'enregistrer les modifications subies par ces tampons et de determiner leurs meilleures conditions d'utilisation pour l'extraction d'une proteine enzymatique. (auteur)

  13. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja Salomon

    2012-01-01

    are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...... or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose...

  14. Composite Risers for Deepwater Applications Risers composites pour applications en mer profonde

    Directory of Open Access Journals (Sweden)

    Metivaud G.

    2006-11-01

    Full Text Available This paper is devoted to the high performance composite tubes developed by the Institut Français du Pétrole (IFP and Aerospatiale for deepwater risers applications. The design principles of the tubes are first presented, along with results of preliminary work carried out as part of the initial feasibility study. Applications of composite tubes to drilling riser Kill and Choke lines and to TLP production risers, both of which have been studied in detail, are then described. Technical and operational advantages obtained from such applications are discussed. Cet article présente les travaux réalisés par l'Institut Français du Pétrole et l'Aerospatiale dans le domaine des tubes composites haute performance pour les applications aux liaisons fond-surface de forage et de production en mer profonde. Les matériaux composites avancés sont une classe de matériaux très particulière, présentant à la fois des caractéristiques mécaniques élevées et une densité spécifique faible. Ils sont utilisés principalement par les industries de l'aéronautique et de l'espace, mais l'industrie pétrolière en mer profonde est un secteur où ils peuvent trouver dans l'avenir des applications très intéressantes, notamment les tubes de risers. Les tubes de risers pétroliers en mer présentent en effet une gamme de spécifications élevées (diamètres, pression, traction, fatigue dans un environnement sévère et leur poids suspendu peut pénaliser fortement les systèmes de forage ou de production par grande profondeur d'eau. Un premier concept de tube composite haute performance a été développé par IFP et Aerospatiale au début des années 1980 ; sa partie courante, réalisée par enroulement filamentaire de fibres de verre R ou de fibres de carbone, et son système d'embout ont été soumis à une série d'essais mécaniques (pression interne jusqu'à 105 MPa, traction supérieure à 1 000 kN pour un diamètre nominal de 0,1 m, millions de

  15. Graphene Inks with Cellulosic Dispersants: Development and Applications for Printed Electronics

    Science.gov (United States)

    Secor, Ethan Benjamin

    Graphene offers promising opportunities for applications in printed and flexible electronic devices due to its high electrical and thermal conductivity, mechanical flexibility and strength, and chemical and environmental stability. However, scalable production and processing of graphene presents a critical technological challenge preventing the application of graphene for flexible electronic interconnects, electrochemical energy storage, and chemically robust electrical contacts. In this thesis, a promising and versatile platform for the production, patterning, and application of graphene inks is presented based on cellulosic dispersants. Graphene is produced from flake graphite using scalable liquid-phase exfoliation methods, using the polymers ethyl cellulose and nitrocellulose as multifunctional dispersing agents. These cellulose derivatives offer high colloidal stability and broadly tunable rheology for graphene dispersions, providing an effective and tunable platform for graphene ink development. Thermal or photonic annealing decomposes the polymer dispersant to yield high conductivity, flexible graphene patterns for various electronics applications. In particular, the chemical stability of graphene enables robust electrical contacts for ceramic, metallic, organic and electrolytic materials, validating the diverse applicability of graphene in printed electronics. Overall, the strategy for graphene ink design presented here offers a simple, efficient, and versatile method for integrating graphene in a wide range of printed devices and systems, providing both fundamental insight for nanomaterial ink development and realistic opportunities for practical applications.

  16. Effect of repeated application of 14C-carbaryl and of addition of glucose and cellulose to soil samples

    International Nuclear Information System (INIS)

    Hirata, R.; Luchini, L.C.; Mesquita, T.B.; Ruegg, E.F.

    1984-01-01

    The behaviour of the insecticide carbaryl is studied in samples of Gley Humic and Red-Yellow Latosol soil by means of radiometric techniques. In the Red-Yellow Latosol two carbon sources - glucose and cellulose - and a mixture of glucose plus cellulose were added. Repeated applications of carbaryl in both soils highly increased the rate of degradation, probably due to a rapid increase in the number of microorganisms by using the pesticide as substrate. (M.A.C.) [pt

  17. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Kristen A., E-mail: kazimmer@vt.edu [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States); LeBlanc, Jill M.; Sheets, Kevin T.; Fox, Robert W. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); Gatenholm, Paul [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States)

    2011-01-01

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  18. Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment.

    Science.gov (United States)

    Yoshino, Aya; Tabuchi, Mari; Uo, Motohiro; Tatsumi, Hiroto; Hideshima, Katsumi; Kondo, Seiji; Sekine, Joji

    2013-04-01

    Dental root canal treatment is required when dental caries progress to infection of the dental pulp. A major goal of this treatment is to provide complete decontamination of the dental root canal system. However, the morphology of dental root canal systems is complex, and many human dental roots have inaccessible areas. In addition, dental reinfection is fairly common. In conventional treatment, a cotton pellet and paper point made from plant cellulose is used to dry and sterilize the dental root canal. Such sterilization requires a treatment material with high absorbency to remove any residue, the ability to improve the efficacy of intracanal medication and high biocompatibility. Bacterial cellulose (BC) is produced by certain strains of bacteria. In this study, we developed BC in a pointed form and evaluated its applicability as a novel material for dental canal treatment with regard to solution absorption, expansion, tensile strength, drug release and biocompatibility. We found that BC has excellent material and biological characteristics compared with conventional materials, such as paper points (plant cellulose). BC showed noticeably higher absorption and expansion than paper points, and maintained a high tensile strength even when wet. The cumulative release of a model drug was significantly greater from BC than from paper points, and BC showed greater compatibility than paper points. Taken together, BC has great potential for use in dental root canal treatment. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Preparation and Characterization of Jute Cellulose Crystals-Reinforced Poly(L-lactic acid Biocomposite for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Mohammed Mizanur Rahman

    2014-01-01

    Full Text Available Crystalline cellulose was extracted from jute by hydrolysis with 40% H2SO4 to get mixture of micro/nanocrystals. Scanning electron microscope (SEM showed the microcrystalline structure of cellulose and XRD indicated the Iβ polymorph of cellulose. Biodegradable composites were prepared using crystalline cellulose (CC of jute as the reinforcement (3–15% and poly(lactic acid (PLA as a matrix by extrusion and hot press method. CC was cellulose derived from mercerized and bleached jute fiber by acid hydrolysis to remove the amorphous regions. FT-IR studies showed hydrogen bonding between the CC and the PLA matrix. The X-ray diffraction (XRD and differential scanning calorimetry (DSC studies showed that the percentage crystallinity of PLA in composites was found to be higher than that of neat PLA as a result of the nucleating ability of the crystalline cellulose. Furthermore, Vicker hardness and yield strength were found to increase with increasing cellulose content in the composite. The SEM images of the fracture surfaces of the composites were indicative of poor adhesion between the CC and the PLA matrix. The composite with 15% CC showed antibacterial effect though pure films but had no antimicrobial effect; on the other hand its cytotoxicity in biological medium was found to be medium which might be suitable for its potential biomedical applications.

  20. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering.

    Science.gov (United States)

    Stumpf, Taisa Regina; Yang, Xiuying; Zhang, Jingchang; Cao, Xudong

    2018-01-01

    Bacterial cellulose (BC) is secreted by a few strains of bacteria and consists of a cellulose nanofiber network with unique characteristics. Because of its excellent mechanical properties, outstanding biocompatibilities, and abilities to form porous structures, BC has been studied for a variety of applications in different fields, including the use as a biomaterial for scaffolds in tissue engineering. To extend its applications in tissue engineering, native BC is normally modified to enhance its properties. Generally, BC modifications can be made by either in situ modification during cell culture or ex situ modification of existing BC microfibers. In this review we will first provide a brief introduction of BC and its attributes; this will set the stage for in-depth and up-to-date discussions on modified BC. Finally, the review will focus on in situ and ex situ modifications of BC and its applications in tissue engineering, particularly in bone regeneration and wound dressing. Copyright © 2016. Published by Elsevier B.V.

  1. Cotton-based Cellulose Nanomaterials for Applications in Composites and Electronics

    Science.gov (United States)

    Farahbakhsh, Nasim

    A modern society demands development of highly valued and sustainable products via innovative process technologies and utilizing bio-based alternatives for petroleum based materials. Systematic comparative study of nanocellulose particles as a biodegradable and renewable reinforcing agent can help to develop criteria for selecting an appropriate candidate to be incorporated in polymer nanocomposites. Of particular interest has been nanocellulosic materials including cellulose nanocrystal (CNC) and micro/nanofibrilated cellulose (MFC/NFC) which possess a hierarchical structure that permits an ordered structure with unique properties that has served as building blocks for the design of green and novel materials composites for applications in flexible electronics, medicine and composites. Key differences exist in nanocellulosic materials as a result the process by which the material is produced. This research demonstrates the applicability for the use of recycled cotton as promising sustainable material to be utilized as a substrate for electronic application and a reinforcing agent choice that can be produced without any intensive purification process and be applied to synthetic-based polymer nanocomposites in melt-processing. (Abstract shortened by ProQuest.).

  2. Characterization of cellulose nanowhiskers

    International Nuclear Information System (INIS)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia

    2015-01-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  3. Economic study of NHR application on high pour point oil field

    International Nuclear Information System (INIS)

    Zhao Gang; Zhang Zuoyi; Ma Yuanle

    1997-01-01

    In order to extent the application of NHR (nuclear heating reactor) and cut down the oil production costs, the authors designed different heating disposition by NHR and boiler heating stations in high pour point oil reservoir, total 16.9 km 2 , in Daqing oil field. This work was based on the study of history matching, water flood planning and hot water circulation for the reservoir. The analyzing results show that, the convert heating cost of NHR is a third of boiler's and the net oil production of NHR is 4 times more than the latter. Considering economization and reliability, authors suggest to adopt the scheme of two NHR with one boiler heating station

  4. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates

    Science.gov (United States)

    Liu, Hui; Gao, Shou-Wei; Cai, Jing-Sheng; He, Cheng-Lin; Mao, Jia-Jun; Zhu, Tian-Xue; Chen, Zhong; Huang, Jian-Ying; Meng, Kai; Zhang, Ke-Qin; Al-Deyab, Salem S.; Lai, Yue-Kun

    2016-01-01

    Multifuntional fabrics with special wettability have attracted a lot of interest in both fundamental research and industry applications over the last two decades. In this review, recent progress of various kinds of approaches and strategies to construct super-antiwetting coating on cellulose-based substrates (fabrics and paper) has been discussed in detail. We focus on the significant applications related to artificial superhydrophobic fabrics with special wettability and controllable adhesion, e.g., oil-water separation, self-cleaning, asymmetric/anisotropic wetting for microfluidic manipulation, air/liquid directional gating, and micro-template for patterning. In addition to the anti-wetting properties and promising applications, particular attention is paid to coating durability and other incorporated functionalities, e.g., air permeability, UV-shielding, photocatalytic self-cleaning, self-healing and patterned antiwetting properties. Finally, the existing difficulties and future prospects of this traditional and developing field are briefly proposed and discussed. PMID:28773253

  5. Cellulose fibers extracted from rice and oat husks and their application in hydrogel.

    Science.gov (United States)

    Oliveira, Jean Paulo de; Bruni, Graziella Pinheiro; Lima, Karina Oliveira; Halal, Shanise Lisie Mello El; Rosa, Gabriela Silveira da; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-04-15

    The commercial cellulose fibers and cellulose fibers extracted from rice and oat husks were analyzed by chemical composition, morphology, functional groups, crystallinity and thermal properties. The cellulose fibers from rice and oat husks were used to produce hydrogels with poly (vinyl alcohol). The fibers presented different structural, crystallinity, and thermal properties, depending on the cellulose source. The hydrogel from rice cellulose fibers had a network structure with a similar agglomeration sponge, with more homogeneous pores compared to the hydrogel from oat cellulose fibers. The hydrogels prepared from the cellulose extracted from rice and oat husks showed water absorption capacity of 141.6-392.1% and high opacity. The highest water absorption capacity and maximum stress the compression were presented by rice cellulose hydrogel at 25°C. These results show that the use of agro-industrial residues is promising for the biomaterial field, especially in the preparation of hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Synthesis and study of nano-structured cellulose acetate based materials for energy applications

    International Nuclear Information System (INIS)

    Fischer, F.

    2006-12-01

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO 2 supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO 2 are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm -3 together with a meso-porous volume of 3,40 cm 3 .g -1 was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m -1 .K -1 . In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  7. Preparation of conductive paper composites based on natural cellulosic fibers for packaging applications.

    Science.gov (United States)

    Youssef, Ahmed M; El-Samahy, Magda Ali; Abdel Rehim, Mona H

    2012-08-01

    Conducting paper based on natural cellulosic fibers and conductive polymers was prepared using unbleached bagasse and/or rice straw fibers (as cellulosic raw materials) and polyaniline (PANi) as conducting polymer. These composites were synthesized by in situ emulsion polymerization using ammonium persulfate (APS) as oxidant in the presence of dodecylbenzene sulfonic acid (DBSA) as emulsifier. The prepared composites were characterized using Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC), and their morphology was investigated using scanning electron microscope (SEM). Electrical conductivity measurements showed that the conductivity of the paper sheets increases by increasing the ratio of PANi in the composite. Mechanical properties of the paper sheets were also investigated, the results revealed that the values of breaking length, burst factor, and tear factor are decreased with increasing ratio of added PANi, and this effect is more pronounced in bagasse-based composites. The new conductive composites can have potential use as anti-static packaging material or anti-bacterial paper for packaging applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Modification of Cellulose with 4.4 Diaminodiphenylether-O-Hydroxibenzaldehide as Adsorbent and Its Application for Adsorbing Metalic Ion of Cd2+ In Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Nurlisa HIdayati

    2016-06-01

    Full Text Available This research on the modification of cellulose using 4,4-diaminodiphenylether and o-hydroxybenzaldehyde and its application to adsorb Cd2+ in aqueous solution has been done. The adsorption studies of cellulose and modified cellulose were done by using batch technique. The cellulose and modified cellulose were characterized by FTIR. The FTIR spectra revealed characteristic bands of 1573 cm-1, 1280 cm-1, 3749 cm-1 and 1056 cm-1. It indicates function group of C=N, C=O, O-H and Si-OR bond, respectively. The FTIR spectra of cellulose and modified cellulose which interacted to Cd2+, it were indicated by the shift in wavenumber 3410 cm-1 to 3371 cm-1. This spectral shift indicating Cd2+ bound to OH-group. In this research, interaction between modified cellulose with Cd2+ confirmed by intensities spectral changes at 1620 cm-1. The adsorption capacity and energy from adsorption of Cd2+ ions toward cellulose were 71,43 mg/g and 4,142 kJ/mol, while toward modified cellulose were 55,56 mg/g and 0,13 kJ/mol, respectively.

  9. Tunnelling conductive hybrid films of gold nanoparticles and cellulose and their applications as electrochemical electrodes

    International Nuclear Information System (INIS)

    Liu, Zhiming; Wang, Xuefeng; Wu, Wenjian; Li, Mei

    2015-01-01

    Conductive hybrid films of metal nanoparticles and polymers have practical applications in the fields of sensing, microelectronics and catalysis, etc. Herein, we present the electrochemical availability of tunnelling conductive hybrid films of gold nanoparticles (GNPs) and cellulose. The hybrid films were provided with stable tunnelling conductive properties with 12 nm GNPs of 12.7% (in weight). For the first time, the conductive hybrid films were used as substrates of electrochemical electrodes to load calmodulin (CaM) proteins for sensing of calcium cations. The electrodes of hybrid films with 20 nm GNPs of 46.7% (in weight) exhibited stable electrochemical properties, and showed significant responses to calcium cations with concentrations as low as 10 −9 M after being loaded with CaM proteins. (paper)

  10. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Mohamed El-Sakhawy

    2014-01-01

    Full Text Available Carboxymethyl cellulose acetate butyrate (CMCAB has gained increasing importance in several fields, particularly in coating technologies and pharmaceutical research. CMCAB is synthesized by esterification of CMC sodium salt with acetic and butyric anhydrides. CMCAB mixed esters are relatively high molecular weight (MW thermoplastic polymers with high glass transition temperatures (Tg. CMCAB ester is dispersible in water and soluble in a wide range of organic solvents, allowing varied opportunity to the solvent choice. It makes application of coatings more consistent and defect-free. Its ability to slow down the release rate of highly water-soluble compounds and to increase the dissolution of poorly soluble compounds makes CMCAB a unique and potentially valuable tool in pharmaceutical and amorphous solid dispersions (ASD formulations.

  11. Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application

    DEFF Research Database (Denmark)

    Meriçer, Çağlar; Minelli, Matteo; Angelis, Maria G De

    2016-01-01

    Fully bio-based and biodegradable materials, such as polylactic acid (PLA) and microfibrillated cellulose (MFC), are considered in order to produce a completely renewable packaging solution for oxygen barrier applications, even at medium-high relative humidity (R.H.). Thin layers of MFC were coated...... on different PLA substrates by activating film surface with an atmospheric plasma treatment, leading to the fabrication of robust and transparent multilayer composite films, which were then characterized by different experimental techniques. UV transmission measurements confirmed the transparency of multilayer...... films (60% of UV transmission rate), while SEM micrographs showed the presence of a continuous, dense and defect free layer of MFC on PLA surface. Concerning the mechanical behavior of the samples, tensile tests revealed that the multilayer films significantly improved the stress at break value of neat...

  12. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications.

    Science.gov (United States)

    Zulkifli, Farah Hanani; Hussain, Fathima Shahitha Jahir; Zeyohannes, Senait Sileshi; Rasad, Mohammad Syaiful Bahari Abdull; Yusuff, Mashitah M

    2017-10-01

    Green porous and ecofriendly scaffolds have been considered as one of the potent candidates for tissue engineering substitutes. The objective of this study is to investigate the biocompatibility of hydroxyethyl cellulose (HEC)/silver nanoparticles (AgNPs), prepared by the green synthesis method as a potential host material for skin tissue applications. The substrates which contained varied concentrations of AgNO 3 (0.4%-1.6%) were formed in the presence of HEC, were dissolved in a single step in water. The presence of AgNPs was confirmed visually by the change of color from colorless to dark brown, and was fabricated via freeze-drying technique. The outcomes exhibited significant porosity of >80%, moderate degradation rate, and tremendous value of water absorption up to 1163% in all samples. These scaffolds of HEC/AgNPs were further characterized by SEM, UV-Vis, ATR-FTIR, TGA, and DSC. All scaffolds possessed open interconnected pore size in the range of 50-150μm. The characteristic peaks of Ag in the UV-Vis spectra (417-421nm) revealed the formation of AgNPs in the blend composite. ATR-FTIR curve showed new existing peak, which implies the oxidation of HEC in the cellulose derivatives. The DSC thermogram showed augmentation in T g with increased AgNO 3 concentration. Preliminary studies of cytotoxicity were carried out in vitro by implementation of the hFB cells on the scaffolds. The results substantiated low toxicity of HEC/AgNPs scaffolds, thus exhibiting an ideal characteristic in skin tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  14. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    OpenAIRE

    Asif Khan; Zafar Abas; Heung Soo Kim; Jaehwan Kim

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active pa...

  15. Application de la théorie mathématique de l'information pour l ...

    African Journals Online (AJOL)

    Revue Synthèse N° 21, Janvier 2010. F.L. Rahmani et A. Chibat. 5. Application de la théorie mathématique de l'information pour l'élaboration de questionnaires. Fouad Lazhar Rahmani et Ahmed Chibat. Laboratoire des mathématiques appliquées et modélisation,. Université Frères Mentouri, Constantine 25000, Algérie.

  16. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  17. Cellulose nanocrystals in nanocomposite approach: Green and high-performance materials for industrial, biomedical and agricultural applications

    Science.gov (United States)

    Fortunati, E.; Torre, L.

    2016-05-01

    The need to both avoid wastes and find new renewable resources has led to a new and promising research based on the possibility to revalorize the biomass producing sustainable chemicals and/or materials which may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicelluloses and lignin. In this context, nanocellulose, and in particular cellulose nanocrystals (CNC), have gain considerable attention as nanoreinforcement for polymer matrices, mainly biodegradable. Derived from the most abundant polymeric resource in nature and with inherent biodegradability, nanocellulose is an interesting nanofiller for the development of nanocomposites for industrial, biomedical and agricultural applications. Due to the high amount of hydroxyl groups on their surface, cellulose nanocrystals are easy to functionalize. Well dispersed CNC are able, in fact, to enhance several properties of polymers, i.e.: thermal, mechanical, barrier, surface wettability, controlled of active compound and/or drug release. The main objective here is to give a general overview of CNC applications, summarizing our recent developments of bio-based nanocomposite formulations reinforced with cellulose nanocrystals extracted from different natural sources and/or wastes for food packaging, medical and agricultural sectors.

  18. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Applications of polyamide/cellulose fiber/wollastonite composites for microcellular injection molding

    Science.gov (United States)

    Herman Winata; Lih-Sheng Turng; Daniel F. Caulfield; Tom Kuster; Rick Spindler; Rod Jacobson

    2003-01-01

    In this study, a cellulose-fiber-reinforced Polyamide-6 (PA-6) composite, a hybrid composite (PA-6/cellulose/Wollastonite), and the neat PA-6 resin were injection molded into ASTM test–bar samples with conventional and microcellular injection molding. The impact and tensile strengths of molded samples were measured and the Scanning Electron Microscopy (SEM) images were...

  20. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; Abd Mutalib, Muhazri; Mohd Hir, Zul Adlan; M Zain, M F; Mohamad, Abu Bakar; Jeffery Minggu, Lorna; Awang, Nor Asikin; W Salleh, W N

    2017-10-01

    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application

    International Nuclear Information System (INIS)

    Maniruzzaman, Mohammad; Jang, Sang-Dong; Kim, Jaehwan

    2012-01-01

    Highlights: ► An organic–inorganic hybrid nanocomposite was fabricated by blending TiO 2 nanoparticles and cellulose solution. ► The hybrid nanocomposite has advantages of biodegradability and bio-compatibility of cellulose and physical properties of TiO 2 . ► Enzyme glucose oxidase (GOx) was immobilized into the hybrid nanocomposite and covalent bonding between TiO 2 and GOx was confirmed by X-ray photoelectron analysis. ► Linear response of the glucose biosensor was obtained in the range of 1–10 mM. - Abstract: This paper investigates the fabrication of titanium dioxide (TiO 2 )–cellulose hybrid nanocomposite and its possibility for a conductometric glucose biosensor. TiO 2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N,N-dimethylacetamide solvent to fabricate TiO 2 –cellulose hybrid nanocomposite. The enzyme, glucose oxidase (GOx) was immobilized into this hybrid nanocomposite by physical adsorption method. The successful immobilization of glucose oxidase into TiO 2 –cellulose hybrid nanocomposite via covalent bonding between TiO 2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of the glucose biosensor is obtained in the range of 1–10 mM. This study demonstrates that TiO 2 –cellulose hybrid nanocomposite can be a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  2. Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application.

    Science.gov (United States)

    Li, Zehui; Yang, Lan; Cao, Hongbin; Chang, Yu; Tang, Kexin; Cao, Zhiqin; Chang, Junjun; Cao, Youpeng; Wang, Wenbo; Gao, Meng; Liu, Chenming; Liu, Dagang; Zhao, He; Zhang, Yi; Li, Mingjie

    2017-11-01

    In order to promote sustainable development, green and renewable clean energy technologies continue to be developed to meet the growing demand for energy, such as supercapacitor, fuel cells and lithium-ion battery. It is urgent to develop appropriate nanomaterials for these energy technologies to reduce the volume of the device, improve the efficiency of energy conversion and enlarge the energy storage capacity. Here, chitosan/cellulose carbon cryogel (CCS/CCL) were designed and synthesized. Through the introduction of zeolite imidazole frameworks (ZIFs) into the chitosan/cellulose cryogels, the obtained materials showed a microstructure of ZIF-7 (a kind of ZIFs) coated chitosan/cellulose fibers (CS/CL). After carbonizing, the as-prepared carbonized ZIF-7@cellulose cryogel (NC@CCL, NC is carbonized ZIF-7) and carbonized ZIF-7@chitosan cryogel (NC@CCS) exhibited suitable microspore contents of 34.37% and 30%, respectively, and they both showed an internal resistance lower than 2Ω. Thereby, NC@CCL and NC@CCS exhibited a high specific capacitance of 150.4Fg -1 and 173.1Fg -1 , respectively, which were much higher than those of the original materials. This approach offers a facile method for improving the strength and electronic conductivity of carbon cryogel derived from nature polymers, and also efficiently inhibits the agglomeration of cryogel during carbonization in high temperature, which opens a novel avenue for the development of carbon cryogel materials for application in energy conversion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Embedding of bacterial cellulose nanofibers within PHEMA hydrogel matrices: tunable stiffness composites with potential for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Hobzová, Radka; Hrib, Jakub; Širc, Jakub; Karpushkin, Evgeny; Michálek, Jiří; Janoušková, Olga; Gatenholm, P.

    2018-01-01

    Roč. 2018, 17 January (2018), s. 1-11, č. článku 5217095. ISSN 1687-4110 R&D Projects: GA ČR(CZ) GA16-04863S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : bacterial cellulose * PHEMA * biomedical application Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.871, year: 2016

  4. Biosynthesis of Bacterial Cellulose/Carboxylic Multi-Walled Carbon Nanotubes for Enzymatic Biofuel Cell Application

    Directory of Open Access Journals (Sweden)

    Pengfei Lv

    2016-03-01

    Full Text Available Novel nanocomposites comprised of bacterial cellulose (BC with carboxylic multi-walled carbon nanotubes (c-MWCNTs incorporated into the BC matrix were prepared through a simple method of biosynthesis. The biocathode and bioanode for the enzyme biological fuel cell (EBFC were prepared using BC/c-MWCNTs composite injected by laccase (Lac and glucose oxidase (GOD with the aid of glutaraldehyde (GA crosslinking. Biosynthesis of BC/c-MWCNTs composite was characterized by digital photos, scanning electron microscope (SEM, and Fourier Transform Infrared (FTIR. The experimental results indicated the successful incorporation of c-MWCNTs into the BC. The electrochemical and biofuel performance were evaluated by cyclic voltammetry (CV and linear sweep voltammetry (LSV. The power density and current density of EBFCs were recorded at 32.98 µW/cm3 and 0.29 mA/cm3, respectively. Additionally, the EBFCs also showed acceptable stability. Preliminary tests on double cells indicated that renewable BC have great potential in the application field of EBFCs.

  5. Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Zhang, Xinxing; Lu, Canhui

    2016-11-01

    We report a facile and efficient approach for synthesis of well-dispersed and stable silver nanoparticles (Ag NPs) using water-soluble cellulose acetate (CA) as both reductant and stabilizer. Partially substituted CA with highly active hydroxyl groups and excellent water-solubility is able to reduce silver ions in homogeneous aqueous medium effectively. The synthesized Ag NPs were characterized by UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscope analysis. The as-prepared Ag NPs were well-dispersed, showing a surface plasmon resonance peak at 426nm. The resulted Ag NPs@CA nanohybrids exhibit high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH 4 . Meanwhile, the nanohybrids are also effective in inhibiting the growth of bacterial. This environmentally friendly method promotes the use of renewable natural resources to prepare a variety of inorganic-organic materials for catalysis, antibacterial, sensors and other applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications.

    Science.gov (United States)

    Mohite, Bhavna V; Patil, Satish V

    2014-01-01

    Bacterial cellulose (BC) is an interesting biopolymer produced by bacteria having superior properties. BC produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and explored for its applications in dye removal and bioadsorption of protein and heavy metals. Purity of BC was confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analysis. BC removed azo dye and Aniline blue (400 mg/L) with 80% efficiency within 60 min. The adsorption and elution of Bovine serum albumin (BSA) and heavy metals like lead, cadmium and nickel (Pb(2+), Cd(2+) and Ni(2+)) was achieved with BC which confirms the exclusion ability with reusability. The BSA adsorption quantity was increased with increase in protein concentration with more than 90% adsorption and elution ratio. The effect of pH and temperature on BSA adsorption has been investigated. Bioadsorption (82%) and elution ratio (92%) of BC for Pb(2+) was more when compared with Cd(2+) (41 and 67%) and Ni(2+) (33 and 85%), respectively. BC was also explored as soil conditioner to increase the water-holding capacity and porosity of soil. The results elucidated the significance of BC as renewable effective ecofriendly bioadsorption agent.

  7. Protein alignment using cellulose nanocrystals: practical considerations and range of application

    International Nuclear Information System (INIS)

    Denisov, Alexey Y.; Kloser, Elisabeth; Gray, Derek G.; Mittermaier, Anthony K.

    2010-01-01

    Cellulose nanocrystals (CNCs) form liquid crystals in aqueous solution that confer alignment to macromolecules and permit the measurement of residual dipolar couplings. CNCs possess many attractive features as an alignment medium. They are inexpensive, non-toxic, chemically inert, and robust to denaturants and temperature. Despite these advantages, CNCs are seldom employed as an alignment medium and the range of their applicability has not yet been explored. We have re-examined the use of CNCs in biomolecular NMR by analyzing the effects concentration, ionic strength, and temperature on molecular alignment. Stable alignment was obtained over wide ranges of temperature (10-70 o C) and pH (2.5-8.0), which makes CNCs potentially very useful in studies of thermophilic proteins and acid-stabilized molecules. Notably, we find that CNC suspensions are very sensitive to the concentrations of biological buffers, which must be taken into account when they are used in NMR analyses. These results have led us to develop a general procedure for preparing aligned samples with CNCs. Using the SH3 domain from the Fyn tyrosine kinase as a model system, we find that CNCs produce an alignment frame collinear with that of the commonly used Pf1 bacteriophage alignment medium, but of opposite magnitude.

  8. Synthesis, Characterization and Applications of Ethyl Cellulose-Based Polymeric Calcium(II) Hydrogen Phosphate Composite

    Science.gov (United States)

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.

    2018-03-01

    The present report deals with the synthesis, characterization and testing of an ethyl cellulose-calcium(II) hydrogen phosphate (EC-CaHPO4) composite, where a sol-gel synthesis method was applied for the preparation of the composite so as to test its efficacy towards the electrochemical, biological, and adsorption related applications. The physical properties of the composite were characterized by using scanning electron microscopy (SEM), ultraviolet- visible (UV-Vis) spectroscopy, and fourier transform-infrared (FTIR) spectroscopy. On testing, the mechanical properties indicated that the composite is highly stable due to the cross-linked rigid framework and the enhanced interactions offered by the EC polymer supported for its binding very effectively. In addition, the conductivity of EC-CaHPO4 is completely governed by the transport mechanism where the electrolyte concentration has preference towards the adsorption of ions and the variations in the conductivity significantly affected the material's performance. We observed an increasing order of KCl > NaCl for the conductivity when 1:1 electrolytes were applied. Further, the material was tested for its usefulness towards the purification of industrial waste waters by removing harmful metal ions from the samples collected near the Aligarh city, India where the data indicates that the material has highest affinity towards Pb2+, Cu2+, Ni2+ and Fe3+ metal ions. Finally, the biological efficiency of the material was confirmed by means of testing the antibacterial activity against two gram positive (staphylococcus aureus and Bacillus thuringiensis) and two gram negative bacteriums (Pseudomonas aeruginosa and Patoea dispersa). Thus, from the cumulative study of outcomes, it indicates that the EC-CaHPO4 composite found to serve as a potential smart biomaterial due to its efficiency in many different applications that includes the electrical conductivity, adsorption capability, and antimicrobial activity.

  9. Titanium dioxide-cellulose hybrid nanocomposite and its glucose biosensor application

    Energy Technology Data Exchange (ETDEWEB)

    Maniruzzaman, Mohammad; Jang, Sang-Dong [Center for EAPap Actuator, Department of Mechanical Engineering, INHA University, Incheon 402-751 (Korea, Republic of); Kim, Jaehwan, E-mail: jaehwan@inha.ac.kr [Center for EAPap Actuator, Department of Mechanical Engineering, INHA University, Incheon 402-751 (Korea, Republic of)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer An organic-inorganic hybrid nanocomposite was fabricated by blending TiO{sub 2} nanoparticles and cellulose solution. Black-Right-Pointing-Pointer The hybrid nanocomposite has advantages of biodegradability and bio-compatibility of cellulose and physical properties of TiO{sub 2}. Black-Right-Pointing-Pointer Enzyme glucose oxidase (GOx) was immobilized into the hybrid nanocomposite and covalent bonding between TiO{sub 2} and GOx was confirmed by X-ray photoelectron analysis. Black-Right-Pointing-Pointer Linear response of the glucose biosensor was obtained in the range of 1-10 mM. - Abstract: This paper investigates the fabrication of titanium dioxide (TiO{sub 2})-cellulose hybrid nanocomposite and its possibility for a conductometric glucose biosensor. TiO{sub 2} nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N,N-dimethylacetamide solvent to fabricate TiO{sub 2}-cellulose hybrid nanocomposite. The enzyme, glucose oxidase (GOx) was immobilized into this hybrid nanocomposite by physical adsorption method. The successful immobilization of glucose oxidase into TiO{sub 2}-cellulose hybrid nanocomposite via covalent bonding between TiO{sub 2} and GOx was confirmed by X-ray photoelectron analysis. The linear response of the glucose biosensor is obtained in the range of 1-10 mM. This study demonstrates that TiO{sub 2}-cellulose hybrid nanocomposite can be a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  10. Cellulose Perversions

    Directory of Open Access Journals (Sweden)

    Maria H. Godinho

    2013-03-01

    Full Text Available Cellulose micro/nano-fibers can be produced by electrospinning from liquid crystalline solutions. Scanning electron microscopy (SEM, as well as atomic force microscopy (AFM and polarizing optical microscopy (POM measurements showed that cellulose-based electrospun fibers can curl and twist, due to the presence of an off-core line defect disclination, which was present when the fibers were prepared. This permits the mimicking of the shapes found in many systems in the living world, e.g., the tendrils of climbing plants, three to four orders of magnitude larger. In this work, we address the mechanism that is behind the spirals’ and helices’ appearance by recording the trajectories of the fibers toward diverse electrospinning targets. The intrinsic curvature of the system occurs via asymmetric contraction of an internal disclination line, which generates different shrinkages of the material along the fiber. The completely different instabilities observed for isotropic and anisotropic electrospun solutions at the exit of the needle seem to corroborate the hypothesis that the intrinsic curvature of the material is acquired during liquid crystalline sample processing inside the needle. The existence of perversions, which joins left and right helices, is also investigated by using suspended, as well as flat, targets. Possible routes of application inspired from the living world are addressed.

  11. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Luo, Honglin; Xiong, Guangyao; Hu, Da; Ren, Kaijing; Yao, Fanglian; Zhu, Yong; Gao, Chuan; Wan, Yizao

    2013-01-01

    Introduction of active groups on the surface of bacterial cellulose (BC) nanofibers is one of the promising routes of tailoring the performance of BC scaffolds for tissue engineering. This paper reported the introduction of aldehyde groups to BC nanofibers by 2,2,6,6-tetramethylpyperidine-1-oxy radical (TEMPO)-mediated oxidation and evaluation of the potential of the TEMPO-oxidized BC as tissue engineering scaffolds. Periodate oxidation was also conducted for comparison. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses were carried out to determine the existence of aldehyde groups on BC nanofibers and the crystallinity. In addition, properties relevant to scaffold applications such as morphology, fiber diameter, mechanical properties, and in vitro degradation were characterized. The results indicated that periodate oxidation could introduce free aldehyde to BC nanofibers and the free aldehyde groups on the TEMPO-oxidized BC tended to transfer to acetal groups. It was also found that the advantageous 3D structure of BC scaffolds remained unchanged and that no significant changes in morphology, fiber diameter, tensile structure and in vitro degradation were found after TEMPO-mediated oxidation while significant differences were observed upon periodate oxidation. The present study revealed that TEMPO-oxidation could impart BC scaffolds with new functions while did not degrade their intrinsic advantages. - Highlights: • TEMPO-mediated oxidation on BC scaffold for tissue engineering use was conducted. • TEMPO-mediated oxidation did not degrade the intrinsic advantages of BC scaffold. • TEMPO-mediated oxidation could impart BC scaffold with new functional groups. • Feasibility of TEMPO-oxidized BC as tissue engineering scaffold was confirmed

  12. The preparation and application of crude cellulase for cellulose-hydrogen production by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi-Ping; Fan, Yao-Ting; Pan, Chun-Mei; Hou, Hong-Wei [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052 (China); Fan, Shao-Qun [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052 (China); Beijing Alcatel-Lucent R and D Center, Beijing, 100102 (China)

    2010-01-15

    Strategies were adopted to cost-efficiently produce cellulose-hydrogen by anaerobic fermentation in this paper. First, cellulase used for hydrolyzing cellulose was prepared by solid-state fermentation (SSF) on cheap biomass from Trichoderma viride. Several cultural conditions for cellulase production on cheap biomass such as moisture content, inoculum size and culture time were studied. And the components of solid-state medium were optimized using statistical methods to further improve cellulase capability. Second, the crude cellulase was applied to cellulose-hydrogen process directly. The maximal hydrogen yield of 122 ml/g-TVS was obtained at the substrate concentration of 20 g/L and cultured time of 53 h. The value was about 45-fold than that of raw corn stalk wastes. The hydrogen content in the biogas was 44-57%(v/v) and there was no significant methane gas observed. (author)

  13. Electron beam application as pre treatment of sugar cane bagasse to enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Cardoso, Vanessa Miguel

    2008-01-01

    Due to increasing worldwide shortage of food and energy sources, sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, much of which is in a crystalline structure, 40% hemicelluloses, an amorphous polymer usually composed of xylose, arabinose, galactose, glucose, and mannose and 20% lignin, which cannot be easily separated into readily usable components due to their recalcitrant nature. Pure cellulose is readily depolymerised by radiation, but in biomass the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study was the evaluation of the electron beam irradiation efficiency as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 10 0 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose in. (author)

  14. Fermentation Tecniques and Applications of Bacterial Cellulose: a Review Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión

    OpenAIRE

    Luz Dary Carreño Pineda; Luis Alfonso Caicedo Mesa; Carlos Arturo Martínez Riascos

    2012-01-01

    Bacterial cellulose is a polymer obtained by fermentation with microorganismsfrom Acetobacter, Rhizobium, Agrobacterium and Sarcina genera. Amongthem, Acetobacter xylinum is the most efficient specie. This polymer hasthe same chemical composition of plant cellulose, but its conformation andphysicochemical properties are different, making it attractive for several applications, especially in the areas of food, separation processes, catalysis andhealth, due to its biocompatibility. However, the ma...

  15. Covalent Binding of Antibodies to Cellulose Paper Discs and Their Applications in Naked-eye Colorimetric Immunoassays.

    Science.gov (United States)

    Peng, Yanfen; Gelder, Victor Van; Amaladoss, Anburaj; Patel, Kadamb Haribhai

    2016-10-21

    This report presents two methods for the covalent immobilization of capture antibodies on cellulose filter paper grade No. 1 (medium-flow filter paper) discs and grade No. 113 (fast-flow filter paper) discs. These cellulose paper discs were grafted with amine functional groups through a silane coupling technique before the antibodies were immobilized on them. Periodate oxidation and glutaraldehyde cross-linking methods were used to graft capture antibodies on the cellulose paper discs. In order to ensure the maximum binding capacity of the capture antibodies to their targets after immobilization, the effects of various concentrations of sodium periodate, glutaraldehyde, and capture antibodies on the surface of the paper discs were investigated. The antibodies that were coated on the amine-functionalized cellulose paper discs through a glutaraldehyde cross-linking agent showed enhanced binding activity to the target when compared to the periodate oxidation method. IgG (in mouse reference serum) was used as a reference target in this study to test the application of covalently immobilized antibodies through glutaraldehyde. A new paper-based, enzyme-linked immunosorbent assay (ELISA) was successfully developed and validated for the detection of IgG. This method does not require equipment, and it can detect 100 ng/ml of IgG. The fast-flow filter paper was more sensitive than the medium-flow filter paper. The incubation period of this assay was short and required small sample volumes. This naked-eye, colorimetric immunoassay can be extended to detect other targets that are identified with conventional ELISA.

  16. Algorithmes de reconstruction pour le filtrage en ligne et application à la mesure de la section efficace de la collision $e^{+}e^{-} \\to (e^{+}e^{-})\\eta$ c avec le système de digitalisation rapide pour la chambre à vertex de l'expérience L3

    CERN Document Server

    Forconi, G

    1993-01-01

    Algorithmes de reconstruction pour le filtrage en ligne et application à la mesure de la section efficace de la collision $e^{+}e^{-} \\to (e^{+}e^{-})\\eta$ c avec le système de digitalisation rapide pour la chambre à vertex de l'expérience L3

  17. Application of cellulosic nanofibers to replace with imported long- fiber pulps in paper made from bagasse

    Directory of Open Access Journals (Sweden)

    Reza ghofran

    2017-02-01

    Full Text Available In this research, different additives of cellulose nanofibers, cationic starch and polyacrylamide to bagasse pulp and their impact on the handsheet strengths were investigated aiming to replace with imported long-fiber softwood pulp in Pars paper factory. For this purpose, first 3% bleached bagasse cellulose nanofibers, 3% unbleached nano-lignocellulosic fibers, 0.5, 0.7 and 1% cationic starch, and 0.03, 0.05 and 0.1% cationic polyacrylamide were added separately to bagasse pulp. In the next stage,3% bleached bagasse cellulose nanofibers and 3% unbleached nano-lignocellulosic fibers along with 0.5% cationic starch or 0.05% cationic polyacrylamide were used. The results showed, adding nano-cellulose fibers along with cationic polyacrylamide or starch have increased handsheet strengths significantly. Yet, the best treatment was the addition of 3% nano-lignocellulose along with 0.5% cationic starch which resulted in the higher tensile and burst strengths and lower tear and fold strengths than that of adding 12.5% long fibers to bagasse pulp. So that, comparing with paper made from pure bagasse pulp it showed the increase of 16.57% in tensile index, 8.47% in burst index, 9.77% in tear index, and 168.85% in folding strength.

  18. Modification chimique d'antioxydants pour les rendre lipophiles : application aux tannins

    OpenAIRE

    Poaty-Poaty , Bouddah

    2009-01-01

    Ce travail fut pour moi une expérience pétillante en dépit de l'énorme stress qu'il a occasionné. J'en tire une réelle satisfaction personnelle car cela est presque exclusivement le fruit de ma réflexion et de ma persévérance dans l'effort; In the order to use natural antioxidants in lipidic substances, we wanted to make lipophilic of tannins by grafting on them carbonaceous chains through mild and simple chemical modifications. First, we used model substrates of tannins (phenol, catechol, ga...

  19. Eco-friendly biorefractory films of gelatin and TEMPO-oxidized cellulose ester for food packaging application.

    Science.gov (United States)

    Zhuang, Chen; Tao, Furong; Cui, Yuezhi

    2017-08-01

    In recent years, many types of food-packaging films and composites have been prepared using gelatin because of its good film-forming ability, non-toxic nature and cost-effectiveness. However, the relatively weak thermal stability, poor mechanical properties and easily-degradable quality limit the potential application of gelatin as a practical material. Microcrystalline cellulose (MCC), which comprises one of the most abundant biomass resources, has been regarded as a safe and reliable food additive because it has the same ingredients as the cellulose in people's daily intake. Food-packaging films with the excellent properties provided by gelatin and oxidized-cellulose represent a topic of great interest. MCC was modified by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation and chosen as the base of the macromolecule cross-linker (TMN). After modification of gelatin film by TMN, the minimum amount of free -NH 2 in solution was 4.8 × 10 -4  mol g -1 ). The thermal property obviously increased (from 322.31  o C to 352.63  o C) and was crucial for usage in the food industry. The highest water contact value 123.09° (η = 25%) indicated a better surface hydrophobicity. The higher E ab (58.88%) and lower E m (77.16%) demonstrated that a more flexible and shatter-proof material was obtained. Water vapor uptake studies suggested increased moisture absorption and greater swelling ability. The film material obtained in the present study was safe, stable, eco-friendly and biorefractory and could also be decomposed completely by the environment after disposal as a result of the properties of the ingredients gelatin and cellulose. The incorporation of a cellulosic cross-linker to gelatin-based films was an ideal choice with respect to developing a packaging for the food industry. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Application of thin film cellulose composite membrane for dye wastewater reuse

    KAUST Repository

    Puspasari, Tiara

    2016-09-22

    The use of low cost membranes with high salt/dye selectivity and high flux is ideal for an economic and eco-friendly treatment of dye wastewater. Here, regenerated cellulose membranes prepared from trimethylsilyl cellulose are studied for treating artificial dye effluents. In the experiments using a feed containing Congo Red and high NaCl concentration, the membrane featured impressive dye removal with zero salt rejection combined with high flux. More interestingly, the membrane reached as much as 600 LMH flux at 80 °C and 4 bar while maintaining high dye rejection close to 98%. In prolonged experiments up to 75 h the membrane exhibited good antifouling behavior with nearly 100% flux recovery. This study may provide a promising alternative of dye effluent treatment where high amounts of monovalent salts are present. © 2016

  1. Thermal Jacket Design Using Cellulose Aerogels for Heat Insulation Application of Water Bottles

    Directory of Open Access Journals (Sweden)

    Hai M. Duong

    2017-11-01

    Full Text Available Thermal jacket design using eco-friendly cellulose fibers from recycled paper waste is developed in this report. Neoprene as an outmost layer, cellulose aerogels in the middle and Nylon as an innermost layer can form the best sandwiched laminate using the zigzag stitching method for thermal jacket development. The temperature of the ice slurry inside the water bottle covered with the designed thermal jackets remains at 0.1 °C even after 4 h, which is the average duration of an outfield exercise. Interestingly, the insulation performance of the designed thermal jackets is much better than the commercial insulated water bottles like FLOE bottles and is very competition to that of vacuum flasks for a same period of 4 h and ambient conditions.

  2. Application of the spectral-correlation method for diagnostics of cellulose paper

    Science.gov (United States)

    Kiesewetter, D.; Malyugin, V.; Reznik, A.; Yudin, A.; Zhuravleva, N.

    2017-11-01

    The spectral-correlation method was described for diagnostics of optically inhomogeneous biological objects and materials of natural origin. The interrelation between parameters of the studied objects and parameters of the cross correlation function of speckle patterns produced by scattering of coherent light at different wavelengths is shown for thickness, optical density and internal structure of the material. A detailed study was performed for cellulose electric insulating paper with different parameters.

  3. Cellulose Nanocrystals Obtained from Cynara Cardunculus and Their Application in the Paper Industry

    Directory of Open Access Journals (Sweden)

    Valentina Coccia

    2014-08-01

    Full Text Available Biorefinery aims at designing new virtuous and high-efficiency energy chains, achieving the combined production of biofuels (e.g., bioethanol and biobased products. This emerging philosophy can represent an important opportunity for the industrial world, exploiting a new kind of nano-smart biomaterials in their production chains. This paper will present the lab experience carried out by the Biomass Research Centre (CRB in extracting cellulose nanocrystals (NCC from a pretreated (via Steam Explosion fraction of Cynara cardunculus. This is a very common and invasive arboreal variety in central Italy. The NCC extraction methodology allows the separation of the crystalline content of cellulose. Such a procedure has been considered in the literature with the exception of one step in which the conditions have been optimized by CRB Lab. This procedure has been applied for the production of NCC from both Cynara cardunculus and microcrystalline cellulose (MCC. The paper will discuss some of the results achieved using the obtained nanocrystals as reinforcing filler in a paper sheet; it was found that the tensile strength increased from 3.69 kg/15 mm to 3.98 kg/15 mm, the durability behavior (measured by bending number changed from the value 95 to the value 141, and the barrier properties (measured by Gurley porosity were improved, increasing from 38 s to 45 s.

  4. Performance of improved bacterial cellulose application in the production of functional paper.

    Science.gov (United States)

    Basta, A H; El-Saied, H

    2009-12-01

    The purpose of this work was to study the feasibility of producing economic flame retardant bacterial cellulose (BC) and evaluating its behaviour in paper production. This type of BC was prepared by Gluconacetobacter subsp. xylinus and substituting the glucose in the cultivation medium by glucose phosphate as a carbon source; as well as using corn steep liquor as a nitrogen source. The investigated processing technique did not dispose any toxic chemicals that pollute the surroundings or cause unacceptable effluents, making the process environmentally safe. The fire retardant behaviour of the investigated BC has been studied by non-isothermal thermogravimetric analysis (TGA & DTGA). The activation energy of each degradation stage and the order of degradation were estimated using the Coats-Redfern equation and the least square method. Strength, optical properties, and thermogravimetric analysis of BC-phosphate added paper sheets were also tested. The study confirmed that the use of glucose phosphate along with glucose was significant in the high yield production of phosphate containing bacterial cellulose (PCBC1); more so than the use of glucose phosphate alone (PCBC2). Incorporating 5% of the PCBC with wood pulp during paper sheet formation was found to significantly improve kaolin retention, strength, and fire resistance properties as compared to paper sheets produced from incorporating bacterial cellulose (BC). This modified BC is a valuable product for the preparation of specialized paper, in addition to its function as a fillers aid.

  5. Définition et développement des applications pour smartphones en différentes plateformes (windows8, IOS)

    OpenAIRE

    Lisicic Lopátegui, Claudia

    2013-01-01

    Innovation d’une application d’entreprise, déjà existante et développement de cette application dans une nouvelle plateforme. Gestion et management d’un projet de développement et innovation d’une application pour Smartphones, à travers des études ergonomiques, d’utilisateurs et d’état de l’art.

  6. Neural Networks and Their Applications for the Oil Industry Les réseaux neuronaux et leurs applications pour l'industrie pétrolière

    Directory of Open Access Journals (Sweden)

    Fogelman-Soulie F.

    2006-11-01

    Full Text Available Neural Networks can be used in many different areas of problems related to Petroleum Exploration and Production. There already exist well defined classes of applications, together with appropriate Neural Networks architectures. Detailed theoretical results allow to monitor and evaluate the results obtained by Neural Networks. Sophisticated applications will certainly require the use of multi-modular architectures. Les réseaux neuronaux peuvent être utilisés pour de nombreux problèmes dans les domaines de l'exploration et la production de pétrole. Il existe d'ores et déjà des classes d'applications bien définies, pour lesquelles on connaît les architectures neuronales les plus adaptées. Des résultats théoriques précis permettent de contrôler et d'évaluer les performances obtenues avec les réseaux neuronaux. Les applications complexes demanderont certainement la mise en oeuvre d'architectures multi-modulaires.

  7. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Science.gov (United States)

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  8. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  9. Study on time management of FCD concrete pouring AP1000 NPP and its application

    International Nuclear Information System (INIS)

    Wu Jie; Yang Ming; Cong Jiuyuan

    2010-01-01

    Haiyang nuclear power plant adopts the advanced third-generation nuclear power technology, AP1000, the design concept of passive system and the methods of modularization and 'open-top' construction greatly shortens the construction period. At the same time, higher requirements are put forward to the management of construction, quality and progress control. This paper will apply the statistical process control theory and method to the time management of FCD (First Concrete Day) to Unit 1 of Haiyang AP1000 nuclear power plant, and it brings up the mathematical model of time management based on verification through modeling, data analysis, model optimization and the actual construction work. The theory and method studied in this paper can not be only applied to the FCD concrete pouring for Unit 1 of Haiyang AP1000 nuclear power plant, but also have great referential and guiding significance to the continuous concreting of the mass concrete of the follow-up similar construction. (authors)

  10. Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis.

    Science.gov (United States)

    Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A

    2018-01-01

    In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Samin [Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 (Canada); El Sawi, Ihab; Bagheri, Zahra Shaghayegh [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 (Canada); Turcotte, Ginette [Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 (Canada); Bougherara, Habiba, E-mail: habiba.bougherara@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 (Canada)

    2014-06-01

    The purpose of this research is to develop and characterize a novel biomimetic nanocomposite that closely mimics the properties of real bone such as morphology, composition and mechanical characteristics. This novel porous nanocomposite is composed of cotton-sourced cellulose microcrystals, hydroxyapatite nanoparticles and poly L-lactide acid. A unique combination of commonly used fabrication procedures has been developed including pre-treatment of particles using a coupling agent. The effect of various weight ratios of the reinforcing agents was evaluated to assess their influence on the chemical, thermal, and mechanical properties of the nanocomposites. The prepared nanocomposites were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and compression testing. Our results indicated the presence of molecular interactions between all components leading to an increase of the crystallinity of the polymer from 50% to 80%. Compression test results revealed that increasing the weight ratio of microcrystalline cellulose/poly L-lactide acid and hydroxyapatite/poly L-lactide acid from 0.1 to 0.5 enhanced the compressive yield stress from 0.127 to 2.2 MPa and The Young's modulus from 6.6 to 38 MPa, respectively. It was found that the fabricated nanocomposites are comparable with the trabecular bone from compositional, structural, and mechanical point of view. - Highlights: • Fabrication of PLLA/HA/cellulose composites that mimic the spongeous bone • Homogenous dispersion of the reinforcing agents in the PLLA matrix was attained. • More efficient interface between the PLLA and the reinforcing agents was achieved. • Preliminary in vitro biocompatibility test showed the nontoxicity of the composite. • The crystallinity, the compressive strength and modulus were investigated.

  12. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  13. Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials.

    Science.gov (United States)

    Lei, Wanqing; Fang, Changqing; Zhou, Xing; Yin, Qian; Pan, Shaofei; Yang, Rong; Liu, Donghong; Ouyang, Yun

    2018-02-01

    Annually a tremendous amount of office waste paper (OWP) is discarded creating environmental pollution. Therefore, how to make this paper from waste to wealth and use it in new approaches have become a meaningful and challenging work. In this work, OWP being a cellulose rich biomass was employed for the production of cellulose nanocrystals (CNCs) by acid hydrolysis with different acid concentrations but without subjecting OWP to alkali and bleaching treatments. The testing results showed that CNCs prepared using sulfuric acid concentration of 59% with respect to OWP had the highest crystallinity and this concentration was the transition concentration for the production of opaque CNCs film with convoluted nanofibers to transparent one with orientated nanofibers. Besides, CNCs prepared using acid concentration of 65% coated on PET sheet not only had a better water vapor barrier property but also was on a par with the transparency of PET, which was hopeful to be used as coating materials in packaging materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pigment-cellulose nanofibril composite and its application as a separator-substrate in printed supercapacitors

    Science.gov (United States)

    Torvinen, Katariina; Lehtimäki, Suvi; Keränen, Janne T.; Sievänen, Jenni; Vartiainen, Jari; Hellén, Erkki; Lupo, Donald; Tuukkanen, Sampo

    2015-11-01

    Pigment-cellulose nanofibril (PCN) composites were manufactured in a pilot line and used as a separator-substrate in printed graphene and carbon nanotube supercapacitors. The composites consisted typically of 80% pigment and 20% cellulose nanofibrils (CNF). This composition makes them a cost-effective alternative as a substrate for printed electronics at high temperatures that only very special plastic films can nowadays stand. The properties of these substrates can be varied within a relatively large range by the selection of raw materials and their relative proportions. A semi-industrial scale pilot line was successfully used to produce smooth, flexible, and nanoporous composites, and their performance was tested in a double functional separator-substrate element in supercapacitors. The nanostructural carbon films printed on the composite worked simultaneously as high surface area active electrodes and current collectors. Low-cost supercapacitors made from environmentally friendly materials have significant potential for use in flexible, wearable, and disposable low-end products. [Figure not available: see fulltext.

  15. NIR analysis of cellulose and lactose--application to ecstasy tablet analysis.

    Science.gov (United States)

    Baer, Ines; Gurny, Robert; Margot, Pierre

    2007-04-11

    Cellulose and lactose are the most frequently used excipients in illicit ecstasy production. The aim of this project was to use near infrared reflectance spectroscopy (NIRS) for the determination of the different chemical forms of these two substances, as well as for the differentiation of their origin (producer). It was possible to distinguish between the different chemical forms of both compounds, as well as between their origins (producers), although within limits. Furthermore, the possibilities to apply NIR for the analysis of substances such as found in illicit tablets were studied. First, a few cellulose and lactose samples were chosen to make mixtures with amphetamine at three degrees of purity (5, 10 and 15%), in order to study the resulting changes in the spectra as well as to simultaneously quantify amphetamine and identify the excipient. A PLS2 model could be build to predict concentrations and excipient. Secondarily, the technique was to be applied to real ecstasy tablets. About 40 ecstasy seizures were analysed with the aim to determine the excipient and to check them against each other. Identification of the excipients was not always obvious, especially when more than one excipient were present. However, a comparison between tablets appeared to give groups of similar samples. NIR analysis results in spectra representing the tablet blend as a whole taking into account all absorbing compounds. Although NIRS seems to be an appropriate method for ecstasy profiling, little is known about intra- and intervariability of compression batches.

  16. Anaerobic solid state fermentation of cellulosic substrates with possible application to cellulase production

    Energy Technology Data Exchange (ETDEWEB)

    Vandevoorde, L; Verstraete, W

    1987-08-01

    A solid state fermentation process was developed for the conversion of straw and cellulose under anaerobic conditions by a mixed culture of cellulolytic and methanogenic organisms. The bioconversion rate and efficiency were compared under mesophilic (35/sup 0/C) and thermophilic (55/sup 0/C) conditions. Cellulolytic activity was assayed in terms of sugar and overall soluble organic matter (chemical oxygen demand, COD) production. Maximum conversion rates were obtained under thermophilic conditions, i.e. 8.4 g and 14.2 g COD/kg.d, respectively, when wheat straw and cellulose were used as substrates. The cellulolytic activity of the reactor contents (23% dry matter), measured under substrate excess conditions, amounted to 50 g COD/kg.d. As a comparison, the activity of rumen contents (15 % dry matter) measured by the same assay amounted to 150 g COD/kg . d. The anaerobic cellulases appeared to be substrate bound. This and the relative low activity levels attained, limit the perspectives of producing cellulase enzymes by this type of process.

  17. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the ...

  18. Implementation en VHDl/FPGA d'afficheur video numerique (AVN) pour des applications aerospatiales

    Science.gov (United States)

    Pelletier, Sebastien

    L'objectif de ce projet est de developper un controleur video en langage VHDL afin de remplacer la composante specialisee presentement utilisee chez CMC Electronique. Une recherche approfondie des tendances et de ce qui se fait actuellement dans le domaine des controleurs video est effectuee afin de definir les specifications du systeme. Les techniques d'entreposage et d'affichage des images sont expliquees afin de mener ce projet a terme. Le nouveau controleur est developpe sur une plateforme electronique possedant un FPGA, un port VGA et de la memoire pour emmagasiner les donnees. Il est programmable et prend peu d'espace dans un FPGA, ce qui lui permet de s'inserer dans n'importe quelle nouvelle technologie de masse a faible cout. Il s'adapte rapidement a toutes les resolutions d'affichage puisqu'il est modulaire et configurable. A court terme, ce projet permettra un controle ameliore des specifications et des normes de qualite liees aux contraintes de l'avionique.

  19. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  20. Modification of a cellulose derived for your application on enzyme immobilization

    International Nuclear Information System (INIS)

    Carvalho, Elaine S.; Rodriguez, Ruben J.S.; Lamonica, Alano C.; Tavares, Maria Ines B.

    2009-01-01

    The chemical modification of (acrylamidomethyl) cellulose acetate propionate (AMCAP) was done through the technique of grafting via radical using acrylic acid as modifier, with the objective to make the polymer more hydrophilic. The structural characterization of AMCAP and modified AMCAP-H 2 O 2 was analysed by using the technique of 13 C-nuclear magnetic resonance (NMR- 13 C). By the techniques differential scanning calorimetry analysis (DSC) and thermogravimetric analysis (TGA), the thermal properties was characterized and the hydrophobic / hydrophilic character was determined by measurements of the contact angle. The results show that occurred the change intended with the introduction of acrylic acid in the side chain of the polymer, increasing the hydrophilic character on the AMCAP. (author)

  1. Chitosan-cellulose composite materials: Preparation, Characterization and application for removal of microcystin

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Chieu D., E-mail: chieu.tran@marquette.edu [Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States); Duri, Simon [Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States); Delneri, Ambra; Franko, Mladen [Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5001 Nova Gorica (Slovenia)

    2013-05-15

    Highlights: •A novel and recyclable synthetic method using an ionic liquid, a Green Solvent. •Ecocomposite materials were synthesized from cellulose (CEL) and chitosan (CS). •Adding CEL into CS substantially increases tensile strength of the composite. •The composite is much better adsorbent for cyanotoxins than other materials. •The composite can be reused because adsorbed microcystin can be desorbed. -- Abstract: We developed a simple and one-step method to prepare biocompatible composites from cellulose (CEL) and chitosan (CS). [BMIm{sup +}Cl{sup −}], an ionic liquid (IL), was used as a green solvent to dissolve and prepare the [CEL + CS] composites. Since majority (>88%) of IL used was recovered for reuse by distilling the aqueous washings of [CEL + CS], the method is recyclable. XRD, FTIR, NIR, {sup 13}C CP-MAS-NMR and SEM were used to monitor the dissolution and to characterize the composites. The composite was found to have combined advantages of their components: superior mechanical strength (from CEL) and excellent adsorption capability for microcystin-LR, a deadly toxin produced by cyanobacteria (from CS). Specifically, the mechanical strength of the composites increased with CEL loading; e.g., up to 5× increase in tensile strength was achieved by adding 80% of CEL into CS. Kinetic results of adsorption confirm that unique properties of CS remain intact in the composite, i.e., it is not only a very good adsorbent for microcystin but also is better than all other available adsorbents. For example, it can adsorb 4× times more microcystin than the best reported adsorbent. Importantly, the microcystin adsorbed can be quantitatively desorbed to enable the composite to be reused with similar adsorption efficiency.

  2. Chitosan-cellulose composite materials: Preparation, Characterization and application for removal of microcystin

    International Nuclear Information System (INIS)

    Tran, Chieu D.; Duri, Simon; Delneri, Ambra; Franko, Mladen

    2013-01-01

    Highlights: •A novel and recyclable synthetic method using an ionic liquid, a Green Solvent. •Ecocomposite materials were synthesized from cellulose (CEL) and chitosan (CS). •Adding CEL into CS substantially increases tensile strength of the composite. •The composite is much better adsorbent for cyanotoxins than other materials. •The composite can be reused because adsorbed microcystin can be desorbed. -- Abstract: We developed a simple and one-step method to prepare biocompatible composites from cellulose (CEL) and chitosan (CS). [BMIm + Cl − ], an ionic liquid (IL), was used as a green solvent to dissolve and prepare the [CEL + CS] composites. Since majority (>88%) of IL used was recovered for reuse by distilling the aqueous washings of [CEL + CS], the method is recyclable. XRD, FTIR, NIR, 13 C CP-MAS-NMR and SEM were used to monitor the dissolution and to characterize the composites. The composite was found to have combined advantages of their components: superior mechanical strength (from CEL) and excellent adsorption capability for microcystin-LR, a deadly toxin produced by cyanobacteria (from CS). Specifically, the mechanical strength of the composites increased with CEL loading; e.g., up to 5× increase in tensile strength was achieved by adding 80% of CEL into CS. Kinetic results of adsorption confirm that unique properties of CS remain intact in the composite, i.e., it is not only a very good adsorbent for microcystin but also is better than all other available adsorbents. For example, it can adsorb 4× times more microcystin than the best reported adsorbent. Importantly, the microcystin adsorbed can be quantitatively desorbed to enable the composite to be reused with similar adsorption efficiency

  3. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications

    Science.gov (United States)

    Chen, L.; Lai, C.; Marchewka, R.; Berry, R. M.; Tam, K. C.

    2016-07-01

    Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films on PET substrates showed good flexibility and enhanced stability in both water and ethanol. The modified PET films with structural colors from thin-film interference and photoluminescence from QDs can be used in anti-counterfeiting applications.Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films

  4. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  5. Etude de l.inocuite et de l.acceptabilite du sulfate de cellulose (SC ...

    African Journals Online (AJOL)

    L.objectif principal de l.étude était d.évaluer les effets secondaires locaux et systémiques de l.application vaginale de plusieurs doses de gel de sulfate de cellulose à 6%. L.objectif secondaire était d.en évaluer l.acceptabilité par les participantes. L.autorisation pour mener l.étude a été obtenue du Ministère de la Santé ...

  6. WOOD CELLULOSE ACETATE MEMBRANE 179

    African Journals Online (AJOL)

    DR. AMINU

    2013-06-01

    Jun 1, 2013 ... 1988), cosmetics and food additives or pharmaceutical applications (Wellisch .... displaced by sample. Determination of percent α-, β- and γ–cellulose ..... addition, the smaller pore diameter would lead to a greater exclusion of ...

  7. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Science.gov (United States)

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  8. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiazhi; Yu, Junwei [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Fan, Jun [School of Environment, Nanjing University, Nanjing 210093 (China); Sun, Dongping [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Tang, Weihua [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Xuejie [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-05-15

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl{sub 2} and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.

  9. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application

    International Nuclear Information System (INIS)

    Yang, Jiazhi; Yu, Junwei; Fan, Jun; Sun, Dongping; Tang, Weihua; Yang, Xuejie

    2011-01-01

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl 2 and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.

  10. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application.

    Science.gov (United States)

    Yang, Jiazhi; Yu, Junwei; Fan, Jun; Sun, Dongping; Tang, Weihua; Yang, Xuejie

    2011-05-15

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl(2) and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Application of carboxymethyl cellulose and chitosan coatings containing Mentha spicata essential oil in fresh strawberries.

    Science.gov (United States)

    Shahbazi, Yasser

    2018-06-01

    The aim of the present study was to investigate the effects of carboxymethyl cellulose (CMC) and chitosan (CH) coatings containing Mentha spicata essential oil (MSO 0.1 and 0.2%) on survival of Listeria monocytogenes, and physicochemical (weight loss, titratable acidity and pH), microbial (total viable count, psychrotrophic bacteria as well as yeasts and molds) and sensory (appearance, color, texture and overall acceptability) properties of fresh strawberries during refrigerated storage. The treatments of fruits with CH+MSO 0.2% and CMC+MSO 0.2% resulted in the best microbial, physicochemical and organoleptic properties after 12days storage. The final population of L. monocytogenes in treated samples was decreased by 3.92-3.69 compared to control groups. It can be concluded that CH and CMC coatings enriched with MSO can be used as appropriate active packaging materials to preserve fresh strawberries in the food industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application.

    Science.gov (United States)

    Chen, Zehong; Peng, Xinwen; Zhang, Xiaoting; Jing, Shuangshuang; Zhong, Linxin; Sun, Runcang

    2017-08-15

    Producing hierarchical porous N-doped carbon from renewable biomass is an essential and sustainable way for future electrochemical energy storage. Herein we cost-efficiently synthesized N-doped porous carbon from renewable cellulose by using urea as a low-cost N source, without any activation process. The as-prepared N-doped porous carbon (N-doped PC) had a hierarchical porous structure with abundant macropores, mesopores and micropores. The doping N resulted in more disordered structure, and the doping N content in N-doped PC could be easily tunable (0.68-7.64%). The doping N functionalities could significantly improve the supercapacitance of porous carbon, and even a little amount of doping N (e.g. 0.68%) could remarkably improve the supercapacitance. The as-prepared N-doped PC with a specific surface area of 471.7m 2 g -1 exhibited a high specific capacitance of 193Fg -1 and a better rate capability, as well as an outstanding cycling stability with a capacitance retention of 107% after 5000 cycles. Moreover, the N-doped porous carbon had a high energy density of 17.1Whkg -1 at a power density of 400Wkg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters.

    Science.gov (United States)

    Balea, Ana; Monte, M Concepción; de la Fuente, Elena; Negro, Carlos; Blanco, Ángeles

    2017-02-01

    Water-based or flexographic inks in paper and plastic industries are more environmentally favourable than organic solvent-based inks. However, their use also creates new challenges because they remain dissolved in water and alter the recycling process. Conventional deinking technologies such as flotation processes do not effectively remove them. Adsorption, coagulation/flocculation, biological and membrane processes are either expensive or have negative health impacts, making the development of alternative methods necessary. Cellulose nanofibers (CNF) are biodegradable, and their structural and mechanical properties are useful for wastewater treatment. TEMPO-oxidised CNF have been evaluated for the decolourisation of wastewaters that contained copper phthalocyanine blue, carbon black and diarlyide yellow pigments. CNF in combination with a cationic polyacrylamide (cPAM) has also been tested. Jar-test methodology was used to evaluate the efficiency of the different treatments and cationic/anionic demand, turbidity and ink concentration in waters were measured. Results show that dual-component system for ink removal has a high potential as an alternative bio-based adsorbent for the removal of water-based inks. In addition, experiments varying CNF and cPAM concentrations were performed to optimise the ink-removal process. Ink concentration reductions of 100%, 87.5% and 83.3% were achieved for copper phthalocyanine blue, carbon black and diarlyide yellow pigments, respectively. Flocculation studies carried out show the decolourisation mechanism during the dual-component treatment of wastewaters containing water-based inks.

  14. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications

    International Nuclear Information System (INIS)

    Wan, Y.Z.; Huang, Y.; Yuan, C.D.; Raman, S.; Zhu, Y.; Jiang, H.J.; He, F.; Gao, C.

    2007-01-01

    Hydroxyapatite (HAp) and bacterial cellulose (BC) are both excellent materials for use in biomaterial areas. The former has outstanding osteoconductivity and bioactivity and the latter is a high-strength nano-fibrous and extensively used biomaterial. In this work, the HAp/BC nanocomposites with a 3-dimensional (3-D) network were synthesized via a biological route by soaking both phosphorylated and unphosphorylated BCs in 1.5 simulated body fluid (SBF). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were employed to characterize the HAp/BC nanocomposites. SEM observations demonstrated that HAp crystals were uniformly formed on the phosphorylated BC fibers after soaking in 1.5 SBF whereas little HAp was observed on individual unphosphorylated BC fibers. Our experimental results suggested that the unphosphorylated BC did not induce HAp growth and that phosphorylation effectively triggered HAp formation on BC. Mechanisms were proposed for the explanation of the experimental observations. XRD and FTIR results revealed that the HAp crystals formed on the phosphorylated BC fibers were carbonate-containing with nano-sized crystallites and crystallinities less than 1%. These structural features were close to those of biological apatites

  15. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.Z. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)]. E-mail: yzwantju@yahoo.com; Huang, Y. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yuan, C.D. [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Raman, S. [Department of Community Health and Epidemiology, Queen' s University, Kingston, Ontario, Canada K7L 3N6 (Canada); Zhu, Y. [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Jiang, H.J. [Wendeng Hospital of Orthopaedics, Shandong 264400 (China); He, F. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Gao, C. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2007-05-16

    Hydroxyapatite (HAp) and bacterial cellulose (BC) are both excellent materials for use in biomaterial areas. The former has outstanding osteoconductivity and bioactivity and the latter is a high-strength nano-fibrous and extensively used biomaterial. In this work, the HAp/BC nanocomposites with a 3-dimensional (3-D) network were synthesized via a biological route by soaking both phosphorylated and unphosphorylated BCs in 1.5 simulated body fluid (SBF). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were employed to characterize the HAp/BC nanocomposites. SEM observations demonstrated that HAp crystals were uniformly formed on the phosphorylated BC fibers after soaking in 1.5 SBF whereas little HAp was observed on individual unphosphorylated BC fibers. Our experimental results suggested that the unphosphorylated BC did not induce HAp growth and that phosphorylation effectively triggered HAp formation on BC. Mechanisms were proposed for the explanation of the experimental observations. XRD and FTIR results revealed that the HAp crystals formed on the phosphorylated BC fibers were carbonate-containing with nano-sized crystallites and crystallinities less than 1%. These structural features were close to those of biological apatites.

  16. Cellulose acetate fibers covered by CdS nanoparticles for hybrid solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, Hugo; Martinez-Alonso, Claudia [Centro de Investigacion en Energia, UNAM, Priv. Xochicalco S/N, Temixco, Morelos 62580 (Mexico); Castillo-Ortega, Monica [Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Hu, Hailin, E-mail: hzh@cie.unam.mx [Centro de Investigacion en Energia, UNAM, Priv. Xochicalco S/N, Temixco, Morelos 62580 (Mexico)

    2012-09-20

    In this work cellulose acetate (CA) fibers with a diameter of approximately 1 {mu}m were immersed in a cadmium sulfide (CdS) precursor solution. After 3 h the original white color CA fibers became yellow and maintained the same form, suggesting the deposition of CdS on fiber surface. SEM images showed that CA fibers were covered by uniformly sized CdS nanoparticles of approximately 100 nm. XRD and optical absorption spectra indicated that they contained mostly cubic crystalline phase with the optical band gap of 2.43 eV. CdS coated CA fibers, called CdS(CA) fibers, were dispersed in a polar dispersant (dimethyl sulfoxide, DMSO) and then mixed with a poly(3-hexylthiophene) (P3HT) solution in a non-polar solvent (dichlorobenzene, DCB). The mixture was cast onto a transparent conductive glass substrate (Indium-Tin-Oxide, ITO), and after solvent evaporation a thin layer of CdS(CA)-P3HT composite was formed. It is observed that the volume relation between the polar dispersant and non-polar solvent influences the solubility of the P3HT product in the composite coating and the photovoltaic performance of the corresponding cell as well. The mass ratio between CdS(CA) fibers and P3HT in the composite layer affects the optical absorption of the composite. The best photovoltaic performance was obtained in CdS(CA)-P3HT based cells with a volume relation between DCB and DMSO of 3.5-1, a mass ratio between CdS(CA) and P3HT of 1:1, and a rapid drying process for composite coatings.

  17. Application of Nanofibrillated Cellulose on BOPP/LDPE Film as Oxygen Barrier and Antimicrobial Coating Based on Cold Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Peng Lu

    2018-05-01

    Full Text Available The application of nanofibrillated cellulose (NC films in packaging industry has been hindered by its lack of heat-sealing ability. Incorporation of NC films with the biaxially oriented polypropylene/low density polyethylene (BOPP/LDPE laminates can take advantage of each material and endow the films with novel functions for food packaging applications. In this study, a coating that consists of NC and nisin was applied onto a cold plasma treated BOPP/LDPE film to fabricate a novel active packaging with an improved oxygen barrier performance and an added antimicrobial effect. The results showed that cold plasma treatment improved the surface hydrophilicity of BOPP/LDPE films for better attachment of the coatings. NC coatings significantly enhanced oxygen barrier property of the BOPP/LDPE film, with an oxygen transmission rate as low as 24.02 cc/m2·day as compared to that of the non-coated one (67.03 cc/m2·day. The addition of nisin in the coating at a concentration of 5 mg/g caused no significant change in barrier properties but imparted the film excellent antimicrobial properties, with a growth inhibition of L. monocytogenes by 94%. All films exhibit satisfying mechanical properties and transparency, and this new film has the potential to be used as antimicrobial and oxygen barrier packaging.

  18. Obtaining and Application of New Cellulose- and Graphene Oxide-Based Adsorbents for Treatment of Industrial Waste Containing Heavy Metals

    Directory of Open Access Journals (Sweden)

    Beata Fryczkowska

    2017-11-01

    The studies show that doping of cellulose with graphene oxide clearly affects the physical properties of this biopolymer. GO improves the water absorption of CEL/GO composite cellulose granules only in the concentration above 0.05% w/w. For a concentration of 0.1% w/w of GO in cellulose, water absorption is increased by ~108% compared to pure cellulose granules. In addition, the use of dry and wet granules in the study changes their sorption properties with respect to all tested substances. Studies on test solutions have shown that the sorption of cellulose granules decreases with increasing molar mass of test compounds, in the following order: FeCl3, methylene blue (MB and bovine albumin (BSA. This means that the cellulose granules obtained in the experiment are made up of small micropores, which makes the diffusion of compounds of high molecular weight difficult. The best sorption results were obtained for ferric ions and amounted to 66-72% for FeCl3 solution, and ~92% for the wastewater that was sorbed on pure cellulose granules.

  19. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye.

    Science.gov (United States)

    Ruan, Chang-Qing; Strømme, Maria; Lindh, Jonas

    2018-02-01

    Micrometer sized 2,3-dialdehyde cellulose (DAC) beads were produced via a recently developed method relying on periodate oxidation of Cladophora nanocellulose. The produced dialdehyde groups and pristine hydroxyl groups provided the DAC beads with a vast potential for further functionalization. The sensitivity of the DAC beads to alkaline conditions, however, limits their possible functionalization and applications. Hence, alkaline-stable and porous cellulose beads were prepared via a reductive amination crosslinking reaction between 2,3-dialdehyde cellulose beads and chitosan. The produced materials were thoroughly characterized with different methods. The reaction conditions, including the amount of chitosan used, conditions for reductive amination, reaction temperature and time, were investigated and the maintained morphology of the beads after exposure to 1M NaOH (aq.) was verified with SEM. Different washing and drying procedures were used and the results were studied by SEM and BET analysis. Furthermore, FTIR, TGA, EDX, XPS, DLS and elemental analysis were performed to characterize the properties of the prepared beads. Finally, the alkaline-stable porous chitosan cross-linked 2,3-dialdehyde cellulose beads were applied as adsorbent for the dye Congo red. The crosslinked beads displayed fast and high adsorption capacity at pH 2 and good desorption properties at pH 12, providing a promising sorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.

    Science.gov (United States)

    Wang, Xiaoju; Cheng, Fang; Liu, Jun; Smått, Jan-Henrik; Gepperth, David; Lastusaari, Mika; Xu, Chunlin; Hupa, Leena

    2016-12-01

    wood resource in biomedical applications is of great significance, due to its vast availability and bioeconomy competence. The use of Cu-containing bioactive glass in tissue engineering scaffolds, including wound healing, is an intriguing research topic, which has been recently discussed in the field of biomaterials. I think that our manuscript title with 'Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: biocompatibility and angiogenic promotion in chronic wound healing application' will make its own contribution on understanding the complex effects of Cu 2+ on wound-healing-relevant events with acceptable novelty for Acta Biomaterialia. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Study on application of zirconium dioxide for upgrading quality of pouring cups used in continuous steel casting technology

    International Nuclear Information System (INIS)

    Pham Ba Kien; Vu Thanh Quang and Ngo Van Tuyen

    2004-01-01

    This theme studies on technology of zirconium oxide powder stabilized by calcium and testing production of steel pouring cup made of the stabilized dioxide zirconium ceramic. As a product of the theme, the steel pouring cup has had the following main characteristics: heat resistance > 1700 o C, density of 4.7 g/cm 3 , apparent sponge degree of 1.63%, compressibility of 3300 kg/cm 2 . The quality of the cup has been tested and highly evaluated during the actual production. (author)

  2. Amelioration de la precision d'un bras robotise pour une application d'ebavurage

    Science.gov (United States)

    Mailhot, David

    Process automation is a more and more referred solution when it comes to complex, tedious or even dangerous tasks for human. Flexibility, low cost and compactness make industrial robots very attractive for automation. Even if many developments have been made to enhance robot's performances, they still can not meet some industries requirements. For instance, aerospace industry requires very tight tolerances on a large variety of parts, which is not what robots were designed for at first. When it comes to robotic deburring, robot imprecision is a major problem that needs to be addressed before it can be implemented in production. This master's thesis explores different calibration techniques for robot's dimensions that could overcome the problem and make the robotic deburring application possible. Some calibration techniques that are easy to implement in production environment are simulated and compared. A calibration technique for tool's dimensions is simulated and implemented to evaluate its potential. The most efficient technique will be used within the application. Finally, the production environment and requirements are explained. The remaining imprecision will be compensated by the use of a force/torque sensor integrated with the robot's controller and by the use of a camera. Many tests are made to define the best parameters to use to deburr a specific feature on a chosen part. Concluding tests are shown and demonstrate the potential use of robotic deburring. Keywords: robotic calibration, robotic arm, robotic precision, robotic deburring

  3. Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials

    Directory of Open Access Journals (Sweden)

    Hongxiang Xie

    2018-01-01

    Full Text Available The recent strategies in preparation of cellulose nanocrystals (CNCs and cellulose nanofibrils (CNFs were described. CNCs and CNFs are two types of nanocelluloses (NCs, and they possess various superior properties, such as large specific surface area, high tensile strength and stiffness, low density, and low thermal expansion coefficient. Due to various applications in biomedical engineering, food, sensor, packaging, and so on, there are many studies conducted on CNCs and CNFs. In this review, various methods of preparation of CNCs and CNFs are summarized, including mechanical, chemical, and biological methods. The methods of pretreatment of cellulose are described in view of the benefits to fibrillation.

  4. Electrochemical Characterization of a Polymer Inclusion Membrane Made of Cellulose Triacetate and Aliquat 336 and Its Application to Sulfonamides Separation

    Directory of Open Access Journals (Sweden)

    Juana Benavente

    2018-01-01

    Full Text Available An electrochemical characterization of a polymer inclusion membrane (PIM fabricated with the ionic liquid (IL Aliquat 336 (26% and the polymer cellulose triacetate (CTA (76% is presented. Considering the use of PIMs in separation systems to remove pollutants from water, the characterization was performed with NaCl solutions by measuring membrane potential, electrochemical impedance spectroscopy, and salt diffusion and results were compared with those obtained from dry membranes. Results showed a significant reduction in the membrane diffusive permeability and electrical conductivity as well as the transport number of cation Na+ across the PIM when compared with solution values, which could be mainly related to the dense character of the membrane. Membrane application in the separation of different sulfonamides (sulfathiazole, sulfapyridine, sulfamethazine, and sulfamethoxazole from water, with 1 M NaCl solution as striping phase, was also considered. These results indicated that the different chemical characteristics of the compounds, as well as the compact structure of the PIM, limited the transport of the organic molecules though it.

  5. Application of Box-Behnken Design in Optimization of Glucose Production from Oil Palm Empty Fruit Bunch Cellulose

    Directory of Open Access Journals (Sweden)

    Satriani Aga Pasma

    2013-01-01

    Full Text Available Oil palm empty fruit bunch fiber (OPEFB is a lignocellulosic waste from palm oil mills. It contains mainly cellulose from which glucose can be derived to serve as raw materials for valuable chemicals such as succinic acid. A three-level Box-Behnken design combined with the canonical and ridge analysis was employed to optimize the process parameters for glucose production from OPEFB cellulose using enzymatic hydrolysis. Organosolv pretreatment was used to extract cellulose from OPEFB using ethanol and water as the solvents. The extracted cellulose was characterized by thermogravimetric analysis, FTIR spectroscopy, and field emission scanning electron microscopy. Hydrolysis parameters including amount of enzyme, amount of cellulose, and reaction time were investigated. The experimental results were fitted with a second-order polynomial equation by a multiple regression analysis and found that more than 97% of the variations could be predicted by the models. Using the ridge analysis, the optimal conditions reaction time found for the production of glucose was 76 hours and 30 min, whereas the optimum amount of enzyme and cellulose was 0.5 mL and 0.9 g, respectively. Under these optimal conditions, the corresponding response value predicted for glucose concentration was 169.34 g/L, which was confirmed by validation experiments.

  6. Preparation of carboxymethyl cellulose produced from purun tikus (Eleocharis dulcis)

    Science.gov (United States)

    Sunardi, Febriani, Nina Mutia; Junaidi, Ahmad Budi

    2017-08-01

    Sodium carboxymethyl cellulose (Na-CMC) is one of the important modified cellulose, a water-soluble cellulose, which is widely used in many application of food, pharmaceuticals, detergent, paper coating, dispersing agent, and others. The main raw material of modified cellulose is cellulose from wood and cotton. Recently, much attention has been attracted to the use of various agriculture product and by-product, grass, and residual biomass as cellulose and modified cellulose source for addressing an environmental and economic concern. Eleocharis dulcis, commonly known as purun tikus (in Indonesia), is a native aquatic plant of swamp area (wetland) in Kalimantan, which consists of 30-40% cellulose. It is significantly considered as one of the alternative resources for cellulose. The aims of present study were to isolate cellulose from E. dulcis and then to synthesise Na-CMC from isolated cellulose. Preparation of carboxymethyl cellulose from E. dulcis was carried out by an alkalization and etherification process of isolated cellulose, using various concentration of sodium hydroxide (NaOH) and monochloroacetic acid (MCA). The results indicated that the optimum reaction of alkalization was reached at 20% NaOH and etherification at the mass fraction ratio of MCA to cellulose 1.0. The optimum reaction has the highest solubility and degree of substitution. The carboxymethylation process of cellulose was confirmed by Fourier Transform Infrared spectroscopy (FTIR). In addition, changes in crystallinity of cellulose and Na-CMC were evaluated by X-ray diffraction (XRD).

  7. Cellulose Triacetate Synthesis from Cellulosic Wastes by Heterogeneous Reactions

    Directory of Open Access Journals (Sweden)

    Sherif Shawki Z. Hindi

    2015-06-01

    Full Text Available Cellulosic fibers from cotton fibers (CF, recycled writing papers (RWP, recycled newspapers (RN, and macerated woody fibers of Leucaena leucocephala (MWFL were acetylated by heterogeneous reactions with glacial acetic acid, concentrated H2SO4, and acetic anhydride. The resultant cellulose triacetate (CTA was characterized for yield and solubility as well as by using 1H-NMR spectroscopy and SEM. The acetylated product (AP yields for CF, RWP, RN, and MWFL were 112, 94, 84, and 73%, respectively. After isolation of pure CTA from the AP, the CTA yields were 87, 80, 68, and 54%. The solubility test for the CTA’s showed a clear solubility in chloroform, as well as mixture of chloroform and methanol (9:1v/v and vice versa for acetone. The degree of substitution (DS values for the CTA’s produced were nearly identical and confirmed the presence of CTA. In addition, the pore diameter of the CTA skeleton ranged from 0.072 to 0.239 µm for RWP and RN, and within the dimension scale of the CTA pinholes confirm the synthesis of CTA. Accordingly, pouring of the AP liquor at 25 °C in distilled water at the end of the acetylation and filtration did not hydrolyze the CTA to cellulose diacetate.

  8. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  9. Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances.

    Science.gov (United States)

    Azzaoui, Khalil; Lamhamdi, Abdelatif; Mejdoubi, El Miloud; Berrabah, Mohammed; Hammouti, Belkheir; Elidrissi, Abderrahman; Fouda, Moustafa M G; Al-Deyab, Salem S

    2014-10-13

    The aim of this work is to develop composite materials with hydroxyapatite (HAp) mineral and organic matrix such as cellulosic polymers. We use cellulose acetate with different percentages, and then inorganic-organic films were fabricated by evaporation of solvent. The composite films were characterized using emission scanning electron microscopy (FEG-SEM), thermo-gravimetric analysis (TGA) and Fourier transform infra-red (FT-IR) spectra. Test results show that these films are uniform and have good ductility. A strong interaction existed between HAp and cellulosic polymers, and the method allows the production of very fine particles size of about 92 nm. We have developed a new chromatographic method for the quantification of bisphenol A (BPA) in samples of baby food. The result of this study demonstrates how to use this type of composite materials to remove pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Principes et application de la digestion anaérobie pour la production d'énergie

    OpenAIRE

    Bernet, Nicolas

    2015-01-01

    La digestion anaérobie est un processus naturel par lequel la matière organique est transformée en un biogaz qui contient environ 2/3 de méthane et 1/3 de dioxyde de carbone. Elle résulte de l’activité d’un écosystème microbien anaérobie complexe. Le biogaz est une source d’énergie qui peut être utilisée directement en remplacement du gaz naturel, pour produire de la chaleur et de l’électricité par cogénération ou encore comme carburant pour véhicules. Ainsi, la domestication par l’homme de c...

  11. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    Klenha, J.; Bockova, J.

    1973-09-01

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  12. Preparation of cellulose nitrate films using a spinning disc for solid state nuclear track detection (SSNTD) applications

    International Nuclear Information System (INIS)

    Raghunath, B.; Iyer, M.R.; Samant, S.D.

    1995-01-01

    Solid state nuclear track detectors (SSNTD) are widely used in the detection and measurement of ionizing particles. Cellulose nitrate (CN) films are commonly used as SSNTD for the measurement of radon/thoron gases and their decay products. A simple method for making uniform thin CN films of various thickness has been developed. Performance of these films is compared with commercially available film. (Author)

  13. Preparation of cellulose nitrate films using a spinning disc for solid state nuclear track detection (SSNTD) applications

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, B.; Iyer, M.R. [Bhabha Atomic Research Centre, Bombay (India); Samant, S.D. [Bombay Univ. (India). Dept. of Chemical Technology

    1995-01-01

    Solid state nuclear track detectors (SSNTD) are widely used in the detection and measurement of ionizing particles. Cellulose nitrate (CN) films are commonly used as SSNTD for the measurement of radon/thoron gases and their decay products. A simple method for making uniform thin CN films of various thickness has been developed. Performance of these films is compared with commercially available film. (Author).

  14. Application of gold-198 in investigation of technological processes in cellulose and paper industry and in production of combined forage

    International Nuclear Information System (INIS)

    Petkov, P.M.; Kralev, Kh.I.

    1979-01-01

    To label cellulose fibers and sawdust in investigation of acting installations for production of cellulose and semicellulose, gold-198 was used. The aim of investigation was to determine time of material's transfer in the cellulose production shop from the boiler to the outlet from washer and in the semicellulose production shop from the feeding bunker to refiners. Stable labelling of the cellulose fibers and sawdust has been gained, which permitted successfully to perform investigations of two installations in spite of high temperature and pressure and aggressive medium. Gold-198 is also a good indicator in investigations of technological lines of feed mills. After labelling of one of the main components of fodder mixture, it is introduced into mixer in the proportion used in the production for mixing. It is possible to trace process of mixing either by means of continious registering of by means of sampling. As a result of investigations, optimal time of mixing, segregation processes influence of the factory transport and intershop idle stand on the homogenity of product for factories with different equipment, can be determined [ru

  15. Nucleic acids encoding a cellulose binding domain

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  16. Cellulose nanocrystal: electronically conducting polymer nanocomposites for supercapacitors

    OpenAIRE

    Liew, Soon Yee

    2012-01-01

    This thesis describes the use of cellulose nanocrystals for the fabrication of porous nanocomposites with electronic conducting polymers for electrochemical supercapacitor applications. The exceptional strength and negatively charged surface functionalities on cellulose nanocrystals are utilised in these nanocomposites. The negatively charged surface functionalities on cellulose nanocrystals allow their simultaneous incorporation into electropolymerised, positively charged conducting polymer ...

  17. Cyanobacterial cellulose synthesis in the light of the photanol concept

    NARCIS (Netherlands)

    Schuurmans, R.M.; Matthijs, H.C.P.; Stal, L.J.; Hellingwerf, K.J.; Sharma, N.K.; Rai, A.K.; Stal, L.J.

    2014-01-01

    The detailed knowledge already available about cellulose synthases and their regulation, plus emerging insights into the process of cellulose secretion in cyanobacteria make cellulose an attractive polymer for the application of the photanol concept in an economically viable production process. By

  18. Fermentation Tecniques and Applications of Bacterial Cellulose: a Review Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión

    Directory of Open Access Journals (Sweden)

    Luz Dary Carreño Pineda

    2012-12-01

    Full Text Available Bacterial cellulose is a polymer obtained by fermentation with microorganismsfrom Acetobacter, Rhizobium, Agrobacterium and Sarcina genera. Amongthem, Acetobacter xylinum is the most efficient specie. This polymer hasthe same chemical composition of plant cellulose, but its conformation andphysicochemical properties are different, making it attractive for several applications, especially in the areas of food, separation processes, catalysis andhealth, due to its biocompatibility. However, the main problem is the production in mass that is constrained by low yield. It is therefore necessaryto develop some alternatives. This paper presents a review about synthesis,production, properties and principal applications of bacterial cellulose, as wellas some alternatives to reduce the difficulties for process scaling.La celulosa bacteriana es un polímero obtenido por fermentación con microrganismosde los géneros Acetobacter, Rhizobium, Agrobacterium y Sarcina, delas cuales la especie más eficiente es la Acetobacter Xylinum. Este polímero presenta la misma estructura química de la celulosa de origen vegetal, pero difiereen su conformación y propiedades fisicoquímicas, lo que lo hace atractivo para diversas aplicaciones, especialmente en las áreas de alimentos, procesosde separación, catálisis y en medicina, gracias a su biocompatibilidad. Sin embargo, el principal problema es la producción a gran escala limitada por losbajos rendimientos, lo que genera la necesidad de desarrollar alternativas que permitan disminuir o eliminar las causas de esta limitación. En este artículo se hace una revisión acerca de la síntesis, producción, propiedades y principales aplicaciones de la celulosa bacteriana, así como de algunas alternativas estudiadas para disminuir los inconvenientes en el escalamiento del proceso.

  19. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  20. Biofunctional Paper via Covalent Modification of Cellulose

    Science.gov (United States)

    Yu, Arthur; Shang, Jing; Cheng, Fang; Paik, Bradford A.; Kaplan, Justin M.; Andrade, Rodrigo B.; Ratner, Daniel M.

    2012-01-01

    Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to covalently immobilize small molecules, proteins and DNA onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membrane’s bioactivity was specific, dose-dependent, and stable over a long period of time. Use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices. PMID:22708701

  1. Magnetic cellulose as support for β-galactosidase immobilization: Matrix characterization and application on galacto -oligosaccharides production

    International Nuclear Information System (INIS)

    Xavier, Mariana Rodrigues; Cabrera, Mariana Paola; Vidal, Esteban Espinosa; Neri, David Fernando de Morais

    2016-01-01

    Full text: Galacto oligosaccharides (GOS) offer positive health effects if are introduce in the diet, associated with the reduction of cholesterol level, anticarcinogenic properties and vitamins production [1]. Cellulose is an abundant renewable organic resource, biodegradable, eco-friendly [2] and is actually considered as adequate to be used as enzymatic non-toxic support. Cellulose when magnetized offers some advantages: rapid separation, reduce operational costs, absence or diminution of contaminants and easy removal of the reaction medium [3]. In this work, magnetic cellulose particles (MCP) functionalized with 3- aminopropyltriethoxysilane (APTES) were successfully developed and used for covalent immobilization of β-galactosidase Aspergillus oryzae, via glutaraldehyde. The MCP was characterized by FTIR, SEM, XRD, DSC and TGA and BET. The XRD possible to verify and guarantee the presence of the magnetic particles in the composite. Furthermore, the TGA curve showed decomposition range referring to cellulose, suggesting that the material is free of other substances. This enzymatic derivative was capable of acting on lactose and to produce GOS. An experimental design 2 4 was proposed to observe the influence of temperature (40 to 60 °C), the concentration of lactose (300 to 500 g/L), pH (4.0 to 5.0), and the reaction time (0.5 to 1 hour). The best responses obtained were: 79.8 g/L for the amount of GOS; 99.8 g/L/h for GOS productivity; and 66.6% for GOS yield. High temperatures and concentration of lactose were favorable for transgalactosylation mechanism. The reuse of the enzyme showed that after 10 cycles of use retained 84.6% of the initial activity. The results showed that the MCP appears as a promising matrix for the immobilization of other biomolecules. Reference: [1] Osman et al, J Biotech. 150 (2010);[2] Kang et al, Polymer 70 (2015);[3] CAO et al, J Phys.: Condens. Matter 28 (2016). (author)

  2. Magnetic cellulose as support for β-galactosidase immobilization: Matrix characterization and application on galacto -oligosaccharides production

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Mariana Rodrigues; Cabrera, Mariana Paola, E-mail: marii_rxavier@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Vidal, Esteban Espinosa [Centro de Tecnologias Estrategicas do Nordeste (CETENE), Recife, PE (Brazil); Neri, David Fernando de Morais [Fundacao Universidade Federal do Vale do Sao Francisco (UNIVASF), Petrolina, PE (Brazil)

    2016-07-01

    Full text: Galacto oligosaccharides (GOS) offer positive health effects if are introduce in the diet, associated with the reduction of cholesterol level, anticarcinogenic properties and vitamins production [1]. Cellulose is an abundant renewable organic resource, biodegradable, eco-friendly [2] and is actually considered as adequate to be used as enzymatic non-toxic support. Cellulose when magnetized offers some advantages: rapid separation, reduce operational costs, absence or diminution of contaminants and easy removal of the reaction medium [3]. In this work, magnetic cellulose particles (MCP) functionalized with 3- aminopropyltriethoxysilane (APTES) were successfully developed and used for covalent immobilization of β-galactosidase Aspergillus oryzae, via glutaraldehyde. The MCP was characterized by FTIR, SEM, XRD, DSC and TGA and BET. The XRD possible to verify and guarantee the presence of the magnetic particles in the composite. Furthermore, the TGA curve showed decomposition range referring to cellulose, suggesting that the material is free of other substances. This enzymatic derivative was capable of acting on lactose and to produce GOS. An experimental design 2{sup 4} was proposed to observe the influence of temperature (40 to 60 °C), the concentration of lactose (300 to 500 g/L), pH (4.0 to 5.0), and the reaction time (0.5 to 1 hour). The best responses obtained were: 79.8 g/L for the amount of GOS; 99.8 g/L/h for GOS productivity; and 66.6% for GOS yield. High temperatures and concentration of lactose were favorable for transgalactosylation mechanism. The reuse of the enzyme showed that after 10 cycles of use retained 84.6% of the initial activity. The results showed that the MCP appears as a promising matrix for the immobilization of other biomolecules. Reference: [1] Osman et al, J Biotech. 150 (2010);[2] Kang et al, Polymer 70 (2015);[3] CAO et al, J Phys.: Condens. Matter 28 (2016). (author)

  3. Optical Sensor based Chemical Modification as a Porous Cellulose Acetate Film and Its Application for Ethanol Sensor

    Science.gov (United States)

    Mulijani, S.; Iswantini, D.; Wicaksono, R.; Notriawan, D.

    2018-03-01

    A new approach to design and construction of an optical ethanol sensor has been developed by immobilizing a direct dye at a porous cellulosic polymer fllm. This sensor was fabricated by binding Nile Red to a cellulose acetate membrane that had previously been subjected to an exhaustive base hydrolysis. The prepared optical ethanol sensor was enhanced by adding pluronic as a porogen in the membrane. The addition of pluronic surfactant into cellulose acetate membrane increased the hydrophilic and porous properties of membrane. Advantageous features of the design include simple and easy of fabrication. Variable affecting sensor performance of dye concentration have been fully evaluated and optimized. The rapid response results from the porous structure of the polymeric support, which minimizes barriers to mass transport. Signal of optical sensor based on reaction of dye nile red over the membrane with ethanol and will produce the purple colored product. Result was obtained that maximum intensity of dye nile red reacted with alcohol is at 630-640 nm. Linear regression equation (r2), limit of detection, and limit of quantitation of membrane with 2% dye was 0.9625, 0.29%, and 0.97%. Performance of optical sensor was also evaluated through methanol, ethanol and propanol. This study was purposed to measure the polarity and selectivity of optic sensor toward the alcohol derivatives. Fluorescence intensity of optic sensor membrane for methanol 5%, ethanol 5% and propanol 5% was 15113.56, 16573.75 and 18495.97 respectively.

  4. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices

    KAUST Repository

    Xu, Xuezhu

    2015-04-15

    Currently, most carbon aerogels are based on carbon nanotubes (CNTs) or graphene, which are produced through a catalyst-assisted chemical vapor deposition method. Biomass based organic aerogels and carbon aerogels, featuring low cost, high scalability, and small environmental footprint, represent an important new research direction in (carbon) aerogel development. Cellulose and lignin are the two most abundant natural polymers in the world, and the aerogels based on them are very promising. Classic silicon aerogels and available organic resorcinol-formaldehyde (RF) or lignin-resorcinol-formaldehyde (LRF) aerogels are brittle and fragile; toughening of the aerogels is highly desired to expand their applications. This study reports the first attempt to toughen the intrinsically brittle LRF aerogel and carbon aerogel using bacterial cellulose. The facile process is catalyst-free and cost-effective. The toughened carbon aerogels, consisting of blackberry-like, core-shell structured, and highly graphitized carbon nanofibers, are able to undergo at least 20% reversible compressive deformation. Due to their unique nanostructure and large mesopore population, the carbon materials exhibit an areal capacitance higher than most of the reported values in the literature. This property makes them suitable candidates for flexible solid-state energy storage devices. Besides energy storage, the conductive interconnected nanoporous structure can also find applications in oil/water separation, catalyst supports, sensors, and so forth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Advancing cellulose-based nanotechnology

    Science.gov (United States)

    Theodore H. Wegner; Philip E. Jones

    2006-01-01

    Nanotechnology has applications across most economic sectors and allows the development of new enabling science with broad commercial potential. Cellulose and lignocellulose have great potential as nanomaterials because they are abundant, renewable, have a nanofibrillar structure, can be made multifunctional, and self-assemble into well-defined architectures. To...

  6. Application of Flumethrin Pour-On on Reservoir Dogs and Its Efficacy against Sand Flies in Endemic Focus of Visceral Leishmaniasis, Meshkinshahr, Iran

    Directory of Open Access Journals (Sweden)

    MohammadReza Jalilnavaz

    2015-10-01

    Full Text Available Background: Visceral leishmaniasis (VL is one of the most important parasitic zoonotic diseases in the world. Do­mestic dogs are the main domestic reservoirs of VL in endemic foci of Iran. Various methods, including vaccination, treatment of dogs, detection and removal of infected dogs have different results around the world. General policy on control of canine visceral leishmaniasis is protection of them from sand fly bites. The aim of this study was evalua­tion of pour-on application of flumethrin on dogs against blood-feeding and mortality of field-caught sand flies.Methods: Once every 20 days from May untill September 2013, the treated and control dogs were exposed with field caught sandflies for 2 hours under bed net traps. After the exposure time, both alive and dead sand flies were trans­ferred in netted cups to the laboratory. The mortality rate of them was assessed after 24 hours. The blood-fed or un­fed conditions were determined 2 hours after exposure to the dogs under stereomicroscope.Results: The blood feeding index was varied from 12.0 to 25.0 % and 53.0 to 58.0 % for treated and control dogs respectively (P< 0.0001. The blood feeding inhibition was 75.0–87.0 % and 41.0–46.0 % for the control and treated dogs (P< 0.0001, respectively.The total mortality rate was 94.0–100 % and 19.0–58.0 % respectively for the treated and control groups (P< 0.001.Conclustion: Application of pour-on flumethrin on dogs caused 90–100 % mortality until 2.5 month and inhibited the blood-feeding of sand flies. 

  7. Cellulose utilization: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J A

    1975-01-01

    To summarize, the conversion of cellulose to ethanol via hydrolysis to glucose followed by fermentation appears to be highly efficient in terms of energy conservation, yield, and quality of product, especially when reasonably high quality cellulosic waste is available.

  8. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites.

    Science.gov (United States)

    El Achaby, Mounir; Kassab, Zineb; Aboulkas, Adil; Gaillard, Cédric; Barakat, Abdellatif

    2018-01-01

    Red algae is widely available around the world and its exploitation for the production of agar products has become an important industry in recent years. The industrial processing of red algae generates a large quantity of solid fibrous wastes, which constitutes a source of serious environmental problems. In the present work, the utilization of red algae waste as raw material to produce high-quality cellulose nanocrystals (CNC) has been investigated, and the ability of the as-isolated CNC to reinforce polymer has been studied. Red algae waste was chemically treated via alkali, bleaching and acid hydrolysis treatments, in order to obtain pure cellulose microfibers and CNC. The raw waste and the as-extracted cellulosic materials were successively characterized at different stages of treatments using serval analysis techniques. It was found that needle-like shaped CNC were successfully isolated at nanometric scale with diameters and lengths ranged from 5.2±2.9 to 9.1±3.1nm, and from 285.4±36.5 to 315.7±30.3nm, respectively, and the crystallinity index ranged from 81 to 87%, depending on the hydrolysis time (30, 40 and 80min). The as-extracted CNC were used as nanofillers for the production of polyvinyl alcohol (PVA)-based nanocomposite films with improved thermal and tensile properties, as well as optical transparency. It is shown that the addition of 8wt% CNC into the PVA matrix increased the Young's modulus by 215%, the tensile strength by 150%, and the toughness by 45%. Additionally, the nanocomposite films maintained the same transparency level of the neat PVA film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell

    International Nuclear Information System (INIS)

    Rudhziah, S.; Ahmad, A.; Ahmad, I.; Mohamed, N.S.

    2015-01-01

    In this work, carboxymethyl kappa-carrageenan was used as the principle host for developing new biopolymer electrolytes based on the blend of carboxymethyl kappa-carrageenan/carboxymethyl cellulose. The blending of carboxymethyl cellulose into carboxymethyl kappa-carragenan was found to be a promising strategy to improve the material properties such as conductive properties. The electrolyte samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, ionic transference number measurement and linear sweep voltammetry in order to investigate their structural, thermal and electrochemical properties. Impedance study showed that the ionic conductivity increased with the increment of ammonium iodide concentration. The highest room temperature ionic conductivity achieved was 2.41 × 10 −3 S cm −1 at 30 wt% of the salt. The increment of conductivity was due to the increase of formation of transient cross-linking between the carboxymethyl kappa-carrageenan/carboxymethyl cellulose chains and the doping salt as indicated the T g trend. The conductivity was also attributed by the increase in the number of charge carriers in the biopolymer electrolytes system. The interactions between polymers and salt were confirmed by FTIR study. The transference number measurements showed that the conductivity was predominantly ionic. Temperature dependent conductivity study showed that conductivity increased with the reciprocal of temperature. The conductivity-temperature plots suggested that the conductivity obeyed the Vogel–Tammann–Fulcher relation and the activation energy for the best conducting sample was 0.010 eV. This system was used for the fabrication of dye sensitized solar cells, FTO/TiO 2 -dye/CMKC/CMCE-NH 4 I + I 2 /Pt. The fabricated cell showed response under light intensity of 100 mW cm −2 with efficiency of 0.13% indicating that the blend biopolymer

  10. Application of TAED/H2O2 system for low temperature bleaching of crude cellulose extracted from jute fiber

    Science.gov (United States)

    Wen, Zuoqiang; Zou, Linbo; Wang, Weiming

    2018-03-01

    Tetraacetylethylenediamine (TAED) activated hydrogen peroxide system had been applied for bleaching of crude cellulose extracted from jute fiber. Comparing with conventional hydrogen peroxide bleaching system, those results showed that bleaching temperature and time could be effectively reduced, and a preferable whiteness could be produced under faint alkaline condition. And the optimum conditions for activated bleaching system could be summarized as molar ratio of H2O2/TAED 1:0.7, pH 8, pure hydrogen peroxide 0.09 mol/L, temperature 70 °C and time 60min.

  11. Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications.

    Science.gov (United States)

    Luzi, Francesca; Fortunati, Elena; Giovanale, Geremia; Mazzaglia, Angelo; Torre, Luigi; Balestra, Giorgio Mariano

    2017-11-01

    Kiwi Actinidia deliciosa pruning residues were here used for the first time as precursors for the extraction of high performing cellulose nanocrystals (CNC) by applying a bleaching treatment followed by an acidic hydrolysis. The resultant cellulosic nanostructures, obtained by an optimize extraction procedure (0.7% wt/v two times of sodium chlorite NaClO 2 ) followed by an hydrolysis step, were then used as reinforcements phases in poly(vinyl alcohol) (PVA) blended with natural chitosan (CH) based films and also combined, for the first time, with carvacrol used here as active agent. Morphological and optical characteristics, mechanical response, thermal and migration properties, moisture content and antioxidant and antimicrobial assays were conducted. The morphological, optical and colorimetric results underlined that no particular alterations were induced on the transparency and color of PVA and PVA_CH blend by the presence of CNC and carvacrol, while they were able to modulate the mechanical responses, to induce antioxidant activities maintaining the migration levels below the permitted limits and suggesting the possible application in industrial sectors. Finally, inhibitions on bacterial development were detected for multifunctional systems, suggesting their protective function against microorganisms contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion.

    Science.gov (United States)

    Wang, Wenhang; Du, Guanhua; Li, Cong; Zhang, Hongjie; Long, Yunduo; Ni, Yonghao

    2016-10-20

    Nano cellulosic materials as promising emulsion stabilizers have attracted great interest in food industry. In this paper, five different sized cellulose nanocrystals (CNC) samples were prepared from stem of Asparagus officinalis L. using the same sulfuric acid hydrolysis conditions but different times (1.5, 2, 2.5, 3.0, and 3.5h). The sizes of these CNC ranged from 178.2 to 261.8nm, with their crystallinity of 72.4-77.2%. The CNC aqueous dispersions showed a typical shear thinning behavior. In a palm oil/water (30/70, v/v) model solution, stable Pickering emulsions were formed with the addition of CNC, and their sizes are in the range of 1-10μm based on the optical and confocal laser scanning microscopy (CLSM) observation. The CNC sample prepared at 3h hydrolysis time, showed a relative efficient emulsion capacity for palm oil droplets, among these CNCs. Other parameters including the CNC, salt, and casein concentrations on the emulsion stability were studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  14. Characterization of cellulose nanowhiskers; Caracterizacao do nanowhiskers de celulose

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia, E-mail: 25nareis@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2015-07-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  15. RADIOCHEMICAL YIELDS OF GRAFT POLYMERIZATION REACTIONS OF CELLULOSE

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Jr, J C; Blouin, F A

    1963-12-15

    The preparation of radioinduced graft polymers of cotton cellulose, while retaining the fibrous nature and high molecular weight of the cellulose, depended primarily on the radiochemical yields of cellulose reactions and of graft polymerization reactions. Yields of the initial major molecular changes in cellulosic polymer indicated that, in the case of scission of the molecule and carboxyl group formation, chain reactions were not initiated by radiation; however, in the case of carbonyl group formation chain reactions were initiated but quickly terminated. Generally, experimental procedures, used in graft polymerization reactions, were: simultaneous irradiation reactions, that is, application of monomers or solutions of monomers to cellulose or chemically modified celluloses, then irradiation; and post-irradiation reactions, that is, irradiation of cellulose or chemically modified celluloses, then after removal from the field of radiation, contacting the irradiated cellulose with monomer. Some of the most important factors influencing the radiochemical yields of graft polymerization reactions, of styrene and acrylonitrile onto cellulose were: concentration of monomer in treating solution; solvent; ratio of monomer solution to cellulose; prior chemical modification of cellulose; and absence of oxygen, particularly in post-irradiation reactions. Experimental data are presented, and the direct and indirect effects of Co/sup 60/ gamma radiation on these reactions are discussed. (auth)

  16. Two-Sided Surface Oxidized Cellulose Membranes Modified with PEI: Preparation, Characterization and Application for Dyes Removal

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-09-01

    Full Text Available Porous regenerated cellulose (RC membranes were prepared with cotton linter pulp as a raw material. These membranes were first oxidized on both sides by a modified (2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO oxidation system using a controlled oxidation reaction technique. Then, the oxidized RC membranes were functionalized with polyethylenimine (PEI via the glutaraldehyde crosslinking method to obtain bifunctional (carboxyl and amino porous RC membranes, as revealed by Fourier transform infrared spectroscopy (FT-IR, elemental analysis and zeta potential measurement. The scanning electron microscopy (SEM and the tests of the mechanical properties and permeability characteristics of modified RC membranes demonstrated that the porous structure and certain mechanical properties could be retained. The adsorption performance of the modified membranes towards dyes was subsequently investigated. The modified membranes displayed good adsorption capacities, rapid adsorption equilibrium and removal efficiencies towards both anionic (xylenol orange (XO and cationic (methylene blue (MB dyes, making them suitable bioadsorbents for wastewater treatment.

  17. The Characterization and Application of Grafted Polypropylene and Polystyrene Treated with Epichlorohydrin Coupled with Cellulose or Starch for Immobilization Process

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Eid, M.; Dessouki, A.M.; Atia, K.S.

    2005-01-01

    The direct irradiation induced grafting of acrylamide (AAm) onto polypropylene (PP) films and polystyrene (PSty) films for crosslinking of acrylamide grafted polypropylene and polystyrene films with epichlorohydrin as spacer was studied. The reaction of polyamide-epichlorohydrin with cellulose and starch has been carried out, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA) were carried out before and after immobilized enzyme to confirm the characterization of the polymer as well as the α- amylase enzyme immobilized one. The physico-chemical parameters of the immobilized enzymes and the kinetics of co-enzymes-polymer catalyzed reactions and stability were measured. A direct comparison was made between the products activity of the free and the immobilized preparations

  18. Hematopoiesis on cellulose ester membranes (CEM). X. Effects of in vitro irradiation of stromal cells prior to application on CEM

    International Nuclear Information System (INIS)

    Knospe, W.H.; Husseini, S.G.

    1986-01-01

    Cellulose ester membranes (CEM) were coated with stromal cells from murine bone or bone marrow irradiated in vitro with 1000, 2000, or 4000 rad and then implanted i.p. in CAF1 mice for periods of six and 12 months. CEM coated with stromal cells from bone showed excellent regeneration of bone and hematopoiesis after 1000 rad in vitro irradiation. After 2000 rad, hematopoietic and bone regeneration was reduced by about 50%, and after 4000 rad it was completely absent in CEM coated with stromal cells from bone. CEM coated with stromal cells from bone marrow showed no regeneration of hematopoiesis or bone after 1000, 2000, and 4000 rad in vitro irradiation and residence i.p. for six and 12 months. These results indicate that regeneration of the hematopoietic microenvironment is dependent upon living stromal cells. A difference in radiation sensitivity is demonstrated between stromal cells from bone and from bone marrow

  19. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  20. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    Directory of Open Access Journals (Sweden)

    Joel Donna

    2013-07-01

    Full Text Available Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much time to use. Second-order barriers include perceptions that this technology would not promote face-to-face collaboration skills, would create social loafing situations, and beliefs that the technology does not help students understand the nature of science. Suggestions for mitigating these barriers within pre-service education technology courses are discussed. La technologie joue un rôle essentiel pour faciliter la collaboration au sein de la communauté scientifique. Les applications infonuagiques telles que Google Drive peuvent être utilisées pour donner forme à ce type de collaboration et pour appuyer le questionnement dans les cours de sciences du secondaire. On connaît pourtant peu les opinions que se font les futurs enseignants d’une telle utilisation des technologies collaboratives infonuagiques. Or, ces opinions pourraient influencer l’intégration future de ces technologies en salle de classe. Cette étude révèle plusieurs obstacles de premier plan, comme l’idée que l’utilisation de ces outils informatiques prend trop de temps. Parmi les obstacles de second plan, on note les perceptions selon lesquelles cette technologie ne promeut pas les compétences collaboratives de personne à personne, pose des problèmes de gestion de classe et n'aide pas les étudiants à comprendre la nature de la science. Des suggestions sont proposées pour atténuer ces obstacles dans les cours de technologie des programmes d’éducation.

  1. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  2. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  3. Cellulose-Based Bio- and Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Susheel Kalia

    2011-01-01

    Full Text Available Cellulose macro- and nanofibers have gained increasing attention due to the high strength and stiffness, biodegradability and renewability, and their production and application in development of composites. Application of cellulose nanofibers for the development of composites is a relatively new research area. Cellulose macro- and nanofibers can be used as reinforcement in composite materials because of enhanced mechanical, thermal, and biodegradation properties of composites. Cellulose fibers are hydrophilic in nature, so it becomes necessary to increase their surface roughness for the development of composites with enhanced properties. In the present paper, we have reviewed the surface modification of cellulose fibers by various methods. Processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed in this paper.

  4. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  5. Enhancement of Cellulose Degradation by Cattle Saliva

    Science.gov (United States)

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale. PMID:26402242

  6. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  7. The Synthesis of a Novel Cellulose Physical Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2014-01-01

    Full Text Available Cellulose possessing β-cyclodextrin (β-CD was used as a host molecule and cellulose possessing ferrocene (Fc as a guest polymer. Infrared spectra, differential scanning calorimetry (DSC, ultraviolet spectroscopy (UV, and contact angle analysis were used to characterise the material structure and the inclusion behaviour. The results showed that the β-CD-cellulose and the Fc-cellulose can form inclusion complexes. Moreover, ferrocene oxidation, and reduction of state can be adjusted by sodium hypochlorite (NaClO as an oxidant and glutathione (GSH as a reductant. In this study, a physical gel based on β-CD-cellulose/Fc-cellulose was formed under mild conditions in which autonomous healing between cut surfaces occurred after 24 hours. The physical gel can be controlled in the sol-gel transition. The compressive strength of the Fc-cellulose/β-CD-cellulose gel increased with increased cellulose concentration. The host-guest interaction between the side chains of cellulose could strengthen the gel. The cellulose physical gel may eventually be used as a stimulus-responsive, healing material in biomedical applications.

  8. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyun Jong; Wi, Seung Gon; Kim, Su Bae; Shin, You Jung; Yi, Ju Hui [Chonnam National University, Bio-Energy Research Institute, Gwangju (Korea, Republic of)

    2010-10-15

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. Research scope includes 1) screening of various microorganisms from decayed biomass in order to search for more efficient lignocellulose degrading microorganism, 2) identification and verification of new cell wall degrading cellulase for application cellulose bioconversion process, and 3) identification and characterization of novel genes involved in cellulose degradation. To find good microorganism candidates for lignocellulose degrading, 75 decayed samples from different areas were assayed in triplicate and analyzed. For cloning new cell wall degrading enzymes, we selected microorganisms because it have very good lignocellulose degradation ability. From that microorganisms, we have apparently cloned a new cellulase genes (10 genes). We are applying the new cloned cellulase genes to characterize in lignocellulsoe degradation that are most important to cellulosic biofuels production

  9. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth.

    Science.gov (United States)

    Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping

    2017-05-17

    Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.

  10. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    Bae, Hyun Jong; Wi, Seung Gon; Kim, Su Bae; Shin, You Jung; Yi, Ju Hui

    2010-10-01

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. Research scope includes 1) screening of various microorganisms from decayed biomass in order to search for more efficient lignocellulose degrading microorganism, 2) identification and verification of new cell wall degrading cellulase for application cellulose bioconversion process, and 3) identification and characterization of novel genes involved in cellulose degradation. To find good microorganism candidates for lignocellulose degrading, 75 decayed samples from different areas were assayed in triplicate and analyzed. For cloning new cell wall degrading enzymes, we selected microorganisms because it have very good lignocellulose degradation ability. From that microorganisms, we have apparently cloned a new cellulase genes (10 genes). We are applying the new cloned cellulase genes to characterize in lignocellulsoe degradation that are most important to cellulosic biofuels production

  11. Advanced and Integrated Petrophysical Characterization for CO2 Storage: Application to the Ketzin Site Caractérisation pétrophysique intégrée pour le stockage de CO2 : application au site de Ketzin

    Directory of Open Access Journals (Sweden)

    Fleury M.

    2013-06-01

    from 100 to 300 mD. Two zones were identified on the logs characterized by two different irreducible saturation ranging from 15 up to 35%. The measured relative permeability curves show a sharp decrease of the water effective permeability and suggest that a saturation lower than 50% cannot be reached in practice. The exponent of the resistivity index curve is about 1.7, lower than the default value of 2. The caprock has a permeability of 27 nD, a porosity around 15% and a pore diffusivity of 0.8 x 10-9 m2/s La simulation et le suivi d’un stockage de CO2 requiert des données pétrophysiques spécifiques. Nous présentons un ensemble d’expériences applicables à tout stockage et à toute couverture, fournissant des données pour des simulations numériques réalistes du potentiel de stockage et de l’injection. Ces expériences sont intégrées avec les données diagraphiques pour l’estimation de la porosité, la saturation irréductible, la pression capillaire et la perméabilité relative de l’eau en drainage, la saturation en gaz résiduelle, les relations résistivité-saturation et les propriétés de transport de la couverture (perméabilité et diffusivité. Le cas considéré est l’aquifère salin du Trias dans le contexte du projet CO2SINK, le premier site expérimental de stockage en Allemagne situé près de Ketzin. Nous avons utilisé des méthodes de mesure nécessitant des durées raisonnables tout en restant représentatives des processus in situ. Pour le transport diphasique, nous avons utilisé la centrifugation. Pour la résistivité, nous avons utilisé une méthode rapide « Fast Resistivity Index Measurement » (FRIM en drainage et imbibition, en condition ambiante et en condition de stockage. Pour la caractérisation de la couverture, nous avons utilisé une technique rapide RMN (Résonance Magnétique Nucléaire utilisant le deutérium comme traceur pour la mesure de diffusion et une méthode stationnaire innovante pour la mesure de

  12. Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications

    Directory of Open Access Journals (Sweden)

    Ana Pimentel

    2017-11-01

    Full Text Available In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM and X-ray diffraction (XRD. The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces.

  13. Novel UV cured polymers for coating and recycling cellulosics, application to a unique paper / veneer from the waste banana tree

    International Nuclear Information System (INIS)

    Dennis, G.R.; Garnett, J.L.; Jarrett, K.J.

    2007-01-01

    Work involving UV curing and cure-grafting processes on material from the waste banana tree has been performed. Water compatible oligomers of unique structure and processing novel properties have been used in this treatment. The material from the waste banana tree has been obtained by a peeling process and can be treated either as a type of paper or as a modified timber veneer leading to two general lines of potential commercial products. The peeled product is coated with formulations containing the novel oligomers and UV cured. The advantages of using these unique water compatible oligomers in all general UV curing systems are discussed. The effect of including nanoparticle fillers in these coating formulations is considered. The effect of the presence of lignin in the banana ply paper on the curing process is examined by comparing the banana ply paper curing data with analogous results from a pure cellulose Whatman 41 paper. Two UV lamps have been used in these studies, a Fusion F-300 and a Con-Trol-Cure LED, the latter shown to be safer from body exposure considerations because it operates in a 385-405 nm wavelength band. A mechanism for the curing and cure-grafting process on banana ply paper/veneer has been proposed. The commercial potential of this process is discussed especially the economic advantages of using the banana ply paper/veneer which is not chemically pulped. (Author)

  14. Evaluation of Synthesized Nano hydroxyapatite-Nano cellulose Composites as Biocompatible Scaffolds for Applications in Bone Tissue Engineering

    International Nuclear Information System (INIS)

    Herdocia-Lluberes, C.S.; Herdocia-Lluberes, C.S.; Laboy-Lopez, S.; Morales, S.; Gonzalez-Roobles, T.J.; Gonzalez-Feliciano, J.A.; Nicolau, E.; Laboy-Lopez, S.; Gonzalez-Roobles, T.J.; Nicolau, E.

    2015-01-01

    Basic calcium phosphate (BCP) crystals have been associated with many diseases due to their activation of signaling pathways that lead to their mineralization and deposition in intra-articular and peri articular locations in the bones. In this study, hydroxyapatite (HAp) has been placed in a polysaccharide network as a strategy to minimize this deposition. This research consisted of the evaluation of varying proportions of the polysaccharide network, cellulose nano crystals (CNC_s), and HAp synthesized via a simple sol-gel method. The resulting biocompatible composites were extensively characterized by means of thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta potential, and scanning electron microscopy (SEM). It was found that an nHAp = CNC ratio presented greater homogeneity in the size and distribution of the nanoparticles without compromising the crystalline structure. Also, incorporation of bone morpho genetic protein 2 (BMP-2) was performed to evaluate the effects that this interaction would have in the constructs. Finally, the osteoblast cell (hFOB 1.19) viability assay was executed and it showed that all of the materials promoted greater cell proliferation while the nHAp > CNC proportion with the inclusion of the BMP-2 protein was the best composite for the purpose of this study

  15. Fabrication of cellulose nanocrystal from Carex meyeriana Kunth and its application in the adsorption of methylene blue.

    Science.gov (United States)

    Yang, Xue; Liu, Hui; Han, Fuyi; Jiang, Shuai; Liu, Lifang; Xia, Zhaopeng

    2017-11-01

    Cellulose nanocrystal (CNC) was extracted from Carex meyeriana Kunth (CMK) by a combination of TEMPO oxidation and mechanical homogenization method, and used to remove methylene blue (MB) from aqueous solution. After alkali-oxygen treatment, the aqueous biphasic system (polyethylene glycol/inorganic salt) was applied to further remove lignin from CMK. The characteriazation of CNC, and the effects of H 2 O 2 dosage, CNC dosage, adsorption time, and initial MB concentration on the MB removal capacity of CNC were investigated. The results showed that the removal percentage of MB by CNC was raised with the increase of H 2 O 2 and CNC dosage. The adsorption kinetics of prepared CNC followed the pseudo-second-order model, and the adsorption isotherms fitted well to the Langmuir model with a calculated maximum adsoption capacity of 217.4mg/g, which was higher than those of CNC extracted by acid hydrolysis method, indicating CNC extracted from CMK had promising potentials in the field of MB adsorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Preparation of Photocrosslinked Fish Elastin Polypeptide/Microfibrillated Cellulose Composite Gels with Elastic Properties for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Shinya Yano

    2015-01-01

    Full Text Available Photocrosslinked hydrogels reinforced by microfibrillated cellulose (MFC were prepared from a methacrylate-functionalized fish elastin polypeptide and MFC dispersed in dimethylsulfoxide (DMSO. First, a water-soluble elastin peptide with a molecular weight of ca. 500 g/mol from the fish bulbus arteriosus was polymerized by N,N′-dicyclohexylcarbodiimide (DCC, a condensation reagent, and then modified with 2-isocyanatoethyl methacrylate (MOI to yield a photocrosslinkable fish elastin polypeptide. The product was dissolved in DMSO and irradiated with UV light in the presence of a radical photoinitiator. We obtained hydrogels successfully by substitution of DMSO with water. The composite gel with MFC was prepared by UV irradiation of the photocrosslinkable elastin polypeptide mixed with dispersed MFC in DMSO, followed by substitution of DMSO with water. The tensile test of the composite gels revealed that the addition of MFC improved the tensile properties, and the shape of the stress–strain curve of the composite gel became more similar to the typical shape of an elastic material with an increase of MFC content. The rheology measurement showed that the elastic modulus of the composite gel increased with an increase of MFC content. The cell proliferation test on the composite gel showed no toxicity.

  17. Study on the Use of Microbial Cellulose as a Biocarrier for 1,3-Dihydroxy-2-Propanone and Its Potential Application in Industry

    Directory of Open Access Journals (Sweden)

    Lidia Stasiak-Różańska

    2018-04-01

    Full Text Available Can microbial cellulose (MC be used as a bio-carrier for 1,3-dihydroxy-2-propanone (DHA? The aim of this study was to examine the possibility of using MC as a biomaterial for DHA transferring into the stratum corneum and inducing changes in skin color. The MC patches were obtained from Gluconacetobacter xylinus strain and incubated in solutions with various concentrations of DHA (g·L−1: 20; 50; 80; 110 at 22 °C for 24 h. Afterwards; the patches were applied onto the skin for 15, 30, or 60 min. Skin color changes were assessed visually compared to a control patches without DHA. The intensity of skin color was increasing with the increase of DHA concentration and time of patches application. Application of MC patches with DHA (50 g·L−1 for 30 min ensured the color which was considered the closest to the desired natural tan effect. MC patches containing DHA can be biocarriers enabling DHA transport into the stratum corneum and causing skin color changes. Study results indicate a new possibility for industrial applications of MC; e.g., as a biocarrier in masking the symptoms of vitiligo or production of self-tanning agents in the form of masks.

  18. Characterization of TEMPO-oxidized bacterial cellulose

    International Nuclear Information System (INIS)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A.; Barros, Matheus de O.; Morais, Joao P.S.; Borges, Maria de F.; Rosa, Morsyleide de F.

    2015-01-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  19. Isolation of cellulose microfibrils - An enzymatic approach

    Directory of Open Access Journals (Sweden)

    Sain, M.

    2006-11-01

    Full Text Available Isolation methods and applications of cellulose microfibrils are expanding rapidly due to environmental benefits and specific strength properties, especially in bio-composite science. In this research, we have success-fully developed and explored a novel bio-pretreatment for wood fibre that can substantially improve the microfibril yield, in comparison to current techniques used to isolate cellulose microfibrils. Microfibrils currently are isolated in the laboratory through a combination of high shear refining and cryocrushing. A high energy requirement of these procedures is hampering momentum in the direction of microfibril isolation on a sufficiently large scale to suit potential applications. Any attempt to loosen up the microfibrils by either complete or partial destruction of the hydrogen bonds before the mechanical process would be a step forward in the quest for economical isolation of cellulose microfibrils. Bleached kraft pulp was treated with OS1, a fungus isolated from Dutch Elm trees infected with Dutch elm disease, under different treatment conditions. The percentage yield of cellulose microfibrils, based on their diameter, showed a significant shift towards a lower diameter range after the high shear refining, compared to the yield of cellulose microfibrils from untreated fibres. The overall yield of cellulose microfibrils from the treated fibres did not show any sizeable decrease.

  20. Current characterization methods for cellulose nanomaterials.

    Science.gov (United States)

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  1. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  2. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  3. Nature derived scaffolds for tissue engineering applications: Design and fabrication of a composite scaffold incorporating chitosan-g-d,l-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf.

    Science.gov (United States)

    Ko, Sung Won; Soriano, Juan Paolo E; Lee, Ji Yeon; Unnithan, Afeesh Rajan; Park, Chan Hee; Kim, Cheol Sang

    2018-04-15

    Through exhaustive extraction via successive alkali and bleaching treatments cellulose was isolated from lettuce. The isolated cellulose was hydrolyzed using 64wt% H 2 SO 4 at 55°C under constant stirring for 1h to obtain cellulose nanocrystals (CNCs). Characterizations such as SEM, TEM, FTIR, TGA and XRD were done in order to determine differences in the physico-chemical characteristics of cellulose after each treatment step. The isolated CNCs have mean dimensions of 237±26, 33±12 and 32±7nm in length, thickness and height, respectively. These nanocrystals were incorporated to the formulations that were used to fabricate different chitosan-g-d,l-lactic acid (CgLA) scaffolds. Amide linkage formation between chitosan and lactic acid and further removal of water was facilitated by oven-drying under vacuum at 80°C. Results show that an increase in the concentration of CNCs added, increase in porosity, degradability, drug release property and cell viability were observed from the fabricated composite scaffolds. These results can provide information on how nanofillers such as CNCs can alter the properties of tissue scaffolds through the chemical properties and interactions they provide. Moreover, these characteristics can give new properties that are necessary for certain tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Estimating emissions from grout pouring operations

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Hendrickson, D.W.

    1993-08-01

    Grouting is a method for disposal of low-level radioactive waste in which a contaminated solution is mixed into a slurry, poured into a large storage vault, then dried, fixing the contaminants within a stable solid matrix. A model (RELEASE) has been developed to estimate the quantity of aeorsol created during the pouring process. Information and equations derived from spill experiments were used in the model to determine release fractions. This paper discusses the derivation of the release fraction equation used in the code and the model used to account for gravity settling of particles in the vault. The input and results for a base case application are shown

  5. Extraction and characterization of cellulose nano whiskers from balsa wood

    International Nuclear Information System (INIS)

    Morelli, Carolina L.; Bretas, Rosario E.S.; Marconcini, Jose M.; Pereira, Fabiano V.; Branciforti, Marcia C.

    2011-01-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  6. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  7. Cellulose: To depolymerize… or not to?

    Science.gov (United States)

    Coseri, Sergiu

    Oxidation of the primary OH groups in cellulose is a pivotal reaction both at lab and industrial scale, leading to the value-added products, i.e. oxidized cellulose which have tremendous applications in medicine, pharmacy and hi-tech industry. Moreover, the introduction of carboxyl moieties creates prerequisites for further cellulose functionalization through covalent attachment or electrostatic interactions, being an essential achievement designed to boost the area of cellulose-based nanomaterials fabrication. Various methods for the cellulose oxidation have been developed in the course of time, aiming the selective conversion of the OH groups. These methods use: nitrogen dioxide in chloroform, alkali metal nitrites and nitrates, strong acids alone or in combination with permanganates or sodium nitrite, ozone, and sodium periodate or lead (IV) tetraacetate. In the case of the last two reagents, cellulose dialdehydes derivatives are formed, which are further oxidized by sodium chlorite or hydrogen peroxide to form dicarboxyl groups. A major improvement in the cellulose oxidation was represented by the introduction of the stable nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, a major impediment for the researchers working in this area is related with the severe depolymerisation occurred during the TEMPO-mediated conversion of CH 2 OH into COOH groups. On the other hand, the cellulose depolymerisation represent the key step, in the general effort of searching for alternative strategies to develop new renewable, carbon-neutral energy sources. In this connection, exploiting the biomass feed stocks to produce biofuel and other low molecular organic compounds, involves a high amount of research to improve the overall reaction conditions, limit the energy consumption, and to use benign reagents. This work is therefore focused on the parallelism between these two apparently antagonist processes involving cellulose, building a necessary

  8. Obstacle detection contribution for automotive applications; Contribution a la detection d'obstacles pour la voiture intelligente

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, M.

    1997-12-05

    On the one hand, this Ph-D Thesis deals with a new architectural approach for automotive applications implementing heterogeneous sensor data fusion, and on the other hand, it explains the data pre-processing algorithm of a microwave radar. Firstly, the analysis of both PROCHIP2 and PROLAB2 obstacle detection demonstrators (cf. the European PROMETHEUS research program about smart cars) has led us to propose a new functional architecture. Our approach introduces a sensor data pre-processing level. Data are then running at the local sensor before being transferred to data fusion architectures (that classically receives data whose meaning has also been noised by the application distribution). Secondly, an elementary simulator has been designed in order to complement our database composed of experimental microwave radar data. It is able to generate radar data for basic highway traffic scenarios. With both experimental and simulated data, a deterministic radar data pre-processing algorithm has been designed. It reduces the amount of data to be transferred by converting the local radar data into a higher semantic information: it gives more pertinent data (for example: velocities...) to the data fusion level; in particular, it predicts the obstacle path. Finally, some perspectives have been set out. Firstly, an H {infinity} estimation approach is used to reduce the data disruption effect that alters the radar data and, secondly, a controller has been proposed with the goal of decreasing the effect of car pitching. (author)

  9. Hybrid MPI-OpenMP Parallelism in the ONETEP Linear-Scaling Electronic Structure Code: Application to the Delamination of Cellulose Nanofibrils.

    Science.gov (United States)

    Wilkinson, Karl A; Hine, Nicholas D M; Skylaris, Chris-Kriton

    2014-11-11

    We present a hybrid MPI-OpenMP implementation of Linear-Scaling Density Functional Theory within the ONETEP code. We illustrate its performance on a range of high performance computing (HPC) platforms comprising shared-memory nodes with fast interconnect. Our work has focused on applying OpenMP parallelism to the routines which dominate the computational load, attempting where possible to parallelize different loops from those already parallelized within MPI. This includes 3D FFT box operations, sparse matrix algebra operations, calculation of integrals, and Ewald summation. While the underlying numerical methods are unchanged, these developments represent significant changes to the algorithms used within ONETEP to distribute the workload across CPU cores. The new hybrid code exhibits much-improved strong scaling relative to the MPI-only code and permits calculations with a much higher ratio of cores to atoms. These developments result in a significantly shorter time to solution than was possible using MPI alone and facilitate the application of the ONETEP code to systems larger than previously feasible. We illustrate this with benchmark calculations from an amyloid fibril trimer containing 41,907 atoms. We use the code to study the mechanism of delamination of cellulose nanofibrils when undergoing sonification, a process which is controlled by a large number of interactions that collectively determine the structural properties of the fibrils. Many energy evaluations were needed for these simulations, and as these systems comprise up to 21,276 atoms this would not have been feasible without the developments described here.

  10. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara

    2018-04-11

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration of trimethylsilyl cellulose (TMSC), an easily synthesized cellulose derivative. The amorphous hydrophilic feature of the regenerated cellulose enabled fast permeation of water vapour. The pore-free cellulose layer thickness was adjustable by the initial TMSC concentration and acted as an efficient gas barrier. As a result, a 5,000 GPU water vapour transmission rate (WVTR) at the highest ideal selectivity of 1.1 x 106 was achieved by the membranes spin coated from a 7% (w/w) TMSC solution. The membranes maintained a 4,000 GPU WVTR with selectivity of 1.1 x 104 in the mixed-gas experiments, surpassing the performances of the previously reported composite membranes. This study provides a simple way to not only produce high performance membranes but also to advance cellulose as a low-cost and sustainable membrane material for dehumidification applications.

  11. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  12. Couches minces electrochromiques d'oxyde de tungstene dense et poreux pour des applications de controle energetique

    Science.gov (United States)

    Camirand, Hubert

    Nanotechnology has modified the landscape of energy generation, energy storage and energy saving devices. Architectural fenestration can extensively benefit from green nanotechnologies. Amongst them, active fenestration or "smart" windows are able to modify their coloration state upon the application of a small electrical voltage, when based on electrochromic materials. In fact, the amount of visible and near-infrared light that can penetrate through the window can be altered. Therefore, their implementation can allow for a significant reduction in energy consumption in buildings. Furthermore, the capability of optimizing indoor comfort is user-controlled, thus an additional degree of freedom is given by electrochromic-based technology. It is worth mentioning that such devices can be largely advantageous in countries with variable seasons, such as here in Canada. As a matter of fact, the large temperature difference between the hot and cold season influences the requirement of impeding or enabling visible and thermal radiation to pass through. This master's thesis is entirely devoted to tungsten trioxide (WO 3), which is the most widely studied electrochromic material. In the present case, WO3 thin films are synthesized by radiofrequency magnetron sputtering. By varying the deposition pressure and power, the porosity content/packing density of the films is modified. This work's main topic is the characterization of electrochromic samples by in situ spectroscopic ellipsometry simultaneously with the application of an electrical voltage in an aqueous electrolytic medium made of sulfuric acid (H2SO 4). The methodology developed here allows for an in-depth study of electro-active materials. To corroborate this, optical properties of WO3 are obtained for a wide range of coloration levels, and these are subsequently used to model the resulting coloration of electrochromic multilayer systems. However, the interface between the dense and porous films affects the coloration

  13. Methods of use of cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Methods of detection using a cellulose binding domain fusion product

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  16. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  17. Method of saccharifying cellulose

    Science.gov (United States)

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  18. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions.

    Science.gov (United States)

    Kwon, Soon Sik; Kong, Bong Ju; Park, Soo Nam

    2015-05-01

    We investigated the physicochemical properties of pH-sensitive hydroxyethyl cellulose (HEC)/hyaluronic acid (HA) complex hydrogels containing isoliquiritigenin (ILTG), and discussed potential applications as transdermal delivery systems for the treatment of skin lesions caused by pH imbalance. HA has skin compatibility and pH functional groups and HEC serves as scaffold to build hydrogels with varied HCE:HA mass ratio. Hydrogels were synthesized via chemical cross-linking, and three-dimensional network structures were characterized via scanning electron microscopy (SEM). The swelling properties and polymer ratios of the hydrogels were investigated at pH values in the range 1-13. HECHA13 (i.e., an HEC:HA mass ratio of 1:3) was found to have optimal rheological and adhesive properties, and was used to investigate the drug release efficiency as a function of pH; the efficiency was greater than 70% at pH 7. Antimicrobial activity assays against Propionibacterium acnes were conducted to take advantage of the pH-sensitive properties of HECHA13. At pH 7, we found that HECHA13, which contained ILTG, inhibited the growth of P. acnes. Furthermore, HECHA13 was found to exhibit excellent permeability into the skin, which penetrated mostly via the hair follicle. These results indicate that this pH-sensitive hydrogel is effective as a transdermal delivery system for antimicrobial therapeutics, with potential applications in the treatment of acne. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films.

    Science.gov (United States)

    Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank

    2017-09-25

    Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

  20. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties.

    Science.gov (United States)

    Kisku, Sudhir K; Dash, Satyabrata; Swain, Sarat K

    2014-01-01

    Cellulose/silicon carbide (cellulose/SiC) nanobiocomposites were prepared by solution technique. The interaction of SiC nanoparticles with cellulose were confirmed by Fourier transformed infrared (FTIR) spectroscopy. The structure of cellulose/SiC nanobiocomposites was investigated by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The tensile properties of the nanobiocomposites were improved as compared with virgin cellulose. Thermal stabilities of cellulose/SiC nanobiocomposites were studied by thermogravimetric analysis (TGA). The cellulose/SiC nanobiocomposites were thermally more stable than the raw cellulose. It may be due to the delamination of SiC with cellulose matrix. The oxygen barrier properties of cellulose composites were measured using gas permeameter. A substantial reduction in oxygen permeability was obtained with increase in silicon carbide concentrations. The thermally resistant and oxygen barrier properties of the prepared nanobiocomposites may enable the materials for the packaging applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Application of Molecular Techniques to Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site

    International Nuclear Information System (INIS)

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rDNA clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both the clone library and PhyloChip results revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more unique Operational Taxonomic Units (OTUs), and therefore more relative diversity, than the clone libraries. Calculated diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for cellulose degradation. Overall, these results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.

  2. Dissolution of cellulose in ionic liquid: A review

    Science.gov (United States)

    Mohd, N.; Draman, S. F. S.; Salleh, M. S. N.; Yusof, N. B.

    2017-02-01

    Dissolution of cellulose with ionic liquids (IL) and deep eutectic solvent (DES) lets the comprehensive dissolution of cellulose. Basically, cellulose can be dissolved, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Chloride based ionic liquids are suitable solvents for cellulose dissolution. Although the ILs is very useful in fine chemical industry, its application in the pharmaceutical and food industry have been very limited due to issues with toxicity, purity, and high cost. Seeing to these limitations, new green alternative solvent which is DES was used. This green solvents, may be definitely treated as the next-generation reagents for more sustainable industrial development. Thus, this review aims to discuss the dissolution of cellulose either with ionic liquids or DES and its application.

  3. Biofunctional paper via the covalent modification of cellulose.

    Science.gov (United States)

    Yu, Arthur; Shang, Jing; Cheng, Fang; Paik, Bradford A; Kaplan, Justin M; Andrade, Rodrigo B; Ratner, Daniel M

    2012-07-31

    Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies, and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to immobilize small molecules, proteins, and DNA covalently onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membrane's bioactivity was specific, dose-dependent, and stable over a long period of time. The use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices.

  4. Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: For electrochemical sensor applications.

    Science.gov (United States)

    Gautam, Vineeta; Singh, Karan Pratap; Yadav, Vijay Laxmi

    2018-06-01

    In this paper, we are presenting the preparation and characterization of "polyaniline/multiwalled carbon nanotubes/carboxymethyl cellulose" based novel composite material. It's morphological, thermal, structural, and electrochemical properties were investigated by using different instrumental techniques. During the in-situ chemical polymerization of aniline in the aqueous suspension of CMC and MWCNTs, the particle size change in two different ways "top to bottom" (low molecular weight oligomers grows in size) and "bottom to top" (long fibers of CMC fragmented in the reaction mixture). The combination of these two processes facilitated the fabrication of an integrated green-nano-composite material. In addition, a little amount of conductive nanofillers (MWCNTs) boosts the electrical and electrocatalytic properties of the material. Electron-rich centers of benzenoid rings exhibited π-π stacking with sp 2 carbon of MWCNTs. CMC dominantly impact on the properties of PANI, negatively charged carboxylate group of CMC ionically bonded with protonated amine/imine. FTIR and Raman analysis confirmed that the material has dominated quinoid units and effective charge transfer. Hydroxyl and carboxyl groups and bonded water molecules of CMC results in a network of hydrogen bonds (which induced directional property). PANI/MWCNTs/CMC have nanobead-like structures (TEM analysis), large surface area, large pore volume, small pore diameter (BET and BJH studies) and good dispersion ability in the aqueous phase. Nanostructures of aligned PANI exhibited excellent electrochemical properties have attracted increasing attention. Modified carbon paste electrode was used for electrocatalytic detection of ascorbic acid (as a model analyte). The sensor exhibited a linear range 0.05 mM-5 mM, sensitivity 100.63 μA mM -1  cm -2 , and limit of detection 0.01 mM. PANI/MWCNTs/CMC is suitable nanocomposite material for apply electroactive/conducting ink and membrane (which could be

  5. Physicochemical analysis of cellulose from microalgae ...

    African Journals Online (AJOL)

    USER

    2016-06-15

    Jun 15, 2016 ... The extraction method of algae cellulose was a modification of ... triplicate. Characterization of cellulose. Analysis of ... The current analysis of the cellulose extracted .... Cellulose nanomaterials review: structure, properties and.

  6. Natural cellulose ionogels for soft artificial muscles.

    Science.gov (United States)

    Nevstrueva, Daria; Murashko, Kirill; Vunder, Veiko; Aabloo, Alvo; Pihlajamäki, Arto; Mänttäri, Mika; Pyrhönen, Juha; Koiranen, Tuomas; Torop, Janno

    2018-01-01

    Rapid development of soft micromanipulation techniques for human friendly electronics has raised the demand for the devices to be able to carry out mechanical work on a micro- and macroscale. The natural cellulose-based ionogels (CEL-iGEL) hold a great potential for soft artificial muscle application, due to its flexibility, low driving voltage and biocompatibility. The CEL-iGEL composites undergo reversible bending already at ±500mV step-voltage values. A fast response to the voltage applied and high ionic conductivity of membranous actuator is achieved by a complete dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate [EMIm][OAc]. The CEL-iGEL supported cellulose actuator films were cast out of cellulose-[EMIm][OAc] solution via phase inversion in H 2 O. The facile preparation method ensured uniform morphology along the layers and stand for the high ionic-liquid loading in a porous cellulose scaffold. During the electromechanical characterization, the CEL-iGEL actuators showed exponential dependence to the voltage applied with the max strain difference values reaching up to 0.6% at 2 V. Electrochemical analysis confirmed the good stability of CEL-iGEL actuators and determined the safe working voltage value to be below 2.5V. To predict and estimate the deformation for various step input voltages, a mathematical model was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Offre pour nos membres

    CERN Multimedia

    Staff Association

    2016-01-01

    Walibi Rhône-Alpes accueille son événement Halloween FreakShow le week-end du 15 et 16 octobre puis tous les jours du 20 octobre au 02 novembre 2016 ! ouverture prolongée jusqu’à 19h et feu d’artifices chaque soir 29, 30 et 31 octobre ! Loup-garou show; 1 labyrinthe; jeu de piste sur le parc (et nombreux lots à gagner); animations (sculpture sur citrouilles et maquillage) et d'autres surpises ! Tarifs pour nos membres : Entrée "Zone terrestre": 23 € au lieu de 29 €. Entrée gratuite pour les enfants de moins de 3 ans, avec accès aux attractions limité. Parking gratuit.

  8. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    Science.gov (United States)

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing.

    Science.gov (United States)

    Miao, Chuanwei; Hamad, Wadood Y

    2016-11-20

    CNC-PLLA nanomaterials were synthesized via in-situ ring-opening polymerization of l-lactide in the presence of CNC, resulting in hydrophobic, homogeneous mixture of PLLA-grafted-CNC and free PLLA homopolymer. The free PLLA serves two useful functions: as barrier to further prevent PLLA-g-CNC from forming aggregates, and in creating improved interfacial properties when these nanomaterials are blended with other polymers, hence enhancing their performance. CNC-PLLA nanomaterials can be used for medical or engineering applications as-they-are or by compounding with suitable biopolymers using versatile techniques, such as solution casting, co-extrusion or injection molding, to form hybrid nanocomposites of tunable mechanical properties. When compounded with commercial-grade PLA, the resulting CNC-PLA nanocomposites appear transparent and have tailored (dynamic and static) mechanical and barrier properties, approaching those of poly(ethylene terephthalate), PET. The effect of reaction conditions on the properties of CNC-PLLA nanomaterials have been carefully studied and detailed throughout the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Directed Biosynthesis of Oriented Crystalline Cellulose for Advanced Composite Fibers

    Science.gov (United States)

    2012-05-03

    trifluoromethylsulfonyl)amide IL: ionic liquids IR : infra-red MSE: Material Sciences & Engineering ORNL: Oak Ridge National Laboratory PI...biomedical applications, we have investigated approaches for incorporating hydroxyapatite into the cellulose pellicles as bone replacement materials

  11. Effects of adding cellulose on rheological characteristics of wheat ...

    African Journals Online (AJOL)

    Nafiisah

    plants and are finding applications as food ingredient in many products (Bahr,. 1996). Cereals, like .... might continue to absorb more water as higher levels of cellulose would be added. ... the dough and retention of carbon dioxide. Some other ...

  12. Large-scale additive manufacturing with bioinspired cellulosic materials.

    Science.gov (United States)

    Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G

    2018-06-05

    Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.

  13. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites

    Science.gov (United States)

    Dufresne, Alain

    2017-12-01

    Unexpected and attractive properties can be observed when decreasing the size of a material down to the nanoscale. Cellulose is no exception to the rule. In addition, the highly reactive surface of cellulose resulting from the high density of hydroxyl groups is exacerbated at this scale. Different forms of cellulose nanomaterials, resulting from a top-down deconstruction strategy (cellulose nanocrystals, cellulose nanofibrils) or bottom-up strategy (bacterial cellulose), are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, the basis for low-density foams, additives in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic and medical products. This paper focuses on the use of cellulose nanomaterials as a filler for the preparation of polymer nanocomposites. Impressive mechanical properties can be obtained for these materials. They obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials, which has not yet been properly resolved and remains a challenge. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  14. Cellulose nanocrystals from acacia bark-Influence of solvent extraction.

    Science.gov (United States)

    Taflick, Ticiane; Schwendler, Luana A; Rosa, Simone M L; Bica, Clara I D; Nachtigall, Sônia M B

    2017-08-01

    The isolation of cellulose nanocrystals from different lignocellulosic materials has shown increased interest in academic and technological research. These materials have excellent mechanical properties and can be used as nanofillers for polymer composites as well as transparent films for various applications. In this work, cellulose isolation was performed following an environmental friendly procedure without chlorine. Cellulose nanocrystals were isolated from the exhausted acacia bark (after the industrial process of extracting tannin) with the objective of evaluating the effect of the solvent extraction steps on the characteristics of cellulose and cellulose nanocrystals. It was also assessed the effect of acid hydrolysis time on the thermal stability, morphology and size of the nanocrystals, through TGA, TEM and light scattering analyses. It was concluded that the extraction step with solvents was important in the isolation of cellulose, but irrelevant in the isolation of cellulose nanocrystals. Light scattering experiments indicated that 30min of hydrolysis was long enough for the isolation of cellulose nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Single-molecule study of oxidative enzymatic deconstruction of cellulose.

    Science.gov (United States)

    Eibinger, Manuel; Sattelkow, Jürgen; Ganner, Thomas; Plank, Harald; Nidetzky, Bernd

    2017-10-12

    LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time ( ~ 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly ( ≥ 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.Understanding the role of enzymes in biomass depolymerization is essential for the development of more efficient biorefineries. Here, the authors show by atomic force microscopy the real-time mechanism of cellulose deconstruction by lytic polysaccharide monooxygenases.

  16. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  17. Parallelization of applications for networks with homogeneous and heterogeneous processors; Parallelisation d`applications pour des reseaux de processeurs homogenes ou heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Colombet, L

    1994-10-07

    The aim of this thesis is to study and develop efficient methods for parallelization of scientific applications on parallel computers with distributed memory. The first part presents two libraries of PVM (Parallel Virtual Machine) and MPI (Message Passing Interface) communication tools. They allow implementation of programs on most parallel machines, but also on heterogeneous computer networks. This chapter illustrates the problems faced when trying to evaluate performances of networks with heterogeneous processors. To evaluate such performances, the concepts of speed-up and efficiency have been modified and adapted to account for heterogeneity. The second part deals with a study of parallel application libraries such as ScaLAPACK and with the development of communication masking techniques. The general concept is based on communication anticipation, in particular by pipelining message sending operations. Experimental results on Cray T3D and IBM SP1 machines validates the theoretical studies performed on basic algorithms of the libraries discussed above. Two examples of scientific applications are given: the first is a model of young stars for astrophysics and the other is a model of photon trajectories in the Compton effect. (J.S.). 83 refs., 65 figs., 24 tabs.

  18. Informatique: tous pour un ... projet

    CERN Multimedia

    Delétraz, F; Requin, J-M

    2004-01-01

    "Pour des raisons de coût et d'efficacité, les chercheurs font de plus en plus travailler ensemble des ordinateurs éparpillés sur tous les continents. Pour faire avancer la science, tous les moyens et tous les réseaux sont bons" (1 page)

  19. Radiation induced graft copolymerization of cellulosic fabric waste and its application in the removal of cyanide and dichromate from aqueous solution

    International Nuclear Information System (INIS)

    El-Kelesh, N.A.; Hashem, A.; Sokker, H.H.; Abd Elaal, S.E.

    2005-01-01

    Graft polymerization and crosslinking in radiation processing are attractive techniques for modification of the chemical and physical properties of the conventional polymers. The graft polymerization and subsequent chemical treatment can introduce a chelate agent function into a conventional polymer such as cellulosic fabric. Cellulosic graft copolymers were prepared by the reaction of the fiber with acrylonitrile (AN) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) in DMF initiated by gamma-radiation 60 Co. The grafted fabric was chemically treated with hydroxyl amine to obtain amidoxime form. Factors affecting on the grafting such as radiation dose, monomer concentration and solvent concentration as well as monomer composition was investigated. The chemically modified graft fabric was applied for recovery of cyanide and dichromate from aqueous solution. The CN show removal percent 89%, whereas dichromate has 65% removal percent

  20. Une méthode pour estimer l’interception du rayonnement par un couvert bas : application au colza avant montaison

    Directory of Open Access Journals (Sweden)

    Denoroy Pascal

    2002-01-01

    Full Text Available Dans les modèles de simulation du fonctionnement des cultures, l’interception du rayonnement est une variable cruciale pour la prévision de la productivité en biomasse. D’autre part, la connaissance de l’interception du rayonnement par une culture permet de mieux analyser la réponse à un traitement en autorisant la distinction entre les effets morphogénétique et physiologique du traitement. Par exemple, dans l’étude de la fertilisation azotée du colza [1] on a pu faire la part de l’effet morphogénétique (accroissement de l’indice foliaire, donc de l’interception et de l’amélioration de la conversion photosynthétique du rayonnement absorbé. Dans un cas comme dans l’autre, une estimation correcte de l’interception du rayonnement est essentielle. Très souvent, un formalisme dérivé de la loi de Beer-Lambert est utilisé pour quantifier la part interceptée du rayonnement : PARi = epsiloni PAR (1 et epsiloni = 1 - e- k.IF (2, PAR représentant le rayonnement photosynthétiquement actif incident (exprimé en Joules ou en moles de photons, PARi la part de ce dernier interceptée par le couvert, epsiloni le coefficient (sans dimension d’interception, IF l’indice foliaire et k le coefficient d’extinction du rayonnement. Un formalisme un peu plus complexe doit être utilisé si on veut considérer le rayonnement absorbé [1, 2]. Pour des cultures couvrantes, la sensibilité de ces modèles à la valeur de k est faible pour les IF élevés, c’est pourquoi ces modèles sont souvent utilisés avec succès. Mais aux faibles IF, les modèles sont sensibles à k, d’où l’importance de l’estimation de ce paramètre pour les cultures présentant une longue période de faible couverture du sol, tel le colza peu fertilisé en phase hivernale. De plus, pour les cultures discontinues, c’est-à-dire présentant des zones où le sol n’est pas du tout couvert par la végétation, comme les inter-rangs, on doit

  1. Growth and characterization of single-crystal CVD diamond for radiation detection applications; Synthese et caracterisation de diamants monocristallins pour applications de detecteur de rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Tranchant, N

    2008-01-15

    This work aimed at the study of the synthesis of single crystal diamond using the Microwave enhanced Chemical Vapour Deposition technique (MPCVD). The work enabled the development and optimisation of the growth conditions, from the study of the crystalline quality, of the material purity, and of its electronic properties. The assessment of the transport properties was the most determinant: the use of the time of flight (TOF) technique has enabled the measurement of the carrier mobilities and of their kinetic properties as a function of the temperature. When coupled with collected charge efficiency measurements, the work led to remarkable carrier mobility values obtained in the synthesised crystals (3000 cm{sup 2}.V-1.s{sup -1}). Prepared samples were mounted as detection devices and used successfully in real conditions for the monitoring of ultra-fast pulses, as well as for neutron fluency monitoring, and for medical dosimeters for radiotherapy applications. (author)

  2. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications.

    Science.gov (United States)

    Noorbakhsh-Soltani, S M; Zerafat, M M; Sabbaghi, S

    2018-06-01

    Environmental concerns have led to extensive research for replacing polymer-based food packaging with bio-nano-composites. In this study, incorporation of nano-cellulose into gelatin and starch matrices is investigated for this purpose. Chitosan is used to improve mechanical, anti-fungal and waterproof properties. Experiments are designed and analyzed using response surface methodology. Nano-Cellulose is synthesized via acid hydrolysis and incorporated in base matrices through wet processing. Also, tensile strength test, food preservation, transparency in visible and UV and water contact angle are performed on the nano-composite films. DSC/TGA and air permeability tests are also performed on the optimal films. The results show that increasing nano-cellulose composition to 10% leads to increase the tensile strength at break to 8121 MN/m 2 and decrease the elongation at break. Also, increasing chitosan composition from 5% to 30% can enhance food preservation up to 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Micro-reactor for heterogeneous catalysis. Application: hydrogen production from methyl-cyclohexane; Microreacteur pour la catalyse heterogene. Application: production d'hydrogene a partir du methylcyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Roumanie, M.; Pijolat, C. [Ecole des Mines de Saint Etienne, Centre SPIN (DMICC/LPMG/URA/CNRS-D2021), 42 - Saint Etienne (France); Meille, V.; Bellefon, C. de [Centre National de la Recherche Scientifique (CNRS/CPE), Lab. de Genie des Procedes Catalytiques, 69 - Villeurbanne (France); Pouteau, P.; Delattre, C. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2004-07-01

    First developed by the pharmaceutical industry to find new drugs (combinatorial analysis), the lab on chip is also extremely interesting for the catalysis field. This major interest comes from the miniaturize size and the high surface on volume ratio which lead to improve mass and heat transfer but also the safety in regards of industrial application. The use of micro-technology and the miniaturization of various systems such as micro-fuel cell is also a current field of activity. So for the future research the production of hydrogen is a point to develop in order to supply a micro-fuel cell. The aim of this work is to study and to realize an autonomous catalytic micro-reactor for hydrogen production from methyl-cyclohexane. For this reaction of dehydrogenation, the common catalyst is platinum supported on alumina. Consequently, the general objectives of this work are: 1)to develop a micro-reactor with its heaters, sensors...2)to deposit catalysts in the micro-reactor 3)to study the catalytic conversion of this system.

  4. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose

    International Nuclear Information System (INIS)

    Oliveira, Rafael L. de; Barud, Hernane; Ribeiro, Sidney J.L.; Messaddeq, Younes

    2011-01-01

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR 13 C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  5. Glucose production for cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Karube, I

    1977-04-16

    Glucose was produced from cellulose by passing a cellulose solution through a column of an immobilized cellulase which was prepared by coating an inorganic carrier such as macadam or stainless steel beads with collagen containing the cellulase. Thus, 4 mL of 5% cellulase T-AP (60,000 units/g) solution was dissolved in 100 g of 0.9% collagen solution and the solution mixed with 60 g of macadam (diam. = 0.5 to 1.5 mm) and stirred for 10 min. The treated beads were dried in air at 10/sup 0/ to yield an immobilized enzyme retaining 64% of its activity. Through a column (0.8 x 20 cm) packed with 3 g of the immobilized enzyme, 100 mL of 0.33% Avicel SF solution was circulated at 26.4 mL/min at 30/sup 0/ for 60 h. The Avicel SF conversion to glucose was 23%.

  6. [Insights into engineering of cellulosic ethanol].

    Science.gov (United States)

    Yue, Guojun; Wu, Guoqing; Lin, Xin

    2014-06-01

    For energy security, air pollution concerns, coupled with the desire to sustain the agricultural sector and revitalize the rural economy, many countries have applied ethanol as oxygenate or fuel to supplement or replace gasoline in transportation sector. Because of abundant feedstock resources and effective reduction of green-house-gas emissions, the cellulosic ethanol has attracted great attention. With a couple of pioneers beginning to produce this biofuel from biomass in commercial quantities around the world, it is necessary to solve engineering problems and complete the economic assessment in 2015-2016, gradually enter the commercialization stage. To avoid "competing for food with humans and competing for land with food", the 1st generation fuel ethanol will gradually transit to the 2nd generation cellulosic ethanol. Based on the overview of cellulosic ethanol industrialization from domestic and abroad in recent years, the main engineering application problems encountered in pretreatment, enzymes and enzymatic hydrolysis, pentose/hexose co-fermentation strains and processes, equipment were discussed from chemical engineering and biotechnology perspective. The development direction of cellulosic ethanol technology in China was addressed.

  7. Anisotropy of the elastic properties of crystalline cellulose Iß from first principles density functional theory with Van der Waals interactions

    Science.gov (United States)

    Fernando L. Dri; Louis G. Jr. Hector; Robert J. Moon; Pablo D. Zavattieri

    2013-01-01

    In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose Iß with hydrogen bonding network A was calculated using ab initio...

  8. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-01-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration

  9. Techniques avancées du traitement d'antennes pour la localisation de sources : application à la localisation de mobile: cas du système UMTS.

    OpenAIRE

    Grosicki , Emmanuele

    2003-01-01

    La thèse a porté sur la localisation de mobile pour les systèmes UMTS-FDD. Il s'agit d'un sujet qui intéresse de plus en plus les opérateurs, notamment dans le cas de système UMTS-FDD où il existe très peu de réseaux réels. Les différentes approches permettant de localiser un émetteur ont ainsi été envisagées, et plus particulièrement, celles basées sur les mesures de puissances, les temps d'arrivée (TOA) en liaison descendante ou encore celles basées sur les angles d'arrivée (AOA) et sur tou...

  10. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  11. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  12. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Directory of Open Access Journals (Sweden)

    Craig Blanchette

    Full Text Available Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC; however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  13. L’EPURATION TERTIAIRE DES EAUX USEES DE L’INDUSTRIE DE LA CELLULOSE

    Directory of Open Access Journals (Sweden)

    Constantin STANCIU

    2010-05-01

    Full Text Available Les processus de fabrication de la cellulose représentent des sources importantes de pollution tant pour les eaux, que pour l’aire et le sol. La pollution de l’eau est du, essentiellement, aux substances organiques dissous, aux substances en suspension et aux substances colorantes. Les évacuations des substances polluantes résultant de l’industrie de la cellulose se classifient en : substances solides en suspension, composés avec une biodégradabilité rapide ou lente, sels anorganiques, composés toxiques et échangeurs de valeur de pH. On a analysé les substances filtrées résultant du processus de blanchiment de la cellulose pour l’industrie papetière fabriquée du bois des arbres à feuilles caduques (hêtre et l’efficacité de l’épuration par oxydation électrochimique, par oxydation à l’ozone, l’épuration avec des résines échangeuses d’ions et l’épuration par l’ajout de charbon actif.

  14. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  15. Synthesis and application of a new carboxylated cellulose derivative. Part I: Removal of Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution.

    Science.gov (United States)

    Teodoro, Filipe Simões; Ramos, Stela Nhandeyara do Carmo; Elias, Megg Madonyk Cota; Mageste, Aparecida Barbosa; Ferreira, Gabriel Max Dias; da Silva, Luis Henrique Mendes; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves

    2016-12-01

    A new carboxylated cellulose derivative (CTA) was prepared from the esterification of cellulose with 1,2,4-Benzenetricarboxylic anhydride. CTA was characterized by percent weight gain (pwg), amount of carboxylic acid groups (nCOOH), elemental analysis, FTIR, TGA, solid-state (13)C NMR, X-ray diffraction (DRX), specific surface area, pore size distribution, SEM and EDX. The best CTA synthesis condition yielded a pwg and nCOOH of 94.5% and 6.81mmolg(-1), respectively. CTA was used as an adsorbent material to remove Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution. Adsorption studies were developed as a function of the solution pH, contact time and initial adsorbate concentration. Langmuir model better fitted the experimental adsorption data and the maximum adsorption capacities estimated by this model were 0.749, 1.487 and 1.001mmolg(-1) for Co(2+), Cu(2+) and Ni(2+), respectively. The adsorption mechanism was investigated by using isothermal titration calorimetry. The values of ΔadsH° were in the range from 5.36 to 8.09kJmol(-1), suggesting that the mechanism controlling the phenomenon is physisorption. Desorption and re-adsorption studies were also performed. Desorption and re-adsorption efficiencies were closer to 100%, allowing the recovery of both metal ions and CTA adsorbent. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B.

    Science.gov (United States)

    Jiao, Yue; Wan, Caichao; Bao, Wenhui; Gao, He; Liang, Daxin; Li, Jian

    2018-06-01

    A magnetic cellulose aerogel-supported Fe 3 O 4 nanoparticles composite was designed as a highly efficient and eco-friendly catalyst for Fenton-like degradation of Rhodamine B (RhB). The composite (coded as Fe 3 O 4 @CA) was formed by embedding well-dispersed Fe 3 O 4 nanoparticles into the 3D structure of cellulose aerogels by virtue of a facile and cheap hydrothermal method. Comparative studies indicate that the RhB decolorization ratio is much higher in co-presence of Fe 3 O 4 and H 2 O 2 than that in presence of Fe 3 O 4 or H 2 O 2 only, revealing that the Fe 3 O 4 @CA-catalyzed Fenton-like reaction governed the RhB decolorization process. It was also found that almost 100% RhB removal was achieved in the Fenton-like system. Moreover, the composite exhibited higher catalytic activity than that of the individual Fe 3 O 4 particles. In addition, the Fe 3 O 4 @CA catalyst retained ∼97% of its ability to degrade RhB after the six successive degradation experiments, suggesting its excellent reusability. All these merits indicate that the green and low-cost catalyst with strong magnetic responsiveness possesses good potential for H 2 O 2 -driven Fenton-like treatment of organic dyestuff wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Modification and characterization of microcrystalline cellulose with succinic anhydride

    International Nuclear Information System (INIS)

    Santos, Clecio M.R.; Santos, Douglas C.; Freitas, Gizele B.; Cardoso, Giselia

    2011-01-01

    Cellulose is a natural polymer, non-toxic, biodegradable and renewable source. With increasing global attention to environmental problems, the chemical modification of cellulose has been evaluated with increasing applicability in various industrial sectors. The cellulose can be chemical modified through the hydroxyl present in their molecules. This paper aims to present the main results in the modification of microcrystalline cellulose. The sample was pure and modified chemically and morphologically characterized by absorption spectroscopy in the infrared (IR) and showed the band in the 1551cm -1 characterization modification made, X-ray diffraction (XRD) where it was observed that the change led to a reduction significant crystallinity, and determination of average pore radius through the analyzer porosity and surface area resulting in values of 6.97 angstrom for pure sample and 8.62 angstrom for the modified. In addition to these tests we determined the average degree of substitution finding the value of 1.67. (author)

  18. Cellulose synthase complex organization and cellulose microfibril structure.

    Science.gov (United States)

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  19. Cellulosic pulps of cereal straws as raw material for the manufacture of ecological packaging

    OpenAIRE

    Vargas González, Fátima; González, Zoilo; Sánchez, Rafael; Jiménez, Luis; Rodríguez Pascual, Alejandro

    2012-01-01

    The aim of this work was to study the potential application of four types of cereal straws: oats, maize, rapeseed, and barley, in order to obtain cellulose pulp through the Specel® process for use in the manufacture of 100% biodegradable and ecological packaging. Raw materials were chemically characterized to determine alcohol-extractives, ash, lignin, holocellulose, and α-cellulose. Cellulosic pulps obtained from raw materials were characterized to determine yield, Kappa number, and viscosit...

  20. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  1. Saccharification of cellulose by acetolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Yamanaka, S; Takinami, K

    1978-01-01

    For saccharification of cellulose, an acetolysis method using assimilable acid with a microorganism was applied. Based on this method, a new method which gave totally assimilable products was established. The rigid crystalline structure of cellulose was disrupted by acetolysis with 2-2.5 times as much acetic anhydride as cellulose on a weight basis and 1 N sulfuric acid as a catalyst. Then for cleavage of O-acetyl ester and glycosidic bonds, the resulting amorphous acetolysate of cellulose could easily be hydrolyzed by heating in 1 N sulfuric acid at 120/sup 0/C for 1-1.5 h without over-disruption of glucose. Ninety-eight % of the cellulose used was recovered in the form of hydrolysate having about 30% saccharide concentration. The hydrolysate obtained was composed of 74% glucose, 13% cellobiose and 11% mono-O-acetyl glucose on a weight basis.

  2. Reinforced plastics and aerogels by nanocrystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  3. Nanofibrillated Cellulose Surface Modification: A Review

    Directory of Open Access Journals (Sweden)

    Julien Bras

    2013-05-01

    Full Text Available Interest in nanofibrillated cellulose (NFC has increased notably over recent decades. This bio-based nanomaterial has been used essentially in bionanocomposites or in paper thanks to its high mechanical reinforcement ability or barrier property respectively. Its nano-scale dimensions and its capacity to form a strong entangled nanoporous network have encouraged the emergence of new high-value applications. It is worth noting that chemical surface modification of this material can be a key factor to achieve a better compatibility with matrices. In order to increase the compatibility in different matrices or to add new functions, surface chemical modification of NFC appears to be the prior choice to conserve its intrinsic nanofibre properties. In this review, the authors have proposed for the first time an overview of all chemical grafting strategies used to date on nanofibrillated cellulose with focus on surface modification such as physical adsorption, molecular grafting or polymer grafting.

  4. Tubes légers à haute résistance pour des applications pétrolières marines Light High Strength Tubes for Offshore Petroeleum Applications

    Directory of Open Access Journals (Sweden)

    Corteville J.

    2006-11-01

    Full Text Available Les besoins nouveaux en tubes à haute résistance, créés par le développement actuel des gisements pétroliers marins, nous ont conduits à étudier des tubes composites particuliers, élaborés par enrouiement hélicoïdal de rubans d'acier minces à haute résistance enrobés d'une résine époxy polymérisable. Un mode de recouvrement adapté des rubans d'acier confère au composite une bonne étanchéité et des caractéristiques mécaniques élevées. Les propriétés physiques et chimiques de la matrice de résine permettent également d'obtenir une faible densité et une résistance convenable à la corrosion par les fluides pétroliers, l'eau de mer ou les boues de forage. Cette étude préliminaire comporte une analyse théorique simplifiée de ce type de structure composite, puis une partie expérimentale destinée a sélectionner les caractéristiques optimales de l'acier et de la résine et à vérifier les propriétés mécaniques et physico-chimiques obtenues sur ces tubes. Enfin, des exemples d'application en mer profonde destinés à comparer ces tubes composites aux tubes en acier sont présentés. Les premières conclusions de cette étude semblent confirmer l'intérêt de ce type de matériau pour ces applications. The new requirements for high-strength tubes created by thé current development of offshore oilfields led thé authors ta study thé development ot spécial composite tubes formed by thé spiral winding of high-strength thin steel strips coated with a polymerïzable epoxy resin. A particular method of overlapping thé steel strips makes the composite leakproof and leads to good mechanical properties: The physical and chemical properties of thé resin matrix also make for a low specific gravity and suitable résistance to corrosion coused by petroleum fluids, seawater or drilling mud. This preliminary article presents a simplified theoretical analysis of this type of composite structure, followed by an exp

  5. [Microcrystalline cellulose and their flow -- morphological properties modifications as an effective excpients in tablet formulation technology containing lattice established API and also dry plant extract].

    Science.gov (United States)

    Zgoda, Marian Mikołaj; Nachajski, Michał Jakub; Kołodziejczyk, Michał Krzysztof

    2009-01-01

    The production technology of powder cellulose (Arbocel) and microcrystaline cellulose (Vivapur) and their application in the composition of direct compression tablet mass was provided. The function of silicified microcrystaline cellulose type Prosolv in the direct compression process of dry plant extract was discussed. An analysis of the chemical structure of cellulose fiber (Vitacel) enabled determining its properties and applications in the manufacture of diet supplement, pharmaceutical and food products.

  6. Modification of a cellulose derived for your application on enzyme immobilization;Modificacao de um derivado celulosico para sua aplicacao na imobilizacao de enzimas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Elaine S.; Rodriguez, Ruben J.S.; Lamonica, Alano C., E-mail: ecarvalho@uenf.b [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Materiais Avancados; Tavares, Maria Ines B. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    The chemical modification of (acrylamidomethyl) cellulose acetate propionate (AMCAP) was done through the technique of grafting via radical using acrylic acid as modifier, with the objective to make the polymer more hydrophilic. The structural characterization of AMCAP and modified AMCAP-H{sub 2}O{sub 2} was analysed by using the technique of {sup 13}C-nuclear magnetic resonance (NMR-{sup 13}C). By the techniques differential scanning calorimetry analysis (DSC) and thermogravimetric analysis (TGA), the thermal properties was characterized and the hydrophobic / hydrophilic character was determined by measurements of the contact angle. The results show that occurred the change intended with the introduction of acrylic acid in the side chain of the polymer, increasing the hydrophilic character on the AMCAP. (author)

  7. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC

    Science.gov (United States)

    Q.Q. Wang; J.Y. Zhu; R.S. Reiner; S.P. Verrill; U. Baxa; S.E. McNeil

    2012-01-01

    This study demonstrated the potential of simultaneously recovering cellulosic solid residues (CSR) and producing cellulose nanocrystals (CNCs) by strong sulfuric acid hydrolysis to minimize cellulose loss to near zero. A set of slightly milder acid hydrolysis conditions than that considered as “optimal” were used to significantly minimize the degradation of cellulose...

  8. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nan; Zang, Guo-Long; Shi, Chen; Yu, Han-Qing; Sheng, Guo-Ping, E-mail: gpsheng@ustc.edu.cn

    2016-10-05

    Highlights: • A cellulose nanofibril based adsorbent with abundant carboxyl/amino was prepared. • After modification by PEI, the Cu adsorption capacity of nanofibril increased. • TOCN-PEI has good Cu(II) removal ability and its maximum capacity was 52.32 mg g{sup −1}. • Results show Cu adsorption on TOCN-PEI is an exothermic and enthalpy-driven process. • Sorption-desorption tests reveal that TOCN-PEI has good stability for Cu removal. - Abstract: This study describes the preparation of a novel adsorbent based on cellulose nanofibrils by first TEMPO mediated oxidation and then PEI grafting (TOCN-PEI) for heavy metal removal. FTIR results demonstrated the successful introduction of the adsorption functional groups (carboxyl and amino groups), and the elemental analysis and acid base titration were used to quantify the contents of these introduced groups. The kinetics curve suited the pseudo-second-order model better and the equilibrium data well fitted the Langmuir model, with the maximum Cu(II) uptake of 52.32 mg g{sup −1}. Kinetic study showed that the PEI grafting increased the initial adsorption rate of the TOCN-PEI compared with the adsorbents without PEI. Thermodynamic study was carried out through isothermal titration calorimetry (ITC) measurement and the binding reaction was found to be exothermic and driven by enthalpy change. The adsorption process by TOCN-PEI was pH dependent, and decreasing pH would lead to desorption of Cu(II) ions, thus make the reuse of the absorbent more convenient through adsorption-desorption cycles.

  9. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  10. Disposable chemical sensors and biosensors made on cellulose paper.

    Science.gov (United States)

    Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan

    2014-03-07

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.

  11. Disposable chemical sensors and biosensors made on cellulose paper

    International Nuclear Information System (INIS)

    Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan

    2014-01-01

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications. (topical review)

  12. 21 CFR 573.420 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and... Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether containing...

  13. Evaluation of microcrystalline cellulose modifed from alpha ...

    African Journals Online (AJOL)

    Alpha cellulose was obtained from Costus afer and part of it was modified to microcrystalline cellulose (CAMCC). The physicochemical properties of the microcrystalline cellulose were determined and compared with those of commercial microcrystalline cellulose (Avicel 101). The swelling capacity, hydration capacity, loss ...

  14. 21 CFR 172.868 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  15. Fabrication of cellulose/graphene paper as a stable-cycling anode materials without collector.

    Science.gov (United States)

    Zhang, Chunliang; Cha, Ruitao; Yang, Luming; Mou, Kaiwen; Jiang, Xingyu

    2018-03-15

    Flexible and foldable devices attract substantial attention in low-cost electronics. Among the flexible substrate materials, paper has several attractive advantages. In our study, we fabricate cellulose/graphene paper by wet end formation (papermaking). The cationic polyacrylamide remarkably improve the retention ratio of graphene of cellulose/graphene slurry. Besides, cellulose/graphene paper exhibits well mechanical properties such as its flexibility and folding endurance. And we replace copper foil collector with cellulose/graphene paper in lithium-ion batteries without collector, and investigate its electrochemical properties. The obtained results show that cellulose/graphene paper presents excellent charge-discharge stability after 1600th cycles as the anode of lithium-ion batteries. These advantages highlight the potential applications of cellulose/graphene paper as anode materials for lithium-ion batteries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dvorak. Concerto pour violoncelle / Francis Dresel

    Index Scriptorium Estoniae

    Dresel, Francis

    1992-01-01

    Uuest heliplaadist "Dvorak. Concerto pour violoncelle; Schumann: Concerto pour violoncelle. Orchestre Symphonique d'Estonie, Orchestre Symphonique de la Radio TV d'URSS, Neeme Järvi" Vogue "Archives Sovietiques" 651033 1978

  17. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cellulose microfibril structure: inspirations from plant diversity

    Science.gov (United States)

    Roberts, A. W.

    2018-03-01

    Cellulose microfibrils are synthesized at the plasma membrane by cellulose synthase catalytic subunits that associate to form cellulose synthesis complexes. Variation in the organization of these complexes underlies the variation in cellulose microfibril structure among diverse organisms. However, little is known about how the catalytic subunits interact to form complexes with different morphologies. We are using an evolutionary approach to investigate the roles of different catalytic subunit isoforms in organisms that have rosette-type cellulose synthesis complexes.

  19. Rheological behavior of highly loaded cellulose nanocrystal/poly(vinyl alcohol) composite suspensions

    Science.gov (United States)

    Caitlin E. Meree; Gregory T. Schueneman; J. Carson Meredith; Meisha L. Shofner

    2016-01-01

    Recent emphasis on the pilot scale production of cellulosic nanomaterials has increased interest in the effective use of these materials as reinforcements for polymer composites. An important, enabling step to realizing the potential of cellulosic nanomaterials in their applications is the materials processing of CNC/polymer composites through multiple routes, i.e....

  20. Physical and mechanical testing of essential oil-embedded cellulose ester films

    Science.gov (United States)

    Polymer films made from cellulose esters are useful for embedding plant essential oils, either for food packaging or air freshener applications. Studies and testing were done on the physical and mechanical properties of cellulose ester-based films incorporating essential oils (EO) from lemongrass (C...

  1. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites.

    Science.gov (United States)

    Kiziltas, Esra Erbas; Kiziltas, Alper; Bollin, Shannon C; Gardner, Douglas J

    2015-01-01

    Nanocomposites of polymethylmethacrylate (PMMA) and cellulose were made by a solution casting method using acetone as the solvent. The nanofiber networks were prepared using three different types of cellulose nanofibers: (i) nanofibrillated cellulose (NFC), (ii) cellulose nanocrystals (CNC) and (iii) bacterial cellulose from nata de coca (NDC). The loading of cellulose nanofibrils in the PMMA varied between 0.25 and 0.5 wt%. The mechanical properties of the composites were evaluated using a dynamic mechanical thermal analyzer (DMTA). The flexural modulus of the nanocomposites reinforced with NDC at the 0.5 wt% loading level increased 23% compared to that of pure PMMA. The NFC composite also exhibited a slightly increased flexural strength around 60 MPa while PMMA had a flexural strength of 57 MPa. The addition of NDC increased the storage modulus (11%) compared to neat PMMA at room temperature while the storage modulus of PPMA/CNC nanocomposite containing 0.25 and 0.5 wt% cellulose increased about 46% and 260% to that of the pure PMMA at the glass transition temperature, respectively. Thermogravimetric analysis (TGA) indicated that there was no significant change in thermal stability of the composites. The UV-vis transmittance of the CNF nanocomposites decreased by 9% and 27% with the addition of 0.25 wt% CNC and NDC, respectively. This work is intended to spur research and development activity for application of CNF reinforced PMMA nanocomposites in applications such as: packaging, flexible screens, optically transparent films and light-weight transparent materials for ballistic protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    KAUST Repository

    Puspasari, Tiara

    2018-01-01

    (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome

  3. Preparation of PbO nanoparticles by microwave irradiation and their application to Pb(II)-selective electrode based on cellulose acetate

    International Nuclear Information System (INIS)

    Li Shengying; Yang Wu; Chen Miao; Gao Jinzhang; Kang Jingwan; Youli, Q.

    2005-01-01

    Nanosized lead oxide particles were prepared by thermal decomposition of lead hydroxycarbonate synthesized under microwave irradiation. Urea and lead nitrate were used as the starting materials. Microstructure and morphology of the products were investigated by means of XRD, AFM, TEM, and IR absorption spectra. The results indicated that well crystallized, finely dispersed and spherical α-PbO nanoparticles with a size of ca. 30 nm were obtained. Meanwhile, an orthogonal phase β-PbO with a size of ca. 38 nm was also obtained when the calcinations temperature was up to 600 deg. C. In addition, a Pb(II)-selective electrode based on cellulose acetate was prepared using nanosized α-PbO powders synthesized. The electrode exhibited a Nernstian slope of 29±1 mV per decade in a linear range of 2.5x10 -5 mol L -1 to 1.0x10 -1 mol L -1 for Pb 2+ ion. The detection limit of this electrode is down to 8.0x10 -6 mol L -1 . This sensor has a short response time of about 10 s and could be used in a pH range of 2.0-8.0. High selectivity was obtained over a wide variety of metal ions

  4. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L.; Caiut, Jose Mauricio A.

    2011-01-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  5. INFLUENCE OF CELLULOSE POLYMERIZATION DEGREE AND CRYSTALLINITY ON KINETICS OF CELLULOSE DEGRADATION

    OpenAIRE

    Edita Jasiukaitytė-Grojzdek,; Matjaž Kunaver,; Ida Poljanšek

    2012-01-01

    Cellulose was treated in ethylene glycol with p-toluene sulfonic acid monohydrate as a catalyst at different temperatures. At the highest treatment temperature (150 °C) liquefaction of wood pulp cellulose was achieved and was dependant on cellulose polymerization degree (DP). Furthermore, the rate of amorphous cellulose weight loss was found to increase with cellulose degree of polymerization, while the rate of crystalline cellulose weight loss was reciprocal to the size of the crystallites. ...

  6. Cellulose biosynthesis in higher plants

    Directory of Open Access Journals (Sweden)

    Krystyna Kudlicka

    2014-01-01

    Full Text Available Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. In vivo, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable in vitro assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the in vitro product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.

  7. SYNTHESIS AND CHARACTERIZATION OF CELLULOSE BASED BIO-POLYMER AEROGEL ISOLATED FROM WASTE OF BLUEBERRY TREE (VACCINIUM MYRTILLUS

    Directory of Open Access Journals (Sweden)

    Mehmet KAYA

    2016-09-01

    Full Text Available Cellulose aerogel (CA has highly porous structure, environmentally friendly, thermally stable and flame retardant properties. These properties in material worlds have attracted large interest as a potentially industrial material. In this paper, cellulose aerogel with flame retardant was produced from pruned branches and bushes of blueberries wastes (PBBW. Firstly, cellulose raw material these wastes was obtained and then, cellulose aerogel via freeze-drying, followed by cellulose hydrogel production. Our reports showed that three dimensionally network aerogel structure prepared from NaOH/Urea as scaffold solution. The present cellulose aerogel has excellent flame retardancy, which can extinguish within 140 s. By the way, it was inferred thermal stability performance of cellulose aerogel could be efficient potential thermal insulating material. Besides, this process are sustainable, easily available at low cost and suitable for industrial applications.

  8. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene

    International Nuclear Information System (INIS)

    Hassan, Mohammad L.; Moorefield, Charles M.; Elbatal, Hany S.; Newkome, George R.; Modarelli, David A.; Romano, Natalie C.

    2012-01-01

    Highlights: ► Surfaces of cellulose nanocrystals were modified with terpyridine ligands. ► Fluorescent nanocrystals could be obtained via self-assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals. ► Further self-assembly of azide-functionalized terpyridine onto the fluorescent cellulose nanocrystals was possible to obtain nanocellulosic material with expected use in bioimaging. - Abstract: Due to their natural origin, biocompatibility, and non-toxicity, cellulose nanocrystals are promising candidates for applications in nanomedicine. Highly fluorescent nanocellulosic material was prepared via surface modification of cellulose nanocrystals with 2,2′:6′,2″-terpyridine side chains followed by supramolecular assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals (CTP) via Ru III /Ru II reduction. The prepared terpyridine-modified cellulose-Ru II -terpyridine-modified perylene (CTP-Ru II -PeryTP) fluorescent nanocrystals were characterized using cross-polarized/magic angle spin 13 C nuclear magnetic resonance (CP/MAS 13 C NMR), Fourier transform infrared (FTIR), UV–visible, and fluorescence spectroscopy. In addition, further self-assembly of terpyridine units with azide functional groups onto CTP-Ru II -PeryTP was possible via repeating the Ru III /Ru II reduction protocol to prepare supramolecular fluorescent nanocrystals with azide functionality (CTP-Ru II -PeryTP-Ru II -AZTP). The prepared derivative may have potential application in bio-imaging since the terminal azide groups can be easily reacted with antigens via “Click” chemistry reaction.

  9. Rapid synthesis of graft copolymers from natural cellulose fibers.

    Science.gov (United States)

    Thakur, Vijay Kumar; Thakur, Manju Kumari; Gupta, Raju Kumar

    2013-10-15

    Cellulose is the most abundant natural polysaccharide polymer, which is used as such or its derivatives in a number of advanced applications, such as in paper, packaging, biosorption, and biomedical. In present communication, in an effort to develop a proficient way to rapidly synthesize poly(methyl acrylate)-graft-cellulose (PMA-g-cellulose) copolymers, rapid graft copolymerization synthesis was carried out under microwave conditions using ferrous ammonium sulfate-potassium per sulfate (FAS-KPS) as redox initiator. Different reaction parameters such as microwave radiation power, ratio of monomer, solvent and initiator concentrations were optimized to get the highest percentage of grafting. Grafting percentage was found to increase with increase in microwave power up to 70%, and maximum 36.73% grafting was obtained after optimization of all parameters. Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG) analysis were used to confirm the graft copolymerization of poly(methyl acrylate) (PMA) onto the mercerized cellulose. The grafted cellulosic polymers were subsequently subjected to the evaluation of different physico-chemical properties in order to access their application in everyday life, in a direction toward green environment. The grafted copolymers demonstrated increased chemical resistance, and higher thermal stability. Published by Elsevier Ltd.

  10. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Science.gov (United States)

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

  11. When It Rains, It Pours

    Science.gov (United States)

    Mills, Linda

    2012-01-01

    "It's raining, it's pouring, the old man is snoring!" "The itsy, bitsy spider crawled up the waterspout, down came the rain and washed the spider out. Out came the sun and dried up all the rain, and the itsy, bitsy spider went up the spout again." What do children's nursery rhymes have to do with the school library? The author begins by telling a…

  12. Molecular Dynamics Simulation of Spontaneous Imbibition in Nanopores and Recovery of Asphaltenic Crude Oils Using Surfactants for EOR Applications Simulations de dynamique moléculaire d’imbibition spontanée dans des nanopores et pour la récupération d’huiles brutes asphalténiques en utilisant des agents tensioactifs pour des applications d’EOR

    Directory of Open Access Journals (Sweden)

    Stukan M.R.

    2012-12-01

    Full Text Available We present Molecular Dynamics (MD simulations of the imbibition process in nanopores in case of two different mechanisms of the wettability modification. We compare the imbibition of an aqueous surfactant solution into an oil-wet pore driven by surfactant adsorption onto the oil-wet rock surface (coating mechanism and the imbibition of an aqueous surfactants solution driven by surfactants removing the contaminant molecules from the originally water-wet surface (cleaning mechanism. Our results show qualitative difference in the imbibition dynamics in these two cases and indicate that MD simulation is a useful tool to investigate details of the imbibition mechanisms at the pore scale with direct implications for Enhanced Oil Recovery (EOR operations. Nous presentons des simulations de Dynamique Moleculaire (DM du processus d’imbibition dans des nanopores dans le cas de deux mecanismes differents de modification de mouillabilite. Nous comparons l’imbibition d’une solution aqueuse d’agent tensioactif dans un pore mouille d’huile entrainee par une adsorption d’agent tensioactif sur la surface de roche mouillee d’huile (mecanisme de revetement et l’imbibition d’une solution aqueuse d’agent tensioactif entrainee par des agents tensioactifs eliminant les molecules contaminantes de la surface originellement mouillee d’eau (mecanisme de nettoyage. Nos resultats montrent une difference qualitative en matiere de dynamique d’imbibition dans ces deux cas et indiquent que la simulation de DM constitue un outil utile pour etudier les mecanismes d’imbibition a l’echelle des pores avec des implications directes pour des operations de recuperation renforcee d’huile (EOR, Enhanced Oil Recovery.

  13. Binding Cellulose and Chitosan via Intermolecular Inclusion Interaction: Synthesis and Characterisation of Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2015-01-01

    Full Text Available A novel cellulose-chitosan gel was successfully prepared in three steps: (1 ferrocene- (Fc- cellulose with degrees of substitution (DS of 0.5 wt% was synthesised by ferrocenecarboxylic acid and cellulose within dimethylacetamide/lithium chloride (DMAc/LiCl; (2 the β-cyclodextrin (β-CD groups were introduced onto the chitosan chains by reacting chitosan with epichlorohydrin in dimethyl sulphoxide and a DS of 0.35 wt%; (3 thus, the cellulose-chitosan gel was obtained via an intermolecular inclusion interaction of Fc-cellulose and β-CD-chitosan in DMA/LiCl, that is, by an intermolecular inclusion interaction, between the Fc groups of cellulose and the β-CD groups on the chitosan backbone at room temperature. The successful synthesis of Fc-cellulose and β-CD-chitosan was characterised by 13C-NMR spectroscopy. The gel based on β-CD-chitosan and Fc-cellulose was formed under mild conditions which can engender autonomous healing between cut surfaces after 24 hours: the gel cannot self-heal while the cut surfaces were coated with a solution of a competitive guest (adamantane acid. The cellulose-chitosan complex made by this method underwent self-healing. Therefore, this study provided a novel method of expanding the application of chitosan by binding it with another polymer.

  14. Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61▿†

    Science.gov (United States)

    Langston, James A.; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D.

    2011-01-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  15. Development and Testing of Xanthan Products for Eor-Applications in the North Sea Développement et essais des produits à base de xanthane pour les applications de RAH en mer du Nord

    Directory of Open Access Journals (Sweden)

    Foss P.

    2006-11-01

    Full Text Available A program for development and evaluation of xanthan for use in enhanced oil recovery projects in the North Sea has been performed. Xanthan was produced using different fermentation conditions. Rheological measurements and filterability tests have been done. Xanthan products, which readily dissolve in sea water and give high viscosity and low aggregation have been produced. The fermentation process used for this type of product was scaled up from 10 litres to 20,000 litres production volume without significant changes in polymer solution properties. Un programme de développement et d'évaluation du xanthane pour utilisation dans les projets de récupération assistée des hydrocarbures en mer du Nord a été réalisé. Le xanthane est obtenu par différents procédés de fermentation. On a effectué des mesures rhéologiques et des essais de filtrabilité. Les produits à base de xanthane se dissolvent facilement dans l'eau de mer, ils donnent une forte viscosité et une faible agrégation. Avec le procédé de fermentation utilisé pour ce type de produit, on a pu faire passer la production de 10 litres à 20000 litres sans modification notable des propriétés de la solution de polymère.

  16. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.

    Science.gov (United States)

    Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  17. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  18. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production.

    Science.gov (United States)

    Ko, Ja Kyong; Lee, Sun-Mi

    2018-04-01

    Cellulosic fuels are expected to have great potential industrial applications in the near future, but they still face technical challenges to become cost-competitive fuels, thus presenting many opportunities for improvement. The economical production of viable biofuels requires metabolic engineering of microbial platforms to convert cellulosic biomass into biofuels with high titers and yields. Fortunately, integrating traditional and novel engineering strategies with advanced engineering toolboxes has allowed the development of more robust microbial platforms, thus expanding substrate ranges. This review highlights recent trends in the metabolic engineering of microbial platforms, such as the industrial yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, for the production of renewable fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Des semences pour vivre | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    12 juil. 2011 ... Partout au Canada, le marché des aliments biologiques ne cesse de croître, ... du Centre de recherches pour le développement international (CRDI) et d'Inter ... des variétés de semences et des modes de culture traditionnels, face à ... La protection de l'accès à l'eau contre les effets de l'étalement urbain et ...

  20. Elucidating the Potential Biological Impact of Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Sandra Camarero-Espinosa

    2016-07-01

    Full Text Available Cellulose nanocrystals exhibit an interesting combination of mechanical properties and physical characteristics, which make them potentially useful for a wide range of consumer applications. However, as the usage of these bio-based nanofibers increases, a greater understanding of human exposure addressing their potential health issues should be gained. The aim of this perspective is to highlight how knowledge obtained from studying the biological impact of other nanomaterials can provide a basis for future research strategies to deduce the possible human health risks posed by cellulose nanocrystals.

  1. Cellulose Nanomaterials — A Path Towards Commercialization Workshop Report

    Science.gov (United States)

    Fred Hansen; Victoria Brun; Emily Keller; World Nieh; Theodore Wegner; Michael Meador; Lisa Friedersdorf

    2014-01-01

    Cellulose nanomaterials are primarily isolated from trees and other organisms; are naturally occurring polymeric materials that have demonstrated great promise for commercial applications across an array of industrial sectors; are renewable and environmentally sustainable; and have the potential to be produced in large volumes (i.e., millions of tons per year). The...

  2. UV-curable polyurethane coatings derived from cellulose

    International Nuclear Information System (INIS)

    Patel, M. M.; Patel, K. I.; Patel, H. B.; Parmar, J. S.

    2009-01-01

    At the present time coating industry is devoting much research in the direction of low volatile organic compounds to make eco-friendly coating material. In this study, such materials are developed from cellulose derived from bagasse, a sugar industry waste. Cellulose is converted to cellulose glyco glycoside by acid hydrolysis of cellulose under heterogeneous condition. Cellulose glyco glycoside is treated with polyethylene glycol having different molecular weights to give glyco glycosides which in turn are reacted with various diisocyanates to obtain polyurethane having free NCO groups. These materials are then reacted with hydroxyethylmethacrylate to give polyurethane acrylates. The acrylates are characterized for specific gravity, viscosity, colour and molecular weight as well as by fourier transform infrared spectroscopy. The UV-curable coating composition was prepared by blending PU-acrylate, reactive diluents and photoinitiator. Coating compositions were cured under UV-light and characterized for adhesion, flexibility, impact resistance, solvent resistance and for dynamic mechanical analysis as well as by thermal gravimetric analysis for thermal stability. The cured films give thickness of 23-24 microns and cure time required is less than 1.5-2.0 min. There is no liberation of any volatiles during curing and films have good adhesion to mild steel substrate. The cured coatings give excellent dynamic, mechanical and chemical properties. The scratch resistance was found to be satisfactory. The application was made in unpigmented form but it is found that various pigments can be used to give coloured UV-curable coatings.

  3. Characterisation of cellulose films regenerated from acetone/water coagulants.

    Science.gov (United States)

    Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua

    2014-02-15

    A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Extraction and Characterization of Nano cellulose from Coconut Fiber

    International Nuclear Information System (INIS)

    Nor Liyana Ahmad; Ishak Ahmad

    2013-01-01

    Coconut husk fibers has been modified by some chemical treatments to extract cellulose nano crystals (CNC), which are alkali treatment, bleaching and acid hydrolysis using concentrated sulphuric acid. The effect of the treatments on the coconut husk fibers has been analysed using Fourier transform infrared (FTIR) and X-Ray diffraction (XRD). Meanwhile, the morphology observation and thermal stability of the fiber have been analysed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) respectively. The analyses show that the chemical modification could eliminate some of the lignin and hemicelluloses of the fiber. Nano cellulose extracted from acid hydrolysis has been analysed using transmission electron microscopy (TEM) to define the size of extracted nano cellulose. The cellulose nano crystals from coconut fibre has the average diameter and length in the range 13.7±6.2 nm and 172.3±8.4 nm, respectively. The obtained nano cellulose may have the potential applications in the fields of biomedical, oil adsorption, membrane, pharmaceutical and bio composites. (author)

  5. Radiation-chemical destruction of cellulose and other polysaccharides

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1998-01-01

    The studies concerning the radiation-chemical destruction of cellulose, its ethers and some polysaccharides (xylan, starch, decstrans, chitin, chitosan and geparin) are discussed. Ionising irradiation causes the destruction of these compounds with the decay of pyranose ring, accompanied by the formation of compounds containing carbonyl or carboxyl groups, as well as hydrogen, carbon dioxide, and carbon oxide. The efficiency of radiation degradation increases with increasing the temperature and depends on the structure of polysaccharides and the nature of substituents. The mechanism of radiation-chemical transformations of cellulose and others polysaccharides is proposed. Prospects of the application of radiation-chemical methods of treatment of cellulose and other polysaccharides in industry and agriculture considered [ru

  6. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara; Li, Z.; Behzad, Ali Reza; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2015-01-01

    and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions

  7. Cellulose nanocrystal submonolayers by spin coating

    NARCIS (Netherlands)

    Kontturi, E.J.; Johansson, L.S.; Kontturi, K.S.; Ahonen, P.; Thune, P.C.; Laine, J.

    2007-01-01

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images,

  8. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  9. Characterization of Cellulose Synthesis in Plant Cells

    Science.gov (United States)

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  10. A Molecular Description of Cellulose Biosynthesis

    Science.gov (United States)

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2016-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  11. Extraction and characterization of cellulose microfibrils from agricultural residue –Cocos nucifera L

    International Nuclear Information System (INIS)

    Uma Maheswari, C.; Obi Reddy, K.; Muzenda, E.; Guduri, B.R.; Varada Rajulu, A.

    2012-01-01

    The aim of this study was to extract cellulose microfibrils from the agricultural residue of coconut palm leaf sheath using chlorination and alkaline extraction process. Chemical characterization of the cellulose microfibrils confirmed that the α-cellulose mass fraction increased from 0.373 kg kg −1 to 0.896 kg kg −1 after application of several treatments including dewaxing, chlorite delignification and alkaline extraction of hemicelluloses. Similarly, the crystallinity index obtained from X-ray diffraction for leaf sheath and extracted cellulose microfibrils was found to be 42.3 and 47.7 respectively. The morphology of the cellulose microfibrils was investigated by scanning electron microscopy. The cellulose microfibrils had diameters in the range of 10–15 μm. Fourier transform infrared and Nuclear magnetic resonance spectroscopy showed that the chemical treatments removed most of the hemicellulose and lignin from the leaf sheath fibers. The thermal stability of the fibers was analyzed using thermogravimetric analysis, which demonstrated that this thermal stability was enhanced noticeably for cellulose microfibrils. This work provides a new approach for more effective utilization of coconut palm leaf sheaths to examine their potential use as pulp and paper and reinforcement fibers in biocomposite applications. -- Highlights: ► Utilization of Coconut palm leaf sheath as an alternate material for cellulose extraction. ► Using an abundant natural waste for paper pulp, biofilms and composite applications. ► Cellulose microfibrils have higher cellulose content than the leaf sheath. ► FTIR and NMR were used to study fiber structural changes during several treatments. ► Thermal stability of microfibrils is higher than their respective leaf sheath.

  12. Raman spectroscopy in the analysis of cellulose nanomaterials

    Science.gov (United States)

    Umesh P. Agarwal

    2017-01-01

    Cellulose nanomaterials (CNs) are new types of materials derived from celluloses and offer unique challenges and opportunities for Raman spectroscopic investigations. CNs can be classified into the categories of cellulose nanocrystals (CNCs, also known as cellulose whisker) and cellulose nanofibrils (CNFs, also known as nanofibrillated cellulose or NFCs) which when...

  13. Models for the Behavior of Offshore Structure Foundations. Part Two: Applications to Structural Design and Quality Assurance Processes Modèles pour le comportement des fondations d'ouvrages types marins. Deuxième partie : applications au calcul d'ouvrage et processus d'assurance qualité

    Directory of Open Access Journals (Sweden)

    Meimon Y.

    2006-11-01

    structure. Prospects opened up by the research are discussed. La conception des fondations de grands ouvrages est une tâche complexe qui requiert à la fois l'expérience de l'expert et l'utilisation de modèles numériques adéquats pour assurer la sécurité et optimiser les coûts de dimensionnement. En fait, prévoir le comportement d'une fondation nécessite de bien évaluer les effets combinés de la technique de mise en place, de la variabilité spatiale des propriétés mécaniques, de l'incertitude sur les chargements et des techniques de modélisation du comportement mécanique des géomatériaux. Ceci est particulièrement vrai pour les plates-formes marines, qu'elles soient destinées à l'exploration ou à la production du pétrole, dans la mesure où les chargements non-monotones dus à l'environnement marin, souvent très sévère, peuvent avoir des effets très néfastes sur le comportement de ces structures. On présente, en deux parties, la synthèse d'une dizaine d'années d'activités de recherche, menées par une équipe de l'Institut Français du Pétrole (IFP, en collaboration avec plusieurs équipes universitaires et des centres techniques et industriels, pour la mise au point de méthodologies et d'outils adaptés au calcul du comportement des fondations d'ouvrages types marins durant toute la durée de vie de la plate-forme. Cet article concerne la deuxième partie qui est dévolue à l'application des modèles développés au calcul d'ouvrage par la méthode des éléments finis et à l'exposé d'un processus de validation des modèles, étape d'une démarche d'assurance qualité. Méthodes pour le calcul des fondations marines : Le système de programmes FONDOF utilisant la méthode des éléments finis a été développé. Il comprend (fig. 1. 1 des interfaces interactives de mise en données et de dépouillement des résultats ainsi que des modules de calcul, opérationnels comme FONGEO pour les calculs bi et tridimensionnels ou FONDAX pour le

  14. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha.

    Science.gov (United States)

    Nguyen, Vu Tuan; Flanagan, Bernadine; Gidley, Michael J; Dykes, Gary A

    2008-11-01

    The aims of this work were to characterize and improve cellulose production by a Gluconoacetobacter xylinus strain isolated from Kombucha and determine the purity and some structural features of the cellulose from this strain. Cellulose yield in tea medium with both black tea and green tea and in Hestrin and Schramm (HS) medium under both static and agitated cultures was compared. In the tea medium, the highest cellulose yield was obtained with green tea (approximately 0.20 g/L) rather than black tea (approximately 0.14 g/L). Yield in HS was higher (approximately 0.28 g/L) but did not differ between static and agitated incubation. (1)H-NMR and (13)C-NMR spectroscopy indicated that the cellulose is pure (free of acetan) and has high crystallinity, respectively. Cellulose yield was improved by changing the type and level of carbon and nitrogen source in the HS medium. A high yield of approximately 2.64 g/L was obtained with mannitol at 20 g/L and corn steep liquor at 40 g/L in combination. In the tea medium, tea at a level of 3 g/L gave the highest cellulose yield and the addition of 3 g/L of tea to the HS medium increased cellulose yield to 3.34 g/L. In conclusion, the G. xylinus strain from Kombucha had different cellulose-producing characteristics than previous strains isolated from fruit. Cellulose was produced in a pure form and showed high potential applicability. Our studies extensively characterized cellulose production from a G. xylinus strain from Kombucha for the first time, indicating both similarities and differences to strains from different sources.

  15. Properties of microcrystalline cellulose obtained from coconut ...

    African Journals Online (AJOL)

    The study revealed that the cellulose material compares favourably with Avicel PH 101 as well as official requirement specified in the British Pharmacopoeia 1993 for microcrystalline cellulose. Keywords: Coconut fruit fibre, microcrystalline cellulose, powder properties. Journal of Pharmacy and Bioresources Vol. 3 (1) 2006: ...

  16. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  17. Regioselective Synthesis of Cellulose Ester Homopolymers

    Science.gov (United States)

    Daiqiang Xu; Kristen Voiges; Thomas Elder; Petra Mischnick; Kevin J. Edgar

    2012-01-01

    Regioselective synthesis of cellulose esters is extremely difficult due to the small reactivity differences between cellulose hydroxyl groups, small differences in steric demand between acyl moieties of interest, and the difficulty of attaching and detaching many protecting groups in the presence of cellulose ester moieties without removing the ester groups. Yet the...

  18. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxypropyl cellulose. 172.870 Section 172.870... CONSUMPTION Multipurpose Additives § 172.870 Hydroxypropyl cellulose. The food additive hydroxypropyl cellulose may be safely used in food, except standardized foods that do not provide for such use, in...

  19. Cellulose nanomaterials review: structure, properties and nanocomposites

    Science.gov (United States)

    Robert J. Moon; Ashlie Martini; John Nairn; John Simonsen; Jeff Youngblood

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The...

  20. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    Science.gov (United States)

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Possibility of cellulose-based electro-active paper energy scavenging transducer.

    Science.gov (United States)

    Abas, Zafar; Kim, Heung Soo; Zhai, Lindong; Kim, Jaehwan; Kim, Joo Hyung

    2014-10-01

    In this paper, a cellulose-based Electro-Active Paper (EAPap) energy scavenging transducer is presented. Cellulose is proven as a smart material, and exhibits piezoelectric effect. Specimens were prepared by coating gold electrodes on both sides of cellulose film. The fabricated specimens were tested by a base excited aluminum cantilever beam at resonant frequency. Different tests were performed with single and multiple parallel connected electrodes coated on the cellulose film. A maximum of 131 mV output voltage was measured, when three electrodes were connected in parallel. It was observed that voltage output increases significantly with the area of electrodes. From these results, it can be concluded that the piezoelectricity of cellulose-based EAPap can be used in energy transduction application.

  2. NANOFIBRILLATED CELLULOSE (NFC AS A POTENTIAL REINFORCEMENT FOR HIGH PERFORMANCE CEMENT MORTAR COMPOSITES

    Directory of Open Access Journals (Sweden)

    Mònica Ardanuy,

    2012-07-01

    Full Text Available In this work, nanofibrillated cellulose (NFC has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle, sisal, and cotton linters pulps, were initially characterised in order to assess their reinforcing capability. Sisal pulp was found to be most suitable as reinforcement for the brittle cementitious matrix. Nanofibrillated cellulose was produced by the application of a high intensity refining process of the sisal pulp. It was found that 6 hours of refining time was required to obtain the desired nanofibrillation of the fibers. Cement mortar composites reinforced with both the sisal fibres and the nanofibrillated cellulose were prepared, and the mechanical properties were determined under flexural tests. The cement mortar composites reinforced with the nanofibrillated cellulose exhibited enhanced flexural properties, but lower values of fracture energy, than the ones reinforced with the conventional sisal fibres.

  3. Printed optically transparent graphene cellulose electrodes

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2016-02-01

    Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be "tuned" by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to < 100 Ω/sq. Experimental studies show that the optical transmittance and sheet resistance of the G-CMC conductive electrode is a dependent on the film thickness (ie. superimposed printed layers). The printed electrodes have also been doped with AuCl3 to increase electrical conductivity without significantly increasing film thickness and, thereby, maintain high optical transparency.

  4. Atomic-scale modeling of cellulose nanocrystals

    Science.gov (United States)

    Wu, Xiawa

    Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to

  5. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  6. Characteristic of Hybrid Cellulose-Amino Functionalized POSS-Silica Nanocomposite and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Sivalingam Ramesh

    2015-01-01

    Full Text Available Recently, cellulose has much attention as an emerging renewable nanomaterial which holds promising properties having unique piezoelectricity, insulating, and biodegradable nature for various applications. Also, the modified properties of cellulose by appropriate chemical modifications in various functional groups with outstanding properties or significantly improved physical, chemical, biological, and electronic properties will widen the way for it to be utilized in different usages. Therefore, in this paper, cellulose-functionalized polyhedral oligomeric silsesquioxanes (POSS based materials were considered an important class of high-performance hybrid nanocomposite materials. To functionalize the regenerated cellulose, amino functionalized POSS material was synthesized via sol-gel covalent crosslinking process in presence of amino coupling agent. In this reaction, tetraethoxsilane (TEOS and γ-aminopropyltriethoxy silane (γ-APTES as coupling agent for metal precursors were selected. The chemical structure of cellulose-amine functionalized bonding and covalent crosslinking hybrids was confirmed by FTIR and 1H NMR spectral analysis. From the TEM results, well-dispersed hybrid cellulose-functionalized POSS-silica composites are observed. The resulting cellulose-POSS-silica hybrid nanocomposites materials provided significantly improved the optical transparency, and thermal and morphological properties to compare the cellulose-silica hybrid materials. Further, antimicrobial test against pathogenic bacteria was carried out.

  7. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad [Food Science Program, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Ahmad, Ishak [Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia)

    2013-11-27

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H{sub 2}SO{sub 4}, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.

  8. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Electrically aligned cellulose film for electro-active paper and its piezoelectricity

    International Nuclear Information System (INIS)

    Yun, Sungryul; Jang, Sangdong; Yun, Gyu-Young; Kim, Jaehwan

    2009-01-01

    Electrically aligned regenerated cellulose films were fabricated and the effect of applied electric field was investigated for the piezoelectricity of electro-active paper (EAPap). The EAPap was fabricated by coating gold electrodes on both sides of regenerated cellulose film. The cellulose film was prepared by dissolving cotton pulp in LiCl/N,N-dimethylacetamide solution followed by a cellulose chain regeneration process. During the regeneration process an external electric field was applied in the direction of mechanical stretching. Alignment of cellulose fiber chains was investigated as a function of applied electric field. The material characteristics of the cellulose films were analyzed by using an x-ray diffractometer, a field emission scanning electron microscope and a high voltage electron microscope. The application of external electric fields was found to induce formation of nanofibers in the cellulose, resulting in an increase in the crystallinity index (CI) values. It was also found that samples with higher CI values showed higher in-plane piezoelectric constant, d 31 , values. The piezoelectricity of the current EAPap films was measured to be equivalent or better than that of ordinary PVDF films. Therefore, an external electric field applied to a cellulose film along with a mechanical stretching during the regeneration process can enhance the piezoelectricity. (technical note)

  10. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    International Nuclear Information System (INIS)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    2013-01-01

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H 2 SO 4 , 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application

  11. Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells

    Directory of Open Access Journals (Sweden)

    Chukwuemeka P. Azubuike

    2012-09-01

    Full Text Available α-Cellulose and microcrystalline cellulose powders, derived from agricultural waste products, that have for the pharmaceutical industry, desirable physical (flow properties were investigated. α–Cellulose (GCN was extracted from groundnut shell (an agricultural waste product using a non-dissolving method based on inorganic reagents. Modification of this α -cellulose was carried out by partially hydrolysing it with 2N hydrochloric acid under reflux to obtain microcrystalline cellulose (MCGN. The physical, spectroscopic and thermal properties of the derived α-cellulose and microcrystalline cellulose powders were compared with Avicel® PH 101, a commercial brand of microcrystalline cellulose (MCCA, using standard methods. X-ray diffraction and infrared spectroscopy analysis showed that the α-cellulose had lower crystallinity. This suggested that treatment with 2N hydrochloric acid led to an increase in the crystallinity index. Thermogravimetric analysis showed quite similar thermal behavior for all cellulose samples, although the α-cellulose had a somewhat lower stability. A comparison of the physical properties between the microcrystalline celluloses and the α-cellulose suggests that microcrystalline cellulose (MCGN and MCCA might have better flow properties. In almost all cases, MCGN and MCCA had similar characteristics. Since groundnut shells are agricultural waste products, its utilization as a source of microcrystalline cellulose might be a good low-cost alternative to the more expensive commercial brand.

  12. Flammability of Cellulose-Based Fibers and the Effect of Structure of Phosphorus Compounds on Their Flame Retardancy

    Directory of Open Access Journals (Sweden)

    Khalifah A. Salmeia

    2016-08-01

    Full Text Available Cellulose fibers are promoted for use in various textile applications due their sustainable nature. Cellulose-based fibers vary considerably in their mechanical and flammability properties depending on their chemical composition. The chemical composition of a cellulose-based fiber is further dependent on their source (i.e., seed, leaf, cane, fruit, wood, bast, and grass. Being organic in nature, cellulose fibers, and their products thereof, pose considerable fire risk. In this work we have compared the flammability properties of cellulose fibers obtained from two different sources (i.e., cotton and peat. Compared to cotton cellulose textiles, peat-based cellulose textiles burn longer with a prominent afterglow which can be attributed to the presence of lignin in its structure. A series of phosphoramidates were synthesized and applied on both cellulose textiles. From thermogravimetric and pyrolysis combustion flow analysis of the treated cellulose, we were able to relate the flame retardant efficacy of the synthesized phosphorus compounds to their chemical structure. The phosphoramidates with methyl phosphoester groups exhibited higher condensed phase flame retardant effects on both types of cellulose textiles investigated in this study. In addition, the bis-phosphoramidates exhibited higher flame retardant efficacy compared to the mono-phosphoramidates.

  13. Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites

    International Nuclear Information System (INIS)

    Li, Shu-Ming; Fu, Lian-Hua; Ma, Ming-Guo; Zhu, Jie-Fang; Sun, Run-Cang; Xu, Feng

    2012-01-01

    By means of a simultaneous microwave-assisted method and a simple chemical reaction, cellulose/AgCl nanocomposites have been successfully synthesized using cellulose solution and AgNO 3 in N,N-dimethylacetamide (DMAc) solvent. The cellulose solution was firstly prepared by the dissolution of the microcrystalline cellulose and lithium chloride (LiCl) in DMAc. DMAc acts as both a solvent and a microwave absorber. LiCl was used as the reactant to fabricate AgCl crystals. The effects of the heating time and heating temperature on the products were studied. This method is based on the simultaneous formation of AgCl nanoparticles and precipitation of the cellulose, leading to a homogeneous distribution of AgCl nanoparticles in the cellulose matrix. The experimental results confirmed the formation of cellulose/AgCl nanocomposites with high-purity, good thermal stability and antimicrobial activity. This rapid, green and environmentally friendly microwave-assisted method opens a new window to the high value-added applications of biomass. -- Highlights: ► Cellulose/AgCl nanocomposites have been synthesized by microwave method. ► Effect of heating temperature on the nanocomposites was researched. ► Thermal stability of the nanocomposites was investigated. ► Cellulose/AgCl nanocomposites had good antimicrobial activity. ► This method is based on the simultaneous formation of AgCl and cellulose.

  14. Effect of cellulose nanocrystals (CNC) addition and citric acid as co-plasticizer on physical properties of sago starch biocomposite

    Science.gov (United States)

    Nasution, Halimatuddahliana; Afandy, Yayang; Al-fath, M. Thoriq

    2018-04-01

    Cellulose has potential applications in new high-performance materials with low environmental impact. Rattan biomass is a fiber waste from processing industry of rattan which contains 37,6% cellulose. The high cellulose contents of rattan biomass make it a source of cellulose nanocrystals as a filler in biocomposite. Isolation of alpha cellulose from biomass rattan was prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3,5% HNO3 and NaNO2, precipitated with 17,5% NaOH, bleaching process with 10% H2O2. Nanocrystals obtained through the hydrolysis of alpha cellulose using 45% H2SO4 and followed by mechanical processes of ultrasonication, centrifugation, and filtration with a dialysis membrane. Sago starch biocomposites were prepared using a solution casting method, which includes 1-4 wt % cellulose nanocrystals rattan biomass as fillers, 10-40 wt% citric acid as co-plasticizer and 30 wt% glycerol as plasticizer. The results of TEM and FTIR characteristic of cellulose nanocrystals show spherical like shape FTIR and chemical composition analysis demonstrated that lignin and hemicellulose structures were successfully removed. Biocomposite characteristic consists of density and water absorption. The results showed the highest density values were 0,266 gram/cm3 obtained at an additional of 3% cellulose nanocrystals rattan biomass and 30% citric acid. The lowest water absorption was 7,893% obtained at an additional of 4% cellulose nanocrystals rattan biomass and 10% citric acid.

  15. Analysis of the DWPF glass pouring system using neural networks

    International Nuclear Information System (INIS)

    Calloway, T.B. Jr.; Jantzen, C.M.

    1997-01-01

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of ± 0.35 inwc ( 2 = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R 2 = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers

  16. Teores de lignina e celulose em plantas de cana-de-açúcar em função da aplicação de maturadores Lignin and cellulose contents in sugarcane after ripener application

    Directory of Open Access Journals (Sweden)

    D.K. Meschede

    2012-03-01

    Full Text Available O objetivo deste trabalho foi avaliar os teores de lignina e celulose em plantas de cana-de-açúcar após a aplicação de dois maturadores para a colheita. O experimento foi conduzido em uma área de cana-soca, cultivar SP 803280, no município de Igaraçu do Tietê/SP. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições. Os tratamentos constituíram-se da aplicação de dois maturadores: sulfometuron-methyl (Curavial e glyphosate (Roundup original. As doses utilizadas foram: glyphosate a 72 g e.a. ha-1; glyphosate a 144 g e.a. ha-1 ; glyphosate a 72 g e.a. ha-1 + sulfometuron methyl a 10 g p.c. ha-1; glyphosate a 108 g e.a. ha-1 + sulfometuron-methyl a 12 g p.c. ha-1; sulfometuron-methyl a 20 g p.c. ha-1; e a testemunha sem aplicação de maturadores. As análises de lignina e celulose foram realizadas pelo método lignina em detergente ácido modificado. O glyphosate e o sulfometuron-methyl alteraram os níveis de lignina no momento da colheita, e esse efeito foi observado também durante o crescimento da cana-de-açúcar (meses após a aplicação desses produtos. O glyphosate a 72 g e.a. ha-1 promoveu reduções nos teores de lignina, na colheita e durante o crescimento da cana-de-açúcar, quando comparados com os da testemunha, enquanto o sulfometuron-methyl isolado na menor dose (10 g ha-1 promoveu aumento nos teores desse biopolímero na soqueira da cana-de-açúcar.The aim of this study was to evaluate the content of lignin and cellulose in sugarcane after application of ripeners. The experiment was carried out in a sugarcane ratoon area, variety SP803280 in Igaraçu Tietê, São Paulo, Brazil. The experimental design was a randomized complete block with four replications. The treatments consisted of application of two ripeners: sulfometuron methyl (Curavial and glyphosate (Roundup Original. The doses used were: glyphosate 200 mL pc ha-1; glyphosate at 400 mL p.c. ha-1, glyphosate at 200 mL p

  17. Centre de recherches pour le développement international ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    André Lavoie

    Centre de recherches pour le développement international. Règlement institutionnel. Approuvé par le Comité exécutif de la haute direction. - 1 -. Version 3.0.0 en vigueur le 15-10-2015. Conférences et événements. 1. Contexte. 2. Objectif. 3. Application. 4. Définitions. 5. Rôles et responsabilités. 5.1. Employés. 5.2.

  18. Ignition inhibitors for cellulosic materials

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1976-01-01

    By exposing samples to various irradiance levels from a calibrated thermal radiation source, the ignition responses of blackened alpha-cellulose and cotton cloth with and without fire-retardant additives were compared. Samples treated with retardant compounds which showed the most promise were then isothermally pyrolyzed in air for comparisons between the pyrolysis rates. Alpha-cellulose samples containing a mixture of boric acid, borax, and ammonium di-hydrogen phosphate could not be ignited by irradiances up to 4.0 cal cm -2 s-1 (16.7 W/cm 2 ). At higher irradiances the specimens ignited, but flaming lasted only until the flammable gases were depleted. Cotton cloth containing a polymeric retardant with the designation THPC + MM was found to be ignition-resistant to all irradiances below 7.0 cal cm -2 s -1 (29.3 W/cm 2 ). Comparison of the pyrolysis rates of the retardant-treated alpha-cellulose and the retardant-treated cotton showed that the retardant mechanism is qualitatively the same. Similar ignition-response measurements were also made with specimens exposed to ionizing radiation. It was observed that gamma radiation results in ignition retardance of cellulose, while irradiation by neutrons does not

  19. Polyvinyl alcohol–cellulose composite

    Indian Academy of Sciences (India)

    We have made an attempt to prepare taste sensor material by using functionalized polymer without any lipid. PVA–cellulose composite has been modified to use as the sensor material. The research work covers polymer membrane preparation, morphology study and structural characterization of the membrane and study of ...

  20. Irradiation effects in wood and cellulose

    International Nuclear Information System (INIS)

    McLaren, K.G.

    1976-01-01

    For cellulosic materials the predominant effect of high energy radiation is depolymerisation and degradation by chain scission, although there is some evidence that crosslinking or cellulose stabilisation can occur under certain conditions. When the cellulose is in the form of a natural product such as wood, where it is intimately associated with other polysaccharides, lignins, resins and gums, the effects of radiation can be significantly modified. Examination of cellulose produced by chemical pulping treatment of wood which had been previously given small doses of radiation, showed significant differences in the extent of cellulose depolymerisation with different wood species. The relevance of this work to the paper pulp industry will also be discussed. (author)

  1. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  2. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  3. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  4. Structure and engineering of celluloses.

    Science.gov (United States)

    Pérez, Serge; Samain, Daniel

    2010-01-01

    This chapter collates the developments and conclusions of many of the extensive studies that have been conducted on cellulose, with particular emphasis on the structural and morphological features while not ignoring the most recent results derived from the elucidation of unique biosynthetic pathways. The presentation of structural and morphological data gathered together in this chapter follows the historical development of our knowledge of the different structural levels of cellulose and its various organizational levels. These levels concern features such as chain conformation, chain polarity, chain association, crystal polarity, and microfibril structure and organization. This chapter provides some historical landmarks related to the evolution of concepts in the field of biopolymer science, which parallel the developments of novel methods for characterization of complex macromolecular structures. The elucidation of the different structural levels of organization opens the way to relating structure to function and properties. The chemical and biochemical methods that have been developed to dissolve and further modify cellulose chains are briefly covered. Particular emphasis is given to the facets of topochemistry and topoenzymology where the morphological features play a key role in determining unique physicochemical properties. A final chapter addresses what might be considered tomorrow's goal in amplifying the economic importance of cellulose in the context of sustainable development. Selected examples illustrate the types of result that can be obtained when cellulose fibers are no longer viewed as inert substrates, and when the polyhydroxyl nature of their surfaces, as well as their entire structural complexity, are taken into account. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Application de l'A.D.L, pour la mesure du champ de vitesses instationnaires de llecoulement a Ilechappement d'un moteur a combustion interne

    Science.gov (United States)

    Boutrif, M. S.; Thelliez, M.

    1993-01-01

    We present experimental results of instantaneous velocity measurement, which were obtained by application of the laser Doppler anemometry (L.D.A.) at the exhaust pipe of a reciprocating engine under real working conditions. First of all, we show that the instantaneous velocity is monodimensional along a straight exhaust pipe, and that the boundary layer develops within a 2mm thickness. We also show that the cylinder discharges in two phases : the blow down period and the final part of exhaust stroke. We also make obvious, that the flow escapes very quickly : its velocity varies between - 100m/s and 200m/s within a period shorter than 1ms ; thereby, we do record the acoustic resonance phenomenon, when the engine speed is greater than 3 000rpm. Finally, we show that in the exhaust pipe the apparent fluctuation - i.e. the cyclic dispersion and the actual turbulence - may reach 15%. Nous présentons des résultats expérimentaux du champ de vitesses instationnaires, obtenus par adaptation et application de la vélocimétrie laser interférentielle communément appelée à effet Doppler (L.D.A.), à l'échappement d'un moteur altematif à combustion inteme en fonctionnement nominal. Tout d'abord, nous montrons que dans un tube d'échappement long et droit, la vitesse instantanée est bien monodimensionnelle et que l'écoulement occupe la quasitotalité de la section droite géométrique du tube (une couche limite d'épaisseur inférieure à 2mm se développe très près de la paroi du tube). Nous pouvons également décrire la vidange du cylindre du moteur étudié en deux phases principales : bouffée d'échappement et refoulement des gaz brûlés par le piston. Nous mettons de même en évidence l'état très pulsé de l'écoulement, puisqu'en un intervalle de temps inférieur à 1ms, la vitesse de l'écoulement varie de - 100m/s à 200m/s ; nous enregistrons ainsi l'apparition du phénomène de résonance acoustique à des vitesses de rotation supérieures à 3 500

  6. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    International Nuclear Information System (INIS)

    Darwis, D.; Khusniya, T.; Hardiningsih, L.; Nurlidar, F.; Winarno, H.

    2012-01-01

    Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in-vitro degradation study in synthetic body fluid (SBF) of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure (author)

  7. Self-assembled cellulose materials for biomedicine: A review.

    Science.gov (United States)

    Yang, Jisheng; Li, Jinfeng

    2018-02-01

    Cellulose-based materials have reached a growing interest for the improvement of biomedicine, due to their good biocompatibility, biodegradability, and low toxicity. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing steps. This article describes the modifications, properties and applications of cellulose and its derivatives, which including a detailed review of representative types of solvents such as NMMO, DMAc/LiCl, some molten salt hydrates, some aqueous solutions of metal complexes, ionic liquids and NaOH-water system etc. The modifications were frequently performed by esterification, etherification, ATRP, RAFT, ROP and other novel methods. Stimuli-responsive cellulose-based materials, such as temperature-, pH-, light- and redox-responsive, were synthesized for their superior performance. Additionally, the applications of cellulose-based materials which can self-assemble into micelles, vesicles and other aggregates, for drug/gene delivery, bioimaging, biosensor, are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Communication and Sensing Circuits on Cellulose

    Directory of Open Access Journals (Sweden)

    Federico Alimenti

    2015-06-01

    Full Text Available This paper proposes a review of several circuits for communication and wireless sensing applications implemented on cellulose-based materials. These circuits have been developed during the last years exploiting the adhesive copper laminate method. Such a technique relies on a copper adhesive tape that is shaped by a photo-lithographic process and then transferred to the hosting substrate (i.e., paper by means of a sacrificial layer. The presented circuits span from UHF oscillators to a mixer working at 24 GHz and constitute an almost complete set of building blocks that can be applied to a huge variety communication apparatuses. Each circuit is validated experimentally showing performance comparable with the state-of-the-art. This paper demonstrates that circuits on cellulose are capable of operating at record frequencies and that ultra- low cost, green i.e., recyclable and biodegradable materials can be a viable solution to realize high frequency hardware for the upcoming Internet of Things (IoT era.

  9. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  10. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  11. Polymorphy in native cellulose: recent developments

    International Nuclear Information System (INIS)

    Atalla, R.H.

    1984-01-01

    In a number of earlier studies, the authors developed a model of cellulose structure based on the existence of two stable, linearly ordered conformations of the cellulose chain that are dominant in celluloses I and II, respectively. The model rests on extensive Raman spectral observations together with conformational considerations and solid-state 13 C-NMR studies. More recently, they have proposed, on the basis of high resolution solid-state 13 C-NMR observations, that native celluloses are composites of two distinct crystalline forms that coexist in different proportions in all native celluloses. In the present work, they examine the Raman spectra of the native celluloses, and reconcile their view of conformational differences with the new level of crystalline polymorphy of native celluloses revealed in the solid-state 13 C-NMR investigations

  12. Degradation of cellulose in the presence of ash; Nedbrytningsmoenster foer cellulosa i naervaro av aska

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energi och Miljoe AB, Stockholm (Sweden); Svensson, Malin; Ecke, Holger [Luleaa Univ. of Tech. (Sweden)

    2003-04-01

    metals in combinations of ash and cellulose could also be caused by complex binding between solvent acids from the degradation of cellulose and metals in the ash. The experiments in this study have shown that the degradation product ISA results in an increased content of Pb and Zn in the leaching water from fly ash. When the experimental conditions were set to comparable conditions as for a compact and covered deposit after 250 years the leaching of Pb increased from 31 to 39 % and the leaching of Zn from 1,8 to 2,3 % when the content of ISA was increased 20 times. The disadvantages of mixing ash and cellulose are probably more important than the advantages because of the risk for increased metal mobilization. However, in some applications, for example grouting of ash to stabilize a waste deposit, the risk for metal leaching have to be compared to the advantages of using the ash. The disadvantages with ash and cellulose combinations could also be turned to advantages in special applications with processes where complex binding with ISA could give a selective washing/leaching and simultaneously the remaining metals could be fixed through carbonation.

  13. Native Cellulose Microfiber-Based Hybrid Piezoelectric Generator for Mechanical Energy Harvesting Utility.

    Science.gov (United States)

    Alam, Md Mehebub; Mandal, Dipankar

    2016-01-27

    A flexible hybrid piezoelectric generator (HPG) based on native cellulose microfiber (NCMF) and polydimethylsiloxane (PDMS) with multi wall carbon nanotubes (MWCNTs) as conducting filler is presented where the further chemical treatment of the cellulose and traditional electrical poling steps for piezoelectric voltage generation is avoided. It delivers a high electrical throughput that is an open circuit voltage of ∼30 V and power density ∼9.0 μW/cm(3) under repeated hand punching. We demonstrate to power up various portable electronic units by HPG. Because cellulose is a biocompatible material, suggesting that HPG may have greater potential in biomedical applications such as implantable power source in human body.

  14. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  15. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  16. γ radiolysis of cellulose acetate

    International Nuclear Information System (INIS)

    Ali, S.M.; Clay, P.G.

    1979-01-01

    The major degradative process in γ-irradiated cellulose acetate is chain scission. For the dry powder the G/sub s/ value (number of scissions per 100 eV of energy absorbed) was found to be 7.1. The water-swollen material was found to degrade at the higher rate of G/sub s/ = 9.45. Additions of ethanol and methanol to the water brought about reductions in G/sub s/, whereas dissolved nitrous oxide produced an increase in G/sub s/. The useful life of cellulose acetate reverse osmosis membranes exposed to γ radiation was estimated by observations of the water permeation rate during irradiation. Membrane breakdown occurred at 15 Mrad in pure water, but the dose to breakdown was extended to 83 Mrad in the presence of 4% methanol. 3 figures, 1 table

  17. Glycerine Treated Nanofibrillated Cellulose Composites

    Directory of Open Access Journals (Sweden)

    Esra Erbas Kiziltas

    2016-01-01

    Full Text Available Glycerine treated nanofibrillated cellulose (GNFC was prepared by mixing aqueous nanofibrillated cellulose (NFC suspensions with glycerine. Styrene maleic anhydride (SMA copolymer composites with different loadings of GNFC were prepared by melt compounding followed by injection molding. The incorporation of GNFC increased tensile and flexural modulus of elasticity of the composites. Thermogravimetric analysis showed that as GNFC loading increased, the thermal stability of the composites decreased marginally. The incorporation of GNFC into the SMA copolymer matrix resulted in higher elastic modulus (G′ and shear viscosities than the neat SMA copolymer, especially at low frequencies. The orientation of rigid GNFC particles in the composites induced a strong shear thinning behavior with an increase in GNFC loading. The decrease in the slope of elastic modulus with increasing GNFC loading suggested that the microstructural changes of the polymer matrix can be attributed to the incorporation of GNFC. Scanning electron microscopy (SEM images of fracture surfaces show areas of GNFC agglomerates in the SMA matrix.

  18. Bacterial Cellulose (BC) as a Functional Nanocomposite Biomaterial

    Science.gov (United States)

    Nandgaonkar, Avinav Ghanashyam

    Cellulosic is the most abundant biopolymer in the landscape and can be found in many different organisms. It has been already seen use in the medical field, for example cotton for wound dressings and sutures. Although cellulose is naturally occurring and has found a number of applications inside and outside of the medical field, it is not typically produced in its pure state. A lengthy process is required to separate the lignin, hemicelluloses and other molecules from the cellulose in most renewables (wood, agricultural fibers such as cotton, monocots, grasses, etc.). Although bacterial cellulose has a similar chemical structure to plant cellulose, it is easier to process because of the absence of lignin and hemicelluloses which require a lot of energy and chemicals for removal. Bacterial cellulose (BC) is produced from various species of bacteria such as Gluconacetobacter xylinus. Due to its high water uptake, it has the tendency to form gels. It displays high tensile strength, biocompatibility, and purity compared to wood cellulose. It has found applications in fields such as paper, paper products, audio components (e.g., speaker diaphragms), flexible electronics, supercapacitors, electronics, and soft tissue engineering. In my dissertation, we have functionalized and studied BC-based materials for three specific applications: cartilage tissue engineering, bioelectronics, and dye degradation. In our first study, we prepared a highly organized porous material based on BC by unidirectional freezing followed by a freeze-drying process. Chitosan was added to impart additional properties to the resulting BC-based scaffolds that were evaluated in terms of their morphological, chemical, and physical properties for cartilage tissue engineering. The properties of the resulting scaffold were tailored by adjusting the concentration of chitosan over 1, 1.5, and 2 % (by wt-%). The scaffolds containing chitosan showed excellent shape recovery and structural stability after

  19. Mass spectrometer introduction line: application to the analysis of impurities in uranium hexafluoride; Ligne d'introduction pour spectrometre de masse: application a l'analyse des impuretes contenues dans l'UF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Besson, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Departement de physico-chimie, service des isotopes stables, section de spectrometrie de masse

    1967-01-01

    The continuous mass-spectrometric analysis of impurities in UF{sub 6} is possible industrially if certain conditions imposed by the nature of the gas are respected. The gas introduction line arriving at the spectrometer's source makes it possible to fix the flow-rate, to control the inlet pressure and to selectively destroy the gas containing the impurities. The operational conditions for the line are defined and a description is given of the theoretical and experimental study of the various elements of which it is composed, i.e. the leak valve, the flow-meter, the chemical trap and the servo-mechanism making it possible to regulate and control the gas flow. The dynamic characteristics of the line's various components and the performance of the equipment in the case of the analyses considered are given. (author) [French] L'analyse en continu par spectrometrie de masse des impuretes contenus dans l'UF{sub 6} est possible industriellement moyennant certaines conditions imposees par la nature du gaz. La ligne d'introduction des gaz dans la source du spectrometre permet de regler le debit, de controler la pression d'introduction et de detruire selectivement le gaz porteur d'impuretes. Les conditions de fonctionnement de la ligne etant definies, on decrit l'etude theorique et experimentale des differents elements qui la composent, c'est-a-dire: le robinet a fuite, le debitmetre, le piege chimique et l'ensemble d'asservissement permettant la regulation et le controle du debit. On donne les caracteristiques dynamiques des differents constituants de la ligne et les performances de l'ensemble pour les analyses considerees. (auteur)

  20. Mass spectrometer introduction line: application to the analysis of impurities in uranium hexafluoride; Ligne d'introduction pour spectrometre de masse: application a l'analyse des impuretes contenues dans l'UF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Besson, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Departement de physico-chimie, service des isotopes stables, section de spectrometrie de masse

    1967-01-01

    The continuous mass-spectrometric analysis of impurities in UF{sub 6} is possible industrially if certain conditions imposed by the nature of the gas are respected. The gas introduction line arriving at the spectrometer's source makes it possible to fix the flow-rate, to control the inlet pressure and to selectively destroy the gas containing the impurities. The operational conditions for the line are defined and a description is given of the theoretical and experimental study of the various elements of which it is composed, i.e. the leak valve, the flow-meter, the chemical trap and the servo-mechanism making it possible to regulate and control the gas flow. The dynamic characteristics of the line's various components and the performance of the equipment in the case of the analyses considered are given. (author) [French] L'analyse en continu par spectrometrie de masse des impuretes contenus dans l'UF{sub 6} est possible industriellement moyennant certaines conditions imposees par la nature du gaz. La ligne d'introduction des gaz dans la source du spectrometre permet de regler le debit, de controler la pression d'introduction et de detruire selectivement le gaz porteur d'impuretes. Les conditions de fonctionnement de la ligne etant definies, on decrit l'etude theorique et experimentale des differents elements qui la composent, c'est-a-dire: le robinet a fuite, le debitmetre, le piege chimique et l'ensemble d'asservissement permettant la regulation et le controle du debit. On donne les caracteristiques dynamiques des differents constituants de la ligne et les performances de l'ensemble pour les analyses considerees. (auteur)

  1. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.

    Science.gov (United States)

    Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A

    2013-04-02

    The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  3. Transitions interactives pour des applications cartographiques

    OpenAIRE

    Lobo , María Jesús

    2017-01-01

    GIS experts often need to relate and compare heterogeneous geographical representations of the same region. For example, existing maps are compared to recent satellite imagery to update geographic databases, like OpenStreetMap. The means to do so, are, however often limited to data agnostic techniques such as overlaying the representations with some degree of translucency or swiping between layers. These techniques do not support users effectively in their tasks in domains such as crime analy...

  4. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Process Intensification for Cellulosic Biorefineries.

    Science.gov (United States)

    Sadula, Sunitha; Athaley, Abhay; Zheng, Weiqing; Ierapetritou, Marianthi; Saha, Basudeb

    2017-06-22

    Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Utilization of agricultural cellulose wastes

    Energy Technology Data Exchange (ETDEWEB)

    Valkanas, G N; Economidis, D G; Koukios, E G; Valkanas, C G

    1977-05-05

    Wastes, example, straw, are prehydrolyzed to convert pentosanes, starches, and hemicelluloses to monosaccharides; the remaining pulp is 50% cellulose. Thus, dry wheat straw 0.8 kg was treated with 10 L of 0.3% aqueous HCl at 5-5.5 atm and 145/sup 0/ and a space velocity of 0.55 L/min, washed with dry steam, followed by water at 120 to 130/sup 0/, and more dry steam, and compressed at 25 kg/cm/sup 2/ to yield a product containing 45 to 50 wt % water. The sugar solution obtained (1394 L) contained 1.34 wt % reducing sugars, a straw hydrolysis of 23 wt %, and comprised xylose 74.3, mannose 5.2, arabinose 11.8, glucose 5.9, galactose 2.9%, and furfural 0.16 g/L. The cellulose residue had a dry weight of 0.545 kg. a yield of 68.2 wt % and contained cellulose 53.1, hemicelluloses 12.6%, lignin 22.1, ash and extractables 12.2%. The degree of polymerization was 805 glucose units.

  7. Cellulosic ethanol. Potential, technology and development status

    Energy Technology Data Exchange (ETDEWEB)

    Rarbach, M. [Sued-Chemie AG, Muenchen (Germany)

    2012-07-01

    In times of rising oil prices and a growing energy demand, sustainable alternative energy sources are needed. Cellulosic ethanol is a sustainable biofuel, made from lignocellulosic feedstock such as agricultural residues (corn stover, cereal straw, bagasse) or dedicated energy crops. Its production is almost carbon neutral, doesn't compete with food or feed production and induces no land use changes. It constitutes a new energy source using an already existing renewable feedstock without needing any further production capacity and can thus play a major role on the way to more sustainability in transport and the chemical industry and reducing the dependence on the import of fossil resources. The potential for cellulosic ethanol is huge: In the US, the annual production of agricultural residues (cereal straw and corn stover) reached almost 384 million tons in 2009 and Brazil alone produced more than 670 million tons of sugar cane in 2009 yielding more than 100 million tons of bagasse (dry basis). And alone in the European Union, almost 300 million tons of crop straw are produced annually. The last years have seen success in the development and deployment in the field of cellulosic ethanol production. The main challenge thereby remains to demonstrate that the technology is economically feasible for the up-scaling to industrial scale. Clariant has developed the sunliquid {sup registered} process, a proprietary cellulosic ethanol technology that reaches highest greenhouse gas (GHG) emission savings while cutting production costs to a minimum. The sunliquid {sup registered} process for cellulosic ethanol matches the ambitious targets for economically and ecologically sustainable production and greenhouse gas reduction. It was developed using an integrated design concept. Highly optimized, feedstock and process specific biocatalysts and microorganisms ensure a highly efficient process with improved yields and feedstock-driven production costs. Integrated, on

  8. Biochemistry of cellulose degradation and cellulose utilization for feeds and for protein

    Energy Technology Data Exchange (ETDEWEB)

    Sadara, J C; Lachke, A H; Shewale, J G

    1979-01-01

    A review discussing production of single-cell protein, fuel, and glucose from cellulose decomposition; surface or solid fermentations of single-cell protein; production of cellulases; and the biochemistry of cellulose degradation was presented.

  9. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  10. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara; Akhtar, Faheem Hassan; Ogieglo, Wojciech; Alharbi, Ohoud; Peinemann, Klaus-Viktor

    2018-01-01

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration

  11. Influence of polystyrene addition to cellulose on chemical structure and properties of bio-oil obtained during pyrolysis

    International Nuclear Information System (INIS)

    Rutkowski, Piotr; Kubacki, Andrzej

    2006-01-01

    The cellulose (C), polystyrene (PS) and cellulose/polystyrene (C-PS) mixtures (3:1, 1:1, 1:3 w/w) were subjected to a pyrolysis process to produce bio-oil. The pyrolytic oil yield was in the range of 45.5-94.8 wt% depending on the composition of the sample. Pyrolysis of polystyrene gives the highest oil yield, whereas for cellulose, the yield of liquid products was the lowest. The basic physicochemical properties of oils are strongly influenced by the original material and do not change additively. The polystyrene addition to cellulose clearly improves the quality of the bio-oil, resulting in decreases in acid number, pour point and density. The change of color is not so distinct. The FT-IR analysis of the oils showed that the oxygen functionalities and hydrocarbons contents highly depend on the composition of the cellulose/polystyrene mixture. The fractionation of bio-oils by column chromatography using hexane and benzene was followed by GC-MS analyses. Different classes of organic compounds were identified, i.e., carboxylic acids, phenols, aldehydes, ketones, esters, ethers and unsaturated linear and cyclic hydrocarbons. The proportion of hydrocarbons increases with a decrease of the cellulose/polystyrene ratio. The obtained results indicate that during pyrolysis, not only does decomposition of cellulose and polystyrene occur, but also, reactions between products from C and PS take place. That was proved by the presence of compounds identified only in the bio-oils obtained from C-PS compositions

  12. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    Science.gov (United States)

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  14. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  15. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1977-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artificial test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiography by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (Auth.)

  16. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1976-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artifical test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiographs by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (orig.) [de

  17. Advances in solid-state NMR of cellulose.

    Science.gov (United States)

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Chemo-catalytic valorization of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Palkovits, R. [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie

    2012-07-01

    Cellulose can be utilized as carbon source for the production of novel platform molecules as well as fuel motifs. Promising transformation strategies cover the hydrolytic hydrogenation or hydrogenolysis of cellulose to sugar alcohols, the hydrolysis of cellulose to glucose followed by dehydration to 5-hydroxymethylfurfural or levulinic acid and the further hydrogenation of levulinic acid to {gamma}-valerolactone. Main challenges result from the high degree of functionalization of cellulosic feedstocks. In line, processes are carried out in liquid phase utilizing rather polar solvents and aiming for a tailored defunctionalisation of these oxygen rich compounds. Consequently, such transformations require novel strategies concerning the development of suitable catalysts and appropriate process concepts. (orig.)

  19. Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns

    NARCIS (Netherlands)

    Boerstoel, H.

    2006-01-01

    The presen thesis describes a new process for manufacturing high tenacity and high modulus cellulose yarns. A new direct solvent for cellulose has been discovered, leading to liquid crystalline solutions. This new solvent, superphosphoric acid, rapidly dissolves cellulose. These liquid crystalline

  20. Production process of a new cellulosic fiber with antimicrobial properties.

    Science.gov (United States)

    Zikeli, Stefan

    2006-01-01

    The Lyocell process (system: cellulose-water-N-methylmorpholine oxide) of Zimmer AG offers special advantages for the production of cellulose fibers. The process excels by dissolving the most diverse cellulose types as these are optimally adjusted to the process by applying different pretreatment methods. Based on this stable process, Zimmer AG's objective is to impart to the Lyocell fiber additional value to improve quality of life and thus to tap new markets for the product. Thanks to the specific incorporation of seaweed, the process allows to produce cellulose Lyocell fibers with additional and new features. They are activated in a further step - by specific charging with metal ions - in order to obtain antibacterial properties. The favorable textile properties of fibers produced by the Lyocell process are not adversely affected by the incorporation of seaweed material or by activation to obtain an antibacterial fiber so that current textile products can be made from the fibers thus produced. The antibacterial effect is achieved by metal ion activation of the Lyocell fibers with incorporated seaweed, which contrasts with the antibacterial fibers known so far. Antibacterial fibers produced by conventional methods are in part only surface finished with antibacterially active chemicals or else they are produced by incorporating organic substances with antibacterial and fungicidal effects. Being made from cellulose, the antibacterial Lyocell fiber Sea Cell Active as the basis for quality textiles exhibits a special wear comfort compared to synthetic fibers with antibacterial properties and effects. This justifies the conclusion that the Zimmer Lyocell process provides genuine value added and that it is a springboard for further applications.

  1. KINETIKA FERMENTASI SELULOSA MURNI OLEH Trichoderma reesi QM 9414 MENJADI GLUKOSA DAN PENERAPANNYA PADA JERAMI PADI BEBAS LIGNIN [Kinetics of Pure Cellulose Fermentation by Trichoderma Reesei QM 9414 to Glucose and Its Application of on Lignin Free Rice Straw

    Directory of Open Access Journals (Sweden)

    M Iyan Sofyan

    2004-12-01

    Full Text Available The objectives of this research were: 1 to determine aeration rate and substrate concentration of pure cellulose to produce maximum glucose by Trichoderma reesei QM 9414 at 30 oC, and agitation 150 rpm; 2 to study the kinetics of pure cellulose fermentation by Trichoderma reesei QM 9414 to glucose and its implication upon fermentation of the lignin free rice straw. The experiment was arranged in factorial randomized complete design in three times replication. Treatments consisted of three levels of aeration (1,00 vvm; 1,5 vvm; 2,0 vvm and three levels of substrate concentration (0,75 ; 1,00 ; 1,25 % w/v. The results showed that at the exponential phase the average specific growth of Trichoderma reesei QM 9414 was 0,05374 hour-1, the maximum glucose product concentration of pure cellulose was 0.1644 gL-1,and the oxygen transfer was 0,0328 mg L-1 hour-1. According to t-test, the kinetics of pure cellulose fermentation model just the same as the lignin free rice straw fermentation.The enzymes produced by Trichoderma reesei QM 9414 in pure cellulose fermentation media followed the Michaelis-Menten model. The enzyme kinetic parameters were the maximum growth rate was 37x10-3 hour-1 and Michaelis-Menten constant was ½ maximum μ =17,5x10-3 hour-1. The volumetric oxygen transfer (KLa using rice straw was 0,0337 mg.hour-1. The value of KLa could be used for conversion from bioreactor at laboratory scale to commercial scale design.

  2. Bacterial Cellulose Ionogels as Chemosensory Supports.

    Science.gov (United States)

    Smith, Chip J; Wagle, Durgesh V; O'Neill, Hugh M; Evans, Barbara R; Baker, Sheila N; Baker, Gary A

    2017-11-01

    To fully leverage the advantages of ionic liquids for many applications, it is necessary to immobilize or encapsulate the fluids within an inert, robust, quasi-solid-state format that does not disrupt their many desirable, inherent features. The formation of ionogels represents a promising approach; however, many earlier approaches suffer from solvent/matrix incompatibility, optical opacity, embrittlement, matrix-limited thermal stability, and/or inadequate ionic liquid loading. We offer a solution to these limitations by demonstrating a straightforward and effective strategy toward flexible and durable ionogels comprising bacterial cellulose supports hosting in excess of 99% ionic liquid by total weight. Termed bacterial cellulose ionogels (BCIGs), these gels are prepared using a facile solvent-exchange process equally amenable to water-miscible and water-immiscible ionic liquids. A suite of characterization tools were used to study the preliminary (thermo)physical and structural properties of BCIGs, including no-deuterium nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and X-ray diffraction. Our analyses reveal that the weblike structure and high crystallinity of the host bacterial cellulose microfibrils are retained within the BCIG. Notably, not only can BCIGs be tailored in terms of shape, thickness, and choice of ionic liquid, they can also be designed to host virtually any desired active, functional species, including fluorescent probes, nanoparticles (e.g., quantum dots, carbon nanotubes), and gas-capture reagents. In this paper, we also present results for fluorescent designer BCIG chemosensor films responsive to ammonia or hydrogen sulfide vapors on the basis of incorporating selective fluorogenic probes within the ionogels. Additionally, a thermometric BCIG hosting the excimer-forming fluorophore 1,3-bis(1-pyrenyl)propane was devised which exhibited a ratiometric (two

  3. Plasma-enhanced synthesis of green flame retardant cellulosic materials

    Science.gov (United States)

    Totolin, Vladimir

    The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved

  4. Bio-cellulose Production by Beijerinckia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 in Sago By-product Medium.

    Science.gov (United States)

    Voon, W W Y; Muhialdin, B J; Yusof, N L; Rukayadi, Y; Meor Hussin, A S

    2018-06-19

    Bio-cellulose is the microbial extracellular cellulose that is produced by growing several microorganisms on agriculture by-products, and it is used in several food applications. This study aims to utilize sago by-product, coconut water, and the standard medium Hestrin-Schramm as the carbon sources in the culture medium for bio-cellulose production. The bacteria Beijerinkia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 were selected based on their bio-cellulose production activity. The structure was determined by Fourier transform infrared spectroscopy and scanning electron microscopy, while the toxicity safety was evaluated by brine shrimp lethality test. The results of Fourier transform infrared spectroscopy showed that the bio-cellulose produced by B. fluminensis cultivated in sago by-products was of high quality. The bio-cellulose production by B. fluminensis in the sago by-product medium was slightly higher than that in the coconut water medium and was comparable with the production in the Hestrin-Schramm medium. Brine shrimp lethality test confirmed that the bio-cellulose produced by B. fluminensis in the sago by-product medium has no toxicity, which is safe for applications in the food industry. This is the first study to determine the high potential of sago by-product to be used as a new carbon source for the bio-cellulose production.

  5. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  6. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  7. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  8. Characterization of TEMPO-oxidized bacterial cellulose; Caracterizacao de celulose bacteriana tempo-oxidada

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A., E-mail: eligenessampaio@hotmail.com [Universidade Federal Ceara (UFC), Fortaleza, CE (Brazil); Barros, Matheus de O. [Instituto Federal do Ceara (IFCE), Fortaleza, CE (Brazil); Morais, Joao P.S. [Embrapa Algodao, Campina Grande, PB (Brazil); Borges, Maria de F.; Rosa, Morsyleide de F. [Embrapa Agroindustria Tropical, Fortaleza, CE (Brazil)

    2015-07-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  9. A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture

    Directory of Open Access Journals (Sweden)

    Xiaorong Hu

    2017-01-01

    Full Text Available The hydrophilic property of cellulose is a key limiting factor for its wide application. Here, a novel solution impregnation pathway was developed to increase the hydrophobic properties of cellulose. When compared with the regenerated cellulose (RC, the composite films showed a decrease in water uptake ability towards water vapor, and an increase of the water contact angle from 29° to 65° with increasing resin content in the composites, with only a slight change in the transmittance. Furthermore, the Young’s modulus value increased from 3.2 GPa (RC film to 5.1 GPa (RCBEA50 film. The results indicated that the composites had combined the advantages of cellulose and biphenyl A epoxy acrylate prepolymer (BEA resin. The presented method has great potential for the preparation of biocomposites with improved properties. The overall results suggest that composite films can be used as high-performance packaging materials.

  10. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    Science.gov (United States)

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    Science.gov (United States)

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Hybrid composite thin films composed of tin oxide nanoparticles and cellulose

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Nayak, Jyoti; Kim, Jaehwan

    2013-01-01

    This paper reports the preparation and characterization of hybrid thin films consisting of tin oxide (SnO 2 ) nanoparticles and cellulose. SnO 2 nanoparticle loaded cellulose hybrid thin films were fabricated by a solution blending technique, using sodium dodecyl sulfate as a dispersion agent. Scanning and transmission electron microscopy studies revealed uniform dispersion of the SnO 2 nanoparticles in the cellulose matrix. Reduction in the crystalline melting transition temperature and tensile properties of cellulose was observed due to the SnO 2 nanoparticle loading. Potential application of these hybrid thin films as low cost, flexible and biodegradable humidity sensors is examined in terms of the change in electrical resistivity of the material exposed to a wide range of humidity as well as its response–recovery behavior. (paper)

  13. Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection

    KAUST Repository

    Puspasari, Tiara

    2015-05-14

    We report a new synthetic route of fabricating regenerated cellulose nanofiltration membranes. The membranes are composite membranes with a thin selective layer of cellulose, which was prepared by regeneration of trimethylsilyl cellulose (a hydrophobic cellulose derivative) film followed by crosslinking. Filtration experiments using mixtures of sugar and sodium chloride showed that solutes above 300 Da were highly rejected whereas practically no rejection was observed for NaCl. This is a big advantage for a complete desalination as the existing commercial nanofiltration membranes typically exhibit NaCl rejection in the range of 30–60%. Membranes with zero NaCl rejection are required for recovery and purification applications in food, chemical and pharmaceutical industry.

  14. [Audiometry in the cellulose industry].

    Science.gov (United States)

    Corrao, C R; Milano, L; Pedulla, P; Carlesi, G; Bacaloni, A; Monaco, E

    1993-01-01

    A noise level dosimetry and audiometric testing were conducted in a cellulose factory to determine the hazardous noise level and the prevalence of noise induced hearing loss among the exposed workers. The noise level was recorded up to 90 db (A) in several working areas. 18 workers, potentially exposed to noise injury, evidenced a significant hearing loss. While no evidence of noise injury was recorded in a control group of 100 subjects. This finding suggest a strict relationship between audiometric tests, the noise level recorded in the working place and the working seniority of exposed employers.

  15. Application of a Detailed Emission Model for Heavy Duty Diesel Engine Simulations Application d'un modèle détaillé d'émissions pour la simulation de gros moteurs diesel

    Directory of Open Access Journals (Sweden)

    Magnusson I.

    2006-12-01

    Full Text Available A detailed chemical model describing the formation of soot and NO is applied to simulate emission formation in a heavy duty diesel engine. Cylinder flow and spray development is simulated using an engine CFD code - Speedstar. Combustion is described using a simple eddy break-up model. Modeling of the emission-chemistry/turbulent-flow interaction is based on a flamelet approach. Contrary to a typical flamelet concept, transport equations are solved for mass fractions of soot and NO. The reason being that these major emission constituencies are assumed to change slowly in comparison to typical time scales for chemical processes or transport processes important for combustion. Chemical reactions leading to production and destruction of soot and NO are, however, assumed to be fast. Soot and NO source terms are therefore evaluated from a flamelet library using a presumed probability density function and integrating over mixture fraction space. Results from simulations are compared to engine measurements inform of exhaust emission data and cylinder pressure. Un modèle avec chimie détaillée décrivant la formation des suies et du NO est appliqué à la simulation de la formation des polluants dans un gros moteur Diesel. L'écoulement et le spray sont modélisés avec le code de calcul Speedstar. La combustion est représentée par le modèle eddy break-up . La modélisation de l'interaction entre l'écoulement turbulent et la chimie des polluants est basée sur une approche de type flamelet . Cependant, à la différence d'autres travaux, des équations de transport pour les fractions massiques de suies et de NO sont résolues. Cela est justifié par la supposition que les temps caractéristiques de formation de ces composés sont longs comparés à ceux associés aux phénomènes de transport et aux réactions chimiques associées à la combustion. Cependant, les vitesses de réaction se rapportant aux suies et au NO sont supposées rapides. Cela

  16. Construction of an apparatus for nuclear orientation measurements at low temperatures. Application to neodymium-cobalt alloy; Realisation d'un appareil pour des mesures d'orientation nucleaire a basse temperature. Application a l'alliage neodyme-cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, E [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-10-01

    We describe experiments along which has been studied the anisotropy of {gamma} radiations emitted by oriented nuclei. We have used the great hyperfine fields acting on nuclei in ferromagnetic metals so as to produce alignment at low temperature. By irradiation we obtained a few cobalt 60 nuclei in our samples which were then cooled down to 0,01 K. The anisotropic rate of the 1,33 MeV {gamma} radiation was measured in function of the sample temperature, using as thermometer the anisotropy of {gamma} radiation emitted by cobalt 60 nuclei in a cobalt single crystal. Cobalt 60 was lined up in a cobalt nickel alloy (40% Ni). The hyperfine field at the cobalt was measured compared to the effective field in metallic cobalt: Heff(Co Ni)/Heff(Co metal) = 0.71 {+-} 0.12. These results are in good agreement with specific heat measurements made previously. Cobalt 60 has been polarised in a neodymium-cobalt alloy (NdCo{sub 5}). The field at the cobalt in NdCo{sub 5} has been measured compared to the field in metallic cobalt and taking the non-saturation into account we found 165000 oersteds < Heff(NdCo{sub 5}) < 220000 oersteds. (author) [French] Nous decrivons des experiences au cours desquelles nous avons etudie l'anisotropie de rayonnements {gamma} emis par des noyaux orientes. Nous avons utilise les grands champs hyperfins agissant sur las noyaux dans les metaux ferromagnetiques pour produire l'alignement a basse temperature. Par irradiation nous avons obtenu quelques noyaux de cobalt 60 dans nos echantillons qui furent ensuite refroidis a 0,01 K. Le degre d'anisotropie du rayonnement {gamma} de 1,33 MeV fut mesure en fonction de la temperature de l'echantillon en utilisant l'anisotropie du rayonnement {gamma} de noyaux de cobalt 60 dans un monocristal de cobalt metallique utilise comme thermometre. Le cobalt 60 a ete aligne dans un alliage de cobalt-nickel (40% Ni). Le champ hyperfin au niveau du cobalt a ete mesure par rapport au champ effectif dans le cobalt metallique

  17. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    International Nuclear Information System (INIS)

    Shahid U N, Mohamed; Deshpande, Abhijit P; Rao, C Lakshmana

    2015-01-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation. (paper)

  18. Water absorption and maintenance of nanofiber cellulose ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-05-17

    May 17, 2012 ... Physiochemical properties of bacterial cellulose producing by Gluconacetobacter rhaeticus TL-2C was ... shape of the mold (Czaja et al., 2006). ... impurity, and then it was freeze-dried and ground to a fine ... Figure 1. Microstructure and chemical structure of bacterial cellulose producing G. rhaeticus TL-2C.

  19. Characterization of cellulose nanofibrillation by micro grinding

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    A fundamental understanding of the morphological development of cellulose fibers during fibrillation using micro grinder is very essential to develop effective strategies for process improvement and to reduce energy consumption. We demonstrated some simple measures for characterizing cellulose fibers fibrillated at different fibrillation times through the grinder. The...

  20. Cellulose Triacetate Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  1. Modelling the elastic properties of cellulose nanopaper

    DEFF Research Database (Denmark)

    Mao, Rui; Goutianos, Stergios; Tu, Wei

    2017-01-01

    The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...

  2. Isolation and characterization of microcrystalline cellulose obtained ...

    African Journals Online (AJOL)

    In this study, microcrystalline cellulose, coded MCC-PNF, was obtained from palm nut (Elaeis guineensis) fibres. MCC-PNF was examined for its physicochemical and powder properties. The powder properties of MCC-PNF were compared to those of the best commercial microcrystalline cellulose grade, Avicel PH 101.

  3. Some Physical Characteristics of Microcrystalline Cellulose ...

    African Journals Online (AJOL)

    Purpose: The microcrystalline cellulose is an important ingredient in pharmaceutical, food, cosmetic and other industries. This study aimed at evaluating the physical characteristics of microcrystalline cellulose (CP-MCC), obtained from the raw cotton of Cochlospermum planchonii. Methods: CP-MCC was obtained from the ...

  4. Radiation pretreatment of cellulose for energy production

    Science.gov (United States)

    Dela Rosa, A. M.; Dela Mines, A. S.; Banzon, R. B.; Simbul-Nuguid, Z. F.

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulosic material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism.

  5. Radiation pretreatment of cellulose for energy production

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.; Dela Mines, A.S.; Banzon, R.B.; Simbul-Nuguid, Z.F.

    1983-01-01

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulose material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism. (author)

  6. Development of composites of polycaprolactone with cellulose

    International Nuclear Information System (INIS)

    Aguiar, V.O.; Marques, M.F.V.

    2015-01-01

    In the present work, alkaline followed by an acid treatment were performed in plant sources of curaua and jute fibers to remove the amorphous portion and to aid fibrillation. Using the technique of X-ray diffraction it was observed that the chemical treatments led to a better organization of cellulose microfibrils and, consequently, the increase in their crystallinity index. Using the thermogravimetric analysis it was noted a slight decrease in thermal stability of the chemically treated cellulose fibers, however it did not impairs its use as filler in the polymer matrix. Through the SEM micrographs it was observed that the chemical treatment reduced the dimensions of the fibers in natura. Polycaprolactone composite was prepared in a twin-screw extruder at different amounts for several cellulose sources (those obtained from vegetable fibers, curaua and jute, commercial cellulose and amorphous cellulose) at and maintaining the process time and temperature constant. (author)

  7. A novel method for preparing microfibrillated cellulose from bamboo fibers

    International Nuclear Information System (INIS)

    Nguyen, Huu Dat; Nguyen, Ngoc Bich; Dang, Thanh Duy; Thuy Mai, Thi Thanh; Phung Le, My Loan; Tran, Van Man; Dang, Tan Tai

    2013-01-01

    The bamboo fiber is a potential candidate for biomass and power source application. In this study, microfibrillated cellulose (MFC) is prepared from raw fibers of bamboo tree (Bambusa Blumeana J A and J H Schultes) by an alkali treatment at room temperature in association with a bleaching treatment followed by a sulfuric acid hydrolysis. Field-emission scanning electron microscopy (FESEM) images indicated that final products ranged from 20 to 40 nm in diameter. The chemical composition measurement and Fourier transform infrared (FTIR) spectroscopy showed that both hemicellulose and lignin are mostly removed in the MFC. The x-ray diffraction (XRD) results also show that MFC has crystallinity of more than 70%. The thermogravimetric analysis (TGA) curves revealed that cellulose microfibers have a two-step thermal decomposition behavior owing to the attachment of sulfated groups onto the cellulose surface in the hydrolysis process with sulfuric acid. The obtained MFCs may have potential applications in alternative power sources as biomass, in pharmaceutical and optical industries as additives, as well as in composite fields as a reinforcement phase. (paper)

  8. Influence of the type of cellulosic derivatives on the texture, and oxidative and thermal stability of soybean oil oleogel

    International Nuclear Information System (INIS)

    Totosaus, A.; Gonzalez-Gonzalez, R.; Fragoso, M.

    2016-01-01

    The use oleogels (defined as edible oils entrapped in a three-dimensional network employing a self-assembled structuring agent) has recently been proposed to replace saturated fat or trans-fats in foods. In this work the effects of different cellulose derivative mixtures (Avicel, ethyl cellulose and a-cellulose) on lipid stability, glass transition temperature and the texture of soybean oil oleogels were determined by employing a mixture design approach. Avicel affected lipid stability, increasing the oxidative rancidity and peroxide values of oleogels. Oleogels with higher proportions of Avicel also presented higher transition temperatures. A higher percent of ethyl cellulose and a-cellulose in the oleogel mixture resulted in a more stable system with lower oil rancidity and lower glass transition temperatures. In addition, Avicel resulted in a softer and less tacky texture, an important characteristic to consider for food applications. [es

  9. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  10. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  11. Phosphate cellulose with metaphosphoric acid for dye removal

    International Nuclear Information System (INIS)

    Silva, S.C.C.; Silva, F.C.; Lima, L.C.B.; Santos, M.R.M.C.; Osajima, J.A.; Silva Filho, E.C. da

    2014-01-01

    The chemical modification of cellulose is a suitable method used for producing value-added products, making them more efficient and selective for certain applications such as adsorption of dye. Thus the aim of this study was to modify the natural cellulose with metaphosphoric acid, characterized it through the techniques of FTIR and "3"1P NMR and applies it in the adsorption of brilliant green dye, evaluating the kinetic models of pseudo first-order and pseudo second-order and the theoretical models of the Langmuir, Freundlich and Temkin isotherms. The characterizations demonstrated the effectiveness of the modification, the maximum adsorption capacity was 150.0 mg g-1, adjusting better to the kinetic model of pseudo-second order and the theoretical model of Temkin, with the adsorbent showing efficient for removal of brilliant green dye. (author)

  12. Grafting of cellulose by fluorine-bearing silane coupling agents

    International Nuclear Information System (INIS)

    Ly, B.; Belgacem, M.N.; Bras, J.; Brochier Salon, M.C.

    2010-01-01

    The surface of model cellulose fibres, Avicell (AV), as well as that of Whatman paper (WP) was chemically modified with two fluorine-bearing alkoxysilane coupling agents, namely: 3,3,3-trifluoropropyl trimethoxysilane (TFPS) and 1H,1H,2H,2H,perfluorooctyl trimethoxysilane (PFOS). The occurrence of the grafting of soxhlet extracted modified cellulose was confirmed by the presence of silicon and fluorine atoms detected by elemental analysis, X-ray photoelectron spectroscopy and Electron Dispersion Energy/Scanning Electron Microscopy (EDS/SEM). The contact angle measurements showed that, after grafting, the surface of AV and WP samples became totally highly hydrophobic with a contact angle of 140 deg. Thus, the polar contribution to the surface energy of the modified substrates was found to be close to zero. These modified substrate could be interesting for application such as self-cleaning surface, wipes paper, grease barrier paper or for biocomposite with a polar matrix.

  13. Cytocompatible cellulose hydrogels containing trace lignin

    International Nuclear Information System (INIS)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-01-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm"2 and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  14. Cytocompatible cellulose hydrogels containing trace lignin

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Kazuki; Kobayashi, Takaomi, E-mail: takaomi@nagaoakut.ac.jp

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm{sup 2} and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  15. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    International Nuclear Information System (INIS)

    Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki

    2012-01-01

    Highlights: ► The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. ► The fusion enzyme was stable at 80 °C for 120-min. ► The fusion enzyme was responsible for cellulose-binding capacity. ► The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS–PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  16. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    Energy Technology Data Exchange (ETDEWEB)

    Thongekkaew, Jantaporn, E-mail: jantaporn_25@yahoo.com [Department of Biological Science, Faculty of Science, Ubon-Ratchathani University, Warinchumrab, Ubon-Ratchathani 34190 (Thailand); Ikeda, Hiroko; Iefuji, Haruyuki [Application Research Division, National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  17. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    Science.gov (United States)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  18. Investigating the Mechanical Properties and Degradability of Bioplastics Made from Wheat Straw Cellulose and Date Palm Fiber

    Directory of Open Access Journals (Sweden)

    H Omrani Fard

    2014-04-01

    Full Text Available During the past two decades, the use of bioplastics as an alternative to regular plastics has received much attention in many different industries. The mechanical and degradable properties of bioplastic are important for their utilization. In this research cellulose of wheat straw and glycerol were mixed by different weight ratios and then reinforced by using date palm fibers. To prepare the bioplastic plates, the materials were poured in molds and pressed by means of a hydraulic press and simultaneously heating of the molds. The experiments were performed based on a 3×3 factorial design with three levels: 50%, 60% and 70% of wheat cellulose and three types of reinforcement methods, namely: no-reinforcement, network reinforcement and parallel string reinforcement. The effect of the two factors on tensile strength, tensile strain, bending strength, modulus of elasticity and modulus of bending were investigated. The results indicated that the two factors and their interactions had significant effects on the mentioned properties of bioplastics (at α=0.05 level . The comparison of the means of the tests showed that the network reinforcement type with 50% cellulose had the highest tensile and bending strengths with 1992.02 and 28.71 MPa, respectively. The maximum modulus of elasticity and modulus bending were 40.4 and 2.3 MPa, respectively for parallel string arrangement and 70% of cellulose. The degradability tests of bioplastic using a fistulated sheep indicated that with increasing the percentage of cellulose, the degradability rate deceased. The maximum degradability rate, after 48 h holding in the sheep rumen, was 74% that belonged to bioplastics with 50% cellulose. The degradability data were well fitted to a mathematical model (R2=0.97.

  19. Dynamic changes of carbon isotope apparent fractionation factor to describe transition to syntrophic acetate oxidation during cellulose and acetate methanization.

    Science.gov (United States)

    Vavilin, Vasily A; Rytov, Sergey V

    2017-05-01

    To identify predominant metabolic pathway for cellulose methanization new equations that take into account dynamics of 13C are added to the basic model of cellulose methanization. The correct stoichiometry of hydrolysis, acidogenesis, acetogenesis and methanogenesis steps including biomass is considered. Using experimental data by Laukenmann et al. [Identification of methanogenic pathway in anaerobic digesters using stable carbon isotopes. Eng. Life Sci. 2010;10:1-6], who reported about the importance of ace`tate oxidation during mesophilic cellulose methanization, the model confirmed that, at high biomass concentration of acetate oxidizers, the carbon isotope fractionation factor amounts to about 1.085. The same model, suggested firstly for cellulose degradation, was used to describe, secondly, changes in, and in methane and carbon dioxide during mesophylic acetate methanization measured by Grossin-Debattista [Fractionnements isotopiques (13C/12C) engendres par la methanogenese: apports pour la comprehension des processus de biodegradation lors de la digestion anaerobie [doctoral thesis]. 2011. Bordeaux: Universite Bordeaux-1;2011. Available from: http://ori-oai.u-bordeaux1.fr/pdf/2011/GROSSIN-DEBATTISTA_JULIEN_2011.pdf . French].The model showed that under various ammonium concentrations, at dominating acetoclastic methanogenesis, the value decreases over time to a low level (1.016), while at dominating syntrophic acetate oxidation, coupled with hydrogenotrophic methanogenesis, slightly increases, reaching 1.060 at the end of incubation.

  20. Sustainable and Low Viscous 1-Allyl-3-methylimidazolium Acetate + PEG Solvent for Cellulose Processing

    Directory of Open Access Journals (Sweden)

    Airong Xu

    2017-02-01

    Full Text Available Developing sustainable, low viscous and efficient solvents are always advantageous to the processing/fabricating of cellulose materials in practical applications. To this end, in this work novel solvents were developed; ([Amim][CH3COO]/PEG by dissolving polyethylene glycol 200 (PEG-200 in 1-allyl-3-methylimidazolium acetate ([Amim][CH3COO]. The solubilities of cellulose in [Amim][CH3COO]/PEG solvents were determined as a function of temperature, and the possible dissolution mechanism of cellulose in [Amim][CH3COO]/PEG solvent was investigated. The novel solvent exhibits outstanding advantages for good dissolution capacity of cellulose, such as low viscosity, negligible vapor pressure, and recycling capability. The [CH3COO]− anion and the [Amim]+ cation of [Amim][CH3COO] in [Amim][CH3COO]/PEG-10 are the driving force for cellulose dissolution verified by the 13C NMR spectra. In addition, the regenerated cellulose films from [Amim][CH3COO]/PEG solvent were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR, and thermogravimetric analysis (TGA to estimate their morphologies and structures.

  1. Preparation and characterization of regenerated cellulose membranes from natural cotton fiber

    Directory of Open Access Journals (Sweden)

    Yanjuan CAO

    2015-06-01

    Full Text Available A series of organic solutions with different cellulose concentrations are prepared by dissolving natural cotton fibers in lithium chloride/dimethyl acetamide (LiCl/DMAC solvent system after the activation of cotton fibers. Under different coagulating bath, the regenerated cellulose membranes are formed in two kinds of coagulation baths, and two coating methods including high-speed spin technique (KW-4A spin coating machine and low-speed scraping (AFA-Ⅱ Film Applicator are selected in this paper. The macromolecular structure, mechanical properties, crystallinity, thermal stability and wetting property of the regenerated cellulose membrane are characterized by Scanning Electron Microscope(SEM, Fourier Transform Infrared Spectroscopy (FT-IR,X-ray diffraction (XRD, Thermogravimetric analysis (TG and contacting angle tester. The effects of mass fraction, coagulation bath type, membrane forming process on the regenerated membrane properties are investigated. Experimental results show that the performance of regenerated cellulose membrane is relatively excellent under the condition of using the KW-4A high-speed spin method, water coagulation bath, and when mass fraction of cellulose is 3.5%. The crystallinity of the regenerated cellulose membrane changes a lot compared with natural cotton fibers. The variation trend of thermal stability is similar with that of cotton fiber. But thermal stability is reduced to some degree, while the wetting ability is improved obviously.

  2. The effect of bacterial cellulose on the shape memory behavior of polyvinyl alcohol nanocomposite hydrogel

    Science.gov (United States)

    Pirahmadi, Pegah; Kokabi, Mehrdad

    2018-01-01

    Most research on shape memory polymers has been confined to neat polymers in their dry state, while, some hydrogel networks are known for their shape memory properties. Hydrogels have low glass transition temperatures which are below 100°C depend on the content of water. But they are usually weak and brittle, and not suitable for structural applications due to their low mechanical strengths because of these materials have large amount of water (>50%), so they could not remember original shape perfectly. Bacterial cellulose nanofibers with perfect properties such as high water holding capacity, high crystallinity, high tensile strength and good biocompatibility can dismiss all the drawbacks. In the present study, polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel prepared by repetitive freezing-thawing method. The bacterial cellulose was used as reinforcement to improve the mechanical properties and stimuli response. Differential scanning calorimetry was employed to obtain the glass transition temperature. Nanocomposite morphology was characterized by field-emission scanning electron microscopy and mechanical properties were investigated by standard tensile test. Finally, the effect of bacterial cellulose nanofiber on shape memory behavior of polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel was investigated. It is found that switching temperature of this system is the glass transition temperature of the nano domains formed within the system. The results also show increase of shape recovery, and shape recovery speed due to presence of bacterial cellulose.

  3. From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

    Directory of Open Access Journals (Sweden)

    Maria Helena Godinho

    2014-06-01

    Full Text Available Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR, Rheology coupled with NMR (Rheo-NMR, rheology, optical methods, Magnetic Resonance Imaging (MRI, Wide Angle X-rays Scattering (WAXS, were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

  4. Improvement production of bacterial cellulose by semi-continuous process in molasses medium.

    Science.gov (United States)

    Cakar, Fatih; Ozer, Işılay; Aytekin, A Özhan; Sahin, Fikrettin

    2014-06-15

    Bacterial cellulose (BC) has unique properties such as structural, functional, physical and chemical. The mass production of BC for industrial application has recently become attractive to produce more economical and high productive cellulose. In this study, to improve the productivity of bacterial cellulose (BC), BC production by Gluconacetobacter xylinus FC01 was investigated in molasses medium with static semi-continuous operation mode. Cell dry weight, polysaccharide, sugar and cellulose concentrations were monitored and cellulose was characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The highest cellulose yield (1.637 g/L) was obtained in SCP50-7d, which molasses of 1/2 ratio for 7 days by static semi-continuous operation mode. The results show that BC can be highly produced by G. xylinus in molasses with static semi-continuous process than batch process. We claimed that low-cost medium with semi-continuous operation mode in static culture is a good candidate for industrial scale BC productions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    Science.gov (United States)

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    Science.gov (United States)

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Enzymatic Cellulose Palmitate Synthesis Using Immobilized Lipase

    Directory of Open Access Journals (Sweden)

    Anna Roosdiana

    2017-06-01

    Full Text Available Bacterial cellulose can be modified by esterification using palmitic acid and Mucor miehei  lipase  as catalyst. The purpose of this research was to determine the optimum conditions of esterification reaction of cellulose and palmitic acid . The esterification reaction was carried out at the time variation  of  6, 12, 18, 24 and 30 hours and the mass ratio of cellulose: palmitic acid (1: 11: 2, 1: 3, 1: 4, 1: 5,1:6 at 50 °C. The   cellulose palmitate  was examined  its  physical and chemical properties by using FTIR spectrophotometer, XRD, bubble point test and saponification  apparatus. The results showed that the optimum reaction time of esterification reaction of cellulose and palmitic acid occurred within 24 hours and the mass ratio of cellulose: palmitic acid was 1: 3 resulting in DS of  0.376 with  swelling index of 187 %, crystallinity index of 61.95%,  and Φ porous of 2.40 μm. Identification of functional groups using FTIR spectrophotometer showed that C=O ester group  was observed at 1737.74 cm-1 and strengthened  by  the appearance of C-O ester peak at 1280 cm-1. The conclusion of this study is reaction time and reactant ratio influence significantly the DS of cellulose ester.

  8. Model films of cellulose. I. Method development and initial results

    NARCIS (Netherlands)

    Gunnars, S.; Wågberg, L.; Cohen Stuart, M.A.

    2002-01-01

    This report presents a new method for the preparation of thin cellulose films. NMMO (N- methylmorpholine- N-oxide) was used to dissolve cellulose and addition of DMSO (dimethyl sulfoxide) was used to control viscosity of the cellulose solution. A thin layer of the cellulose solution is spin- coated

  9. Prevalence and trends of cellulosics in pharmaceutical dosage forms.

    Science.gov (United States)

    Mastropietro, David J; Omidian, Hossein

    2013-02-01

    Many studies have shown that cellulose derivatives (cellulosics) can provide various benefits when used in virtually all types of dosage forms. Nevertheless, the popularity of their use in approved drug products is rather unknown. This research reports the current prevalence and trends of use for 15 common cellulosics in prescription drug products. The cellulosics were powdered and microcrystalline cellulose (MCC), ethyl cellulose, hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hypromellose (HPMC), HPMC phthalate, HPMC acetate succinate, cellulose acetate (CA), CA phthalate, sodium (Na) and calcium (Ca) carboxymethylcellulose (CMC), croscarmellose sodium (XCMCNa), methyl cellulose, and low substituted HPC. The number of brand drug products utilizing each cellulosics was determined using the online drug index Rxlist. A total of 607 brand products were identified having one or more of the cellulosics as an active or inactive ingredient. An array of various dosage forms was identified and revealed HPMC and MCC to be the most utilized cellulosics in all products followed by XCMCNa and HPC. Many products contained two or more cellulosics in the formulation (42% containing two, 23% containing three, and 4% containing 4-5). The largest combination occurrence was HPMC with MCC. The use of certain cellulosics within different dosage form types was found to contain specific trends. All injectables utilized only CMCNa, and the same with all ophthalmic solutions utilizing HPMC, and otic suspensions utilizing HEC. Popularity and trends regarding cellulosics use may occur based on many factors including functionality, safety, availability, stability, and ease of manufacturing.

  10. Extraction and characterization of cellulose nano whiskers from balsa wood; Extracao e caracterizacao de nanocristais de celulose obtidos da madeira balsa

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Carolina L.; Bretas, Rosario E.S., E-mail: bretas@ufscar.br [Universidade Federal de Sao Carlos - UFSCar, Sao Carlos, SP (Brazil); Marconcini, Jose M. [Embrapa Instrumentacao, Sao Carlos, SP (Brazil); Pereira, Fabiano V. [Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG (Brazil); Branciforti, Marcia C. [Universidade de Sao Paulo - USP, Sao Carlos, SP (Brazil)

    2011-07-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  11. Contribution to the improvement of VRLA batteries for cycling applications; Contribution a l'amelioration des batteries au plomb fermees pour l'application au vehicule electrique

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, M.

    2001-07-01

    Life time and performance of lead batteries for electric-powered vehicles have been optimized by the application of a mechanical pressure on electrodes blocks with a new separator AJS. On the positive grid, the corrosion decreases as the associated effects because AJS stabilizes mechanically the block. The use of phosphoric acid increases the high discharge currant cells performance if they are loaded by an adequate regime. This effect disappears during the cycle. (A.L.B.)

  12. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    OpenAIRE

    Joel Donna; Brant G Miller

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much t...

  13. Cellulosic ethanol: status and innovation

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, Lee R.; Liang, Xiaoyu; Biddy, Mary J.; Allee, Andrew; Cai, Hao; Foust, Thomas; Himmel, Michael E.; Laser, Mark S.; Wang, Michael; Wyman, Charles E.

    2017-06-01

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today’s technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. As an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungal cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler).

  14. Characterization of ethyl cellulose polymer.

    Science.gov (United States)

    Mahnaj, Tazin; Ahmed, Salah U; Plakogiannis, Fotios M

    2013-01-01

    Ethyl cellulose (EC) polymer was characterized for its property before considering the interactions with the plasicizer. Ethocel Std.10 FP Premium from Dow chemical company USA was tested for its solubility, morphology and thermal properties. Seven percentage of EC solution in ethanol was found to be the right viscosity used to prepare the film. The EC polymer and EC film without any plasticizers showed almost identical thermal behavior, but in X-ray diffraction showed different arrangements of crystallites and amorphous region. Dynamic mechanical analysis of film showed that without a plasticizer, EC film was not flexible and had very low elongation with high applied force. The aim of the work was to avoid using the commercially available EC dispersions Surelease® and Aquacoat®; both already have additives on it. Instead, Ethocel EC polymer (powder) was characterized in our laboratory in order to find out the properties of polymer before considering the interactions of the polymer with various plasticizers.

  15. Document de recherche 4 – Institutions pour la gestion efficace de la ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    , elle n'est pas encore assez ancrée sur le plan politique pour être mise en application, malgré ce que laissent entendre les données probantes. Ce présent document est le quatriéme dans la série de documents de ...

  16. Transformation des découvertes en génomique pour soigner les ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... des composés préventifs et thérapeutiques ciblés pour des essais précliniques ... IDRC is pleased to announce the results of its 2017 call for proposals to establish Cyber ... IDRC invites applications for the IDRC Doctoral Research Awards.

  17. Text Mining et annotation sémantique pour l’Information Scientifique

    OpenAIRE

    2013-01-01

    Un exemple d'application des technologies d'enrichissement sémantique et d'analyse de la littérature scientifique pour assister un travail de revue scientifique sur la place de la transgénèse dans la lutte contre les maladies des grandes cultures.

  18. Sud du Sahara | Page 5 | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Langue French. Women in Burkina Faso are now empowered to make informed decisions about their health and the. Photo: Alex Wynter / WHO. Read more about Community engagement for better health in Burkina Faso. Langue English. Photo: The World Bank. Read more about Une application pour téléphone intelligent ...

  19. Un solveur HLLT pour les equations de Saint-Venant et traitement ...

    African Journals Online (AJOL)

    Un solveur HLLT pour les equations de Saint-Venant et traitement des ... Enfin, des applications numériques sur des cas tests sont présentées. ... the system of partial-differential equations is completed by a trivial equation for the bathymetry.

  20. Preparation of membranes from cellulose obtained of sugarcane bagasse

    International Nuclear Information System (INIS)

    Pereira, Paulo Henrique Fernandes; Cioffi, Maria Odila Hilario; Voorwald, Herman Jacobus Cornelis; Pinho, Maria Noberta de; Silva, Maria Lucia Caetano Pinto da

    2010-01-01

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  1. Bioconversion of cellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B; Mandenius, C F; Mattiasson, B; Nilsson, B; Axelsson, J P; Hagander, P

    1985-06-20

    Enzymatic hydrolysis of steam pretreated sallow gives highest yields of soluble sugars when hemicellulose is degraded already in the pretreatment step. The steam pretreatment equipment is rebuilt so that 75 g (dry matter) material instead of 7 g can be treated each time. The cellulose production has been increased 123% by the utilization of aqueous two-phase systems as compared to regular growth medium. The cellulase activity per gram of cellulose has been increased from 42 FPU in regular growth medium to 156 FPU in aqueous two-phase systems. Crude dextran can be used for enzyme production. Enzyme recovery up to 75% has been achieved by combining aqueous two-phase technique with membrane technique. Using the enzyme glucose isomerase in combination with S. cerevisiae theoretical yields in pentose fermentations have been achieved, with a product concentration of 60 g/L and a productivity of 2 g/L x h. Yeast and enzyme can be recirculated using membrane technique. Computer simulation shows that the rate equation for enzymatic hydrolysis with respect to inhibiting sugar concentrations can be used to interpolate with respect to sugar concentrations. Computer simulations show that hydrolysis experiments should focus on high substrate concentrations (>10%) using fed-batch technique and enzyme concentrations in the range of 2-8% in relation to substrate dry matter. The combined 'flow injection analysis', FIA, and enzyme reactor probe has been adapted to enzymatic saccarifications of sodium hydroxide pretreated sallow. The gas membrane sensor for ethanol has been utilized in simultaneous saccharification and fermentation of sodium hydroxide pretreated sallow. A literature study concerning pervaporation for ethanol up-grading has been made.(Author).

  2. Degradation of cellulosic substances by Thermomonospora curvata

    Energy Technology Data Exchange (ETDEWEB)

    Stutzenberger, F J

    1979-05-01

    Research is reported on the cellulolytic activity of Thermomonospora curvata, a thermophilic cellulolytic actinomycete prevalent in municipal solid waste compost. Various cellulosic wastes were evaluated for their potential for the induction of cellulase synthesis by Th. curvata and the extent of cellulose degradation under optimal culture conditions. All the substrates tested showed significant degradation of their cellulose content with the exception of sawdust and barley straw. In contrast to Trichoderma viride, cotton fibers were the best substrates for both C/sub 1/ and C/sub x/ cellulase production. Further research is recommended. (JSR)

  3. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth.

  4. Cellulose nanofiber extraction from grass by a modified kitchen blender

    Science.gov (United States)

    Nakagaito, Antonio Norio; Ikenaga, Koh; Takagi, Hitoshi

    2015-03-01

    Cellulose nanofibers have been used to reinforce polymers, delivering composites with strength that in some cases can be superior to that of engineering plastics. The extraction of nanofibers from plant fibers can be achieved through specialized equipment that demands high energy input, despite delivering extremely low yields. The high extraction cost confines the use of cellulose nanofibers to the laboratory and not for industrial applications. This study aims to extract nanofibers from grass by using a kitchen blender. Earlier studies have demonstrated that paper sheets made of blender-extracted nanofibers (after 5 min to 10 min of blending) have strengths on par with paper sheets made from commercially available cellulose nanofibers. By optimizing the design of the blender bottle, nanofibrillation can be achieved in shorter treatment times, reducing the energy consumption (in the present case, to half) and the overall extraction cost. The raw materials used can be extended to the residue straw of agricultural crops, as an alternative to the usual pulp fibers obtained from wood.

  5. Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation.

    Science.gov (United States)

    Zhu, Changlai; Li, Feng; Zhou, Xinyang; Lin, Lin; Zhang, Tianyi

    2014-05-01

    Bacterial cellulose (BC) is a natural biomaterial with unique properties suitable for tissue engineering applications, but it has not yet been used for preparing nerve conduits to repair peripheral nerve injuries. The objectives of this study were to prepare and characterize the Kampuchea-synthesized bacterial cellulose (KBC) and further evaluate the biocompatibility of KBC with peripheral nerve cells and tissues in vitro and in vivo. KBC membranes were composed of interwoven ribbons of about 20-100 nm in width, and had a high purity and the same crystallinity as that of cellulose Iα. The results from light and scanning electron microscopy, MTT assay, flow cytometry, and RT-PCR indicated that no significant differences in the morphology and cell function were observed between Schwann cells (SCs) cultured on KBC membranes and glass slips. We also fabricated a nerve conduit using KBC, which was implanted into the spatium intermusculare of rats. At 1, 3, and 6 weeks post-implantation, clinical chemistry and histochemistry showed that there were no significant differences in blood counts, serum biochemical parameters, and tissue reactions between implanted rats and sham-operated rats. Collectively, our data indicated that KBC possessed good biocompatibility with primary cultured SCs and KBC did not exert hematological and histological toxic effects on nerve tissues in vivo. Copyright © 2013 Wiley Periodicals, Inc.

  6. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials.

    Science.gov (United States)

    Modulevsky, Daniel J; Cuerrier, Charles M; Pelling, Andrew E

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6-9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson's Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial.

  7. Multi-scale structuration of the electrode-electrolyte interface for applications in bio-electro-catalysis; Structuration multi-echelle de l'interface electrode-electrolyte pour des applications en bioelectrocatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, A. [Bordeaux-1 Univ., LACReM, ENSCPB, 33 - Pessac (France)

    2006-07-01

    In this work, two approaches have been combined to elaborate bio-functionalized interfaces having an original structure and well defined at several characteristic scales. These two approaches are 1)the growth of conducting or non conducting materials through organized structures and 2)the chemistry of non-covalent intermolecular bonds leading to the assembling of molecules towards interfacial structures having greatest size. With a deep physico-chemical characterization, it has been possible to understand the properties of these multi-scale structures and to propose different applications fields as for instance bio-electro-catalysis or photovoltaic cells. (O.M.)

  8. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    Science.gov (United States)

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  9. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  10. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Science.gov (United States)

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  11. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage.

    Science.gov (United States)

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-21

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω□(-1) and a conductivity of 11.6 S m(-1). The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF(6)) displays a high capacity of 252 F g(-1) at a current density of 1 A g(-1) with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.

  12. Reaction mechanisms in cellulose pyrolysis: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Demmitt, T.F.

    1977-08-01

    A bibliographic review of 195 references is presented outlining the history of the research into the mechanisms of cellulose pyrolysis. Topics discussed are: initial product identification, mechanism of initial formation of levoglucosan, from cellulose and from related compounds, decomposition of cellulose to other compounds, formation of aromatics, pyrolysis of levoglucosan, crosslinking of cellulose, pyrolytic reactions of cellulose derivatives, and the effects of inorganic salts on the pyrolysis mechanism. (JSR)

  13. Kinetics of Cellulose Digestion by Fibrobacter succinogenes S85

    OpenAIRE

    Maglione, G.; Russell, J. B.; Wilson, D. B.

    1997-01-01

    Growing cultures of Fibrobacter succinogenes S85 digested cellulose at a rapid rate, but nongrowing cells and cell extracts did not have detectable crystalline cellulase activity. Cells that had been growing exponentially on cellobiose initiated cellulose digestion and succinate production immediately, and cellulose-dependent succinate production could be used as an index of enzyme activity against crystalline cellulose. Cells incubated with cellulose never produced detectable cellobiose, and...

  14. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp

    Directory of Open Access Journals (Sweden)

    Anand Kumar Veeramachineni

    2016-06-01

    Full Text Available Sago biomass is an agro-industrial waste produced in large quantities, mainly in the Asia-Pacific region and in particular South-East Asia. This work focuses on using sago biomass to obtain cellulose as the raw material, through chemical processing using acid hydrolysis, alkaline extraction, chlorination and bleaching, finally converting the material to pharmaceutical grade carboxymethyl sago cellulose (CMSC by carboxymethylation. The cellulose was evaluated using Thermogravimetric Analysis (TGA, Infrared Spectroscopy (FTIR, X-Ray Diffraction (XRD, Differential Scanning Calorimetry (DSC and Field Emission Scanning Electronic Microscopy (FESEM. The extracted cellulose was analyzed for cellulose composition, and subsequently modified to CMSC with a degree of substitution (DS 0.6 by typical carboxymethylation reactions. X-ray diffraction analysis indicated that the crystallinity of the sago cellulose was reduced after carboxymethylation. FTIR and NMR studies indicate that the hydroxyl groups of the cellulose fibers were etherified through carboxymethylation to produce CMSC. Further characterization of the cellulose and CMSC were performed using FESEM and DSC. The purity of CMSC was analyzed according to the American Society for Testing and Materials (ASTM International standards. In this case, acid and alkaline treatments coupled with high-pressure defibrillation were found to be effective in depolymerization and defibrillation of the cellulose fibers. The synthesized CMSC also shows no toxicity in the cell line studies and could be exploited as a pharmaceutical excipient.

  15. Guides et formulaires | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Demande de subvention de recherche du CRDI · Budget de proposition · Lignes directrices du CRDI pour la préparation du rapport d'étape technique · Lignes directrices du CRDI pour la préparation du rapport technique final · Lignes directrices du CRDI pour les dépenses de projet admissibles · Lignes directrices pour la ...

  16. Application d’une approche inspirée des colonies de fourmis pour la recommandation des chemins d’apprentissage dans un cours en ligne : modèle et expérience

    Directory of Open Access Journals (Sweden)

    Aziz Dahbi

    2014-01-01

    Full Text Available Dans cet article, nous présentons la mise en œuvre, l’expérimentation et l’évaluation d’une approche pour la recommandation des chemins d’apprentissage dans un cours en ligne. Le processus de recommandation est inspiré de l’intelligence en essaim et plus particulièrement de l’optimisation par colonies de fourmis (OCF (ant colony optimization [ACO]. Dans ce contexte, nous avons considéré une différenciation des chemins d’apprentissage en fonction de l’activité explorée pour l’apprentissage d’un cours. Dans l’objectif de recommander des chemins d’apprentissage considérés optimaux et d’évaluer ainsi leur impact sur l’apprentissage d’un cours en ligne, l’approche proposée est basée à la fois sur la recommandation de chemins pertinents par l’enseignant et sur les résultats stockés au fur et à mesure par les apprenants sur les chemins empruntés. Notre approche a été validée expérimentalement et les résultats obtenus ont montré l’émergence d’un chemin d’apprentissage favorisant la réussite d’un nombre d’apprenants relativement considérable.

  17. A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites

    DEFF Research Database (Denmark)

    Trifol Guzman, Jon; Plackett, David; Sillard, Cecile

    2016-01-01

    cellulose), and PLA/C30B (CloisiteTM 30B, an organically modified montmorillonite clay) were prepared and their properties were evaluated. It was found that CNF reinforced composites showed a larger decrease on oxygen transmission rate (OTR) than the clay-based composites; (PLA/CNF 1% nanocomposite showed......Partially acetylated cellulose nanofibers (CNF) were chemically extracted from sisal fibers and the performance of those CNF as nanofillers for polylactide (PLA) for food packaging applications was evaluated. Three PLA nanocomposites; PLA/CNF (cellulose nanofibers), PLA/CNC (nanocrystalline...... properties, CNF-based nanocomposites showed better performance than clay-based composites without affecting significantly the optical transparency....

  18. Modelization, fabrication and evaluation avalanche photodiodes polarized in Geiger mode for the single photon in astrophysics applications; Modelisation, fabrication et evaluation des photodiodes a avalanche polarisees en mode Geiger pour la detection du photon unique dans les applications Astrophysiques

    Energy Technology Data Exchange (ETDEWEB)

    Pellion, D

    2008-12-15

    The genesis of the work presented in this this is in the field of very high energy astrophysics. One century ago, scientists identified a new type of messenger coming from space: cosmic rays. This radiation consists of particles (photons or other) of very high energy which bombard the Earth permanently. The passage of cosmic radiations in the Earth's atmosphere results in the creation of briefs luminous flashes (5 ns) of very low intensity (1 pW), a Cherenkov flash, and then becomes visible on the ground. In the current state of the art the best detector of light today is the Photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. But there are some drawbacks: low quantum efficiency, cost, weight etc. We present in this thesis a new alternative technology: silicon photon counters, made of photodiodes polarized in Geiger mode. This operating mode makes it possible to obtain an effect of multiplication comparable to that of the PMT. A physical and electrical model was developed to reproduce the behaviour of this detector. We then present in this thesis work an original technological process allowing the realization of these devices in the Center of Technology of LAAS-CNRS, with the simulation of each operation of the process. We developed a scheme for the electric characterization of the device, from the static mode to the dynamic mode, in order to check conformity with SILVACO simulations and to the initial model. Results are already excellent, given this is only a first prototype step, and comparable with the results published in the literature. These silicon devices can intervene in all the applications where there is a photomultiplier and replace it. The applications are thus very numerous and the growth of the market of these detectors is very fast. We present a first astrophysical experiment installed at the 'Pic du Midi' site which has detected Cherenkov flashes from cosmic rays with this new semiconductor technology

  19. Structural and morphological characterization of cellulose pulp

    CSIR Research Space (South Africa)

    Ocwelwang, A

    2015-09-01

    Full Text Available Understanding the structure of cellulose is of utmost importance in order to enhance its accessibility and reactivity to chemical processing. Therefore, the aim of this study was to evaluate the effect of ultrasound pretreatment on the structure...

  20. diffusion of metronidazole released through cellulose membrane

    African Journals Online (AJOL)

    prof kokwaro

    was determined using dialyzing cellulose membrane in a dissolution tester. Glycerin, a permeation ... An attempt has been made in the present ... Materials. Metronidazole USP was donated by Cosmos. Pharmaceutical Ltd., Nairobi, Kenya.

  1. Cellulosic ethanol is ready to go

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M. [SunOpta BioProcess Group, Brampton, ON (Canada)

    2006-07-01

    A corporate overview of the SunOpta organization was presented. The organization includes three divisions, notably organic food, industrial minerals, and a bioprocess group. It is a Canadian organization that has experienced over 60 per cent growth per year since 1999. The presentation provided a history of the bioprocess group from 1973 to 2003. The presentation also illustrated the biomass process from wood, straw or corn stover to cellulosic ethanol and acetone and butanol. Several images were presented. The production of xylitol from oat hulls and birch and from ryegrass straw to linerboard was also illustrated. Last, the presentation illustrated the biomass production of cellulose, hemicellulose and lignin extraction as well as the ammonia pretreatment of cellulosics. The presentation also listed several current and future developments such as an expansion plan and implementation of cellulosic ethanol. Economic success was defined as requiring proximity to market; high percentage concentration to distillation; and co-located within existing infrastructure. figs.

  2. Radiation and enzyme degradation of cellulose materials

    International Nuclear Information System (INIS)

    Duchacek, V.

    1983-01-01

    The results are summed up of a study of the effect of gamma radiation on pure cellulose and on wheat straw. The irradiation of cellulose yields acid substances - formic acid and polyhydroxy acids, toxic malondialdehyde and the most substantial fraction - the saccharides xylose, arabinose, glucose and certain oligosaccharides. A ten-fold reduction of the level of cellulose polymerization can be caused by relatively small doses - (up to 250 kGy). A qualitative analysis was made of the straw before and after irradiation and it was shown that irradiation had no significant effect on the qualitative composition of the straw. A 48 hour enzyme hydrolysis of the cellulose and straw were made after irradiation and an economic evaluation of the process was made. Radiation pretreatment is technically and economically advantageous; the production of fodder using enzyme hydrolysis of irradiated straw is not economically feasible due to the high cost of the enzyme. (M.D.)

  3. Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction

    Directory of Open Access Journals (Sweden)

    Amnuaikit T

    2011-06-01

    Full Text Available Thanaporn Amnuaikit, Toon Chusuit, Panithi Raknam, Prapaporn BoonmeDepartment of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, ThailandBackground: Cellulose masks obtained from natural sources such as bacteria are of interest as cosmetic devices for the treatment of dry skin because they not only improve hydration of the skin, but have low toxicity and are biodegradable. The aims of this study were to determine the in vivo effects of a cellulose mask obtained from Acetobacter xylinum on skin characteristics and to evaluate user satisfaction with the product.Methods: Thirty healthy Thai volunteers aged 21–40 years participated in the study. The volunteers were randomly separated into a control group and an experimental group. For the control group, volunteers were assigned to apply moist towels to the face for 25 minutes. For the experimental group, the volunteers were assigned to apply the masks, ie, translucent patches which could be fitted onto the face for the same period. The following week, the groups were changed over to the alternative treatment. Skin moisture, sebum, elasticity, texture, dullness, and desquamation levels were assessed using a system used for routine skin counseling before applying the trial product and five minutes after its removal. Degree of satisfaction with use of the cellulose mask was investigated using a five-point rating scale.Results: The cellulose mask increased moisture levels in the skin significantly more than moist towels (P < 0.05 after a single application. No obvious effects on other skin characteristics were found. The cellulose mask product rated around 4/5 on the satisfaction rating scale.Conclusions: A single application of the trial cellulose mask enhanced moisture uptake by facial skin. Users also reported being satisfied with the trial product.Keywords: bacterial cellulose, facial mask, skin characteristics, skin hydration, user

  4. Preliminary studies on 1-vinyl-2-pyrrolidone grafting onto cellulose by pre-irradiation method

    Energy Technology Data Exchange (ETDEWEB)

    Severich, Patrick; Dutra, Rodrigo da Costa; Kodama, Yasko, E-mail: ykodama@ipen.br, E-mail: patrick.severich@ipen.br, E-mail: rodrigo.dutra@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN-CNEN/SP), São Paulo, SP (Brazil)

    2017-07-01

    Cellulose is considered a renewable biopolymer most abundant in nature. Better functional surfaces can be Obtained by modifying cellulose. On the other hand, poly vinyl pyrrolidone, PVP, is a synthetic nontoxic, water-soluble polymer frequently used in an extensive variety of applications including several pharmaceutical applications. Grafting 1-vinyl-2-pyrrolidone, NVP, onto polymeric cellulose can be obtained by ionizing radiation. Ionizing radiation grafting can be affected by several factors as environment, solvent, monomer concentration, temperature of graft reaction. Grafting by ionizing radiation can be performed by three methods, pre-irradiation, oxidation by peroxide and simultaneous irradiation. In this study, it was used pre-irradiation method of cellulose. Paper filter without ash, NVP without purification was used in this study. Paper samples were exposed to electron beam from Dynamitron Accelerator with radiation absorbed dose of 25 kGy. Influence of NVP concentration, temperature of reaction after irradiation on degree of grafting (DG) was studied. Also, cellulose radicals of grafted paper samples was studied by electron paramagnetic resonance using a Bruker X-band ESR at room temperature just after heating reaction. Small decrease of cellulose radicals was observed with increasing reaction temperature. It was observed DG small increase with increasing concentration of monomer in solution of water ethanol 50-50 v:v and rising temperature of reaction. Further tests using simultaneous method of grafting of NVP in cellulose paper, in water:ethanol 75:25 v:v solution, induced by gamma irradiation were performed. It was observed homopolymerization forming PVP with increasing monomer concentration. (author)

  5. Preliminary studies on 1-vinyl-2-pyrrolidone grafting onto cellulose by pre-irradiation method

    International Nuclear Information System (INIS)

    Severich, Patrick; Dutra, Rodrigo da Costa; Kodama, Yasko

    2017-01-01

    Cellulose is considered a renewable biopolymer most abundant in nature. Better functional surfaces can be Obtained by modifying cellulose. On the other hand, poly vinyl pyrrolidone, PVP, is a synthetic nontoxic, water-soluble polymer frequently used in an extensive variety of applications including several pharmaceutical applications. Grafting 1-vinyl-2-pyrrolidone, NVP, onto polymeric cellulose can be obtained by ionizing radiation. Ionizing radiation grafting can be affected by several factors as environment, solvent, monomer concentration, temperature of graft reaction. Grafting by ionizing radiation can be performed by three methods, pre-irradiation, oxidation by peroxide and simultaneous irradiation. In this study, it was used pre-irradiation method of cellulose. Paper filter without ash, NVP without purification was used in this study. Paper samples were exposed to electron beam from Dynamitron Accelerator with radiation absorbed dose of 25 kGy. Influence of NVP concentration, temperature of reaction after irradiation on degree of grafting (DG) was studied. Also, cellulose radicals of grafted paper samples was studied by electron paramagnetic resonance using a Bruker X-band ESR at room temperature just after heating reaction. Small decrease of cellulose radicals was observed with increasing reaction temperature. It was observed DG small increase with increasing concentration of monomer in solution of water ethanol 50-50 v:v and rising temperature of reaction. Further tests using simultaneous method of grafting of NVP in cellulose paper, in water:ethanol 75:25 v:v solution, induced by gamma irradiation were performed. It was observed homopolymerization forming PVP with increasing monomer concentration. (author)

  6. Penjadwalan Produksi Garment Menggunakan Algoritma Heuristic Pour

    Directory of Open Access Journals (Sweden)

    Rizal Rachman

    2018-04-01

    Full Text Available Abstrak Penjadwalan merupakan suatu kegiatan pengalokasian sumber daya yang terbatas untuk mengerjakan sejumlah pekerjaan. Proses penjadwalan timbul jika terdapat keterbatasan sumber daya yang dimiliki, karena pada saat ini perusahaan menerapkan sistem penjadwalan manual dimana dengan penjadwalan tersebut masih terdapat beberapa produk yang terlewati sehingga menyebabkan keterlambatan dalam proses produksi, aturan ini sering tidak menguntungkan bagi order yang membutuhkan waktu proses pendek karena apabila order itu berada dibelakang antrian maka harus menunggu lama sebelum diproses dan menyebabkan waktu penyelesaian seluruh order menjadi panjang, sehingga diperlukan adanya pengaturan sumber-sumber daya yang ada secara efisien. Adapun dasar perhitungan Penjadwalan dengan menggunakan algoritma Heuristic Pour. Tahapan-tahapan penelitian terdiri dari pengumpulan data, perhitungan waktu standar, perhitungan total waktu proses berdasarkan job, penjadwalan dengan metode awal perusahaan, penjadwalan dengan metode Heuristik Pour. Berdasarkan hasil penjadwalan menggunakan Heuristik Pour diperoleh penghematan dibanding dengan metode perusahaan saat ini, sehingga dapat digunakan sebagai alternatif metode dalam melakukan penjadwalan pengerjaan proses produksi di perusahaan Garment tersebut. Kata kunci: Penjadwalan Produksi, Algoritma, Heuristic Pour. Abstract Scheduling is a limited resource allocation activity to do a number of jobs. The scheduling process arises if there are limited resources available, because at this time the company implement a manual scheduling system where the scheduling is still there are some products passed so as to cause delays in the production process, this rule is often not profitable for orders that require short processing time because if the order is behind the queue then it must wait a long time before it is processed and cause the completion time of all orders to be long, so it is necessary to regulate the existing

  7. Properties of cellulose triacetate dose meter

    International Nuclear Information System (INIS)

    Tamura, N.; Tanaka, R.; Mitomo, S.; Matsuda, K.; Nagai, S.

    1981-01-01

    Several clear plastics and dyed plastics are commercially available for dosimetry in intense radiation field, especially for radiation processing applications. Among these dose meters cellulose triacetate (CTA) dose meter has two advantages for routine uses; (1) it has linear response in mega-rad dose region and (2) the main product form is long tape. However, the manufacture of Numelec CTA film so far used had been discontinued, and for this reason we developed a new film for dosimetry uses. To determine the manufacturing conditions of the film, we examined the influence of additives, triphenylphosphate (TPP) and others, and film thickness on the dosimetric properties, since these two conditions remarkably influence the sensitivity of the dose meter. It is necessary for the reliability of plastic dose meters that the radiation induced colorations should be understood as radiation chemical processes. In this paper we describe the determination of the manufacturing conditions of the new film, the feature of the new dose meter, and the coloration mechanism. (author)

  8. Modified cellulose nanocrystal for vitamin C delivery.

    Science.gov (United States)

    Akhlaghi, Seyedeh Parinaz; Berry, Richard M; Tam, Kam Chiu

    2015-04-01

    Cellulose nanocrystal grafted with chitosan oligosaccharide (CNC-CSOS) was used to encapsulate vitamin C and prepare CNCS/VC complexes using tripolyphosphte via ionic complexation. The stability of vitamin C and the antioxidant activity of the CNCS/VC complexes were elucidated. The formation of the complex was confirmed using DSC and UV-vis spectrophotometry, and TEM was used to study the morphology of the complexes. The encapsulation efficiency of vitamin C at pH 3 and 5 was 71.6% ± 6.8 and 91.0 ± 1.0, respectively. Strong exothermic peaks observed in isothermal titration calorimetric (ITC) studies at pH 5 could be attributed to additional electrostatic interactions between CNC-CSOS and vitamin C at pH 5. The in vitro release of vitamin C from CNCS/VC complexes showed a sustained release of up to 20 days. The vitamin C released from CNCS/VC complex displayed higher stability compared with the control vitamin C solution, and this was also confirmed from the ITC thermograms. CNC-CSOS possessed a higher scavenging activity and faster antioxidant activity compared with its precursors, i.e., oxidized CNC and CSOS and their physical mixtures. Complexing vitamin C into CNC-CSOS particles yielded a dynamic antioxidant agent, where the vitamin C is released over time and displayed sustained antioxidant properties. Therefore, CNCS/VC can potentially be used in cosmeceutical applications as topical formulations.

  9. Evaluation of the genotoxicity of cellulose nanofibers.

    Science.gov (United States)

    de Lima, Renata; Oliveira Feitosa, Leandro; Rodrigues Maruyama, Cintia; Abreu Barga, Mariana; Yamawaki, Patrícia Cristina; Vieira, Isolda Jesus; Teixeira, Eliangela M; Corrêa, Ana Carolina; Caparelli Mattoso, Luiz Henrique; Fernandes Fraceto, Leonardo

    2012-01-01

    Agricultural products and by products provide the primary materials for a variety of technological applications in diverse industrial sectors. Agro-industrial wastes, such as cotton and curaua fibers, are used to prepare nanofibers for use in thermoplastic films, where they are combined with polymeric matrices, and in biomedical applications such as tissue engineering, amongst other applications. The development of products containing nanofibers offers a promising alternative for the use of agricultural products, adding value to the chains of production. However, the emergence of new nanotechnological products demands that their risks to human health and the environment be evaluated. This has resulted in the creation of the new area of nanotoxicology, which addresses the toxicological aspects of these materials. Contributing to these developments, the present work involved a genotoxicological study of different nanofibers, employing chromosomal aberration and comet assays, as well as cytogenetic and molecular analyses, to obtain preliminary information concerning nanofiber safety. The methodology consisted of exposure of Allium cepa roots, and animal cell cultures (lymphocytes and fibroblasts), to different types of nanofibers. Negative controls, without nanofibers present in the medium, were used for comparison. The nanofibers induced different responses according to the cell type used. In plant cells, the most genotoxic nanofibers were those derived from green, white, and brown cotton, and curaua, while genotoxicity in animal cells was observed using nanofibers from brown cotton and curaua. An important finding was that ruby cotton nanofibers did not cause any significant DNA breaks in the cell types employed. This work demonstrates the feasibility of determining the genotoxic potential of nanofibers derived from plant cellulose to obtain information vital both for the future usage of these materials in agribusiness and for an understanding of their environmental

  10. Rapid hydrolysis of celluloses in homogeneous solution

    Energy Technology Data Exchange (ETDEWEB)

    Garves, K

    1979-01-01

    Dissolution of cellulose (I), cotton, and cotton linters in a mixture of Ac0H, Ac/sub 2/O, H/sub 2/SO/sub 4/, and DMF at 120 to 160 degrees resulted in rapid and complete hydrolysis of I with decomposition of the cellulose acetatesulfate formed by gradual addition of aqueous acid. Highly crystalline I is quickly decomposed to glucose with minimum byproduct formation. Carbohydrate products containing sugar units other than glucose are hydrolyzed with destruction of monosaccharides.

  11. Alcohol for cellulosic material using plural ferments

    Energy Technology Data Exchange (ETDEWEB)

    Hoge, W H

    1977-02-22

    A process is described for producing ethanol (EtOH) from cellulosic materials by first hydrolyzing the material to sugars and then converting the sugars to alcohol by digestion and fermentation. Thus, fibrous cellulosic material obtained from municipal waste slurry was sterilized by autoclaving, followed by inoculation with Trichoderma viride cellulase and Saccharomyces cerevisiae. From 100 g of raw material, 25 mL of 95% EtOH was produced by this method.

  12. Potential of Biosynthesized Silver Nanoparticles as Nanocatalyst for Enhanced Degradation of Cellulose by Cellulase

    Directory of Open Access Journals (Sweden)

    Bipinchandra K. Salunke

    2015-01-01

    Full Text Available Silver nanoparticles (AgNPs as a result of their excellent optical and electronic properties are promising catalytic materials for various applications. In this study, we demonstrate a novel approach for enhanced degradation of cellulose using biosynthesized AgNPs in an enzyme catalyzed reaction of cellulose hydrolysis by cellulase. AgNPs were synthesized through reduction of silver nitrate by extracts of five medicinal plants (Mentha arvensis var. piperascens, Buddleja officinalis Maximowicz, Epimedium koreanum Nakai, Artemisia messer-schmidtiana Besser, and Magnolia kobus. An increase of around twofold in reducing sugar formation confirmed the catalytic activity of AgNPs as nanocatalyst. The present study suggests that immobilization of the enzyme onto the surface of the AgNPs can be useful strategy for enhanced degradation of cellulose, which can be utilized for diverse industrial applications.

  13. Biohydrogen, bioelectricity and bioalcohols from cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.

    2013-03-01

    The demand for renewable energy is increasing due to increasing energy demand and global warming associated with increasing use of fossil fuels. Renewable energy can be derived from biological production of energy carriers from cellulosic biomass. These biochemical processes include biomass fermentation to hydrogen, methane and alcohols, and bioelectricity production in microbial fuel cells (MFCs). The objective of this study was to investigate the production of different energy carriers (hydrogen, methane, ethanol, butanol, bioelectricity) through biochemical processes. Hydrogen production potential of a hot spring enrichment culture from different sugars was determined, and hydrogen was produced continuously from xylose. Cellulolytic and hydrogenic cultures were enriched on cellulose, cellulosic pulp materials, and on silage at different process conditions. The enrichment cultures were further characterized. The effect of acid pretreatment on hydrogen production from pulp materials was studied and compared to direct pulp fermentation to hydrogen. Electricity and alcohol(s) were simultaneously produced from xylose in MFCs and the exoelectrogenic and alcohologenic enrichment cultures were characterized. In the end, the energy yields obtained from different biochemical processes were determined and compared. In this study, cultures carrying out simultaneous cellulose hydrolysis and hydrogen fermentation were enriched from different sources at different operational conditions. These cultures were successfully utilized for cellulose to hydrogen fermentation in batch systems. Based on these results further research should be conducted on continuous hydrogen production from cellulosic materials.

  14. Macroscopic models for single-phase flows in fractured porous medium: application to well tests; Modeles macroscopiques pour les ecoulements monophasiques en milieu poreux fracture: application aux tests de puits

    Energy Technology Data Exchange (ETDEWEB)

    Landereau, P.

    2000-12-01

    We consider pressure diffusion in fractured media, with application to well test interpretation. Using the volume averaging theory of Quintard and Whitaker, the local problem is replaced by a double-porosity large scale description. The parameters of the latter may be computed solving small scale closure problems on a representative volume. Using suitable numerical methods, we have performed a systematic study of these parameters as a function of the topology of the fracture network and matrix to fracture permeability contrast. We find that the matrix permeability plays a significant role near a percolation threshold. Next, we studied the exchange coefficient parameter, by unifying the different definitions of the literature in a single framework using a Fourier analysis. Finally, we applied our technique to well-test interpretation in fractured media by comparing large scale solutions to high resolution direct simulations. We find that at short time scale, very fine grid blocks are needed to get good accuracy. In that case, a good agreement is observed between large scale averaged results and reference simulations. (author)

  15. Observer design for non linear systems: application to automatic fault detection in process engineering; Synthese d'observateurs pour les systemes non lineaires. Application a la detection automatique de pannes en genie des procedes

    Energy Technology Data Exchange (ETDEWEB)

    Armanet, F.

    1999-04-01

    This thesis describes some theoretical contributions in state observer design for non linear systems and the conception of an automatic fault detector system for a petrochemical process. The first chapter is an overview of the observer theory for non linear systems. The second chapter presents a new methodology of high gain observer design for single-output U-uniformly observable systems. It consists in calculate a symmetric positive definite matrix which allows the design of an high gain observer which is exponentially converging. This observer is applied to estimate the concentrations in a perfectly mixed tank reactor with a kinetic scheme corresponding to the conversion of a product A onto a product B which is also converting onto a product C. In the third chapter, the use of high gain observer is extended for systems which are not uniformly observable but all admissible inputs are locally regularly persistent. A characterization of some of this class of inputs is given and an application for the preceding reactor illustrates this theory. The fourth chapter includes a summary of the observer used in residual generator design for linear and non linear systems. Two examples of automatic fault detector using these methods are describes. In annexed documents, a detailed study of the process modeling and the main observability properties are presented. (author)

  16. Bayesian methods to restore and re build images: application to gamma-graphy and to photofission tomography; Methodes bayesiennes pour la restauration et la reconstruction d`images application a la gammagraphie et a la tomographie par photofissions

    Energy Technology Data Exchange (ETDEWEB)

    Stawinski, G

    1998-10-26

    Bayesian algorithms are developed to solve inverse problems in gamma imaging and photofission tomography. The first part of this work is devoted to the modeling of our measurement systems. Two models have been found for both applications: the first one is a simple conventional model and the second one is a cascaded point process model. EM and MCMC Bayesian algorithms for image restoration and image reconstruction have been developed for these models and compared. The cascaded point process model does not improve significantly the results previously obtained by the classical model. To original approaches have been proposed, which increase the results previously obtained. The first approach uses an inhomogeneous Markov Random Field as a prior law, and makes the regularization parameter spatially vary. However, the problem of the estimation of hyper-parameters has not been solved. In the case of the deconvolution of point sources, a second approach has been proposed, which introduces a high level prior model. The picture is modeled as a list of objects, whose parameters and number are unknown. The results obtained with this method are more accurate than those obtained with the conventional Markov Random Field prior model and require less computational costs. (author)

  17. Optimization of the scintillation parameters of the lead tungstate crystals for their application in high precision electromagnetic calorimetry; Optimisation des parametres de scintillation des cristaux de tungstate de plomb pour leur application dans la calorimetrie electromagnetique de haute precision

    Energy Technology Data Exchange (ETDEWEB)

    Drobychev, G

    2000-04-12

    In the frame of this dissertation work scintillation properties of the lead tungstate crystals (PWO) and possibilities of their use were studied foreseeing their application for electromagnetic calorimetry in extreme radiation environment conditions of new colliders. The results of this work can be summarized in the following way. 1. A model of the scintillations origin in the lead tungstate crystals which includes processes influencing on the crystals radiation hardness and presence of slow components in scintillations was developed. 2. An analysis of the influences of the PWO scintillation properties changes on the parameters of the electromagnetic calorimeter was done. 3. Methods of the light collection from the large scintillation elements of complex shape made of the birefringent scintillation crystal with high refraction index and low light yield in case of signal registration by a photodetector with sensitive surface small in compare with the output face of scintillator were Studied. 4. Physical principles of the methodology of the scintillation crystals certification during their mass production foreseeing their installation into a calorimeter electromagnetic were developed. Correlations between the results of measurements of the PWO crystals parameters by different methods were found. (author)

  18. A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process

    International Nuclear Information System (INIS)

    Leal, Glauco F.; Ramos, Luiz A.; Barrett, Dean H.; Curvelo, Antonio Aprígio S.; Rodella, Cristiane B.

    2015-01-01

    Graphical abstract: - Highlights: • A new method to determine the catalytic conversion of cellulose using TGA has been developed. • TGA is able to differentiate between carbon from cellulose and carbon from the catalyst. • Building an analytical curve from TGA results enables the accurate determination of cellulose conversion. - Abstract: The ability to determine the quantity of solid reactant that has been transformed after a catalytic reaction is fundamental in accurately defining the conversion of the catalyst. This quantity is also central when investigating the recyclability of a solid catalyst as well as process control in an industrial catalytic application. However, when using carbon-supported catalysts for the conversion of cellulose this value is difficult to obtain using only a gravimetric method. The difficulty lies in weighing errors caused by loss of the solid mixture (catalyst and non-converted cellulose) after the reaction and/or moisture adsorption by the substrate. These errors are then propagated into the conversion calculation giving erroneous results. Thus, a quantitative method using thermogravimetric analysis (TGA) has been developed to determine the quantity of cellulose after a catalytic reaction by using a tungsten carbide catalyst supported on activated carbon. Stepped separation of TGA curves was used for quantitative analysis where three thermal events were identified: moisture loss, cellulose decomposition and CO/CO 2 formation. An analytical curve was derived and applied to quantify the residual cellulose after catalytic reactions which were performed at various temperatures and reaction times. The catalytic conversion was calculated and compared to the standard gravimetric method. Results showed that catalytic cellulose conversion can be determined using TGA and exhibits lower uncertainty (±2%) when compared to gravimetric determination (±5%). Therefore, it is a simple and relatively inexpensive method to determine catalytic

  19. Study of optically stimulated luminescence (OSL) for radiation detection. Application to an optical fibre {gamma}-radiation sensor; Etude de la luminescence stimulee optiquement (OSL) pour la detection de rayonnements: application a un capteur a fibre optique de rayonnement {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Roy, O. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Electronique et d`Instrumentation Nucleaire]|[Paris-7 Univ., 75 (France)

    1998-12-31

    This work shows up the usefulness of the Optically Stimulated Luminescence (OSL) to resolve radioprotection problems. We study the use of OSL as a gamma dosimetric technique with respect to the ALARA`s concept (As Low As Reasonably Achievable). A new approach based on optical fibers and luminescent materials showing OSL properties (closely related to Thermoluminescence phenomena) is presented in order to improve the remote real time dosimetry monitoring. Like thermoluminescent materials (TLD), OSL materials can trap charges under an irradiation (UV, X, {gamma},...). Instead of heating, the charges trapped are released by light stimulation and produce a visible luminescence which amount is proportional to trap the `data stored` left by irradiation, enabling the dose measurement. The OSL phenomenon offers the same advantages as TLD plus the interesting possibility of a remote optical stimulation. The end-user objective deals with the development of a {gamma}-radiation Optical FIber Sensor (OFS) for dose measurement which can offer new functionalities based on OSL materials coupled with an optical fiber. Rare earth doped Alkaline Earth Sulphides (AES), BAFX:EU{sup 2+} (X = Cl, Br, I) and halogen alkaline have been studied (crystalline form, synthesis techniques, influence of dopants and color centers). Their characteristics are presented and extensively discussed. A specific experimental set-up to characterise various OSL phosphors has been developed. It allows the study of sensitivity, linearity, time decay behaviour of OSL signal and zeroing time. A joint study of OSL and TL has shown the technical limitations as well as the thermal fading and the origin of the long zeroing time. An Optical Fiber Sensor (OFS) based on OSL and using MgS:Sm has been developed for practical applications on nuclear fields. Its specifications are presented and discussed, moreover improvements are proposed. (author) 320 refs.

  20. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    Science.gov (United States)

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage

    International Nuclear Information System (INIS)

    Patchan, M.; Graham, J.L.; Xia, Z.; Maranchi, J.P.; McCally, R.; Schein, O.; Elisseeff, J.H.; Trexler, M.M.

    2013-01-01

    Cellulose is a biologically derived material with excellent wound-healing properties. The high strength of cellulose fibers and the ability to synthesize gels with high optical transparency make these materials suitable for ocular applications. In this study, cellulose materials derived from wood pulp, cotton, and bacterial sources were dissolved in lithium chloride/N,N-dimethylacetamide to form regenerated cellulose hydrogels. Material properties of the resulting hydrogels, including water content, optical transparency, and tensile and tear strengths, were evaluated. Synthesis parameters, including activation time, dissolution time, relative humidity, and cellulose concentration, were found to impact the material properties of the resulting hydrogels. Overnight activation time improves the optical transparency of the hydrogels from 77% to 97% at 550 nm, whereas controlling cellulose concentration improves their tear strength by as much as 200%. On the basis of the measured transmittance and strength values of the regenerated hydrogels prepared via the optimized synthesis parameters, Avicel PH 101, Sigma-Aldrich microcrystalline cellulose 435236, and bacterial cellulose types were prioritized for future biocompatibility testing and potential clinical investigation. - Highlights: • Hydrogels were prepared (via LiCl/DMAc) from 7 different types of cellulose. • Synthesis parameters (activation, gelation, and concentration) were optimized. • Impact of synthesis parameters on transparency and strength was explored

  2. Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage

    Energy Technology Data Exchange (ETDEWEB)

    Patchan, M. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Graham, J.L. [Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue/Ross 720, Baltimore, MD 21205 (United States); Xia, Z.; Maranchi, J.P. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); McCally, R. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Wilmer Eye Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287 (United States); Schein, O. [Wilmer Eye Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287 (United States); Elisseeff, J.H. [Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue/Ross 720, Baltimore, MD 21205 (United States); Trexler, M.M., E-mail: morgana.trexler@jhuapl.edu [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2013-07-01

    Cellulose is a biologically derived material with excellent wound-healing properties. The high strength of cellulose fibers and the ability to synthesize gels with high optical transparency make these materials suitable for ocular applications. In this study, cellulose materials derived from wood pulp, cotton, and bacterial sources were dissolved in lithium chloride/N,N-dimethylacetamide to form regenerated cellulose hydrogels. Material properties of the resulting hydrogels, including water content, optical transparency, and tensile and tear strengths, were evaluated. Synthesis parameters, including activation time, dissolution time, relative humidity, and cellulose concentration, were found to impact the material properties of the resulting hydrogels. Overnight activation time improves the optical transparency of the hydrogels from 77% to 97% at 550 nm, whereas controlling cellulose concentration improves their tear strength by as much as 200%. On the basis of the measured transmittance and strength values of the regenerated hydrogels prepared via the optimized synthesis parameters, Avicel PH 101, Sigma-Aldrich microcrystalline cellulose 435236, and bacterial cellulose types were prioritized for future biocompatibility testing and potential clinical investigation. - Highlights: • Hydrogels were prepared (via LiCl/DMAc) from 7 different types of cellulose. • Synthesis parameters (activation, gelation, and concentration) were optimized. • Impact of synthesis parameters on transparency and strength was explored.

  3. High-sensitivity gamma spectroscopy for extended sources. Application to activity measurements on the human body, on glass, and on soil; Spectrographie gamma a grande sensibilite pour sources etendues. Application a la mesure de l'activite du corps humain, du verre et du sol

    Energy Technology Data Exchange (ETDEWEB)

    Jouve, B

    1962-07-01

    The measurement and location by gamma spectroscopy of human body internal contaminations at maximum permissible levels, and, in certain cases, at lower activities such as that due to {sup 40}K was investigated. The characteristics of the high-sensitivity apparatus used are given, and several assemblies using large-volume NaI(Tl) scintillators are described. The relatively light shielding required for natural radioactivity permitted construction of mobile assembly. Conditions of use are described, and the results are given. All gamma emitting elements were measured in 15 min at levels lower than the tolerance dose. Gamma spectroscopy was also used to determine fission products in the earth and to study radioactive elements in the presence of other emitters. (author) [French] La spectrographie gamma du corps humain permet la mesure et la localisation des contaminations internes au niveau des doses de tolerance et, dans certains cas, celle d'activites plus faibles comme la radioactivite naturelle due principalement au potassium 40. Les caracteristiques des appareils a grande sensibilite permettant ces mesures sont exposees et on decrit plusieurs realisations originales utilisant un scintillateur NaI(Tl) de grand volume. L'epaisseur du blindage a ete limitee a 5 cm de plomb, ainsi, pour une protection suffisante contre les rayonnements ambiants, les appareils sont relativement legers et l'une des realisations a pu etre installee dans un laboratoire mobile. Les conditions d'utilisation (mouvement propre, etalonnage) et les resultats obtenus sont donnes; tous les radioelements emetteurs gamma sont mesurables en 15 minutes a un niveau inferieur a la dose de tolerance. On presente enfin des applications a la spectrographie gamma d'echantillons volumineux (poudres ou liquides) et de tres faible activite: elles interessent des domaines tres varies comme, par exemple, la geophysique (etude des retombees radioactives) ou l'industrie chimique (dosage du potassium dans les

  4. High-sensitivity gamma spectroscopy for extended sources. Application to activity measurements on the human body, on glass, and on soil; Spectrographie gamma a grande sensibilite pour sources etendues. Application a la mesure de l'activite du corps humain, du verre et du sol

    Energy Technology Data Exchange (ETDEWEB)

    Jouve, B

    1962-07-01

    The measurement and location by gamma spectroscopy of human body internal contaminations at maximum permissible levels, and, in certain cases, at lower activities such as that due to {sup 40}K was investigated. The characteristics of the high-sensitivity apparatus used are given, and several assemblies using large-volume NaI(Tl) scintillators are described. The relatively light shielding required for natural radioactivity permitted construction of mobile assembly. Conditions of use are described, and the results are given. All gamma emitting elements were measured in 15 min at levels lower than the tolerance dose. Gamma spectroscopy was also used to determine fission products in the earth and to study radioactive elements in the presence of other emitters. (author) [French] La spectrographie gamma du corps humain permet la mesure et la localisation des contaminations internes au niveau des doses de tolerance et, dans certains cas, celle d'activites plus faibles comme la radioactivite naturelle due principalement au potassium 40. Les caracteristiques des appareils a grande sensibilite permettant ces mesures sont exposees et on decrit plusieurs realisations originales utilisant un scintillateur NaI(Tl) de grand volume. L'epaisseur du blindage a ete limitee a 5 cm de plomb, ainsi, pour une protection suffisante contre les rayonnements ambiants, les appareils sont relativement legers et l'une des realisations a pu etre installee dans un laboratoire mobile. Les conditions d'utilisation (mouvement propre, etalonnage) et les resultats obtenus sont donnes; tous les radioelements emetteurs gamma sont mesurables en 15 minutes a un niveau inferieur a la dose de tolerance. On presente enfin des applications a la spectrographie gamma d'echantillons volumineux (poudres ou liquides) et de tres faible activite: elles interessent des domaines tres varies comme, par exemple, la geophysique (etude des retombees radioactives) ou l'industrie chimique

  5. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess.

    Science.gov (United States)

    Wang, Zhenyu; Cao, Guangli; Zheng, Ju; Fu, Defeng; Song, Jinzhu; Zhang, Junzheng; Zhao, Lei; Yang, Qian

    2015-01-01

    -2 displayed effective degradation of cellulose and produced considerable amounts of butanol when they were co-cultured with C. acetobutylicum ATCC824. This is the first report of application of co-culture to produce butanol directly from cellulose under mesophilic condition. Our results indicated that co-culture of mesophilic cellulolytic microbe and butanol-producing clostridia provides a technically feasible and more simplified way for producing butanol directly from cellulose.

  6. De meilleurs emplois pour l'Asie

    International Development Research Centre (IDRC) Digital Library (Canada)

    Offrir de meilleurs emplois en Asie exigera des interventions créatives de la part des gouvernements, des employeurs et des entrepreneurs. Le CRDI aide les établisse- ments de recherche à trouver des .... de dollars en 2014, ont entraîné une expansion majeure des emplois pour les. Bangladaises. On s'attend à ce que ...

  7. All-cellulose composites of regenerated cellulose fibres by surface selective dissolution

    NARCIS (Netherlands)

    Soykeabkaew, N.; Nishino, T.; Peijs, Ton

    2009-01-01

    All-cellulose composites of Lyocell and high modulus/strength cellulose fibres were successfully prepared using a surface selective dissolution method. The effect of immersion time of the fibres in the solvent during composite's preparation and the effect of the starting fibre's structure on their

  8. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps

    International Nuclear Information System (INIS)

    Iller, Edward; Stupinska, Halina; Starostka, Pawel

    2007-01-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared

  9. Effects of Crystal Orientation on Cellulose Nanocrystals−Cellulose Acetate Nanocomposite Fibers Prepared by Dry Spinning

    Science.gov (United States)

    Si Chen; Greg Schueneman; R. Byron Pipes; Jeffrey Youngblood; Robert J. Moon

    2014-01-01

    This work presents the development of dry spun cellulose acetate (CA) fibers using cellulose nanocrystals (CNCs) as reinforcements. Increasing amounts of CNCs were dispersed into CA fibers in efforts to improve the tensile strength and elastic modulus of the fiber. A systematic characterization of dispersion of CNCs in the polymer fiber and their effect on the...

  10. Preparation of cellulose II and IIII films by allomorphic conversion of bacterial cellulose I pellicles

    International Nuclear Information System (INIS)

    Faria-Tischer, Paula C.S.; Tischer, Cesar A.; Heux, Laurent; Le Denmat, Simon; Picart, Catherine; Sierakowski, Maria-R.

    2015-01-01

    The structural changes resulting from the conversion of native cellulose I (Cel I) into allomorphs II (Cel II) and III I (Cel III I ) have usually been studied using powder samples from plant or algal cellulose. In this work, the conversion of Cel I into Cel II and Cel III I was performed on bacterial cellulose films without any mechanical disruption. The surface texture of the films was observed by atomic force microscopy (AFM) and the morphology of the constituting cellulose ribbons, by transmission electron microscopy (TEM). The structural changes were characterized using solid-state NMR spectroscopy as well as X-ray and electron diffraction. The allomorphic change into Cel II and Cel III I resulted in films with different crystallinity, roughness and hydrophobic/hydrophilicity surface and the films remained intact during all process of allomorphic conversion. - Highlights: • Description of a method to modify the allomorphic structure of bacterial cellulose films • Preparation of films with specific morphologies and hydrophobic/hydrophilic surface characters • First report on cellulose III films from bacterial cellulose under swelling conditions • Detailed characterization of cellulose II and III films with complementary techniques • Development of films with specific properties as potential support for cells, enzymes, and drugs

  11. Degradation of γ-irradiated cellulose by the accumulating culture of a cellulose bacterium

    International Nuclear Information System (INIS)

    Namsaraev, B.B.; Kuznetsova, E.A.; Termkhitarova, N.G.

    1987-01-01

    Possibility of degradation of γ-irradiated cellulose by the accumulating culture of an anaerobic cellulose bacterium has been investigated. Cellulose irradiation by γ-quanta (Co 60 ) has been carried out using the RKh-30 device with 35.9 Gy/min dose rate. Radiation monitoring has been carried out by the standard ferrosulfate method. Samples have been irradiated in dry state or when water presenting with MGy. It is detected that the accumulating culture with the growth on the irradiated cellulose has a lag-phase, which duration reduces when the cellulose cleaning by flushing with distillation water. The culture has higher growth and substrate consumption rate when growing by cellulose irradiated in comparison with non-irradiated one. The economical coefficient is the same in using both the irradiated and non-irradiated cellulose. The quantity of forming reducing saccharides, organic acids, methane and carbon dioxide is the same both when cultivating by irradiated cellulose and by non-irradiated. pH of the culture liquid is shifted to the acid nature in the process of growth

  12. Laser cleaning of particulates from paper: Comparison between sized ground wood cellulose and pure cellulose

    International Nuclear Information System (INIS)

    Arif, S.; Kautek, W.

    2013-01-01

    Visible laser cleaning of charcoal particulates from yellow acid mechanical ground wood cellulose paper was compared with that from bleached sulphite softwood cellulose paper. About one order of magnitude of fluence range is available for a cleaning dynamics between the cleaning threshold and the destruction threshold for two laser pulses. Wood cellulose paper exhibited a higher destruction threshold of the original paper than that of the contaminated specimen because of heat transfer from the hot or evaporating charcoal particulates. In contrast, the contaminated bleached cellulose paper exhibited a higher destruction threshold due to shading by the particulates. The graphite particles are not only detached thermo-mechanically, but also by evaporation or combustion. A cleaning effect was found also outside the illuminated areas due to lateral blasting. Infrared measurements revealed dehydration/dehydrogenation reactions and cross-links by ether bonds together with structural changes of the cellulose chain arrangement and the degree of crystallinity.

  13. Production of Cellulosic Polymers from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    A. U. Israel

    2008-01-01

    Full Text Available Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis, raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri, stem and cob of maize plant (Zea mays, fruit fiber from coconut fruit (Cocos nucifera, sawdusts from cotton tree (Cossypium hirsutum, pear wood (Manilkara obovata, stem of Southern gamba green (Andropogon tectorus, sugarcane baggase (Saccharium officinarum and plantain stem (Musa paradisiaca. They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H2SO4 to obtain cellulose derivatives (Cellulose diacetate and triacetate. The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70. 52.00, 53.00 and 38.70% respectively for all the agricultural wastes utilized. The presence of these cellulose derivatives was confirmed by a solubility test in acetone and chloroform.

  14. Natural cellulose fiber as substrate for supercapacitor.

    Science.gov (United States)

    Gui, Zhe; Zhu, Hongli; Gillette, Eleanor; Han, Xiaogang; Rubloff, Gary W; Hu, Liangbing; Lee, Sang Bok

    2013-07-23

    Cellulose fibers with porous structure and electrolyte absorption properties are considered to be a good potential substrate for the deposition of energy material for energy storage devices. Unlike traditional substrates, such as gold or stainless steel, paper prepared from cellulose fibers in this study not only functions as a substrate with large surface area but also acts as an interior electrolyte reservoir, where electrolyte can be absorbed much in the cellulose fibers and is ready to diffuse into an energy storage material. We demonstrated the value of this internal electrolyte reservoir by comparing a series of hierarchical hybrid supercapacitor electrodes based on homemade cellulose paper or polyester textile integrated with carbon nanotubes (CNTs) by simple solution dip and electrodeposited with MnO2. Atomic layer deposition of Al2O3 onto the fiber surface was used to limit electrolyte absorption into the fibers for comparison. Configurations designed with different numbers of ion diffusion pathways were compared to show that cellulose fibers in paper can act as a good interior electrolyte reservoir and provide an effective pathway for ion transport facilitation. Further optimization using an additional CNT coating resulted in an electrode of paper/CNTs/MnO2/CNTs, which has dual ion diffusion and electron transfer pathways and demonstrated superior supercapacitive performance. This paper highlights the merits of the mesoporous cellulose fibers as substrates for supercapacitor electrodes, in which the water-swelling effect of the cellulose fibers can absorb electrolyte, and the mesoporous internal structure of the fibers can provide channels for ions to diffuse to the electrochemical energy storage materials.

  15. Experimental study on the liquefaction of cellulose in supercritical ethanol

    Science.gov (United States)

    Peng, Jinxing; Liu, Xinyuan; Bao, Zhenbo

    2018-03-01

    Cellulose is the major composition of solid waste for producing biofuel; cellulose liquefaction is helpful for realizing biomass supercritical liquefaction process. This paper is taking supercritical ethanol as the medium, liquefied cellulose with the intermittence installation of high press cauldron. Experiments have studied technical condition and the technology parameter of cellulose liquefaction in supercritical ethanol, and the pyrolysis mechanism was analysed based on the pyrolysis product. Results show that cellulose can be liquefied, can get good effect through appropriate technology condition. Under not catalyst, highest liquefaction rate of cellulose can reach 73.5%. The composition of the pyrolysis product was determined by GC-MS.

  16. Empirical Calibration for Dolomite Stoichiometry Calculation: Application on Triassic Muschelkalk- Lettenkohle Carbonates (French Jura Calibration empirique pour le calcul de la stoechiométrie de la dolomite : application aux carbonates triasiques du Muschelkalk-Lettenkohle (Jura français

    Directory of Open Access Journals (Sweden)

    Turpin M.

    2012-02-01

    Full Text Available This study concerns an approach for dolomite quantification and stoichiometry calculation by using X-ray diffractometry coupled with cell and Rietveld refinements and equipped with a newly substantial database of dolomite composition. A greater accuracy and precision are obtained for quantifying dolomite as well as other mineral phases and calculating dolomite stoichiometry compared to the classical “Lumsden line” and previous methods. The applicability of this approach is verified on dolomite reference material (Eugui and on Triassic (Upper Muschelkalk-Lettenkohle carbonates from the French Jura. The approach shown here is applicable to bulk dolostones as well as to specific dolomite cements and was combined with petrographical and isotopic analyses. Upper Muschelkalk dolomites were formed during burial dolomitization under fluids characterized by increased temperature and variable isotopic composition through burial. This is clear from their Ca content in dolomites which gradually approaches an ideal stoichiometry (from 53.16% to 51.19% through increasing dolomitization. Lettenkohle dolostones consist of near-ideal stoichiometric (51.06%Ca and well-ordered dolomites associated with anhydrite relicts. They originated through both sabkha and burial dolomitization. This contribution gives an improved method for the characterization of different dolomite types and their distinct traits in sedimentary rocks, which allows a better evaluation of their reservoir potential. Cette étude propose une approche pour la quantification de la dolomite et le calcul de sa stoechiométrie grâce à l’utilisation de la diffraction des rayons X couplée aux affinements de maille et de Rietveld et complétée par de nombreuses données issues de la littérature. Elle permet d’obtenir une meilleure justesse et précision pour la quantification de la dolomite (et des autres phases minérales ainsi que pour le calcul de sa stoechiométrie par rapport à l

  17. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  18. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Directory of Open Access Journals (Sweden)

    Ying Deng

    Full Text Available Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC. These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  19. CERN Technical Training 2003: Learning for the LHC! MAGNE-03 : Magnétisme pour l'Electrotechnique Phénomènes magnétiques, matériaux et applications - French version only

    CERN Multimedia

    2003-01-01

    MAGNE-03 est un nouveau cours dans le cadre du programme de l'Enseignement Technique 2003, qui s'adresse aux personnes souhaitant découvrir, améliorer ou remettre à niveau leurs connaissances en magnétisme. Recommandé par l'ancienne division LHC, le cours est donné au CERN par la société CEDRAT Technologies basée à Meylan (France, 38). La participation est ouverte à l'ensemble du personnel technique et scientifique nécessitant une formation en magnétisme dans le cadre de leurs activités professionnelles, courantes ou futures. En ayant organisé des sessions au CERN, une économie d'environ 800.- CHF par participant est réalisée par rapport aux frais nécessaires pour suivre la même formation sur leur site en Isère. MAGNE-03 s'intéresse, entre autres, au développement de la compréhension des phénomènes magnétiques et le "sens physique" appliqués à des produits industriels. Programme : Notions de base en électromagnétisme. Les aspects électrique et mécanique du magnétisme. Les ...

  20. CERN Technical Training 2003: Learning for the LHC! MAGNE-03 : Magnétisme pour l'Electrotechnique
    Phénomènes magnétiques, matériaux et applications. - French version only

    CERN Multimedia

    2003-01-01

    MAGNE-03 est un nouveau cours dans le cadre du programme de l'Enseignement Technique 2003, qui s'adresse aux personnes souhaitant découvrir, améliorer ou remettre à niveau leurs connaissances en magnétisme. Recommandé par l'ancienne division LHC, le cours est donné au CERN par la société CEDRAT Technologies basée à Meylan (France, 38). La participation est ouverte à l'ensemble du personnel technique et scientifique nécessitant une formation en magnétisme dans le cadre de leurs activités professionnelles, courantes ou futures. En ayant organisé des sessions au CERN, une économie d'environ 800.- CHF par participant est réalisée par rapport aux frais nécessaires pour suivre la même formation sur leur site en Isère. MAGNE-03 s'intéresse, entre autres, au développement de la compréhension des phénomènes magnétiques et le "sens physique" appliqués à des produits industriels. Programme : Notions de base en électromagnétisme. Les aspects électrique et mécanique du magnétisme. Les ...

  1. CERN Technical Training 2003: Learning for the LHC !
    MAGNE-03 : MagnEtisme pour l'Electrotechnique
    Phénomènes magnétiques, matériaux et applications - French version only

    CERN Multimedia

    2003-01-01

    MAGNE-03 est un cours dans le cadre du programme de l'Enseignement technique 2003 qui s'adresse aux personnes souhaitant découvrir, améliorer ou remettre à niveau leurs connaissances en magnétisme. Le cours est donné au CERN par la société CEDRAT Technologies basée à Meylan (France). La participation est ouverte à l'ensemble du personnel technique et scientifique nécessitant une formation en magnétisme dans le cadre de leurs activités professionnelles, courantes ou futures. En ayant organisé des sessions au CERN, une importante économie par participant est réalisée par rapport aux frais nécessaires pour suivre la même formation sur leur site en Isère. MAGNE-03 s'intéresse, entre autres, au développement de la compréhension des phénomènes magnétiques et le «&...

  2. Composites organiques-inorganiques pour la substitution et la réparation osseuse : concepts, premiers résultats et potentialités Organic-inorganic composites for bone substitute and bone repair applications: concepts, first results and potentialities

    Directory of Open Access Journals (Sweden)

    Peroglio Marianna

    2013-11-01

    Full Text Available Ce document présente un très bref aperçu de l'intérêt des matériaux composites organique – inorganique pour la substitution et la réparation osseuse. Deux types de composites sont présentés. Dans une première partie, des matériaux poreux en céramique ou bio-verre élaborés par la technologie des poudres sont imprégnés par un polymère. Cette imprégnation se traduit par une forte augmentation de l'énergie à la rupture du squelette céramique, permettant de limiter le risque de rupture fragile. L'augmentation des propriétés mécaniques des substituts osseux céramiques par une phase polymère peut être mise en regard des mécanismes de renforcement présents dans l'os et du rôle du collagène sur la ténacité de celui-ci. Dans une deuxième partie, des composites denses sont élaborés par des technologies de plasturgie, qui permettent de réaliser des produits de formes complexes. Les phases polymères et céramiques sont ici choisies pour leurs caractères respectifs résorbable et ostéo-inducteur. Ces composites permettent la création rapide d'hydroxyapatite à leur surface et accélèrent la guérison osseuse. A terme, ils sont résorbés. Ces deux exemples démontrent les potentialités de tels multi-matériaux architecturés pour la réalisation de substituts osseux plus résistants mécaniquement et apportant de nouvelles fonctionnalités, ainsi que pour la production de produits d'ostéosynthèse favorisant les processus de guérison osseuse. Here we show a brief outline of organic-inorganic composites for bone substitute and bone repair applications. Two types of composites are presented. In a first strategy, porous ceramics and bioactive glasses processed by sintering methods are impregnated by a polymer. The strong improvement of the mechanical properties of the ceramic scaffolds by a polymer phase can be linked to the one present in bone with the role of collagen on bone toughness. In a second strategy, a

  3. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  4. Isotopic composition of cellulose from aquatic organisms

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants and animals collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined. The delta 18 O values of cellulose from all the plants and animals were 27 +- 3 parts per thousand more positive than the delta 18 O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The deltaD values of the non-exchangeable hydrogen of cellulose from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200 parts per thousand for different species of algae collected at a single site; the corresponding difference for different species of tunicates and vascular plants was 60 and 20 parts per thousand respectively. The deltaD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60 parts per thousand. The relationship between the deltaD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. (author)

  5. Market projections of cellulose nanomaterial-enabled products-- Part 2: Volume estimates

    Science.gov (United States)

    John Cowie; E.M. (Ted) Bilek; Theodore H. Wegner; Jo Anne Shatkin

    2014-01-01

    Nanocellulose has enormous potential to provide an important materials platform in numerous product sectors. This study builds on previous work by the same authors in which likely high-volume, low-volume, and novel applications for cellulosic nanomaterials were identified. In particular, this study creates a transparent methodology and estimates the potential annual...

  6. Chapter 2.3 Cellulose Nanofibril Composite Substrates for Flexible Electronics

    Science.gov (United States)

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2013-01-01

    Flexible electronics have a large number of potential applications, including malleable displays and wearable computers. Current research into high-speed, flexible electronic substrates uses plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from cellulose...

  7. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  8. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Chiappone, A.; Gerbaldi, C.; Ijeri, Vijaykumar S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.

    2011-01-01

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  9. Optimized Monitoring of Production of Cellulose Nanowhiskers from Opuntia ficus-indica (Nopal Cactus

    Directory of Open Access Journals (Sweden)

    Horacio Vieyra

    2015-01-01

    Full Text Available Preparation of cellulose nanowhiskers (CNWs has grown significantly because they are useful for a wide range of applications. Additional advantage in their design requires that they meet the following characteristics: nontoxicity, abundance, sustainability, renewability, and low cost. To address these requirements, nanowhiskers were prepared from Opuntia ficus-indica (nopal cellulose by acid hydrolysis. Monitoring the process of CNWs preparation is necessary to ensure maximum yield and purity of the end product. In this study, the cellulose preparation was monitored by analyzing microscopic morphology by SEM; the purity degree was determined by fluorescence microscopy as a novel and rapid technique, and FTIR spectroscopy was used for confirmation. The additional parameters that monitored the process were the crystallinity index by X-ray diffraction and the size of the particle by dynamic light scattering (DLS. Nopal cellulose was found to be comparable to commercial microcrystalline cellulose. The use of Opuntia ficus-indica is a viable alternative for the production of highly pure CNWs and the strategy to supervise the preparation process was rapid.

  10. Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Bruno D., E-mail: brunodufaumattos@gmail.com [Federal University of Paraná, Integrated Graduate Program in Engineering and Materials Science, Polytechnic Center (Brazil); Magalhães, Washington L. E. [Embrapa Florestas (Brazil)

    2016-09-15

    Despite the potential application of nanotechnology in the agricultural sector, it is not as competitive as other industrial sectors because these approaches do not demonstrate a sufficient economic return to counterbalance the high production costs. For biocidal purposes, the reduction of the initial costs can be addressed if biogenic nanosilica and nanofibrillated cellulose were used to prepare nanocomposite for further utilization as support for slow-release of tebuconazole. Infrared spectroscopy and thermogravimetric analysis revealed that biocide was entrapped in the cellulose/silica nanocomposites network. The scanning electron microscopy and X-ray microtomography evaluation showed the nanocomposite’s microstructure based on irregular shape nanosilica blended by nanofibrillated cellulose in a randomly organized network. Elemental mapping images showed the tebuconazole better dispersed in the composite blended with lower content of cellulose. The nanofibrillated cellulose played an important role in the release rate of the biocide mainly at short-term periods. At 15 days of immersion, the pure biocide had 95 % release compared with 30–45 % release of the tebuconazole loaded in the nanocomposites.Graphical abstract.

  11. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    Science.gov (United States)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  12. A Novel Platform for Evaluating the Environmental Impacts on Bacterial Cellulose Production.

    Science.gov (United States)

    Basu, Anindya; Vadanan, Sundaravadanam Vishnu; Lim, Sierin

    2018-04-10

    Bacterial cellulose (BC) is a biocompatible material with versatile applications. However, its large-scale production is challenged by the limited biological knowledge of the bacteria. The advent of synthetic biology has lead the way to the development of BC producing microbes as a novel chassis. Hence, investigation on optimal growth conditions for BC production and understanding of the fundamental biological processes are imperative. In this study, we report a novel analytical platform that can be used for studying the biology and optimizing growth conditions of cellulose producing bacteria. The platform is based on surface growth pattern of the organism and allows us to confirm that cellulose fibrils produced by the bacteria play a pivotal role towards their chemotaxis. The platform efficiently determines the impacts of different growth conditions on cellulose production and is translatable to static culture conditions. The analytical platform provides a means for fundamental biological studies of bacteria chemotaxis as well as systematic approach towards rational design and development of scalable bioprocessing strategies for industrial production of bacterial cellulose.

  13. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  14. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy

    Science.gov (United States)

    Donaldson, Lloyd; Vaidya, Alankar

    2017-03-01

    Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.

  15. Biodegradable plastics derived from micro-fibrillated cellulose fiber and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, M.; Hosokawa, J.; Yoshihara, K.; Kubo, T.; Kabeya, H.; Endo, T. [Shikoku National Industrial Research Inst., Kagawa (Japan)

    1995-12-25

    We have been carrying out studies to develop biodegradable plastics from natural polysaccharides. We have found that a combination of micro-fibrillated cellulose fiber and chitosan produces a useful material that can be used to form biodegradable film and moldings. Cellulose-chitosan composite film demonstrate higher strength than general purpose plastic films, and wet strength peaks when chitosan content is 10-20%. The relatively small amount of chitosan needed is economically convenient because chitosan is more expensive than cellulose. This film biodegrade well in soil, completely dissolving and disappearing in two months. Biodegradability is influenced by the temperature used in thermal treatment the film, the quantity of acid groups in the cellulose, and other factors. These characteristics will be used to control decomposition. Since cellulose-chitosan-plastics are not thermoplastics, we have been working on joint research with companies to produce films, nonwoven fabrics and foams. We discuss here the properties and application of these composite moldings. 4 refs., 3 figs., 3 tabs.

  16. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels.

    Science.gov (United States)

    Raucci, Maria Grazia; Alvarez-Perez, Marco Antonio; Demitri, Christian; Sannino, Alessandro; Ambrosio, Luigi

    2012-01-01

    The aim of this project was to study the proliferation and differentiation of human Mesenchymal Stem Cells (hMSCs) onto a cellulose-based hydrogel for bone tissue engineering. Modified-cellulose hydrogel was prepared via double esterification crosslinking using citric acid. The response of human Mesenchymal Stem Cells (hMSCs) in terms of cell proliferation and differentiation into osteoblastic phenotype was evaluated by using Alamar blue assay and Alkaline phosphatase activity. The results showed that CMCNa and CMCNa_CA have no negative effect on hMSC, adhesion and proliferation. Moreover, the increase of the ALP expression for CMCNa_CA confirms the ability of the hydrogels to support the osteoblastic differentiation. The cellulose-based hydrogels have a potential application as filler in bone tissue regeneration.

  17. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.

    Science.gov (United States)

    Sehaqui, H; Kulasinski, K; Pfenninger, N; Zimmermann, T; Tingaut, P

    2017-01-09

    We report herein the preparation of 4-6 nm wide carboxyl-functionalized cellulose nanofibers (CNF) via the esterification of wheat fibers with cyclic anhydrides (maleic, phtalic, and succinic) followed by an energy-efficient mechanical disintegration process. Remarkable results were achieved via succinic anhydride esterification that enabled CNF isolation by a single pass through the microfluidizer yielding a transparent and thick gel. These CNF carry the highest content of carboxyl groups ever reported for native cellulose nanofibers (3.8 mmol g -1 ). Compared to conventional carboxylated cellulose nanofibers prepared via Tempo-mediated oxidation of wheat fibers, the present esterified CNF display a higher molar-mass and a better thermal stability. Moreover, highly carboxylated CNF from succinic anhydride esterification were effectively integrated into paper filters for the removal of lead from aqueous solution and are potentially of interest as carrier of active molecules or as transparent films for packaging, biomedical or electronic applications.

  18. Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber

    Directory of Open Access Journals (Sweden)

    Mohd Saiful Asmal Rani

    2014-09-01

    Full Text Available A cellulose derivative, carboxymethyl cellulose (CMC, was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4 were prepared by the solution-casting technique. The biopolymer-based electrolyte films were characterized by Fourier Transform Infrared spectroscopy to investigate the formation of the CMC–CH3COONH4 complexes. Electrochemical impedance spectroscopy was conducted to obtain their ionic conductivities. The highest conductivity at ambient temperature of 5.77 × 10−4 S cm−1 was obtained for the electrolyte film containing 20 wt% of CH3COONH4. The biopolymer electrolyte film also exhibited electrochemical stability up to 2.5 V. These results indicated that the biopolymer electrolyte has great potential for applications to electrochemical devices, such as proton batteries and solar cells.

  19. Haptic device development based on electro static force of cellulose electro active paper

    Science.gov (United States)

    Yun, Gyu-young; Kim, Sang-Youn; Jang, Sang-Dong; Kim, Dong-Gu; Kim, Jaehwan

    2011-04-01

    Haptic is one of well-considered device which is suitable for demanding virtual reality applications such as medical equipment, mobile devices, the online marketing and so on. Nowadays, many of concepts for haptic devices have been suggested to meet the demand of industries. Cellulose has received much attention as an emerging smart material, named as electro-active paper (EAPap). The EAPap is attractive for mobile haptic devices due to its unique characteristics in terms of low actuation power, suitability for thin devices and transparency. In this paper, we suggest a new concept of haptic actuator with the use of cellulose EAPap. Its performance is evaluated depending on various actuation conditions. As a result, cellulose electrostatic force actuator shows a large output displacement and fast response, which is suitable for mobile haptic devices.

  20. Effect of cellulose nanocrystals from corn cob with dispersion agent polyvinyl pyrrolidone in natural rubber latex film after aging treatment

    Science.gov (United States)

    Harahap, H.; Ridha, M.; Halimatuddahliana; Taslim; Iriany

    2018-02-01

    This study about the resistance of natural rubber latex films using nanocrystals cellulose filler from corn cob waste by aging treatment. Corn cob used as organic filler composed of cellulose, hemicellulose, and lignin. Each component has a potential for reuse, such as cellulose. Cellulose from corn cob has potential application as a filler prepared by hydrolysis process using a strong acid. The producing of natural rubber latex films through coagulant dowsing process. This research started with the pre-vulcanization process of natural rubber latex at 70 °C and followed by process of vulcanization at 110 °C for 20 minutes. Natural rubber latex films that have been produced continued with the aging treatment at 70 °C for 168 hours. The mechanical properties of natural rubber latex films after aging treatment are the tensile strength, elongation at break, M100 and M300 have performed.