WorldWideScience

Sample records for cellulose filter membranes

  1. Comparison of polycarbonate and cellulose acetate membrane filters for isolation of Campylobacter concisus from stool samples

    DEFF Research Database (Denmark)

    Linde Nielsen, Hans; Engberg, Jørgen; Ejlertsen, Tove;

    2013-01-01

    One thousand seven hundred ninety-one diarrheic stool samples were cultivated for Campylobacter spp. We found a high prevalence of Campylobacter concisus with use of a polycarbonate filter (n = 114) compared to a cellulose acetate filter (n = 79) (P ... to the commonly used cellulose acetate filter for detection of C. concisus....

  2. Biomimetic membranes with aqueous nano channels but without proteins: impedance of impregnated cellulose ester filters.

    Science.gov (United States)

    Kocherginsky, Nikolai M; Lvovich, Vadim F

    2010-12-01

    Earlier we have shown that many important properties of ionic aqueous channels in biological membranes can be imitated using simple biomimetic membranes. These membranes are composed of mixed cellulose ester-based filters, impregnated with isopropyl myristate or other esters of fatty acids, and can be used for high-throughput drug screening. If the membrane separates two aqueous solutions, combination of relatively hydrophilic polymer support with immobilized carboxylic groups results in the formation of thin aqueous layers covering inner surface of the pores, while the pore volume is filled by lipid-like substances. Because of these aqueous layers biomimetic membranes even without proteins have a cation/anion ion selectivity and specific (per unit of thickness) electrical properties, which are similar to typical properties of biological membranes. Here we describe frequency-dependent impedance of the isopropyl myristate-impregnated biomimetic membranes in the 4-electrode arrangement and present the results as Bode and Nyquist diagrams. When the membranes are placed in deionized water, it is possible to observe three different dispersion processes in the frequency range 0.1 Hz to 30 kHz. Only one dispersion is observed in 5 mM KH(2)PO(4) solution. It is suggested that these three dispersion features are determined by (a) conductivity in aqueous structures/channels, formed near the internal walls of the filter pores at high frequencies, (b) dielectric properties of the whole membrane at medium frequencies, determined by polymer support, aqueous layers and impregnating oil, and, finally, (c) by the processes in hydrated liquid crystal structures formed in pores by impregnating oil in contact with water at low frequencies.

  3. Filtering absorption and visual detection of methylene blue by nitrated cellulose acetate membrane

    Energy Technology Data Exchange (ETDEWEB)

    He, Shengbin; Fang, He; Xu, Xiaoping [College of Chemistry, Fuzhou University, Fuzhou (China)

    2016-04-15

    Wastewater-containing industrial dyes are quite harmful since most dyes are stable and toxic to humans. Detection and removing of those dyes from wastewater is necessary to ensure water supply safety. In present work, a nitrated cellulose acetate (NCA) microfiltration membrane was developed for specific absorption and visible detection of methylene blue (MB). The NCA microfiltration membrane overcomes the defect of high driven pressure in nanofiltration or ultrafiltration process. By absorption effect, the NCA membrane also overcomes the defect of low retention rate of traditional microfiltration membrane to dyes. The residual MB can be removed quickly and thoroughly by microfiltration absorption. The microfiltration membrane can also be used for visual detection of MB by concentrating the MB on membrane. The limit of detection is as low as 0.001 mg/L. The detection method is simple and free of large-scale instrument, and can be used as a portable device for spot detection of dye-contaminated water.

  4. Membrane filtration of nickel(II) on cellulose acetate filters for its preconcentration, separation, and flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Soylak, Mustafa [Chemistry Dept., Faculty of Science Arts, University of Erciyes, Kayseri (Turkey); Unsal, Yunus Emre; Aydin, Ayse [Fen Bilimleri Enstitusu, University of Erciyes, Kayseri (Turkey); Kizil, Nebiye [Saglik Bilimleri Enstitusu, University of Erciyes, Kayseri (Turkey)

    2010-01-15

    An enrichment method for trace amounts of Ni(II), as 8-hydroxyquinoline chelates, has been established on a cellulose acetate membrane filter. Ni(II)-8-hydroxyquinoline chelates adsorbed on a membrane filter were eluted using 5 mL of 1 M HNO{sub 3}. The eluent nickel concentration was determined by a flame atomic absorption spectrometer. The influence of some analytical parameters, including pH, amount of reagent, sample volume, etc., on recovery was investigated. The interference of co-existent ions was studied. The nickel detection limit was 4.87 {mu}g/L. The method was applied to real samples for the determination of nickel(II) ions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Concurrent measurements of size-segregated particulate sulfate, nitrate and ammonium using quartz fiber filters, glass fiber filters and cellulose membranes

    Science.gov (United States)

    Tian, Shili; Pan, Yuepeng; Wang, Jian; Wang, Yuesi

    2016-11-01

    Current science and policy requirements have focused attention on the need to expand and improve particulate matter (PM) sampling methods. To explore how sampling filter type affects artifacts in PM composition measurements, size-resolved particulate SO42-, NO3- and NH4+ (SNA) were measured on quartz fiber filters (QFF), glass fiber filters (GFF) and cellulose membranes (CM) concurrently in an urban area of Beijing on both clean and hazy days. The results showed that SNA concentrations in most of the size fractions exhibited the following patterns on different filters: CM > QFF > GFF for NH4+; GFF > QFF > CM for SO42-; and GFF > CM > QFF for NO3-. The different patterns in coarse particles were mainly affected by filter acidity, and that in fine particles were mainly affected by hygroscopicity of the filters (especially in size fraction of 0.65-2.1 μm). Filter acidity and hygroscopicity also shifted the peaks of the annual mean size distributions of SNA on QFF from 0.43-0.65 μm on clean days to 0.65-1.1 μm on hazy days. However, this size shift was not as distinct for samples measured with CM and GFF. In addition, relative humidity (RH) and pollution levels are important factors that can enhance particulate size mode shifts of SNA on clean and hazy days. Consequently, the annual mean size distributions of SNA had maxima at 0.65-1.1 μm for QFF samples and 0.43-0.65 μm for GFF and CM samples. Compared with NH4+ and SO42-, NO3- is more sensitive to RH and pollution levels, accordingly, the annual mean size distribution of NO3- exhibited peak at 0.65-1.1 μm for CM samples instead of 0.43-0.65 μm. These methodological uncertainties should be considered when quantifying the concentrations and size distributions of SNA under different RH and haze conditions.

  6. CHARACTERIZATION OF REGENERATED CELLULOSE MEMBRANES HYDROLYZED FROM CELLULOSE ACETATE

    Institute of Scientific and Technical Information of China (English)

    Yun Chen; Xiao-peng Xiong; Guang Yang; Li-na Zhang; Sen-lin Lei; Hui Lianga

    2002-01-01

    A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree ofsubstitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration,Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability weresignificantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept thegood pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity andthermostability. Therefore, the application range of cellulose acetate membranes can be expanded.

  7. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  8. POLYETHERSULFONE COMPOSITE MEMBRANE BLENDED WITH CELLULOSE FIBRILS

    Directory of Open Access Journals (Sweden)

    Ping Qu

    2010-09-01

    Full Text Available Polyethersulfone (PES is a common material used for ultrafiltration (UF membranes, which has good chemical resistance, high mechanical properties, and wide temperature tolerances. The hydrophobic property of the PES membrane seriously limits its application. Cellulose fibrils are composed of micro-sized and nano-sized elements, which have high hydrophilicity, strength, and biodegradation. A composite membrane was prepared by the phase inversion induced by an immersion process. The characteristics of the composite membrane were investigated with Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and atomic force microscopy (AFM. The pure water flux of the composite membrane increased dramatically with the increase of cellulose firbils. Mean pore size and porosity were significantly increased. Both mechanical properties and hydrophilicity were enhanced due to the addition of the cellulose firbils.

  9. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  10. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  11. Assessment of ceramic membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H. [and others

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  12. Nanofibrous microfiltration membrane based on cellulose nanowhiskers.

    Science.gov (United States)

    Ma, Hongyang; Burger, Christian; Hsiao, Benjamin S; Chu, Benjamin

    2012-01-09

    A multilayered nanofibrous microfiltration (MF) membrane system with high flux, low pressure drop, and high retention capability against both bacteria and bacteriophages (a virus model) was developed by impregnating ultrafine cellulose nanowhiskers (diameter about 5 nm) into an electrospun polyacrylonitrile (PAN) nanofibrous scaffold (fiber diameter about 150 nm) supported by a poly(ethylene terephthalate) (PET) nonwoven substrate (fiber diameter about 20 μm). The cellulose nanowhiskers were anchored on the PAN nanofiber surface, forming a cross-linked nanostructured mesh with very high surface-to-volume ratio and a negatively charged surface. The mean pore size and pore size distribution of this MF system could be adjusted by the loading of cellulose nanowhiskers, where the resulting membrane not only possessed good mechanical properties but also high surface charge density confirmed by the conductivity titration and zeta potential measurements. The results indicated that a test cellulose nanowhisker-based MF membrane exhibited 16 times higher adsorption capacity against a positively charged dye over a commercial nitrocellulose-based MF membrane. This experimental membrane also showed full retention capability against bacteria, for example, E. coli and B. diminuta (log reduction value (LRV) larger than 6) and decent retention against bacteriophage MS2 (LRV larger than 2).

  13. Bacteria/virus filter membrane

    Science.gov (United States)

    Lysaght, M. S.; Goodwin, F.; Roebelen, G.

    1977-01-01

    Hollow acrylate fiber membrane that filters bacterial and viral organisms can be used with closed-cycle life-support systems for underwater habitations or laboratories. Membrane also has applications in fields of medicine, gnotobiotics, pharmaceutical production, and industries and research facilities that require sterile water. Device eliminates need for strong chemicals or sterilizing agents, thereby reducing costs.

  14. Cellulose-Based Membranes for Solutes Fractionation

    Science.gov (United States)

    Anokhina, T. S.; Yushkin, A. A.; Volkov, V. V.; Antonov, S. V.; Volkov, A. V.

    This work was focused on investigation of industrial cellophane film as a membrane material for solvent nanofiltration. The effect of conditioning of cellophane membranes by stepwise changing of composition of ethanol-water binary mixtures (from ethanol to water and from water to ethanol) was studied. It was shown that such treatment leads to an increase of ethanol permeability more than two orders of magnitude over initial untreated film samples. Treated cellophane membranes possess the ethanol permeability coefficient comparable with the values for highly permeability glassy polymers. Investigation of cellophane swelling in water ethanol solutions allowed to conclude that during the treatment formation of porous in the film takes place due to increase of inter chain distances. Observed high ethanol permeability connected with the fact that formed porous structure remains after the replacement of water with ethanol. Also it was shown that rejection coefficients of a number of dyes (MW 350) were in good agreement with the degree of hydrophobicity/hydrophilicity and ability of the solvent to form hydrogen bonding with the solute molecules. It was demonstrated that cellulose-based membranes can be complimentary for other type of the membranes in fractionation of multi-components solutions.

  15. Improvement on filterability in the aerobic treatment of carboxymethyl cellulose (CMC wastewater

    Directory of Open Access Journals (Sweden)

    Qing Pei Ye

    2014-01-01

    Full Text Available CMC is chemically modified from natural cellulose and widely applied in various industries. CMC wastewater consists mainly of sodium glycolate, sodium chloride and water. With extremely high COD and salinity, high concentration CMC wastewater can’t be biologically treated, but with COD and salinity around 15000 mg/L and 30000 mg/L respectively, low concentration CMC wastewater can be aerobically treated. In a CMC factory, the treatment of low concentration wastewater with aerobic MBR was successful except for one serious problem: poor filterability. Two trial solutions: adding micronutrients and applying MBBR were expected to improve the filterability. In the experiment, adding micronutrients was achieved by mixing filtered natural water into the wastewater, rather than dosing chemicals into it. The treatment efficiency of both solutions was close, but adding micronutrients showed distinguished performance in improving filterability, which includes higher filtration flux and slighter membrane fouling. Adding micronutrients also effectively improved the filterability under severe salinity shock.

  16. Membrane filters and membrane-filtration processes for health care.

    Science.gov (United States)

    Eudailey, W A

    1983-11-01

    The development of membrane-filtration processes is reviewed, and current types and uses of membrane filtration in health care is discussed. Development of adequate support structures for filters and of disposable filtration devices has facilitated development of filtration processes for pharmaceutical industry, manufacturing in hospital pharmacies, and direct patient care. Hydrophobic filters have also been developed; aqueous solutions cannot wet the pore structures of these filters and therefore cannot pass. Sterility-testing systems have also been developed. There are two types of filters: depth (constructed of compacted fibers) and membrane (which have a homogeneous internal structure). Depth filters retain only a portion of particles in a particular size range and are generally not acceptable for use in health care. Membrane filters retain all particles of a given size. Types of membrane filters are selected for specific uses based on needed flow rates, particulate load, and retention capability. Membrane filters may be validated using bacterial-passage, bubble-point, and diffusion tests. Most membrane filters used in health care are microporous filters that retain particles in the 0.1-10-micron size range. Applications are currently being developed for ultrafilters, which retain both particles and substances with large molecular structures such as proteins, and reverse-osmosis filter membranes, which allow only water or water-miscible solvents of very low molecular weights to pass. Experience in engineering designs, quality assurance, and test procedures has led to the development of many safe, reliable, and effective membrane products for health care.

  17. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  18. Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose.

    Science.gov (United States)

    Abels, Christian; Thimm, Kristof; Wulfhorst, Helene; Spiess, Antje Christine; Wessling, Matthias

    2013-12-01

    In this work, a membrane-based downstream process for the recovery of glucose from cellulose hydrolysis is described and evaluated. The cellulose is pretreated with the ionic liquid 1,3-dimethyl-imidazolium dimethylphosphate to reduce its crystallinity. After enzymatic conversion of cellulose to glucose the hydrolysate is filtered with an ultrafiltration membrane to remove residual particulates and enzymes. Nanofiltration is applied to purify the glucose from molecular intermediates, such as cellobiose originating from the hydrolysis reaction. Finally, the ionic liquid is removed from the hydrolysate via electrodialysis. Technically, these process steps are feasible. An economic analysis of the process reveals that the selling price of glucose from this production process is about 2.75 €/kg which is too high as compared to the current market price.

  19. Immobilization of Glucose Oxidase on Cellulose/Cellulose Acetate Membrane and its Detection by Scanning Electrochemical Microscope (SECM)

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yi He ZHANG; Zheng Yu YANG

    2004-01-01

    Cellulose/cellulose acetate membranes were prepared and functionalized by introducing amino group on it, and then immobilized the glucose oxidase (Gox) on the functionalizd membrane. SECM was applied for the detection of enzyme activity immobilized on the membrane. Immobilized biomolecules on such membranes was combined with analysis apparatus and can be used in bioassays.

  20. Modified cellulosic dialyzer membranes: an investigative tool in thrombogenicity studies.

    Science.gov (United States)

    Mahiout, A; Meinhold, H; Kessel, M; Vienken, J; Baurmeister, U

    1988-01-01

    We have previously demonstrated that chemical modification of cellulosic membranes with dimethyl-amino-ethyl (DEAE) groups significantly improves membrane properties in terms of biocompatibility. Here, we show that DEAE substitution also alters the membrane's thrombogenic properties, and cellulosic membranes with various amounts of DEAE substitution were produced. Clinical dialyzers were constructed using two experimental membrane materials: modified cellulose-low (MC-low) and MC-high; standard unsubstituted cellulose was used as a control. Six patients were treated for a period of 3 weeks with each type of dialyzer and a heparin dose of less than 6000 IU/treatment. MC-low exhibited less extracorporeal beta-thromboglobulin and thromboxane B2 release than MC-high or Cuprophan. In addition, residual blood volume after clinical use was lower in the MC-low type. MC-low and MC-high induced less complement activation than Cuprophan, as characterized by extracorporeal C5a and C3a plasma concentrations (75% less C5a generation and 50 to 70% less C3a generation than unsubstituted cellulose).

  1. Optically transparent membrane based on bacterial cellulose/polycaprolactone

    Directory of Open Access Journals (Sweden)

    H. S. Barud

    2013-01-01

    Full Text Available Optically transparent membranes from bacterial cellulose (BC/polycaprolactone (PCL have been prepared by impregnation of PCL acetone solution into dried BC membranes. UV-Vis measurements showed an increase on transparency in BC/PCL membrane when compared with pristine BC. The good transparency of the BC/PCL can be related to the presence of BC nanofibers associated with deposit of PCL nano-sized spherulites which are smaller than the wavelength of visible light and practically free of light scattering. XRD results show that cellulose type I structure is preserved inside the BC/PCL membrane, while the mechanical properties suggested indicated that PCL acts as a plasticizer for the BC membrane. The novel BC/PCL membrane could be used for preparation of fully biocompatible flexible display and biodegradable food packaging.

  2. Optimizing internal structure of membrane filters

    Science.gov (United States)

    Cummings, Linda; Sanaei, Pejman

    2016-11-01

    Membrane filters are in widespread use, and manufacturers have considerable interest in improving their performance, in terms of particle retention properties, and total throughput over the filter lifetime. In this regard, it has long been known that membrane properties should not be uniform over the membrane depth; rather, membrane permeability should decrease in the direction of flow. While much research effort has been focused on investigating favorable membrane permeability gradients, this work has been largely empirical in nature. We present a simple, first-principles model for flow through and fouling of a membrane filter, accounting for permeability gradients via variable pore size. Our model accounts for two fouling modes: sieving; and particle adsorption within pores. For filtration driven by a fixed pressure drop, flux through the membrane eventually goes to zero, as fouling occurs and pores close. We address issues of filter performance as the internal pore structure is varied, by comparing the total throughput obtained with equal-resistance membranes. Within certain classes of pore profiles we are able to find the optimum pore profile that maximizes total throughput over the filter lifetime, while maintaining acceptable particle removal from the feed. Partial support from NSF DMS 1261596 is gratefully acknowledged.

  3. Filterability and Sludge Concentration in Membrane Bioreactors

    NARCIS (Netherlands)

    Lousada-Ferreira, M.

    2011-01-01

    The Thesis entitled “Filterability and Sludge Concentration in Membrane Bioreactors” aims at explaining the relation between Mixed Liquid Suspended Solids (MLSS) concentration, the amount of solids in the wastewater being treated, also designated as sludge, and filterability, being the ability of th

  4. Microbiological safety of household membrane water filter.

    Science.gov (United States)

    Zhang, Yongli; Wang, Qing; Lou, Wei; Wang, Yuxin; Zhu, Xuan

    2013-04-01

    Waterborne pathogens outbreaks are major reasons of diarrhea disease worldwide. Detecting and monitoring emerging waterborne pathogens (EWPs) is important for drinking water microbiological safety. The microbiological safety of household water hollow fiber membrane filter which is the end of drinking water treatment process was studied with heterotrophic plate count (HPC) and real-time PCR method. The effect of the flow rate, idle time and washing fashion were investigated. Among the selected filters from three manufacturers, only the PVDF membrane water filter (Brand B) could achieve a good water purification criteria. Brand A was found a certain degree of EWPs in its effluent. The lowest bacteria-removing efficiency of the PVC membrane water filter was found Brand C. Our study showed that the microorganisms could reach up to 10(6) CFU ml(-1) and the 16s rDNA could reach up to 10(6) copies ml(-1) in the initial filtrate of Brand C. More species and amounts of EWPs were detected in the washing water. These results suggested that the popular household membrane filters might cause microbiological risks at certain circumstances such as the shock load of EWPs and leakage of the membranes in the case of abnormal source water or poor membrane filter quality.

  5. Modeling branching pore structures in membrane filters

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2016-11-01

    Membrane filters are in widespread industrial use, and mathematical models to predict their efficacy are potentially very useful, as such models can suggest design modifications to improve filter performance and lifetime. Many models have been proposed to describe particle capture by membrane filters and the associated fluid dynamics, but most such models are based on a very simple structure in which the pores of the membrane are assumed to be simple circularly-cylindrical tubes spanning the depth of the membrane. Real membranes used in applications usually have much more complex geometry, with interconnected pores which may branch and bifurcate. Pores are also typically larger on the upstream side of the membrane than on the downstream side. We present an idealized mathematical model, in which a membrane consists of a series of bifurcating pores, which decrease in size as the membrane is traversed. Feed solution is forced through the membrane by applied pressure, and particles are removed from the feed either by sieving, or by particle adsorption within pores (which shrinks them). Thus the membrane's permeability decreases as the filtration progresses, ultimately falling to zero. We discuss how filtration efficiency depends on the characteristics of the branching structure. Partial support from NSF DMS 1261596 is gratefully acknowledged.

  6. An assessment of cellulose filters as a standardized material for measuring litter breakdown in headwater streams

    Science.gov (United States)

    The decay rate of cellulose filters and associated chemical and biological characteristics were compared to those of white oak (Quercus alba) leaves to determine if cellulose filters could be a suitable standardized material for measuring deciduous leaf breakdown in headwater str...

  7. Depth filters containing diatomite achieve more efficient particle retention than filters solely containing cellulose fibers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Buyel

    2015-12-01

    Full Text Available The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g. when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m-2 when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU when diatomite filters were used. We also tested pre coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m-2 with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins.

  8. High-flux Thin-film Nanofibrous Composite Ultrafiltration Membranes Containing Cellulose Barrier Layer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H.; Yoon, K; Rong, L; Mao, Y; Mo, Z; Fang, D; Hollander, Z; Gaiteri, J; Hsiao , B; Chu, B

    2010-01-01

    A novel class of thin-film nanofibrous composite (TFNC) membrane consisting of a cellulose barrier layer, a nanofibrous mid-layer scaffold, and a melt-blown non-woven substrate was successfully fabricated and tested as an ultrafiltration (UF) filter to separate an emulsified oil and water mixture, a model bilge water for on-board ship bilge water purification. Two ionic liquids: 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate, were chosen as the solvent to dissolve cellulose under mild conditions. The regenerated cellulose barrier layer exhibited less crystallinity (determined by wide-angle X-ray diffraction, WAXD) than the original cotton linter pulps, but good thermal stability (determined by thermal gravimetric analysis, TGA). The morphology, water permeation, and mechanical stability of the chosen TFNCmembranes were thoroughly investigated. The results indicated that the polyacrylonitrile (PAN) nanofibrous scaffold was partially imbedded in the cellulose barrier layer, which enhanced the mechanical strength of the top barrier layer. The permeation flux of the cellulose-based TFNCmembrane was significantly higher (e.g. 10x) than comparable commercial UFmembranes (PAN10 and PAN400, Sepro) with similar rejection ratios for separation of oil/water emulsions. The molecular weight cut-off (MWCO) of TFNC membranes with cellulose barrier layer was evaluated using dextran feed solutions. The rejection was found to be higher than 90% with a dextran molecular weight of 2000 KDa, implying that the nominal pore size of the membrane was less than 50 nm. High permeation flux was also observed in the filtration of an emulsified oil/water mixture as well as of a sodium alginate aqueous solution, while high rejection ratio (above 99.5%) was maintained after prolonged operation. A variation of the barrier layer thickness could dramatically affect the permeation flux and the rejection ratio of the TFNCmembranes, while different sources of cellulose

  9. Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes

    Directory of Open Access Journals (Sweden)

    T. Zhou

    2013-09-01

    Full Text Available Graphite nanoplatelets (GNPs were utilized to improve the electrical conductivity of pristine bacterial cellulose (BC membranes. By physical and chemical methods, flake-shaped GNPs, weaving through the surface layer of web-like cellulose nanofibrils, were indeed fixed or trapped by the adjacent nanofibrils in the BC surface network, for comparison, rod-shaped multi-walled carbon nanotubes (MWCNTs were homogeneously inserted into BC membrane through the pore structures and tunnels within the BC membrane. Strong physical and chemical interaction exists between the BC nanofibrils and the particles of GNP or MWCNT even after 15 h sonication. BC membrane with 8.7 wt% incorporated GNPs reached the maximum electrical conductivity of 4.5 S/cm, while 13.9 wt% MWCNT/BC composite membrane achieved the maximum electrical conductivity of 1.2 S/cm. Compared with one dimensional (1-D MWCNTs, as long as GNPs inserted into BC membranes, the 2-D reinforcement of GNPs was proven to be more effective in improving the electrical conductivity of BC membranes thus not only break the bottleneck of further improvement of the electrical conductivity of BC-based composite membranes but also broaden the applications of BC and GNPs.

  10. Laboratory experiments on membrane filter sampling of airborne mycotoxins produced by Stachybotrys atra corda

    Science.gov (United States)

    Pasanen, A.-L.; Nikulin, M.; Tuomainen, M.; Berg, S.; Parikka, P.; Hintikka, E.-L.

    A membrane filter method for sampling of airborne stachybotrystoxins was studied in the laboratory. Toxigenic strains of Stachybotrys atra on wallpaper, grain, hay and straw were used as toxin sources in the experiments. Air samples were collected on cellulose nitrate and polycarbonate membrane filters at air flow rates of 10-20 ℓ min -1. After the filter sampling, the air was passed through methanol. The results showed that stachybotrystoxins (trichothecenes) were concentrated in airborne fungal propagules, and thus can be collected on filters. Polycarbonate filters with a pore size of 0.2 μm collected the highest percentage of toxic samples. The laboratory experiments indicated that polycarbonate filter sampling for the collection of airborne mycotoxins is a promising method for extension to field measurements.

  11. Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes.

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin; Jipa, Iuliana; Dobre, Tanase; Dobre, Loredana

    2012-07-01

    The effect of ultrasonic irradiation (40 kHz) on the calcium carbonate deposition on bacterial cellulose membranes was investigated using calcium chloride (CaCl(2)) and sodium carbonate (Na(2)CO(3)) as starting reactants. The composite materials containing bacterial cellulose-calcium carbonate were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and color measurements. The polymorphs of calcium carbonate that were deposited on bacterial cellulose membranes in the presence or in the absence of ultrasonic irradiation were calcite and vaterite. The morphology of the obtained crystals was influenced by the concentration of starting solutions and by the presence of ultrasonic irradiation. In the presence of ultrasonic irradiation the obtained crystals were bigger and in a larger variety of shapes than in the absence of ultrasounds: from cubes of calcite to spherical and flower-like vaterite particles. Bacterial cellulose could be a good matrix for obtaining different types of calcium carbonate crystals.

  12. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing.

    Science.gov (United States)

    Qiu, Yuyu; Qiu, Liying; Cui, Jing; Wei, Qufu

    2016-02-01

    Bacterial cellulose (BC) and bacterial cellulose-vaccarin (BC-Vac) membranes were successfully produced in large scale. BC was synthesized by Gluconacetobacter xylinum. BC-Vac membranes were prepared by immersing BC in vaccarin solution. The surface morphologies of BC and BC-Vac membranes were examined by a scanning electron microscope (SEM) and an atomic force microscopy (AFM). The images showed that BC-Vac exhibited the characteristic 3D nanofibrillar network of BC matrix but there was adhesion between fibers. The mechanical properties of BC and BC-Vac membranes were evaluated and the results indicated that the adding of drug vaccarin into the BC membranes increased the malleability indicated by the increment in elongation at break compared with BC. Fourier transform infrared spectroscopy (FTIR) analysis was conducted to confirm the incorporation of vaccarin in BC-Vac and investigate the hydroxyl interactions between BC and drug vaccarin. Cell viability and cell attachment studies demonstrated that BC and BC-Vac membranes had no cytotoxicity and could be a good carrier for cell growth. The wound healing performance was examined in vivo by rat skin models. Histological observations revealed that wounds treated with BC-Vac epithelialized and regenerated faster than treated with BC. Therefore, BC-Vac was considered as a potential candidate for wound dressing materials.

  13. Characterization of cellulose membranes produced by Acetobacter xyllinum

    Directory of Open Access Journals (Sweden)

    Pikul Wanichapichart

    2002-11-01

    Full Text Available Cellulose membranes formed by Acetobacter xylinum under known cell density in a culture medium were characterized. A dead end testing unit was used for water flux and filtration of Chlorella sp. and bovine serum albumin (BSA. This study found that the cells formed membranes faster in sucrose supplemented coconut juice than in the standard Schramm & Hestrin's medium. For two-day formed membranes in the former medium, an increase in cell density from 1 × 108 to 2 × 108 cfu.ml-1 reduced water flux and, hence, reduced the hydraulic permeability coefficient (Lp from 3.6 × 10-10 to 0.5 × 10-10 m3N-1s-1. These membranes were asymmetric-hydrophilic type with thickness less than 6.0 μm. Membrane porosity was found to vary from 1.4% to 2.4%, with the averaged pore size 0.08 μm. Under 100 kPa filtration, two-day formed membranes in sucrose supplemented coconut juice with higher cell density rejected Chlorella cells and BSA by 99.8% and 98.4%, respectively.

  14. FRACTIONATION OF HYDROLYZED MICROCRYSTALLINE CELLULOSE BY ULTRAFILTRATION MEMBRANE

    Directory of Open Access Journals (Sweden)

    NGUYEN HUYNH THAO THY

    2016-01-01

    Full Text Available Bioethanol process using cellulosic materials have been emerging an interesting field with a high potential of replacing petroleum-based fuel, as a future alternative. This work emphasised on improvement of enzymatic hydrolysis of alkaline NaOH-pretreated cellulose by applying an ultrafiltration membrane 10 kDa cutoff in order to minimise sugar inhibition on enzymes, reuse enzyme in hydrolysis and recover sugar for the subsequent fermentation. An improvement in the methodology of the enzymatic hydrolysis with ultrafiltration was made that the membrane was installed at the end of a tube connecting with a peristaltic pump to continuously remove glucose from hydrolysis reaction hence sugar was unable to inhibit enzyme activity and enzyme was retained inside the reactor for the reusing purpose. The combination of NaOH 1M alkaline pretreatment, enzymatic hydrolysis of cellulose with the optimum 3% enzyme dosage, ultrafiltration 10 kDa cutoff was evaluated to obtain the highest sugar concentration at 9 mg/ml after 6 hour hydrolysis. In comparison between hydrolysis with ultrafiltration and hydrolysis without ultrafiltration, the sugar concentration in hydrolysis with ultrafiltration was very much higher than that in hydrolysis without ultrafiltration in all enzyme dosages (1.5%, 3%, 6%. The hydrolysis with filtration produced a time profile in six hours with continuously significant increase in the sugar concentration. Only a small reduction initially for 1.5% dosage and no reduction in sugar concentration in 3% and 6% dosages. Hence the effect of product inhibition in hydrolysis was minimised as a result. In addition, a direct relationship between sugar concentration inside hydrolysis reactor, enzyme dosage and rate of sugar removal was observed during the hydrolysis process. Higher enzyme dosage in hydrolysis required a higher rate of sugar removal sufficiently to avoid inhibition in hydrolysis reaction.

  15. Biocompatibility and functional performance of a polyethylene glycol acid-grafted cellulosic membrane for hemodialysis.

    Science.gov (United States)

    Sirolli, V; Di Stante, S; Stuard, S; Di Liberato, L; Amoroso, L; Cappelli, P; Bonomini, M

    2000-06-01

    In order to improve the biochemical reactivity of the cellulose polymer, which is mainly attributed to the presence of surface hydroxyl groups, derivatized cellulosic membranes have been engineered replacing or masking some or all of the hydroxyl groups in the manufacturing process of the membrane. The present study was set up to analyze both biocompatibility and functional performance of two different derivatized cellulosic membranes (cellulose diacetate; polyethylene glycol, PEG, acid-grafted cellulose) as compared to a synthetic membrane (polymethylmethacrylate, PMMA). Cellulose diacetate is prepared by substituting hydroxyl groups with acetyl groups; PEG cellulose is obtained by grafting PEG chains onto the cellulosic polymer with a smaller amount of substitution than cellulose diacetate. While the three dialyzers provided similar urea and creatinine removal, the dialyzer containing cellulose diacetate showed a reduced ability to remove 32-microglobulin compared to that containing PEG cellulose or PMMA. A transient reduction in leukocyte count was observed for both derivatized cellulosic membranes. The neutrophil and monocyte counts throughout the entire dialysis session showed a closer parallelism with the cellular expression of the adhesive receptor CD 15s (sialyl-Lewis x molecule) than with CD11b/CD18 expression. Platelet activation, as indicated by the percentage of cells expressing the activation markers CD62P (P-selectin) and CD63 (gp53), occurred with all membranes at 15 min of dialysis and also with PMMA at 30 min. An increased formation of platelet-neutrophil and platelet-monocyte coaggregates was found at 15 and 30 min during dialysis with cellulose diacetate and PMMA but not with PEG cellulose. Generally in concomitance with the increase in platelet-neutrophil coaggregates, an increased hydrogen peroxide production by neutrophils occurred. Our results indicate that derivatizing cellulose may represent a useful approach to improve the biocompatibility

  16. Regenerated Cellulose Capsules for Controlled Drug Delivery, Part 2: Modulating Membrane Permeability by Incorporation of Depolymerized Cellulose and Altering Membrane Thickness.

    Science.gov (United States)

    Bhatt, Bhavik; Kumar, Vijay

    2015-12-01

    For application of regenerated cellulose (RC) membranes in capsule dosage forms, the methods to modify drug release from these membranes are described. Membranes were fabricated by blending native and depolymerized celluloses dissolved in dimethyl sulfoxide and paraformaldehyde solvent system, prior to casting on molds, precipitation in water, and thermal annealing. The effect of laminating layers of RC to fabricate membranes with increasing thickness was also investigated. Solute diffusion studies using ionic and hydrophobic solutes, as well as large protein molecules, were conducted in side-by-side diffusion cells. Microscopic as well as physiological evaluation of these membranes indicated that pore size, porosity, and water uptake decreased as the fraction of depolymerized cellulose increased in the membranes. Permeability analysis of small ionic and hydrophobic solutes indicated that the solute transport across the hydrated membrane occurs through diffusion in the water-filled pores that are formed in situ. The apparent path for solute diffusion increases as the fraction of depolymerized cellulose increases. Permeability analysis of large protein molecules indicated that the pore sizes and distribution in these membranes is heterogeneous. Increasing the membrane thickness by lamination of RC does not influence porosity but causes formation of dead-end pores because of blocking by subsequent laminate layers.

  17. Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection

    KAUST Repository

    Puspasari, Tiara

    2015-05-14

    We report a new synthetic route of fabricating regenerated cellulose nanofiltration membranes. The membranes are composite membranes with a thin selective layer of cellulose, which was prepared by regeneration of trimethylsilyl cellulose (a hydrophobic cellulose derivative) film followed by crosslinking. Filtration experiments using mixtures of sugar and sodium chloride showed that solutes above 300 Da were highly rejected whereas practically no rejection was observed for NaCl. This is a big advantage for a complete desalination as the existing commercial nanofiltration membranes typically exhibit NaCl rejection in the range of 30–60%. Membranes with zero NaCl rejection are required for recovery and purification applications in food, chemical and pharmaceutical industry.

  18. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.

    NARCIS (Netherlands)

    Gutierrez, R.; Lindeboom, J.J.; Paredez, A.R.; Emons, A.M.C.; Ehrhardt, D.W.

    2009-01-01

    Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is t

  19. Primary study of ethyl cellulose nanofiber for oxygen-enrichment membrane

    Directory of Open Access Journals (Sweden)

    Shen Jing

    2016-01-01

    Full Text Available Ethyl cellulose is widely used for oxygen-enrichment membrane, however, its nanofiber membrane was rarely developed though it behaves more excellent performance. This paper gives a preliminary study to produce oxygen-enrichment membrane by bubbfil spinning.

  20. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    Science.gov (United States)

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  1. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    Science.gov (United States)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  2. Cellulose triacetate doped with ionic liquids for membrane gas separation

    Science.gov (United States)

    Lam, Benjamin Fatt Soon

    The doping of cellulose triacetate (CTA) with imidazolium based ionic liquids (ILs) is investigated in order to reduce the polymer crystallinity and enhance the affinity with CO2, thus increasing CO2 permeability and CO2/light gas selectivity. CTA membranes doped with [emim] BF4 or [emim] DCA were prepared, and the effect of the ILs loading on properties, such as crystallinity, density, degradation temperature, glass transition temperature, and gas transport properties, has been determined. In general, doping with IL reduces the crystallinity in CTA, increasing gas solubility, diffusivity and permeability. The ILs doping also increases CO 2/CH4 solubility selectivity and CO2/N2 permeability selectivity, due to the affinity of these ILs with CO2, instead of light gases such as CH4 and N2. This study provides a mechanistic understanding of interaction of ILs and CTA, and demonstrates an effective route in manipulating the morphology and gas transport properties of semi crystalline polymers by doping with ILs.

  3. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  4. Preparation and Characterization of Graphene Oxide / Cellulose Triacetate Forward Osmosis Membranes

    Directory of Open Access Journals (Sweden)

    Li Fang

    2016-01-01

    Full Text Available Forward osmosis (FO is an emerging membrane separation technology in environmental and industrial process. This paper presents cellulose triacetate (CTA membrane containing graphene oxide (GO nanosheets via blending to enhance membrane performance in forward osmosis (FO process. GO nanosheets with various loading were added into the casting solution to prepare the modified FO membranes. The prepared membranes were characterized by morphology analysis and permeability measurement. The result showed that the GO nanosheets effectively improved the performance of the CTA membranes. The CTA-0.2GO membrane had the highest water flux, reached 1.5 times as high as that of CTA membrane.

  5. Preparation and characterization of regenerated cellulose membranes from natural cotton fiber

    Directory of Open Access Journals (Sweden)

    Yanjuan CAO

    2015-06-01

    Full Text Available A series of organic solutions with different cellulose concentrations are prepared by dissolving natural cotton fibers in lithium chloride/dimethyl acetamide (LiCl/DMAC solvent system after the activation of cotton fibers. Under different coagulating bath, the regenerated cellulose membranes are formed in two kinds of coagulation baths, and two coating methods including high-speed spin technique (KW-4A spin coating machine and low-speed scraping (AFA-Ⅱ Film Applicator are selected in this paper. The macromolecular structure, mechanical properties, crystallinity, thermal stability and wetting property of the regenerated cellulose membrane are characterized by Scanning Electron Microscope(SEM, Fourier Transform Infrared Spectroscopy (FT-IR,X-ray diffraction (XRD, Thermogravimetric analysis (TG and contacting angle tester. The effects of mass fraction, coagulation bath type, membrane forming process on the regenerated membrane properties are investigated. Experimental results show that the performance of regenerated cellulose membrane is relatively excellent under the condition of using the KW-4A high-speed spin method, water coagulation bath, and when mass fraction of cellulose is 3.5%. The crystallinity of the regenerated cellulose membrane changes a lot compared with natural cotton fibers. The variation trend of thermal stability is similar with that of cotton fiber. But thermal stability is reduced to some degree, while the wetting ability is improved obviously.

  6. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  7. Ex vivo complement protein adsorption on positively and negatively charged cellulose dialyser membranes.

    Science.gov (United States)

    Mahiout, A; Matata, B M; Vienken, J; Courtney, J M

    1997-05-01

    An ex vivo test system was used to measure complement protein C3 and factor B adsorption onto small dialyser modules made from regenerated and modified cellulosic hollow fibre membranes in which positive diethylaminoethyl (DEAE) or negative carboxymethyl (CM) groups were introduced into the cellulose matrix. The extracorporeal system, which included test-dialysers and the dialysis environment, allowed the use of labelled proteins without contaminating the blood donors which were connected in an open-loop fashion to the extracorporeal test system. The modules were removed at selected time points from the extracorporeal system for radioactivity counting. The results were used to evaluate the mechanisms involved in complement reactions to foreign surfaces. The system therefore allowed the analysis of complement protein adsorption occurring in the dialyser modules and its relationship to the complement generation rate in the extracorporeal system to be evaluated. It was possible to demonstrate that significant complement C3 and factor B adsorption occurred in the test modules made of cellulosic membranes. Complement adsorption as a function of the pH and the release reaction of the adsorbed C3 and factor B after membrane blood perfusion were therefore found to be variable according to the cellulosic membrane type and the presence of positive or negative charged groups within the cellulose matrix. The data obtained from the ex vivo model therefore provided additional evidence on the discussion of the mechanisms involved in the increased complement activation by regenerated cellulose and in its attenuation by DEAE- or CM-modified cellulose.

  8. Enzymatic membrane reactor for full saccharification of ionic liquid-pretreated microcrystalline cellulose.

    Science.gov (United States)

    Lozano, Pedro; Bernal, Berenice; Jara, Antonio G; Belleville, Marie-Pierre

    2014-01-01

    Ultrafiltration reactors based on polymeric or ceramic membranes were shown to be suitable catalytic systems for fast enzymatic saccharification of cellulose, allowing the full recovery and reuse of enzymes. By pre-treating cellulose with the IL 1-butyl-3-methylimidazolium chloride, the suitability of this substrate for enzymatic saccharification in a reactor based on polymeric ultrafiltration membranes was demonstrated, leading to 95% cellulose hydrolysis in 4h at 50°C. The filtration process gave a clear glucose solution (up to 113 mM) at constant permeate flow (24.7 L h(-1) m(-2)), allowing the enzyme to be reused for 9 operation cycles under semi-continuous operation, without any loss of enzyme activity. Under continuous operation mode and using ceramic ultrafiltration membranes at different residence times, the enzymatic reactor showed constant profiles in both the permeate flow rate and the glucose concentration, demonstrating the excellent suitability of the proposed approach for the saccharification of cellulose.

  9. A Study on Enhancement of Filtration Process with Filter Aids Diatomaceous Earth and Wood Pulp Cellulose

    Institute of Scientific and Technical Information of China (English)

    都丽红; 陈旭; 李文苹; 朱企新

    2011-01-01

    In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and wood pulp cellulose are used to enhance the filtration by improving filter cake structure and properties in the filtration of a biological health product and a highly viscous chemical fiber polymer melt product. The property of solid/liquidsystems, filtration at different flow rates, specitic cake resistance, cake wetness, filtration rate, filtrate turbidity for filter aid selection and evaluation, and operation optimization are investigated. The results are successfully applied to industrial process, .and can be used as a reference for similar filtration applications.

  10. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Chunjing Zhang; Shian Zhong; Zhengpeng Yang

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  11. PRODUCTION OF ANTIBACTERIAL FILTER PAPER FROM WOOD CELLULOSE

    Directory of Open Access Journals (Sweden)

    Reza Imani

    2011-02-01

    Full Text Available Paper has a visible market-share in hygiene products either in the form of personal hygiene or as food packaging. The designation “hygiene”, though it suggests cleanliness, does not imply antibacterial properties; rather it can be stated that hygiene products do not initiate microorganism growth. Antibacterial products could restrict propagation of pathogenic bacteria either by holding bacteria or by trapping and neutralizing them. Most research in this field has been conducted using textile fibers as a substrate, but the present work uses paper instead. The objective was to produce an antibacterial filter paper capable of trapping and neutralizing pathogenic microorganisms using wood fibers. To produce antibacterial paper, chitosan and nanosilver capped with PAA (polyacrylic acid were deposited on the fiber surface using a layer-by-layer technique. Samples for the tests were prepared from refined bleached softwood (RBSW kraft pulp. The deposition of antibacterial agents on fiber as well as paper were monitored using a zeta potential analyzer (ZPA, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FTIRS. The minimum requirement for deposition of the agents was a multilayer comprised of eight alternating layers. The deposition onto fiber or paper had no effect on tensile strength or the pore structure of the substrate.

  12. Detection and quantification of tau aggregation using a membrane filter assay.

    Science.gov (United States)

    Chang, Edward; Kuret, Jeff

    2008-02-15

    Aggregation of the microtubule-associated protein tau contributes to the formation of neurofibrillary lesions in Alzheimer's disease and is a useful marker of disease progression. Although filter trap assays have been employed to assess the extent of tau aggregation in cells and tissues as well as in vitro, their performance relative to other assay modalities has not been reported. To clarify this issue, the ability of the filter trap approach to quantify aggregation of purified recombinant full-length tau protein in vitro was examined as a function of membrane chemistry in a 96-well format. Results showed that nitrocellulose yielded the greatest assay sensitivity relative to polyvinylidene fluoride or cellulose acetate at equal membrane porosity. However, all combinations of filter chemistries, porosities, and monoclonal detection antibodies yielded nonlinear correlations between signal intensity and analyte concentration. When corrected for nonlinearity, the filter trap assay determined a value for the critical monomer concentration for tau aggregation that was statistically identical to determinations made by electron microscopy assay. The data suggest conditions under which filter trap assays can be used to estimate tau aggregation kinetics.

  13. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  14. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-05

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme.

  15. Fabrication of flexible self-standing all-cellulose nanofibrous composite membranes for virus removal.

    Science.gov (United States)

    Huang, Weijuan; Wang, Yixiang; Chen, Chao; Law, John Lok Man; Houghton, Michael; Chen, Lingyun

    2016-06-05

    All-cellulose nanocomposite membranes with excellent performance were successfully fabricated as novel filtration system to remove nanoparticles and virus from aqueous medium. These membranes were composed of two combined layers: an electrospun cellulose nanofabric layer treated by hot-pressing to provide mechanical support and a coating of regenerated cellulose gel with tiny inter-connected pores as barrier. Hot-pressing did not affect the fiber shape of electrospun nanofabrics, but significantly improved their mechanical properties due to increased hydrogen bonds. The regenerated cellulose gel formed a porous coating that tightly attached to electrospun nanofabrics, and its pore size varied depending on cellulose source, solution concentration, and drying process. By assembling these two layers together, the nanocomposite membranes showed the notable retention of negatively charged 100 nm latex beads (99.30%). Moreover, the electronegative nature of cellulose membranes imparted the rejection ratio of 100% and (98.68 ± 0.71)% against positively charged 50 nm latex beads and Hepatitis C Virus, respectively.

  16. Simplified model for fouling of a pleated membrane filter

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda

    2014-11-01

    Pleated filter cartridge are widely used to remove undesired impurities from a fluid. A filter membrane is sandwiched between porous support layers, then pleated and packed in to an annular cylindrical cartridge. Although this arrangement offers a high ratio of surface filtration area to volume, the filter performance (measured, e.g., by graph of total flux versus throughput for a given pressure drop), is not as good as a flat filter membrane. The reasons for this difference in performance are currently unclear, but likely factors include the additional resistance of the porous support layers upstream and downstream of the membrane, the pleat packing density (PPD) and possible damage to the membrane during the pleating process. To investigate this, we propose a simplified mathematical model of the filtration within a single pleat. We consider the fluid dynamics through the membrane and support layers, and propose a model by which the pores of the membrane become fouled (i) by particles smaller than the membrane pore size; and (ii) by particles larger than the pores.We present some simulations of our model, investigating how flow and fouling differ between not only flat and pleated membranes, but also for support layers of different permeability profiles. NSF DMS-1261596.

  17. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To control the morphology of cellulose membranes used for separation,they were prepared by the NMMO method using water,methanol,ethanol and their binary solution as coagulation baths.Morphologies of the surface and cross section of dry membranes were observed.The pore structure parameters of wet membranes were determined.By comparison,the process and mechanism of pore formation in dry membranes were suggested,and the relativity of cellulose crystal size to average pore diameter in wet membranes and their influences were discussed.The results show that the morphology of dry membranes is clearly varied with coagulation baths,while the porosity of wet membranes is almost constant.Porous structures can appear in the compact region of dry membranes due to swelling from water.These pores have a virtual effect on the average pore diameter of wet membranes.By changing the composition of coagulation baths,the microstructure of cellulose membranes in a dry or wet environment can be adjusted separately.

  18. Evaluation of hydrazine reduction by cellulose acetate filters using infrared tunable diode laser spectroscopy.

    Science.gov (United States)

    Harward, Charles N; Parrish, Milton E; Plunkett, Susan E; Banyasz, Joseph L; Shafer, Kenneth H

    2002-11-15

    Cellulose acetate (CA) filters have been investigated to determine their hydrazine (N2H4) breakthrough characteristics using a system based on tunable diode laser absorption spectroscopy (TDIAS). The breakthrough mass loading sorption curves for hydrazine were dependent on both the flow rate and the concentration. In experiments using a 4.5 ppmv hydrazine standard, the amounts of hydrazine retained by the CA filter were 4.25 microg at a flow rate of 2.82 L/min and 65 microg at a flow rate of 0.28 L/min. These loadings are much greater than the 31.5 ng/cigarette of hydrazine reported in smoke for unfiltered cigarettes. Further, CA filters exposed to four and eight puffs of smoke actually made the filter more efficient in retaining hydrazine compared to CA filters that had not been exposed to smoke. Therefore, if hydrazine is present in smoke at the levels reported in unfiltered cigarettes, all of the hydrazine would be trapped by the CA filter, and would be unable to break through during smoking. A unique feature of this analytical method is that the instrument does not require calibration after molecular parameters have been determined, in this case from previously acquired quantitative hydrazine FT-IR reference spectra.

  19. Preparation of membranes from cellulose obtained of sugarcane bagasse; Preparacao de membranas a partir de celulose obtida do bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Paulo Henrique Fernandes; Cioffi, Maria Odila Hilario; Voorwald, Herman Jacobus Cornelis, E-mail: fernandes_eng@yahoo.com.b [UNESP, Guaratingueta, SP (Brazil). Fac. de Engenharia; Pinho, Maria Noberta de [Instituto Superior Tecnico de Lisboa (IST) (Portugal), Dept. de Engenharia; Silva, Maria Lucia Caetano Pinto da [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  20. Biocompatible Double-Membrane Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery.

    Science.gov (United States)

    Lin, Ning; Gèze, Annabelle; Wouessidjewe, Denis; Huang, Jin; Dufresne, Alain

    2016-03-23

    A biocompatible hydrogel with a double-membrane structure is developed from cationic cellulose nanocrystals (CNC) and anionic alginate. The architecture of the double-membrane hydrogel involves an external membrane composed of neat alginate, and an internal composite hydrogel consolidates by electrostatic interactions between cationic CNC and anionic alginate. The thickness of the outer layer can be regulated by the adsorption duration of neat alginate, and the shape of the inner layer can directly determine the morphology and dimensions of the double-membrane hydrogel (microsphere, capsule, and filmlike shapes). Two drugs are introduced into the different membranes of the hydrogel, which will ensure the complexing drugs codelivery and the varied drugs release behaviors from two membranes (rapid drug release of the outer hydrogel, and prolonged drug release of the inner hydrogel). The double-membrane hydrogel containing the chemically modified cellulose nanocrystals (CCNC) in the inner membrane hydrogel can provide the sustained drug release ascribed to the "nano-obstruction effect" and "nanolocking effect" induced by the presence of CCNC components in the hydrogels. Derived from natural polysaccharides (cellulose and alginate), the novel double-membrane structure hydrogel material developed in this study is biocompatible and can realize the complexing drugs release with the first quick release of one drug and the successively slow release of another drug, which is expected to achieve the synergistic release effects or potentially provide the solution to drug resistance in biomedical application.

  1. Conductivity of Cellulose Acetate Membranes from Pandan Duri Leaves (Pandanus tectorius for Li-ion Battery

    Directory of Open Access Journals (Sweden)

    Laksono Endang W.

    2016-01-01

    Full Text Available The purpose of this research is to know the influence of lithium chloride composition on membrane conductivity. Cellulose was extracted from pandan duri leaves (P. tectorius by dilute alkaline and bleaching with 0.5% NaOCl followed by synthesis of cellulose acetate using acetic anhydride as acetylating agent, acetic acid as solvent and sulfuric acid as catalyst. The membranes were prepared by casting polymer solution method and the composition of CA/LiCl were 60/40, 65/35, 70/30, 75/25, 80/20 and 100/0. Structural analysis was carried out by FTIR and X-ray diffraction. The conductivity was measured using Elkahfi 100. The highest conductivity of cellulose acetate membrane was 2.20 × 10-4 S cm-1 that measured at room temperature for 65/35 composition

  2. Application of thin film cellulose composite membrane for dye wastewater reuse

    KAUST Repository

    Puspasari, Tiara

    2016-09-22

    The use of low cost membranes with high salt/dye selectivity and high flux is ideal for an economic and eco-friendly treatment of dye wastewater. Here, regenerated cellulose membranes prepared from trimethylsilyl cellulose are studied for treating artificial dye effluents. In the experiments using a feed containing Congo Red and high NaCl concentration, the membrane featured impressive dye removal with zero salt rejection combined with high flux. More interestingly, the membrane reached as much as 600 LMH flux at 80 °C and 4 bar while maintaining high dye rejection close to 98%. In prolonged experiments up to 75 h the membrane exhibited good antifouling behavior with nearly 100% flux recovery. This study may provide a promising alternative of dye effluent treatment where high amounts of monovalent salts are present. © 2016

  3. Separation of isomeric xylenes by pervaporation through cellulose ester membranes

    NARCIS (Netherlands)

    Mulder, M.H.V.; Kruitz, F.; Smolders, C.A.

    1982-01-01

    The interaction between the isomeric xylenes and different cellulose esters was investigated using solubility parameter considerations and through measurements of swelling values. p]Hansen's three-dimensional solubility parameters δd, δp, δh of all the components have been calculated. These values h

  4. Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles.

    Science.gov (United States)

    Campos, B B; Gelde, L; Algarra, M; Esteves da Silva, J C G; Vázquez, M I; Benavente, J

    2016-10-20

    A highly hydrophilic planar membrane fabricated with regenerated cellulose (RC-4 membrane), a biocompatible polymer, was modified by inclusion of water-soluble silicon quantum dot nanoparticles (SiQDs). Both bare SiQDs and SiQDs coated with a PAMAM-OH dendrimer were employed in order to obtain luminescent and thermally stable membrane systems (RC-4/SiQDs and RC-4/SiQDs-PAMAM-OH membranes). Original and SiQDs-modified membranes were characterized by fluorescence spectroscopy (steady and confocal), derivative thermogravimetric analysis and impedance spectroscopy measurements. According to these results, both SiQDs-regenerated cellulose composite membranes present luminescent character as well as higher thermal resistance and conductivity than the original sample, although the dendrimer coverage of the SiQDs might partially shield such effects. Moreover, the permanence of SiQDs nanoparticles in the structure of the cellulosic support in aqueous environments and their effect on diffusive transport were determined by water uptake as well as by membrane potential measurements at different concentrations of a model electrolyte (KCl). These results demonstrate the possible use of these stable nano-engineered membranes, which are based on SiQDs nanoparticles, in electrochemical devices under flow conditions.

  5. Dialyzer membranes: effect of surface area and chemical modification of cellulose on complement and platelet activation.

    Science.gov (United States)

    Mahiout, A; Meinhold, H; Kessel, M; Schulze, H; Baurmeister, U

    1987-04-01

    Using an ex vivo model, the effects of membrane composition and surface area on both the complement system (as reflected by plasma C3a levels) and platelets [as indicated by plasma concentrations of thromboxane B2 (TXB2) and platelet factor 4 (PF4)] were studied. In this model, polyacrylonitrile (PAN) was associated with less complement activation than cuprammonium cellulose (CC). A new "modified cellulose" (MC) membrane, in which a small number of the free hydroxyl groups on cellulose are substituted with a tertiary amino compound, was also associated with a low degree of complement activation, similar to that with PAN. However, the extent of hydroxyl group substitution in four MC membrane subtypes did not correlate with the reduction in complement activation. In studies using CC, the amount of generated C3a correlated with the membrane surface area, although the relationship was curvilinear. Plasma concentrations at the "dialyzer" outlet of TXB2 and PF4 were similar with CC, PAN, and MC. In studies with the MC subtypes, increasing the extent of hydroxyl group substitution paradoxically increased, albeit slightly, the amount of TXB2 generation. In studies with CC, a linear relationship between membrane surface area and TXB2 generation was found. The results suggest a dissociation between platelet and complement effects among different dialyzer membranes, and underline the importance of membrane surface area.

  6. Surface chemistry of electrospun cellulose nitrate nanofiber membranes.

    Science.gov (United States)

    Nartker, Steven; Askeland, Per; Wiederoder, Sara; Drzal, Lawrence T

    2011-02-01

    Electrospinning is a rapidly developing technology that provides a unique way to produce novel polymer nanofibers with controllable diameters. Cellulose nitrate non-woven mats of submicron-sized fibers with diameters of 100-1200 nm were prepared. The effects of processing equipment collector design void gap, and steel drum coated with polyvinylidene dichloride (PVDC) were investigated. The PVDC layer applied to the rotating drum aided in fiber harvesting. Electron microscopy (FESEM and ESEM) studies of as-spun fibers revealed that the morphology of cellulose nitrate fibers depended on the collector type and solution viscosity. When a rotating steel drum was employed a random morphology was observed, while the void gap collector produced aligned fiber mats. Increases in viscosity lead to larger diameter fibers. The fibers collected were free from all residual solvents and could undergo oxygen plasma treatment to increase the hydropholicity.

  7. Efficiency and biocompatibility of a polyethylene glycol grafted cellulosic membrane during hemodialysis.

    Science.gov (United States)

    Akizawa, T; Kino, K; Koshikawa, S; Ikada, Y; Kishida, A; Yamashita, M; Imamura, K

    1989-01-01

    Dialytic efficiency and biocompatibility of a new modified cellulose membrane (NMC) were examined in vitro and clinically. NMC was obtained by grafting polyethylene-glycol (PEG) chains to the membrane surface of ordinary cellulose (OC), and it was expected that the random movement of PEG chains would prevent blood cells and large plasma proteins from coming into contact with the membrane surface, resulting in improving the biocompatibility and thrombogenicity of the membrane. Surface characteristics of NMC were rendered anionic and hydrophilic, however, the activations of complement and platelet systems were clearly suppressed in NMC. Minimum heparin requirement for hemodialysis was significantly lower with NMC than with OC dialyzer. No significant difference in solute and water removal was observed between the two dialyzers. These results indicate that NMC can provide increased biocompatibility and antithrombogenic effect while retaining the essential dialysis efficiency of OC.

  8. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes.

    Science.gov (United States)

    Shao, Wei; Liu, Hui; Wang, Shuxia; Wu, Jimin; Huang, Min; Min, Huihua; Liu, Xiufeng

    2016-07-10

    Bacterial cellulose (BC) is widely used in biomedical applications. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded bacterial cellulose (BC) composite membranes, and evaluated the drug release, antibacterial activity and biocompatibility. The structure and morphology of the fabricated BC-TCH composite membranes were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The TCH release results show that the incorporation of BC matrix to load TCH is able to control the release. In vitro antibacterial assay demonstrate that the developed BC-TCH composites displayed excellent antibacterial activity solely associated with the loaded TCH drug. More importantly, the BC-TCH composite membranes display good biocompatibility. These characteristics of BC-TCH composite membranes indicate that they may successfully serve as wound dressings and other medical biomaterials.

  9. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  10. Diffusion of solvent from a cast cellulose acetate solution during the formation of skinned membranes

    NARCIS (Netherlands)

    Altena, F.W.; Smid, J.; Berg, van den J.W.A.; Wijmans, J.G.; Smolders, C.A.

    1985-01-01

    The transport of solvent out of a cast cellulose acetate (CA) solution into the coagulation bath during membrane formation is treated as a diffusion process. From the increase of solvent concentration in the bath with time (solvent leaching experiments) an overall solvent diffusion coefficient has b

  11. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall

    NARCIS (Netherlands)

    Timmers, J.F.P.; Vernhettes, S.; Desprez, T.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.

    2009-01-01

    It has not yet been reported how the secondary CESA (cellulose synthase) proteins are organized in the rosette structure. A membrane-based yeast two-hybrid (MbYTH) approach was used to analyze the interactions between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and the

  12. Charge- and Size-Selective Molecular Separation using Ultrathin Cellulose Membranes

    KAUST Repository

    Puspasari, Tiara

    2016-08-30

    To date, it is still a challenge to prepare high-flux and highselectivity microporous membranes thinner than 20 nm without introducing defects. In this work, we report for the first time the application of cellulose membranes for selective separation of small molecules. A freestanding cellulose membrane as thin as 10 nm has been prepared through regeneration of trimethylsilyl cellulose (TMSC). The freestanding membrane can be transferred to any desired substrate and shows a normalized flux as high as 700 L m−2 h−1 bar−1 when supported by a porous alumina disc. According to filtration experiments, the membrane exhibits precise size-sieving performances with an estimated pore size between 1.5–3.5 nm depending on the regeneration period and initial TMSC concentration. A perfect discrimination of anionic molecules over neutral species is demonstrated. Moreover, the membrane demonstrates high reproducibility, high scale-up potential, and excellent stability over two months.

  13. Clinical effects of a polyethylene glycol grafted cellulose membrane on thrombogenicity and biocompatibility during hemodialysis.

    Science.gov (United States)

    Akizawa, T; Kino, K; Kinugasa, E; Koshikawa, S; Ikada, Y; Kishida, A; Hatanaka, Y; Imamura, K

    1990-01-01

    The biocompatibility and thrombogenicity of polyethylene-glycol (PEG)-grafted cellulose hemodialysis (HD) membranes (PEGC) were investigated in cross-over HD of five HD patients with ordinary cellulose (OC). The PEGC significantly suppressed transient leukocyte and thrombocytopenia, and release of C3a, beta-thromboglobulin and platelet factor 4, in corresponding with the quantity of grafted PEG. HD with PEGC resulted in lower granulocyte elastase production, protein and blood cells adsorption on the membrane surface than those with OC. Minimum heparin in HD with PEGC was three times lower than that with OC, with the thrombin-antithrombin III complex elevation lower than that in HD with OC. The results indicate that the grafted PEG effectively suppresses blood and membrane interaction, thus improving biocompatibility and reducing thrombogenicity in clinical HD.

  14. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Sheng-Chi; Li, Meng-Hsun

    2015-10-01

    In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application.

  15. Characterization of cellulose acetate micropore membrane immobilized acylase I

    Institute of Scientific and Technical Information of China (English)

    郭永胜; 王杰; 宋锡谨

    2004-01-01

    This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was ob tained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90 ℃C, which is higher than that of free acylase I (60 ℃). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.

  16. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    Directory of Open Access Journals (Sweden)

    Mudtorlep Nisoa

    2010-03-01

    Full Text Available Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effects on the cellulose membranes. When appropriated conditions are used, a thin brownish film of hydrocarbon was formed on the membrane, and the water contact angle increased from 35 to 130 degrees.

  17. Water adsorption properties controlled by coating/filling ordered mesoporous silica inside cellulose membranes.

    Science.gov (United States)

    Kimura, Tatsuo

    2013-09-28

    Porous organic membranes have been utilized as hard templates not only for replication of porous macrostructures but also for fabrication of hierarchical porous solids through infiltration of precursor solutions in ordered mesoporous materials. However, such organic membranes are usually burned out as sacrificial skeletons by calcination. In addition, replicated macropores are too big to enhance properties due to inorganic oxide frameworks. In this study, when cellulose membranes were used as organic membranes, a coating/filling technology of ordered mesoporous silicas was proposed and the water adsorption-desorption properties were directly investigated by using the composite membranes after extraction of nonionic surfactants used. The composite membranes possessed enough adsorption capacity for water, which will be potentially useful for improving total energy efficiency in heat-pump and desiccant air conditioning systems.

  18. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    Science.gov (United States)

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc.

  19. Effect of coagulant bath on the gas permeation properties of cellulose acetate asymmetric membrane

    Science.gov (United States)

    Mohamed, F.; Hasbullah, H.; Jami'an, W. N. R.; Salleh, W. N. H. W.; Ibrahim, N.; Ali, R. R.

    2016-06-01

    Membrane based gas separation process technology has been recognized as one of the most efficient and advanced unit operation for gas separation. One of the problems in membrane gas separation is membrane performance. This paper explores the application of cellulose acetate (CA) membrane for natural gas purification and separation by improving its permeability and selectivity. The main interest in this research is to study the effect of quench medium on the gas separation performance towards its physical characteristics and gas separation performance of CA membrane. Cellulose acetate polymer was dissolved in n- methyl-2-pyrrolidone solvent and casted onto a glass plate using a pneumatically controlled casting system with fixed shear rate and solvent evaporation times. The parameter varied was the non-solvent used as quench medium during membrane post treatment that were methanol and n-hexane. The different quench media as post treatment affected the O2 and N2 gas permeation and O2/N2 selectivity as well as the tensile strength of the flat sheet asymmetric membrane. Combination of methanol and n-hexane as quench media gave the best result than the other steps. This solvent exchange step influenced the morphology by producing thin skin layer and thus gives better gas separation performance than other steps

  20. EFFECTS OF FILTER MEMBRANES ADSORBING INFLAMMATORY MEDIATORS IN HEMOFILTRATION

    Institute of Scientific and Technical Information of China (English)

    蒋红利; 薛武军; 尹爱萍; 李大庆; 鞠峰炽; 孔澍

    2004-01-01

    Objective In this study, an in vitro hemofiltration model was set up to investigate adsorptive saturation time of different membrane under different blood flow rate (QB)and filtrate rate(QF). Methods Anticoagulated cattle blood (2000mL per bag) was stimulated with 1μg*mL-1 endotoxin to induce inflammatory mediators before hemofiltration (HF) using AN69, PS and PMMA filters in vitro. Adsorptive saturation time of membrane was observed using data bridge in different QB and different QF. TNF was measured by radioimmunoassays. Results Before the resistance level reached the peak value in the same group, resistance level increased significantly (P0.05). It was suggested that the resistance level reached plateau at 150,120,90,120, and150 minutes in QF of 100mL*minute-1, 200mL*minute-1, 300mL*minute-1, respectively and in QF of 1L*hour-1, 2L*hour-1, 4L*hour-1, respectively. And with the QB and QF increasing, resistance level increased significantly (P<0.01) among different groups at the same time point in A, B, C, D and E group. Conclusion Membrane resistance level online measured by Data Bridge can instantly reflect the degree of membrane adsorption. Adsorptive saturation time of filter membrane in different filtration flow rate and blood flow rate are different.

  1. Colony counting on hydrophobic grid-membrane filters.

    Science.gov (United States)

    Sharpe, A N; Diotte, M P; Dudas, I; Malcolm, S; Peterkin, P I

    1983-07-01

    A device to facilitate manual scoring of hydrophobic grid-membrane filters (HGMF) is described. Variations in scores were generally less than 2.5% between 41 analysts from six laboratories, who, using the apparatus, scored a set of five specimen HGMF in different ways, and there was good agreement between scores from positive and negative grid-cell counts by each analyst. A scoring procedure for use in routine microbiological analysis, suitable for HGMF at various degrees of saturation, is recommended.

  2. Development of Cellulose/PVDF-HFP Composite Membranes for Advanced Battery Separators

    Science.gov (United States)

    Castillo, Alejandro; Agubra, Victor; Alcoutlabi, Mataz; Mao, Yuanbing

    Improvements in battery technology are necessary as Li-ion batteries transition from consumer electronic to vehicular and industrial uses. An important bottle-neck in battery efficiency and safety is the quality of the separators, which prevent electric short-circuits between cathode and anode, while allowing an easy flow of ions between them. In this study, cellulose acetate was dissolved in a mixed solvent with poly(vinylpyrrolidone) (PVP), and the mixture was forcespun in a peudo paper making process to yield nanofibrillated nonwoven mats. The mats were soaked in NaOH/Ethanol to strip PVP and regenerate cellulose from its acetate precursor. The cellulose mats were then dipped in poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) to yield the cellulose/PVDF-HFP composte membranes. These membranes were characterized chemically through FTIR spectroscopy and solvent-stability tests, thermally through DSC, physically by stress/strain measurements along with weight-based electrolyte uptake, and electrically by AC-impedance spectroscopy combined with capacitative cycling.

  3. Bacterial cellulose membrane as flexible substrate for organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, C.; Vilani, C. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Calil, V.L. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil); Barud, H.S. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Quirino, W.G. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Achete, C.A. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); COPPE-Programa de Engenharia Metalurgica e de Materiais, UFRJ, Rio de Janeiro, RJ (Brazil); Ribeiro, S.J.L. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Cremona, M. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil)], E-mail: cremona@fis.puc-rio.br

    2008-12-01

    Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f.) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10{sup -4} Ohm cm, 8.08 cm{sup 2}/V-s and - 1.5 x 10{sup 21} cm{sup -3}, respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO{sub 2} thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m{sup 2} as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices.

  4. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  5. Biomineralization studies on cellulose membrane exposed to biological fluids of Anodonta cygnea.

    Science.gov (United States)

    Lopes, Anabela; Lopes-Lima, Manuel; Ferreira, Jorge; Araújo, Sandra; Hinzmann, Mariana; Oliveira, José; Rocha, António; Domingues, Bernardo; Bobos, Iulius; Machado, Jorge

    2014-06-01

    The present work proposes to analyse the results obtained under in vitro conditions where cellulose artificial membranes were incubated with biological fluids from the freshwater bivalve Anodonta cygnea. The membranes were mounted between two half 'Ussing chambers' with different composition solutions in order to simulate epithelial surfaces separating organic fluid compartments. The membrane surfaces were submitted to two synthetic calcium and phosphate solutions on opposite sides, at pH 6.0, 7.0 or 9.0 during a period of 6 hours. Additional assays were accomplished mixing these solutions with haemolymph or extrapallial fluid from A. cygnea, only on the calcium side. A selective ion movement, mainly dependent on the membrane pore size and/or cationic affinity, occurred with higher permeability for calcium ions to the opposite phosphate chamber supported by calcium diffusion forces across the cellulose membrane. In general, this promoted a more intense mineral precipitation on the phosphate membrane surface. A strong deposition of calcium phosphate mineral was observed at pH 9.0 as a primary layer with a homogeneous microstructure, being totally absent at pH 6.0. The membrane showed an additional crystal phase at pH 7.0 exhibiting a very particular hexagonal or cuttlebone shape, mainly on the phosphate surface. When organic fluids of A. cygnea were included, these crystal forms presented a high tendency to aggregate under rosaceous shapes, also predominantly in the phosphate side. The cellulose membrane was permeable to small organic molecules that diffused from the calcium towards the phosphate side. In the calcium side, very few similar crystals were observed. The presence of organic matrix from A. cygnea fluids induced a preliminary apatite-brushite crystal polymorphism. So, the present results suggest that cellulose membranes can be used as surrogates of biological epithelia with preferential ionic diffusion from the calcium to the phosphate side where the main

  6. Diffusion of solvent from a cast cellulose acetate solution during the formation of skinned membranes

    OpenAIRE

    Altena, F.W.; Smid, J.; Berg, van den, G.J.; Wijmans, J.G.; Smolders, C.A.

    1985-01-01

    The transport of solvent out of a cast cellulose acetate (CA) solution into the coagulation bath during membrane formation is treated as a diffusion process. From the increase of solvent concentration in the bath with time (solvent leaching experiments) an overall solvent diffusion coefficient has been calculated. In size these coefficients compare well to mutual pseudo-binary solvent-non-solvent diffusion coefficients determined by means of a classical boundary broadening method applied to t...

  7. In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair

    Directory of Open Access Journals (Sweden)

    de Lima-Neto João

    2009-03-01

    Full Text Available Abstract Background Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering. Methods Twenty-five Swiss Albino mice were used. A 10 × 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology. Results A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface. Conclusion The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.

  8. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.

    Science.gov (United States)

    de Oliveira, Sabrina Alves; da Silva, Bruno Campos; Riegel-Vidotti, Izabel Cristina; Urbano, Alexandre; de Sousa Faria-Tischer, Paula Cristina; Tischer, Cesar Augusto

    2017-04-01

    The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering.

  9. Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis.

    Science.gov (United States)

    Li, Guoliang; Wang, Jun; Hou, Deyin; Bai, Yu; Liu, Huijuan

    2016-07-01

    Polyethylene terephthalate mesh (PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis (FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2μm. The performance of the optimal FO membrane was tested using 0.2mol/L NaCl as the feed solution and 1.5mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47L/(m(2)·hr) and salt rejection of 95.48% in FO mode. While in pressure retarded osmosis (PRO) mode, the water flux was 4.74L/(m(2)·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes.

  10. Alginate fouling reduction of functionalized carbon nanotube blended cellulose acetate membrane in forward osmosis.

    Science.gov (United States)

    Choi, Hyeon-Gyu; Son, Moon; Yoon, SangHyeon; Celik, Evrim; Kang, Seoktae; Park, Hosik; Park, Chul Hwi; Choi, Heechul

    2015-10-01

    Functionalized multi-walled carbon nanotube blended cellulose acetate (fCNT-CA) membranes were synthesized for forward osmosis (FO) through phase inversion. The membranes were characterized through SEM, FTIR, and water contact angle measurement. AFM was utilized to investigate alginate fouling mechanism on the membrane. It reveals that the fCNT contributes to advance alginate fouling resistance in FO (57% less normalized water flux decline for 1% fCNT-CA membrane was observed than that for bare CA membrane), due to enhanced electrostatic repulsion between the membrane and the alginate foulant. Furthermore, it was found that the fCNT-CA membranes became more hydrophilic due to carboxylic groups in functionalized carbon nanotube, resulting in approximately 50% higher water-permeated flux than bare CA membrane. This study presents not only the fabrication of fCNT-CA membrane and its application to FO, but also the quantification of the beneficial role of fCNT with respect to alginate fouling in FO.

  11. Effect of evaporation time on cellulose acetate membrane for gas separation

    Science.gov (United States)

    Jami'an, W. N. R.; Hasbullah, H.; Mohamed, F.; Yusof, N.; Ibrahim, N.; Ali, R. R.

    2016-06-01

    Throughout this decades, membrane technology has been the desirable option among the others gas separation technologies. However, few issues have been raised regarding the membrane gas separation application including the trade-off between its permeability and selectivity and also its effects towards environment. Therefore, for this research, a biopolymer membrane for gas separation application will be developed with reasonably high on both permeability and selectivity. The main objective of this research is to study the effect of solvent evaporation time on the flat sheet asymmetric membrane morphology and gas separation performance. The membranes were produced by a simple dry/wet phase inversion technique using a pneumatically controlled casting system. The dope solution for the membrane casting was prepared by dissolving the cellulose acetate (CA) polymer in N-Methyl-2-pyrrolidone (NMP) and the solvent evaporation time was varied. Permeability and selectivity of the membrane was performed by using pure gases of carbon dioxide, CO2 and methane, CH4. The increase in solvent evaporation time had improved the membrane morphologies as the porosity of the membrane surface decrease and formation of a more mature skin layer. The gas permeation tests determined that increasing in solvent evaporation time had increased the selectivity of CO2/CH4 but reduce the permeability of both gases

  12. Low thrombogenicity of polyethylene glycol-grafted cellulose membranes does not influence heparin requirements in hemodialysis.

    Science.gov (United States)

    Wright, M J; Woodrow, G; Umpleby, S; Hull, S; Brownjohn, A M; Turney, J H

    1999-07-01

    Heparin is the most commonly used anticoagulant for hemodialysis despite potentially serious side effects. Polyethylene glycol-grafted cellulose (PGC) membranes produce less activation of the coagulation cascade than cuprophane membranes. Anecdotally, we found some patients required a surprisingly low level of anticoagulation using these membranes. We compared the anticoagulant requirement of the PGC membrane with that of the cuprophane membrane in this randomized, prospective, crossover study. Sixty-three patients were randomized to treatment using either membrane, and heparin administration was progressively reduced to the lowest dose that prevented visible clotting in excess of that normally encountered. Patients underwent dialysis at this dose for 1 month, after which the heparin requirement and Kt/Vurea (1.162 x ln [urea pre/urea post]) were assessed. This process was then repeated for each patient using the other membrane, and the results were compared. Heparin administration during dialysis was reduced from a mean loading dose of 29.0 +/- 9.4 to 1.5 +/- 3.2 IU/kg for both membranes and a mean maintenance infusion of 14.0 +/- 6.7 to 0.77 +/- 1.6 IU/kg/h for both membranes (both P < 0.0001 v full anticoagulation; no difference between membranes). The Kt/Vurea was not significantly altered. Forty-six patients with PGC and 45 patients with cuprophane membranes underwent dialysis successfully without heparin during dialysis, and the other patients were using considerably reduced doses. Aspirin and warfarin had no effect on the heparin requirement. These results do not support the theory that PGC membranes have a lower anticoagulant requirement than cuprophane membranes; however, they suggest that dialysis can be performed successfully with much smaller anticoagulant doses than are currently in common use.

  13. Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes

    Directory of Open Access Journals (Sweden)

    Bernd M. Liebeck

    2017-03-01

    Full Text Available It is known that aqueous keratin hydrolysate solutions can be produced from feathers using superheated water as solvent. This method is optimized in this study by varying the time and temperature of the heat treatment in order to obtain a high solute content in the solution. With the dissolved polypeptides, films are produced using methyl cellulose as supporting material. Thereby, novel composite membranes are produced from bio-waste. It is expected that these materials exhibit both protein and polysaccharide properties. The influence of the embedded keratin hydrolysates on the methyl cellulose structure is investigated using Fourier transform infrared spectroscopy (FTIR and wide angle X-ray diffraction (WAXD. Adsorption peaks of both components are present in the spectra of the membranes, while the X-ray analysis shows that the polypeptides are incorporated into the semi-crystalline methyl cellulose structure. This behavior significantly influences the mechanical properties of the composite films as is shown by tensile tests. Since further processing steps, e.g., crosslinking, may involve a heat treatment, thermogravimetric analysis (TGA is applied to obtain information on the thermal stability of the composite materials.

  14. Rotating carbon nanotube membrane filter for water desalination.

    Science.gov (United States)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-05-18

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology.

  15. Rotating carbon nanotube membrane filter for water desalination

    Science.gov (United States)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-05-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology.

  16. Improved Aerobic Colony Count Technique for Hydrophobic Grid Membrane Filters

    OpenAIRE

    Parrington, Lorna J.; Sharpe, Anthony N.; Peterkin, Pearl I.

    1993-01-01

    The AOAC International official action procedure for performing aerobic colony counts on hydrophobic grid membrane filters (HGMFs) uses Trypticase soy-fast green FCF agar (FGA) incubated for 48 h. Microbial growths are various shades of green on a pale green background, which can cause problems for automated as well as manual counting. HGMFs which had been incubated 24 or 48 h at 35°C on Trypticase soy agar were flooded underneath with 1 to 2 ml of 0.1% triphenyltetrazolium chloride (TTC) sol...

  17. Uranium removal from water using cellulose triacetate membranes added with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos-Rodriguez, R. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Montero-Cabrera, M.E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Esparza-Ponce, H.E.; Herrera-Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Ballinas-Casarrubias, M.L. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Nuevo Campus s/n, Chihuahua, Chih. (Mexico)

    2012-05-15

    Ultrafiltration removal of uranium from water, with composite activated carbon cellulose triacetate membranes (AC-CTA), was investigated. The filtrate was provided by uraninite dissolution with pH=6-8. Removal efficiencies were calculated measuring solutions' radioactivities. Membranes were mainly characterized by microscopy analysis, revealing iron after permeation. Uranyl removal was 35{+-}7%. Chemical speciation indicates the presence of (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -}, UO{sub 2}CO{sub 3}, UO{sub 2}(CO{sub 3}){sub 2}{sup 2-} and Fe{sub 2}O{sub 3}(s) as main compounds in the dissolution, suggesting co-adsorption of uranium and iron by the AC during filtration, as the leading rejection path. - Highlights: Black-Right-Pointing-Pointer Cellulose triacetate (CTA) and activated carbon (AC) composite membranes were suitable for uranium removal. Black-Right-Pointing-Pointer Up to 35% of uranium from low concentrated solutions was rejected by ultrafiltration. Black-Right-Pointing-Pointer Rejection is performed by a hybrid mechanism regulated by AC adsorption. Black-Right-Pointing-Pointer Uranium and iron speciation and predominance determines the adsorption in the membrane.

  18. Thin and flexible bio-batteries made of electrospun cellulose-based membranes.

    Science.gov (United States)

    Baptista, A C; Martins, J I; Fortunato, E; Martins, R; Borges, J P; Ferreira, I

    2011-01-15

    The present work proposes the development of a bio-battery composed by an ultrathin monolithic structure of an electrospun cellulose acetate membrane, over which was deposited metallic thin film electrodes by thermal evaporation on both surfaces. The electrochemical characterization of the bio-batteries was performed under simulated body fluids like sweat and blood plasma [salt solution--0.9% (w/w) NaCl]. Reversible electrochemical reactions were detected through the cellulose acetate structure. Thus, a stable electrochemical behavior was achieved for a bio-battery with silver and aluminum thin films as electrodes. This device exhibits the ability to supply a power density higher than 3 μW cm(-2). Finally, a bio-battery prototype was tested on a sweated skin, demonstrating the potential of applicability of this bio-device as a micropower source.

  19. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes.

    Science.gov (United States)

    Stumpf, Taisa R; Pértile, Renata A N; Rambo, Carlos R; Porto, Luismar M

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications.

  20. Development of cellulose-polypyrrole microfiber membranes and assessment of their capability on water softening

    Science.gov (United States)

    Barrera, C.; Arrieta, A.; Escobar, N.; Gañan, P.; Castro, C.

    2013-11-01

    The application of conducting polymer composite for water softening is based on the use of pyrrole's electrochemical properties joined with the flexibility and relatively high surface areas associated with cellulose fibers, to develop a new hybrid material that exhibits the inherent proprieties of both components. This hybrid would allow to promote an ion exchange reaction between the composite membrane and the hard water. The cellulose membranes obtained from banana plant agricultural waste (raquis), were uniform with individual and well separated fibers. The fibers were encapsulated by a continuous coating of polypyrrole by an in situ oxidative chemical polymerization. The amount of polypyrrole deposited on the fiber increased by increasing the monomer concentration, behavior that was identified through the observation of differences on the intensity of the light to dark color shift that coated the fibers after the polymerization. The ion removal capability of the membrane coted with the conducting polymer was tested using an experimental device, finding reductions on the conductivity for hard water within 23 to 66 μs/cm after 6 hours of the assay.

  1. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2014-06-01

    Full Text Available To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. All animals were humanely euthanized by intravenous injection of phenobarbitone, at each time point, after the operation. Then, the histocompatibility and inflammatory effects of BC were examined by histological examination, real-time fluorescent quantitative polymerase chain reaction (PCR and Western Blot. BC membranes evenly covered the surface of brain without adhesion. There were seldom inflammatory cells surrounding the membrane during the early postoperative period. The expression of inflammatory cytokines IL-1β, IL-6 and TNF-α as well as iNOS and COX-2 were lower in the BC group compared to the control group at 7, 14 and 21 days after implantation. BC can repair dural defects in rabbit and has a decreased inflammatory response compared to traditional materials. However, the long-term effects need to be validated in larger animals.

  2. Preparation of Cellulosic Membrane Containing Pyrrolidone Moiety Via Radiation Induced Grafting and its Application in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    A. S. Aly

    2005-01-01

    Full Text Available Radiation induced grafting of vinyl pyrrolidone onto cellulose wood pulp was carried out in heterogeneous and homogenous media using gamma radiation. Cellulose wood pulp was used in different forms; a in a homogenous solution by dissolving the wood pulp in N,N- dimethylacetamide/Lithium chloride (DMAc/LiCl mixture , b in a membrane form, by precipitating the cellulose solution in water and c in a powder form. Factors affecting on the grafting such as radiation dose, monomer concentration, precipitator concentration and thickness of the membrane have been studied. The result showed that at the same dose, the grafting yield was higher with cellulose in soluble form than in the membrane form, whereas cellulose in powder exhibited the lowest graft yield. The grafted membrane was characterized by IR, TGA and SEM. The ability of the grafted membrane to remove dyes (acid and basic dye, heavy metal ions (Co 2+ , Ni 2+ and Cu 2+ and phenols from wastewater was also reported.

  3. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation

    Science.gov (United States)

    Fang, Qile; Zhou, Xufeng; Deng, Wei; Zheng, Zhi; Liu, Zhaoping

    2016-01-01

    Graphene oxide (GO) based membranes have been widely applied in molecular separation based on the size exclusion effect of the nanochannels formed by stacked GO sheets. However, it’s still a challenge to prepare a freestanding GO-based membrane with high mechanical strength and structural stability which is prerequisite for separation application in aqueous solution. Here, a freestanding composite membrane based on bacterial cellulose (BC) and GO is designed and prepared. BC network provides a porous skeleton to spread GO sheets and uniformly incorporates into the GO layers, which endows the BC + GO composite membrane with well water-stability, excellent tensile strength, as well as improved toughness, guaranteeing its separation applicability in water environment. The resulting BC + GO membrane exhibits obviously discrepant permeation properties for different inorganic/organic ions with different size, and in particular, it can quickly separate ions in nano-scale from angstrom-scale. Therefore, this novel composite membrane is considered to be a promising candidate in the applications of water purification, food industry, biomedicine, and pharmaceutical and fuel separation. PMID:27615451

  4. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation

    Science.gov (United States)

    Fang, Qile; Zhou, Xufeng; Deng, Wei; Zheng, Zhi; Liu, Zhaoping

    2016-09-01

    Graphene oxide (GO) based membranes have been widely applied in molecular separation based on the size exclusion effect of the nanochannels formed by stacked GO sheets. However, it’s still a challenge to prepare a freestanding GO-based membrane with high mechanical strength and structural stability which is prerequisite for separation application in aqueous solution. Here, a freestanding composite membrane based on bacterial cellulose (BC) and GO is designed and prepared. BC network provides a porous skeleton to spread GO sheets and uniformly incorporates into the GO layers, which endows the BC + GO composite membrane with well water-stability, excellent tensile strength, as well as improved toughness, guaranteeing its separation applicability in water environment. The resulting BC + GO membrane exhibits obviously discrepant permeation properties for different inorganic/organic ions with different size, and in particular, it can quickly separate ions in nano-scale from angstrom-scale. Therefore, this novel composite membrane is considered to be a promising candidate in the applications of water purification, food industry, biomedicine, and pharmaceutical and fuel separation.

  5. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Polyetherimide, cellulose acetate and ethylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The goal of this program is to develop polymer membranes useful in the preparation of hydrogen from coal-derived synthesis gas. During this quarter the first experiment were aimed at developing high performance composite membranes for the separation of hydrogen from nitrogen and carbon monoxide. Three polymers have been selected as materials for these membranes: polyetherimide cellulose acetate and ethylcellulose. This quarter the investigators worked on polyetherimide and cellulose acetate membranes. The overall structure of these membranes is shown schematically in Figure 1. As shown, a microporous support membrane is first coated with a high flux intermediate layer then with an ultrathin permselective layer and finally, if necessary, a thin protective high flux layer. 1 fig., 4 tabs.

  6. Assessment of a membrane drinking water filter in an emergency setting.

    Science.gov (United States)

    Ensink, Jeroen H J; Bastable, Andy; Cairncross, Sandy

    2015-06-01

    The performance and acceptability of the Nerox(TM) membrane drinking water filter were evaluated among an internally displaced population in Pakistan. The membrane filter and a control ceramic candle filter were distributed to over 3,000 households. Following a 6-month period, 230 households were visited and filter performance and use were assessed. Only 6% of the visited households still had a functioning filter, and the removal performance ranged from 80 to 93%. High turbidity in source water (irrigation canals), together with high temperatures and large family size were likely to have contributed to poor performance and uptake of the filters.

  7. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig A. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2016-03-01

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results. The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.

  8. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi

    2013-08-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower molecules. In this work, we combine membrane synthesis, detailed microstructural characterization, and mixed gas permeation measurements to demonstrate that nanoporous flake/polymer membranes allows significant improvement in gas permeability while maintaining selectivity. We begin with the primary-amine-intercalated porous layered silicate SAMH-3 and show that it can be exfoliated using a high shear rate generated by a high-speed mixer. The exfoliated SAMH-3 flakes were used to form SAMH-3/cellulose acetate (CA) membranes. Their microstructure was analyzed by small angle X-ray scattering (SAXS), revealing a high degree of exfoliation of AMH-3 layers in the CA membrane with a small number of layers (4-8) in the exfoliated flakes. TEM analysis visualized the thickness of the flakes as 15-30nm, and is consistent with the SAXS analysis. The CO2/CH4 gas separation performance of the CA membrane was significantly increased by incorporating only 2-6wt% of SAMH-3 flakes. There was a large increase in CO2 permeability with maintenance of selectivity. This cannot be explained by conventional models of transport in flake-containing membranes, and indicates complex transport paths in the membrane. It is also in contrast to the much higher loadings of isotropic particles required for similar enhancements. The present approach may allow avoidance of particle aggregation and poor interfacial adhesion associated with larger quantities of inorganic fillers. © 2013 Elsevier B.V.

  9. Dual-skinned polyamide/poly(vinylidene fluoride)/cellulose acetate membranes with embedded woven

    KAUST Repository

    Duong, Phuoc H.H.

    2016-08-31

    We propose multilayer membranes including (i) a thin selective polyamide (PA) layer prepared via interfacial polymerization, (ii) a poly (vinylidene fluoride) (PVDF) asymmetric porous support with high adhesion to the PA layer and high mechanical strength, (iii) a strong woven fabric, and (iv) fouling resistant porous cellulose acetate (CA) layer. The PA layer rejects solutes of the draw solution. The PVDF/woven fabric/CA (PVDF/CA) integrated layer performs as a mechanical support with unique properties for forward osmosis (FO) applications. It consists of a modified PVDF top layer suitable for the deposition of a PA layer and a highly hydrophilic bottom layer (CA) with a tunable pore size to minimize foulant deposition and intrusion onto and into the support. The experimental results using bovine serum albumin (BSA) as a model foulant show that the presence of the CA layer at the bottom of the FO membrane (PA/PVDF/CA) reduces 75% fouling propensity compared to the simple FO membrane made of PVDF, woven fabric and PA (PA/PVDF). Fouling tests with 2000 ppm oily feed faced the bottom of the FO membranes further indicate the superiority of the PA/PVDF/CA membrane compared to the PA/PVDF membrane. Moreover, the bottom CA layer can be adjusted with a flexible range of pore size, varied from sub-micron to sub-nanometer depending on the feed composition. The newly developed multilayer FO membrane has comparable performance to the state-of-the-art membrane with added tailored fouling resistance for specific wastewater feeds.

  10. Impact of a silver layer on the membrane of tap water filters on the microbiological quality of filtered water

    Directory of Open Access Journals (Sweden)

    Bruderek Juliane

    2008-10-01

    Full Text Available Abstract Background Bacteria in the hospital's drinking water system represent a risk for the acquisition of a nosocomial infection in the severely immunocompromised host. Terminal tap water filters may be used to prevent nosocomial Legionnaires' disease. We present data from water samples using an improved kind of tap water filters. Methods In a blinded study on an intermediate care unit of the thoracic surgery department, a modified type of the Germlyser water filter (Aqua-Free Membrane Technology with a newly-introduced silver layer on the filtration membrane was compared to its preceding type without such a layer on 15 water outlets. We determined growth of Legionella, other pathogenic bacteria, and the total heterotrophic plate count in unfiltered water and filtered water samples after filter usage intervals of 1 through 4 weeks. Results A total of 299 water samples were tested. Twenty-nine of the 60 unfiltered water samples contained Legionella of various serogroups (baseline value. In contrast, all samples filtered by the original water filter and all but one of the water samples filtered by the modified filter type remained Legionella-free. No other pathogenic bacteria were detected in any filtered sample. The total plate count in water samples increased during use of both kinds of filters over time. However, for the first 7 days of use, there were significantly fewer water samples containing >100 CFU per mL when using the new filter device compared with the older filters or taps with no filter. No advantage was seen thereafter. Conclusion The use of this type of terminal water filter is an appropriate method to protect immunocompromised patients from water-borne pathogens such as Legionella.

  11. Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties

    Indian Academy of Sciences (India)

    NAZNIN SULTANA; ANISAH ZAINAL

    2016-04-01

    Cellulose-based materials are one of the most commonly used materials for biomedical applications, which normally applied as carriers for pharmaceuticals and drug-releasing scaffolds. In this study, cellulose acetate (CA) was used to fabricate the nanofibrous membrane using the electrospinning technique. CA solutions at different concentrations were prepared by dissolving the polymer in a mixture of acetic acid/acetone solvents with the ratio of 3:1. The field emission scanning electron microscope results showed that electrospinning of 10% (w/v) CA produced nanofibres with many beads. When the CA concentration was increased to 14% (w/v), bead-free nanofibres were produced. The contact angle measurement results confirmed the hydrophilic properties of nanofibres. In order to prevent common bacterial infections, a model drug, Tetracycline · HCL was incorporated into the CA nanofibres. The drug-loaded CA nanofibres showed antibacterial activity against Gram-positive and Gram-negative bacteria.CA nanofibres had high water uptake properties. The CA nanofibrous membrane was non-toxic to human skin fibroblast cells. Thus the CA nanofibres with 14% (w/v) concentration exerted suitable properties for wound healingapplication.

  12. Leukotriene release from neutrophils of patients on hemodialysis with cellulose membranes.

    Science.gov (United States)

    Jörres, A; Jörres, D; Gahl, G M; Schulz, E; Mahiout, A

    1992-02-01

    The role of cytokines in patients with chronic renal failure is currently under investigation. We therefore studied the release of leukotriene B4 (LTB4) from polymorphonuclear leukocytes (PMN) in stable dialysis patients treated with two different cellulose membranes, Cuprophan and Hemophan, a modified cellulose with less complement activation. Six patients were treated for four weeks with Cuprophan then switched to Hemophan for another four weeks. Before and after the last treatment of each period, PMN were separated from 20 ml heparinized blood by FICOLL density gradient centrifugation. Portions of 5 x 10(6) PMN were resuspended in Hanks' buffer and stimulated for 5 minutes with calcium ionophore A23187 (5 micrograms/ml). LTB4 in cell supernatants was determined by specific radioimmunoassay. PMN from dialysis patients before HD released significantly (p less than 0.01) more LTB4 than healthy donors. No significant difference between pre- and post-dialysis values was observed with Cuprophan or Hemophan dialyzers. Our data suggest that the acute effects of blood membrane interaction with either complement activating or non-activating dialyzers do not lead to changes in post-dialysis leukotriene metabolism, but leukotriene production is enhanced chronically in dialysis patients.

  13. Improved aerobic colony count technique for hydrophobic grid membrane filters.

    Science.gov (United States)

    Parrington, L J; Sharpe, A N; Peterkin, P I

    1993-09-01

    The AOAC International official action procedure for performing aerobic colony counts on hydrophobic grid membrane filters (HGMFs) uses Trypticase soy-fast green FCF agar (FGA) incubated for 48 h. Microbial growths are various shades of green on a pale green background, which can cause problems for automated as well as manual counting. HGMFs which had been incubated 24 or 48 h at 35 degrees C on Trypticase soy agar were flooded underneath with 1 to 2 ml of 0.1% triphenyltetrazolium chloride (TTC) solution by simply lifting one corner of the filter while it was still on the agar and adding the reagent. Microbial growths on HGMFs were counted after color had been allowed to develop for 15 min at room temperature. With representative foods, virtually all colonies stained pink to red. Automated electronic counts made by using the MI-100 HGMF Interpreter were easier and more reliable than control HGMF counts made by the AOAC International official action procedure. Manual counting was easier as well because of increased visibility of the microbial growths. Except in the case of dairy products, 24-h TTC counts did not differ significantly from 48-h FGA counts, whereas the FGA counts at 24 h were always significantly lower, indicating that for many food products the HGMF TTC flooding method permits aerobic colony counts to be made after 24 h.

  14. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings.

    Science.gov (United States)

    Luo, Xiaogang; Zhang, Hao; Cao, Zhenni; Cai, Ning; Xue, Yanan; Yu, Faquan

    2016-06-05

    The objective of this study is to develop transparent porous nanodiamonds/cellulose nanocomposite membranes with controlled release of doxorubicin for potential applications as wound dressings, which were fabricated by tape casting method from dispersing carboxylated nanodiamonds and dissolving cellulose homogeneously in 7 wt% NaOH/12 wt% urea aqueous solution. By adjusting the carboxylated nanodiamonds content, various nanocomposite membranes were obtained. The structure and properties of these membranes have been investigated by light transmittance measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile tests, water loss analyses, etc. The drug loading and release was investigated using doxorubicin hydrochloride as a model drug. In vitro cytotoxicity assay of the membranes was also studied. This work presented a proof-of-concept utility of these membranes for loading and release of bioactive compounds to be employed as a candidate for wound dressing.

  15. Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Raka; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2014-01-30

    Highlights: • Composite membrane of cellulose–acetate–phthalate and alumina nanoparticle is cast. • Surface charge of the membrane changes with nanoparticle concentration and pH. • Separation of phenolic compounds occurs due to adsorption. • The removal efficiency is maximum for 20% nanoparticle with 91% removal of catechol. • Transmembrane pressure drop has negligible effect on solute separation. -- Abstract: Mixed matrix membranes (MMMs) were prepared using alumina nanoparticles and cellulose acetate phthalate (CAP) by varying concentration of nanoparticles in the range of 10 to 25 wt%. The membranes were characterized by scanning electron micrograph, porosity, permeability, molecular weight cut off, contact angle, surface zeta potential, mechanical strength. Addition of nanoparticles increased the porosity, permeability of the membrane up to 20 wt% of alumina. pH at point of zero charge of the membrane was 5.4. Zeta potential of the membrane became more negative up to 20 wt% of nanoparticles. Adsorption of phenolic derivatives, catechol, paranitrophenol, phenol, orthochloro phenol, metanitrophenol, by MMMs were investigated. Variation of rejection and permeate flux profiles were studied for different solutes as a function of various operating conditions, namely, solution pH, solute concentration in feed and transmembrane pressure drop. Difference in rejection of phenolic derivatives is consequence of interplay of surface charge and adsorption by alumina. Adsorption isotherm was fitted for different solutes and effects of pH were investigated. Catechol showed the maximum rejection 91% at solution pH 9. Addition of electrolyte reduced the rejection of solutes. Transmembrane pressure drop has insignificant effects on solute rejection. Competitive adsorption reduced the rejection of individual solute.

  16. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.

    Science.gov (United States)

    Wang, Xinhua; Zhao, Yanxiao; Yuan, Bo; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-02-01

    There are two types of popular forward osmosis (FO) membrane materials applied for researches on FO process, cellulose triacetate (CTA) and thin film composite (TFC) polyamide. However, performance and fouling mechanisms of commercial TFC FO membrane in osmotic membrane bioreactors (OMBRs) are still unknown. In current study, its biofouling behaviors in OMBRs were investigated and further compared to the CTA FO membrane. The results indicated that β-D-glucopyranose polysaccharides and microorganisms accounted for approximately 77% of total biovolume on the CTA FO membrane while β-D-glucopyranose polysaccharides (biovolume ratio of 81.1%) were the only dominant biofoulants on the TFC FO membrane. The analyses on the biofouling structure implied that a tighter biofouling layer with a larger biovolume was formed on the CTA FO membrane. The differences in biofouling behaviors including biofoulants composition and biofouling structure between CTA and TFC FO membranes were attributed to different membrane surface properties.

  17. Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes

    KAUST Repository

    Ong, Rui Chin

    2015-01-01

    A novel hydrophilic cellulose ester with a high intrinsic water permeability and a water partition coefficient was discovered to construct membrane supports for flat-sheet thin film composite (TFC) forward osmosis (FO) membranes for water reuse and seawater desalination with high performance. The performance of TFC-FO membranes prepared from the hydrophilic cellulose ester containing a high degree of OH and a moderate degree of Pr substitutions clearly surpasses those prepared from cellulose esters and other polymers with moderate hydrophilicity. Post-treatments of TFC-FO membranes using sodium dodecyl sulfate (SDS) and glycerol followed by heat treatment further enhance the water flux without compromising the selectivity. Positron annihilation lifetime analyses have confirmed that the SDS/glycerol post-treatment increases the free volume size and fractional free volume of the polyamide selective layer. The newly developed post-treated TFC-FO membranes exhibit a remarkably high water flux up to 90 LMH when the selective layer is oriented towards the draw solution (i.e., PRO mode) using 1. M NaCl as the draw solution and DI water as the feed. For seawater desalination, the membranes display a high water flux up to 35 LMH using a 2. M NaCl draw solution. These water fluxes exceeded the water fluxes achieved by other types of FO membranes reported in literatures. © 2014 Elsevier B.V.

  18. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility.

    Science.gov (United States)

    Wang, Miao; Yuan, Jiang; Huang, Xiaobo; Cai, Xianmei; Li, Li; Shen, Jian

    2013-03-01

    Grafting-from has proven to be a very effective way to create high grafting densities and well-controlled polymer chains on different kinds of surfaces. In this work, we aim to graft zwitterionic brush from cellulose membrane (CM) via ARGET-ATRP (Activator Regenerated by Electron Transfer ATRP) method indirectly for blood compatibility improvement. Characterization of the CM substrates before and after modification was carried out by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle measurements, X-ray photoelectron spectroscopy analysis, and atomic force microscopy, respectively. The results demonstrated zwitterionic brushes were successfully grafted on the CM surfaces, and the content of the grafted layer increased gradually with the polymerization time. The platelet adhesion, hemolytic test and plasma protein adsorption results indicated the cellulose membrane had significantly excellent blood compatibility featured on lower platelet adhesion and protein adsorption without causing hemolysis. The functionalized cellulose substrate could have a great potential usage for biomedical applications.

  19. Elastic properties of thin poly(vinyl alcohol)-cellulose nanocrystal membranes

    Science.gov (United States)

    Pakzad, A.; Simonsen, J.; Yassar, R. S.

    2012-03-01

    In spite of extensive studies on the preparation and characterization of nanocomposite materials, the correlation of their properties at the nanoscale with those in bulk is a relatively unexplored area. This is of great importance, especially for materials with potential biomedical applications, where surface properties are as important in determining their applicability as bulk characteristics. In this study, the nanomechanical characteristics of thin poly(vinyl alcohol) (PVOH)-poly(acrylic acid) (PAA)-cellulose nanocrystal (CNC) membranes were studied using the nanoindentation module in an atomic force microscope (AFM) and the properties were compared with the macro-scale properties obtained by tensile tests. In general, the elastic properties measured by nanoindentation followed the same trend as macro-scale tensile tests except for the PVOH 85-PAA 0-CNC 15 sample. In comparison to the macro-scale elastic properties, the measured elastic moduli with AFM were higher. Macro-scale tensile test results indicated that, in the presence of PAA, incorporation of CNCs up to 20 wt% improved the elastic modulus of PVOH, but when no PAA was added, increasing the CNC content above 10 wt% resulted in their agglomeration and degradation in mechanical properties of PVOH. The discrepancy between macro-scale tensile tests and nanoindentation in the PVOH 85-PAA 0-CNC 15 sample was correlated to the high degree of inhomogeneity of CNC dispersion in the matrix. It was found that the composites reinforced with cellulose nanocrystals had smaller indentation imprints and the pile-up effect increased with the increase of cellulose nanocrystal content.

  20. Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rongfu; Lee, Y.Y. [Auburn Univ., AL (United States)

    1997-12-31

    Lactic acid production from cellulosic biomass by cellulose and Lactobacillus delbrueckii was studied in a fermenter-extractor employing a microporous hollow fiber membrane (NIHF). This bioreactor system was operated under a fed-batch mode with continuous removal of lactic acid by an in situ extraction. A tertiary amine (Alamine 336) was used as an extractant for lactic acid. The extraction capacity of Alamine 336 is greatly enhanced by addition of alcohol. Long-chain alcohols serve well for this purpose since they are less toxic to micro-organism. Addition of kerosene, a diluent, was necessary to reduce the solvent viscosity. A solvent mixture of 20% Alamine 336,40% oleyl alcohol, and 40% kerosene was found to be most effective in the extraction of lactic acid. Progressive change of pH from an initial value of 5.0 down to 4.3 has significantly improved the overall performance of the simultaneous saccharification and extractive fermentation over that of constant pH operation. The change of pH was applied to promote cell growth in the early phase, and extraction in the latter phase. 20 refs., 10 figs., 1 tab.

  1. In vitro synthesis of cellulose microfibrils by a membrane protein from protoplasts of the non-vascular plant Physcomitrella patens.

    Science.gov (United States)

    Cho, Sung Hyun; Du, Juan; Sines, Ian; Poosarla, Venkata Giridhar; Vepachedu, Venkata; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H; Kumar, Manish; Nixon, B Tracy

    2015-09-01

    Plant cellulose synthases (CesAs) form a family of membrane proteins that are associated with hexagonal structures in the plasma membrane called CesA complexes (CSCs). It has been difficult to purify plant CesA proteins for biochemical and structural studies. We describe CesA activity in a membrane protein preparation isolated from protoplasts of Physcomitrella patens overexpressing haemagglutinin (HA)-tagged PpCesA5. Incubating the membrane preparation with UDP-glucose predominantly produced cellulose. Negative-stain EM revealed microfibrils. Cellulase bound to and degraded these microfibrils. Vibrational sum frequency generation (SFG) spectroscopic analysis detected the presence of crystalline cellulose in the microfibrils. Putative CesA proteins were frequently observed attached to the microfibril ends. Combined cross-linking and gradient centrifugation showed bundles of cellulose microfibrils with larger particle aggregates, possibly CSCs. These results suggest that P. patens is a useful model system for biochemical and structural characterization of plant CSCs and their components.

  2. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Taisa R.; Pértile, Renata A.N. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil); Rambo, Carlos R., E-mail: rambo@intelab.ufsc.br [Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900 (Brazil); Porto, Luismar M. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil)

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology.

  3. Characterization of Pores in Dense Nanopapers and Nanofibrillated Cellulose Membranes: A Critical Assessment of Established Methods.

    Science.gov (United States)

    Orsolini, Paola; Michen, Benjamin; Huch, Anja; Tingaut, Philippe; Caseri, Walter R; Zimmermann, Tanja

    2015-11-25

    Nanofibrillated cellulose (NFC) is a natural fibrous material that can be readily processed into membranes. NFC membranes for fluid separation work in aqueous medium, thus in their swollen state. The present study is devoted to a critical investigation of porosity, pore volume, specific surface area, and pore size distribution of dry and wet NFC nanopapers, also known as membranes, with various established techniques, such as electron microscopy, helium pycnometry, mercury intrusion, gas adsorption (N2 and Kr), and thermoporometry. Although these techniques can be successfully applied to inorganic materials (e.g., mesoporous silica), it is necessary to appraise them for organic and hydrophilic products such as NFC membranes. This is due to different phenomena occurring at the materials interfaces with the probing fluids. Mercury intrusion and gas adsorption are often used for the characterization of porosity-related properties; nevertheless, both techniques characterize materials in the dry state. In parallel, thermoporometry was employed to monitor the structure changes upon swelling, and a water permeance test was run to show the accessibility of the membranes to fluids. For the first time, the methods were systematically screened, and we highlighted the need of uniform sample treatments prior to the measurements (i.e., sample cutting and outgassing protocols) in order to harmonize results from the literature. The need for revising the applicability range of mercury intrusion and the inappropriateness of nitrogen adsorption were pointed out. We finally present a table for selecting the most appropriate method to determine a desired property and propose guidelines for results interpretation from which future users could profit.

  4. Preparation of zeolite covered cellulose fibers

    Energy Technology Data Exchange (ETDEWEB)

    Mintova, S.; Valtchev, V. [Institute of Applied Mineralogy, Sofia (Bulgaria)

    1995-12-01

    Membrane separation has proved to be an important technology in chemical industry. That is why the design of different type of zeolite containing membranes has received much attention during the last decade. Zeolite containing filters and membranes were prepared by embedding zeolite crystals with adhesive substances in the cellulose matrix. This communication discussed the preparation of zeolite containing cellulose materials by in situ crystallization. Discussed axe: (1) the effect of the vegetal fiber structure and chemical composition (2) the effect of the type of the zeolite coating; (3) the effect of the mechanical and chemical treatment of the fibers on the process of the fiber zeolite coating.

  5. Preconcentration of Rare Earth Elements with 8-Hydroxyquinoline-5-sulfonic Acid Chelated Cellulose Filter Prior to Determination by Inductively Coupled Plasma Atomic Emission Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    8-Hydroxyquinoline-5-sulfonic acid,covalently bound to filter cellulose,was used for preconcentrating trace rare earth element(REE) ions from complex matrices and matrix separation,respectively.Multi-REE ions were preconcentrated on the column filled with 8-hydroxyquinoline-5-sulfonic acid cellulose filter and analysed by ICP-AES after being eluted with dilute HNO3.In the given pH range,alkali and alkaline earth metal ions can be separated as matrix elements;a high concentration factor is obtained and the eluates can be measured without interference.The usefulness of the method is shown by the control analyses of standard reference materials.

  6. Asymmetric membrane filters for the removal of leukocytes from blood

    NARCIS (Netherlands)

    Bruil, A.; Aken, van W.G.; Beugeling, T.; Feijen, J.; Steneker, I.; Huisman, J.G.; Prins, H.K.

    1991-01-01

    As part of a study on the mechanisms of leukocyte filtration, the influence of pore size distribution on filter efficiency was investigated. Conventional leukocyte filters are not suitable for model studies, as these filters are composed of tightly packed synthetic fibers, with a poorly defined poro

  7. Effects of variation of chitosan concentration on the characteristics of membrane cellulose bacteria-chitosan biocomposites as candidates for artificial dura mater

    Science.gov (United States)

    Widiyanti, Prihartini; Jabbar, Hajria; Rudyardjo, Djony Izak

    2017-02-01

    This study was conducted to determine the effect of variation in concentration of chitosan on the physical and biological characteristics of the membrane of bacterial cellulose-chitosan biocomposites through immersion precipitation method. Bacterial cellulose membrane was soaked in a solution of chitosan whose concentration variation are 0.1%; 0.3%; 0.5% and 0.7%. The characterization tests which were conducted included the analysis of functional groups (FTIR), tensile strength test, morphology test (SEM), and cytotoxicity assay using MTT Assay method. Based on the cluster analysis test, the results of FTIR spectra indicate changes in the physical bond which means that there is interaction between the bacterial cellulose membrane with chitosan on each sample. The bacteria produced cellulose membrane with tensile strength of 10.53 ± 0.19 MPa while the microbial cellulose membrane by adding 0.5% chitosan concentration had tensile strength value of 8:58 ± 0.19 MPa. It shows that with the addition of chitosan it would decrease the tensile strength in microbial cellulose membrane. This was shown by 496.2 nm - 2,032 µm pore size with a thickness (mm) of 0:35 ± 0.33 to 0.81 ± 0.26. Based on the test results of the analysis of functional groups, tensile strength test, and morphology test, membrane microbial cellulose-chitosan biocomposites have the potential to be used as artificial dura mater candidate.

  8. Platelet adhesion, contact phase coagulation activation, and C5a generation of polyethylene glycol acid-grafted high flux cellulosic membrane with varieties of grafting amounts.

    Science.gov (United States)

    Fushimi, F; Nakayama, M; Nishimura, K; Hiyoshi, T

    1998-10-01

    Grafting of polyethylene glycol chains onto cellulosic membrane can be expected to reduce the interaction between blood (plasma protein and cells) and the membrane surface. Alkylether carboxylic acid (PEG acid) grafted high flux cellulosic membranes for hemodialysis, in which the polyethylene glycol chain bears an alkyl group at one side and a carboxyl group at the other side, have been developed and evaluated. PEG acid-grafted high flux cellulosic membranes with various grafting amounts have been compared with respect to platelet adhesion, the contact phase of blood coagulation, and complement activation in vitro. A new method of quantitating platelet adhesion on hollow-fiber membrane surfaces has been developed, which is based on the determination of lactate dehydrogenase (LDH) activity after lysis of the adhered platelets. PEG acid-grafted high flux cellulosic membranes showed reduced platelet adhesion and complement activation effects in grafting amounts of 200 ppm or higher without detecting adverse effects up to grafting amounts of 850 ppm. The platelet adhesion of a PEG acid-grafted cellulosic membrane depends on both the flux and grafting amounts of the membrane. It is concluded that the grafting of PEG acid onto a cellulosic membrane improves its biocompatibility as evaluated in terms of platelet adhesion, complement activation, and thrombogenicity.

  9. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells.

    Science.gov (United States)

    Sampathkumar, Arun; Gutierrez, Ryan; McFarlane, Heather E; Bringmann, Martin; Lindeboom, Jelmer; Emons, Anne-Mie; Samuels, Lacey; Ketelaar, Tijs; Ehrhardt, David W; Persson, Staffan

    2013-06-01

    The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.

  10. Standard Practice for Processing Aerospace Liquid Samples for Particulate Contamination Analysis Using Membrane Filters

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice covers the processing of liquids in preparation for particulate contamination analysis using membrane filters and is limited only by the liquid-to-membrane filter compatibility. 1.2 The practice covers the procedure for filtering a measured volume of liquid through a membrane filter. When this practice is used, the particulate matter will be randomly distributed on the filter surface for subsequent contamination analysis methods. 1.3 The practice describes procedures to allow handling particles in the size range between 2 and 1000 μm with minimum losses during handling. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  11. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature.

  12. Preparation, characterization and thermal studies of polymer inclusion cellulose acetate membrane with calix[4]resorcinarenes as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Benosmane, Nadjib [Laboratoire de Chimie Organique Appliquee (Groupe Heterocycles Associe CRAPC), Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger (Algeria); Guedioura, Bouzid [Division reacteur/Centre de Recherche Nucleaire de Draria, CRND, BP 43 Draria, Alger (Algeria); Hamdi, Safouane Mohammed [Laboratoire de Biochimie-Purpan, Institut Federatif de Biologie, CHU Toulouse 330, avenue de Grande-Bretagne - F-31059 Toulouse Cedex 9 (France); Hamdi, Maamar [Laboratoire de Chimie Organique Appliquee (Groupe Heterocycles Associe CRAPC), Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger (Algeria); Boutemeur, Baya, E-mail: bayakheddis@hotmail.com [Laboratoire de Chimie Organique Appliquee (Groupe Heterocycles Associe CRAPC), Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)

    2010-07-20

    A polymer inclusion membrane (PIM) system with cellulose acetate polymer as support and calix[4]resorcinarenes as carriers has been developed. Special attention was paid to PIM characterization using scanning electron microscopy, Fourier-transform infra-red study, X-ray scattering and thermogravimetric analyses. The efficiency of the membrane transport was optimized as a function of pH, stirring speed, aqueous phases and membrane composition. The results suggested that the transport mechanism is a counter-transport of protons, the mechanism was mainly controlled by the diffusion of the complex formed in the membrane core. Analysis of lead(II) transport through these PIMs was performed. It was found that calix[4]resorcinarenes containing membranes were flexible, resistant and heterogeneous without plasticizer addition.

  13. Ultrafiltration performance of PVDF, PES, and cellulose membranes for the treatment of coconut water (Cocos nucifera L.

    Directory of Open Access Journals (Sweden)

    Isabel Cristina do Nascimento Debien

    2013-12-01

    Full Text Available Ultrafiltration (UF inhibits the enzymatic activity which is responsible for color changes of coconut water without the need for heat treatment. In the present study, UF performance in terms of the permeate flux and enzymatic retention of the coconut water was evaluated at laboratory unit (LU and pilot unit (PU. The membranes studied were polyethersulfone 150 kDa (UP150, polyvinylidene fluoride 150 kDa (UV150 and cellulose 30 kDa (UC030. The UP150 membrane showed the best permeate flux. The UC030 membrane showed the lowest flux, but it resulted in 100% enzymatic retention, while the other membranes showed enzymatic retentions between 71 and 85%. The application of the UC030 in the pilot unit (PU resulted in a flux value higher than that obtained in the LU due to the tangential velocity effect. The UC030 membrane has proved adequate for industrial applications.

  14. The silica-doped sulfonated poly(fluorenyl ether ketone)s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Wang, S.J.; Xiao, M.; Bian, S.G.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Xingangxi Road, Guangzhou 510275 (China)

    2009-05-15

    The sulfonated poly(fluorenyl ether ketone)s (SPFEK) membranes doped with SiO{sub 2} and dispersed by hydroxypropyl methyl cellulose (HPMC) were prepared and investigated for polymer electrolyte membrane fuel cells (PEMFCs) used at high temperature and low relative humidity (RH). The above membrane was prepared by solution dispersion of SPFEK and SiO{sub 2} using HPMC as dispersant. The physio-chemical properties of the hybrid membrane were studied by means of scanning electron microscope (SEM), ion-exchange capacity (IEC), proton conductivity, and single cell performance tests. The hybrid membranes dispersed by HPMC were well dispersed when compared with common organic/inorganic hybrid membranes. The hybrid membranes showed superior characteristics as a proton exchange membrane (PEM) for PEMFC application, such as high ionic exchange content (IEC) of 1.51 equiv/g, high temperature operation properties, and the satisfactory ability of anti-H{sub 2} crossover. The single cell performances of the hybrid membranes were examined in a 5 cm{sup 2} commercial single cell at both 80 C and 120 C under different relative humidity (RH) conditions. The hybrid membrane dispersed by HPMC gave the best performance of 260 mW/cm{sup 2} under conditions of 0.4 V, 120 C, 50% RH and ambient pressure. The results demonstrated HPMC being an efficient dispersant for the organic/inorganic hybrid membrane used for PEM fuel cell. (author)

  15. Layer-by-layer structured polysaccharides-based multilayers on cellulose acetate membrane: Towards better hemocompatibility, antibacterial and antioxidant activities

    Science.gov (United States)

    Peng, Lincai; Li, Hui; Meng, Yahong

    2017-04-01

    The development of multifunctional cellulose acetate (CA) membranes with enhanced hemocompatibility and antibacterial and antioxidant activities is extremely important for biomedical applications. In this work, significant improvements in hemocompatibility and antibacterial and antioxidant activities of cellulose acetate (CA) membranes were achieved via layer-by-layer (LBL) deposition of chitosan (CS) and water-soluble heparin-mimicking polysaccharides (i.e., sulfated Cantharellus cibarius polysaccharides, SCP) onto their surface. The surface chemical compositions, growth manner, surface morphologies, and wetting ability of CS/SCP multilayer-modified CA membranes were characterized, respectively. The systematical evaluation of hemocompatibility revealed that CS/SCP multilayer-modified CA membranes significantly improved blood compatibility including resistance to non-specific protein adsorption, suppression of platelet adhesion and activation, prolongation of coagulation times, inhibition of complement activation, as well as reduction in blood hemolysis. Meanwhile, CS/SCP multilayer-modified CA membranes exhibited strong growth inhibition against Escherichia coli and Staphylococcus aureus, as well as high scavenging abilities against superoxide and hydroxyl radicals. In summary, the CS/SCP multilayers could confer CA membranes with integrated hemocompatibility and antibacterial and antioxidant activities, which might have great potential application in the biomedical field.

  16. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Tommy Joe [ORNL; Palumbo, Anthony Vito [ORNL; Fagan, Lisa Anne [ORNL; Bischoff, Brian L [ORNL; Miller, Curtis Jack [ORNL; Drake, Meghan M [ORNL; Judkins, Roddie Reagan [ORNL

    2008-01-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 {micro}m in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 {micro}m filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 {micro}m filters can potentially outperform the commercial filter by factors of 100-1000 fold.

  17. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose {gamma}-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Heredia-Guerrero, J.A., E-mail: jose.alejandro@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Galan, P. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Benitez, J.J. [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Benavente, J. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain)

    2011-04-15

    Research highlights: {yields} Low dose {gamma}-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. {yields} Induced structural changes increase the fragility of irradiated films. {yields} Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose {gamma}-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  18. Facile fouling resistant surface modification of microfiltration cellulose acetate membranes by using amino acid L-DOPA.

    Science.gov (United States)

    Azari, Sara; Zou, Linda; Cornelissen, Emile; Mukai, Yasushito

    2013-01-01

    A major obstacle in the widespread application of microfiltration membranes in the wet separation processes such as wastewater treatment is the decline of permeates flux as a result of fouling. This study reports on the surface modification of cellulose acetate (CA) microfiltration membrane with amino acid L-3,4-dihydroxy-phenylalanine (L-DOPA) to improve fouling resistance of the membrane. The membrane surface was characterised using Fourier transform infrared spectroscopy (FTIR), water contact angle and zeta potential measurement. Porosity measurement showed a slight decrease in membrane porosity due to coating. Static adsorption experiments revealed an improved resistance of the modified membranes towards the adhesion of bovine serum albumin (BSA) as the model foulant. Dead end membrane filtration tests exhibited that the fouling resistance of the modified membranes was improved. However, the effect of the modification depended on the foulant solution concentration. It is concluded that L-DOPA modification is a convenient and non-destructive approach to enable low-BSA adhesion surface modification of CA microfiltration membranes. Nevertheless, the extent of fouling resistance improvement depends on the foulant concentration.

  19. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Xiao, S. Y.; Yang, Y. Q.; Li, M. X.; Wang, F. X.; Chang, Z.; Wu, Y. P.; Liu, X.

    2014-12-01

    A composite polymer membrane is prepared by coating poly(vinylidene fluoride) (PVDF) on the surface of a membrane based on methyl cellulose (MC) which is environmentally friendly and cheap. Its characteristics are investigated by scanning electron microscopy, FT-IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The outer PVDF layers are porous which results in high electrolyte uptake and the lithium ion transference number is much larger than that of the pure MC. Moreover, the cell based on Li//LiFePO4 delivers high discharge capacity and good rate behavior in the range of 4.2-2.5 V when the composite membrane is used as the separator and the host of a gel polymer electrolyte, lithium as the counter and reference electrode, and LiFePO4 as cathode. The obtained results suggest that this unique composite membrane shows great attraction in the lithium ion batteries with high safety and low cost.

  20. Use of pressure-hold test for sterilizing filter membrane integrity in radiopharmaceutical manufacturing.

    Science.gov (United States)

    Belanger, Anthony P; Byrne, John F; Paolino, Justin M; DeGrado, Timothy R

    2009-11-01

    The bubble point test is the de facto standard for postproduction filter membrane integrity test in the radiopharmaceutical community. However, the bubble point test depends on a subjective visual assessment of bubbling rate that can be obscured by significant diffusive gas flows below the manufacturer's prescribed bubble point. To provide a more objective means to assess filter membrane integrity, this study evaluates the pressure-hold test as an alternative to the bubble point test. In our application of the pressure-hold test, the nonsterile side of the sterilizing filter is pressurized to 85% of the predetermined bubble point with nitrogen, the filter system is closed off from the pressurizing gas and the pressure is monitored over a prescribed time interval. The drop in pressure, which has a known relationship with diffusive gas flow, is used as a quantitative measure of membrane integrity. Characterization of the gas flow vs. pressure relationship of each filter/solution combination provides an objective and quantitative means for defining a critical value of pressure drop over which the membrane is indicated to be nonintegral. The method is applied to sterilizing filter integrity testing associated with the commonly produced radiopharmaceuticals, [(18)F]FDG and [(11)C]PIB. The method is shown to be robust, practical and amenable to automation in radiopharmaceutical manufacturing environments (e.g., hot cells).

  1. Use of pressure-hold test for sterilizing filter membrane integrity in radiopharmaceutical manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Belanger, Anthony P.; Byrne, John F.; Paolino, Justin M. [Brigham and Women' s Hospital, Boston, MA 02115 (United States); DeGrado, Timothy R. [Brigham and Women' s Hospital, Boston, MA 02115 (United States)], E-mail: tdegrado@partners.org

    2009-11-15

    The bubble point test is the de facto standard for postproduction filter membrane integrity test in the radiopharmaceutical community. However, the bubble point test depends on a subjective visual assessment of bubbling rate that can be obscured by significant diffusive gas flows below the manufacturer's prescribed bubble point. To provide a more objective means to assess filter membrane integrity, this study evaluates the pressure-hold test as an alternative to the bubble point test. In our application of the pressure-hold test, the nonsterile side of the sterilizing filter is pressurized to 85% of the predetermined bubble point with nitrogen, the filter system is closed off from the pressurizing gas and the pressure is monitored over a prescribed time interval. The drop in pressure, which has a known relationship with diffusive gas flow, is used as a quantitative measure of membrane integrity. Characterization of the gas flow vs. pressure relationship of each filter/solution combination provides an objective and quantitative means for defining a critical value of pressure drop over which the membrane is indicated to be nonintegral. The method is applied to sterilizing filter integrity testing associated with the commonly produced radiopharmaceuticals, [{sup 18}F]FDG and [{sup 11}C]PIB. The method is shown to be robust, practical and amenable to automation in radiopharmaceutical manufacturing environments (e.g., hot cells)

  2. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer

    KAUST Repository

    Zhang, Sui

    2010-09-01

    The design and engineering of membrane structure that produces low salt leakage and minimized internal concentration polarization (ICP) in forward osmosis (FO) processes have been explored in this work. The fundamentals of phase inversion of cellulose acetate (CA) regarding the formation of an ultra-thin selective layer at the bottom interface of polymer and casting substrate were investigated by using substrates with different hydrophilicity. An in-depth understanding of membrane structure and pore size distribution has been elucidated with field emission scanning electronic microscopy (FESEM) and positron annihilation spectroscopy (PAS). A double dense-layer structure is formed when glass plate is used as the casting substrate and water as the coagulant. The thickness of the ultra-thin bottom layer resulted from hydrophilic-hydrophilic interaction is identified to be around 95nm, while a fully porous, open-cell structure is formed in the middle support layer due to spinodal decomposition. Consequently, the membrane shows low salt leakage with mitigated ICP in the FO process for seawater desalination. The structural parameter (St) of the membrane is analyzed by modeling water flux using the theory that considers both external concentration polarization (ECP) and ICP, and the St value of the double dense-layer membrane is much smaller than those reported in literatures. Furthermore, the effects of an intermediate immersion into a solvent/water mixed bath prior to complete immersion in water on membrane formation have been studied. The resultant membranes may have a single dense layer with an even lower St value. A comparison of fouling behavior in a simple FO-membrane bioreactor (MBR) system is evaluated for these two types of membranes. The double dense-layer membrane shows a less fouling propensity. This study may help pave the way to improve the membrane design for new-generation FO membranes. © 2010 Elsevier B.V.

  3. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.

    Science.gov (United States)

    Brown, Arick; Bechtel, Charity; Bill, Jerome; Liu, Hui; Liu, Jun; McDonald, Dan; Pai, Satyan; Radhamohan, Asha; Renslow, Ryan; Thayer, Brooke; Yohe, Stefan; Dowd, Chris

    2010-07-01

    Pre-filtration using ion exchange membrane adsorbers can improve parvovirus filter throughput of monoclonal antibodies (mAbs). The membranes work by binding trace foulants, and although some antibody product also binds, yields > or =99% are easily achieved by overloading. Results show that foulant adsorption is dependent on pH and conductivity, but independent of scale and adsorber brand. The ability to use ion exchange membranes as pre-filters is significant because it provides a clean, well defined, chemically stable option for enhancing throughput. Additionally, ion exchange membranes facilitate characterization of parvovirus filter foulants. Examination of adsorber elution samples using sedimentation velocity analysis and SEC-MALS/QELS revealed the presence of high molecular weight species ranging from 8 to 13 nm in hydrodynamic radius, which are similar in size to parvoviruses and thus would be expected to plug the pores of a parvovirus filter. A study of two identical membranes in-series supports the hypothesis that the foulants are soluble, trace level aggregates in the feed. This study's significance lies in a previously undiscovered application of membrane chromatography, leading to a more cost effective and robust approach to parvovirus filtration for the production of monoclonal antibodies.

  4. Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with Carbon Nanotubes and Its Applicability for Chromium Removal

    Directory of Open Access Journals (Sweden)

    J. A. Sánchez-Márquez

    2015-01-01

    Full Text Available Membranes made of carbon nanotubes and cellulose acetate with polyacrylic acid were designed in order to study their properties and their applicability for chromium removal. The membranes were prepared by phase inversion method using cellulose acetate and polyacrylic acid. Carbon nanotubes were added to the membrane during their process of synthesis in proportions of 1% by weight. The pores in the material are formed in layers, giving the effect of depth and forming a network. Both the carbon nanotubes and membranes were characterized by IR, Raman, and SEM spectroscopy. In addition, the concentration of acidic and basic sites and the surface charge in the materials were determined. The concentration of acid sites for oxidized nanotubes was 4.0 meq/g. The removal of Cr(VI was studied as a function of contact time and of initial concentration of Cr(VI. The removal of Cr(VI (~90% mainly occurs in a contact time from 32 to 64 h when the initial concentration of Cr(VI is 1 mg/L.

  5. Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation.

    Science.gov (United States)

    Kim, Jangho; Kim, Seung Won; Park, Subeom; Lim, Ki Taek; Seonwoo, Hoon; Kim, Yeonju; Hong, Byung Hee; Choung, Yun-Hoon; Chung, Jong Hoon

    2013-11-01

    Bacterial cellulose (BC)-based biomaterials on medical device platforms have gained significant interest for tissue-engineered scaffolds or engraftment materials in regenerative medicine. In particular, BC has an ultrafine and highly pure nanofibril network structure and can be used as an efficient wound-healing platform since cell migration into a wound site is strongly meditated by the structural properties of the extracellular matrix. Here, the fabrication of a nanofibrillar patch by using BC and its application as a new wound-healing platform for traumatic tympanic membrane (TM) perforation is reported. TM perforation is a very common clinical problem worldwide and presents as conductive hearing loss and chronic perforations. The BC nanofibrillar patch can be synthesized from Gluconacetobacter xylinus; it is found that the patch contained a network of nanofibrils and is transparent. The thickness of the BC nanofibrillar patch is found to be approximately 10.33 ± 0.58 μm, and the tensile strength and Young's modulus of the BC nanofibrillar patch are 11.85 ± 2.43 and 11.90 ± 0.48 MPa, respectively, satisfying the requirements of an ideal wound-healing platform for TM regeneration. In vitro studies involving TM cells show that TM cell proliferation and migration are stimulated under the guidance of the BC nanofibrillar patch. In vivo animal studies demonstrate that the BC nanofibrillar patch promotes the rate of TM healing as well as aids in the recovery of TM function. These data demonstrate that the BC nanofibrillar patch is a useful wound-healing platform for TM perforation.

  6. Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors

    Directory of Open Access Journals (Sweden)

    Yongyao Chen

    2012-06-01

    Full Text Available We investigate the resonant properties of high quality-factor membrane-based metamaterial resonators functioning in the terahertz regime. A number of factors, including the resonator geometry, dielectric loss, and most importantly the membrane thickness are found to extensively influence the resonance strength and quality factor of the sharp resonance. Further studies on the membrane thickness-dependent-sensitivity for sensing applications reveal that high quality-factor membrane metamaterials with a moderate thickness ranging from 10 to 50 μm are the most promising option towards developing realistic integrated terahertz filters and sensors.

  7. Automation of microbial enumeration: development of a disposable hydrophobic grid-membrane filter unit.

    OpenAIRE

    Tsuji, K.; Bussey, D M

    1986-01-01

    A disposable filter unit containing a hydrophobic grid-membrane filter (HGMF) was developed. The unit is liquid tight to serve as a specimen transport container and, by removal of the funnel extender (175- or 300-ml capacity), the unit becomes less than the height of two stacked petri plates to save space during in situ incubation. The polyethylene mesh which supports the HGMF facilitates rinse removal of any substance(s) that would interfere with microbial growth. The correlations between a ...

  8. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules.

    Science.gov (United States)

    Gu, Yangshuo; Wang, Yi-Ning; Wei, Jing; Tang, Chuyang Y

    2013-04-01

    Fouling of cellulose triacetate (CTA) and thin-film composite (TFC) forward osmosis (FO) membranes by organic macromolecules were studied using oppositely charged lysozyme (LYS) and alginate (ALG) as model foulants. Flux performance and foulant deposition on membranes were systematically investigated for a submerged membrane system. When an initial flux of 25 L/m(2)h was applied, both flux reduction and foulant mass deposition were severe for feed water containing the mixture of LYS and ALG (e.g., 50% LYS and 50% ALG at a total foulant concentration of 100 mg/L). In comparison, fouling was much milder for feed water containing either LYS or ALG alone. Compared to the CTA FO membrane, the TFC FO membrane showed greater fouling propensity under mild FO fouling conditions due to its much rougher surface. Nevertheless, under severe FO fouling conditions, fouling was dominated by foulant-deposited-foulant interaction and membrane surface properties played a less important role. Furthermore, when the feed water contained both LYS and ALG in sufficient amount, the deposited cake layer foulant composition (i.e., the LYS/ALG mass ratio) was not strongly affected by membrane types (CTA versus TFC) nor testing modes (pressure-driven NF mode versus osmosis-driven FO mode). In contrast, solution chemistry such as pH and calcium concentration had remarkable effect on the cake layer composition due to their effects on foulant-foulant interaction.

  9. Preparation of polyvinylidene fluoride/cellulose acetate blend membrane with polyethylene glycol additive for apple juice clarification

    Science.gov (United States)

    Fitri, Shatila Jihadiyah; Widiastuti, Nurul

    2017-03-01

    Polyvinylidene Fluoride (PVDF)/Cellulose Acetate (CA) blend membrane with polyethylene (PEG) addition of casting solution were synthesised to determine its morphology. This purpose of this research is to investigate the effect of PEG addition to membrane performance and its application to the clarification of apple juice. The membranes were prepared from polymer blends of CA and PVDF, dimethyl acetamide (DMAc) as solvent, and PEG as additive. Phase inversion was used to prepare membranes by mixing the polymer blends, solvent and additive to be reacted at temperature 60 °C for 24 hours. The variation of PEG weight percentage were 0, 1 wt%, 3 wt%, and 5 wt%. The addition of PEG increased porosity and fluxes, but decreased membrane rejection. Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Fourier Transform Infrared (FTIR) were applied to evaluate the morphology of membranes, which investigated increasing of pore size, pore distribution, and surface roughness. Apple juice clarification by membrane with 1% PEG was obtained 95,1% clearer than the pure sample.

  10. Enumeration of high numbers of bacteria using hydrophobic grid-membrane filters.

    Science.gov (United States)

    Sharpe, A N; Michaud, G L

    1975-10-01

    Printing a wax grid on a conventional membrane filter yields a device functioning as a most probable number apparatus (MPN), used at a single dilution but with a very large number of growth compartments (e.g., 3,650). By restraining the lateral spread and confluence of colonies, the hydrophobic grid-membrane filter (HGMF) allows growth- or colony-forming units (GU) to be resolved at levels far above those which produce an uncountable lawn on a conventional membrane filter. It also eliminates the size variation of normal bacterial colonies. As a result, the HGMF can give more accurate estimates of the concentration of GU. The method by which grid-cell count observations can be used to obtain MPN estimates of the number of GUs is described, and estimates obtained using the MPN method on the HGMF are compared with those resulting from conventional colony count procedures on membrane filters. A linear relation was observed between MPNGU and the number of GUs, at levels up to 30,000 GUs, for pure cultures of bacteria and for samples of natural waters. The HGMF has great potential for reducing the labor required in quantitative microbiology, since it allows, with one filter, enumeration of microorganisms over a very large concentration range and therefore reduces the need to make dilutions.

  11. Hydrophobic grid membrane filter method for aerobic plate count in foods: collaborative study.

    Science.gov (United States)

    Entis, P

    1986-01-01

    Twenty-one laboratories participated in a collaborative study to validate a hydrophobic grid membrane filter (HGMF) method for aerobic plate count by comparing its performance against the AOAC/APHA pour plate method. Raw milk, raw poultry, whole egg powder, flours, and spices were included in the study. Counts obtained by the HGMF and pour plate methods did not differ significantly, except in the case of whole egg powder, for which the HGMF method produced significantly higher counts. The hydrophobic grid membrane filter method for aerobic plate count in foods has been adopted official first action.

  12. Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H2/CO2 Separation in WGS Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu [Grambling State Univ., LA (United States); Siriwardane, Upali [Louisiana Tech Univ., Ruston, LA (United States)

    2011-12-15

    The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H2 separation and Cellulose Acetate membranes for CO2 separation. .

  13. Eggshell and Bacterial Cellulose Composite Membrane as Absorbent Material in Active Packaging

    Directory of Open Access Journals (Sweden)

    S. Ummartyotin

    2016-01-01

    Full Text Available Bacterial cellulose and eggshell composite was successfully developed. Eggshell was mixed with bacterial cellulose suspension and it was casted as a composite film. CaCO3 derived from eggshell was compared with its commercial availability. It can be noted that good dispersion of eggshell particle was prepared. Eggshell particle was irregular in shape with a variation in size. It existed in bacterial cellulose network. Characterization on composite was focused on thermal and mechanical properties. It showed that flexibility and thermal stability of composite were enhanced. No significant effect of mechanical properties was therefore observed. The thermal stability of composite was stable up to 300°C. The adsorption experiment on water and vegetable oil capacity was performed. The enhancement on adsorption was due to the existence of eggshell in bacterial cellulose composite. It exhibited the potential to be a good candidate for absorbent material in active packaging.

  14. Application of a low cost ceramic filter to a membrane bioreactor for greywater treatment.

    Science.gov (United States)

    Hasan, Md Mahmudul; Shafiquzzaman, Md; Nakajima, Jun; Ahmed, Abdel Kader T; Azam, Mohammad Shafiul

    2015-03-01

    The performance of a low cost and simple ceramic filter to a membrane bioreactor (MBR) process was evaluated for greywater treatment. The ceramic filter was submerged in an acrylic cylindrical column bioreactor. Synthetic greywater (prepared by shampoo, dish cleaner and laundry detergent) was fed continuously into the reactor. The filter effluent was obtained by gravitational pressure. The average flux performance was observed to be 11.5 LMH with an average hydraulic retention time of 1.7 days. Complete biodegradation of surfactant (methylene blue active substance removal: 99-100%) as well as high organic removal performance (biochemical oxygen demand: 97-100% and total organic carbon: >88%) was obtained. The consistency of flux (11.5 LMH) indicated that the filter can be operated for a long time without fouling. The application of this simple ceramic filter would make MBR technology cost-effective in developing countries for greywater reclamation and reuse.

  15. Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay.

    Science.gov (United States)

    Cai, Longfei; Wang, Yong; Wu, Yunying; Xu, Chunxiu; Zhong, Minghua; Lai, Heyun; Huang, Junsheng

    2014-09-21

    We developed a novel, low-cost and simple method for the fabrication of microfluidic paper-based analytical devices (μPADs) by silanization of filter cellulose using a paper mask having a specific pattern. The paper mask was penetrated with trimethoxyoctadecylsilane (TMOS) by immersing into TMOS-heptane solution. By heating the filter paper sandwiched between the paper mask and glass slides, TMOS was immobilized onto the filter cellulose via the reaction between cellulose OH and TMOS, while the hydrophilic area was not silanized because it was not in contact with the paper mask penetrated with TMOS. The effects of some factors including TMOS concentration, heating temperature and time on the fabrication of μPADs were studied. This method is free of any expensive equipment and metal masks, and could be performed by untrained personnel. These features are very attractive for the fabrication and applications of μPADs in developing countries or resource-limited settings. A flower-shaped μPAD was fabricated and used to determine glucose in human serum samples. The contents determined by this method agreed well with those determined by a standard method.

  16. Gypsum (CaSO42H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis

    KAUST Repository

    Chen, Si Cong

    2013-11-08

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42 14.85 after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  17. Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis.

    Science.gov (United States)

    Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Sarwar, Afsheen; Dilshad, Muhammad Rizwan; Shafeeq, Amir; Zahid Butt, Muhammad Taqi; Jamil, Tahir

    2015-11-01

    In this study pristine multi-walled carbon nanotubes (MWCNTs) were surface engineered (SE) in strong acidic medium by oxidation purification method to form SE-MWCNT. Five different amount of SE-MWCNT ranging from 0.1 to 0.5 wt% were thoroughly and uniformly dispersed in cellulose acetate/polyethylene glycol (CA/PEG400) polymer matrix during synthesis of membrane by dissolution casting method. The structural analysis, surface morphology and roughness was carried out by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively, which showed that the dispersed SE-MWCNT was substantially tethered in CA/PEG400 polymer matrix membrane. The thermogravimetric analysis (TGA) of membranes also suggested some improvement in thermal properties with the addition of SE-MWCNT. Finally, the performance of these membranes was assessed for suitability in drinking water treatment. The permeation flux and salt rejection were determined by using indigenously fabricated reverse osmosis pilot plant with 1000 ppm NaCl feed solution. The results showed that the tethered SE-MWCNT/CA/PEG400 polymer matrix membrane, with strong SE-MWCNTs/polymer matrix interaction, improved the salt rejection performance of the membrane with the salt rejection of 99.8% for the highest content of SE-MWCNT.

  18. Precoat filtration performance of cellulose filter aid%纤维素助滤剂的预敷过滤性能

    Institute of Scientific and Technical Information of China (English)

    张越; 许莉; 都丽红; 鲁淑群

    2012-01-01

    对高黏度物料加入纤维素助滤剂的预敷过滤性能进行了研究,说明不同的预敷条件对预敷层的过滤性能会有很大影响。通过改变预敷压力和浓度,对纤维素滤饼层的过滤比阻、可压缩性系数和孔隙率进行了研究。实验表明,纤维素预敷层的比阻随压力增加而增加,随浓度增加而减小;孔隙率随压力增加而减小,随浓度增加而增加;可压缩性系数随浓度增加而增加。纤维素助滤剂为中等可压缩性物料,孔隙率大。研究结果可为高黏度物料用纤维素预敷过滤的工程应用提供参考。%In this paper,a study of precoat filtration with cellulose filter aid added to high viscosity materials is presented.Different precoat filtration conditions greatly affect the filtration performance of a precoat cake layer.Specific resistance,compressibility coefficient and porosity of cellulose cake layer were studied by changing precoat pressure and concentration.Experimental results show that the specific resistance of cellulose precoat layer increases as pressure drop increases and decreases as concentration increases;the porosity of cellulose precoat layer decreases as pressure drop increases and increases as concentration increases;the compressibility coefficient of cellulose precoat layer increases as concentration increases.Cellulose filter aid is moderately compressible material.The cellulose precoat layer has high porosity.The results provide a reference for engineering applications of precoat filtration with cellulose added to high viscosity materials.

  19. Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System

    Science.gov (United States)

    Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin

    2017-01-01

    Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications.

  20. Tailored design of WDM filters in BCB embedded PhC membranes

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Bellanca, Gaetano; Ottaviano, Luisa

    2013-01-01

    We propose a design strategy for wavelength division multiplexing (WDM) filters in BCB embedded photonic crystal membranes. Due to the weaker vertical confinement determined by the material embedding the whole structure, accurate tailoring of the resonant cavity and of both bus and drop waveguide...

  1. Improved detection of coliforms and Escherichia coli in foods by a membrane filter method.

    Science.gov (United States)

    Sharpe, A N; Peterkin, P I; Malik, N

    1979-09-01

    Analytical procedures based on filtration of homogenates through membrane filters, and particularly hydrophobic grid-membrane filters (HGMF), offer definite improvements in the enumeration of Escherichia coli and coliforms in foods. Whereas the counted specimen in pour plates may not usually be greater than 0.1 g, up to 1.0 g of ground beef, green beans, potato, cod, strawberries, or grapes could be filtered and counted on HGMF. Greatly improved limit of detection, reduced interference by noncoliforms, and complete removal of growth inhibitors such as polyphenols were demonstrated for HGMF, using violet red bile and mFC agars. In addition, counting on HGMF eliminated a false-positive reaction caused by sucrose in ice cream.

  2. Diffraction filters based on polyimide and poly(ethylene naphthalate) track membranes

    Science.gov (United States)

    Mitrofanov, A. V.; Apel, P. Yu.; Blonskaya, I. V.; Orelovitch, O. L.

    2006-09-01

    The problem of optical filters for soft x rays and extreme ultraviolet that provide a high degree of blocking ultraviolet and visible background radiations is considered. The subject of discussion is the filter based on a track membrane, a polymer film with micrometer and submicrometer pores, rather than the standard thin-film system. It is proposed that the membranes be made of poly(ethylene naphthalate) or polyimide, the UV absorption edge of which lies near the boundary of the visible range. The properties of poly(ethylene naphthalate) and polyimide membranes are contrasted with those of conventional porous poly(ethylene terephthalate) films, which are obtained by ion track etching. The spectral characteristics of poly(ethylene naphthalate) and polyimide films, as well as the formation of “track” pores when the specimens are successively treated by fast ions and chemicals, are studied. The basic parameters of the resulting porous structures are examined, and treatment conditions under which desired optical properties of the membranes are achieved are found. Filters based on poly(ethylene naphthalate) and polyimide track membranes may be applied in x-ray astronomy as constituents of detectors incorporated into solar telescopes and in experiments with the laboratory plasma.

  3. STUDY OF COMPOSITE MEMBRANE OF CELLULOSE ACETATE OR POLYVINYL ALCOHOL BLENDED WITH METHYLMETHACRYLATE-ACRYLIC ACID COPOLYMER FOR PERVAPORATION SEPARATION

    Institute of Scientific and Technical Information of China (English)

    Huan-lin Chen; Jun Tan; Mo-e Liu; Chang-luo Zhu

    1999-01-01

    In this paper, methylmethacrylate-acrylic acid MMA-AA hydrophilic and hydrophobic copolymers were prepared by copolymerization for preparing membrane materials. The composite membrane of cellulose acetate (CA) blended with MMA-AA hydrophobic copolymer was used for the separation of methanol from pentane-methanol mixture. When the methanol concentration was only 1 wt%, the permeate flux still maintained at 350 g/m2h and separation factor was as big as 800. The composite membrane of PVA (polyvinyl alcohol) blended with MMA-AA hydrophilic copolymer was used for the separation of ethanolwater mixture. The permeate flux was increased to 975 g/m2h at 74℃ and the separation factor reached 3000at 25℃. The PVA/MMA-AA blended membrane surface modified by ammonia plasma was also investigated for separating ethanol-water mixture. Both permeate flux and separation factor of the membrane was improved. However, there was no obvious difference of plasma treatment time in the interval of 20~40 min.

  4. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.

    Science.gov (United States)

    Gadim, Tiago D O; Figueiredo, Andrea G P R; Rosero-Navarro, Nataly C; Vilela, Carla; Gamelas, José A F; Barros-Timmons, Ana; Neto, Carlos Pascoal; Silvestre, Armando J D; Freire, Carmen S R; Figueiredo, Filipe M L

    2014-05-28

    The present study reports the development of a new generation of bio-based nanocomposite proton exchange membranes based on bacterial cellulose (BC) and poly(4-styrene sulfonic acid) (PSSA), produced by in situ free radical polymerization of sodium 4-styrenesulfonate using poly(ethylene glycol) diacrylate (PEGDA) as cross-linker, followed by conversion of the ensuing polymer into the acidic form. The BC nanofibrilar network endows the composite membranes with excellent mechanical properties at least up to 140 °C, a temperature where either pure PSSA or Nafion are soft, as shown by dynamic mechanical analysis. The large concentration of sulfonic acid groups in PSSA is responsible for the high ionic exchange capacity of the composite membranes, reaching 2.25 mmol g(-1) for a composite with 83 wt % PSSA/PEGDA. The through-plane protonic conductivity of the best membrane is in excess of 0.1 S cm(-1) at 94 °C and 98% relative humidity (RH), decreasing to 0.042 S cm(-1) at 60% RH. These values are comparable or even higher than those of ionomers such as Nafion or polyelectrolytes such as PSSA. This combination of electric and viscoelastic properties with low cost underlines the potential of these nanocomposites as a bio-based alternative to other polymer membranes for application in fuel cells, redox flow batteries, or other devices requiring functional proton conducting elements, such as sensors and actuators.

  5. Monolith filter apparatus and membrane apparatus, and method using same

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, Robert L [Wayland, MA

    2012-04-03

    A filtration apparatus that separates a liquid feedstock mixed with a gas into filtrate and retentate, the apparatus including at least one filtration device comprised of at least one monolith segment of porous material that defines a plurality of passageways extending longitudinally from a feed face of the structure to a retentate end face. The filtration device contains at least one filtrate conduit within it for carrying filtrate toward a filtrate collection zone, the filtrate conduit providing a path of lower flow resistance than that of alternative flow paths through the porous material of the device. The filtration device can also be utilized as a membrane support for a device for microfiltration, ultrafiltration, nanofiltration, reverse osmosis, or pervaporation. Also disclosed is a method for using such a filtration apparatus.

  6. Automation of microbial enumeration: development of a disposable hydrophobic grid-membrane filter unit.

    Science.gov (United States)

    Tsuji, K; Bussey, D M

    1986-10-01

    A disposable filter unit containing a hydrophobic grid-membrane filter (HGMF) was developed. The unit is liquid tight to serve as a specimen transport container and, by removal of the funnel extender (175- or 300-ml capacity), the unit becomes less than the height of two stacked petri plates to save space during in situ incubation. The polyethylene mesh which supports the HGMF facilitates rinse removal of any substance(s) that would interfere with microbial growth. The correlations between a pour plate, a conventional square HGMF, and a disposable filter unit on microbial enumeration were examined. Characteristics (e.g., clumping, spreading, etc.) of some microorganisms limit the linear counting range to less than 1,000 CFU per filter.

  7. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  8. Colorimetric elastase sensor with peptide conjugated cellulose nanocrystals is interfaced to dialysis membranes

    Science.gov (United States)

    Clinical detection of human neutrophil elastase (HNE) as point of care biomarker or in situ colorimetric adjuvant to chronic wound dressings presents potential advantages in the management of chronic wounds. A colorimetric approach to the detection of HNE using cotton cellulose nanocrystals (CCN) i...

  9. Ultrarobust Transparent Cellulose Nanocrystal-Graphene Membranes with High Electrical Conductivity.

    Science.gov (United States)

    Xiong, Rui; Hu, Kesong; Grant, Anise M; Ma, Ruilong; Xu, Weinan; Lu, Canhui; Zhang, Xinxing; Tsukruk, Vladimir V

    2016-02-17

    Ultra-robust nanomembranes possessing high mechanical strength combined with excellent stiffness and toughness rarely achieved in nanocomposite materials are presented. These are fabricated by alternately depositing 1D cellulose nanocrystals and 2D graphene oxide nanosheets by using a spin assisted layer-by-layer assembly technique. Such a unique combination of 1D and 2D reinforcing nanostructures results in layered nanomaterials.

  10. Cellulose metabolism in plants.

    Science.gov (United States)

    Hayashi, Takahisa; Yoshida, Kouki; Park, Yong Woo; Konishi, Teruko; Baba, Kei'ichi

    2005-01-01

    Many bacterial genomes contain a cellulose synthase operon together with a cellulase gene, indicating that cellulase is required for cellulose biosynthesis. In higher plants, there is evidence that cell growth is enhanced by the overexpression of cellulase and prevented by its suppression. Cellulase overexpression could modify cell walls not only by trimming off the paracrystalline sites of cellulose microfibrils, but also by releasing xyloglucan tethers between the microfibrils. Mutants for membrane-anchored cellulase (Korrigan) also show a typical phenotype of prevention of cellulose biosynthesis in tissues. All plant cellulases belong to family 9, which endohydrolyzes cellulose, but are not strong enough to cause the bulk degradation of cellulose microfibrils in a plant body. It is hypothesized that cellulase participates primarily in repairing or arranging cellulose microfibrils during cellulose biosynthesis in plants. A scheme for the roles of plant cellulose and cellulases is proposed.

  11. Removal of aqueous Hg(II) and Cr(VI) using phytic acid doped polyaniline/cellulose acetate composite membrane.

    Science.gov (United States)

    Li, Renjie; Liu, Lifen; Yang, Fenglin

    2014-09-15

    Conductive composite membrane-phytic acid (PA) doped polyaniline (PANI)/cellulose acetate (CA) (PANI-PA/CA) was prepared in a simple and environmental-friendly method, in which aniline was blended with CA/PA solution and polymerized before the phase conversion. The resultant composite membranes were characterized by SEM, EDX, FTIR-ATR, BET and electrical resistance measurements. When used as adsorbent for Hg(II) and Cr(VI) ions, the prepared composite membrane exhibits excellent adsorption capability. The adsorption of Hg(II) and Cr(VI) follows a pseudo-second-order kinetic model and best fits the Langmuir isotherm model, with the maximum adsorption capacity reaching 280.11 and 94.34 mg g(-1), respectively. The heavy metal loaded composite membrane can be regenerated and reused after treatment with acid or alkali solution, making it a promising and practical adsorbent for Hg(II) and Cr(VI) removal. Tests with river water were also carried out, indicating good performance and application.

  12. Preparation and Application of Chitosan Membranes to Filter Silver from X-ray Film Processing Wastes

    Science.gov (United States)

    Nyoman Rupiasih, N.; Rustam Purnomo, Rendra; Sumadiyasa, Made

    2016-04-01

    Chitosan is a natural polysaccharide biopolymer which has been widely used in different processes and applications. Chitosan based membranes have been used in reverse osmosis, gas separation, dialysis and pervaporation. The object of this research was investigating the possibility of chitosan membrane used as a filter for removing silver (Ag) from X-ray film processing wastes. Several of chitosan membranes such as M1, M2, M3 and M4 have been prepared for the purpose and filtration was done using dead-end filtration method. The filtration experiments were performed on a flat sheet membrane using pure water and X-ray film processing wastes as feeds. The analysis of silver concentration has been done by atomic absorption spectrometers (AAS). The results show that chitosan membrane M2 gave the highest filtration coefficient (Rcoeff ) i.e. 99.9%, with the pure water flux (PWF) and product flux (PF) are 2972.56 L/m2h and 1761.18 L/m2h respectively. The rejection coefficient of the membranes decreases with increasing the amount of chitosan, while the pure water flux and product flux are increased. The filtration coefficients show that the chitosan membranes are able to filter silver waste from X-ray film processing wastes with performance dependent on their characteristic such as pores size. This suggests that, chitosan membrane can be used as one method that is safe and friendly environment for recovering silver from X-ray film processing waste to improve the quality of treated to an acceptable quality level.

  13. The CELLULOSE-SYNTHASE LIKE C (CSLC) Family of Barley Includes Members that Are Integral Membrane Proteins Targeted to the Plasma Membrane

    Institute of Scientific and Technical Information of China (English)

    Fenny M. Dwivany; Dina Yuli; Rachel A. Burton; Neil J. Shirley; Sarah M. Wilson; Geoffrey B. Fincher; Antony Bacic; Ed Newbigin; Monika S. Doblin

    2009-01-01

    The CELLULOSESYNTHASE-LIKE C(CSLC) family is an ancient lineage within the CELLULOSE SYNTHASE/CEL-LULOSE SYNTHASE-LIKE (CESA/CSL) polysaccharide synthase superfamily that is thought to have arisen before the diver-gence of mosses and vascular plants. As studies in the flowering plant Arabidopsis have suggested synthesis of the (1,4)-β-glucan backbone of xyloglucan (XyG), a wall polysaccharide that tethers adjacent cellulose microfibrils to each other, as a probable function for the CSLCs, CSLC function was investigated in barley (Hordeum vulgare L.), a species with low amounts of XyG in its walls. Four barley CSLC genes were identified (designated HvCSLC1-4). Phylogenetic analysis reveals three well supported clades of CSLCs in flowering plants, with barley having representatives in two of these clades. The four barley CSLCs were expressed in various tissues, with in situ PCR detecting transcripts in all cell types of the coleoptile and root, including cells with primary and secondary cell walls. Co-expression analysis showed that HvCSLC3 was coor-dinately expressed with putative XyG xylosyltransferase genes. Both immuno-EM and membrane fractionation showed that HvCSLC2 was located in the plasma membrane of barley suspension-cultured cells and was not in internal membranes such as endoplasmic reticulum or Golgi apparatus. Based on our current knowledge of the sub-cellular locations of poly-saccharide synthesis, we conclude that the CSLC family probably contains more than one type of polysaccharide synthase.

  14. Factors that can interfere with virus concentration from wastewater when using zeta plus 60S filter membranes

    Directory of Open Access Journals (Sweden)

    Queiroz APS

    2000-01-01

    Full Text Available Zeta plus filter membranes (ZP60S have been shown to be efficient for rotavirus concentration from wastewater and for the reduction of cytotoxicity for cell cultures. Recently a variability in both properties was observed. In view of the low costs and the high virus recovery rates obtained in the past, we re-evaluated the application of ZP60S filter membranes for virus concentration from environmental samples. Some factors that could interfere with the concentration strategy using ZP60S were also considered and assessed including the type of water to be filtered and the possible release of toxic substances from the membrane matrix during filtration.

  15. Biochemical studies of mouse brain tubulin: colchicine binding (DEAE-cellulose filter) assay and subunits (. cap alpha. and. beta. ) biosynthesis and degradation (in newborn brain)

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Cek-Fyne

    1978-01-01

    A DEAE-cellulose filter assay, measuring (/sup 3/H)colchicine bound to colchicine binding protein (CBP) absorbed on filter discs, has been modified to include lM sucrose in the incubation medium for complexing colchicine to CBP in samples before applying the samples to filter discs (single point assay). Due to the much greater stability of colchicine binding capacity in the presence of lM sucrose, multiple time-point assays and least squares linear regression analysis were not necessary for accurate determination of CBP in hybrid mouse brain at different stages of development. The highest concentrations of CBP were observed in the 160,000g supernatant and pellet of newborn brain homogenate. Further studies of the modified filter assay documented that the assay has an overall counting efficiency of 27.3%, that DEAE-cellulose filters bind and retain all tubulin in the assay samples, and that one molecule of colchicine binds approximately one molecule of tubulin dimer. Therefore, millimoles of colchicine bound per milligram total protein can be used to calculate tubulin content. With this technique tubulin content of brain supernatant was found to be 11.9% for newborn, and 7.15% for 11 month old mice. Quantitative densitometry was also used to measure mouse brain supernatant actin content for these two stages. In vivo synthesis and degradation rates of tubulin ..cap alpha.. and ..beta.. subunits of two day mouse brain 100,000g supernatant were studied after intracerebral injection of (/sup 3/H)leucine. Quantitative changes of the ratio of tritium specific activities of tubulin ..cap alpha.. and ..beta.. subunits with time were determined. The pattern of change was biphasic. During the first phase the ratio decreased; during the second phase the ratio increased continuously. An interpretation consistent with all the data in this study is that the ..cap alpha.. subunit is synthesized at a more rapid rate than the ..beta.. subunit. (ERB)

  16. Filtration characterization method as tool to assess membrane bioreactor sludge filterability-the Delft experience

    OpenAIRE

    Maria Lousada-Ferreira; Pawel Krzeminski; Stefan Geilvoet; Adrien Moreau; Jose A. Gil; Herman Evenblij; van Lier, Jules B.; van der Graaf, Jaap H.J.M.

    2014-01-01

    Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs), responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization in MBR operation. Therefore, there is a need for an evaluation of the lessons learned and how to proceed. In this article, five different methods for measuring MBR activated sludge filterability an...

  17. Grafting of cellulose acetate with ionic liquids for biofuel purification by a membrane process: Influence of the cation.

    Science.gov (United States)

    Hassan Hassan Abdellatif, Faten; Babin, Jérôme; Arnal-Herault, Carole; David, Laurent; Jonquieres, Anne

    2016-08-20

    A new strategy was developed for grafting ionic liquids (ILs) onto cellulose acetate in order to avoid IL extraction and improve its performance for ethyl tert-butyl ether (ETBE) biofuel purification by the pervaporation membrane process. This work extended the scope of IL-containing membranes to the challenging separation of organic liquid mixtures, in which these ILs were soluble. The ILs contained the same bromide anion and different cations with increasing polar feature. The membrane properties were strongly improved by IL grafting. Their analysis in terms of structure-property relationships revealed the influence of the IL content, chemical structure and chemical physical parameters α, β, π* in the Kamlet-Taft polarity scale. The ammonium IL led to the best normalized flux of 0.182kg/m(2)h for a reference thickness of 5μm, a permeate ethanol content of 100% and an outstanding infinite separation factor for the azeotropic mixture EtOH/ETBE at 50°C.

  18. Application of the triolein-embedded cellulose acetate membrane passive sampler for monitoring of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Tang, Jianfeng; He, Guiying; Li, Gang

    2014-01-01

    Triolein-embedded cellulose acetate membrane (TECAM) can be used as a passive sampler to measure hydrophobic organic contaminants in water. Uptake constant rates (k u ) for polycyclic aromatic hydrocarbons (PAHs) by TECAM sampling were measured under different hydrodynamic conditions. The measured k u values were modeled to enable the quantification of time weighed average (TWA) concentrations of PAHs in the field. An empirical relationship that enables the calculation of in situ k u values of chemicals using performance reference compounds (PRCs) was derived and its application was demonstrated in a field study. The results showed that freely dissolved concentrations of hydrophobic organic compounds (HOCs) can be accurately measured in the field using TECAM method based on empirical uptake models calibrated with PRCs.

  19. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  20. Patterning and Lifetime of Plasma Membrane-Localized Cellulose Synthase Is Dependent on Actin Organization in Arabidopsis Interphase Cells1[W

    Science.gov (United States)

    Sampathkumar, Arun; Gutierrez, Ryan; McFarlane, Heather E.; Bringmann, Martin; Lindeboom, Jelmer; Emons, Anne-Mie; Samuels, Lacey; Ketelaar, Tijs; Ehrhardt, David W.; Persson, Staffan

    2013-01-01

    The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis. PMID:23606596

  1. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.

    Science.gov (United States)

    Phung, Thai; Zhang, Yanli; Dunlop, James; Dalziel, Julie

    2011-03-15

    Many ion channel proteins have binding sites for toxins and pharmaceutical drugs and therefore have much promise as the sensing entity in high throughput technologies and biosensor devices. Measurement of ionic conductance changes through ion channels requires a robust biological membrane with sufficient longevity for practical applications. The conventional planar BLM is 100-300 μm in diameter and typically contains fewer than a dozen channels whereas pharmaceutical screening methods in cells use current recordings for many ion channels. We present a new, simple method for the fabrication of a disposable porous-supported bilayer lipid membrane (BLM) ion channel biosensor using hydrated Teflon (polytetrafluoroethylene, PTFE) filter material (pore size 5 μm, filter diameter=1 mm). The lipid layer was monitored for its thickness and mechanical stability by electrical impedance spectroscopy. The results showed membrane capacitances of 1.8±0.2 nF and membrane resistances of 25.9±4.1 GΩ, indicating the formation of lipid bilayers. The current level increased upon addition of the pore-forming peptide gramicidin. Following addition of liposomes containing voltage-gated sodium channels, small macroscopic sodium currents (1-80 pA) could be recorded. By preloading the porous Teflon with sodium channel proteoliposomes, prior to BLM formation, currents of 1-10 nA could be recorded in the presence of the activator veratridine that increased with time, and were inhibited by tetrodotoxin. A lack of rectification suggests that the channels incorporated in both orientations. This work demonstrates that PTFE filters can support BLMs that provide an environment in which ion channels can maintain their functional activity relevant for applications in drug discovery, toxin detection, and odour sensing.

  2. Polyvinyl alcohol–cellulose composite: a taste sensing material

    Indian Academy of Sciences (India)

    Sarmishtha Majumdar; Basudam Adhikari

    2005-12-01

    There are reports of fabrication of taste sensor by adsorbing lipids into Millipore filter paper. With this lipid based sensor, it has been found that the taste sensing efficiency of membrane can be remarkably improved. We have made an attempt to prepare taste sensor material by using functionalized polymer without any lipid. PVA–cellulose composite has been modified to use as the sensor material. The research work covers polymer membrane preparation, morphology study and structural characterization of the membrane and study of the taste sensing characteristics of this membrane for five different taste substances. PVA–cellulose composite membrane was modified by phosphorylation with POCl3. FTIR spectroscopic analysis, XRD analysis and SEM were done to get an idea about the structure and morphology of the prepared phosphorylated PVA–cellulose composite membrane. The sensor characteristics like temporal stability, response stability, response to different taste substances, and reproducibility of sensing performance were studied using phosphorylated PVA–cellulose composite membrane. Sensor device prepared with this membrane has shown distinct response patterns for different taste substances in terms of membrane potential. Threshold concentrations of phosphorylated PVA–cellulose composite membrane for HCl, NaCl, Q-HCl, sucrose and MSG are 0.001 mM, 0.001 mM, 0.001 mM, 0.001 mM and 0.009 mM, respectively. The threshold concentrations are below human threshold concentrations. Membranes also showed characteristic response patterns for organic acids like acetic acid, citric acid, formic acid etc, mineral acids like HCl, H2SO4 and HNO3 salts, bitter substances, sweet substances and umami substances. Sensor device prepared with this membrane has excellent shelf life.

  3. Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Han, Myeong-Jin; Nam, Suk-Tae [Kyungil University, Gyeongsan (Korea, Republic of); Lee, Keun-Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    This study examined the effect of concentration polarization on permeate flux in forward osmosis (FO) membrane process for saline and sucrose solution. The reduction in permeate flux during the FO membrane process is largely due to the formation of concentration polarization on membrane surfaces. The flux reduction due to internal concentration polarization formed on the porous support layer was larger than that due to the external concentration polarization on the active membrane surface. Water permeate flux through the FO membrane increased nonlinearly with the increase in osmotic pressure. The water permeability coefficient was 1.8081x10{sup -7} m/s·atm for draw solution on active layer (DS-AL) mode and 1.0957-10{sup -7} m/s·atm for draw solution on support layer (DS-SL) mode in NaCl solution system. The corresponding membrane resistance was 5.5306x10{sup 6} and 9.1266x10{sup 6} s·atm/m, respectively. With respect to the sucrose solution, the permeate flux for DS-AL mode was 1.33-1.90 times higher than that for DS-SL mode. The corresponding variation in the permeation flux (J) due to osmotic pressure (π) would be expressed as J=-0.0177+0.4506π-0.0032π{sup 2} for the forward and J=0.0948+0.3292π-0.0037π{sup 2} for the latter.

  4. An ultrasensitive bio-surrogate for nanoporous filter membrane performance metrology directed towards contamination control in microlithography applications

    Science.gov (United States)

    Ahmad, Farhan; Mish, Barbara; Qiu, Jian; Singh, Amarnauth; Varanasi, Rao; Bedford, Eilidh; Smith, Martin

    2016-03-01

    Contamination tolerances in semiconductor manufacturing processes have changed dramatically in the past two decades, reaching below 20 nm according to the guidelines of the International Technology Roadmap for Semiconductors. The move to narrower line widths drives the need for innovative filtration technologies that can achieve higher particle/contaminant removal performance resulting in cleaner process fluids. Nanoporous filter membrane metrology tools that have been the workhorse over the past decade are also now reaching limits. For example, nanoparticle (NP) challenge testing is commonly applied for assessing particle retention performance of filter membranes. Factors such as high NP size dispersity, low NP detection sensitivity, and high NP particle-filter affinity impose challenges in characterizing the next generation of nanoporous filter membranes. We report a novel bio-surrogate, 5 nm DNA-dendrimer conjugate for evaluating particle retention performance of nanoporous filter membranes. A technique capable of single molecule detection is employed to detect sparse concentration of conjugate in filter permeate, providing >1000- fold higher detection sensitivity than any existing 5 nm-sized particle enumeration technique. This bio-surrogate also offers narrow size distribution, high stability and chemical tunability. This bio-surrogate can discriminate various sub-15 nm pore-rated nanoporous filter membranes based on their particle retention performance. Due to high bio-surrogate detection sensitivity, a lower challenge concentration of bio-surrogate (as compared to other NPs of this size) can be used for filter testing, providing a better representation of customer applications. This new method should provide better understanding of the next generation filter membranes for removing defect-causing contaminants from lithography processes.

  5. Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes.

    Science.gov (United States)

    Bansal, Monica; Chauhan, Ghanshyam S; Kaushik, Anupama; Sharma, Avantika

    2016-10-01

    The work reported in this paper involves synthesis of a nanocellulose/chitosan composite and its further modification to antimicrobial films. Bagasse, an easily available biowaste, was used as source to extract nanocellulose fibres (CNFs) by subjecting it to mechanical and chemical treatments including alkaline steam explosion and high shear homogenization. The CNFs were subjected to periodate oxidation to obtain nanocellulose dialdehyde (CDA). The aldehyde groups of CDA were reacted with amino groups of chitosan to form Schiff-base. The resulting CDA/chitosan composite fibres were characterized at various steps. The fibres were then cast into films using cellulose acetate as a binder. The films have good physical strength. The composite films show excellent antimicrobial properties when tested against Staphylococcus aureus and Escherichia coli. Such antimicrobial films have potential applications in the formation of antimicrobial packaging material.

  6. Submerged membrane bioreactor using fly ash filters: trials with distillery wastewater.

    Science.gov (United States)

    Gupta, R; Satyawali, Y; Batra, V S; Balakrishnan, M

    2008-01-01

    This work presents preliminary results for distillery wastewater treatment in a MBR equipped with filters prepared from waste fly ash. The system was fabricated locally and employed submerged membranes in the 2-8 microm pore-size range. Distillery wastewater, after anaerobic digestion, was used as the feed and the bioreactor was inoculated with sludge obtained from a local distillery unit. The MBR was operated for around 250 days. The wastewater quality was monitored in terms of COD (chemical oxygen demand), colour, phenol, and MLSS (mixed liquor suspended solids) concentration. An average COD and phenol removal of 36% and 60% respectively was obtained. The maximum suspended solids retention by the ash filter was as high as 98%. The results were encouraging and further trials are currently underway to improve the performance.

  7. Utilization of composite membrane polyethyleneglycol-polystyrene-cellulose acetate from pineapple leaf fibers in lowering levels of methyl orange batik waste

    Science.gov (United States)

    Delsy, E. V. Y.; Irmanto; Kazanah, F. N.

    2017-02-01

    Pineapple leaves are agricultural waste from the pineapple that the fibers can be utilized as raw material in cellulose acetate membranes. First, made pineapple leaf fibers into pulp and then converted into cellulose acetate by acetylation process in four stages consisting of activation, acetylation, hydrolysis and purification. Cellulose acetate then used as the raw material to manufacture composite membrane with addition of polystyrene and poly (ethylene glycol) as porogen. Composite membrane is made using phase inversion method with dichloromethane-acetone as a solvent. The result of FTIR analysis (Fourier transform infra-red) showed that the absorption of the carbonyl group (C=O) is at 1643.10 cm-1 and acetyl group (C–O ) at 1227.01 cm-1, with a molecular weight of 8.05 x 104 g/mol and the contents (rate) of acetyl is 37.31%. PS-PEG-CA composite membrane had also been characterized by measuring the water flux values and its application to decrease methyl orange content (level) in batik waste. The results showed that the water flux value is of 25.62 L/(m2.hour), and the decrease percentage of methyl orange content in batik waste is 71.53%.

  8. Efficient performance and the microbial community changes of submerged anaerobic membrane bioreactor in treatment of sewage containing cellulose suspended solid at 25°C.

    Science.gov (United States)

    Watanabe, Ryoya; Nie, Yulun; Takahashi, Shintaro; Wakahara, Shinichiro; Li, Yu-You

    2016-09-01

    Influence of cellulose as suspended solid (SS) on the performance of submerged anaerobic membrane bioreactor (SAnMBR) was evaluated at 25°C using two types of synthetic sewage (SS contained or not). During the 110days operation, COD and BOD removal, CH4 gas recovery and cellulose accumulation were investigated in detail. The influence of cellulose as SS in sewage on the SAnMBR performance was not significant at HRT longer than12h and 65-72% of the influent COD was recovered as methane gas at HRT of 12h. At HRT of 6h, the quality of effluent got worse and the accumulation of cellulose was found in reactor. 16S rRNA analysis revealed that the microbial diversity distribution including Archaea and Bacteria changed due to the addition of SS in sewage and specific microbe for cellulose degradation such as Proteobacteria was detected. Sludge in SAnMBR could acclimate to characteristics of sewage by self-adaptation.

  9. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution

    KAUST Repository

    Sairam, M.

    2011-06-01

    A lab scale method for the preparation of defect free flat sheet composite membranes for forward osmosis (FO) has been developed. Membranes containing a thin layer of cellulose acetate (CA) cast on a nylon fabric of 50μm thick were prepared by phase inversion in water. Cellulose acetate (CA) membranes with an overall thickness of 70-80μm have been prepared with lactic acid, maleic acid and zinc chloride as pore forming agents, at different annealing temperatures, for forward osmosis. These membranes have been tested in the desalination of saline feeds (35g·L-1 of NaCl) using magnesium sulphate solution (150g·L-1) as the draw solution. The water flux, and rejection of NaCl, were compared with those of commercially available membranes tested under the same FO conditions. The commercially available FO membrane from Hydration Technologies Inc, OR (M1) has a permeability of 0.13L·h-1·m-2·bar-1 with a NaCl rejection of 97% when tested with 150g·L-1 of MgSO4 in the draw solution. Another commercially available membrane for FO from Hydration Technologies Inc, OR, M2 has a water permeability of 0.014L·h-1·m-2·bar-1 with NaCl rejection of 100%. The flux and rejection of the CA membranes prepared in this work are found to be dependent on the nature of the pore forming agent, and annealing temperature. Impregnation of an inorganic filler, sodium montmorrillonite in CA membranes and coating of CA membranes with hydrophilic PVA did not enhance the flux of base CA membranes. Cellulose acetate membranes cast from dope solutions containing acetone/isopropanol and lactic acid, maleic acid and zinc chloride as pore forming agents have water permeabilities of 0.13, 0.09 and 0.68L·h-1·m-2·bar-1 respectively, with NaCl rejections of 97.7, 99.3 and 88% when annealed at 50°C. CA membranes prepared with zinc chloride as a pore forming agent have good permeability of 0.27L·h-1·m-2·bar-1 with a NaCl rejection of 95% when annealed at 70°C. © 2011.

  10. DEVELOPMENT AND TESTING OF A CERIA-ZIRCONIA TOUGHENED ALUMINA PROTOTYPE FILTER ELEMENT MADE OF RETICULATED CERAMIC FOAM COATED WITH A CERAMIC MEMBRANE ACTING AS BARRIER FILTER FOR FLY ASH

    Energy Technology Data Exchange (ETDEWEB)

    Guilio A. Rossi; Kenneth R. Butcher; Stacia M. Wagner

    1999-02-19

    The objective of this work was to fabricate subscale candle filters using a Ce-ZTA reticulated foam material. Specifically Selee fabricated 60mm diameter cylinders with one closed end and one flanged end. Selee Corporation developed a small pore size (5-10 {micro}m) filtration membrane which was applied to the reticulated foam surface to provide a barrier filter surface. The specific tasks to be performed were as follows: (Task 1) Filter Element Development--To fabricate subscale filter elements from zirconia toughened alumina using the reticulated foam manufacturing process. The filter elements were required to meet dimensional tolerances specified by an appropriate filter system supplier. The subscale filter elements were fabricated with integral flanges and end caps, that is, with no glued joints. (Task 2) Membrane Development--To develop a small pore filtration membrane that is to be applied to the reticulated foam material. This membrane was to provide filtration characteristics that meet gas turbine requirements and pressure drop or permeability requirements specified by the filter system supplier. (Task 3) Subscale Filter Element Fabrication--To fabricate six subscale filter elements with integral flanges and closed ends, as well as fine pore size filtration membranes. Three filters were to have a central clean gas channel, while three would have no central channel. The filters were to be provided to FETC for testing in laboratory systems or pilot scale exposure systems as appropriate. The candles were to meet dimensional tolerances as provided by filter system suppliers.

  11. Simulation of variations in the composition of samples in the evaluation of neutral detergent fiber contents by using cellulose standard in filter bags made from different textiles

    Directory of Open Access Journals (Sweden)

    Tiago Neves Pereira Valente

    2011-07-01

    Full Text Available The objective of this study was to evaluate the efficiency of using nylon textiles (50 μm, F57 (Ankom® and non-woven textile (NWT - 100 g/m² on laboratory evaluation of neutral detergent fiber (NDF by using quantitative filter paper as purified cellulose standard and by simulating different composition of samples with additions of corn starch, pectin, casein and soybean oil. The quantitative filter paper was processed in a knife mill with a 1-mm screen sieve and the procedures for analyses of NDF contents were performed in a fiber analyzer (Ankom220®. Four experiments were carried out with additions of different ingredients into the filter paper: corn starch added at the levels of 15 or 50%; pectin, 15 or 50%; casein, 10 or 30%; and soybean oil at 0, 5, 10, 15, 25 or 50% of dry matter, respectively. The ratio 20 mg of dry matter/cm² of surface was followed. When it was relevant, in function of the evaluated treatments, heat-stable α-amylase was used. The use of F57 and NWT resulted in accurate estimates of NDF contents whereas nylon textile caused loss of insoluble fibrous particles, compromising accuracy of the results. For samples containing starch, use of heat-stable α-amylase is recommended in the evaluation of NDF contents. Pectin and casein are completely solubilized by neutral detergent solution. Levels of oil higher than 10% cause overestimation of NDF contents.

  12. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    OpenAIRE

    Mudtorlep Nisoa; Pikul Wanichapichart

    2010-01-01

    Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effec...

  13. Membrane filter method to study the effects of Lactobacillus acidophilus and Bifidobacterium longum on fecal microbiota.

    Science.gov (United States)

    Shimizu, Hidenori; Benno, Yoshimi

    2015-11-01

    A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132(T) and B. longum JCM1217(T) ) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required.

  14. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis.

    Science.gov (United States)

    Xiong, Guangyan; Li, Rui; Qian, Qian; Song, Xueqin; Liu, Xiangling; Yu, Yanchun; Zeng, Dali; Wan, Jianmin; Li, Jiayang; Zhou, Yihua

    2010-10-01

    Membrane trafficking between the plasma membrane (PM) and intracellular compartments is an important process that regulates the deposition and metabolism of cell wall polysaccharides. Dynamin-related proteins (DRPs), which function in membrane tubulation and vesiculation are closely associated with cell wall biogenesis. However, the molecular mechanisms by which DRPs participate in cell wall formation are poorly understood. Here, we report the functional characterization of Brittle Culm3 (BC3), a gene encoding OsDRP2B. Consistent with the expression of BC3 in mechanical tissues, the bc3 mutation reduces mechanical strength, which results from decreased cellulose content and altered secondary wall structure. OsDRP2B, one of three members of the DRP2 subfamily in rice (Oryza sativa L.), was identified as an authentic membrane-associated dynamin via in vitro biochemical analyses. Subcellular localization of fluorescence-tagged OsDRP2B and several compartment markers in protoplast cells showed that this protein not only lies at the PM and the clathrin-mediated vesicles, but also is targeted to the trans-Golgi network (TGN). An FM4-64 uptake assay in transgenic plants that express green fluorescent protein-tagged OsDRP2B verified its involvement in an endocytic pathway. BC3 mutation and overexpression altered the abundance of cellulose synthase catalytic subunit 4 (OsCESA4) in the PM and in the endomembrane systems. All of these findings lead us to conclude that OsDRP2B participates in the endocytic pathway, probably as well as in post-Golgi membrane trafficking. Mutation of OsDRP2B disturbs the membrane trafficking that is essential for normal cellulose biosynthesis of the secondary cell wall, thereby leading to inferior mechanical properties in rice plants.

  15. The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate

    KAUST Repository

    Kim, Dooli

    2016-08-15

    Ionic liquids have been considered green solvents for membrane fabrication. However, the high viscosity of their polymer solutions hinders the formation of membranes with strong mechanical properties. In this study, acetone was explored as a co-solvent with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) to dissolve cellulose acetate. The effects of acetone on the thermodynamic and kinetic aspects of the polymer solutions were studied and the physicochemical properties and separation capability of their resultant membranes were analyzed. The Hansen solubility parameters of [EMIM]OAc were measured by the software HSPiP and these data demonstrated that acetone was a suitable co-solvent to increase the solubility of cellulose acetate. The Gibbs free energy of mixing ΔGm was estimated to determine the proper composition of the polymer solution with better solubility. The study of the kinetics of phase separation showed that the demixing rate of the CA polymer solution in acetone and [EMIM]OAc was higher than that for solutions in [EMIM]OAc only. The membranes prepared from the former solution had higher water permeance and better mechanical stability than those prepared from the later solution. Adding acetone as a co-solvent opened the opportunity of fabricating membranes with higher polymer concentrations for higher separation capability and better mechanical properties. © 2016

  16. Effect of noncoliforms on coliform detection in potable groundwater: improved recovery with an anaerobic membrane filter technique.

    OpenAIRE

    Franzblau, S G; Hinnebusch, B J; Kelley, L M; Sinclair, N A

    1984-01-01

    A total of 529 well and distribution potable water samples were analyzed for total coliforms by the most-probable-number and membrane filter (MF) techniques. Standard plate count bacteria and MF noncoliform bacteria were also enumerated. Frequency of coliform detection, turbidity in most-probable-number tubes, and extensive overgrowth by noncoliforms on MF filters were directly proportional to standard plate counts. Recovery of coliforms was greatest by the MF method at low (less than 100 CFU...

  17. Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency

    Science.gov (United States)

    Wang, Jiaxing; Fan, Qingbin; Zhang, Si; Zhang, Zijie; Zhang, Hui; Liang, Yuzhang; Cao, Xun; Xu, Ting

    2017-01-01

    We propose an ultra-thin plasmonic color filtering device based on subwavelength metal grating engraved on a dielectric membrane waveguide without substrate. As experiments demonstrate, the fabricated free-standing plasmonic color filters have more than 70% transmission efficiency at different resonant wavelengths in the visible spectral region and are capable of generating arbitrary colors. Experimental results are in good agreement with the theoretical calculations. These artificial nanostructured color filtering devices may find potential applications in high resolution color imaging and sensing systems.

  18. Transport Selectivity of a Diethylene Glycol Dimethacrylate-Based Thymine-imprinted Polymeric Membrane over a Cellulose Support for Nucleic Acid Bases

    Institute of Scientific and Technical Information of China (English)

    QU Xiang-Jin; CHEN Chang-Bao; ZHOU Jie; WU Chun-Hui

    2007-01-01

    The binding mechanism between 9-vinyladenine and pyrimidine base thymine in methanol was studied with UV-visible spectrophotometric method. Based on this study, using thymine as a template molecule, 9-vinyladenine as a novel functional monomer and diethylene glycol dimethacrylate as a new cross-linker, a specific diethylene glycol dimethacrylate-based molecularly imprinted polymeric membrane was prepared over a cellulose support.Then, the resultantly polymeric membrane morphologies were visualized with scanning electron microscopy and its permselectivity was examined using thymine, uracil, cytosine, adenine and guanine as substrates. This result showed that the imprinting polymeric membrane prepared with diethylene glycol dimethacrylate exhibited higher transport capacity for the template molecule thymine and its optimal analog uracil than other nucleic acid bases. The membrane also took on higher permselectivity than the imprinted membrane made with ethylene glycol dimethacrylate as a cross-linker. When a mixture including five nucleic acid bases thymine, uracil, cytosine, adenine and guanine passed through the diethylene glycol dimethacrylate-based thymine-imprinted polymeric membrane,recognition of the membrane for the template molecule thymine and its optimal analog uracil was demonstrated. It was predicted that the molecularly imprinted membrane prepared with diethylene glycol dimethacrylate as cross-linker might be applicable to thymine assay of absolute hydrolysates of DNA or uracil assay of absolute hydrolysates of RNA in biological samples because of its high selectivity for the template molecule thymine and its optimal analog uracil.

  19. Cellulose Nanomaterials in Water Treatment Technologies

    OpenAIRE

    Carpenter, Alexis Wells; de Lannoy, Charles François; Mark R. Wiesner

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, ...

  20. Ceramic membrane filters for fine particulate removal in coal-fired industrial boilers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W.; Makris, P.; Krecker, J.; Jung, G.; Stubblefield, D.J.

    1998-07-01

    Strategies are being developed at Penn Sate to produce ultralow emissions when firing coal-based fuel, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The research is being conducted at the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Specific activities are identifying/developing a low-temperature NO{sub x} reduction catalyst, studying the occurrence of nitrogen in coal and the fundamental mechanisms of NO{sub x} production, characterizing air toxic emissions, investigating the use of BioLime{trademark} for simultaneous SO{sub 2}/NO{sub x} reduction, and evaluating a ceramic filter for fine particulate control. Results from trace element and polynuclear aromatic hydrocarbon emissions testing when firing coal-based fuels are reported elsewhere in these proceedings. This paper discusses the preliminary results obtained using ceramic membrane filters for fine particulate removal when firing micronized coal in a package boiler.

  1. Conjugation of silica nanoparticles with cellulose acetate/polyethylene glycol 300 membrane for reverse osmosis using MgSO4 solution.

    Science.gov (United States)

    Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Jabeen, Faiza; Shafeeq, Amir; Ahmad, Adnan; Zahid Butt, Muhammad Taqi; Jacob, Karl I; Jamil, Tahir

    2016-01-20

    Thermally-induced phase separation (TIPS) method was used to synthesize polymer matrix (PM) membranes for reverse osmosis from cellulose acetate/polyethylene glycol (CA/PEG300) conjugated with silica nanoparticles (SNPs). Experimental data showed that the conjugation of SNPs changed the surface properties as dense and asymmetric composite structure. The results were explicitly determined by the permeability flux and salt rejection efficiency of the PM-SNPs membranes. The effect of SNPs conjugation on MgSO4 salt rejection was more significant in magnitude than on permeation flux i.e. 2.38 L/m(2)h. FTIR verified that SNPs were successfully conjugated on the surface of PM membrane. DSC of PM-SNPs shows an improved Tg from 76.2 to 101.8 °C for PM and PM-S4 respectively. Thermal stability of the PM-SNPs membranes was observed by TGA which was significantly enhanced with the conjugation of SNPs. The micrographs of SEM and AFM showed the morphological changes and increase in the valley and ridges on membrane surface. Experimental data showed that the PM-S4 (0.4 wt% SNPs) membrane has maximum salt rejection capacity and was selected as an optimal membrane.

  2. 均质纤维素膜的制备及其正渗透性能研究%Preparation and performance of homogeneous cellulose forward osmosis membrane

    Institute of Scientific and Technical Information of China (English)

    张兵涛; 张林; 黄和; 侯立安

    2014-01-01

    以纤维素(cellulose)为膜材料,离子液体1-乙基-3甲基咪唑醋酸盐(EMIMAc)为溶剂,水为非溶剂,无纺布作为支撑层,通过相转化法制备了纤维素均质膜。采用红外、X-射线衍射和扫描电子显微镜表征了膜的结构及形貌,考察了该膜的正渗透性能。结果表明:纤维素溶解再生过程中没有发生化学变化,但晶型发生了转变;当原料液为0.6 mol/L的氯化钠水溶液,汲取液为特制的营养液时,所制备的正渗透膜的水通量为3.534 L/(m2· h),截盐率达到99%以上。%The-nonporous-homogeneous-cellulose-membrane-for-forward-osmosis-was-pre-pared-via-phase-inversion-method-using-ionic-liquid-1-ethyl-3-methyl-imidazolium-acetate-(EMI-MAc)-as-solvent,water-as-nonsolvent-on-a-non-woven-fabric-substrate.-The-characterizations-of-Fourier-transform-infrared-(FTIR)-and-X-ray-diffraction-(XRD)-spectroscopies-showed-that-no-obvious-change-occurred-in-the-chemical-structure-of-cellulose-after-membrane-formation,but-the-crystallinity-had-a-certain-degree-of-decline.-The-cross-section-and-the-surface-morphologies-of-the-cellulose-forward-osmosis-membrane-were-analyzed-by-scanning-electron-microscopy-(SEM).-The-membrane-performance-were-investigated-by-measuring-water-flux-and-rejection-of-simulated-seawater.-The-water-flux-of-the-cellulose-forward-osmosis-membrane,which-the-cellu-lose-concentration-is-8%(wt)-in-casting-solution,was-3.534-L/m2-·-h-and-the-rejection-for-NaCl-was-more-than-99%,using-0.6-mol/L-NaCl-solution-as-the-feed-solution-and-lab-made-nutrient-solution-as-the-draw-solution.

  3. Preparation and characterization of gatifloxacin-loaded sodium alginate hydrogel membranes supplemented with hydroxypropyl methylcellulose and hydroxypropyl cellulose polymers for wound dressing

    Science.gov (United States)

    Prabu, Durai; Majdalawieh, Amin F.; Abu-Yousef, Imad A.; Inbasekaran, Kadambari; Balasubramaniam, Tharani; Nallaperumal, Narayanan; Gunasekar, Conjeevaram J.

    2016-01-01

    Introduction: The aim of this study is to evaluate gatifloxacin-loaded sodium alginate hydrogel membranes, supplemented with glycerol (a plasticizer), glutaraldehyde (a cross-linking agent), and hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) polymers, as potential wound dressing materials based on their physicochemical properties and the sustain-release phenomenon. Materials and Methods: The physicochemical properties of the prepared hydrogel membranes were evaluated by several methods including Fourier transform infrared and differential scanning calorimetry. Different techniques were used to assess the swelling behavior, tensile strength and elongation, % moisture absorption, % moisture loss, water vapor transmission rate (WVTR), and microbial penetration for the hydrogel membranes. In vitro gatifloxacin release from the hydrogel membranes was examined using the United States Pharmacopeia XXIII dissolution apparatus. Four kinetics models (zero-order, first-order, Higuchi equation, and Korsmeyer-Peppas equation) were applied to study drug release kinetics. Results: The addition of glycerol, glutaraldehyde, HPMC, and HPC polymers resulted in a considerable increase in the tensile strength and flexibility/elasticity of the hydrogel membranes. WVTR results suggest that hydrated hydrogel membranes can facilitate water vapor transfer. None of the hydrogel membranes supported microbial growth. HPMC-treated and HPC-treated hydrogel membranes allow slow, but sustained, release of gatifloxacin for 48 h. Drug release kinetics revealed that both diffusion and dissolution play an important role in gatifloxacin release. Conclusions: Given their physicochemical properties and gatifloxacin release pattern, HPMC-treated and HPC-treated hydrogel membranes exhibit effective and sustained drug release. Furthermore, HPMC-treated and HPC-treated hydrogel membranes possess physiochemical properties that make them effective and safe wound dressing materials. PMID

  4. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Fenglin Huang

    2016-01-01

    Full Text Available A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–shell composite nanofibrous membrane showed good wettability (16.5°, contact angle, high porosity (69.77%, and super electrolyte compatibility (497%, electrolyte uptake. It had a higher ionic conductivity (13.897 mS·cm−1 than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g−1 was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries.

  5. Gypsum (CaSO4·2H2O Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis

    Directory of Open Access Journals (Sweden)

    Tai-Shung Chung

    2013-11-01

    Full Text Available We have examined the gypsum (CaSO4·2H2O scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO processes. Three hollow fiber membranes made of (1 cellulose acetate (CA, (2 polybenzimidazole (PBI/polyethersulfone (PES and (3 PBI-polyhedral oligomeric silsesquioxane (POSS/polyacrylonitrile (PAN were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42° ± 14.85° after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 °C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface.

  6. PHOTOCATALYTIC ACTIVITY OF TiO2 NANO SUPPORTED ON MEMBRANE CELLULOSE ACETATE/NATA DE COCO (CA/NDC IN PHOTODEGRADATION OF METHYLENE BLUE

    Directory of Open Access Journals (Sweden)

    Roro Ernia Prawithasari

    2015-12-01

    Full Text Available Study of synthesis and effectiveness of membrane catalyst of cellulose acetate/nata de coco-TiO2 nano (CA/NDC-TiO2 nano in photodegradation of methylene blue in batch system has been investigated. TiO2nanoparticles were synthesized by hydrothermal method followed by calcination at 450oC. Scanning Electron Microscopy (SEM images indicate nano TiO2 has been successfully synthesized with average particle diameter as 88,63±4,37 nm. X-ray diffraction pattern (XRD of nano TiO2 shows some characteristic peaks of anatase TiO2 were still existed. Membrane photocatalyst of CA/NDC- nano TiO2 was prepared via phase inversion method by mixing TiO2 nanoparticles with CA casting solution. Thermogravimetric analysis shows three decomposition steps of CA/NDC-nano membrane as well as CA/NDC membrane. Photodegradation of methylene blue was conducted with nano-TiO2 particles and CA/NDC-TiO2 membrane for 50 minutes in batch system. The absorbance changes were measured by spectrophotometer at wavelength of 664.6 nm. The result shows the photodegradation rections tended to follow second order reaction. According to the rate constant value, k, the photocatalytic effectivity using CA-NDC/nano TiO2 membrane and nano TiO2photocatalysts in metilen blue photodegradation, statistically were not significantly different.

  7. Crosslinking of Kapok Cellulose Fiber via Azide Alkyne Click Chemistry as a New Material for Filtering System: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Abd Rahman

    2016-01-01

    Full Text Available A new class of green material has been elaborated by grafting the modified kapok fiber, by the means of azidated kapok fiber followed by “click-chemistry” reaction with the terminal alkyne crosslinker. The modified and synthesized product was characterized using Fourier transform infrared spectroscopy (FT-IR, and Scanning electron microscopy (SEM. The study also was undertaken to investigate the effect on the absorption of methylene blue from aqueous solution onto the click fiber prepared. The findings showed that the click kapok absorbed more compared to the untreated kapok. Based on the result, the reaction of click chemistry influenced the properties of the filter made from kapok fiber.

  8. Filtering Surface Water with a Polyurethane-based Hollow Fiber Membrane:Effects of Operating Pressure on Membrane Fouling

    Institute of Scientific and Technical Information of China (English)

    赵学辉; 张宏伟; 王捷

    2014-01-01

    Membrane fouling seriously restricts applications of membrane technology. A novel strategy was ap-plied in this study to retard membrane fouling by changing operating pressure with the pressure responsibility membrane. A polyurethane-based hollow fiber membrane was used to treat surface water for evaluating the effect of operating pressure on membrane fouling. Some bench-scale tests in dead-end mode were carried out. In the experi-ments without backwashing, as operating pressure increased, severe membrane fouling occurred on membrane sur-face, while the permeate quality was improved obviously, which is considered to be due to shrinkage deformation. The total resistance, irreversible resistance and reversible resistance under different backwash pressures were de-termined in filtration/backwashing test. With the increase of backwash pressure, the total resistance decreased, and more importantly, the irreversible resistance also decreased, which implies that small particles deposited inside membrane pores and cake layers on membrane surface are effectively removed. Similar results could be obtained in mass balance tests. The results of the present study indicate that the application of pressure responsibility membrane in surface water treatment may be an effective strategy for reducing membrane fouling.

  9. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1997-01-01

    A technique was developed to study microcolony formation by silicone- immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria....... The technique was used to demonstrate that preinduction of nitrate reductase under low-oxygen conditions was necessary for nonfermenting, nitrate-respiring bacteria, e.g., Pseudomonas spp., to cope with a sudden lack of oxygen. In contrast, nitrate-respiring, fermenting bacteria, e.g., Bacillus and Escherichia...

  10. Filtration characterization method as tool to assess membrane bioreactor sludge filterability-the delft experience.

    Science.gov (United States)

    Lousada-Ferreira, Maria; Krzeminski, Pawel; Geilvoet, Stefan; Moreau, Adrien; Gil, Jose A; Evenblij, Herman; van Lier, Jules B; van der Graaf, Jaap H J M

    2014-04-30

    Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs), responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization in MBR operation. Therefore, there is a need for an evaluation of the lessons learned and how to proceed. In this article, five different methods for measuring MBR activated sludge filterability and critical flux are described, commented and evaluated. Both parameters characterize the fouling potential in full-scale MBRs. The article focuses on the Delft Filtration Characterization method (DFCm) as a convenient tool to characterize sludge properties, namely on data processing, accuracy, reproducibility, reliability, and applicability, defining the boundaries of the DFCm. Significant progress was made concerning fouling measurements in particular by using straight forward approaches focusing on the applicability of the obtained results. Nevertheless, a fouling measurement method is still to be defined which is capable of being unequivocal, concerning the fouling parameters definitions; practical and simple, in terms of set-up and operation; broad and useful, in terms of obtained results. A step forward would be the standardization of the aforementioned method to assess the sludge filtration quality.

  11. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    Science.gov (United States)

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal.

  12. Megasonic sonication for cost-effective and automatable elution of Cryptosporidium from filters and membranes.

    Science.gov (United States)

    Kerrouche, Abdelfateh; Desmulliez, Marc P Y; Bridle, Helen

    2015-11-01

    Sample processing is a highly challenging stage in the monitoring of waterborne pathogens. This step is time-consuming, requires highly trained technicians and often results in low recovery rates of pathogens. In the UK but also in other parts of the world, Cryptosporidium is the only pathogen directly tested for in routine operational monitoring. The traditional sampling process involves the filtration of 1000L of water, semi-automated elution of the filters and membranes with recovery rates of about 30-40% typically. This paper explores the use of megasonic sonication in an attempt to increase recovery rates and reduce both the time required for processing and the number of labour-intensive steps. Results demonstrate that megasonic energy assisted elution is equally effective as the traditional manual process in terms of recovery rates. Major advantages are however offered in terms of reduction of the elution volume enabling the current centrifugation stage to be avoided. This saves time, equipment and staff costs and critically removes the step in the process that would be most challenging to automate, paving the way thereby for highly effective automated solutions to pathogens monitoring.

  13. Standard Test Methods for Microscopical Sizing and Counting Particles from Aerospace Fluids on Membrane Filters

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the determination of the size distribution and quantity of particulate matter contamination from aerospace fluids isolated on a membrane filter. The microscopical techniques described may also be applied to other properly prepared samples of small particles. Two test methods are described for sizing particles as follows: 1.1.1 Test Method A—Particle sizes are measured as the diameter of a circle whose area is equal to the projected area of the particle. 1.1.2 Test Method B—Particle sizes are measured by their longest dimension. 1.2 The test methods are intended for application to particle contamination determination of aerospace fluids, gases, surfaces, and environments. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 These test methods do not provide for sizing particles smaller than 5 μm. Note 1—Results of these methods are subject to variables inherent in any statistical method. The...

  14. Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System

    OpenAIRE

    Fang Zhang; Hao Ren; Jing Dou; Guolin Tong; Yulin Deng

    2017-01-01

    Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in la...

  15. A comparison between ceramic membrane filters and conventional fabric filters for fine particulate removal from a coal-fired industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States); Drury, K. [Corning Inc., Painted Post, NY (United States); Makris [Corning Inc., Acton, MA (United States); Stubblefield, D.J. [Corning Inc., Corning, NY (United States)

    1998-12-31

    Penn State is developing technologies for ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF) in industrial boilers. Emissions being addressed are SO{sub 2}, NOx, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Results from trace element and polynuclear aromatic hydrocarbon emissions testing, when firing coal-based fuels, are reported elsewhere in these proceedings. This paper discusses the evaluation of ceramic membrane filters for fine particulate removal in a package boiler when firing micronized coal and CWSF.

  16. Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode

    Science.gov (United States)

    Mashuni; Ramadhan, L. O. A. N.; Jahiding, M.; Herniati

    2016-02-01

    Biosensor for analysis of diazinon pesticide using Potentiometric transducer has been developed. The basic element of this biosensor was a gold electrode modified with an immobilized acetylcholinesterase enzyme layer formed by entrapment with glutaraldehyde crosslinked-cellulose acetate. The aim of the research is to determine the composition of glutaraldehyde crosslinked-cellulose acetate in the gold electrode which provide optimum performance of biosensors of diazinon pesticide analysis on characterization include a range of working concentration, sensitivity, and detection limit. The results showed the composition of the cellulose acetate 15% and glutaraldehyde 25% that obtain optimum performance in the measurement of diazinon pesticide with a range of working concentration of 10-6 ppm to 1 ppm, the value of sensitivity 20.275 mV/decade and detection limit 10-6 ppm. The use of cellulose acetate provides highly sensitive devices allowing the efficient analysis of pesticides. The response time of electrode is on the measurement of pesticide diazinon with concentration variation of 10-6 ppm to 1 ppm with response time is about 5 minutes.

  17. Rapid detection of Salmonella spp. in food by use of the ISO-GRID hydrophobic grid membrane filter.

    OpenAIRE

    Entis, P; Brodsky, M H; Sharpe, A N; Jarvis, G A

    1982-01-01

    A rapid hydrophobic grid-membrane filter (HGMF) method was developed and compared with the Health Protection Branch cultural method for the detection of Salmonella spp. in 798 spiked samples and 265 naturally contaminated samples of food. With the HGMF method, Salmonella spp. were isolated from 618 of the spiked samples and 190 of the naturally contaminated samples. The conventional method recovered Salmonella spp. from 622 spiked samples and 204 unspiked samples. The isolation rates from Sal...

  18. Evaluation of the Hydrophobic Grid Membrane Filter for the Enumeration of Moulds and Yeasts in Naturally-Contaminated Foods

    OpenAIRE

    V.H. Tournas

    2009-01-01

    Over 240 food samples from six food groups (tree nuts, grains and grain products, dried fruits, fresh produce, fruit juice, and dairy products) were tested for levels of fungal contamination using the NEO-GRID hydrophobic grid membrane filter (HGMF) and the FDA official (BAM) method. Results showed that HGMF performed very well for all tested commodities giving yeast and mould (YM) counts similar to those of the BAM (reference) method. Statistical analysis of the data (t-test) revealed no sig...

  19. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    Science.gov (United States)

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  20. Comparison of membrane filtration rates and hydrophobic grid membrane filter coliform and Escherichia coli counts in food suspensions using paddle-type and pulsifier sample preparation procedures.

    Science.gov (United States)

    Sharpe, A N; Hearn, E M; Kovacs-Nolan, J

    2000-01-01

    Food suspensions prepared by Pulsifier contained less debris and filtered 1.3x to 12x faster through hydrophobic grid membrane filters (HGMFs) than those prepared by Stomacher 400. Coliform and Escherichia coli counts made by an HGMF method yielded 84 and 36 paired samples, respectively, positive by both suspending methods. Overall counts of pulsificates and stomachates did not differ significantly for either analysis, though coliform counts by Pulsifier were significantly higher in mushrooms and significantly lower in ground pork (P = 0.05). Regression equations for log10 counts of coliform and E. coli by Pulsifier and Stomacher were: Pulsifier = 0.12 + 0.97 x Stomacher, and Pulsifier = 0.01 + 1.01 x Stomacher, respectively.

  1. Enzymatic hydrolysis of cellulose: Study of the process of recovery of cellulose glucides by the technique of hyperfiltration on polysulphonic membranes. Idrolisi enzimatica della cellulosa. Studio del processo di recupero dei glucidi da cellulasi con tecniche di ultrafiltrazione su membrane polisolfoniche

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M.; Fabiani, C.; Sperandei, M.

    1986-07-01

    Membrane separation technology can optimize some steps of cellulose enzymatic hydrolysis process. In order to continuously remove glucose and cellobiose in the permeate solution and recover the enzymes in the recycling stream, the separation by ultrafiltration of glucides from enzymes was studied. Celluclast enzyme supplied by Novo,in aqueous buffer solution at pH5 and concentration of 0.2-4% w/v range, was used as a feed. Glucides concentration was in the 0.02-0,95% w/v$range. A DDS UF System (Lab Unit-20) was employed with 16 flat membranes type GS81PP with cut off at 6000 dalton. During the separation test, a reduction in the permeate flux caused by protein deposition on the membrane surface was observed. Water washing of the membranes cleans all the membranes package and the original membranes permeability (80 1/sq. m/h at 4 bars) is recovered. Glucides can be quantitatively recovered by the UF process. However the high cellulase concentration may produce a slight enzyme inactivation (2-9%).

  2. Novel Campylobacter isolation method using hydrophobic grid membrane filter and semisolid medium.

    Science.gov (United States)

    Valdivieso-Garcia, Alfonso; Harris, Kathleen; Riche, Edward; Campbell, Stephanie; Jarvie, Anne; Popa, Maria; Deckert, Anne; Reid-Smith, Richard; Rahn, Kris

    2007-02-01

    Culture procedures for isolation of thermophilic campylobacters from food matrices are complex, labor intensive, and time-consuming. Most available methods include the use of antibiotics as selective agents to prevent the growth of competing microflora. A simple procedure for isolation of thermophilic campylobacters after enrichment in Rosef's enrichment broth was developed using a hydrophobic grid membrane filter (HGMF) on semisolid medium (SSM). SSM contains no antibiotics, and the HGMF physically separates Campylobacter from the enrichment broth, allowing isolation based on differential motility. The HGMF-SSM method was compared to the Agriculture and Agri-Food Canada Food Safety Procedures Manual (FSPM-10) method (Isolation of Thermophilic Campylobacters from Fresh Pork, Beef Veal, Poultry and Ready-to-Eat Meat Products), which includes the use of selective antibiotics. During the initial study, after enrichment the HGMF-SSM method yielded pure cultures of campylobacters after 16 to 18 h (overnight) compared with 48 h for the FSPM-10 method. Ninety-four turkey samples collected at local retail stores and 38 frozen pig fecal samples were processed by both methods. Thirty-five samples (26.5%) were positive by the HGMF-SSM method; 24 (18.2%) of these positive samples contained Campylobacter jejuni and 11 (8.3%) contained Campylobacter coli. With the FSPM-10 method, 25 samples (18.9%) were positive: 21 (15.9%) with C. jejuni and 4 (3%) with C. coli. For a subsequent field study, only the HGMF-SSM method was used to isolate Campylobacter from 1,200 chicken samples and 454 turkey samples sold at retail. Analysis of five subisolates from various samples indicated that only one type of Campylobacter was recovered by the HGMF-SSM method, as ascertained by MICs for 10 antimicrobials, sequencing of the short variable region of the flaA gene, and fingerprinting based on amplified fragment length polymorphism. The absence of antibiotics in the SSM may explain the higher

  3. Bacterial cellulose/boehmite composites

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L. [Universidade Estadual Paulista Julio de Mesquita Filho. UNESP. Instituto de Quimica de Araraquara, SP (Brazil); Caiut, Jose Mauricio A. [Universidade de Sao Paulo. Departamento de Quimica - FFCLRP/USP, Ribeirao Preto, SP (Brazil)

    2011-07-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  4. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    Science.gov (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  5. Application of a DNA hybridization-hydrophobic-grid membrane filter method for detection and isolation of verotoxigenic escherichia coli.

    Science.gov (United States)

    Todd, E C; Szabo, R A; MacKenzie, J M; Martin, A; Rahn, K; Gyles, C; Gao, A; Alves, D; Yee, A J

    1999-11-01

    Verotoxigenic Escherichia coli (VTEC) strains were isolated from food and animal fecal samples by using PCR to screen for the presence of VTEC after broth enrichment and then filtering VTEC-positive cultures through hydrophobic-grid membrane filters (HGMFs) which were incubated on MacConkey agar. The filters were probed with a digoxigenin-labeled PCR product generated by amplification of a conserved verotoxin gene sequence. Replication of the growth on filters allowed probe-positive colonies to be picked. When ground beef samples were inoculated with VTEC strains, 100% of the strains were recovered, and the detection limit was 0.1 CFU per g. Similar results were obtained with seven types of artificially contaminated vegetables. A survey of 32 packages of vegetables and 23 samples of apple cider obtained at the retail level did not reveal the presence of VTEC. However, the intestinal fecal contents of a moose, 1 of 35 wild mammals and birds examined, contained E. coli O157:H7. The DNA hybridization-HGMF method was also used in a prevalence survey of 327 raw and 744 ready-to-eat products; VTEC strains were recovered from 4.9% of the raw products and 0.7% of the ready-to-eat products. No serotype O157:H7 strains were detected. This method is particularly suited for surveys in which low numbers of VTEC-positive samples are expected and isolates are required.

  6. Application of a DNA Hybridization–Hydrophobic-Grid Membrane Filter Method for Detection and Isolation of Verotoxigenic Escherichia coli

    Science.gov (United States)

    Todd, E. C. D.; Szabo, R. A.; MacKenzie, J. M.; Martin, A.; Rahn, K.; Gyles, C.; Gao, A.; Alves, D.; Yee, A. J.

    1999-01-01

    Verotoxigenic Escherichia coli (VTEC) strains were isolated from food and animal fecal samples by using PCR to screen for the presence of VTEC after broth enrichment and then filtering VTEC-positive cultures through hydrophobic-grid membrane filters (HGMFs) which were incubated on MacConkey agar. The filters were probed with a digoxigenin-labeled PCR product generated by amplification of a conserved verotoxin gene sequence. Replication of the growth on filters allowed probe-positive colonies to be picked. When ground beef samples were inoculated with VTEC strains, 100% of the strains were recovered, and the detection limit was 0.1 CFU per g. Similar results were obtained with seven types of artificially contaminated vegetables. A survey of 32 packages of vegetables and 23 samples of apple cider obtained at the retail level did not reveal the presence of VTEC. However, the intestinal fecal contents of a moose, 1 of 35 wild mammals and birds examined, contained E. coli O157:H7. The DNA hybridization-HGMF method was also used in a prevalence survey of 327 raw and 744 ready-to-eat products; VTEC strains were recovered from 4.9% of the raw products and 0.7% of the ready-to-eat products. No serotype O157:H7 strains were detected. This method is particularly suited for surveys in which low numbers of VTEC-positive samples are expected and isolates are required. PMID:10543785

  7. The influence of ultrasound on wine and wine materials acidity during clarification process in tubular membrane filters

    Directory of Open Access Journals (Sweden)

    A. A. Ponedelchenko

    2016-01-01

    Full Text Available Researches on the experimental ultrasonic installation were carried out, using industrial equipment for bottling liquids and ultrasonic apparatus "Volna-M" UZTA-1/22-OM, for clarification and filtering of table wines by tangential microfiltration using membrane ceramic filtering elements with a pore size of 0.2 micron at a pressure of 0.5-2.0 bar. Membrane ultrafiltration upon application of ultrasound of 30-40 microns amplitude and a frequency of 20 kHz ± 1.65 Hz at high filter performance and work stability changes the quantitative content of the valuable wine components slightly. But much attention to the increase of titratable acidity and pH medium due to possible degradation and esterification intensification of higher acids and alcohols was paid. At the same time more intense and rich aroma and distinct flavor with berry notes appears in wine that along with the physical- and chemical indicators helped to improve organoleptic characteristics and to increase the tasting evaluation of wines. At the same time, the content of phenolic and nitrogen compounds is reduced resulting in wines stability to protein and colloidal opacification. It became possible to refuse multiple regeneration of ceramic filter elements for the  ecovery of their performance, as well as the use of preservatives and antiseptics at a high wines bottling stability. It is shown that the filtration with the dosing of ultrasound in the wine industry allows not only reducing the cost of consumables, equipment and removing some of the traditional processes, but also providing the cold sterilization of wine materials with an increase in their quality.

  8. Direct determination of lead in urban particulate material and lubricating oil with thin silver films electrically vaporized from membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Swan, J.M.; Sacks, R.D.

    1985-06-01

    A rapid, direct method for the determination of lead in suspended solid particles is described. Particles are collected on a polycarbonate membrane filter coated with a thin film of high-purity Ag. The metal film does not affect filtration properties of the membrane. The thin film and sample are atomized and excited in the high-temperature plasma produced by the electrical vaporization of the Ag film. The Pb concentration is determined by emission spectroscopy. Sample introduction and standardization techniques are presented. Sample particle size and loading effects are considered. A high-inductance, longer-duration discharge is more useful for larger samples and for larger particles than a low-inductance, shorter-duration discharge. Analytical results are presented for Pb in NBS standard reference material SRM 1648 (urban particulate material) and lubricating oil spiked with Pb powder. 14 references, 4 figures, 3 tables.

  9. SURFACE MODIFICATION OF SILICA- AND CELLULOSE-BASED MICROFILTRATION MEMBRANES WITH FUNCTIONAL POLYAMINO ACIDS FOR HEAVY METAL SORPTION

    Science.gov (United States)

    Functionalized membranes represent a field with multiple applications. Examination of specific metal-macromolecule interactions on these surfaces presents an excellent method for characterizion of these materials. These interactions may also be exploited for heavy metal sorptio...

  10. Preparation and properties of cellulose triacetate forward osmosis membrane%三乙酸纤维素正渗透膜的制备与性能

    Institute of Scientific and Technical Information of China (English)

    解利昕; 辛婧; 解奥

    2014-01-01

    Cellulose triacetate based membranes for forward osmosis were prepared by immersion precipitation. The polymer solution consisted of cellulose triacetate as the membrane material, 1,4-dioxane and acetone as solvent,methanol and lactic acid as additives. Casting composition and preparation conditions-1,4-dioxane/acetone ratio,lactic acid content,evaporation time,casting thickness and annealing temperature-were tested for their effects on membrane performance. The optimized membrane showed 14.10L/(m2·h) water flux and 0.031mol/(m2·h) reverse solute flux using a feed solution of pure water and draw solution of 0.56mol/L CaCl2. When 0.1mol/L NaCl was used as the feed solution and 4mol/L glucose was used as the draw solution,water flux was above 5L/(m2·h) and rejection for NaCl was above 99%. The optimized membrane had a more hydrophilic surface, higher water flux,higher salt resistance and better membrane performance than the HTI membrane.%以三乙酸纤维素(CTA)为膜材料,1,4-二氧六环、丙酮为溶剂,甲醇、乳酸为添加剂,采用相转换法制备了三乙酸纤维素正渗透膜。研究了不同1,4-二氧六环/丙酮配比、添加剂乳酸含量、挥发时间、膜厚度、热处理温度条件下正渗透膜性能的变化规律。研究表明,当采用纯水为原料液,0.56mol/L CaCl2为汲取液时,优化制备的CTA正渗透膜的水通量达到14.10L/(m2·h),溶质反扩散量为0.031mol/(m2·h);采用0.1mol/L NaCl为原料液,4mol/L葡萄糖为汲取液时,优化制备的CTA正渗透膜的水通量保持在5L/(m2·h)以上,对NaCl的截留率大于99%。CTA正渗透膜相比于HTI膜,具有较高的亲水性、水通量、截留率,稳定性更好。

  11. 功能性再生纤维素复合膜的制备及性能研究进展%Research progress on preparation and properties of functional regenerated cellulose composite membranes

    Institute of Scientific and Technical Information of China (English)

    王晶晶; 王钱钱; 张超群; 孙建中

    2016-01-01

    纤维素是自然界中储量最大的天然高分子化合物,被认为是未来能源和化工的主要原料。然而,天然纤维素聚合度高、结晶度高的特性,使其难以溶于常规溶剂,极大限制了纤维素的应用。近年来,人们发现了多种新型纤维素溶剂体系,本文简要介绍了基于新型纤维素溶剂体系制备而来的再生纤维素膜以及一系列功能性再生纤维素基有机/无机复合膜材料。通过新型纤维素溶剂体系溶解再生得到的再生纤维素基复合膜在多孔性、热稳定性、强度等性能方面得到一定程度的改善,有望应用于包装、污水处理、传感器、生物医学等领域。本文基于再生纤维素膜及其复合膜材料的最新研究进展,对今后发展的热点方向进行了展望,旨在为纤维素溶解和功能性再生纤维素新材料的开发提供参考。%Cellulose, the most abundant natural renewable resources on the earth, has been considered as the main raw material for future energy and chemical industry. However, due to its high degree of polymerization and crystalline index, cellulose is extremely difficult to dissolve in conventional solvents, which greatly limits its application. More recently, many new cellulose solvents have been developed to overcome this problem. This paper briefly introduces a series of regenerated cellulose membranes and functional organic/inorganic regenerated cellulose composite membranes with these new cellulose solvents. It has been found that the properties of those cellulose composites, such as the porosity, thermal stability and mechanical properties are significantly improved, giving them promising applications in packaging, wastewater treatment, sensors, biological medicine, etc. The latest research progress of regenerated cellulose membranes and functional regenerated cellulose composites is summarized in this paper. Finally, the trends on developing cellulose solvents and

  12. Hydrophobic grid membrane filter/MUG method for total coliform and Escherichia coli enumeration in foods: collaborative study.

    Science.gov (United States)

    Entis, P

    1989-01-01

    Twenty-four laboratories participated in a collaborative study to validate a hydrophobic grid membrane filter (HGMF) method incorporating the use of 4-methylumbelliferyl-beta-D-glucuronide (MUG) for enumeration of total coliform and Escherichia coli bacteria in foods by comparing its performance against the AOAC 3-tube MPN method (46.013-46.016). Raw milk, raw ground poultry, whole egg powder, cheese powder, and ground black pepper were included in the study. The total coliform methods did not differ significantly, except that the 3-tube method detected a significantly higher level of total coliforms than did the HGMF method in the ground black pepper. Conversely, the HGMF/MUG E. coli method detected significantly higher numbers of E. coli present in the egg powder, cheese powder, and ground black pepper samples, while not differing significantly from the 3-tube method for the raw milk and raw ground poultry samples. The overall confirmation rate of MUG-positive colonies isolated using the HGMF method was 99.5%. The hydrophobic grid membrane filter/MUG method has been adopted official first action as an additional method to AOAC official final action method 46.030-46.034.

  13. Comparison of the hydrophobic-grid membrane filter procedure and standard methods for coliform analysis of water.

    Science.gov (United States)

    McDaniels, A E; Bordner, R H; Menkedick, J R; Weber, C I

    1987-05-01

    The hydrophobic-grid membrane filter (HGMF) has been proposed as an alternate method to the standard membrane filter (MF) procedure for the detection and enumeration of coliforms from water. Eight samples of nonchlorinated wastewater effluents were analyzed by the HGMF, standard MF, and tube fermentation most-probable-number methods for fecal coliforms, and eight samples each of polluted surface and dosed drinking waters were analyzed by the same methods for total coliforms. The drinking waters were dosed with coliforms and other heterotrophs concentrated from nonchlorinated domestic wastewater and treated with chlorine to reduce the numbers of organisms and simulate stress caused by chlorination. Statistical analyses determined that recoveries of fecal coliforms were significantly higher by the filtration methods for the nonchlorinated domestic wastewaters but not for the other waters. The results also indicated that recoveries of fecal and total coliforms did not differ significantly when either MFs or HGMFs were used. Total coliform results obtained with HGMFs having greater than 100 positive grid cells were significantly more precise than estimates obtained by the standard MF method only for polluted surface waters.

  14. Enabling safe dry cake disposal of bauxite residue by deliquoring and washing with a membrane filter press.

    Science.gov (United States)

    Kinnarinen, Teemu; Lubieniecki, Boguslaw; Holliday, Lloyd; Helsto, Jaakko-Juhani; Häkkinen, Antti

    2015-03-01

    Dry cake disposal is the preferred technique for the disposal of bauxite residue, when considering environmental issues together with possible future utilisation of the solids. In order to perform dry cake disposal in an economical way, the deliquoring of the residue must be carried out efficiently, and it is also important to wash the obtained solids well to minimise the amount of soluble soda within the solids. The study presented in this article aims at detecting the most important variables influencing the deliquoring and washing of bauxite residue, performed with a horizontal membrane filter press and by determining the optimal washing conditions. The results obtained from pilot-scale experiments are evaluated by considering the properties of the solids, for instance, the residual alkali and aluminium content, as well as the consumption of wash liquid. Two different cake washing techniques, namely classic washing and channel washing, are also used and their performances compared. The results show that cake washing can be performed successfully in a horizontal membrane filter press, and significant improvements in the recovery of alkali and aluminium can be achieved compared with pressure filtration carried out without washing, or especially compared with the more traditionally used vacuum filtration.

  15. Preparation and performance of cellulose acetate forward osmosis membrane%醋酸纤维素正渗透膜的制备及其性能研究

    Institute of Scientific and Technical Information of China (English)

    李丽丽; 王铎

    2012-01-01

    以醋酸纤维素(CA)作为成膜材料,以聚酯筛网作为支撑材料,利用相转化法制备正渗透膜,考察了正渗透膜制备过程中的影响因素,包括铸膜液中聚合物浓度以及制膜过程中环境湿度、凝胶浴温度及热处理温度对正渗透膜性能(水通量和截盐率)的影响规律。并利用SEM表征了膜表面和断面的形貌。结果表明,在原料液为0.1mol/L NaCl,汲取液为4mol/L葡萄糖,原料液面向分离层,室温的测试条件下,当聚合物浓度为10.4%、在60℃下热处理、凝胶浴温度为15℃、环境湿度为90%时所制备的正渗透膜通量为9.7~10.3L/(m2.h),截盐率在93%以上。%Forward osmosis membrane was fabricated by phase inversion method, with cellulose acetate (CA) as membrane material and polyester mesh as support. The effects of polymer content in polymer solution, humidi-ty, and the temperature of coagulate bath and annealing on the membrane performance (the water flux and the rejection for NaCI ) were investigated. The results show that the above factors play an important role on the performance of the FO membrane. When the CA concentration is 10.4%, with annealing temperature 60℃, gel bath temperature 15℃ and humidity 90%, the water flux of the fabricated FO membrane was between 9.7 and10.3L/(m2·h) and the rejection for NaCl was more than 93%, using 0. lmol/L NaCl as the feed solution and 4mol/L glucose as the draw solution.

  16. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.

    Science.gov (United States)

    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao

    2014-12-10

    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  17. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo.

    Science.gov (United States)

    Wu, Jian; Zheng, Yudong; Wen, Xiaoxiao; Lin, Qinghua; Chen, Xiaohua; Wu, Zhigu

    2014-06-01

    Bacterial cellulose (BC) has attracted increasing attention as a novel wound dressing material, but its antimicrobial activity, which is one of the critical skin-barrier functions in wound healing, is not sufficient for use in practical applications. To overcome such a deficiency, silver nanoparticles were generated and self-assembled on the surface of BC nanofibers, forming a stable and evenly distributed Ag nanoparticle coated BC nanofiber (AgNP-BC). The performance of AgNP-BC was systematically studied in terms of antibacterial activities, cytocompatibility and effects on wound healing. The results showed that AgNP-BC exhibited significant antibacterial activity against Staphylococcus aureus. Moreover, AgNP-BC allowed attachment, and growth of rat fibroblasts with low cytotoxicity emerged. Based on these advantages, AgNP-BC samples were applied in a second-degree rat wound model. Wound flora showed a significant reduction during the healing. The fresh epidermal and dermis thicknesses with AgNP-BC samples were 111 and 855 µm respectively, higher than 74 and 619 µm for BC groups and 57 and 473 µm for untreated control wounds. The results demonstrated that AgNP-BC could reduce inflammation and promote scald wound healing.

  18. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  19. Investigation of reagent distributions on glass fiber membrane filters used in air sampling.

    Science.gov (United States)

    Tucker, Samuel P

    2007-10-01

    This project has arisen from the need to produce GFFs (glass fiber filters) bearing a thin and evenly distributed coating of a selected reagent in the equatorial plane for breakthrough studies. However, it has been discovered that today's two general techniques for coating GFFs (total immersion and application of reagent solution to GFFs) have usually produced unevenly distributed coatings of reagent in the equatorial plane. In addition, quantities of reagent on GFFs from commercial sources may vary widely in the same lot of coated GFFs. Consequences are variability in capacity of coated filters at the point of breakthrough and, perhaps, wasted reagent. Although today's reagent-coated filters may be satisfactory for routine air sampling, such filters may be unacceptable for precise breakthrough studies. Research has been conducted successfully to produce nearly evenly distributed coatings of reagents in the equatorial plane of GFFs by application of reagent solutions to the centers of GFFs which are resting on crisscrossing, fine, stainless-steel wire. Distributions of coatings have been determined by punching out twenty-one 5-mm circles from each GFF and analyzing each circle by flow-injection with a UV detector. Lowest achievable relative standard deviations of measurement (RSDs) for reagents in 5-mm circles have been 5 to 7%. Reagents studied have included 1-(2-pyridyl)piperazine (1-2PP), 2,4-dinitrophenylhydrazine (DNPH), and 1-(9-anthracenylmethyl)piperazine (MAP). Factors affecting the distribution of such coatings include choice of reagent and choice of solvent for the reagent solution.

  20. Membrane-filtered olive mill wastewater: Quality assessment of the dried phenolic-rich fraction

    Science.gov (United States)

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW a...

  1. 离子液体法制备再生纤维素/角蛋白共混膜的研究%Research of Regenerated Cellulose/Keratin Blend Membranes Prepared from Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    张猛; 马博谋; 何春菊

    2013-01-01

    合成了离子液体1-丁基-3-甲基咪唑氯盐([BMIM]Cl),以其为溶剂溶解羊毛角蛋白和纤维素,并制得再生纤维素/角蛋白共混膜.通过扫描电子显微镜(SEM)、傅里叶红外光谱仪(FT-IR)、热失重分析仪(TGA)及强度测试仪等对共混膜的性能进行表征.测试结果表明:与单一原料组分相比,共混膜具有较高的热稳定性,但力学性能有所降低,此外,羊毛角蛋白再生前后的结构并未发生显著变化.%l-butyl-3-methylimidazolium chloride ([BMIM] CD was synthesized to dissolve wool keratin and cellulose, and the keratin/cellulose blend membranes were prepared. The properties of the membrane were evaluated through scanning electron microscope (SEM), Fourier transforms infrared (FT-IR), thermogravimetric analyzer (TGA) and tension strength tester. All the results showed that the blend membranes presented better thermal stability than that of raw cellulose and keratin, but inferior mechanical property. The structure of wool keratin didn't have remarkable change after regeneration.

  2. Regenerated cellulose membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; W Salleh, W N; Jaafar, Juhana; Mohd Hir, Zul Adlan; Rosmi, Mohamad Saufi; Abd Mutalib, Muhazri; Ismail, Ahmad Fauzi; Tanemura, Masaki

    2016-08-01

    Visible light driven C-doped mesoporous TiO2 (C-MTiO2) nanorods have been successfully synthesized through green, low cost, and facile approach by sol-gel bio-templating method using regenerated cellulose membrane (RCM) as nanoreactor. In this study, RCM was also responsible to provide in-situ carbon sources for resultant C-MTiO2 nanorods in acidified sol at low temperatures. The composition, crystallinity, surface area, morphological structure, and optical properties of C-MTiO2 nanorods, respectively, had been characterized using FTIR, XRD, N2 adsorption/desorption, TEM, UV-vis-NIR, and XPS spectroscopy. The results suggested that the growth of C-MTiO2 nanorods was promoted by the strong interaction between the hydroxyl groups of RCMs and titanium ion. Optical and XPS analysis confirmed that carbon presence in TiO2 nanorods were responsible for band-gap narrowing, which improved the visible light absorption capability. Photocatalytic activity measurements exhibited the capability of C-MTiO2 nanorods in degradation of methyl orange in aqueous solution, with 96.6% degradation percentage under visible light irradiation.

  3. Evaluation of the Hydrophobic Grid Membrane Filter for the Enumeration of Moulds and Yeasts in Naturally-Contaminated Foods

    Directory of Open Access Journals (Sweden)

    V.H. Tournas

    2009-01-01

    Full Text Available Over 240 food samples from six food groups (tree nuts, grains and grain products, dried fruits, fresh produce, fruit juice, and dairy products were tested for levels of fungal contamination using the NEO-GRID hydrophobic grid membrane filter (HGMF and the FDA official (BAM method. Results showed that HGMF performed very well for all tested commodities giving yeast and mould (YM counts similar to those of the BAM (reference method. Statistical analysis of the data (t-test revealed no significant differences between the two methods for all foods tested. Regression analysis showed that there was a good fit linear relationship between the two methods for most of the commodities examined. Some difficulties were encountered during counting of the colonies on HGMF since the size of the grid is very small and the number of possible colonies per plate can reach 1600.

  4. Evaluation of the Hydrophobic Grid Membrane Filter for the Enumeration of Moulds and Yeasts in Naturally-Contaminated Foods

    Directory of Open Access Journals (Sweden)

    V.H. Tournas

    2009-07-01

    Full Text Available Over 240 food samples from six food groups (tree nuts, grains and grain products, dried fruits, fresh produce, fruit juice, and dairy products were tested for levels of fungal contamination using the NEO-GRID hydrophobic grid membrane filter (HGMF and the FDA official (BAM method. Results showed that HGMF performed very well for all tested commodities giving yeast and mould (YM counts similar to those of the BAM (reference method. Statistical analysis of the data (t-test revealed no significant differences between the two methods for all foods tested. Regression analysis showed that there was a good fit linear relationship between the two methods for most of the commodities examined. Some difficulties were encountered during counting of the colonies on HGMF since the size of the grid is very small and the number of possible colonies per plate can reach 1600.

  5. Improved hydrophobic grid membrane filter method, using EF-18 agar, for detection of Salmonella in foods: collaborative study.

    Science.gov (United States)

    Entis, P

    1990-01-01

    A collaborative study was carried out in 30 laboratories to validate improvements to the official final action hydrophobic grid membrane filter (HGMF) screening method for Salmonella in foods, 985.42, by comparing the performance of the improved HGMF method against that of the AOAC/BAM conventional culture method. Six products were included in the collaborative study: milk chocolate, raw deboned poultry meat, black pepper, soy flour, egg yolk powder, and nonfat dry milk. The raw deboned poultry meat was naturally contaminated with Salmonella, and the remaining 5 products were each inoculated in advance with low levels of individual Salmonella serotypes. The AOAC/BAM method produced 11 false negative results and the improved HGMF method produced 18 false negative results. The improved HGMF Salmonella method has been approved interim official first action for all foods to replace the HGMF official final action method, 985.42.

  6. Rapid detection of Salmonella spp. in food by use of the ISO-GRID hydrophobic grid membrane filter.

    Science.gov (United States)

    Entis, P; Brodsky, M H; Sharpe, A N; Jarvis, G A

    1982-02-01

    A rapid hydrophobic grid-membrane filter (HGMF) method was developed and compared with the Health Protection Branch cultural method for the detection of Salmonella spp. in 798 spiked samples and 265 naturally contaminated samples of food. With the HGMF method, Salmonella spp. were isolated from 618 of the spiked samples and 190 of the naturally contaminated samples. The conventional method recovered Salmonella spp. from 622 spiked samples and 204 unspiked samples. The isolation rates from Salmonella-positive samples for the two methods were not significantly different (94.6% overall for the HGMF method and 96.7% for the conventional approach), but the HGMF results were available in only 2 to 3 days after sample receipt compared with 3 to 4 days by the conventional method.

  7. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.; Collin, S.; Petroff, F.; Anane, A.; Fert, A.; Seneor, P. [Unité Mixte de Physique CNRS/Thales, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France and Université Paris Sud, 91405 Orsay (France); Weatherup, R. S.; Hofmann, S.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Yang, H. [IBS Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Blume, R. [Helmholtz-Zentrum Berlin fur Materialien und Energie, 12489 Berlin (Germany); Schloegl, R. [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the sign reversal of the measured magnetoresistance.

  8. Inferring Trial-to-Trial Excitatory and Inhibitory Synaptic Inputs from Membrane Potential using Gaussian Mixture Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Milad eLankarany

    2013-09-01

    Full Text Available Time-varying excitatory and inhibitory synaptic inputs govern activity of neurons and process information in the brain. The importance of trial-to-trial fluctuations of synaptic inputs has recently been investigated in neuroscience. Such fluctuations are ignored in the most conventional techniques because they are removed when trials are averaged during linear regression techniques. Here, we propose a novel recursive algorithm based on Gaussian mixture Kalman filtering for estimating time-varying excitatory and inhibitory synaptic inputs from single trials of noisy membrane potential in current clamp recordings. The Kalman filtering is followed by an expectation maximization algorithm to infer the statistical parameters (time-varying mean and variance of the synaptic inputs in a non-parametric manner. As our proposed algorithm is repeated recursively, the inferred parameters of the mixtures are used to initiate the next iteration. Unlike other recent algorithms, our algorithm does not assume an a priori distribution from which the synaptic inputs are generated. Instead, the algorithm recursively estimates such a distribution by fitting a Gaussian mixture model. The performance of the proposed algorithms is compared to a previously proposed PF-based algorithm (Paninski et al., 2012 with several illustrative examples, assuming that the distribution of synaptic input is unknown. If noise is small, the performance of our algorithms is similar to that of the previous one. However, if noise is large, they can significantly outperform the previous proposal. These promising results suggest that our algorithm is a robust and efficient technique for estimating time varying excitatory and inhibitory synaptic conductances from single trials of membrane potential recordings.

  9. 三醋酸纤维素/醋酸纤维素正渗透膜的制备工艺对性能的影响%Performance Effects on Preparation Process of Cellulose Triacetate/Cellulose Acetate Forward Osmosis Membrane

    Institute of Scientific and Technical Information of China (English)

    曾瑜; 宗同强; 赖华杰; 李娜; 靳焘

    2016-01-01

    Series of osmosis membrane were prepared by phase inversion method with cellulose acetate and cellulose triacetate as membrane materials, and explored three important factors affecting water flux of forward osmosis membranes:The thickness of membrane, the gel time and the heat treatment process. The results show that the best technological conditions for preparing forward osmosis membrane is that the thickness is 300mm, gel time is 48 h and through heat treatment process. The water flux of forward osmosis prepared by these technological conditions reach 7.088 L/m2·h.%通过相转变法制备了一系列三醋酸纤维素/醋酸纤维素正渗透膜,并探索了影响正渗透膜水通量的三个重要因素:膜厚度、凝胶时间、热处理过程。结果表明膜厚度为300mm、凝胶时间48 h,并经过热处理以后的正渗透膜水通量效果最佳,达到7.088 L/m2·h。

  10. Design and fabrication of ripple-free CMOS-compatible stacked membranes for airgap optical filters for UV-visible spectrum

    Science.gov (United States)

    Ghaderi, Mohammadamir; de Graaf, Ger; Wolffenbuttel, Reinoud F.

    2016-04-01

    CMOS-compatible fabrication of thin dielectric membranes for the ultraviolet and visible spectrum is presented for use in airgap/SiO2-based interference filter design. A typical optical design consists of multiple membranes of 50-100 nm thickness. Maintaining flatness over a large area, as required by the optical application, is challenging. In such a free-standing membrane, the residual stress is the main force acting on the structure. Although an overall tensile residual stress can effectively stretch the membrane, too much stress would exceed the yield strength of the material and results in fracturing. Furthermore, the presence of a residual stress gradient causes the membrane to deform. In this work, the effect of a stress profile in the thin film has is investigated. Although PECVD SiO2 layers with an average tensile stress level of 178 MPa are used for the fabrication of the membranes, the presence of a stress gradient of about 0:67 MPa=nm results in a deformation in the membrane. A simple straining method is applied to reduce flatness. The preliminary results and discusses the challenges in the fabrication of stacked membranes for optical filters are presented.

  11. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes.

    Science.gov (United States)

    Martin, Marie-Blandine; Dlubak, Bruno; Weatherup, Robert S; Yang, Heejun; Deranlot, Cyrile; Bouzehouane, Karim; Petroff, Frédéric; Anane, Abdelmadjid; Hofmann, Stephan; Robertson, John; Fert, Albert; Seneor, Pierre

    2014-08-26

    We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni–Al2O3–Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances.

  12. A heteronuclear and homonuclear filtering strategy for studying the structure of membrane peptides in non-deuterated phospholipid vesicles

    Science.gov (United States)

    Doan, B. T.; Nezry, C.; Rene, L.; Badet, B.; Beloeil, J. C.

    1998-02-01

    NMR study of membrane biomolecules comes up against a poor solubility in classical solvents. A strategy was elaborated to obtain structural information of peptides in non deuterated phospholipids vesicles. It is based on isotopic (HSQC-NOESY) and homonuclear selective filters, both using a fine water suppression. The method is illustrated with the substance P, a 11-residue membrane neuropeptide. L'étude par RMN des biomolécules membranaires est délicate en raison de leur faible solubilité. Une stratégie d'étude a été élaborée pour obtenir des informations structurales de peptides dans un environnement de vésicules de phospholipides non deutérés. Elle repose sur des filtres isotopiques de type HSQC-NOESY et des filtres homonucléaires avec impulsion sélective, avec une suppression fine de l'eau. Un exemple est donné sur un neuropeptide membranaire de 11 résidus : la substance P.

  13. Dissolution and regeneration membrane of cellulose in ionic liquid%两种离子液体中制备再生棉浆纤维素膜及其性能研究

    Institute of Scientific and Technical Information of China (English)

    刘洋; 王兆梅; 肖凯军

    2013-01-01

    Cotton pulp was dissolved in ionic liquids [Bmim]CI and [Emim]Ac and regenerated membrane was successfully prepared. Its dissolution process was observed by polarizing microscope. The structural differences between cotton pulp and regenerated cellulose membrane were investigated using Fourier transform infrared (FT-IR) spectroscopy.X-ray diffraction and thermogravimetry(TG) measurements. The results showed that cotton pulp was directly dissolved by ionic liquids and its crystalline form transformed from cellulose Ⅰ to cellulose Ⅱ . The regenerated cellulose membranes obtained showed a dense and smooth structure and displayed a slight thermal stability loss. The tensile strength could be up to 94.55MPa and 39.15MPa from [Bmim]CI and [Emim]Ac. respectively.%以1-丁基-3-甲基咪唑氯盐([Bmim]Cl)和1-乙基-3-甲基咪唑醋酸盐([Emim]Ac)两种离子液体作为棉浆粕的溶解体系,并制备了再生棉浆粕纤维素膜,采用红外光谱、X射线衍射、热重分析、扫描电镜和质构仪对棉浆再生前后纤维素膜进行结构表征 结果表明,将棉浆直接溶解在离子液体中,再生后纤维素晶型由Ⅰ型向Ⅱ型的晶型转变,热稳定性略有下降 再生纤维素膜结构致密均匀,力学性能优异,在[Bmim]Cl和[Emim]Ac中拉伸强度分别可达94.55MPa和39.15MPa.

  14. Irradiation of large area Mylar membrane and characterization of nuclear track filter

    Indian Academy of Sciences (India)

    N K Acharya; P K Yadav; S Wate; Y K Vijay; F Singh; D K Avasthi

    2004-10-01

    Ion irradiation of Si8+ ion beam of 100 MeV was scattered by a gold foil on a Mylar membrane of 25 m thickness in the form of film roll (width, 12.5 cm and length, 400 cm) at the Nuclear Science Centre, New Delhi. The characterization of etched nuclear tracks was carried out by gas permeation measurements. The samples cut from the film roll of required size for permeability measurements were etched in a controlled manner in a constant temperature bath of 6N NaOH solution. The opening of the conical etched tracks was characterized by hydrogen gas permeation.

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PHYSICAL REMOVAL OF MICROBIOLOGICAL & PARTICULATE CONTAMINANTS IN DRINKING WATER: US FILTER 3M10C MICROFILTRATION MEMBRANE SYSTEM AT CHULA VISTA, CALIFORNIA

    Science.gov (United States)

    Verification testing of the US Filter 3M10C membrane system was conducted over a 44-day test period at the Aqua 2000 Research Center in Chula Vista, California. The test period extended from July 24, 2002 to September 5, 2002. The source water was a blend of Colorado River and ...

  16. 纤维素/海藻酸钠共混膜的制备及力学性能%Preparation and mechanical properties of cellulose/sodium alginate blend membranes

    Institute of Scientific and Technical Information of China (English)

    李娜; 刘文洁; 罗虎

    2013-01-01

    Cellulose and sodium alginate were separately dissolved in the blend system of sodium hydroxide,urea and thiourea to prepare cellulose and cellulose/sodium alginate blend membranes.The optimal process conditions of cellulose membrane were decided by orthogonal experiment and single factor experiment.The preparation technology of cellulose/sodium alginate blend membrane was also studied.The results showed that the membrane prepared from 4.5% cellulose solution by mass fraction had the optimal tensile strength of 5.2 MPa while coagulating in 5% sulfuric acid solution at 25 ℃ for 15 min and plasticizing in 20% glycerin solution for 30 min; and the obtained cellulose/sodium alginate blend membrane had the optimal tensile strength of 3.50 MPa when the process conditions were optimized as followed:the blend solution containing 4.5% cellulose and 3% sodium alginate by mass fraction at the mass ratio of 100/5,soaking in 5% sulfuric acid solution and reacting for 15 min,coagulating in 10% calcium chloride solution for 10 min,and plasticizing in 15% glycerin solution for 15 min.%将纤维素和海藻酸钠分别溶于氢氧化钠/尿素/硫脲体系,制得纤维素膜和纤维素/海藻酸钠共混膜,通过正交实验和单因素实验法分析,确定制备纤维素膜的最佳工艺条件,在此基础上研究了纤维素/海藻酸钠共混膜的制备工艺.结果表明:质量分数为4.5%的纤维素溶液所制得的膜在25℃的5%的硫酸溶液中凝固15 min,20%的甘油溶液中塑化30 min,其膜的拉伸强度较佳为5.2 MPa;纤维素/海藻酸钠共混膜的较佳工艺:质量分数分别为4.5%的纤维素溶液和3%的海藻酸钠溶液按质量比100/5共混后先浸入5%硫酸溶液中反应15 min,再放入10%氯化钙溶液中凝固10 min,用15%甘油溶液塑化15 min后,共混膜的拉伸强度达到3.50 MPa.

  17. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  18. Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction.

    Science.gov (United States)

    Sedej, Ivana; Milczarek, Rebecca; Wang, Selina C; Sheng, Runqi; de Jesús Avena-Bustillos, Roberto; Dao, Lan; Takeoka, Gary

    2016-04-01

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also to extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW and compare the techniques in terms of the dried product quality and feasibility of the process. The OMWW from 2 (3-phase and 2-phase) California mills was subjected to a 2-step membrane filtration process using a novel vibratory system. The reverse osmosis retentate (RO-R) is a phenolic-rich coproduct stream, and the reverse osmosis permeate is a near-pure water stream that could be recycled into the milling process. Spray-, freeze-, and infrared-drying were applied to obtain solid material from the RO-R. Drying of the RO-R was made possible only with addition of 10% maltodextrin as a carrier. The total soluble phenolics in dried RO-R were in the range 0.15 to 0.58 mg gallic acid equivalents/g of dry weight for 2-phase RO-R, and 1.38 to 2.17 mg gallic acid equivalents/g of dry weight for the 3-phase RO-R. Spray-dried RO-R from 3-phase OMWW showed remarkable antioxidant activity. Protocatechuic acid, tyrosol, vanillic acid, and p-coumaric acid were quantified in all dried RO-R, whereas 3-hydroxytyrosol was found in 3-phase dried RO-R. This combination of separation and drying technologies helps to add value and shelf-stability to an olive oil by-product and increase environmental sustainability of its production.

  19. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja Salomon

    2012-01-01

    or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose......Most secondary plant cell walls contain irregular regions known as dislocations or slip planes. Under industrial biorefining conditions dislocations have recently been shown to play a key role during the initial phase of the enzymatic hydrolysis of cellulose in plant cell walls. In this review we...... are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...

  20. Inferring trial-to-trial excitatory and inhibitory synaptic inputs from membrane potential using Gaussian mixture Kalman filtering.

    Science.gov (United States)

    Lankarany, M; Zhu, W-P; Swamy, M N S; Toyoizumi, Taro

    2013-01-01

    Time-varying excitatory and inhibitory synaptic inputs govern activity of neurons and process information in the brain. The importance of trial-to-trial fluctuations of synaptic inputs has recently been investigated in neuroscience. Such fluctuations are ignored in the most conventional techniques because they are removed when trials are averaged during linear regression techniques. Here, we propose a novel recursive algorithm based on Gaussian mixture Kalman filtering (GMKF) for estimating time-varying excitatory and inhibitory synaptic inputs from single trials of noisy membrane potential in current clamp recordings. The KF is followed by an expectation maximization (EM) algorithm to infer the statistical parameters (time-varying mean and variance) of the synaptic inputs in a non-parametric manner. As our proposed algorithm is repeated recursively, the inferred parameters of the mixtures are used to initiate the next iteration. Unlike other recent algorithms, our algorithm does not assume an a priori distribution from which the synaptic inputs are generated. Instead, the algorithm recursively estimates such a distribution by fitting a Gaussian mixture model (GMM). The performance of the proposed algorithms is compared to a previously proposed PF-based algorithm (Paninski et al., 2012) with several illustrative examples, assuming that the distribution of synaptic input is unknown. If noise is small, the performance of our algorithms is similar to that of the previous one. However, if noise is large, they can significantly outperform the previous proposal. These promising results suggest that our algorithm is a robust and efficient technique for estimating time varying excitatory and inhibitory synaptic conductances from single trials of membrane potential recordings.

  1. Performance of hydrate cellulose membrane for zinc-silver battery after remodeling%锌银电池用水化纤维素膜改性后的性能

    Institute of Scientific and Technical Information of China (English)

    张红平; 郑艳丽; 赵力群

    2011-01-01

    讨论了在不同组成的反应液中,反应温度和时间对锌银电池用水化纤维素膜进行改性的影响.对面积电阻、耐电解液的腐蚀能力、吸碱率及保液能力等测试以及实验电池电性能分析,总结了水化纤维素膜的性能.当甲醛浓度为30%,温度为20℃、反应时间为10 min时,改性后水化纤维素膜的各项物理性能比改性前提高近5%,制备的8 Ah XYZ8型锌银电池的循环寿命增加9次,放电容量、放电电压分别提高约20%和8%.%The remolding of hydrate cellulose membrane for zino-silver battery in the solution with different composition, temperature and reaction time was discussed. The performance of hydrate cellulose membrane was summarized by the tests of area resistance, electrolyte corrosion resistance ability, alkali uptake and liquid preserving ability, the electrical performance analysis of experimental battery. When the formaldehyde content was 30% , the temperature was 20 ℃, the reaction time was 10 min, the physical properties of hydrate cellulose membrane after remolding increased nearly 5% than before remolding, the life of prepared 8 Ah XYZ8 zinc-silver battery increased 9 cycles, the discharge capacity and discharge voltage increased about 20% and 8%, respectively.

  2. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  3. Outline of Preparation and Fire- retardant Properties Detection of Nanocrystalline Cellulose Fire- retardant Membranes%纳米纤维素阻燃膜的制备及阻燃性检测概述

    Institute of Scientific and Technical Information of China (English)

    徐睿; 王海英; 孙睿; 雷舒

    2012-01-01

    Methods of fire -retardant properties evaluation, fire -retardant cellulose fibers preparation, and nano- crystalline cellulose preparation were introduced, respectively. The national standards of fire - retardant properties evalua- tion for fire - retardant protective clothing and forest fire - proof clothing were compared. National standards GB/T5454 - 1997, textiles - burning properties test oxygen index method, was used in forest fire - proof clothing. Preparation method and application prospects of nanocrystalline cellulose fire - retardant membranes were explored.%分别介绍了阻燃性能指标评价、阻燃纤维素纤维的制备、纳米纤维素的制备等方法,比较了阻燃防护服和森林防火服的阻燃性能指标评价国家标准,森林防火服的阻燃性能指标评价还另外采用了GB/T5454—1997纺织品燃烧性能试验氧指数法国家标准,探讨了纳米纤维素复合阻燃膜的制备方法及其应用前景。

  4. Adsorption of papain with Cibacron Blue F3GA carrying cellulose affinity membranes%木瓜蛋白酶在染料Cibacron Blue F3GA纤维素亲和膜上的吸附研究

    Institute of Scientific and Technical Information of China (English)

    张海涛; 聂华丽; 陈天翔; 苏赛男; 朱利民

    2009-01-01

    以纤维素滤纸膜为载体,染料Cibacron Blue F3GA为配基,制备了一种新型亲和膜色谱介质.采用扫描电镜、红外光谱、元素分析等方法对亲和膜介质进行鉴定与表征,该膜具有良好的色谱性能.亲和膜对F3GA的键合质量摩尔浓度达93.7 μmol/g.研究了木瓜蛋白酶在亲和膜上的吸附行为,实验表明:在30℃下、酶质量浓度为2 mg/mL、pH=8.0时,吸附质量比可达57.9 mg/g,改变pH值及离子强度等条件对吸附质量比有明显的影响.在最适条件下吸附遵循Langmuir型吸附.可以初步推断,纤维素滤纸膜可以制成性能优良的亲和膜色谱介质,成本低廉,适合工业化分离纯化生物大分子.%Cibacron Blue F3GA (CB F3GA) as a hgand was immobilized onto cellulose membranes to produce a novel affinity membrane. The physical properties and its apphcations of affinity membrane chromatography were examined by means of scanning electron microscope (SEM), infra-red spectrum and elementary analysis, etc. The bonding content of CB F3GA attached on membranes was 93.7 μmol/g. The adsorption behavior of papain on affinity membranes was studied. The result shows that higher papain adsorption capacity (up to 57.9 mg/g membrane) can be achieved under the condition of 2.0 mg/mL papain solution, 30℃, pH=8.0. Changing pH and ionic strength has obvious effects on the adsorption of papain. The adsorption of papain on affinity membranes can be described by the Langmuir isotherm. Therefore, it can prehminarily foresee that the cellulose membrane can become the low-cost but high-efficiency affinity membranes base for papain separation, which is applicable for commercial separating the biological macromolecular.

  5. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  6. Experimental Study of a New ePTFE Membrane Filter Media%一种新型ePTFE覆膜滤料的实验研究

    Institute of Scientific and Technical Information of China (English)

    余新明; 田矿; 石零; 米铁

    2014-01-01

    介绍了一种新开发的ePTFE覆膜滤料过滤阻力与分级除尘效率的实验测定结果。在过滤风速为0.5~2.5 m/s时,该覆膜滤料洁净滤料的阻力为27~171 Pa;在过滤风速为1.2 m/min,其对PM2.5颗粒的净化效率达98%以上。%Introduces the test results of filtering pressure drop and fractional filtering efficiency on a new kind of ePTFE membrane filter. Under the test wind speed is between 0. 5~2. 5 m/s,the pres-sure drop of this clean membrane filter is about 27~171 Pa;Under the test wind speed is at 1.2 m/min,its collection efficiency is more than 98%for PM2. 5.

  7. Screening of the effective cellulose-degradable strain and its application in the production of cellulose bioethanol

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Strains from the cellulose-containing environment were collected. Primary screening(by filter-paper Hutchison solid culture medium and sodium carboxymethylcellulose solid culture medium) and reelection(by filter-paper inorganic salt culture medium and sodium carboxymethylcellulose Congo red culture medium) indicated that five strains obtained were best suited for high performance cellulose degradation. Determination of sodium carboxymethylcellulose activity(CMCA) and filter paper activity(FPA) was accomplis...

  8. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    OpenAIRE

    Fenglin Huang; Wenting Liu; Peiying Li; Jinxia Ning; Qufu Wei

    2016-01-01

    A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm) was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–...

  9. Early observation of bacterial cellulose membrane for repair of dural defects in rabbits%细菌纤维素膜修复兔硬脑膜缺损的早期观察

    Institute of Scientific and Technical Information of China (English)

    徐晨; 陈世文; 田恒力; 王敢; 郭衍; 袁陆涛

    2013-01-01

    目的 应用细菌纤维素膜修补兔硬脑膜缺损,观察植入后早期局部组织学改变以及炎症因子表达情况.方法 24只新西兰兔随机分为A、B两组,每组12只.所有动物经切除双侧硬脑膜制备2 cm×1 cm的缺损.A组动物的右侧硬脑膜缺损采用细菌纤维素膜修补,左侧硬脑膜缺损则不予修补,于术后第30、90、180天采集标本,行组织学检查.B组动物的右侧硬脑膜缺损采用细菌纤维素膜修补,左侧硬脑膜缺损以人工硬膜修补,于术后第7、14、21天采集修补部位组织,采用RT-PCR技术检测促炎症细胞因子白介素1β(IL-1β)、白介素6(IL-6)和肿瘤坏死因子α(TNF-α) mRNA的表达.结果 所有实验动物均存活,切口无感染.在A组的细菌纤维素膜修补侧,细菌纤维素膜均匀覆盖脑表面,与脑组织无粘连;外侧面纤维结缔组织增生,内侧面成纤维细胞排列均匀,新生血管形成,炎症反应轻微;在A组的未修补侧,大脑与皮下组织直接粘连.RT-PCR检测结果显示:术后各时间点,B组细菌纤维素膜修补侧IL-1 β和IL-6 mRNA表达水平均显著低于人工硬膜修补侧,两侧TNF-α mRNA表达水平相近.结论 采用细菌纤维素膜修复硬脑膜缺损,不易与脑组织形成粘连且早期炎症反应轻微.细菌纤维素膜可能成为理想的硬脑膜替代材料.%Objective To patch up the dural defects of rabbits with bacteria cellulose membrane, and observe the early pathological change and inflammatory response after implantation. Methods Twenty-four New Zealand rabbits were randomly divided into group A and group B, with 12 rabbits in each group. The bilateral dura matter of rabbits were removed, and defects of 2 cm x 1 cm were prepared. In group A, the right dural defects were repaired with bacteria cellulose membrane, no repair was made on the left dural defects, and samples were taken 30 d, 90 d and 180 d after operation for pathological examinations. In group B, the

  10. 纤维素-丝素复合膜的制备与表征%Preparation and characterization of cellulose/silk composite membrane

    Institute of Scientific and Technical Information of China (English)

    李娟; 何建新; 余燕平

    2011-01-01

    The cellulose-silk fibroin composite film is prepared by mixing cellulose solution dissolved primary wood pulp in solution containing of NaOH/urea/thiourea/water and silk fibroin solution. The composite film is characterized by scanning electron microscope (SEM) , Fourier transform infrared spectrometer (FT-IR) , X-ray diffraction (XRD). SEM shows the surface of the composite is uniform and rough. The as-prepared composite film may be a potential biomedical material. The results of IR and XRD show that composite film is composed of cellulose and silk fibroin molecules and exists an interaction including hydrogen bond between the molecular of cellulose and silk fibroin.%通过NaOH/尿素/硫脲/水新型溶剂溶解原生木浆纤维素得到纤维素溶液,并与丝素溶液混合制备纤维素-丝素复合膜.利用扫描电镜、红外光谱、X-射线衍射对复合材料的结构进行表征.SEM结果表明复合材料表面粗糙,比表面积较大,可以作为潜在的生物医用材料.IR和X-衍射结果表明再生纤维素与丝素分子之间存在着强烈的氢键作用,且二者相容性较好.

  11. Design and fabrication of ultrathin silicon-nitride membranes for use in UV-visible airgap-based MEMS optical filters

    Science.gov (United States)

    Ghaderi, Mohammadamir; Wolffenbuttel, Reinoud F.

    2016-10-01

    MEMS-based airgap optical filters are composed of quarter-wave thick high-index dielectric membranes that are separated by airgaps. The main challenge in the fabrication of these filters is the intertwined optical and mechanical requirements. The thickness of the layers decreases with design wavelength, which makes the optical performance in the UV more susceptible to fabrication tolerances, such as thickness and composition of the deposited layers, while the ability to sustain a certain level of residual stress by the structural strength becomes more critical. Silicon-nitride has a comparatively high Young's modulus and good optical properties, which makes it a suitable candidate as the membrane material. However, both the mechanical and optical properties in a silicon-nitride film strongly depend on the specifics of the deposition process. A design trade-off is required between the mechanical strength and the index of refraction, by tuning the silicon content in the silicon-nitride film. However, also the benefit of a high index of refraction in a silicon-rich film should be weighed against the increased UV optical absorption. This work presents the design, fabrication, and preliminary characterization of one and three quarter-wave thick silicon-nitride membranes with a one-quarter airgap and designed to give a spectral reflectance at 400 nm. The PECVD silicon-nitride layers were initially characterized, and the data was used for the optical and mechanical design of the airgap filters. A CMOS compatible process based on polysilicon sacrificial layers was used for the fabrication of the membranes. Optical characterization results are presented.

  12. Gold nanoparticles and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of mercury(ii).

    Science.gov (United States)

    Chen, Gaosong; Hai, Jun; Wang, Hao; Liu, Weisheng; Chen, Fengjuan; Wang, Baodui

    2017-03-02

    Nowadays, the development of a multifunction system for the simultaneous multiple signal amplification detection and fast removal of Hg(2+) remains a major challenge. Herein, we for the first time used gold nanoparticles (Au NPs) and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of Hg(2+). Such a system was based on the formation of gold amalgam and a gold amalgam-based reaction between rhodamine B (RhB) and NaBH4 with fluorescence and colorimetric sensing functions. When the gold amalgam catalyzes the reduction of RhB, the red color and orange fluorescence of RhB gradually changed to colorless by switching the amount of Hg(2+) deposited on 13 nm Au NPs. The detection limit of the fluorescence assay and colorimetric assay is 1.16 nM and 2.54 nM for Hg(2+), respectively. Interestingly, the color and fluorescence of RhB could be recovered when the above colorless reaction solution was exposed to air for about 2 hours. Taking advantage of the above optical phenomenon, a recyclable paper-based sensor has been developed by immobilizing the Au NPs and RhB dye on filter paper and has been successfully used for detection of Hg(2+) in real water samples. In addition, the filter membrane immobilized Au NPs could allow fast removal of mercury ions in Yellow river water and tap water with the removal efficiency close to 99%.

  13. Preliminary Study on New Theoretical Model of Membrane Filter%滤膜过滤器新的理论模型初步探讨

    Institute of Scientific and Technical Information of China (English)

    张桂芳; 汤广发; 李念平; 任承钦; 黄宇

    2001-01-01

    On the basis of analyzing the filtration mechanisms of membrane filter,the filtering features of each capillary in membra ne are changeable with the time and spatial positions during operation.And filte ring features of filter should be estimated comprehensively from the viewpoint o f system and macro-statistics.Therefore,the character indicators of membrane fi lter can be studied more accurately by the fluid dynamics of porous media.%通过对滤膜过滤器的过滤机理进行分析,认为过滤器 在使用期间,滤膜中每个毛细管的过滤性能随时间和空间位置的变化而变化,因而对过滤器 性能的评价还应从系统的、全面的、宏观统计的观点来综合反映,由此可根据多孔介质流体 动力学理论模型来准确地反映滤膜过滤器的性能变化。

  14. Screening of the effective cellulose-degradable strain and its application in the production of cellulose bioethanol

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Gao; Dai-di Fan; Pei Ma; Yan-e Luo; Xiao-xuan Ma; Chen-hui Zhu; Jun-feng Hui

    2009-01-01

    Strains from the cellulose-containing environment were collected. Primary screening(by filter-paper Hutchison solid culture medium and sodium carboxymethylcellulose solid culture medium) and reelection(by filter-paper inorganic salt culture medium and sodium carboxymethylcellulosc Congo red coltnre medium) indicated that five strains obtained were best suited for high performance cellulose degradation. Determination of sodium carboxymethylcellulose activity(CMCA) and filter paper activity(FPA) was accomplished for each of the five. The strongest of the five in CMCA and FPA was applied to the production of cellulose bioethanol by separate hydrolysis and fermentation(SHF) and simultaneous saccharification and fermentation(SSF) respectively.

  15. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Science.gov (United States)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  16. Investigation of the factors influencing the preparation process of cellulose triacetate forward osmosis membrane%三醋酸纤维素正渗透膜制备过程中影响因素的研究

    Institute of Scientific and Technical Information of China (English)

    刘蕾蕾; 王铎; 汪锰; 高从堦

    2011-01-01

    Cellulose triacetate forward osmosis membrane was prepared by phase inversion method. The polymer solution consisted of cellulose triacetate as the membrane material, 1, 4-dioxane and acetone as solvent, and lactic acid as additives. The effects of support materials, solvent evaporation time and the additive content on the membrane performance were investigated. 0. 1 mol/L NaCl was used as the feed solution and 4 mol/L glucose was used as the draw solution. The water flux was between 6 and 7 L/(m2 · h) and the rejection for NaCl was above 95%.%以三醋酸纤维素为膜材料,以1,4-二氧六环和丙酮为溶剂,乳酸为添加剂.采用相转化法制备三醋酸纤维素正渗透膜.研究了不同支撑材料以及膜制备过程中溶剂挥发时间和添加剂的含量对正渗透膜性能的影响.结果表明,在原料液为0.1 mol/L NaCl,汲取液为4 mol/L葡萄糖,原料液面向分离层,室温的测试条件下,采用180目(80 μm)的筛网为支撑体材料,挥发时间为180 s,乳酸含量为6.6%所制备的三醋酸纤维素正渗透膜的水通量为6~7 L/(m2·h),NaCl截留率在95%以上.

  17. Site-directed mutagenesis of bacterial cellulose synthase highlights sulfur–arene interaction as key to catalysis

    OpenAIRE

    Sun, Shi-jing; Horikawa, Yoshiki; Wada, Masahisa; SUGIYAMA, Junji; Imai, Tomoya

    2016-01-01

    Cellulose is one of the most abundant biological polymers on Earth, and is synthesized by the cellulose synthase complex in cell membranes. Although many cellulose synthase genes have been identified over the past 25 years, functional studies of cellulose synthase using recombinant proteins have rarely been conducted. In this study, we conducted a functional analysis of cellulose synthase with site-directed mutagenesis, by using recombinant cellulose synthase reconstituted in living Escherich...

  18. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  19. Photochemical modification of poly(ether sulfone) ultrafiltration membranes by UV-assisted graft polymerization for the prevention of biofouling

    Science.gov (United States)

    Pieracci, John Paul

    Membranes are widely used by the biotechnology industry in the separation and recovery of proteins from biological solutions. Fouling of membrane surfaces by irreversible protein adsorption during ultrafiltration causes loss of membrane permeability and can reduce membrane selectivity and lead to significant product loss through denaturation. In this work, low fouling poly(ether sulfone) (PES) ultrafiltration membranes were produced by ultraviolet (UV) assisted graft polymerization of hydrophilic vinyl monomers using a newly developed photochemical dip modification technique. This technique was developed to make the UV modification process more easily adaptable to continuous membrane manufacturing processes. A method was also developed to measure and track the degree of polymer grafting on the membrane surface using attenuated total reflection Fourier transform infrared spectroscopy (FTIR/ATR). Grafting the hydrophilic monomer N-vinyl-2-pyrrolidinone (NVP) onto the membrane surface increased surface wettability and produced membranes with the high wettability of regenerated cellulose membranes. The enhanced surface wettability significantly decreased irreversible adsorptive fouling during the filtration of the protein bovine serum albumin (BSA). In order to maintain the rejection of BSA after modification, PES chain scission was tightly controlled by regulating the UV wavelength range and the light intensity used. The UV reactor system was operated with 300 nm UV lamps and a benzene filter used to remove high energy wavelengths below 275 nm that were determined to cause severe loss of BSA rejection due to pore enlargement from extensive chain scission. Dip modification caused membrane permeability to decrease due to the grafted chains blocking the membrane pores. The use of a chain transfer agent during modification followed by ethanol cleaning increased modified membrane permeability, but BSA rejection was severely decreased. The resultant membranes produced by

  20. Method of forming an electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  1. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    Science.gov (United States)

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling.

  2. Detection of Listeria monocytogenes by direct colony hybridization on hydrophobic grid-membrane filters by using a chromogen-labeled DNA probe.

    Science.gov (United States)

    Peterkin, P I; Idziak, E S; Sharpe, A N

    1991-02-01

    A DNA probe specific for Listeria monocytogenes was isolated from a beta-hemolytic recombinant clone of an L. monocytogenes gene bank. It was labeled with horseradish peroxidase and used in a direct colony hybridization method on hydrophobic grid-membrane filters for the detection of the organism. Following color development of the chromogen, a commercial counter (HGMF Interpreter) was able to detect and count the organisms electronically. The method gave a positive reaction with 70 L. monocytogenes strains, while showing a negative reaction with 10 strains of other Listeria spp. and with 20 organisms of other genera.

  3. Advances in Functional Osmosis Membranes Based on Cellulose Acetate and Their Derivatives%醋酸纤维素类渗透功能膜的研究进展∗

    Institute of Scientific and Technical Information of China (English)

    胡晓宇; 费鹏飞; 宋俊; 程博闻; 廖亮; 孟建强; 陈英波; 李梁梁

    2016-01-01

    随着膜法水处理技术的迅猛发展,对渗透功能膜制备及应用技术的要求日益提高。与常规渗透膜制备所采用的主流膜材料聚酰胺相比,醋酸纤维素(CA)及其衍生物由于兼具无可比拟的资源优势和独特的耐氧化性等优势而备受关注。围绕醋酸纤维素类渗透膜在纳滤、反渗透和正渗透等领域的应用,简要介绍了该类膜材料的制备方法和改性方法,回顾了其在海水淡化、油水分离、重金属脱除、手性分离等领域的应用进展,并在分析醋酸纤维素类渗透膜产品在应用领域的技术和性能优势的基础上,指出了醋酸纤维素类渗透膜进一步发展需要重点关注的研究方向。%With the development of seawater desalination technology,the requirements of the preparation and application technology of functional osmosis membranes have dramatically increased.Compared with polyamide which is the most common conventional membrane material used in osmosis membranes,cellulose acetate and its derivatives have the advantages of natural renewable and unique oxidation resistance and so on.In this review,the preparation and modification of cellulose acetate membranes which are used in nanofiltration,reverse osmosis and forward osmosis have been introduced.And the progresses in their applications in the fields of seawater desalination,oil water separa-tion,heavy metal ions removal and chiral separation have been summarized.Based on the analysis of merits and draw-backs,the research direction for the development of osmosis membrane is pointed out.

  4. Comparison and Optimization of Cellulose Carbon Source for Denitrification Filter%固体纤维素类废物作为反硝化碳源滤料的比选

    Institute of Scientific and Technical Information of China (English)

    李斌; 郝瑞霞

    2013-01-01

    以棉花、稻草、稻壳、玉米芯这4种农业废弃物作为反硝化碳源和微生物载体,通过对静态释碳数量和质量、长期脱氮效果以及生物附着性能等方面的比较,旨在优选出适于再生水反硝化深度脱氮生物滤池的固体纤维素碳源滤料.结果表明,玉米芯初期可溶性有机物较多,易于微生物的附着和繁殖生长;且比其它3种碳源表现出更好的长期反硝化效果,2.5g玉米芯在46 d累计去除了284.544 g的硝氮;棉花、稻草前期处理效果较好,但长期反硝化能力不如玉米芯;稻壳的处理效果最差,几乎不能被微生物有效利用.因此,玉米芯更适用于再生水反硝化深度脱氮滤池的碳源滤料.%The quantity and quality of carbon released by four agriculture wastes included of cotton, rice hull, rice straw and corncob was analyzed for selecting a suitable cellulose filter medium as well as the carbon source in advanced denitrification of the reclaimed water. And the long-term denitrification efficiency and bio-attachment capability of four agriculture wastes was contrastively estimated by running denitrification experiments in laboratory scale. The results showed that DOM amount released by corncob was the highest at the beginning, and the DOM quality was also beneficial for microorganism growth and biofilm formation. The running denitrification experiments showed that corncob had better denitrification efficiency than that of other three carbon sources, and 284. 544 g nitrate was removed by 2. 5 g corncob within 46 days. Cotton and rice hull had better denitrification efficiency than corncob in the early time, but the long-term denitrification efficiency was lower than that of corncob. Rice straw can hardly be used by microorganism so as to have the lowest denitrification. Therefore, corncob was more suitable to be the denitrification biofilter filter medium and the carbon source in advanced denitrification of the reclaimed water.

  5. Effect of combination dope composition and evaporation time on the separation performance of cellulose acetate membrane for demak brackish water treatment

    Directory of Open Access Journals (Sweden)

    Kusworo Tutuk Djoko

    2017-01-01

    Full Text Available The coastal areas in Indonesia often have a problem of clean water lack, because the water is classified as brackish water. Therefore, this research investigated the fabrication of CA membranes using phase inversion method for brackish water treatment. Investigation was conducted to study the effect of combination dope composition and evaporation time on separation performance and morphology of the memrbane. Membrane was fabricated by dry-wet phase inversion technique with variation of polymer concentration 17, 18 and 20 wt% in the total solid and evaporation time of 5, 10 and 15 seconds, respectively. The asymmetric membranes were characterized by permeability test through rejection and flux measurements using brackish water as feed. The experimental results from SEM images analysis showed that all the membranes have a thin small porous layer and thicker sub-structure of larger porous layer formed asymmetric membrane. Moreover, the greater polymer concentration is resulting smaller pore size and smaller membrane porosity. The longer evaporation time was also resulted in denser membrane active layer. The best membrane performance was observed at the composition of 20 wt% CA polymer, 1 wt % polyethylene glycol with the solvent evaporation time of 15 seconds.

  6. PREPARATION AND MECHANICAL PROPERTIES OF LAYERED BC NANO-CELLULOSE MEMBRANE/PVA COMPOSITE HYDROGELS%层状纳米纤维素膜/PVA复合水凝胶的制备与力学性能研究

    Institute of Scientific and Technical Information of China (English)

    谭珏; 郑裕东; 彭江; 吴健; 高爽; 田茹; 陈红谚

    2012-01-01

    采用叠层复合与物理相分离的方法制备了层状纳米细菌纤维素(BC)膜/聚乙烯醇( PVA)复合水凝胶.研究了聚乙烯醇的质量百分数、BC膜的复合层数以及制备条件对复合水凝胶力学性能的影响;通过扫描电镜( SEM)观察比较了复合水凝胶中BC膜层与PVA界面结合情况.结果表明,复合水凝胶的力学性能与PVA的质量百分数和BC膜含水量、BC膜的层数以及制备条件有关.PVA质量百分数较高,流动性变差,界面结合差,导致复合水凝胶力学性能下降.当PVA质量百分数为15%、BC膜的层数为2层时,在相同的温度和条件下制备的复合水凝胶界面黏结良好,弹性模量、抗拉强度为7.82、1.74 MPa.%Bacterial nano-cellulose ( BC ) membranes of high purity, ultrafine network architecture and excellent biocompatibility were used to reinforce the poly ( vinyl alcohol) ( PVA ) hydrogels, which were prepared by physical method of freezing and thawing. The mechanical properties of the BC/PVA composite hydrogels were investigated,the mass percent of PVA,the number of BC layers and some other conditions like pre-treatment method of BC membranes were considered in the preparation process. The mechanical properties of the BC/PVA composite hydrogels were tested by tensile testing machine, the fracture surface of the composite hydrogels and the bonding situation between the BC nano-cellulose membrane and the PVA hydrogel were characterized by the scanning electron microscopy (SEM).The results show that the BC/PVA composite hydrogels have excellent mechanical properties, the tensile strength of the composite hydrogel reaches to 1. 74 Mpa,and the modulus reaches to 7.82 Mpa,when the BC/PVA composite hydrogels are constituted by 15 wt% PVA and two layers of BC membranes. The SEM images show that the interface of the prepared composite hydrogels exhibits excellent bonding.

  7. Demonstration Bulletin. Membrane Microfiltration. E. I. DuPont de Nemours and Company, Inc. Oberlin Filter Company

    Science.gov (United States)

    The DuPont/Oberlin microfiltration technology is a physical separation process that removes solid particles from liquid wastes. The process can filter particles that are submicron or larger in diameter. Pretreatment, such as chemical additions, will be required if dissolved con...

  8. Characterization of cellulose extracted from oil palm empty fruit bunch

    Science.gov (United States)

    Sisak, Muhammad Asri Abdul; Daik, Rusli; Ramli, Suria

    2015-09-01

    Recently, cellulose has been studied by many researchers due to its promising properties such as biodegradability, biocompatibility, hydrophilicity and robustness. Due to that it is applied in many fields such as paper, film, drug delivery, membranes, etc. Cellulose can be extracted from various plants while oil palm empty fruit bunch (OPEFB) is the one of its sources. In this study, cellulose was extracted by chemical treatments which involved the use of formic acid and hydrogen peroxide to remove hemicellulose and lignin components. Maximum yield was 43.22%. Based on the FT-IR spectra, the peak of wax (1735 cm-1), hemicellulose (1375 cm-1) and lignin (1248 cm-1 and 1037 cm-1) were not observed in extracted cellulose. TGA analysis showed that the extracted cellulose starts to thermally degrade at 340 °C. The SEM analysis suggested that the cellulose extracted from OPEFB was not much different from commercial cellulose.

  9. Preparation and properties of polyvinyl alcohol (PVA) composites membranes based on bacterial cellulose (BC)%细菌纤维素基聚乙烯醇(BC/PVA)复合膜的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    张洪玉; 杨亮; 陆大年

    2012-01-01

    以细菌纤维素为增强体,聚乙烯醇为基体,甲醛为交联剂,在过饱和盐溶液中利用湿化学法制备BC/PVA复合膜.通过对复合膜溶胀性能、红外光谱分析、扫描电镜、热性能以及力学性能的测试分析,研究化学交联对复合膜性能的影响.结果表明:使用甲醛对复合膜进行交联处理后,在BC/PVA复合膜内形成了化学键结合,从而降低了复合膜的溶胀性能,增强了复合膜的力学性能以及热稳定性能.%Bacterial cellulose (BO/polyvinyl alcohol (PVA) composites membrane was prepared using BC as the reinforcement and PVA as the matrix materials in saturated salt solution with formaldehyde as cross-linking agent by wet chemical method. The effect of chemical cross-linking on the properties of composite membrane was investigated through the analysis of swelling property of composite membrane, infrared spectroscopic (IR), scanning electron microscope (SEM), thermal and mechanical properties tests. The results showed that the use of formaldehyde formed chemical bonds between the composite membranes, which led to the reduction of swelling property and the enhancement of the mechanical properties and thermal stability.

  10. Preparation and properties of ultrasonic Wave crosslinked chitosan-cellulose blend membrane%超声波交联壳聚糖-纤维素共混膜的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    李兴扬; 林刘送; 冯丹丹; 刘园园

    2014-01-01

    在超声波辐射条件下,采用壳聚糖( CTS)和二乙胺基乙基纤维素( DEC)为原料,在甲醛的交联作用下制备共混膜。考察了m( DEC):m( CTS)共混比、甲醛用量、交联时间和超声波辐射功率对膜性能的影响。结果表明,在共混比1:2,甲醛2 mL,交联时间3 min和超声波功率400 W条件下,得到的共混膜拉伸弹性膜量最大在共混比为1:2,甲醛1 mL,超声波交联时间3 min 和超声波功率360 W时,共混膜的断裂伸长率最大。%Under ultrasonic wave radiation condition,chitosan and diethylamino ethyl cellulose are used for the basic raw materials. The blend membrane was made by blending and crosslinking between chitosan molecules and formaldehyde crosslinker. Effect of m( DEC ): m( CTS ) blending ratio,volume of the crosslinker,reaction time and power of the ultrasonic on membrane properties were investigated. The result showed that the blend membrane which was made at the condition of blending ratio 1 :2 ,crosslinking a-gent 2 mL,reaction time 3 min,ultrasonic power 400 W,the combination has the biggest tensile modulus of blending ratio 1 :2,crosslinking agent 1 mL,reaction time 3 min and ultrasonic power 360 W,and the blend membrane has the biggest breaking elongation.

  11. Preparação de membranas de acetato de celulose organomodificadas para adsorção dos íons Cu(II, Cd(II, Mn(II e Ni(II Preparation of the orgamomodified cellulose acetate membranes for adsorption of the ions Cu(II, Cd(II, Mn(II AND Ni(II

    Directory of Open Access Journals (Sweden)

    Danielle Goveia

    2010-01-01

    Full Text Available Cellulose acetate polymeric membranes had been prepared by a procedure of two steps, combining the method of phase inversion and the technique of hydrolysis-deposition. The first step was the preparation of the membrane, and together was organomodified with tetraethylortosilicate and 3-aminopropyltrietoxysilane. Parameters that exert influence in the complexation of the metallic ion, as pH, time of complexation, metal concentration, had been studied in laboratory using tests of metal removal. The membranes had presented resistance mechanics and reactivity to cations, being able to be an alternative for the removal, daily pay-concentration or in the study of the lability of metals complexed.

  12. Preparation and properties of electromagnetic functional composite membrane based on bacterial cellulose%细菌纤维素基电磁功能复合膜的制备与性能研究∗

    Institute of Scientific and Technical Information of China (English)

    韩谨潞; 李琪琪; 汤廉; 陈仕艳; 王华平

    2015-01-01

    以细菌纤维素(BC)基体材料,通过共沉淀原位复合法制备纳米钴铁氧体(CoFe2 O4)/细菌纤维素磁性复合膜;并在此基础上,通过原位化学氧化聚合法,制备了聚吡咯/钴铁氧体/细菌纤维素(PPy/CoFe2 O4/BC)复合膜,对其结构性能及应用进行研究。结果表明,PPy/CoFe2 O4/BC复合膜仍然保持了 BC的三维网状结构。当吡咯单体浓度为0.07 mol/L时,复合膜由连续的核壳结构构成,电导率稳定在0.4 S/cm 左右,其电磁屏蔽效能在25 dB左右,是一种良好的民用或商用电磁屏蔽材料。%CoFe2 O4/BC magnetic composite membranes based on bacterial cellulose (BC)were prepared through coprecipitation and in situ composition.Then,the flexible PPy/CoFe2 O4/BC functional membranes with elec-tromagnetivity were synthesized successfully through in situ chemical synthesis and the structure,properties and applications were investigated.The results revealed that the PPy/CoFe2 O4/BC membranes remained the ul-trafine network architecture of BC template.The membranes demonstrated a continue core-shell structure when the concentration of pyrrole was 0.07 mol/L.Moreover,the conductivity of composite membranes were about 0.4 S/cm and the PPy/CoFe2 O4/BC composite membranes revealed a good electromagnetic shielding efficiency with the value of SE 25 dB,which indicate a good electromagnetic interference shielding material in daily life.

  13. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    Science.gov (United States)

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  14. Tea bag filter paper as a novel protective membrane for micro-solid phase extraction of butachlor in aqueous samples.

    Science.gov (United States)

    Pelden, Tshering; Thammaknet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-01-01

    An innovative, cost-effective, simple, and environmental friendly tea bag filter paper protected micro-solid phase extraction (μ-SPE) technique was developed for the first time with the aim to miniaturize and minimize the use of organic solvents for the extraction and determination of butachlor in aqueous samples. The μ-SPE device was produced by packing 3.0 mg of an easily synthesized new sorbent, hydroxyl-functionalized polypyrrole (OH-PPY), inside a small tea bag filter paper sachet (1.0 cm × 0.5 cm) that served as a protective envelope. Both the extraction and desorption procedures were facilitated by sonication. Due to the high porosity and the fast water absorption of the tea bag filter paper, the analyte could easily diffuse through and enhance the interaction with the sorbent. Under the optimized conditions for the GC-ECD and the μ-SPE, the limit of detection (S/N ≥ 3) was 2.0 μg L(-1) while the limit of quantitation (S/N ≥ 10) was 10.0 μg L(-1). The recoveries of the butachlor spiked at 0.050, 0.10, and 0.50 μg mL(-1) ranged from 77.9 ± 3.0 to 112.5 ± 2.9%. The proposed method was successfully applied for the determination of butachlor in water samples from paddy cultivation sites. The levels found were from non-detectable to 24.71 ± 0.37 μg L(-1).

  15. Membrane filter method based on FC-5-bromo-4-chloro-3-indolyl-beta-D-glucuronide medium facilitates enumeration of Escherichia coli in foods and poultry carcass rinses.

    Science.gov (United States)

    Sharpe, A N; Parrington, L J

    1998-03-01

    Three enumeration methods for Escherichia coli in foods, the Health Protection Branch most-probable-number (MPN) method MFHPB-19, a hydrophobic grid membrane filter method MFHPB-26 (HGMF-indole), and a hydrophobic grid membrane filter method utilizing 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide in a (modified) mFC agar (HGMF-FC-BCIG) were compared in 80 food samples that included naturally and artificially contaminated raw vegetables, mung bean and alfalfa sprouts, raw meats, and chicken carcass rinses. The number of samples confirmed as positive for E. coli were 44, 36, and 42 for the MPN, HGMF-indole, and HGMF-BCIG methods, respectively. By the MPN method, E. coli was detected in 3 samples at levels below the limits of detection of the HGMFs; but the MPN method was very time-consuming. With the HGMF-indole procedure E. coli was missed in 4 artificially contaminated samples. With the HGMF-FC-BCIG method E. coli was enumerated in 1 sample of bean sprouts missed by both the MPN and HGMF-indole procedures. High levels of indole-positive Klebsiella spp. in bean sprouts interfered with the HGMF-indole method, but the blue colonies of E. coli were easily observed in the HGMF-FC-BCIG method. Specificity of the HGMF-FC-BCIG method is high enough that routine confirmation should be unnecessary; however, confirmation of presumptive E. coli is easier since no lethal indole-staining step is involved. It appears to be a very simple method for quantifying E. coli in foods or carcass rinses.

  16. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lihua [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053 (China); Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wang, Xiong; Huselstein, Celine [Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS – Université de Lorraine, Biopôle, 54500 Vandoeuvre-lès-Nancy (France); Chen, Yun, E-mail: yunchen@whu.edu.cn [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  17. An assembled poly-4-vinyl pyridine and cellulose triacetate membrane and Bi2S3 electrode for photoelectrochemical diffusion of metallic ions.

    Science.gov (United States)

    Amara, Mourad; Arous, Omar; Smail, Fatima; Kerdjoudj, Hacène; Trari, Mohamed; Bouguelia, Aissa

    2009-09-30

    The transport phenomena across ion exchange membrane may be enhanced by applying various strengths inside or outside the system. The electrical current, generated by n-type semiconductor, is used to catalyse the separation of metal ions. The cation exchange membrane located between the two compartments allows both the separation and concentration of M(n+) (Ag(+), Cu(2+), Pb(2+) and Ni(2+)). The flows of M(n+) from the aqueous solution to-and inside the membrane are monitored by the determination of the fluxes and the potentials. In this study, the four cations are investigated alone or in quaternary systems. From photoelectrochemical measurement, the gap of Bi(2)S(3) is found to be indirect at 1.65 eV. The shape of photocurrent potential curve and the negative flat band potential (-1.02 V(SCE)) give evidence of n-type character. The conduction band (-1.25 V(SCE)) yields thermodynamically M(2+) photoreduction and catalyzes the diffusion process. The photoelectrode Bi(2)S(3) makes the flux twofold greater than that observed in the dark. In all cases, the potential of the electrode M(2+)/M in the feed compartment increases until a maximal value, reached at approximately 100 min above which it undergoes a diminution. The membrane is more selective to Cu(2+) and this selectivity decreases in the quaternary system.

  18. Evaluation of a field appropriate membrane filtration method for the detection of Vibrio cholerae for the measurement of biosand filter performance in the Artibonite Valley, Haiti.

    Science.gov (United States)

    Thomson, Ashley A; Gunsch, Claudia K

    2015-08-01

    Biosand filters in the Artibonite Valley of Haiti, the epicenter of the cholera epidemic that began in October 2010, were tested for total coliform and Vibrio cholerae removal efficiencies. While coliform are often used as an indicator organism for pathogenic bacteria, a correlation has never been established linking the concentration of coliform and V. cholerae, the causative agent for cholera. Hence, a method for field enumeration of V. cholerae was developed and tested. To this end, a plate count test utilizing membrane filtration technique was developed to measure viable V. cholerae cell concentration in the field. Method accuracy was confirmed by comparing plate count concentrations to microscopic counts. Additionally, biosand filters were sampled and removal efficiencies of V. cholerae and coliform bacteria compared. The correlation between removal efficiency and time in operation, biofilm ("schmutzdecke") composition, and idle time was also investigated. The plate count method for V. cholerae was found to accurately reflect microscope counts and was shown to be effective in the field. Overall, coliform concentration was not an appropriate indicator of V. cholerae concentration. In 90% of the influent samples from the study, coliform underestimated V. cholerae concentration (n = 26). Furthermore, coliform removal efficiency was higher than for V. cholerae hence providing a conservative measurement. Finally, time in operation and idle time were found to be important parameters controlling performance. Overall, this method shows promise for field applications and should be expanded to additional studies to confirm its efficacy to test for V. cholerae in various source waters.

  19. Experimental lamellar keratoplasty in rabbits using microfibrilar cellulose membrane: clinical, morphological and immunohistochemical findings Ceratoplastia lamelar experimental em coelhos usando membrana microfibrilar de celulose: achados clínicos, morfológicos e imunoistoquímicos

    Directory of Open Access Journals (Sweden)

    Luciana Riacciardi Macedo

    2010-02-01

    Full Text Available The clinical, histopathological and immunohistochemical features of the cornea were investigated in adult male New Zealand rabbits submitted to lamellar keratoplasty with microfibrillar cellulose membrane. Thirty animals were divided into five groups (n=6 and evaluated up to 60 days after surgery. Clinical examination revealed moderate manifestations of edema, blepharospasm and photophobia on the second day, which became mild or disappeared after the seventh day. This period was characterized clinically by repair of the corneal defect. Histopathological analysis showed the presence of a thin layer of squamous cells covering the damaged area as early as 7th day, accompanied by a mild infiltrate of polymorphonuclear cells. Blood vessels were observed in the epithelium after the 15th day, which had regressed by day 48. Ki67 antibody labeling showed an increase of proliferating cells in the epithelium by the 15th day and in the stroma by day 30. Remodeling and epithelial adhesion were observed during this period. Microfibrillar cellulose membrane (Bionext® used for lamellar keratoplasty was found to yield good results considering the good integration of the implant.Avaliaram-se aspectos clínicos, histopatógicos e imunoistoquímicos da córnes de coelhos da raça Nova Zelândia adultos e machos em ceratoplastias lamelares com membrana de celulose microfibrilar. Trinta animais distribuídos em cinco grupos (n=6 foram estudados por até 60 dias de pós-operatório. A avaliação clínica revelou manifestações moderadas de edema, blefaroespasmo e fotofobia ao segundo dia, evoluindo para formas discretas ou ausentes a partir do sétimo dia, período em que se observou, clinicamente, reparo do defeito corneal. A histopatologia revelou uma fina camada de células escamosas, recobrindo a área lesada já aos sete dias, com discreto infiltrado de células polimorfonucleares. Observaram-se vasos no epitélio a partir do 15o dia, com regressão ao 48o dia

  20. A rapid and improved method for the detection of Vibrio parahaemolyticus and Vibrio vulnificus strains grown on hydrophobic grid membrane filters.

    Science.gov (United States)

    Banerjee, S K; Pandian, S; Todd, E C; Farber, J M

    2002-06-01

    DNA probe-based detection methods were developed and characterized as an alternative to time-consuming and less specific conventional protocols. Digoxigenin-labeled probes were prepared by polymerase chain reaction amplification of the targeted sequences in the specific amplicons generated from genomic DNA. Specific probes with high yields were generated for the detection of the tlh gene of Vibrio parahaemolyticus and the cth gene of V. vulnificus. Colony (Southern) hybridization analyses were carried out using hydrophobic grid membrane filters (HGMFs) to allow biotype-specific differentiation of the two species. Eight strains of V. vulnificus and five strains of V. parahaemolyticus, including one standard (ATCC) strain of each biotype, were examined. Colony lysis, hybridization, and nonradioactive detection parameters were optimized for identification of the target biotypes arranged on the same HGMF and also on a conventional nylon membrane, thereby confirming the specificity of the probes and the comparative usefulness of the HGMFs. The experimental procedure presented here can be completed in 1 day. The protocol was designed specifically to identify the target Vibrio spp. and could potentially be used for the enumeration and differentiation of V. parahaemolyticus and V. vulnificus in foods.

  1. Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Ground-Water Quality and Remediation Progress at DoD Sites

    Science.gov (United States)

    2010-04-01

    PAH polycyclic aromatic hydrocarbons PCB polychlorinated biphenyls PDB polyethylene diffusion bag PVC polyvinyl chloride QA/QC quality...deployments of 4 weeks or less if groundwater temperatures are 15°C or greater due to the possibility of biodegradation of the membrane over this...2 weeks, the limitations of biodegradation and water volume loss are minimized. RCDM samplers do not equilibrate effectively with mercury, silver

  2. An assembled poly-4-vinyl pyridine and cellulose triacetate membrane and Bi{sub 2}S{sub 3} electrode for photoelectrochemical diffusion of metallic ions

    Energy Technology Data Exchange (ETDEWEB)

    Amara, Mourad [Laboratory of Hydrometallurgy and Molecular Inorganic Chemistry Faculty of Chemistry, USTHB, BP 32, El Alia, 16111, Algiers (Algeria); Arous, Omar [Laboratory of Hydrometallurgy and Molecular Inorganic Chemistry Faculty of Chemistry, USTHB, BP 32, El Alia, 16111, Algiers (Algeria); Centre of Research in Physical and Chemical Analysis CRAPC, PO BOX 248 Algiers RP 16004, Algiers (Algeria); Smail, Fatima; Kerdjoudj, Hacene [Laboratory of Hydrometallurgy and Molecular Inorganic Chemistry Faculty of Chemistry, USTHB, BP 32, El Alia, 16111, Algiers (Algeria); Trari, Mohamed [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, El Alia, 16111, Algiers (Algeria); Bouguelia, Aissa, E-mail: labosver@gmail.com [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, El Alia, 16111, Algiers (Algeria)

    2009-09-30

    The transport phenomena across ion exchange membrane may be enhanced by applying various strengths inside or outside the system. The electrical current, generated by n-type semiconductor, is used to catalyse the separation of metal ions. The cation exchange membrane located between the two compartments allows both the separation and concentration of M{sup n+} (Ag{sup +}, Cu{sup 2+}, Pb{sup 2+} and Ni{sup 2+}). The flows of M{sup n+} from the aqueous solution to-and inside the membrane are monitored by the determination of the fluxes and the potentials. In this study, the four cations are investigated alone or in quaternary systems. From photoelectrochemical measurement, the gap of Bi{sub 2}S{sub 3} is found to be indirect at 1.65 eV. The shape of photocurrent potential curve and the negative flat band potential (-1.02 V{sub SCE}) give evidence of n-type character. The conduction band (-1.25 V{sub SCE}) yields thermodynamically M{sup 2+} photoreduction and catalyzes the diffusion process. The photoelectrode Bi{sub 2}S{sub 3} makes the flux twofold greater than that observed in the dark. In all cases, the potential of the electrode M{sup 2+}/M in the feed compartment increases until a maximal value, reached at {approx}100 min above which it undergoes a diminution. The membrane is more selective to Cu{sup 2+} and this selectivity decreases in the quaternary system.

  3. Demonstration and Validation of a Regenerated-Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Ground Water Quality and Remediation Progress at DoD Sites

    Science.gov (United States)

    2007-01-01

    higher concentrations shallower in the well, whereas, a site with DNAPL chlorinated solvent contamination would be expected to have higher...USEPA 8260b list (including MTBE) and 3 to 7 days for most cations and trace elements. Mercury , silver, and tin were the only trace elements that did...or more. Trace elements (greater than 28 days) Mercury Silver Tin 16 3.7 Biodegradation of Dialysis Membrane Several previous studies of

  4. Effects of membrane-filtered soy hull pectin and pre-emulsified fiber/oil on chemical and technological properties of low fat and low salt meat emulsions.

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Yong Jae; Kim, Yuan H Brad

    2016-06-01

    The objectives of this study were to determine efficacy of a membrane filtration in soy hull pectin purification and evaluate combined effects of soy hull pectin and pre-emulsified fiber/oil (PE) on chemical composition and technological properties of low fat and low salt meat emulsions. Soy hull pectin was purified through two different methods (alcohol-washed (ASP) and membrane-filtered (MSP)). Insoluble soy hull residues after pectin extraction were incorporated with sunflower oil and water for the PE preparation. Meat emulsion was formulated with 58 % pork, 20 % ice, 20 % pork backfat, and 2 % NaCl as control. A total of six low fat and low salt meat emulsions (1 % NaCl and 10 % backfat) was manufactured with 1 % pectin (with/without ASP or MSP) and 10 % PE (with/without). The pectin content of ASP and MSP was 0.84 and 0.64 g L-galacturonic acid/g dry sample, respectively. The inclusion of soy hull pectin caused similar results on chemical composition, color, cooking loss, and texture of the meat emulsions, regardless of the purification method. In addition, positive impacts of the combined treatments with soy hull pectin and PE compared to single treatments on cooking loss and texture of the meat emulsions were observed. Results suggest that membrane filtration could be an effective alternative method to purify pectin, instead of alcohol-washing, and both soluble pectin and insoluble fiber from soy hulls could be used as a functional non-meat ingredient to manufacture various low fat and low salt meat products.

  5. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    Science.gov (United States)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  6. 血清蛋白醋酸纤维薄膜电泳的影响因素分析%Discussion on Influence Factors of Serum Proteins Electrophoresis on Acetate Cellulose Membrane

    Institute of Scientific and Technical Information of China (English)

    程驰; 赵兴秀

    2012-01-01

    血清蛋白醋酸纤维薄膜电泳常因多种因素影响而出现区带分离不清晰、拖尾、区带歪斜、区带呈锯齿状或弯曲等现象。该文结合教学实践,对造成不理想电泳图谱常见影响因素进行分析,提出相应的解决方法,有助于改进实验教学效果。%Common problems such as unclear zone separation, trailing, askew zigzag or curved zones are often encountered in electrophoresis of serum proteins on cellulose acetate membrane due to various factors. Combined with the teaching practice, such influencing factors are analyzed in detail and corresponding measures are put forward. All of these will help to improve the experimental teaching effect.

  7. 覆膜滤简侧壁压力正峰值的测试与分析%Pressure Peak Test and Analysis of Membrane Cartridge Filter Side Wall

    Institute of Scientific and Technical Information of China (English)

    郑娟; 张明星; 周奇杰; 张一帜; 蔡广贝

    2011-01-01

    In order to research the effects of peak size of side wall at the time of pulse jet on cleaning performance of normal polyester cartridge. The polytetrafluoroethene (PTFE) microporous membrane filter tube and self-made pulse injection experiment platform was used to tested the pressure peak size of cartridge filter side wall. Two kinds filter tubes with 47 mm in diameter and 1 000, 1 500 mm in length were tested and analyzed, and compared to the pressure peak size of ordinary polyester fiber filter tube. The results showed that the upper, middle and lower pressure peak sizes of PTFE microporous membrane filter tube were 5~10 times as that of ordinary polyester fiber filter tube. The main filtering mechanism was cartridge cleaning effect of PTFE microporous membrane filter tube whose filtration and ventilation were small was better than ordinary polyester fiber tube. Comparing two kinds of membrane filter tube with 1 000, 1 500 mm in length in the same condition, it was found that the trends of pressure values changes were different in the cartridge length direction.%为研究脉冲喷吹时滤筒侧壁压力正峰值大小对普通聚酯滤筒的清灰性能的影响,针对材质为聚四氟乙烯的覆膜滤筒,采用自制脉冲喷吹实验台,通过测试滤筒侧壁压力正峰值大小,对直径为147 mm、长度为1 000、1 500 mm的两种滤筒进行测试与分析,并与普通聚酯纤维滤筒的侧壁压力正峰值大小相比较.结果表明:聚四氟乙烯覆膜滤筒各测点的压力正峰值约是普通聚酯纤维滤筒的5~10倍,过滤机理主要为表现过滤,且透气性小的聚四氟乙烯覆膜滤筒清灰效果比普通聚酯纤维滤筒要好;在相同务件下,不同长度的滤筒在滤筒长度方向上,其压力值变化趋势不同.

  8. Electromotive force and impedance studies of cellulose acetate membranes: Evidence for two binding sites for divalent cations and for an alveolar structure of the skin layer

    DEFF Research Database (Denmark)

    Smith Sørensen, T.; Jensen, J.B.; Malmgren-Hansen, B.

    1991-01-01

    -degrees-C (in some few cases 35-degrees-C). The ions considered were the cations H+, Li+, Na+, K+, Mg++, Ca++, Ba++ and the anions Cl- and F- (Cl- was always present). The >>fixed>variable...... may be found by the latter method. Earlier results are recapitulated, especially the evidence for an alveolar structure found by interpreting the membrane capacitance increase with salt concentration - found by means of impedance measurements - in the light of a combined Trukhan-Bruggemann theory...... of days. The dissociation of Ba++ was followed at 25-degrees-C and at 35-degrees-C and at different external concentrations of NaCl. The slow relaxation seems connected with the Coulomb interaction between the COO- groups and the Ba++ ions, whereas the fast relaxation is probably reflecting dissociation...

  9. Evaluating survival of Escherichia coli O157:H7 in frozen and thawed apple cider: potential use of a hydrophobic grid membrane filter-SD-39 agar method.

    Science.gov (United States)

    Sage, J R; Ingham, S C

    1998-04-01

    To determine the susceptibility of Escherichia coli O157:H7 to freezing and thawing in apple cider, methods that recover injured cells are needed for accurate enumeration. This study compared the ISO-GRID hydrophobic grid membrane filter (HGMF) SD-39 agar method to two other methods: a reference most probable number (MPN) method, and plating on sorbitol MacConkey agar (SMA). To determine numbers of injured cells, SMA spread plating was also compared to Trypticase soy agar (TSA) spread plating. Two strains of E. coli O157:H7 QA 326 and ATCC 43895, were inoculated into presterilized apple cider (10 ml) which was then frozen (-20 degrees C for 24 h). Samples were thawed at 4 degrees C for 4 h, or at 23 degrees C for 1.5 h, or in a microwave oven (700 W for 10 s). Substantial cell death (0.69- to 6.33 log10 CFU/ml decreases) and injury (0.70- to 2.38-log10 CFU/ml decreases) occurred during freezing and thawing. The extent of death and injury varied with strain and thawing method. The TSA spread plating method recovered the most cells while the HGMF method always recovered more viable cells than the reference MPN method and also either recovered significantly more (P HGMF method. Significant numbers of cells injured by freezing and thawing at 4 degrees C in apple cider were enumerated in the cider was diluted 1:2 Trypticase soy broth immediately before plating. Two epifluorescent microscopic methods showed that injury was not associated with loss of cell membrane integrity.

  10. Comparative assessment of a biofilter, a biotrickling filter and a hollow fiber membrane bioreactor for odor treatment in wastewater treatment plants.

    Science.gov (United States)

    Lebrero, Raquel; Gondim, Ana Celina; Pérez, Rebeca; García-Encina, Pedro A; Muñoz, Raúl

    2014-02-01

    A low abatement efficiency for the hydrophobic fraction of odorous emissions and a high footprint are often pointed out as the major drawbacks of conventional biotechnologies for odor treatment. In this work, two conventional biotechnologies (a compost-based biofilter, BF, and a biotrickling filter, BTF), and a hollow-fiber membrane bioreactor (HF-MBR) were comparatively evaluated in terms of odor abatement potential and pressure drop (ΔP) at empty bed residence times (EBRTs) ranging from 4 to 84 s, during the treatment of methyl-mercaptan, toluene, alpha-pinene and hexane at trace level concentrations (0.75-4.9 mg m(-3)). High removal efficiencies (RE > 90% regardless of the air pollutant) were recorded in the BF at EBRTs ≥ 8 s, although the high ΔP across the packed bed limited its cost-effective operation to EBRTs > 19 s. A complete methyl-mercaptan, toluene and alpha-pinene removal was recorded in the BTF at EBRTs ≥ 4 s and ΔP lower than 33 mmH2O (∼611 Pa mbed(-1)), whereas slightly lower REs were observed for hexane (∼88%). The HF-MBR completely removed methyl-mercaptan and toluene at all EBRTs tested, but exhibited an unstable alpha-pinene removal performance as a result of biomass accumulation and a low hexane abatement efficiency. Thus, a periodical membrane-cleaning procedure was required to ensure a steady abatement performance. Finally, a high bacterial diversity was observed in the three bioreactors in spite of the low carbon source spectrum present in the air emission.

  11. Evaluating Models of Cellulose Degradation by Fibrobacter succinogenes S85.

    Directory of Open Access Journals (Sweden)

    Meagan C Burnet

    Full Text Available Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.

  12. Evaluating Models of Cellulose Degradation by Fibrobacter succinogenes S85.

    Science.gov (United States)

    Burnet, Meagan C; Dohnalkova, Alice C; Neumann, Anthony P; Lipton, Mary S; Smith, Richard D; Suen, Garret; Callister, Stephen J

    2015-01-01

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.

  13. Use of MRSD medium and the hydrophobic grid membrane filter technique to differentiate between pediococci and lactobacilli in fermented meat and starter cultures.

    Science.gov (United States)

    Holley, R A; Millard, G E

    1988-10-01

    Modifications of MRS medium were made by incorporation of 0.1 M L-arginine-HCl, 0.0025% phenol red, 100 IU polymyxin B sulfate, by deletion of meat extract, use of only 1.2% (w/v) glucose and increase of Mn2+ to 1000 ppm. In addition, adoption of the hydrophobic grid membrane filter (HGMF) system with 0.025% Fast Green FCF dye and adjustment of the agar medium to pH 5.5 gave MRSD (differential) medium. Incubation at 25 degrees C anaerobically under N2 or CO2 followed by a post-growth staining procedure involving use of 0.4% (w/v) bromocresol purple yielded conditions under which pediococci colonies were blue whereas homo- and heterofermentative lactobacilli were green in color. Under these conditions, 7 pediococci, 16 lactobacilli, and 18 commercial meat starter cultures were successfully analyzed by plate count to yield a differential assessment of the lactobacilli and pediococci present without interference from the 9 other genera tested. Streptococcus lactis and Leuconostoc spp. produced blue and green colonies, respectively, at 25 degrees C which might interference but these organisms are not present in significant numbers in fermented meats. Pediococcus parvulus and Streptococcus faecalis produced green and blue colonies, respectively, but their very poor growth at 25 degrees C prevented their interference. Use of the developed MRSD medium was described for enumeration of both pediococci and lactobacilli in starter cultures and in fermenting dry sausages to enable documentation of starter culture performance.

  14. Comparison of the hydrophobic grid-membrane filter DNA probe method and the Health Protection Branch standard method for the detection of Listeria monocytogenes in foods.

    Science.gov (United States)

    Yan, W; Malik, M N; Peterkin, P I; Sharpe, A N

    1996-07-01

    The standard Health Protection Branch (HPB) method for the detection of L. monocytogenes in foods involves lengthy enrichment, selection and biochemical testing, requiring up to 8 days to complete. A hydrophobic grid-membrane filter (HGMF) method employing a digoxigenin-labelled listeriolysin O probe required 5 days to complete, and included an image-analysis system for electronic data acquisition. A total of 200 food samples encompassing 8 high-risk food groups (soft and semi-soft cheeses, packaged raw vegetables, frozen cooked shrimp, ground poultry, ground pork, ground beef, jellied meats, and pâté) were screened for the presence of L. monocytogenes by the two methods. Overall, 32 (16%) and 30 (15%) of the naturally-contaminated food samples tested positive for L. monocytogenes by the HPB and DNA methods, respectively. The DNA probe method was highly specific in discriminating L. monocytogenes from other Listeria spp. present in 50 of the samples tested. Results showed 94% sensitivity and 100% specificity between the two methods. The HGMF DNA probe method is an efficient and reliable alternative to the HPB standard method for detecting L. monocytogenes in foods.

  15. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  16. 纳米银在细菌纤维素凝胶膜中的原位合成及性能表征%Synthesis, Structural Characteristics and Properties of Silver Nanoparticles in situ Bacterial Cellulose Gelatinous Membrane

    Institute of Scientific and Technical Information of China (English)

    吴健; 郑裕东; 高爽; 郭佳; 崔秋艳; 丁寻; 陈晓华

    2013-01-01

    Silver nanoparticles/bacterial cellulose ( n-Ag/BC) composite membranes were prepared and characterized. Silver nanoparticles were synthesized in situ through the reaction of Tollens' reagent with aldehydes , under ambient conditions in nanoporous bacterial cellulose membrances as nanoreactors. Sliver nanop-article was readily obtained and grew into the BC network by the precipitation of above reaction products. BC films were prepared and loaded with ca. 0. 14 mg/cm2 to ca. 0. 42 mg/cm2 of silver nanoparticles. XRD patterns indicated the existence of Ag0 nanoparticles in the BC, and the diameter of the silver nanoparticles is ca. 31. 8 nm. Scanning electron microscopy (SEM) images showed that the sliver nanoparticles (size range dozens nm) well dispersed in the network of BC. The sliver nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity. Bacterial killing efficiencies of the silver loaded films were investigated against staphylococcus aureus. It was determined that as little as ca. 0. 14 mg/cm2 of silver in the BC films caused a reduction of 99% bacteria in suspensions incubated in contact with the films. Significantly, the n-Ag/BC antimicrobial membranes were good biocompatibility, and allowed the attachment and growth of the epidermal cells. The result shows an easy method to synthesis silver nanoparticles into BC membranes. The n-Ag/BC has stability, antimicrobial activity and biological properties. The preparative procedure is facile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.%在细菌纤维素纳米纤维网络结构中采用吐伦试剂与含醛基化合物原位反应生成纳米银颗粒,制备了纳米银/细菌纤维素(n-Ag/BC)复合凝胶膜,研究了不同反应条件对复合材料的银含量、化学结构和晶体结构的影响以及n-Ag/BC的微观结构和纳米银在纤维素网络中

  17. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  18. A comparison of the performance of aromatic polyamide and cellulose acetate reverse osmosis membrane on the regeneration of secondary effluents; Comparacion del funcionamiento de membranas de osmosis inversa de poliamida aromatica y acetato de celulosa en la regeneracion de efluentes secundarios

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Ramirez, J. A.; Carrasco Vega, M.; Sales Marquez, D.; Quiroga Alonso, J. M.

    2002-07-01

    The application of reverse osmosis in regenerating waste waters has aroused a great deal of interest, although relatively few experiments using this technique have so far been carried out in Spain. In 1994, an experimental pilot plant was built at the La Barrosa waste water treatment plant in Chiclana de la Frontera in the province of Cadiz. This pilot plant with a capacity of 100 m''3/day, was equipped with various advanced treatments, most notably reverse osmosis, for treating urban waste waters for re-use. Since this pilot plant was built, various experiments have been carried out employing cellulose acetate (Hydranautics) and different types of Spanish-made aromatic polyamide membranes (Pridesa). Each type of membrane proposed different operating characteristics and feed-water requirements making each one suitable for a particular purpose. In this study, the secondary effluents was subjected to different kinds of treatment-called intense treatment, moderate treatment and minimum treatment-before reaching the reverse osmosis unit, which influenced the conditions in which the membranes operated. Following each type of treatment, the waters entering and leaving the installation were analysed to evaluate the quality of the final effluent and the effectiveness of the treatment carried out. The quality was extremely good in all the permeate samples analysed, almost irrespective of the type of treatment applied. It was also found that the cellulose acetate membranes tended to become less dirty than the aromatic polyamide membranes,due to their surface morphology. Nevertheless, the polyamide membranes have various advantages allowing them to be used in a wide range of applications at a lower energy cost. (Author) 8 refs.

  19. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002

    OpenAIRE

    Zhao, Chi; Li,Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A.; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc–ccp–cesAB–cesC–cesD–bgl, from Gluconacetobacter xylinus in Synechococcus s...

  20. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement

    Science.gov (United States)

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot

    2011-01-01

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93–106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100–200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake

  1. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement.

    Science.gov (United States)

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M Suleman; Krammer, Gernot

    2011-12-25

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93-106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100-200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and

  2. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hua [Savannah State University; Jones, Cecil L [Savannah State University; Baker, Gary A [ORNL; Xia, Shuqian [Tianjin University, Tianjin, China; Olubajo, Olarongbe [Savannah State University; Person, Vernecia [Savannah State University

    2009-01-01

    cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

  3. Hazy Transparent Cellulose Nanopaper

    Science.gov (United States)

    Hsieh, Ming-Chun; Koga, Hirotaka; Suganuma, Katsuaki; Nogi, Masaya

    2017-01-01

    The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3–15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 μm thickness, their total transmittance are 89.3–91.5% and haze values are 4.9–11.7%. When the pulp fibers are subjected to weak nanofibrillation, hazy transparent nanopapers are obtained. The hazy transparent nanopaper consists of cellulose nanofibers and some microsized cellulose fibers. At the hazy transparent nanopaper with 40 μm thickness, their total transmittance were constant at 88.6–92.1% but their haze value were 27.3–86.7%. Cellulose nanofibers are solid cylinders, whereas the pulp fibers are hollow cylinders. The hollow shape is retained in the microsized cellulose fibers, but they are compressed flat inside the nanopaper. This compressed cavity causes light scattering by the refractive index difference between air and cellulose. As a result, the nanopaper shows a hazy transparent appearance and exhibits a high thermal durability (295–305 °C), and low thermal expansion (8.5–10.6 ppm/K) because of their high density (1.29–1.55 g/cm3) and crystallinity (73–80%).

  4. Mixed matrix membrane development.

    Science.gov (United States)

    Kulprathipanja, Santi

    2003-03-01

    Two types of mixed matrix membranes were developed by UOP in the late 1980s. The first type includes adsorbent polymers, such as silicalite-cellulose acetate (CA), NaX-CA, and AgX-CA mixed matrix membranes. The silicalite-CA has a CO(2)/H(2) selectivity of 5.15 +/- 2.2. In contrast, the CA membrane has a CO(2)/H(2) selectivity of 0.77 +/- 0.06. The second type of mixed matrix membrane is PEG-silicone rubber. The PEG-silicone rubber mixed matrix membrane has high selectivity for polar gases, such as SO(2), NH(3), and H(2)S.

  5. Use of biosynthetic cellulose membrane in the guided tissue regeneration/ Uso de membrana biossintética a base de celulose na regeneração tecidual guiada

    Directory of Open Access Journals (Sweden)

    Cláudia Valéria Seullner Brandão

    2007-08-01

    Full Text Available Guided Tissue Regeneration (GTR is a regenerative treatment modality that requires the placement of a physical barrier over a bone defect in such a way that the proliferation of the surrounding soft tissues into the barrier-protected area is prevented. Thereby in the guided osseous regeneration allowing boneforming cells from the existent bone edges to invade the space and produce bone. The physical barriers should be biocompatible, allow cellular occlusion, maintain adequate space, tissue integration and facility in the application. They can be occlusive or permeable, absorbable or non-absorbable. Among various types of physical barriers in the market, the cellulose biosynthetic membrane is emphasizing by the necessary characteristics for GTR and to be a national product developed in low cost.A Regeneração Tecidual Guiada (RTG consiste numa modalidade de tratamento regenerativo que requer a colocação de uma barreira física sobre o defeito ósseo, de modo que a proliferação de tecidos moles adjacentes para dentro da área protegida seja evitada. Assim, a regeneração óssea guiada permite que células com potencial osteogênico das margens ósseas existentes invadam o espaço criado e produzam osso. As barreiras físicas devem ser biocompatíveis, permitir a oclusão celular, manutenção do espaço, integração tecidual e facilidade de uso. Podem ser oclusivas ou permeáveis, absorvíveis ou nãoabsorvíveis. Dentre os vários tipos de barreiras físicas existentes no mercado, a membrana biossintética a base de celulose vem se destacando, pois, além de possuir as características necessárias para a RTG, trata-se de um produto nacional desenvolvido a baixos custos.

  6. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  7. Ex vivo model for pre-clinical evaluation of dialyzers containing new membranes.

    Science.gov (United States)

    Mahiout, A; Meinhold, H; Jörres, A; Krieg, R; Kessel, M; Tretzel, J; Baurmeister, U

    1985-01-01

    The ex vivo model which reflects hemodialysis modulating factors during the first twenty minutes of blood membrane interaction, is applicable as a pre-clinical test for new membranes. The biocompatibility of a new cellulosic membrane (MC) proved to be superior to regenerated cellulose and comparable to synthetic membranes such as PAN regarding complement activation.

  8. Visual colorimetry for trace antimony(V) by ion-pair solid-phase extraction with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) on a PTFE type membrane filter.

    Science.gov (United States)

    Mizuguchi, Hitoshi; Matsuda, Yuki; Mori, Takehito; Uehara, Atsushi; Ishikawa, Yuta; Endo, Masatoshi; Shida, Junichi

    2008-02-01

    A new visual colorimetry for trace antimony(V) based on ion-pair solid-phase extraction to a PTFE-type membrane filter with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) ion ([Co(5-Cl-PADAP)(2)](+)) has been developed. Experiments showed that hexachloroantimonate(V) ion (SbCl(6)(-)) was adsorbed with [Co(5-Cl-PADAP)(2)](+) to the front surface of the PTFE filter. The adsorption of antimony(V) ion was promoted by the addition of lithium chloride as a source of chloride ion. The excess reagent of [Co(5-Cl-PADAP)(2)](+) was eluted by rinsing with a 10 wt% methanol aqueous solution. In this case, the slow rate of the hydrolysis reaction of SbCl(6)(-) and the difference of the hydrophobicity of the ion pairs were important for adsorption and separation with a PTFE-type membrane filter. The antimony(V) concentration was determined through a visual comparison with a standard series. The visual detection limit was 0.10 microg. The calibration curve assessed with the reflection spectrometric responses at 580 nm was linear in the concentration range of 0.10 - 1.2 microg (r = 0.996). The proposed method has been applied to the determination of sub-microgram levels of antimony(V) ion in water samples.

  9. Cytokine filtration and adsorption during pre- and postdilution hemofiltration in four different membranes.

    Science.gov (United States)

    Bouman, C S; van Olden, R W; Stoutenbeek, C P

    1998-01-01

    In the present in vitro study we investigated filtration and adsorption of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-8 (IL-8) during predilution and postdilution hemofiltration with polysulfone, polyacrylonitrile, polyamide and cellulose triacetate membranes. The median sieving coefficient (SC) for all membranes was 0.0 for TNF-alpha, below 0.15 for IL-6 and below 0.15 for IL-8 during postdilution hemofiltration. Differences in SC between filtration modes were less than 0.05. Maximal differences in SC between membranes were 0.11 for IL-6, 0.0 for TNF-alpha, and 0.11 for IL-8. The progressive decrease in cytokine concentrations was identical between the two filtration modes and most pronounced with the polyacrylonitrile membrane (reduction 77% for IL-6, 39% for TNF-alpha and 95% for IL-8 after 4 h of hemofiltration). The relative contribution of adsorption to the reduction in cytokines was 100% for TNF-alpha for all membranes, between 53 (cellulose triacetate) and 83% (polyacrylonitrile) for IL-6, and for IL-8 between 0 (polysulfone) and 100% (polyacrylonitrile). In conclusion, the reduction in TNF-alpha, IL-6 and IL-8 was most impressive with the polyacrylonitrile membrane after 4 h of hemofiltration and was largely due to adsorption. Adsorption of TNF-alpha, IL-6 and IL-8 was also seen with the other membranes. None of the membranes filtered TNF-alpha. Sieving of IL-6 and IL-8 was low for all membranes with only marginal differences between membranes or between filtration modes.

  10. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  11. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    Science.gov (United States)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous; Dong, Zhihua; Warzywoda, Juliusz; Fan, Zhaoyang

    2017-02-01

    One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li2S8-Li2S6). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  12. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation.

    Science.gov (United States)

    Luo, Wei; Wang, Bao; Heron, Christopher G; Allen, Marshall J; Morre, Jeff; Maier, Claudia S; Stickle, William F; Ji, Xiulei

    2014-01-01

    Here, we present a simple one-step fabrication methodology for nitrogen-doped (N-doped) nanoporous carbon membranes via annealing cellulose filter paper under NH3. We found that nitrogen doping (up to 10.3 at %) occurs during cellulose pyrolysis under NH3 at as low as 550 °C. At 700 °C or above, N-doped carbon further reacts with NH3, resulting in a large surface area (up to 1973.3 m(2)/g). We discovered that the doped nitrogen, in fact, plays an important role in the reaction, leading to carbon gasification. CH4 was experimentally detected by mass spectrometry as a product in the reaction between N-doped carbon and NH3. When compared to conventional activated carbon (1533.6 m(2)/g), the N-doped nanoporous carbon (1326.5 m(2)/g) exhibits more than double the unit area capacitance (90 vs 41 mF/m(2)).

  13. Efficient production of glucose by microwave-assisted acid hydrolysis of cellulose hydrogel.

    Science.gov (United States)

    Sun, Binzhe; Duan, Lian; Peng, Gege; Li, Xiaoxia; Xu, Aihua

    2015-09-01

    To improve the production of glucose from cellulose, a simple and effective route was developed. This process uses a combination of a step of cellulose dissolution in aqueous NaOH/urea solution and then regeneration with water, followed by an acid hydrolysis step under microwave irradiation. The method is effective to obtain glucose from α-cellulose, microcrystalline cellulose, filter paper, ramie fiber and absorbent cotton. Increased with the acid concentration the glucose yield from hydrogel hydrolysis increased from 0.42% to 44.6% at 160 °C for 10 min. Moreover, the ozone treatment of cellulose in NaOH/urea solution before regeneration significantly enhanced the hydrolysis efficiency with a glucose yield of 59.1%. It is believed that the chains in cellulose hydrogel are relatively free approached, making that the acids easily access the β-glycosidic bonds.

  14. Hierarchical-structured anatase-titania/cellulose composite sheet with high photocatalytic performance and antibacterial activity.

    Science.gov (United States)

    Luo, Yan; Huang, Jianguo

    2015-02-02

    Bulk hierarchical anatase-titania/cellulose composite sheets were fabricated by subjecting an ultrathin titania gel film pre-deposited filter paper to a solvo-co-hydrothermal treatment by using titanium butoxide as the precursor to grow anatase-titania nanocrystallites on the cellulose nanofiber surfaces. The titanium butoxide specie is firstly absorbed onto the nanofibers of the cellulose substance through a solvothermal process, which was thereafter hydrolyzed and crystallized upon the subsequent hydrothermal treatment, leading to the formation of fine anatase-titania nanoparticles with sizes of 2-5 nm uniformly anchored on the cellulose nanofibers. The resulting anatase-titania/cellulose composite sheet shows a significant photocatalytic performance towards degradation of a methylene blue dye, and introduction of silver nanoparticles into the composite sheet yields an Ag-NP/anatase-titania/cellulose composite material possessing excellent antibacterial activity against both Gram-positive and Gram-negative bacteria.

  15. 6-Deoxy-6-aminoethyleneamino cellulose: synthesis and study of hemocompatibility.

    Science.gov (United States)

    Zieger, Michael; Wurlitzer, Michael; Wiegand, Cornelia; Reddersen, Kirsten; Finger, Susanne; Elsner, Peter; Laudeley, Peggy; Liebert, Tim; Heinze, Thomas; Hipler, Uta-Christina

    2015-01-01

    Hemocompatibility of aqueous solutions of antimicrobial 6-deoxy-6-aminoethyleneamino (AEA) cellulose with different degrees of substitution (DS, 0.54-0.92) was investigated in vitro. The AEA cellulose derivatives were synthesized by tosylation of cellulose and subsequent nucleophilic substitution with 1,2-diaminoethane. The structure was confirmed by elemental analysis as well as by FTIR and NMR spectroscopies. Markers for coagulation (thrombin generation, aPTT, PT, blood clotting, thrombocyte activation) and membrane integrity (hemolysis) were measured in human whole blood, human platelet-rich plasma, human pooled plasma, and erythrocytes suspension. AEA cellulose with a low DS of 0.54 showed the highest hemocompatibility in vitro, suggesting the possibility of biomedical applications.

  16. Sustainable commercial nanocrystalline cellulose manufacturing process with acid recycling.

    Science.gov (United States)

    Sarma, Saurabh Jyoti; Ayadi, Mariem; Brar, Satinder Kaur; Berry, Richard

    2017-01-20

    Nanocrystalline cellulose (NCC) is a biomaterial having potential applications in a wide range of industries. It is industrially produced by concentrated acid hydrolysis of cellulosic materials. In this process, the sulfuric acid rich liquor can be concentrated and reused. However, removal of sugar monomers and oligomers is necessary for such recycling. Membrane and ion exchange technology can be employed to remove sugars; however, such technologies are not efficient in meeting the quality required to recycle the acid solution. As a part of the present study, activated carbon (AC) has been evaluated as an adsorbent for sugar removal from the acidic solution generated during commercial nanocrystalline cellulose manufacturing process. Almost complete removal of sugar can be achieved by this approach. The maximum sugar removal observed during this study was 3.4g/g of AC. Based on this finding, a sustainable method has been proposed for commercial nanocrystalline cellulose manufacturing.

  17. Bacterial cellulose and bacterial cellulose/polycaprolactone composite as tissue substitutes in rabbits' cornea

    Directory of Open Access Journals (Sweden)

    Rodrigo V. Sepúlveda

    Full Text Available ABSTRACT: In order to test the performance of bacterial cellulose/polycaprolactone composite (BC/PCL and pure bacterial cellulose (BC as tissue substitutes in rabbits' cornea, a superficial ulcer containing 5mm in diameter and 0.2mm deep was made in the right cornea of 36 rabbits, then a interlayer pocket was created from the basis of this ulcer. Twelve rabbits received BC/PCL membrane and 12 were treated with BC membranes, both membranes with 8mm in diameter. The remaining rabbits received no membrane constituting the control group. The animals were clinically followed up for 45 days. Three animals of each group were euthanized at three, seven, 21, and 45 days after implantation for histological examination of the cornea along with the implant. Clinical observation revealed signs of moderate inflammatory process, decreasing from day 20th in the implanted groups. Histology showed absence of epithelium on the membranes, fibroplasia close to the implants, lymph inflammatory infiltrate with giant cells, collagen disorganization, with a predominance of immature collagen fibers in both groups with implants. Although inflammatory response is acceptable, the membranes used does not satisfactorily played the role of tissue substitute for the cornea during the study period.

  18. Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfaces.

    Science.gov (United States)

    Ponnusamy, K; Kappachery, S; Thekeettle, M; Song, J H; Kweon, J H

    2013-09-01

    Biofouling is a serious problem on filter membranes of water purification systems due to formation of bacterial biofilms, which can be detrimental to the membrane performance. Biofouling occurs on membrane surface and therefore greatly influences the physical and chemical aspects of the surface. Several membranes including microfiltration, ultrafiltration, and reverse osmosis (RO) membranes were used to learn about the anti-biofouling properties of vanillin affecting the membrane performances. Vanillin has been recognized as a potential quorum quenching compound for Aeromonas hydrophila biofilms. The initial attachment and dynamics of biofilm growth were monitored using scanning electron microscopy and confocal laser scanning microscopy. Biofilm quantities were measured using a plate count method and total protein determinations. Vanillin addition was effective in the prevention of biofilm formation on the tested membrane surfaces. Among the membranes, RO membranes made with cellulose acetate showed the most substantial reduction of biofilm formation by addition of vanillin. The biofilm reduction was confirmed by the results of surface coverage, biomass and protein accumulation. The HPLC spectrum of the spent culture with vanillin addition showed that vanillin may interfere with quorum sensing molecules and thus prevent the formation of the biofilms.

  19. Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants.

    Science.gov (United States)

    Li, Shundai; Bashline, Logan; Zheng, Yunzhen; Xin, Xiaoran; Huang, Shixin; Kong, Zhaosheng; Kim, Seong H; Cosgrove, Daniel J; Gu, Ying

    2016-10-04

    Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs.

  20. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  1. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  2. Acid hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  3. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification i....... Based on cellulose inhibition kinetics the talk will illustrate the suitability of membrane reactor technology for improving cellulose substrate conversion efficiency....... include high substrate conversion (maximal yields), maximal enzyme efficiency, maximal volumetric reactor productivity, minimal equipment investment, minimal size, and short reaction time. The classic batch type STR reactions used for enzymatic cellulose hydrolysis prevent these goals to be fulfilled...

  4. Calculating cellulose diffraction patterns

    Science.gov (United States)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  5. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  6. Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures.

    Science.gov (United States)

    Keshk, Sherif M A S

    2015-01-22

    Effect of alkaline solutions such as 10% NaOH, NaOH/urea and NaOH/ethylene glycol solutions on crystalline structure of different cellulosic fibers (cotton linter and filter paper) was investigated at room temperature and -4°C. The highest dissolution of cotton linter and filter paper was observed in NaOH/ethylene glycol at both temperatures. X-ray patterns of treated cotton linter with different alkaline solutions at low temperature showed only two diffractions at 2θ=12.5° and 21.0°, which belonged to the crystalline structure of cellulose II. CP/MAS (13)C NMR spectra showed the doublet peaks at 89.2 ppm and 88.3 ppm representing C4 resonance for cellulose I at room temperature, Whereas, at low temperature the doublet peaks were observed at 89.2 ppm and 87.8 ppm representing C4 resonance for cellulose II. Degree of polymerization of cellulose plays an important role in cellulose dissolution in different alkaline solutions and temperatures, where, a low temperature gives high dissolutions percentage with change in crystalline structure from cellulose I to cellulose II forms.

  7. The influence on coli bacillus's detection in seawater by membrane filter technique in the pre- treatment way%前处理方式对滤膜法检测海水中大肠杆菌的影响

    Institute of Scientific and Technical Information of China (English)

    谢昭聪; 温智清; 黄裕青; 袁新竹

    2011-01-01

    Objective Tounderstand the filterable washing liquor and pre - treatment way,so as to suit the coli bacillus' s detection in seawater by membrane filter technique. Methods Different sterilizing water sample matrix and pre - treat-ment way of filtration were adopted, and then the coli bacillus' s Detection was carried out by membrane filter technique. Results The best effect of detection was using the physiological saline for flushing the filter. Using a small quantity of physi-ological saline for flushing the filter' 8 inner wall can get the higher counts of coli bacillus' s detection than using the physio-logical saline in 20 ~ 30ml in one time. After the filtration of water sample, the counts of coli bacillus' s detection was lower than without. Conclusion It is better to use the physiological saline as flushing, while the quantity and force of flushing should be pay attention. The suggestion is using the way of inner wall flushing as well as without flushing in the coli bacillus' s detection. Finally the higher counts report should be adopted.%目的 了解滤膜法检测海水中大肠杆菌适宜的过滤冲洗液和前处理方式.方法 采用不同灭菌水样基质和过滤前处理方式,进行滤膜法检测海水中大肠杆菌实验.结果 采用生理盐水冲洗滤器的检测效果最好;少量生理盐水冲洗滤器内壁的大肠杆菌计数结果最高,高于采用量筒量取20-30ml生理盐水1次快速冲洗滤器内壁的大肠杆菌计数结果;实验出现水质样品过滤后,冲洗滤器内壁的大肠杆菌计数结果低于不冲洗滤器的情况.结论 宜选用生理盐水为过滤冲洗液;应注意冲洗液量和冲洗力度的控制;实际检测过滤过程中,建议对滤器内壁冲洗和不冲洗2种方法分别进行,采纳大肠杆菌计数较高的结果报告.

  8. Adsorption of Cd(II) and Pb(II) by in situ oxidized Fe3O4 membrane grafted on 316L porous stainless steel filter tube and its potential application for drinking water treatment.

    Science.gov (United States)

    Zhu, Mengfei; Zhu, Li; Wang, Jianlong; Yue, Tianli; Li, Ronghua; Li, Zhonghong

    2017-03-08

    Removing heavy metal ions from aqueous solutions is one of the most challenging separations. In situ oxidized Fe3O4 membranes using 316L porous stainless steel filter tube have shown great potential for removing anion Cr(VI). Here we report the performances of the in situ oxidized Fe3O4 membranes for removing two toxic cations Cd(II) and Pb(II) commonly existing in water and their potential applications for drinking water purification. The membranes exhibited high removal efficiency: 97% at pH 9.0 for Cd(II) of 1.0 mg/L initial concentration and 100% at pH 5.0-6.0 for Pb(II) of 5.0 mg/L initial concentration. The maximum adsorption capabilities were estimated at 0.800 mg/g and 2.251 mg/g respectively for Cd(II) and Pb(II) at 318 K by the Langmuir model. Results of batch tests revealed the existence of electrostatic attraction and chemisorption. XRD and FT-IR analyses indicated that the chemisorption might be the insertion of Cd(II) and Pb(II) into the Fe3O4 crystal faces of 311 and 511 to form mononuclear or binuclear coordination with O atoms of Fe-O6 groups. Competitive adsorption of Cd(II) and Pb(II) in binary solutions revealed a preferential adsorption for Pb(II). Na2EDTA solution was used to regenerate the membranes, and the maximum desorption ratio was 90.29% and 99.75% respectively for Cd(II) and Pb(II). The membranes were able to efficiently lower Cd(II) and Pb(II) concentrations to meet the drinking water standards recommended by the World Health Organization and are promising for engineering applications aimed at drinking water purification.

  9. Water-repellent cellulose fiber networks with multifunctional properties.

    Science.gov (United States)

    Bayer, Ilker S; Fragouli, Despina; Attanasio, Agnese; Sorce, Barbara; Bertoni, Giovanni; Brescia, Rosaria; Di Corato, Riccardo; Pellegrino, Teresa; Kalyva, Maria; Sabella, Stefania; Pompa, Pier Paolo; Cingolani, Roberto; Athanassiou, Athanassia

    2011-10-01

    We demonstrate a simple but highly efficient technique to introduce multifunctional properties to cellulose fiber networks by wetting them with ethyl-cyanoacrylate monomer solutions containing various suspended organic submicrometer particles or inorganic nanoparticles. Solutions can be applied on cellulosic surfaces by simple solution casting techniques or by dip coating, both being suitable for large area applications. Immediately after solvent evaporation, ethyl-cyanoacrylate starts cross-linking around cellulose fibers under ambient conditions because of naturally occurring surface hydroxyl groups and adsorbed moisture, encapsulating them with a hydrophobic polymer shell. Furthermore, by dispersing various functional particles in the monomer solutions, hydrophobic ethyl-cyanoacrylate nanocomposites with desired functionalities can be formed around the cellulose fibers. To exhibit the versatility of the method, cellulose sheets were functionalized with different ethyl-cyanoacrylate nanocomposite shells comprising submicrometer wax or polytetrafluoroethylene particles for superhydophobicity, MnFe(2)O(4) nanoparticles for magnetic activity, CdSe/ZnS quantum dots for light emission, and silver nanoparticles for antimicrobial activity. Morphological and functional properties of each system have been studied by scanning and transmission electron microscopy, detailed contact angle measurements, light emission spectra and E. coli bacterial growth measurements. A plethora of potential applications can be envisioned for this technique, such as food and industrial packaging, document protection, catalytic cellulosic membranes, textronic (electrofunctional textiles), electromagnetic devices, authentication of valuable documents, and antimicrobial wound healing products to name a few.

  10. Optimal filtering

    CERN Document Server

    Anderson, Brian D O

    2005-01-01

    This graduate-level text augments and extends beyond undergraduate studies of signal processing, particularly in regard to communication systems and digital filtering theory. Vital for students in the fields of control and communications, its contents are also relevant to students in such diverse areas as statistics, economics, bioengineering, and operations research.Topics include filtering, linear systems, and estimation; the discrete-time Kalman filter; time-invariant filters; properties of Kalman filters; computational aspects; and smoothing of discrete-time signals. Additional subjects e

  11. 原花青素/醋酸纤维素可降解包装薄膜的结构与抗氧化性能%The Research on the Structures and Antioxidantion Properties of Procyanidins/Cellulose Acetate Packaging Membrane

    Institute of Scientific and Technical Information of China (English)

    沈洁; 王家俊; 刘幸幸; 樊春艳

    2011-01-01

    将原花青素(PC)添加到醋酸纤维素(CA)制膜溶液中,制得具有抗氧化性的可降解包装薄膜.通过红外光谱、X射线衍射和原子力显微镜对薄膜表面形貌、膜结构和结晶情况进行表征.以新鲜猪油为内装物、采用油脂氧化稳定性的检测方法Schaal烤箱法,测试薄膜在不同PC添加量时的抗氧化性.结果表明:当添加质量分数为2%PC时,薄膜的抗氧化性最佳,其对油脂的抑制率达到了37.65%,可在常温下延长油脂保质期两个多月.%Cellulose acetate/procyanidins antioxidaitive packaging membranes are prepared by co-solution method. The structure properties of the membranes are characterized by FT-IR, XRD and AFM. In order to evaluate the antioxidation properties of membranes with different PC contents, the peroxide values(POV) of fresh lard packaged by membranes are measured in Schaal method The results are that the membrane with 2% PC content has the most powerful antioxidation, its percentage inhibition of oxidation is 37. 65%, and the shelf life of the lard can be prolonged for more than two months at room temperature.

  12. Two membrane filter media (mADA/0129 and mSA/0129 agars) for enumeration of motile Aeromonas in seawater.

    Science.gov (United States)

    Alonso, J L; Garay, E

    1989-10-01

    Sewage-contaminated natural seawater was analysed for the presence of motile Aeromonas by two membrane filtration procedures. Incubation of membranes on two modified media (mADA (0/129) and mSA (0/129) were compared. The specificity of the two media was high, 95.8% on mADA (0/129) and 94.8% on mSA (0129). The most frequent species identified were A. caviae, followed by A. hydrophila and A. sobria. Motile Aeromonas counts were high in both media (greater than 10(4)/100 ml) and no significant differences were observed between them. The two membrane filtration procedures allowed rapid quantitative recovery of motile Aeromonas from seawater in the presence of very large numbers of competing microflora.

  13. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications.

  14. Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure

    Directory of Open Access Journals (Sweden)

    Art J. Ragauskas

    2011-11-01

    Full Text Available In order to obtain accurate information about the ultrastructure of cellulose from native biomass by 13C cross polarization magic angle spinning (CP/MAS NMR spectroscopy the cellulose component must be isolated due to overlapping resonances from both lignin and hemicellulose. Typically, cellulose isolation has been achieved via holocellulose pulping to remove lignin followed by an acid hydrolysis procedure to remove the hemicellulose components. Using 13C CP/MAS NMR and non-linear line-fitting of the cellulose C4 region, it was observed that the standard acid hydrolysis procedure caused an apparent increase in crystallinity of ~10% or less on the cellulose isolated from Populus holocellulose. We have examined the effect of the cellulose isolation method, particularly the acid treatment time for hemicellulose removal, on cellulose ultrastructural characteristics by studying these effects on cotton, microcrystalline cellulose (MCC and holocellulose pulped Populus. 13C CP/MAS NMR of MCC indicated that holocellulose pulping and acid hydrolysis has little effect on the crystalline ultrastructural components of cellulose. Although any chemical method to isolate cellulose from native biomass will invariably alter substrate characteristics, especially those related to regions accessible to solvents, we found those changes to be minimal and consistent in samples of typical crystallinity and lignin/hemicellulose content. Based on the rate of the hemicellulose removal, as determined by HPLC-carbohydrate analysis and magnitude of cellulose ultrastructural alteration, the most suitable cellulose isolation methodology utilizes a treatment of 2.5 M HCl at 100 °C for a standard residence time between 1.5 and 4 h. However, for the most accurate crystallinity results this residence time should be determined empirically for a particular sample.

  15. Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex.

    Science.gov (United States)

    Nixon, B Tracy; Mansouri, Katayoun; Singh, Abhishek; Du, Juan; Davis, Jonathan K; Lee, Jung-Goo; Slabaugh, Erin; Vandavasi, Venu Gopal; O'Neill, Hugh; Roberts, Eric M; Roberts, Alison W; Yingling, Yaroslava G; Haigler, Candace H

    2016-06-27

    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.

  16. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications.

  17. Polyethylenimine surface layer for enhanced virus immobilization on cellulose

    Science.gov (United States)

    Tiliket, Ghania; Ladam, Guy; Nguyen, Quang Trong; Lebrun, Laurent

    2016-05-01

    Thin regenerated cellulose films are prepared by hydrolysis of cellulose acetate (CA). A polycation, namely polyethylenimine (PEI), is then adsorbed onto the films. From QCM-D analysis, PEI readily adsorbs from a 0.1% w/v solution in NaCl 0.2 M (ca. 100 ng cm-2). Further PEI adsorption steps at higher PEI concentrations induce a linear growth of the PEI films, suggesting that free adsorption sites still exist after the initial adsorption. The adsorbed PEI chains are resistant to variations of the ionic strength up to NaCl 1 M. Promisingly, the adsorption of T4D bacteriophages are 15-fold more efficient onto the PEI-treated, compared to the native regenerated cellulose films, as measured by QCM-D. This confirms the strong affinity between the negatively charged viruses and PEI, even at low PEI concentration, probably governed by strong electrostatic attractive interactions. This result explains the remarkable improvement of the affinity of medical masks for virus droplets when one of their cellulose layers was changed by two-PEI-functionalized cellulose-based filters.

  18. Cellulose biogenesis in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  19. ICMSF methods study. XVII. An international comparative study of the direct plate and hydrophobic grid-membrane filter methods for enumeration of Escherichia coli in foods. International Commission on Microbiological Specifications for Foods.

    Science.gov (United States)

    Sharpe, A N; Rayman, M K; Malik, N; Beckers, H J; Delfgou, E; Christian, J H; Eyles, M; Dodsworth, P; Nafziger, M; Gibbs, P A

    1987-02-01

    Eight laboratories compared counts of Escherichia coli from naturally or artificially contaminated ground beef, other meats and poultry, vegetables, fish and shellfish, cheese, and diverse sources such as swabs, by the Anderson-Baird-Parker direct plate (DP) and a hydrophobic grid-membrane filter (HGMF) method. For five of the eight laboratories overall counts by HGMF were significantly low (51-83%) compared with those by DP. Counts by HGMF tended to be lower for naturally contaminated samples; several possible causes were investigated. In a subsidiary study, analyst variation in counting HGMF ranged from 0.8-7.3%, with little evidence of effects from counting positive versus negative grid cells or from the fullness of growth or staining intensity.

  20. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  1. Filtration through nylon membranes negatively affects analysis of arsenic and phosphate by the molybdenum blue method

    DEFF Research Database (Denmark)

    Heimann, Axel Colin; Jakobsen, Rasmus

    2007-01-01

    Filtering synthetic arsenic- or phosphate-containing solutions (1.5-47.6 mu mol/L) with nylon syringe filters significantly reduced absorbances (by 6-74%) when analyzed with the colorimetric molybdenum blue method. Filtering the same solutions with cellulose acetate syringe filters yielded no sig...

  2. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  3. Ultraviolet filters.

    Science.gov (United States)

    Shaath, Nadim A

    2010-04-01

    The chemistry, photostability and mechanism of action of ultraviolet filters are reviewed. The worldwide regulatory status of the 55 approved ultraviolet filters and their optical properties are documented. The photostabilty of butyl methoxydibenzoyl methane (avobenzone) is considered and methods to stabilize it in cosmetic formulations are presented.

  4. Acetoacetylation of Hydroxyethyl Cellulose

    Institute of Scientific and Technical Information of China (English)

    陈晓锋; 高彦芳; 杜奕; 刘德山

    2002-01-01

    The acetoacetyl group can be used to improve superabsorbent resins since it is more active than the hydroxyethyl group. The acetoacetyl group can be introduced into the side group of hydroxyethyl cellulose (HEC) to activate HEC using the ester exchange reaction between HEC and ethyl acetoacetate (EAA) to improve HEC grafting. This paper discusses the main factors affecting the reaction, such as the amount of EAA and catalyzer, the reaction temperature, and the reaction time. The acetoacetyl group was successfully introduced into HEC. Within specified ranges, increasing the amount of EAA, the reaction temperature and the reaction time will increase the acetoacetylation.

  5. Preparation of High Quality Indium Tin Oxide Film on a Microbial Cellulose Membrane Using Radio Frequency Magnetron Sputtering%采用磁控溅射法在细菌纤维素膜上制备高性能的铟锡氧化物薄膜

    Institute of Scientific and Technical Information of China (English)

    杨加志; 赵成刚; 刘晓丽; 于俊伟; 孙东平; 唐卫华

    2011-01-01

    Microbial cellulose (MC) membranes produced by Acetobacterxylinumn NUST4.1, were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes. Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering. The optimum ITO deposition conditions were achieved by examining crystalline structure, surface morphology and optoelectrical characteristics with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV spectroscopy. The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated. The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar, volume ratio) in the sputtering chamber. And the ITO crystalline structure directly determines the conductivity of ITO-deposited films. High conductive [sheet resistance -120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml.min-1(sccm) during the deposition. These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.

  6. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  8. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  9. Acetobixan, an inhibitor of cellulose synthesis identified by microbial bioprospecting.

    Directory of Open Access Journals (Sweden)

    Ye Xia

    Full Text Available In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI, named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis.

  10. Acetobixan, an inhibitor of cellulose synthesis identified by microbial bioprospecting.

    Science.gov (United States)

    Xia, Ye; Lei, Lei; Brabham, Chad; Stork, Jozsef; Strickland, James; Ladak, Adam; Gu, Ying; Wallace, Ian; DeBolt, Seth

    2014-01-01

    In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM) to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis.

  11. Ultrasonic dyeing of cellulose nanofibers.

    Science.gov (United States)

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  12. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 A Resolution.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and

  13. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    Science.gov (United States)

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  14. Food Filter

    Institute of Scientific and Technical Information of China (English)

    履之

    1995-01-01

    A typical food-processing plant produces about 500,000 gallons of waste water daily. Laden with organic compounds, this water usually is evaporated or discharged into sewers.A better solution is to filter the water through

  15. Influences of glycerol concentration on properties of natural pure cellulose membrane prepared by NMMO technology%甘油含量对NMMO工艺天然纯纤维素膜性能的影响

    Institute of Scientific and Technical Information of China (English)

    李冬娜; 马晓军; 王晓敏; 乔华

    2012-01-01

    以棉纤维素为原料,以NMMO(N-甲基吗啉-N-氧化物)为溶剂,以甘油为增塑剂制取天然纯纤维素包装膜,研究了不同甘油含量对纤维素膜性能的影响。结果表明,随着甘油含量的增加,纤维素膜的断裂伸长率随之增加,拉伸强度随之降低,二者变化幅度都很大;当甘油含量从2%增加到5%,纤维素膜的透油系数增加了13.4%,氧气透过率增加了3.0%,透湿系数增加了16.7%,透光率增加了22.4%,横向热收缩率增加了58.8%,纵向热收缩率增加了54.7%。可见,甘油含量对膜的透氧性影响较为微弱,但对力学性能、透油性、透湿性、透明度、热收缩率影响均较为显著。%Natural pure cellulose packaging films were prepared by means of the dissolution of cotton cellulose in NMMO and glycerol was used as plasticizer,the effects of different glycerol concentration on properties were studied,the results showed that elongation at break increase,but the tensile strength decrease with the increasing of glycerol concentration,and both change significantly;when the content increased from 2% to 5%,the oil transmission,oxygen permeation flux,water vapor permeability,the light transmittance,the transverse and longitudinal direction hot shrinkage rate increased by 13.4%,3.0%,16.7%,22.4%,58.8%,54.7%,respectively.It's clear that glycerol concentration had weak influence on oxygen permeation,but the mechanical properties,the oil permeability,the water vapor permeability,the transparency and hot shrinkage rate changed significantly.

  16. Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Ground Water Quality and Remediation Progress at DoD Sites for Perchlorate and Explosives Compounds (ER-0313)

    Science.gov (United States)

    2010-09-30

    24  5.5.1 Field Demonstration Preparation and Mobilization ...1701. 4 2.0 TECHNOLOGY 2.1 TECHONOLOGY DESCRIPTION Most of the diffusion membrane samplers developed to date involve suspending a container...and Mobilization Access to and integrity of the wells to be sampled at each field demonstration site was checked one month prior to the start of the

  17. Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Ground-Water Quality and Remediation Progress at DoD Site: Perchlorate and Ordnance Compounds

    Science.gov (United States)

    2011-10-01

    7 3.1 TECHONOLOGY DESCRIPTION ....................................................................... 7 3.2 ADVANTAGES AND LIMITATIONS OF THE...Center NAWC Naval Air Warfare Center NJDEP New Jersey Department of Environmental Protection NTU nephelometric turbidity units PDB polyethylene...This page left blank intentionally. 7 3.0 TECHNOLOGY 3.1 TECHONOLOGY DESCRIPTION Most of the diffusion membrane samplers developed to date

  18. Cellulose nanocrystals: synthesis, functional properties, and applications

    OpenAIRE

    George J.; Sabapathi SN

    2015-01-01

    Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers...

  19. 21 CFR 172.868 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  20. 21 CFR 573.420 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and... Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  1. Preparation and Characterization of New Nano-cellulose Polysulfone Composite Membrane%新型纳米纤维素聚砜复合膜的制备及表征

    Institute of Scientific and Technical Information of China (English)

    赵恒; 吴桐; 周益同; 张力平

    2013-01-01

    L-S immersion precipitation phase inversion method was used to prepare nanocellulose (NCC)/polysulfone (PSF) composite membrane materials.The influence of NCC contents and concentrations (10%,30%,50%)of isopropanol coagulation bath on the membrane structure was characterized.The pore structure of the composite membrane was observed by scanning electron microscope (SEM).With the isopropanol concentration increased,the finger pores in the composite membrane gradually develop from elongated into stubby and loose.At the same time,it can be found that the concentrations of NCC and isopropanol coagulation bath play a significant role on the mechanical properties,pure water flux,porosity and rejection rate of the composite membrane.%采用L-S浸没沉淀相转化法制备纳米纤维素(NCC)/聚砜(PSF)复合膜材料.考察了NCC添加量及异丙醇凝胶浴浓度(10%、30%、50%,体积分数,下同)对膜结构和性能的影响.通过扫描电子显微镜(SEM)观察了复合膜材料断面和皮层的孔结构,发现随着异丙醇浓度的增加,复合膜中的指状孔由细长贯通、连接紧密逐渐变得短粗、疏松.同时,NCC添加量和异丙醇凝胶浴浓度对复合膜的力学性能、渗透性能、膜孔结构有很大的调控作用.

  2. Characterization of organic fouling on cellulose acetate membrane during microfiltration of secondary effluent and model solutions%二级出水微滤过程中对醋酸纤维素酯膜的有机污染特征

    Institute of Scientific and Technical Information of China (English)

    朱洪涛; 孟庆字

    2012-01-01

    Low pressure membrane technology,including microfiltration and ultrafiltration,is being applied more and more in the wastewater reclamation.However,membrane fouling,especially fouling resulted from organic materials,stays a technical obstacle.In this study,the filtration experiments were performed with cellulose acetate microfiltration membrane,under constant-flux filtration mode.Secondary effluent organic matter(EfOM for short),EfOM fractions based on hydrophilic-hydrophobic property,model protein solution(BSA),humic acid were used for microfiltration experiments.Based up on the observation by using ATR-FTIR and XPS,humic acid possesses the least fouling potential among all organics used.In terms of functional groups,ATR-FTIR suggests that more amide(1 535 cm-1),aliphatic C-H(2 860~2 970 cm-1),and hydroxyl(3 400 cm-1) on membrane surfaces after filtration of BSA,EfOM,and hydrophobic part of EfOM.Comparing TMP/V,hydrophobic-basic EfOM possesses the greatest fouling potential and humic acid possesses the least fouling potential.And UVA and EEM results suggest that hydrophobic-basic EfOM and protein contributes a lot to cellulose acetate membrane fouling.%低压膜过滤技术(包括微滤和超滤)在再生水生产领域正引起越来越广泛的关注。然而如何解决低压膜过滤过程中的膜有机污染问题始终是膜技术所面临的技术挑战。本研究采用醋酸纤维素酯微孔滤膜对二级出水溶解性有机物(EfOM)及其不同亲疏水性组分、蛋白模拟溶液、腐殖酸(HA)等进行恒流过滤实验。对不同有机物污染后的膜表面使用全反射傅立叶红外光谱(ATR-FTIR)和X射线电子能谱(XPS)进行表征。结果表明,相对于蛋白质和EfOM等,HA所造成的膜污染最少。ATR-FTIR的结果同时显示,以官能团而言,更多的氨化物(1535cm-1)、脂肪族物质(2860~2970cm-1)和氢氧根(3400cm-1)存在于膜表面。TMP/V数据比较结果表明,在EfOM各

  3. Biomechanical evaluation of microbial cellulose (Zoogloea sp. and expanded polytetrafluoroethylene membranes as implants in repair of produced abdominal wall defects in rats Avaliação biomecânica de membranas de celulose microbiana (Zoogloea sp. e de politetrafluoretileno expandido como implantes no reparo de defeitos produzidos na parede abdominal em ratos

    Directory of Open Access Journals (Sweden)

    Suyiene Cordeiro Falcão

    2008-04-01

    Full Text Available PURPOSE: To evaluate the Load of Rupture of implants of membranes of microbial cellulose (Zoogloea sp. and extended polytetrafuoroethylene in sharp defects of abdominal wall of rats. METHODS: Sixty Wistar male rats, with a mean weight of 437,7g ± 40,9, anesthetized by a mixture of ketamine (5mg/100g and xylazine (2mg/100g, were submitted to a rectangular (2x3cm excision of the abdominal wall, including fascia, muscle and peritoneum, and treated with membranes of microbial cellulose (MC (MC Group- 30 animals or extended polytetrafluoroethylene (ePTFE (ePTFE Group- 30 animals. Each group was subdivided in 14th POD, 28th POD and 60th POD Subgroups. Under anesthesia, animals were submitted to euthanasia at 14th POD, 28th POD and 60th POD for evaluation of Load of Rupture. RESULTS: Load of Rupture levels were significantly elevated (pOBJETIVO: Avaliar a Carga de Ruptura de implantes de membranas de celulose microbiana (Zoogloea sp. e de politetrafluoretileno expandido em defeitos agudos produzidos na parede abdominal de ratos. MÉTODOS: Sessenta ratos machos Wistar, com média de peso de 437,7g ± 40,9, anestesiados com uma mistura de cetamina (5mg/100g e xilazina (2mg/100g, foram submetidos à excisão retangular (2x3cm na parede ventral do abdômen, incluindo fáscia, músculo e peritônio. Subseqüentemente, foram tratados com implante de membranas de celulose microbiana (CM (Grupo CM - 30 animais ou de politetrafluoretileno expandido (PTFEe (Grupo PTFEe - 30 animais. Cada grupo foi ainda subdividido nos Subgrupos 14º DPO, 28º DPO e 60º DPO. Os animais foram submetidos à eutanásia com doses letais de tiopental no 14º DPO, 28º DPO e 60º DPO, para avaliação da Carga de Ruptura na área do implante. RESULTADOS: Os níveis da Carga de Ruptura foram significativamente elevados (p<0,05 entre os Subgrupos 14º DPO, 28º DPO e 60º DPO de cada grupo estudado. Quando comparados entre Grupos, os valores da Carga de Ruptura foram

  4. Mineralization of cellulose in frozen boreal soils

    Science.gov (United States)

    Oquist, Mats G.; Segura, Javier; Sparrman, Tobias; Nilsson, Mats; Schleucher, Jurgen

    2015-04-01

    Soils of high-latitude ecosystems store a large fraction of the global soil carbon. In boreal forests, the microbial mineralization of soil organic matter (SOM) during winter can affect the ecosystems net carbon balance. Recent research has shown that microorganisms in the organic surface layer of boreal forest soil can mineralize and grow on simple, soluble monomeric substrates under frozen conditions. However, any substantial impacts of microbial activity in frozen soils on long-term soil carbon balances ultimately depends on whether soil microorganisms can utilize and grow the more complex, polymeric constituents of SOM. In order to evaluate the potential for soil microorganisms to metabolize carbon polymers at low temperatures, we incubated boreal forest soil samples amended with [13C]-cellulose and studied the microbial catabolic and anabolic utilization of the substrate under frozen and unfrozen conditions (-4 and +4°C). Freezing of the soil markedly reduced microbial utilization of the cellulose. The [13C]-CO2 production rate in the samples at +4°C were 0.52 mg CO2 SOM -1 day-1 while rates in the frozen samples (-4°C) were 0.01 mg CO2 SOM -1 day-1. However, newly synthetized [13C]-enriched cell membrane lipids, PLFAs, were detected in soil samples incubated both above and below freezing, confirming that cellulose can sustain also anabolic activity of the microbial populations under frozen conditions. The reduced metabolic rates induced by freezing indicate constraints on exoenzymatic activity, as well as substrate diffusion rates that we can attribute to reduced liquid water content of the frozen soil. We conclude that the microbial population in boreal forest soil has the capacity to metabolize, and grow, on polymeric substrates at temperatures below zero, which involves maintaining exoenzymatic activity in frozen soils. This capacity manifests the importance of SOM mineralization during the winter season and its importance for the net carbon balance of

  5. The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis.

    Science.gov (United States)

    Bashline, Logan; Li, Shundai; Zhu, Xiaoyu; Gu, Ying

    2015-10-13

    Cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few other eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.

  6. Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis.

    Science.gov (United States)

    Wang, Hui; Mochidzuki, Kazuhiro; Kobayashi, Shinichi; Hiraide, Hatsue; Wang, Xiaofen; Cui, Zongjun

    2013-06-01

    Bovine serum albumin (BSA) was added to filter paper during the hydrolysis of cellulase. Adding BSA before the addition of the cellulase enhances enzyme activity in the solution, thereby increasing the conversion rate of cellulose. After 48 h of BSA treatment, the BSA adsorption quantities are 3.3, 4.6, 7.8, 17.2, and 28.3 mg/g substrate, each with different initial BSA concentration treatments at 50 °C; in addition, more cellulase was adsorbed onto the filter paper at 50 °C compared with 35 °C. After 48 h of hydrolysis, the free-enzyme activity could not be measured without the BSA treatment, whereas the remaining activity of the filter paper activity was approximately 41 % when treated with 1.0 mg/mL BSA. Even after 96 h of hydrolysis, 25 % still remained. Meanwhile, after 48 h of incubation without substrate, the remaining enzyme activities were increased 20.7 % (from 43.7 to 52.7 %) and 94.8 % (from 23.3 to 45.5 %) at 35 and 50 °C, respectively. Moreover, the effect of the BSA was more obvious at 35 °C compared with 50 °C. When using 15 filter paper cellulase units per gram substrate cellulase loading at 50 °C, the cellulose conversion was increased from 75 % (without BSA treatment) to ≥90 % when using BSA dosages between 0.1 and 1.5 mg/mL. Overall, these results suggest that there are promising strategies for BSA treatment in the reduction of enzyme requirements during the hydrolysis of cellulose.

  7. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    Science.gov (United States)

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  8. Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol

    Directory of Open Access Journals (Sweden)

    Carla Eliana Todero Ritter

    2013-01-01

    Full Text Available The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v soy bran; 0.1% (w/v wheat bran; and a solution of salts. The highest filter paper activity (FPA ( IU·mL−1 was obtained on the seventh day in the medium containing 0.5% (w/v sorbitol and 0.5% (w/v cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day ( IU·mL−1 in the medium containing 0.75% (w/v sorbitol and 0.75% (w/v cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v sorbitol and 0.25% (w/v cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems.

  9. Surface modification of cellulose nanocrystals

    Science.gov (United States)

    Eyley, Samuel; Thielemans, Wim

    2014-06-01

    Chemical modification of cellulose nanocrystals is an increasingly popular topic in the literature. This review analyses the type of cellulose nanocrystal modification reactions that have been published in the literature thus far and looks at the steps that have been taken towards analysing the products of the nanocrystal modifications. The main categories of reactions carried out on cellulose nanocrystals are oxidations, esterifications, amidations, carbamations and etherifications. More recently nucleophilic substitutions have been used to introduce more complex functionality to cellulose nanocrystals. Multi-step modifications are also considered. This review emphasizes quantification of modification at the nanocrystal surface in terms of degree of substitution and the validity of conclusions drawn from different analysis techniques in this area. The mechanisms of the modification reactions are presented and considered with respect to the effect on the outcome of the reactions. While great strides have been made in the quality of analytical data published in the field of cellulose nanocrystal modification, there is still vast scope for improvement, both in data quality and the quality of analysis of data. Given the difficulty of surface analysis, cross-checking of results from different analysis techniques is fundamental for the development of reliable cellulose nanocrystal modification techniques.

  10. PM2.5 Emission Control of Bag Hose Precipitator with Covering Membrane and Filtering Materials in Industrial Dust%覆膜滤料袋除尘器对工业粉尘中PM2.5的排放控制

    Institute of Scientific and Technical Information of China (English)

    黄斌香; 舒家华; 陈璀君; 冷瑞娟

    2013-01-01

      提出以覆膜滤料袋式除尘器来控制工业烟尘中PM2.5的排放,探讨了检测、计算的方法,分析了过滤元件的缺陷对排放效果的影响.%The paper puts forward to use the bag hose precipitator with covering membrane and filtering materials and to control PM2.5 emission in industrial dust; discusses the examination and calculational methods; analyzes the impact of filtering element limitation on emission effect.

  11. Análises histológica e morfométrica do uso de membrana biossintética de celulose em trocleoplastia experimental de cães Histological and morphometric analysis for the use of a biosynthetic cellulose membrane in experimental trochleopasty

    Directory of Open Access Journals (Sweden)

    Luciana S. Iamaguti

    2008-04-01

    membrana de celulose acelerou o processo de reparação tecidual inicial da região da trocleoplastia, apresentando boa integração do tecido neoformado com a cartilagem adjacente.The aim of this study was to evaluate the use of a locally made biosynthetic cellulose membrane after experimental trochleoplasty, in order to verify whether its use could support migration of chondrogenic cells. Twelve male and female adult healthy dogs and without claudication were used. All dogs were submitted to trochleoplasty in both pelvic limbs after sedation and epidural anesthesia. In the left hind limb, the biosynthetic cellulose membrane was fixed with simple suture using Polyglactin 910 6-0 after performing trochleoplasty (treated group; whereas in the right limb (control group only trochleoplasty was performed. The dogs were subdivided into 4 subgroups for postoperative evaluation at 15, 30, 60 and 90 days post-surgery. Biopsy was performed after exploratory arthrotomy for histopathologic and morfometric evaluation. At 30 and 60 days post-surgery, more condrocyte-like cells of immature aspect were observed in lesions treated with the cellulose membrane. At 90 days post-surgery the reparative tissue was characterized as mature fibrocartilage-like tissue without difference between the groups. In the control group there was a progressive increase of the number of cells until the end of the evaluation period. Otherwise, when compared to the initial period (15 days, there was an increase in the number of cells until 60 days, followed by a return the initial values at 90 days in the treated group. In comparison to controls, the number of cells was greater in the treated group from 15 to 60 days. Initially, the neoformed repair tissue was thicker in the treated group. From the results of this study, it was concluded that the cellulose membrane shortened the initial tissue repair process in the trochleoplasty area, showing good integration of the neoformed tissue with the adjacent cartilage.

  12. Research on SF/PEI self-assembly nano fiber membrane for filtering Cu2+%SF/PEI自组装纳米纤维膜用于Cu2+过滤的研究

    Institute of Scientific and Technical Information of China (English)

    马瑞丽; 何建新; 张弦

    2012-01-01

    采用静电层层自组装技术将丝素(SF)与聚乙烯亚胺(PEI)复合制备的SF/PEI纳米纤维,随着自组装层数的增多,纤维直径变粗,表面变得不规整,且在一定的自组装层数内,复合纳米纤维膜对Cu2+的过滤效率不断增大.杂化Fe后,纤维表面变得更加凹凸不平,但对Cu2+的过滤效果显著改善.这对于制备新型、高效、无二次污染、低治理成本的替代或改进的重金属过滤材料提供了理论意义.%F/PEI composite Nano fiber membrane was made in this experiment by layer-layer electrostatic self-assembly technology, With the increasing in the number in self-assembly layer, the fiber diameter become larger, the surface become irregular, and in certain layer, the adsorption efficiency of Cu2+ increases. After the hybrid Fe, fiber surface become more uneven, but the adsorption efficiency improved significantly. This experiment provides theoretical significance for new, effective, no secondary pollution and low management cost alternative or improved heavy metal filter material.

  13. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    Science.gov (United States)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  14. Influences of Carboxyl Methyl Cellulose on Performances of Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Yuli; ZHOU Mingkai; SHAN Junhong; XU Fang; YANG Yuhui

    2007-01-01

    Carboxyl methyl cellulose (CMC) was mixed into mortar to improve the waterretention performance of mortar, the quality of floated coat of aerated concrete became better. The consistency and compression strength of mortar with CMC were studied. The water absorption was studied with the method of filter paper. The micro mechanism was researched with X-ray diffraction and scanning electron microscopy(SEM). The experimental results show the water-holding performance of mortar with CMC is largely improved and it is better when the mixed amount is about 1.5%; the compression strength had a descending trend with the increase of CMC; CMC reacted with calcium hydroxide(CH) into the deposition of calcium carboxyl methyl cellulose.

  15. Enzyme immobilization by fouling in ultrafiltration membranes: Impact of membrane configuration and type on flux behavior and biocatalytic conversion efficacy

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2014-01-01

    and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations...

  16. A PEM fuel cell based on electrocatalyst and membrane materials modified by PANAM dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma-Garcia, J.; Chapman, T.W.; Godinez, L.A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro (Mexico)

    2008-10-15

    Due to its high energy conversion efficiency and low emission of pollutants, fuel-cell technology has been generally recognized as a key twenty-first century energy source. For polymer electrolyte membrane fuel cells (PEMFC), it has been found that platinum and its alloys exhibit the best electrocatalytic activity for oxygen reduction. The highest electrocatalytic activity of platinum and its alloys can be achieved when the particles are produced in the nanometer range. In this context, organic molecules have been adopted as templates to control the size of metal nanoparticles. Dendrimers, in particular, have shown promising properties for this application, and strategies that include direct adsorption, electrostatic attachment and covalent bonding have been developed for connecting metal-bearing dendrimers to conducting substrates. This paper reported on the preliminary results of a study that involved the construction and testing of a hydrogen-oxygen PEM fuel cell based on carbon-fiber-paper electrodes coated with hydroxyl-terminated dendrimers that encapsulated nanoparticles of platinum. This prototype cell also employed an ion exchange membrane comprising a cellulose acetate filter functionalized with proton-exchanging dendrimers. A proton-exchange membrane was prepared by binding duplex amine-carboxylate dendrimers to a cellulose-acetate support. With these dendrimer-based materials, a hydrogen-oxygen fuel cell was assembled and the performance compared with cells prepared with Nafion-based membranes. The voltage-current profiles and the power-density curves from the new cell provide encouragement to continue work with these dendrimer-modified materials. The paper discussed the experimental methods, with particular reference to materials; electrode preparation and characterization; proton-exchange membrane preparation; and PEM fuel-cell assembly and testing. It was concluded that the use of the dendritic macromolecules as supports for the nanoparticulate

  17. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  18. Notch filter

    Science.gov (United States)

    Shelton, G. B. (Inventor)

    1977-01-01

    A notch filter for the selective attenuation of a narrow band of frequencies out of a larger band was developed. A helical resonator is connected to an input circuit and an output circuit through discrete and equal capacitors, and a resistor is connected between the input and the output circuits.

  19. Mechanical characterization of cellulosic thecal plates in dinoflagellates by nanoindentation.

    Science.gov (United States)

    Lau, Ringo K L; Kwok, Alvin C M; Chan, W K; Zhang, T Y; Wong, Joseph T Y

    2007-02-01

    Dinoflagellates constitute an important group of microorganisms. Symbiotic dinoflagellates are responsible for the primary production of coral reef ecosystems and the phenomenon of their demise is known as "coral bleaching." Blooming of the planktonic dinoflagellates is the major cause of "red tides." Many dinoflagellates have prominent membrane-bound thecal plates at their cell cortices. These thecal plates have high cellulose content and are biologically fabricated into various shapes. However, the mechanical properties of theca have not previously been characterized; understanding these properties, including hardness and elastic modulus, will give insights into the ecological significance and biotechnological potential of bio-fabricated structures. A series of nanoindentation tests were performed on various locations of cellulosic thecal plates isolated from the dinoflagellates Alexandrium catenella and Lingulodinium polyedrum. Despite having transparent properties, thecal plates possess mechanical properties comparable to softwood cell walls, implicating their role as a protective cell covering. Consistent measurements were obtained when indentation was performed at various locations, which contrasts with the high variability of cellulose microfibers from plant sources. The present study demonstrated the novel properties of this potential new source of cellulose.

  20. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  1. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement

    OpenAIRE

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot

    2011-01-01

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefor...

  2. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles.

    Science.gov (United States)

    Jeihanipour, Azam; Karimi, Keikhosro; Niklasson, Claes; Taherzadeh, Mohammad J

    2010-12-01

    A novel process has been developed for separation of the cellulose, i.e. cotton and viscose, from blended-fibers waste textiles. An environmentally friendly cellulose solvent, N-methylmorpholine-N-oxide (NMMO) was used in this process for separation and pretreatment of the cellulose. This solvent was mixed with blended-fibers textiles at 120 °C and atmospheric pressure to dissolve the cellulose and separate it from the undissolved non-cellulosic fibers. Water was then added to the solution in order to precipitate the cellulose, while both water and NMMO were reused after separation by evaporation. The cellulose was then either hydrolyzed by cellulase enzymes followed by fermentation to ethanol, or digested directly to produce biogas. The process was verified by testing 50/50 polyester/cotton and 40/60 polyester/viscose-blended textiles. The polyesters were purified as fibers after the NMMO treatments, and up to 95% of the cellulose fibers were regenerated and collected on a filter. A 2-day enzymatic hydrolysis and 1-day fermentation of the regenerated cotton and viscose resulted in 48 and 50 g ethanol/g regenerated cellulose, which were 85% and 89% of the theoretical yields, respectively. This process also resulted in a significant increase of the biogas production rate. While untreated cotton and viscose fibers were converted to methane by respectively, 0.02% and 1.91% of their theoretical yields in 3 days of digestion, the identical NMMO-treated fibers resulted into about 30% of yield at the same period of time.

  3. Comparison of Bacterial Cellulose Production among Different Strains and Fermented Media

    Directory of Open Access Journals (Sweden)

    Maryam Jalili Tabaii

    2015-12-01

    Full Text Available The effect of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus (PTCC 1734 and two newly isolated strains (from vinegar under static culture conditions was studied. The production of bacterial cellulose was examined in modified Hestrin-Shramm medium by replacing D-glucose with other carbon sources. The results showed that the yield and characteristics of bacterial cellulose were influenced by the type of carbon source. Glycerol gave the highest yield in all of the studied strains (6%, 9.7% and 3.8% for S, A2 strain and Gluconacetobacter xylinus (PTCC 1734, respectively. The maximum dry bacterial cellulose weight in the glycerol containing medium is due to A2 strain (1.9 g l-1 in comparison to Gluconacetobacter xylinus as reference strain (0.76 g l-1. Although all of the studied strains were in Gluconacetobacter family, each used different sugars for maximum production after glycerol (mannitol and fructose for two newly isolated strains and glucose for Gluconacetobacter xylinus. The maximum moisture content was observed when sucrose and food-grade sucrose were used as carbon source. Contrary to expectations, while the maximum thickness of bacterial cellulose membrane was attained when glycerol was used, bacterial cellulose from glycerol had less moisture content than the others. The oxidized cellulose showed antibacterial activities, which makes it as a good candidate for food-preservatives.

  4. KORRIGAN1 interacts specifically with integral components of the cellulose synthase machinery.

    Directory of Open Access Journals (Sweden)

    Nasim Mansoori

    Full Text Available Cellulose is synthesized by the so called rosette protein complex and the catalytic subunits of this complex are the cellulose synthases (CESAs. It is thought that the rosette complexes in the primary and secondary cell walls each contains at least three different non-redundant cellulose synthases. In addition to the CESA proteins, cellulose biosynthesis almost certainly requires the action of other proteins, although few have been identified and little is known about the biochemical role of those that have been identified. One of these proteins is KORRIGAN (KOR1. Mutant analysis of this protein in Arabidopsis thaliana showed altered cellulose content in both the primary and secondary cell wall. KOR1 is thought to be required for cellulose synthesis acting as a cellulase at the plasma membrane-cell wall interface. KOR1 has recently been shown to interact with the primary cellulose synthase rosette complex however direct interaction with that of the secondary cell wall has never been demonstrated. Using various methods, both in vitro and in planta, it was shown that KOR1 interacts specifically with only two of the secondary CESA proteins. The KOR1 protein domain(s involved in the interaction with the CESA proteins were also identified by analyzing the interaction of truncated forms of KOR1 with CESA proteins. The KOR1 transmembrane domain has shown to be required for the interaction between KOR1 and the different CESAs, as well as for higher oligomer formation of KOR1.

  5. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    Science.gov (United States)

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  6. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    S. Saska

    2011-01-01

    Full Text Available The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA, similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

  7. Selective permeation of hydrogen gas using cellulose nanofibril film.

    Science.gov (United States)

    Fukuzumi, Hayaka; Fujisawa, Shuji; Saito, Tsuguyuki; Isogai, Akira

    2013-05-13

    Biobased membranes that can selectively permeate hydrogen gas have been developed from aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCN) prepared from wood cellulose: TOCN-coated plastic films and self-standing TOCN films. Compared with TOCNs with sodium, lithium, potassium, and cesium carboxylate groups, TOCN with free carboxyl groups (TOCN-COOH) had much high and selective H2 gas permeation performance. Because permeabilities of H2, N2, O2, and CO2 gases through the membranes primarily depended on their kinetic diameters, the gas permeation behavior of the various TOCNs can be explained in terms of a diffusion mechanism. Thus, the selective H2 gas permeability for TOCN-COOH was probably due to a larger average size in free volume holes present between nanofibrils in the layer and film than those of other TOCNs with metal carboxylate groups. The obtained results indicate that TOCN-COOH membranes are applicable as biobased H2 gas separation membranes in fuel cell electric power generation systems.

  8. Plant cellulose synthesis: CESA proteins crossing kingdoms.

    Science.gov (United States)

    Kumar, Manoj; Turner, Simon

    2015-04-01

    Cellulose is a biopolymer of considerable economic importance. It is synthesised by the cellulose synthase complex (CSC) in species ranging from bacteria to higher plants. Enormous progress in our understanding of bacterial cellulose synthesis has come with the recent publication of both the crystal structure and biochemical characterisation of a purified complex able to synthesis cellulose in vitro. A model structure of a plant CESA protein suggests considerable similarity between the bacterial and plant cellulose synthesis. In this review article we will cover current knowledge of how plant CESA proteins synthesise cellulose. In particular the focus will be on the lessons learned from the recent work on the catalytic mechanism and the implications that new data on cellulose structure has for the assembly of CESA proteins into the large complex that synthesis plant cellulose microfibrils.

  9. Development of nonflammable cellulosic foams

    Science.gov (United States)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  10. Biocompatibility of Bacterial Cellulose Based Biomaterials

    OpenAIRE

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received...

  11. A comparison study of the EF-18 agar/Hydrophobic Grid Membrane Filter (HGMF) method and the enzyme linked antibody (ELA)/HGMF method to the HPB standard method in the isolation of Salmonella.

    Science.gov (United States)

    Warburton, D W; Arling, V; Worobec, S; Mackenzie, J; Todd, E C; Lacasse, P; Lamontagne, G; Plante, R; Shaw, S; Bowen, B

    1994-09-01

    As part of a comparative and collaborative study of rapid methods for the detection of Salmonella and the standard Health Protection Branch (HPB) method, six Federal and Provincial Laboratories compared the EF-18 agar/Hydrophobic Grid Membrane Filters (HGMF) method to the standard HPB method. Two Federal Laboratories also compared the enzyme linked antibody (ELA)/HGMF method (which is a further development of the EF-18 agar/HGMF method) to the standard method. During this study the false-negative rates ranged from 0% to 15% for the standard HPB method, from 5.88% to 43.5% for the EF-18 agar/HGMF method, and from 0% to 10.5% for the ELA/HGMF method. The EF-18 agar/HGMF method did not compare well with the standard HPB method due to the number of false-negatives. Problems with this method resulted from the inability to isolate colonies of Salmonella on the HGMF due to the small colony size, abnormal colony coloration, and overgrowth by competitors. The ELA/HGMF method, however, was shown to be comparable to the standard HPB method. The main advantages of this method are that the antibody-staining step is independent of colony coloration and carbohydrate utilization on the plating media; the ability to detect some unusual strains of Salmonella irrespective of their atypical reactions on the media; and the ELA staining can indicate the presence of Salmonella even when the HGMF is overgrown by competitors. Also, cultural confirmation can proceed simultaneously yet independently of the ELA staining procedure. The data presented here indicate that this method is worth further study.

  12. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...

  13. The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators

    Institute of Scientific and Technical Information of China (English)

    Logan BASHLINE; Juan DU; Ying GU

    2011-01-01

    Cellulose biosynthesis is a topic of intensive research not only due to the significance of cellulose in the integrity of plant cell walls,but also due to the potential of using cellulose,a natural carbon source,in the production ot biofuels.Characterization of the composition,regulation,and trafficking of cellulose synthase complexes (CSCs) is critical to an understanding of cellulose biosynthesis as well as the characterization of additional proteins that contribute to the production of cellulose either through direct interactions with CSCs or through indirect mechanisms.In this review,a highlight of a few proteins that appear to affect cellulose biosynthesis,which includes:KORRIGAN (KOR),Cellulose Synthase-Interactive Protein 1 (CSI1),and the poplar microtubule-associated protein,PttMAP20,will accompany a description of cellulose synthase (CESA) behavior and a discussion of CESA trafficking compartments that might act in the regulation of cellulose biosynthesis.

  14. PROPERTIES OF BACTERIAL CELLULOSE AND ITS INFLUENCE ON THE PHYSICAL PROPERTIES OF PAPER

    Directory of Open Access Journals (Sweden)

    Wen-Hua Gao

    2011-02-01

    Full Text Available Bacterial cellulose is a promising source of biodegradable polymers having high purity. The time required to disperse bacterial cellulose wet membranes was studied, along with evaluation by infrared spectroscopy and thermal analysis of the dispersed bacterial fiber and tests of the physical properties of the sheet. The results showed that bacterial cellulose wet membrane can be dispersed well, forming fibers when the dispersing time was 3 minutes at a suitable concentration. FT-IR results showed that the composition of bacterial fiber is similar to that of bleached softwood fibers. Thus, the morphology, thermal performance, and the length of bacterial fibers are significantly different. The sheets’ physical properties show that with the increasing dosage of bacterial fibers (relative to softwood fiber, the properties of tensile index, tear index, burst index, and stiffness greatly improve, while the porosity and the relative water absorption decrease.

  15. CRYSTAL FILTER TEST SET

    Science.gov (United States)

    CRYSTAL FILTERS, *HIGH FREQUENCY, *RADIOFREQUENCY FILTERS, AMPLIFIERS, ELECTRIC POTENTIAL, FREQUENCY, IMPEDANCE MATCHING , INSTRUMENTATION, RADIOFREQUENCY, RADIOFREQUENCY AMPLIFIERS, TEST EQUIPMENT, TEST METHODS

  16. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  17. Adsorption and desorption of cellulose derivatives.

    NARCIS (Netherlands)

    Hoogendam, C.W.

    1998-01-01

    Cellulose derivatives, in particular carboxymethyl cellulose (CMC) are used in many (industrial) applications. The aim of this work is to obtain insight into the adsorption mechanism of cellulose derivatives on solid-liquid interfaces.In chapter 1 of this thesis we discuss some appl

  18. Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains

    OpenAIRE

    Nigmatullin, R.; Lovitt, R.; Wright, C; Linder, M.; Nakari-Setälä, T; Gama, F. M.

    2004-01-01

    Colloidal probe microscopy has been used to study the interaction between model cellulose surfaces and the role of cellulose binding domain (CBD), peptides specifically binding to cellulose, in interfacial interaction of cellulose surfaces modified with CBDs. The interaction between pure cellulose surfaces in aqueous electrolyte solution is dominated by double layer repulsive forces with the range and magnitude of the net force dependent on electrolyte concentration. AFM imaging reve...

  19. Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells

    OpenAIRE

    Chukwuemeka P. Azubuike; Jimson O. Odulaja; Augustine O Okhamafe

    2012-01-01

    α-Cellulose and microcrystalline cellulose powders, derived from agricultural waste products, that have for thepharmaceutical industry, desirable physical (flow) properties were investigated. α–Cellulose (GCN) wasextracted from groundnut shell (an agricultural waste product) using a non-dissolving method based oninorganic reagents. Modification of this α -cellulose was carried out by partially hydrolysing it with 2Nhydrochloric acid under reflux to obtain microcrystalline cellulose (MCGN). Th...

  20. Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Cellulose being an excellent biopolymer has cemented its place firmly in many industries as a coating material, textile, composites, and biomaterial applications. In the present study, we have investigated the effect of biofield treatment on physicochemical properties of cellulose and cellulose acetate. The cellulose and cellulose acetate were exposed to biofield and further the chemical and thermal properties were investigated. X-ray diffraction study asserted that the biofield treatment did...

  1. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  2. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.

    Science.gov (United States)

    Machado, Rachel T A; Gutierrez, Junkal; Tercjak, Agnieszka; Trovatti, Eliane; Uahib, Fernanda G M; Moreno, Gabriela de Padua; Nascimento, Andresa P; Berreta, Andresa A; Ribeiro, Sidney J L; Barud, Hernane S

    2016-11-01

    A strain isolated from Kombucha tea was isolated and used as an alternative bacterium for the biosynthesis of bacterial cellulose (BC). In this study, BC generated by this novel bacterium was compared to Gluconacetobacter xylinus biosynthesized BC. Kinetic studies reveal that Komagataeibacter rhaeticus was a viable bacterium to produce BC according to yield, thickness and water holding capacity data. Physicochemical properties of BC membranes were investigated by UV-vis and Fourier transform infrared spectroscopies (FTIR), thermogravimetrical analysis (TGA) and X-ray diffraction (XRD). Additionally, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used for morphological characterization. Mechanical properties at nano and macroscale were studied employing PeakForce quantitative nanomechanical property mapping (QNM) and dynamic mechanical analyzer (DMA), respectively. Results confirmed that BC membrane biosynthesized by Komagataeibacter rhaeticus had similar physicochemical, morphological and mechanical properties than BC membrane produced by Gluconacetobacter xylinus and can be widely used for the same applications.

  3. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors

    Science.gov (United States)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto

    2015-03-01

    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  4. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  5. Use of biomimetic forward osmosis membrane for trace organics removal

    DEFF Research Database (Denmark)

    Madsen, Henrik T.; Bajraktari, Niada; Helix Nielsen, Claus;

    2015-01-01

    The use of forward osmosis for the removal of trace organics from water has recently attracted considerable attention as an alternative to traditional pressure driven membrane filtration. However, the existing forward osmosis membranes have been found to be ineffective at rejecting small neutral...... organic pollutants, which limits the applicability of the forward osmosis process. In this study a newly developed biomimetic membrane was tested for the removal of three selected trace organics that can be considered as a bench marking test for a membrane[U+05F3]s ability to reject small neutral organic...... pollutants in aqueous solution. The performance of this membrane was compared with a standard cellulose acetate forward osmosis membrane. The aquaporin membrane was found to have rejection values above 97% for all three trace organics, which was significantly higher than the cellulose acetate membrane...

  6. Kinetic of Adsorption of Urea Nitrogen onto Chitosan Coated Dialdehyde Cellulose under Catalysis of Immobilized Urease

    Institute of Scientific and Technical Information of China (English)

    Zu Pei LIANG; Ya Qing FENG; Zhi Yan LIANG; Shu Xian MENG

    2005-01-01

    The adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose (CDAC)under catalysis of immobilized urease in gelatin membrane (IE) was studied in batch system. The pseudo first-order and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model.

  7. Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly.

    Science.gov (United States)

    Solway, Douglas R; Consalter, Mauricio; Levinson, Dennis J

    2010-01-01

      In a randomized trial of predominantly category II and III skin tears in a population of frail elderly nursing home residents, standard wound care (24 residents) with Xeroform™ and a secondary dressing (Tegaderm™) was compared with a single application of a microbial cellulose membrane Dermafill (27 residents). Outcomes included the time to wound closure, pain reduction, and ease of use. While wound area was slightly larger in the microbial cellulose treated group, the healing time was equivalent to controls. However, pain control, ease of use, and patient and nursing staff satisfaction were superior to control with the use of the microbial cellulose wound dressing.

  8. Foaming of Ethyl Hydroxyethyl Cellulose

    OpenAIRE

    Carrillo Agilera, Marc

    2015-01-01

    The current depletion of petroleum resources together with environmental issues have led to new approaches in plastic manufacturing. This trend involves using ecofriendly materials coming from renewable resources. Good candidates for this, due to their properties and availability, are the cellulose derivatives. Some of them, such as hydroxypropyl methylcellulose (HPMC), showed in previous studies a promising behavior when making polymeric foams. Unfortunately, the corresponding...

  9. Cellulose nanomaterials review: structure, properties and nanocomposites.

    Science.gov (United States)

    Moon, Robert J; Martini, Ashlie; Nairn, John; Simonsen, John; Youngblood, Jeff

    2011-07-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).

  10. Linear polymer separation using carbon-nanotube-modified centrifugal filter units.

    Science.gov (United States)

    Krawczyk, Tomasz; Marian, Karolina; Pawlyta, Mirosława

    2016-02-01

    The separation of linear polymers such as polysaccharides and polyethylene glycol was performed with modified commercial centrifugal filter units. The deposition of a 0.16-0.35 μm layer of modified carbon nanotubes prevented permeation of linear polymers of molecular weight higher than 20 000 Da through the membrane. It allowed facile purification of solution of 0.1 g of polymer samples from small molecules within 25 min by using a bench-top centrifuge. The structure of modified carbon nanotubes was optimized in order to achieve good adhesion to the low binding regenerated cellulose surface and low solubility in aqueous solutions after deposition. The best modification of carbon nanotubes was oxidation and subsequent amide formation of diethanolamine. Introduction of acetic acid groups using sodium chloroacetate worked equally well. The modified filter could be used multiple times without the decrease of the efficiency. The carbon nanotubes layer was stable in aqueous solutions in a pH range of 1-7. The proposed method provides a convenient way of purification of modified polymers in research areas such as drug delivery or macromolecular probes synthesis.

  11. Evaluation of Alternative Filter Media for the Rotary Microfilter

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-11-09

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

  12. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus.

    Science.gov (United States)

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Lin, Xiao-Qing; Chen, Xue-Fang; Chen, Xin-De

    2016-01-01

    Although litchi has both nutrient and edible value, the extremely short preservation time limited its further market promotion. To explore processed litchi products with longer preservation time, litchi extract was selected as an alternative feedstock for production of bacterial cellulose (BC). After 2 weeks of static fermentation, 2.53 g/L of the BC membrane was obtained. The trace elements including magnesium (Mg) and sodium (Na) in the litchi extract were partly absorbed in the BC membrane, but no potassium (K) element was detected in it, curiously. Scanning electron microscope (SEM) photographs exhibited an ultrafine network nanostructure for the BC produced in the litchi extract. Analysis of the fourier-transform infrared spectroscopy (FTIR) confirmed the pellicles to be a cellulosic material. Interestingly, X-ray diffraction (XRD) results showed the BC membrane obtained from litchi extract had higher crystallinity of 94.0% than that from HS medium. Overall, the work showed the potential of producing high value-added polymer from litchi resources.

  13. Poly(ethyleneimine) modified filters for the removal of leukocytes from blood

    NARCIS (Netherlands)

    Bruil, Anton; Oosterom, Hieke A.; Steneker, Ingeborg

    1993-01-01

    Polyurethane membrane filters and filters coated with poly(ethyleneimine) were used to investigate the influence of leukocyte adhesion during filtration. Treatment of the filters with an aqueous solution of 1% (w/v) poly(ethyleneimine) (PEI) led to the introduction of amine groups at the filter surf

  14. From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

    Directory of Open Access Journals (Sweden)

    Maria Helena Godinho

    2014-06-01

    Full Text Available Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR, Rheology coupled with NMR (Rheo-NMR, rheology, optical methods, Magnetic Resonance Imaging (MRI, Wide Angle X-rays Scattering (WAXS, were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

  15. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry.

    Science.gov (United States)

    Hill, Joseph L; Hammudi, Mustafa B; Tien, Ming

    2014-12-01

    Cellulose is the most abundant renewable polymer on Earth and a major component of the plant cell wall. In vascular plants, cellulose synthesis is catalyzed by a large, plasma membrane-localized cellulose synthase complex (CSC), visualized as a hexameric rosette structure. Three unique cellulose synthase (CESA) isoforms are required for CSC assembly and function. However, elucidation of either the number or stoichiometry of CESAs within the CSC has remained elusive. In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This ratio was determined utilizing a simple but elegant method of quantitative immunoblotting using isoform-specific antibodies and (35)S-labeled protein standards for each CESA. Additionally, the observed equimolar stoichiometry was found to be fixed along the axis of the stem, which represents a developmental gradient. Our results complement recent spectroscopic analyses pointing toward an 18-chain cellulose microfibril. Taken together, we propose that the CSC is composed of a hexamer of catalytically active CESA trimers, with each CESA in equimolar amounts. This finding is a crucial advance in understanding how CESAs integrate to form higher order complexes, which is a key determinate of cellulose microfibril and cell wall properties.

  16. Study of nano-fiber cellulose production by Glucanacetobacter xylinum ATCC 10245.

    Science.gov (United States)

    Norouzian, D; Farhangi, A; Tolooei, S; Saffari, Z; Mehrabi, M R; Chiani, M; Ghassemi, S; Farahnak, M; Akbarzadeh, A

    2011-08-01

    Bacterial Celluloses (BC) are gaining importance in research and commerce due to numerous factors affecting the bacterial cellulose characteristics and application in different industries. The aim of the present study was to produce bacterial cellulose in different media using different cultivation vessels. Bacterial cellulose was produced by static cultivation of Glucanacetobacter xylinum ATCC 10245 in different culture media such as Brain Heart Agar, Luria Bertani Agar /Broth, Brain Heart Infusion, Hestrin-Schramm and medium no. 125. Cultivation of bacterium was conducted in various culture vessels with different surface area. The cellulose membrane was treated and purified with a 0.1 M NaOH solution at 90 degreesC for 30 min and dried by a freeze- drier at -40 degreesC to obtain BC. The prepared bacterial cellulose was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). The amount of produced BC was related directly to the surface area of culture vessels.

  17. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    Science.gov (United States)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2016-04-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  18. Living Membranes as Environmental Detectors

    Science.gov (United States)

    2016-02-19

    not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Tufts University 20 Professors Row Medford, MA...establishing the fundamentals to bring the living membrane concept to fruition. Chemical and biological weapons (CBW) present unique challenges with regards...of target bacteria  Genetically malleable host organism  Tailorable cellulose pellicle formulation  Biologically -driven rather than chemical

  19. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-10-01

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  20. Cellulose filtration of blood from malaria patients for improving ex vivo growth of Plasmodium falciparum parasites

    DEFF Research Database (Denmark)

    Mkumbaye, Sixbert I; Minja, Daniel T R; Jespersen, Jakob S;

    2017-01-01

    BACKGROUND: Establishing in vitro Plasmodium falciparum culture lines from patient parasite isolates can offer deeper understanding of geographic variations of drug sensitivity and mechanisms of malaria pathogenesis and immunity. Cellulose column filtration of blood is an inexpensive, rapid...... and effective method for the removal of host factors, such as leucocytes and platelets, significantly improving the purification of parasite DNA in a blood sample. METHODS: In this study, the effect of cellulose column filtration of venous blood on the initial in vitro growth of P. falciparum parasite isolates....... falciparum merozoite surface protein 2 genotyping was performed using nested PCR on extracted genomic DNA, and the var gene transcript levels were investigated, using quantitative PCR on extracted RNA, at admission and 4 days of culture. RESULTS: The cellulose-filtered parasites grew to higher parasitaemia...

  1. Convergent Filter Bases

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-09-01

    Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.

  2. Convergent Filter Bases

    OpenAIRE

    Coghetto Roland

    2015-01-01

    We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

  3. Cellulose nanocrystal submonolayers by spin coating.

    Science.gov (United States)

    Kontturi, Eero; Johansson, Leena-Sisko; Kontturi, Katri S; Ahonen, Päivi; Thüne, Peter C; Laine, Janne

    2007-09-11

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images, anionic cellulose nanocrystals formed small aggregates on the anionic silica substrate, whereas a uniform two-dimensional distribution of nanocrystals was achieved on the cationic titania substrate. The uniform distribution of cellulose nanocrystal submonolayers on titania is an important factor when dimensional analysis of the nanocrystals is desired. Furthermore, the amount of nanocrystals deposited on titania was multifold in comparison to the amounts on silica, as revealed by AFM image analysis and X-ray photoelectron spectroscopy. Amorphous cellulose, the third substrate, resulted in a somewhat homogeneous distribution of the nanocrystal submonolayers, but the amounts were as low as those on the silica substrate. These differences in the cellulose nanocrystal deposition were attributed to electrostatic effects: anionic cellulose nanocrystals are adsorbed on cationic titania in addition to the normal spin coating deposition. The anionic silica surface, on the other hand, causes aggregation of the weakly anionic cellulose nanocrystals which are forced on the repulsive substrate by spin coating. The electrostatically driven adsorption also influences the film thickness of continuous ultrathin films of cellulose nanocrystals. The thicker films of charged nanocrystals on a substrate of opposite charge means that the film thickness is not independent of the substrate when spin coating cellulose nanocrystals in the ultrathin regime (<100 nm).

  4. Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis.

    Science.gov (United States)

    Miart, Fabien; Desprez, Thierry; Biot, Eric; Morin, Halima; Belcram, Katia; Höfte, Herman; Gonneau, Martine; Vernhettes, Samantha

    2014-01-01

    During cytokinesis a new crosswall is rapidly laid down. This process involves the formation at the cell equator of a tubulo-vesicular membrane network (TVN). This TVN evolves into a tubular network (TN) and a planar fenestrated sheet, which extends at its periphery before fusing to the mother cell wall. The role of cell wall polymers in cell plate assembly is poorly understood. We used specific stains and GFP-labelled cellulose synthases (CESAs) to show that cellulose, as well as three distinct CESAs, accumulated in the cell plate already at the TVN stage. This early presence suggests that cellulose is extruded into the tubular membrane structures of the TVN. Co-localisation studies using GFP-CESAs suggest the delivery of cellulose synthase complexes (CSCs) to the cell plate via phragmoplast-associated vesicles. In the more mature TN part of the cell plate, we observed delivery of GFP-CESA from doughnut-shaped organelles, presumably Golgi bodies. During the conversion of the TN into a planar fenestrated sheet, the GFP-CESA density diminished, whereas GFP-CESA levels remained high in the TVN zone at the periphery of the expanding cell plate. We observed retrieval of GFP-CESA in clathrin-containing structures from the central zone of the cell plate and from the plasma membrane of the mother cell, which may contribute to the recycling of CESAs to the peripheral growth zone of the cell plate. These observations, together with mutant phenotypes of cellulose-deficient mutants and pharmacological experiments, suggest a key role for cellulose synthesis already at early stages of cell plate assembly.

  5. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  6. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  7. Design and development of high performance panel air filter with experimental evaluation and analysis of filter media pleats

    Directory of Open Access Journals (Sweden)

    Sagar R. Patil

    2015-11-01

    Full Text Available In automobile vehicles mostly plastic molded panel filters used for the purpose of engine air filtration. Fibrous structured cellulose media were being used with different permeability’s according to requirement of rated air flow rate required for the engine. To optimize the filter pleat design of automotive panel air filter, it is important to study correlation of pressure drop, dust holding capacity & efficiency. The main role of a filter is to provide least pressure drop with high dust holding and efficiency. A channel made for the testing of different pleat designs. This research comprises of experimental design & evaluation of filter element with variable pleat depth and pleat density. This assessment offers the selection of pleat design according to the performance requirements.

  8. Flexible Photonic Cellulose Nanocrystal Films

    OpenAIRE

    Guidetti, G.; Atifi, S; Vignolini, S; Hamad, WY

    2016-01-01

    The fabrication of self-assembled cellulose nanocrystal (CNC) films of tunable photonic and mechanical properties using a facile, green approach is demonstrated. The combination of tunable flexibility and iridescence can dramatically expand CNC coating and film barrier capabilities for paints and coating applications, sustainable consumer packaging products, as well as effective templates for photonic and optoelectronic materials and structures. CelluForce Inc., Biotechnology and Biologica...

  9. Preparation of 14C Radiolabelled Sodium Carboxymethyl Cellulose

    Institute of Scientific and Technical Information of China (English)

    CHEN; Bao-jun; YANG; Hong-wei; LI; Shuai

    2013-01-01

    Carboxymethyl cellulose(CMC)is a kind of cellulose derivative.CMC has wide applications,including food,daily chemicals,pharmaceutical industry and chemical industry,etc.In order to study the metabolism of CMC,the sodium carboxymethyl cellulose was labelled with 14C.The carboxymethyl cellulose was labelled with 14C by treatment with alkalized cellulose and 14C-

  10. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    Science.gov (United States)

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  11. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    Science.gov (United States)

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose.

  12. Assessment of solvents for cellulose dissolution.

    Science.gov (United States)

    Ghasemi, Mohammad; Tsianou, Marina; Alexandridis, Paschalis

    2017-03-01

    A necessary step in the processing of biomass is the pretreatment and dissolution of cellulose. A good solvent for cellulose involves high diffusivity, aggressiveness in decrystallization, and capability of disassociating the cellulose chains. However, it is not clear which of these factors and under what conditions should be improved in order to obtain a more effective solvent. To this end, a newly-developed phenomenological model has been applied to assess the controlling mechanism of cellulose dissolution. Among the findings, the cellulose fibers remain crystalline almost to the end of the dissolution process for decrystallization-controlled kinetics. In such solvents, decreasing the fiber crystallinity, e.g., via pretreatment, would result in a considerable increase in the dissolution rate. Such insights improve the understanding of cellulose dissolution and facilitate the selection of more efficient solvents and processing conditions for biomass. Specific examples of solvents are provided where dissolution is limited due to decrystallization or disentanglement.

  13. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  14. Miniaturized dielectric waveguide filters

    Science.gov (United States)

    Sandhu, Muhammad Y.; Hunter, Ian C.

    2016-10-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  15. Cellulose nanomaterials review: structure, properties and nanocomposites

    OpenAIRE

    Moon, Robert J.; Martini, Ashlie; Nairn, John; Simonsen, John; Youngblood, Jeffrey

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction...

  16. Drag Reduction of Bacterial Cellulose Suspensions

    Directory of Open Access Journals (Sweden)

    Satoshi Ogata

    2011-01-01

    Full Text Available Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechanical shear.

  17. Size Effects of Nano-crystalline Cellulose

    Institute of Scientific and Technical Information of China (English)

    Guo Kang LI; Xiao Fang LI; Yong JIANG; Mei Zhen ZENG; En Yong DING

    2003-01-01

    Natural cellulose with the crystal form of cellulose Ⅰ, when treated with condensed lye(e.g. 18%NaOH), can change into new crystal form of cellulose Ⅱ. But the nano-crystallinecellulose(NCC) can do it when only treated with dilute lye (e.g. 1%NaOH) at room temperatureand even can dissolve into slightly concentrated lye (e.g. 4%NaOH).

  18. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives

    OpenAIRE

    1982-01-01

    In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives. In the presence of all of these substituted celluloses, normal fasciation of microfibril bundles to form the typical twisting ribbon is prevented. Alteration of ribbon assembly is most extensive in the presen...

  19. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  20. Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol.

    Science.gov (United States)

    Todero Ritter, Carla Eliana; Camassola, Marli; Zampieri, Denise; Silveira, Mauricio Moura; Dillon, Aldo José Pinheiro

    2013-01-01

    The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v) sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v) soy bran; 0.1% (w/v) wheat bran; and a solution of salts. The highest filter paper activity (FPA) (1.95  ±  0.04 IU·mL(-1)) was obtained on the seventh day in the medium containing 0.5% (w/v) sorbitol and 0.5% (w/v) cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day (9.99 ± 0.75 IU·mL(-1)) in the medium containing 0.75% (w/v) sorbitol and 0.75% (w/v) cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v) sorbitol and 0.25% (w/v) cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems.

  1. Cytocompatible cellulose hydrogels containing trace lignin.

    Science.gov (United States)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference.

  2. Carboxymethylation of Cellulose by Microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    YE Jun; XIONG Jian; SU Yingzhi; XIAO Ping

    2001-01-01

    @@ Cellulose may be readily converted into ethers involving primary and secondary alcohol groups in each monomer unit and the glycosidic bonds. However, these reactions are rather more complicated than with simple substances, because the stereochemistry of the cellulose molecule is such that the vast majority of its hydroxyl groups form intra-chain hydrogen bonds or inter-chain hydrogen bonds with contiguous molecules. Carboxymethylcellulose (CMC) has played an important part in the commercial uses of cellulose derivatives. CMC becomes alkali and water soluble. The polarity can, in fact, be increased by introduction of ionizing groups, ie carboxymethyl group. CMC is generally produced by the reaction of alkali cellulose with chloroacetic acid.

  3. Chemo-catalytic valorization of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Palkovits, R. [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie

    2012-07-01

    Cellulose can be utilized as carbon source for the production of novel platform molecules as well as fuel motifs. Promising transformation strategies cover the hydrolytic hydrogenation or hydrogenolysis of cellulose to sugar alcohols, the hydrolysis of cellulose to glucose followed by dehydration to 5-hydroxymethylfurfural or levulinic acid and the further hydrogenation of levulinic acid to {gamma}-valerolactone. Main challenges result from the high degree of functionalization of cellulosic feedstocks. In line, processes are carried out in liquid phase utilizing rather polar solvents and aiming for a tailored defunctionalisation of these oxygen rich compounds. Consequently, such transformations require novel strategies concerning the development of suitable catalysts and appropriate process concepts. (orig.)

  4. [Supramolecular reorganizations in cellulose during hydration].

    Science.gov (United States)

    Grunin, Iu B; Grunin, L Iu; Talantsev, V I; Nikol'skaia, E A; Masas, D S

    2015-01-01

    The analysis of modern ideas about the structural organization of the cellulose microfibrils is carried out. The mechanism of the formation of additional capillary-porous system of cellulose under moistening is offered. It is established that when the moisture content of cellulose reaches 8-10%, the filling of its micropores occurs with a simultaneous increase in their cross sizes, a specific surface and reduction in the degree of crystallinity of specimens. Within the proposed model of microfibril construction the parameters of supramolecular structure and capillary-porous system of cotton cellulose are determined.

  5. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis.

    Science.gov (United States)

    Zhang, Guan; Ni, Chengsheng; Huang, Xiubing; Welgamage, Aakash; Lawton, Linda A; Robertson, Peter K J; Irvine, John T S

    2016-01-28

    Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.

  6. Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns

    NARCIS (Netherlands)

    Boerstoel, H.

    2006-01-01

    The presen thesis describes a new process for manufacturing high tenacity and high modulus cellulose yarns. A new direct solvent for cellulose has been discovered, leading to liquid crystalline solutions. This new solvent, superphosphoric acid, rapidly dissolves cellulose. These liquid crystalline s

  7. Use of biosynthetic cellulose membrane in the guided tissue regeneration

    OpenAIRE

    Iamaguti, Luciana Santini; Universidade Estadual Paulista; Brandão, Cláudia Valéria Seullner; Universidade Estadual Paulista

    2007-01-01

    Guided Tissue Regeneration (GTR) is a regenerative treatment modality that requires the placement of a physical barrier over a bone defect in such a way that the proliferation of the surrounding soft tissues into the barrier-protected area is prevented. Thereby in the guided osseous regeneration allowing boneforming cells from the existent bone edges to invade the space and produce bone. The physical barriers should be biocompatible, allow cellular occlusion, maintain adequate space, tissue i...

  8. CESA TRAFFICKING INHIBITOR inhibits cellulose deposition and interferes with the trafficking of cellulose synthase complexes and their associated proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1.

    Science.gov (United States)

    Worden, Natasha; Wilkop, Thomas E; Esteve, Victor Esteva; Jeannotte, Richard; Lathe, Rahul; Vernhettes, Samantha; Weimer, Bart; Hicks, Glenn; Alonso, Jose; Labavitch, John; Persson, Staffan; Ehrhardt, David; Drakakaki, Georgia

    2015-02-01

    Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls.

  9. Filter quality of pleated filter cartridges.

    Science.gov (United States)

    Chen, Chun-Wan; Huang, Sheng-Hsiu; Chiang, Che-Ming; Hsiao, Ta-Chih; Chen, Chih-Chieh

    2008-04-01

    The performance of dust cartridge filters commonly used in dust masks and in room ventilation depends both on the collection efficiency of the filter material and the pressure drop across the filter. Currently, the optimization of filter design is based only on minimizing the pressure drop at a set velocity chosen by the manufacturer. The collection efficiency, an equally important factor, is rarely considered in the optimization process. In this work, a filter quality factor, which combines the collection efficiency and the pressure drop, is used as the optimization criterion for filter evaluation. Most respirator manufacturers pleat the filter to various extents to increase the filtration area in the limit space within the dust cartridge. Six sizes of filter holders were fabricated to hold just one pleat of filter, simulating six different pleat counts, ranging from 0.5 to 3.33 pleats cm(-1). The possible electrostatic charges on the filter were removed by dipping in isopropyl alcohol, and the air velocity is fixed at 100 cm s(-1). Liquid dicotylphthalate particles generated by a constant output atomizer were used as challenge aerosols to minimize particle loading effects. A scanning mobility particle sizer was used to measure the challenge aerosol number concentrations and size distributions upstream and downstream of the pleated filter. The pressure drop across the filter was monitored by using a calibrated pressure transducer. The results showed that the performance of pleated filters depend not only on the size of the particle but also on the pleat count of the pleated filter. Based on filter quality factor, the optimal pleat count (OPC) is always higher than that based on pressure drop by about 0.3-0.5 pleats cm(-1). For example, the OPC is 2.15 pleats cm(-1) from the standpoint of pressure drop, but for the highest filter quality factor, the pleated filter needed to have a pleat count of 2.65 pleats cm(-1) at particle diameter of 122 nm. From the aspect of

  10. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  11. Improved mechanical stability of acetoxypropyl cellulose upon blending with ultranarrow PbS nanowires in Langmuir monolayer matrix.

    Science.gov (United States)

    Maji, Subrata; Kundu, Sudarshan; Pinto, L F V; Godinho, M H; Khan, Ali Hossain; Acharya, Somobrata

    2013-12-10

    Cellulose and cellulose derivatives have long been used as membrane fabrication. Langmuir monolayer behavior, which naturally mimics membranes, of acetoxypropyl cellulose (APC) and lead sulfide (PbS) nanowire mixtures at different volume ratios is reported. Surface pressure (π)-area (A) isotherms of APC and PbS nanowires mixtures at different volume ratios show a gradual decrease in the monolayer area with increasing volume fraction of PbS nanowires. Change of surface potential with monolayer area at different volume ratios also reveals a gradual increase in the surface potential indicating incorporation of PbS nanowires within APC matrix. The compressibility and elastic constants measurements reveal an enhancement of the elasticity upon incorporation of PbS nanowires up to certain volume fractions. An enhancement in stability of the blend is observed upon PbS nanowire incorporation to the APC matrix. Rheological measurements also support the robustness of the mixture of APC and PbS nanowires in 3D bulk phase. Such robust ultrathin films of cellulose based-nanowire blend obtained by means of the Langmuir technique may lead to novel routes for designing cellulosic-based thin films and membranes.

  12. Poly(ethyleneimine) modified filters for the removal of leukocytes from blood

    OpenAIRE

    Bruil, Anton; Oosterom, Hieke A.; Steneker, Ingeborg

    1993-01-01

    Polyurethane membrane filters and filters coated with poly(ethyleneimine) were used to investigate the influence of leukocyte adhesion during filtration. Treatment of the filters with an aqueous solution of 1% (w/v) poly(ethyleneimine) (PEI) led to the introduction of amine groups at the filter surfaces, as was confirmed by X-ray photoelectron spectroscopy. The modification procedure did not significantly change the porous structure in the filters, as was demonstrated by SEM and porometry. Us...

  13. Melt spray non-woven and cellulose fiber composite binder point product high efficiency fuel filter materials%熔喷无纺布与植物纤维点粘结生产高精度复合燃油滤纸

    Institute of Scientific and Technical Information of China (English)

    胥绍华

    2011-01-01

    this paper introduces the ultrasonic composite fiber filter materials development and in the fuel oil filter paper, and the application of the test results show that the compound ultrasonic testing of filtration material application effect.%本文介绍了高精度过滤材料的研制及其在燃油滤纸中的应用,并通过试验台测试结果说明复合滤材的应用效果

  14. Composing morphological filters

    NARCIS (Netherlands)

    Heijmans, H.J.A.M.

    1995-01-01

    A morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openings and closi

  15. Passive Power Filters

    CERN Document Server

    Künzi, R

    2015-01-01

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  16. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid.

    Science.gov (United States)

    Pang, JinHui; Wu, Miao; Zhang, QiaoHui; Tan, Xin; Xu, Feng; Zhang, XueMing; Sun, RunCang

    2015-05-05

    With the serious "white pollution" resulted from the non-biodegradable plastic films, considerable attention has been directed toward the development of renewable and biodegradable cellulose-based film materials as substitutes of petroleum-derived materials. In this study, environmentally friendly cellulose films were successfully prepared using different celluloses (pine, cotton, bamboo, MCC) as raw materials and ionic liquid 1-ethyl-3-methylimidazolium acetate as a solvent. The SEM and AFM indicated that all cellulose films displayed a homogeneous and smooth surface. In addition, the FT-IR and XRD analysis showed the transition from cellulose I to II was occurred after the dissolution and regeneration process. Furthermore, the cellulose films prepared by cotton linters and pine possessed the most excellent thermal stability and mechanical properties, which were suggested by the highest onset temperature (285°C) and tensile stress (120 MPa), respectively. Their excellent properties of regenerated cellulose films are promising for applications in food packaging and medical materials.

  17. Nucleic acids encoding a cellulose binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Cellulose nanocrystals: synthesis, functional properties, and applications

    Directory of Open Access Journals (Sweden)

    George J

    2015-11-01

    Full Text Available Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. Keywords: sources of cellulose, mechanical properties, liquid crystalline nature, surface modification, nanocomposites 

  19. Idealized powder diffraction patterns for cellulose polymorphs

    Science.gov (United States)

    Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...

  20. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxypropyl cellulose. 172.870 Section 172.870... CONSUMPTION Multipurpose Additives § 172.870 Hydroxypropyl cellulose. The food additive hydroxypropyl... anhydrous basis, not more than 4.6 hydroxypropyl groups per anhydroglucose unit. The additive has a...

  1. Conformational studies of cellulosic fragments by DFT

    Science.gov (United States)

    The study of cellulosic fragments by DFTr is a continuation of our efforts to produce quality structural data that will be valuable to those working in the field of cellulose structure and enzymatic degradation. Using a reduced basis set and density functional DFTr (B3LYP), optimization of cellulosi...

  2. Diffraction from nonperiodic models of cellulose crystals

    Science.gov (United States)

    Powder and fiber diffraction patterns were calculated for model cellulose crystallites with chains 20 glucose units long. Model sizes ranged from four chains to 169 chains, based on cellulose I' coordinates, and were subjected to various combinations of energy minimization and molecular dynamics (M...

  3. Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods

    Directory of Open Access Journals (Sweden)

    May-Britt Hägg

    2013-03-01

    Full Text Available In the past four decades, membrane development has occurred based on the demand in pressure driven processes. However, in the last decade, the interest in osmotically driven processes, such as forward osmosis (FO and pressure retarded osmosis (PRO, has increased. The preparation of customized membranes is essential for the development of these technologies. Recently, several very promising membrane preparation methods for FO/PRO applications have emerged. Preparation of thin film composite (TFC membranes with a customized polysulfone (PSf support, electorspun support, TFC membranes on hydrophilic support and hollow fiber membranes have been reported for FO/PRO applications. These novel methods allow the use of other materials than the traditional asymmetric cellulose acetate (CA membranes and TFC polyamide/polysulfone membranes. This review provides an outline of the membrane requirements for FO/PRO and the new methods and materials in membrane preparation.

  4. BIODEGRADATION OF REGENERATED CELLULOSE FILMS BY FUNGI

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lina; LIU Haiqing; ZHENG Lianshuang; ZHANG Jiayao; DU Yumin; LIU Weili

    1996-01-01

    The biodegradability of Aspergillus niger (A. niger), Mucor (M-305) and Trichoderma (T-311) strains on regenerated cellulose films in media was investigated. The results showed that T-311 strain isolated from soil adhered on the cellulose film fragments has stronger degradation effect on the cellulose film than A. niger strain. The weights, molecular weights and tensile strengths of the cellulose films in both shake culture and solid media decreased with incubation time, accompanied by producing CO2 and saccharides. HPLC, IR and released CO2 analysis indicated that the biodegradation products of the regenerated cellulose films mainly contain oligosaccharides, cellobiose, glucose, arabinose, erythrose, glycerose,glycerol, ethanal, formaldehyde and organic acid, the end products were CO2 and water.After a month, the films were completely decomposed by fungi in the media at 30℃.

  5. Influence of coagulation concentration on properties of regenerated kenaf core membranes produced in NaOH/urea aqueous solution

    Science.gov (United States)

    Azahari, Nor Aziawati; Jaafar, Sharifah Nabihah Syed; Zakaria, Sarani

    2016-11-01

    Cellulose was extracted from kenaf core pulp by a series of bleaching processes and subsequently dissolved using an alkaline NaOH/urea solvent at low temperature. The produced cellulose solution was coagulated with H2SO4 at concentration from 5 to 12 wt% to produce a series of regenerated cellulose (RC) membranes. The surface morphology, structure and physical properties of the membranes were measured with variable pressure scanning electron microscope (VPSEM), X-ray diffraction (XRD), UV-vis spectrophotometer and tensile testing. The results from VPSEM revealed that the pore size of the membranes changed as a function of the concentration of H2SO4 coagulant. RC membranes coagulated with relatively dilute H2SO4 solution exhibited better mechanical properties. Thus, this work provided a promising way to prepare cellulose membranes with different pore sizes and good physical properties.

  6. Removal of xenotropic murine leukemia virus by nanocellulose based filter paper.

    Science.gov (United States)

    Asper, M; Hanrieder, T; Quellmalz, A; Mihranyan, A

    2015-11-01

    The removal of xenotrpic murine leukemia virus (xMuLV) by size-exclusion filter paper composed of 100% naturally derived cellulose was validated. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. algae. The filter paper was characterized using atomic force microscopy, scanning electron microscopy, helium pycnometry, and model tracer (100 nm latex beads and 50 nm gold nanoparticles) retention tests. Following the filtration of xMuLV spiked solutions, LRV ≥5.25 log10 TCID50 was observed, as limited by the virus titre in the feed solution and sensitivity of the tissue infectivity test. The results of the validation study suggest that the nanocellulose filter paper is useful for removal of endogenous rodent retroviruses and retrovirus-like particles during the production of recombinant proteins.

  7. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.

    Science.gov (United States)

    Yüksel, Suna; Kabay, Nalan; Yüksel, Mithat

    2013-12-15

    The removal of an endocrine disrupting compound, bisphenol A (BPA), from model solutions by selected nanofiltration (NF) and reverse osmosis (RO) membranes was studied. The commercially available membranes NF 90, NF 270, XLE BWRO, BW 30 (Dow FilmTech), CE BWRO and AD SWRO (GE Osmonics) were used to compare their performances for BPA removal. The water permeability coefficients, rejection of BPA and permeate flux values were calculated for all membranes used. No significant changes in their BPA removal were observed for all tight polyamide based NF and RO membranes tested except for loose NF 270 membrane. The polyamide based membranes exhibited much better performance than cellulose acetate membrane for BPA removal. Almost a complete rejection (≥ 98%) for BPA was obtained with three polyamide based RO membranes (BW 30, XLE BWRO and AD SWRO). But cellulose acetate based CE BWRO membrane offered a low and variable (10-40%) rejection for BPA.

  8. Advanced imaging as a novel approach to the characterization of membranes for microfiltration applications

    Science.gov (United States)

    Marroquin, Milagro

    The primary objectives of my dissertation were to design, develop and implement novel confocal microscopy imaging protocols for the characterization of membranes and highlight opportunities to obtain reliable and cutting-edge information of microfiltration membrane morphology and fouling processes. After a comprehensive introduction and review of confocal microscopy in membrane applications (Chapter 1), the first part of this dissertation (Chapter 2) details my work on membrane morphology characterization by confocal laser scanning microscopy (CLSM) and the implementation of my newly developed CLSM cross-sectional imaging protocol. Depth-of-penetration limits were identified to be approximately 24 microns and 7-8 microns for mixed cellulose ester and polyethersulfone membranes, respectively, making it impossible to image about 70% of the membrane bulk. The development and implementation of my cross-sectional CLSM method enabled the imaging of the entire membrane cross-section. Porosities of symmetric and asymmetric membranes with nominal pore sizes in the range 0.65-8.0 microns were quantified at different depths and yielded porosity values in the 50-60% range. It is my hope and expectation that the characterization strategy developed in this part of the work will enable future studies of different membrane materials and applications by confocal microscopy. After demonstrating how cross-sectional CLSM could be used to fully characterize membrane morphologies and porosities, I applied it to the characterization of fouling occurring in polyethersulfone microfiltration membranes during the processing of solutions containing proteins and polysaccharides (Chapter 3). Through CLSM imaging, it was determined where proteins and polysaccharides deposit throughout polymeric microfiltration membranes when a fluid containing these materials is filtered. CLSM enabled evaluation of the location and extent of fouling by individual components (protein: casein and polysaccharide

  9. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  10. Membranes in lithium ion batteries.

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  11. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    Science.gov (United States)

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake.

  12. Method of securing filter elements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit body housing.

  13. Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability

    Science.gov (United States)

    Chiappone, A.; Nair, Jijeesh R.; Gerbaldi, C.; Jabbour, L.; Bongiovanni, R.; Zeno, E.; Beneventi, D.; Penazzi, N.

    Methacrylic-based thermo-set gel-polymer electrolyte membranes obtained by a very easy, fast and reliable free radical photo-polymerisation process and reinforced with microfibrillated cellulose particles are here presented. The morphology of the composite electrolytes is investigated by scanning electron microscopy and their thermal behaviour (characteristic temperatures, degradation temperature) are investigated by thermo-gravimetric analysis and differential scanning calorimetry. The composite membranes prepared exhibit excellent mechanical properties, with a Young's modulus as high as about 80 MPa at ambient temperature. High ionic conductivity (approaching 10 -3 S cm -1 at 25 °C) and good overall electrochemical performances are maintained, enlightening that such specific approach would make these hybrid organic, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible lithium based power sources.

  14. 旋转圆板型陶瓷膜过滤器平衡过滤油水乳浊液特性研究%Study on the Charicteristics of Filtration of Oil/Water Emulsion with a Circular Plate with Ceramic Membrane Filter

    Institute of Scientific and Technical Information of China (English)

    阿布都瓦依提·玉苏甫; 王建华; 阿不都拉·艾尼瓦尔

    2012-01-01

    采用旋转圆板型陶瓷膜过滤器对5%的O/W(油/水)乳浊液进行了精密平衡过滤.过滤压力为50,100,150 kPa和圆板旋转速度为125,250,500 r/min时,对过滤速度和过滤量的影响进行了对比分析.结果表明,转速为250 r/min,压力为50 kPa时,达到过滤平衡的时间最短且运行稳定,过滤速度较高过滤量较大,在此条件下过滤效果较为理想.%The 5% 0/W (oil/water) emulsion was accurately filtrated by the circular plate with ceramic membrane filter. When the filter pressure was 50 kPa,100 kPa and 150 kPa and the speed of rotation was 125 r/min, 250 r/min and 500 r/min, it could compare and analyse the influnce of filtration speeds and a-mount of filtration. The result inJicated that when the speed of rotation was 250 r/min and filter pressure was 50 kPa?the time of reaching to filtration balance was the shortest and it was stable. The higher the filtration rate was,the larger the amount of filtration was. Therefore,the optimal condition was the speed of rotation 250 r/min and filter pressure 50 kPa for the filtration of 5% O/W (oil/water) emulsion.

  15. Enhancement of Cellulose Degradation by Cattle Saliva.

    Science.gov (United States)

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale.

  16. Utilization of purified cellulose in fiber studies.

    Science.gov (United States)

    Penner, M H; Liaw, E T

    1990-01-01

    Purified cellulose-type fiber products are widely used in experimental nutrition. Their use in a broad spectrum of studies may potentially lead to the acceptance of the misconception that the various commercially available cellulose products are equivalent. In this paper we have attempted to show that this is not the case. The comparative structural data of Table 2 and the compositional data of Olsen et al provide examples which indicate that purified cellulose preparations should not necessarily be considered equivalent. Unfortunately, our current lack of understanding of how fibers are metabolized and how they may affect specific physiological parameters makes it difficult to determine which, if any, of the measurable structural and chemical properties will be of relevance for a given in vivo study. At present, it appears that researchers utilizing/evaluating the consequences of consuming a purified cellulose-type fiber would be prudent to provide at least a limited amount of data on the properties of the cellulose preparation used in their studies. The characterization of the cellulose product may be done by a variety of methods depending on the expertise of the laboratory. The methods and results discussed in this paper provide an example of the type of information which may be obtained from an in vitro characterization of cellulose products.

  17. A novel cellulose hydrogel prepared from its ionic liquid solution

    Institute of Scientific and Technical Information of China (English)

    LI Lu; LIN ZhangBi; YANG Xiao; WAN ZhenZhen; CUI ShuXun

    2009-01-01

    A novel cellulose hydrogel is prepared by regenerating cellulose from its ionic liquid solution. The transparency cellulose hydrogel presents a good chemical stability and an acceptable mechanical property. This non-toxic cellulose hydrogel should be biocompatibie and may be useful in the future as a biomaterial.

  18. Model films of cellulose. I. Method development and initial results

    NARCIS (Netherlands)

    Gunnars, S.; Wågberg, L.; Cohen Stuart, M.A.

    2002-01-01

    This report presents a new method for the preparation of thin cellulose films. NMMO (N- methylmorpholine- N-oxide) was used to dissolve cellulose and addition of DMSO (dimethyl sulfoxide) was used to control viscosity of the cellulose solution. A thin layer of the cellulose solution is spin- coated

  19. Adsorption of di-2-ethylhexyle phthalate onto nanofiltration membranes at filtering initial phase%纳滤初期邻苯二甲酸二(2-乙基己基)酯在膜上的吸附行为

    Institute of Scientific and Technical Information of China (English)

    程爱华; 王磊; 王旭东

    2012-01-01

    研究了NF90膜和NF70膜对纯水、模拟水和河水中邻苯二甲酸二(2-乙基己基)酯(DEHP)的截留和吸附.结果表明:NF90膜能实现对微量DEHP(浓度为100 μg/L)的有效去除,截留率高达95%以上;纳滤初始阶段,DEHP在膜面的吸附作用较强,吸附率达40%左右.操作压力,pH,共存有机物、无机物和膜孔径影响DEHP在膜上的吸附,初始浓度的影响不大.%The adsorption and retention of di-2-ethylhexyle phthalate(DEHP) in different water matrices (Milli-Q water, simulated water and river water) were examined using two types of nanofiltration membranes (NF90 and NF70). The results showed that DEHP at a concentration of 100 μg/L could be effectively removed by the NF90, and the retention was more than 95%, and the adsorption was about 40% at filtering initial phase. Adsorption of DEHP on membranes was related to operation pressure, pH, coexisting organic and inorganic compounds, and membrane pore size. But no significant effect of DEHP concentration was observed.

  20. Technology of microporous multiple tube membrane filter for purifying cooling water in continuous casting process%连铸冷却水复合膜过滤器技术的研发

    Institute of Scientific and Technical Information of China (English)

    刘俭; 袁章福; 张新; 徐卫飞; 张利娜; 杨柳

    2015-01-01

    In order to achieve energy conservation and emission reduction and reduce water pollution and water con-sumption per ton steel in iron and steel industry,technology of filter for continuous casting cooling water in convert-er steelmaking process was studied,and a filter device whose filter element is porous PVC ceramic composite pipe was successfully developed.Sludge which was obtained by the porous PVC ceramic composite pipe filter was detec-ted,and it was found that the porous PVC ceramic composite pipe filter had a good separation function.Water quali-ty was detected before and after filtration,and it was found that turbidity and suspended solids of water significantly reduced after filtration,and water quality has reached the requirements.Through industrial experiments and nearly three years of practical application,the best operating conditions and backwash conditions of the porous PVC ceram-ic composite pipe filter were obtained.%为了钢铁工业节能减排、降低水污染和吨钢耗水量,进行了转炉炼钢连铸冷却水过滤器技术的研发,成功开发了一种以多孔 PVC 陶瓷复合管为过滤元件的过滤器装置。对由多孔 PVC 陶瓷复合管过滤器过滤的污泥进行检测,可知多孔陶瓷复合过滤管具有很好的分离效果。检测过滤前后的水质,发现过滤后水的浊度和悬浮物含量显著降低,水质达到指标要求。通过工业试验研究和近3年的实际应用,确定了多孔 PVC 陶瓷复合过滤设备的最佳操作条件和反冲洗条件。