WorldWideScience

Sample records for cellulose deficient salmonella

  1. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Directory of Open Access Journals (Sweden)

    Maria T Brandl

    Full Text Available Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  2. PIR-B-deficient mice are susceptible to Salmonella infection.

    Science.gov (United States)

    Torii, Ikuko; Oka, Satoshi; Hotomi, Muneki; Benjamin, William H; Takai, Toshiyuki; Kearney, John F; Briles, David E; Kubagawa, Hiromi

    2008-09-15

    Paired Ig-like receptors of activating (PIR-A) and inhibitory (PIR-B) isoforms are expressed by many hematopoietic cells, including B lymphocytes and myeloid cells. To determine the functional roles of PIR-A and PIR-B in primary bacterial infection, PIR-B-deficient (PIR-B(-/-)) and wild-type (WT) control mice were injected i.v. with an attenuated strain of Salmonella enterica Typhimurium (WB335). PIR-B(-/-) mice were found to be more susceptible to Salmonella infection than WT mice, as evidenced by high mortality rate, high bacterial loads in the liver and spleen, and a failure to clear bacteria from the circulation. Although blood levels of major cytokines and Salmonella-specific Abs were mostly comparable in the two groups of mice, distinct patterns of inflammatory lesions were found in their livers at 7-14 days postinfection: diffuse spreading along the sinusoids in PIR-B(-/-) mice vs nodular restricted localization in WT mice. PIR-B(-/-) mice have more inflammatory cells in the liver but fewer B cells and CD8(+) T cells in the spleen than WT mice at 14 days postinfection. PIR-B(-/-) bone marrow-derived macrophages (BMMphi) failed to control intracellular replication of Salmonella in vitro, in part due to inefficient phagosomal oxidant production, when compared with WT BMMphi. PIR-B(-/-) BMMphi also produced more nitrite and TNF-alpha upon exposure to Salmonella than WT BMMphi did. These findings suggest that the disruption of PIR-A and PIR-B balance affects their regulatory roles in host defense to bacterial infection.

  3. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  4. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models.

    Directory of Open Access Journals (Sweden)

    Michelle S F Tan

    Full Text Available Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD to bacterial cellulose (BC-based plant cell wall models [BC-Pectin (BCP, BC-Xyloglucan (BCX and BC-Pectin-Xyloglucan (BCPX] after growth at different temperatures (28°C and 37°C. We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2 although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.

  5. Cellulose

    Science.gov (United States)

    Cellulose properties and structure are reviewed, with a primary focus on crystal structure and polymorphy. This focus highlights the conversion from cellulose I to cellulose II, which converts the molecules to being all parallel to each other in the crystal to being antiparallel. This has been co...

  6. Dietary cellulose has no effect on the regeneration of hemoglobin in growing rats with iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    M. Catani

    2003-06-01

    Full Text Available The objective of the present study was to determine the effect of cellulose on intestinal iron absorption in rats during recovery from iron deficiency anemia. Twenty-one-day-old male Wistar-EPM rats were fed an iron-free ration for two weeks to induce anemia. At 5 weeks of age, the rats were divided into two groups (both groups receiving 35 mg of elemental iron per kg diet: cellulose group (N = 12, receiving a diet containing 100 g of cellulose/kg and control (N = 12, receiving a diet containing no cellulose. The fresh weight of the feces collected over a 3-day period between the 15th and 18th day of dietary treatment was 10.7 ± 3.5 g in the group receiving cellulose and 1.9 ± 1.2 g in the control group (P<0.001. Total food intake was higher in the cellulose group (343.4 ± 22.0 g than in the control (322.1 ± 13.1 g, P = 0.009 during the 3 weeks of dietary treatment. No significant difference was observed in weight gain (cellulose group = 132.8 ± 19.2, control = 128.0 ± 16.3 g, hemoglobin increment (cellulose group = 8.0 ± 0.8, control = 8.0 ± 1.0 g/dl, hemoglobin level (cellulose group = 12.3 ± 1.2, control = 12.1 ± 1.3 g/dl or in hepatic iron levels (cellulose group = 333.6 ± 112.4, control = 398.4 ± 168.0 µg/g dry tissue. We conclude that cellulose does not adversely affect the regeneration of hemoglobin, hepatic iron level or the growth of rats during recovery from iron deficiency anemia.

  7. Salmonella

    Science.gov (United States)

    ... Linked to Small Turtles More Reports, Publications, and Communication Materials Surveillance Salmonella Atlas MMWR Articles References Communication ... Infections Linked to Red and Black Pepper/Italian-Style Meats 2006 through 2009 Outbreaks Saintpaul Infections Linked ...

  8. Salmonella

    Science.gov (United States)

    Salmonella are facultative anaerobic Gram-negative non-spore forming rods belonging to the family Enterobacteriaceae. Salmonellosis is a zoonotic and foodborne illness that is usually transmitted by the fecal-oral route estimated to be responsible for 1.4 million cases of human infections in 2009 in...

  9. Outer membrane vesicles from flagellin-deficient Salmonella enterica serovar Typhimurium induce cross-reactive immunity and provide cross-protection against heterologous Salmonella challenge

    Science.gov (United States)

    Liu, Qiong; Liu, Qing; Yi, Jie; Liang, Kang; Hu, Bo; Zhang, Xiangmin; Curtiss, Roy; Kong, Qingke

    2016-01-01

    Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine. PMID:27698383

  10. Distribution of the invA, -B, -C, and -D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells.

    Science.gov (United States)

    Galán, J E; Curtiss, R

    1991-09-01

    Invasion of intestinal epithelial cells is an essential virulence factor of salmonellae. A group of genes, invABC and invD, that allow Salmonella typhimurium to penetrate cultured epithelial cells have previously been characterized (J. E. Galán and R. Curtiss III, Proc. Natl. Acad. Sci. USA 86:6383-6387, 1989). The distribution of these genes among Salmonella isolates belonging to 37 different species or serovars was investigated by Southern and colony blot hybridization analyses. Regions of high sequence similarity to the invABC genes were present in all Salonella isolates examined, while regions of sequence similarity to the invD gene were present in all but one (S. arizonae) of the isolates tested, with little restriction fragment length polymorphism. Sequences similar to these genes were not detected in strains of Escherichia coli, Yersinia spp., or Shigella spp. invA mutants (unable to express the invABC genes) of several Salmonella species or serovars, including S. typhi, were constructed and examined for their ability to penetrate Henle-407 cells. All mutants were deficient for entry into cultured epithelial cells, indicating that the invABC genes were not only present in these strains but also functional.

  11. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    Science.gov (United States)

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. PMID:26198258

  12. A dual mechanism of cellulose deficiency in shv3svl1.

    Science.gov (United States)

    Yeats, Trevor H; Somerville, Chris R

    2016-09-01

    SHAVEN3 (SHV3) and its homolog SHAVEN3-like 1 (SVL1) encode glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) that are involved in cellulose biosynthesis and hypocotyl elongation in Arabidopsis thaliana. In a recent report, we showed that the cellulose and hypocotyl elongation defects of the shv3svl1 double mutant are greatly enhanced by exogenous sucrose in the growth medium. Further investigation of this phenomenon showed that shv3svl1 exhibits a hyperpolarized plasma membrane (PM) proton gradient that is coupled with enhanced accumulation of sucrose via the PM sucrose/proton symporter SUC1. The resulting high intracellular sucrose concentration appears to favor starch synthesis at the expense of cellulose synthesis. Here, we describe our interpretation of these results in terms of 2 potential regulators of cellulose synthesis: intracellular sucrose concentration and a putative signaling pathway that involves SHV3-like proteins. PMID:27494413

  13. The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells:An example of metabolic plasticity

    Institute of Scientific and Technical Information of China (English)

    Mara de Castro; Janice G Miller; Jose Luis Acebes; Antonio Encina; Penelope Garca-Angulo; Stephen C Fry

    2015-01-01

    Cell-suspension cultures (Zea mays L., Black Mexican sweet corn) habituated to 2,6-dichlorobenzonitrile (DCB) survive with reduced cellulose owing to hemicellulose network modification. We aimed to define the hemicellulose metabolism modifications in DCB-habituated maize cells showing a mild reduction in cellulose at different stages in the culture cycle. Using pulse-chase radiolabeling, we fed habituated and non-habituated cultures with [3H]arabinose, and traced the distribution of 3H-pentose residues between xylans, xyloglucans and other polymers in several cellular compartments for 5 h. Habituated cells were slower taking up exogenous [3H]arabinose. Tritium was incorporated into polysaccharide-bound arabinose and xylose residues, but habituated cells diverted a higher proportion of their new [3H] xylose residues into (hetero) xylans at the expense of xyloglucan synthesis. During logarithmic growth, habituated cells showed slower vesicular trafficking of polymers, especially xylans. Moreover, habituated cells showed a decrease in the strong wall-binding of all pentose-containing polysaccharides studied; correspondingly, especially in log-phase cultures, habituation increased the proportion of 3H-hemicelluloses ([3H]xylans and [3H]xyloglucan) sloughed into the medium. These findings could be related to the cell walls’ cellulose-deficiency, and consequent reduction in binding sites for hemicelluloses; the data could also reflect the habituated cells’ reduced capacity to integrate arabinox-ylans by extra-protoplasmic phenolic cross-linking, as well as xyloglucans, during wall assembly.

  14. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Science.gov (United States)

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  15. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    Directory of Open Access Journals (Sweden)

    Andreia Michelle Smith-Moritz

    2015-08-01

    Full Text Available The CELLULOSE SYNTHASE-LIKE F6 (CslF6 gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG, a cell wall polysaccharide that is hypothesized to be a tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of three day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell was of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  16. Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  17. Salmonella enterocolitis

    Science.gov (United States)

    Salmonellosis; Nontyphoidal salmonella; Food poisoning - salmonella; Gastroenteritis - salmonella ... Salmonella infection is one of the most common types of food poisoning . It occurs when you swallow ...

  18. Sepse por Salmonella associada à deficiência do receptor da Interleucina-12 (IL-12Rb1)

    OpenAIRE

    Carvalho Beatriz Tavares Costa; Iazzetti Antônio V.; Ferrarini Maria Aparecida G.; Campos Sandra O.; Iazzetti Marco Antônio; Carlesse Fabianne A.M.C.

    2003-01-01

    OBJETIVO: descrever caso clínico de uma criança que desenvolveu septicemia por Salmonella enteritidis, sendo diagnosticada imunodeficiência primária. DESCRIÇÃO: paciente masculino, de um ano e 9 meses, com febre e lesões de pele há 50 dias, internado com lesão perilabial ulcerada com secreção purulenta, lesão ulcerada friável em língua, lesões ulcerocrostosas em membros, pneumonia bilateral com derrame pleural e choque séptico, sendo diagnosticado Salmonella enteritidis como agente etiológico...

  19. Salmonella Prevention

    Science.gov (United States)

    ... Salmonella Reading and Salmonella Abony Infections linked to Alfalfa Sprouts Advice to Consumers & Retailers Case Count Maps ... Signs & Symptoms Key Resources Salmonella Infections Linked to Alfalfa Sprouts from One Contaminated Seed Lot Advice to ...

  20. Salmonella: Salmonellosis

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Hansen, Trine; Maurischat, Sven;

    2015-01-01

    Salmonella remains one of the most important zoonotic pathogenic bacteria and is the causative agents of salmonellosis. The aim of this article is to give an overview of Salmonella and salmonellosis, starting by describing the characteristics of the microorganism Salmonella, including biochemical...

  1. Sepse por Salmonella associada à deficiência do receptor da Interleucina-12 (IL-12Rbeta1) Samonella septicemia associated with interleukin 12 receptor b1 (IL-12Rbeta1) deficiency

    OpenAIRE

    Beatriz Tavares Costa Carvalho; Antônio V. Iazzetti; Maria Aparecida G Ferrarini; Sandra O. Campos; Marco Antônio Iazzetti; Fabianne A.M.C. Carlesse

    2003-01-01

    OBJETIVO: descrever caso clínico de uma criança que desenvolveu septicemia por Salmonella enteritidis, sendo diagnosticada imunodeficiência primária. DESCRIÇÃO: paciente masculino, de um ano e 9 meses, com febre e lesões de pele há 50 dias, internado com lesão perilabial ulcerada com secreção purulenta, lesão ulcerada friável em língua, lesões ulcerocrostosas em membros, pneumonia bilateral com derrame pleural e choque séptico, sendo diagnosticado Salmonella enteritidis como agente etiológico...

  2. Comparative proteomic analysis of Salmonella enterica serovar Typhimurium ppGpp-deficient mutant to identify a novel virulence protein required for intracellular survival in macrophages

    Directory of Open Access Journals (Sweden)

    Kumagai Yoshinori

    2010-12-01

    Full Text Available Abstract Background The global ppGpp-mediated stringent response in pathogenic bacteria plays an important role in the pathogenesis of bacterial infections. In Salmonella enterica serovar Typhimurium (S. Typhimurium, several genes, including virulence genes, are regulated by ppGpp when bacteria are under the stringent response. To understand the control of virulence genes by ppGpp in S. Typhimurium, agarose 2-dimensional electrophoresis (2-DE combined with mass spectrometry was used and a comprehensive 2-DE reference map of amino acid-starved S. Typhimurium strain SH100, a derivative of ATCC 14028, was established. Results Of the 366 examined spots, 269 proteins were successfully identified. The comparative analysis of the wild-type and ppGpp0 mutant strains revealed 55 proteins, the expression patterns of which were affected by ppGpp. Using a mouse infection model, we further identified a novel virulence-associated factor, STM3169, from the ppGpp-regulated and Salmonella-specific proteins. In addition, Salmonella strains carrying mutations in the gene encoding STM3169 showed growth defects and impaired growth within macrophage-like RAW264.7 cells. Furthermore, we found that expression of stm3169 was controlled by ppGpp and SsrB, a response regulator of the two-component system located on Salmonella pathogenicity island 2. Conclusions A proteomic approach using a 2-DE reference map can prove a powerful tool for analyzing virulence factors and the regulatory network involved in Salmonella pathogenesis. Our results also provide evidence of a global response mediated by ppGpp in S. enterica.

  3. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja S.;

    2012-01-01

    Most secondary plant cell walls contain irregular regions known as dislocations or slip planes. Under industrial biorefining conditions dislocations have recently been shown to play a key role during the initial phase of the enzymatic hydrolysis of cellulose in plant cell walls. In this review we...

  4. Salmonella Diagnosis and Treatment

    Science.gov (United States)

    ... Salmonella Reading and Salmonella Abony Infections linked to Alfalfa Sprouts Advice to Consumers & Retailers Case Count Maps ... Signs & Symptoms Key Resources Salmonella Infections Linked to Alfalfa Sprouts from One Contaminated Seed Lot Advice to ...

  5. Reptiles, Amphibians, and Salmonella

    Science.gov (United States)

    ... What's this? Submit Button Past Emails CDC Features Reptiles, Amphibians, and Salmonella Language: English Español (Spanish) Recommend ... live. How do people get Salmonella infections from reptiles and amphibians? Reptiles and amphibians might have Salmonella ...

  6. Salmonella induces prominent gene expression in the rat colon

    Directory of Open Access Journals (Sweden)

    Roosing Susanne

    2007-09-01

    Full Text Available Abstract Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point. As fructo-oligosaccharides (FOS affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase, antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2, inflammation (e.g. calprotectin, oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2 and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9. Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap, showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in

  7. Biofilm Formation and Morphotypes of Salmonella enterica subsp.arizonae Differs from Those of Other Salmonella enterica Subspecies in Isolates from Poultry Houses.

    Science.gov (United States)

    Lamas, A; Fernandez-No, I C; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-07-01

    Salmonella serovars are responsible for foodborne diseases around the world. The ability to form biofilms allows microorganisms to survive in the environment. In this study, 73 Salmonella strains, belonging to four different subspecies, were isolated from poultry houses and foodstuffs and tested. Biofilm formation was measured at four different temperatures and two nutrient concentrations. Morphotypes and cellulose production were evaluated at three different temperatures. The presence of several genes related to biofilm production was also examined. All strains and subspecies of Salmonella had the ability to form biofilms, and 46.57% of strains produced biofilms under all conditions tested. Biofilm formation was strain dependent and varied according to the conditions. This is the first study to analyze biofilm formation in a wide number of Salmonella enterica subsp. arizonae strains, and no direct relationship between the high prevalence of Salmonella enterica subsp. arizonae strains and their ability to form biofilm was established. Morphotypes and cellulose production varied as the temperature changed, with 20°C being the optimum temperature for expression of the red, dry, and rough morphotype and cellulose. Salmonella enterica subsp. arizonae, whose morphotype is poorly studied, only showed a smooth and white morphotype and lacked the csgD and gcpA genes that are implicated in biofilm production. Thus, Salmonella biofilm formation under different environmental conditions is a public health problem because it can survive and advance through the food chain to reach the consumer.

  8. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence.

    Science.gov (United States)

    Jennewein, Jonas; Matuszak, Jasmin; Walter, Steffi; Felmy, Boas; Gendera, Kathrin; Schatz, Valentin; Nowottny, Monika; Liebsch, Gregor; Hensel, Michael; Hardt, Wolf-Dietrich; Gerlach, Roman G; Jantsch, Jonathan

    2015-12-01

    In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that

  9. 78 FR 42526 - Salmonella

    Science.gov (United States)

    2013-07-16

    ... HUMAN SERVICES Food and Drug Administration Salmonella Contamination of Dry Dog Food; Withdrawal of...) entitled ``Sec. 690.700 Salmonella Contamination of Dry Dog Food.'' This CPG is obsolete. DATES: The.... SUPPLEMENTARY INFORMATION: FDA issued the CGP entitled ``Sec. 690.700 Salmonella Contamination of Dry Dog...

  10. A CsgD-Independent Pathway for Cellulose Production and Biofilm Formation in Escherichia coli†

    OpenAIRE

    Da Re, Sandra; Ghigo, Jean-Marc

    2006-01-01

    Bacterial growth on a surface often involves the production of a polysaccharide-rich extracellular matrix that provides structural support for the formation of biofilm communities. In Salmonella, cellulose is one of the major constituents of the biofilm matrix. Its production is regulated by CsgD and the diguanylate cyclase AdrA that activates cellulose synthesis at a posttranscriptional level. Here, we studied a collection of Escherichia coli isolates, and we found that the ability to produc...

  11. Cellulose synthase interacting protein: A new factor in cellulose synthesis

    OpenAIRE

    Gu, Ying; Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the re...

  12. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  13. Genomics of Salmonella Species

    Science.gov (United States)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  14. Cellulose binding domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc (Davis, CA); Doi, Roy (Davis, CA)

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Salmonella typhimurium infection increases p53 acetylation in intestinal epithelial cells.

    Science.gov (United States)

    Wu, Shaoping; Ye, Zhongde; Liu, Xingyin; Zhao, Yun; Xia, Yinglin; Steiner, Andrew; Petrof, Elaine O; Claud, Erika C; Sun, Jun

    2010-05-01

    The ability of Salmonella typhimurium to enter intestinal epithelial cells constitutes a crucial step in pathogenesis. Salmonella invasion of the intestinal epithelium requires bacterial type three secretion system. Type three secretion system is a transport device that injects virulence proteins, called effectors, to paralyze or reprogram the eukaryotic cells. Avirulence factor for Salmonella (AvrA) is a Salmonella effector that inhibits the host's inflammatory responses. The mechanism by which AvrA modulates host cell signaling is not entirely clear. p53 is situated at the crossroads of a network of signaling pathways that are essential for genotoxic and nongenotoxic stress responses. We hypothesized that Salmonella infection activates the p53 pathway. We demonstrated that Salmonella infection increased p53 acetylation. Cells infected with AvrA-sufficient Salmonella have increased p53 acetylation, whereas cells infected with AvrA-deficient Salmonella have less p53 acetylation. In a cell-free system, AvrA possessed acetyltransferase activity and used p53 as a substrate. AvrA expression increased p53 transcriptional activity and induced cell cycle arrest. HCT116 p53-/- cells had less inflammatory responses. In a mouse model of Salmonella infection, intestinal epithelial p53 acetylation was increased by AvrA expression. Our studies provide novel mechanistic evidence that Salmonella modulates the p53 pathway during intestinal inflammation and infection.

  16. [Salmonella pathogenicity islands].

    Science.gov (United States)

    Sırıken, Belgin

    2013-01-01

    Salmonella species are facultative intracellular pathogenic bacteria. They can invade macrophages, dendritic and epithelial cells. The responsible virulence genes for invasion, survival, and extraintestinal spread are located in Salmonella pathogenicity islands (SPIs). SPIs are thought to be acquired by horizontal gene transfer. Some of the SPIs are conserved throughout the Salmonella genus, and some of them are specific for certain serovars. There are differences between Salmonella serotypes in terms of adaptation to host cell, virulence factors and the resulting infection according to SPA presence and characteristics. The most important Salmonella virulence gene clusters are located in 12 pathogenicity islands. Virulence genes that are involved in the intestinal phase of infection are located in SPI-1 and SPI-2 and the remaining SPIs are required for intracellular survival, fimbrial expression, magnesium and iron uptake, multiple antibiotic resistance and the development of systemic infections. In addition SPIs, Sigma ss (RpoS) factors and adaptive acid tolerance response (ATR) are the other two important virulence factors. RpoS and ATR found in virulent Salmonella strains help the bacteria to survive under inappropriate conditions such as gastric acidity, bile salts, inadequate oxygen concentration, lack of nutrients, antimicrobial peptides, mucus and natural microbiota and also to live in phagosomes or phagolysosomes. This review article summarizes the data related to pathogenicity islands in Salmonella serotypes and some factors which play role in the regulation of virulence genes.

  17. Cellulose Synthesis and Its Regulation

    OpenAIRE

    Li, Shundai; Bashline, Logan; Lei, Lei; Gu, Ying

    2014-01-01

    Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1–4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the re...

  18. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  19. Photoresponsive Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Dimitris S Argyropoulos

    2011-07-01

    Full Text Available In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side‐ chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO‐mediated hypohalite oxidation. The alkyne groups, essential for the click reaction, were introduced into the surface of TEMPO‐ oxidized CNCs via carbodiimide‐mediated formation of an amide linkage between monomers carrying an amine functionality and carboxylic acid groups on the surface of the TEMPO‐oxidized CNCs. Finally, the reaction of surface‐modified TEMPO‐oxidized cellulose nanocrystals and azido‐bearing coumarin and anthracene monomers were carried out by means of a click chemistry, i.e., Copper(I‐catalyzed Azide‐Alkyne Cycloaddition (CuAAC to produce highly photo‐responsive and fluorescent cellulose nanoparticles. Most significantly, the installed coumarin and/or anthracene side‐chains were shown to undergo UV‐induced [2+2] and [4+4] cycloaddition reactions, bringing and locking the cellulose nanocrystals together. This effort paves the way towards creating, cellulosic photo responsive nano‐arrays with the potential of photo reversibility since these reactions are known to be reversible at varying wavelengths.

  20. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  1. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  2. Salmonella enteritidis in Quail Eggs

    OpenAIRE

    Erdoğrul, Özlem Turgay

    2002-01-01

    The presence of Salmonella enteritidis was investigated in 123 liquid whole quail eggs. Salmonella strains were identified and sero-grouped by coagglutination test and slide agglutination test. Seven (5.69%) of 123 whole quail eggs were in group D1 and were sero-typed as Salmonella enteritidis. It was found that in phage-typing of Salmonella enteritidis, three of 7 strains were Salmonella enteritidis PT4 , two of them were PT1, one of them was PT7, and one of them was indefinite.

  3. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected. Howeve

  4. Live attenuated vaccines for invasive Salmonella infections.

    Science.gov (United States)

    Tennant, Sharon M; Levine, Myron M

    2015-06-19

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines.

  5. Salmonella enteridis Septic Arthritis: A Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Esat Uygur

    2013-01-01

    Full Text Available Introduction. Nontyphoidal salmonellosis causes significant morbidity, is transmitted via fecal-oral route, and is a worldwide cause of gastroenteritis, bacteremia, and local infections. Salmonella is a less common etiologic factor for septic arthritis compared with other gram-negative bacteria. Cases. We present two septic arthritis cases with Salmonella enteridis as a confirmed pathogen and also discuss the predisposing factors and treatment. Discussion. Septic arthritis is an orthopedic emergency. The gold standard treatment of septic arthritis is joint debridement, antibiotic therapy according to the culture results, and physiotherapy, which should start in the early postoperative period to prevent limitation of motion. Salmonella is an atypical agent for septic arthritis. It must be particularly kept in mind as an etiologic factor for the acute arthritis of a patient with sickle cell anemia and systemic lupus erythematosus. Clinicians should be cautious that the white blood cell count in synovial fluid can be under 50.000/mm3 in immune compromised individuals with septic arthritis. The inflammatory response can be deficient, or the microorganism may be atypical. Conclusion. Atypical bacteria such as Salmonella species in immune compromised patients can cause joint infections. Therefore, Salmonella species must always be kept in mind for the differential diagnosis of septic arthritis in a clinically relevant setting.

  6. Degradation of cellulose in irradiated wood and purified celluloses

    International Nuclear Information System (INIS)

    The degradation of cellulose chains in Pinus radiata and Eucalyptus regnans given small gamma-radiation doses has been studied. Scission yields showed marked dose-dependency effects, of which some appear to be due to an inherent dose-dependency exhibited by cellulose itself, and others indicate a protective action of some natural wood constituents. A uniform treatment of viscometry data reported by various workers who have studied radiation-induced degradation of purified cellulose materials, has been used to enable their scission results to be compared with each other and with those for natural wood cellulose of various dose levels. Generally, cellulose in wood is less degraded by radiation than is purified cellulose. However, with Eucalyptus regnans remarkably high scission yields, significantly higher than expected for purified cellulose, were observed at dose levels of 0.5-1.0 x 104Gy. The relevance of these results to changes in pulp yield following irradiation of wood chips, is briefly discussed. (author)

  7. CHARACTERIZATION OF REGENERATED CELLULOSE MEMBRANES HYDROLYZED FROM CELLULOSE ACETATE

    Institute of Scientific and Technical Information of China (English)

    Yun Chen; Xiao-peng Xiong; Guang Yang; Li-na Zhang; Sen-lin Lei; Hui Lianga

    2002-01-01

    A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree ofsubstitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration,Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability weresignificantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept thegood pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity andthermostability. Therefore, the application range of cellulose acetate membranes can be expanded.

  8. Circulating lipoproteins are a crucial component of host defense against invasive Salmonella typhimurium infection.

    Directory of Open Access Journals (Sweden)

    Mihai G Netea

    Full Text Available BACKGROUND: Circulating lipoproteins improve the outcome of severe Gram-negative infections through neutralizing lipopolysaccharides (LPS, thus inhibiting the release of proinflammatory cytokines. METHODS/PRINCIPAL FINDINGS: Low density lipoprotein receptor deficient (LDLR-/- mice, with a 7-fold increase in LDL, are resistant against infection with Salmonella typhimurium (survival 100% vs 5%, p<0.001, and 100 to 1000-fold lower bacterial burden in the organs, compared with LDLR+/+ mice. Protection was not due to differences in cytokine production, phagocytosis, and killing of Salmonella organisms. The differences were caused by the excess of lipoproteins, as hyperlipoproteinemic ApoE-/- mice were also highly resistant to Salmonella infection. Lipoproteins protect against infection by interfering with the binding of Salmonella to host cells, and preventing organ invasion. This leads to an altered biodistribution of the microorganisms during the first hours of infection: after intravenous injection of Salmonella into LDLR+/+ mice, the bacteria invaded the liver and spleen within 30 minutes of infection. In contrast, in LDLR-/- mice, Salmonella remained constrained to the circulation from where they were efficiently cleared, with decreased organ invasion. CONCLUSIONS: plasma lipoproteins are a potent host defense mechanism against invasive Salmonella infection, by blocking adhesion of Salmonella to the host cells and subsequent tissue invasion.

  9. Cysticercosis cellulose cutis

    Directory of Open Access Journals (Sweden)

    Inamadar Arun

    2001-01-01

    Full Text Available A woman aged 30 years with solitary lesion of cysticercosis cellulose cutis is reported. Cutaneous cysticerci are often a pointer to the involvement of internal organs. Our patient was a pure vegetarian so, probable mode of infection may be ingestion of contaminated vegetables, where the practice of using pig feces as manure is prevalent.

  10. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  11. Cell lines and Salmonella

    NARCIS (Netherlands)

    Jonge R de; Hendriks H; Garssen J; Universteit Utrecht, afdeling; MGB; LPI

    2001-01-01

    In human gastrointestinal disease caused by Salmonella, transepithelial migration of neutrophils follows the attachment of bacteria to epithelial tissue. This migration of neutrophils is stimulated by the release of chemokines, including interleukin-8 (Il -8), from the epithelial cells. We have dev

  12. Iron ERRs with Salmonella

    OpenAIRE

    Fang, Ferric C.; Weiss, Günter

    2014-01-01

    The hormone hepcidin promotes iron sequestration by macrophages. A recent study by Kim et al (2014) implicates the orphan receptor ERRγ in the regulation of hepcidin production and suggests that targeting the ERRγ-hepcidin axis may be beneficial during infection with the facultative intracellular pathogen Salmonella.

  13. Iron deficiency.

    Science.gov (United States)

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  14. Interactions of microfibrillated cellulose and cellulosic fines with cationic polyelectrolytes

    OpenAIRE

    Taipale, Tero

    2010-01-01

    The overall aim of this work was to produce and characterize different types of cellulosic fines and microfibrillated cellulose; to study their interactions with high molar mass cationic polyelectrolytes; and to demonstrate novel examples of their utilization. The work was performed, and its results discussed mainly from papermaking point of view, but the results are also well applicable in other fields of industry. Cellulosic fines are an essential component of papermaking fiber suspens...

  15. Phenotypic characterization of Salmonella isolated from food production environments associated with low-water activity foods.

    Science.gov (United States)

    Finn, Sarah; Hinton, Jay C D; McClure, Peter; Amézquita, Aléjandro; Martins, Marta; Fanning, Séamus

    2013-09-01

    Salmonella can survive for extended periods of time in low-moisture environments posing a challenge for modern food production. This dangerous pathogen must be controlled throughout the production chain with a minimal risk of dissemination. Limited information is currently available describing the behavior and characteristics of this important zoonotic foodborne bacterium in low-moisture food production environments and in food. In our study, the phenotypes related to low-moisture survival of 46 Salmonella isolates were examined. Most of the isolates in the collection could form biofilms under defined laboratory conditions, with 57% being positive for curli fimbriae production and 75% of the collection positive for cellulose production, which are both linked with stronger biofilm formation. Biocides in the factory environment to manage hygiene were found to be most effective against planktonic cells but less so when the same bacteria were surface dried or present as a biofilm. Cellulose-producing isolates were better survivors when exposed to a biocide compared with cellulose-negative isolates. Examination of Salmonella growth of these 18 serotypes in NaCl, KCl, and glycerol found that glycerol was the least inhibitory of these three humectants. We identified a significant correlation between the ability to survive in glycerol and the ability to survive in KCl and biofilm formation, which may be important for food safety and the protection of public health.

  16. Waardevermindering pluimveevlees besmet met Salmonella enteritidis en Salmonella typhymurium

    NARCIS (Netherlands)

    Horne, van P.L.M.

    2011-01-01

    De doelstelling van het onderzoek is om de waardevermindering van met Salmonella enteritidis (S.e.) en Salmonella typhymurium (S.t.) besmet pluimveevlees van vleeskuikens te bepalen. Hoe hoog is de opbrengstenderving en hoe hoog zijn de extra kosten van maatregelen voor de slachterij of uitsnijderij

  17. Cellulose biogenesis in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  18. Detection of Salmonella in Meat

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Hansen, Flemming; Mansdal, Susanne;

    2012-01-01

    Cost-effective and rapid monitoring of Salmonella in the meat production chain can contribute to food safety. The objective of this study was to validate an easy-to-use pre-PCR sample preparation method based on a simple boiling protocol for screening of Salmonella in meat and carcass swab samples...

  19. Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne U.; Hove-Jensen, Bjarne; Garber, Bruce B.;

    1985-01-01

    This study describes the isolation and characterization of a mutant (strain GP122) of Salmonella typhimurium with a partial deficiency of phosphoribosylpyrophosphate (PRPP) synthetase activity. This strain was isolated in a purE deoD gpt purine auxotroph by a procedure designed to select guanosin...

  20. A novel Salmonella serovar isolated from Peregrine Falcon (Falco peregrinus) nestlings in Sweden: Salmonella enterica enterica serovar Pajala (Salmonella Pajala)

    OpenAIRE

    Hernandez, Jorge; Lindberg, Peter; Waldenström, Jonas; Drobni, Mirva; Olsen, Björn

    2012-01-01

    A novel Salmonella serovar was isolated from Peregrine falcon (Falco peregrinus) nestlings in northern Sweden in 2006. Three isolates of the same clone was retrieved from three falcon siblings and characterized as Salmonella enterica sub-species enterica: O-phase 13, 23:-: e, n, z 15 and the H-phase was not present. We propose the geographical name Salmonella enterica, sub-species entericaserovar Pajala to this novel Salmonella.Keywords: Salmonella; epidemiology; ecology; peregrine falcon; no...

  1. Acetoacetylation of Hydroxyethyl Cellulose

    Institute of Scientific and Technical Information of China (English)

    陈晓锋; 高彦芳; 杜奕; 刘德山

    2002-01-01

    The acetoacetyl group can be used to improve superabsorbent resins since it is more active than the hydroxyethyl group. The acetoacetyl group can be introduced into the side group of hydroxyethyl cellulose (HEC) to activate HEC using the ester exchange reaction between HEC and ethyl acetoacetate (EAA) to improve HEC grafting. This paper discusses the main factors affecting the reaction, such as the amount of EAA and catalyzer, the reaction temperature, and the reaction time. The acetoacetyl group was successfully introduced into HEC. Within specified ranges, increasing the amount of EAA, the reaction temperature and the reaction time will increase the acetoacetylation.

  2. Cellulose binding domain fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. ACCESSIBILITY AND CRYSTALLINITY OF CELLULOSE

    Directory of Open Access Journals (Sweden)

    Michael Ioelovich

    2009-08-01

    Full Text Available The accessibility of cellulose samples having various degrees of crystallinity was studied with respect to molecules of water, lower primary alcohols, and lower organic acids. It was found that small water molecules have full access to non-crystalline domains of cellulose (accessibility coefficient α = 1. Molecules of the lowest polar organic liquids (methanol, ethanol, and formic acid have partial access into the non-crystalline domains (α<1, and with increasing diameter of the organic molecules their accessibility to cellulose structure decreases. Accessibility of cellulose samples to molecules of various substances is a linear function of the coefficient α and the content of non-crystalline domains. The relationship between crystallinity (X and accessibility (A of cellulose to molecules of some liquids has been established as A = α (1-X. The water molecules were found to have greater access to cellulose samples than the molecules of the investigated organic liquids. The obtained results permit use of accessibility data to estimate the crystallinity of cellulose, to examine the structural state of non-crystalline domains, and to predict the reactivity of cellulose samples toward some reagents.

  4. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  5. Tenth CRL-Salmonella interlaboratory comparison study on typing of Salmonella spp.

    NARCIS (Netherlands)

    Korver H; Maas HME; Ward LR; Mevius DJ; Mooijman KA; MGB

    2006-01-01

    Het tiende ringonderzoek voor de typering van Salmonella werd in maart 2005 georganiseerd door het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, Nederland) in samenwerking met de Health Protection Agency (HPA, Londen, Verenigd Koninkrijk) en het Centraal Instituut

  6. Eleventh CRL-Salmonella interlaboratory comparison study on typing of Salmonella spp.

    NARCIS (Netherlands)

    Berk PA; Maas HME; de Pinna E; Mooijman KA; MGB

    2006-01-01

    Het elfde ringonderzoek voor de typering van Salmonella werd in maart 2006 georganiseerd door het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, Nederland) in samenwerking met de Health Protection Agency (HPA, Londen, Verenigd Koninkrijk). 26 Nationale Referentie L

  7. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene.

    Science.gov (United States)

    Shippy, Daniel C; Eakley, Nicholas M; Bochsler, Philip N; Chopra, Ashok K; Fadl, Amin A

    2011-06-01

    Salmonella enterica serovar Typhimurium is a frequent cause of enteric disease due to the consumption of contaminated food. Identification and characterization of bacterial factors involved in Salmonella pathogenesis would help develop effective strategies for controlling salmonellosis. To investigate the role of glucose-inhibited division gene (gidA) in Salmonella virulence, we constructed a Salmonella mutant strain in which gidA was deleted. Deletion of gidA rendered Salmonella deficient in the invasion of intestinal epithelial cells, bacterial motility, intracellular survival, and induction of cytotoxicity in host cells. Deletion of gidA rendered the organism to display a filamentous morphology compared to the normal rod-shaped nature of Salmonella. Furthermore, a significant attenuation in the induction of inflammatory cytokines and chemokines, histopathological lesions, and systemic infection was observed in mice infected with the gidA mutant. Most importantly, a significant increase in LD(50) was observed in mice infected with the gidA mutant, and mice immunized with the gidA mutant were able to survive a lethal dose of wild-type Salmonella. Additionally, deletion of gidA significantly altered the expression of several bacterial factors associated with pathogenesis as indicated by global transcriptional and proteomic profiling. Taken together, our data indicate GidA as a potential regulator of Salmonella virulence genes.

  8. Selectively Structural Determination of Cellulose and Hemicellulose in Plant Cell Wall

    Science.gov (United States)

    Huang, Shih-Chun; Park, Yong; Cosgrove, Daniel; Maranas, Janna; Janna Maranas Team; Daniel Cosgrove Team

    2013-03-01

    Primary plant cell walls support the plant body, and regulate cell size, and plant growth. It contains several biopolymers that can be categorized into three groups: cellulose, hemicellulose and pectin. To determine the structure of plant cell wall, we use small angle neutron scattering in combination with selective deuteration and contrast matching method. We compare the structure between wild Arabidopsis thaliana and its xyloglucan-deficient mutant. Hemicellulose in both samples forms coil with similar radii of gyration, and weak scattering from the mutant suggests a limited amount of hemicellulose in the xyloglucan-deficient mutant. We observe good amount of hemicellulose coating on cellulose microfibrils only in wild Arabidopsis. The absence of coating in its xyloglucan-deficient mutation suggests the other polysaccharides do not have comparable interaction with cellulose. This highlights the importance of xyloglucan in plant cell wall. At larger scale, the average distance between cellulose fibril is found smaller than reported value, which directly reflects on their smaller matured plant size. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Center for LignoCellulose Structure and Formation

  9. Phylogenetic relationships of Salmonella based on rRNA sequences

    DEFF Research Database (Denmark)

    Christensen, H.; Nordentoft, Steen; Olsen, J.E.

    1998-01-01

    To establish the phylogenetic relationships between the subspecies of Salmonella enterica (official name Salmonella choleraesuis), Salmonella bongori and related members of Enterobacteriaceae, sequence comparison of rRNA was performed by maximum-likelihood analysis. The two Salmonella species were...

  10. The capsular polysaccharide Vi from Salmonella Typhi is a B1b antigen

    Science.gov (United States)

    Marshall, Jennifer L.; Flores-Langarica, Adriana; Kingsley, Robert A.; Hitchcock, Jessica R.; Ross, Ewan A.; Lopez-Macias, Constantino; Lakey, Jeremy; Martin, Laura B.; Toellner, Kai-Michael; MacLennan, Calman A.; MacLennan, Ian C; Henderson, Ian R.; Dougan, Gordon; Cunningham, Adam F.

    2012-01-01

    Vaccination with purified capsular polysaccharide Vi antigen from Salmonella Typhi can protect against typhoid fever, although the mechanism for its efficacy is not clearly established. Here, we have characterised the B cell response to this vaccine in wild-type and T cell-deficient mice. We show that immunization with Typhim Vi rapidly induces proliferation in B1b peritoneal cells, but not in B1a cells or marginal zone (MZ) B cells. This induction of B1b proliferation is concomitant with the detection of splenic Vi-specific antibody secreting cells and protective antibody and Rag1-deficient B1b cell chimeras generated by adoptive transfer induced specific antibody after Vi immunization. Furthermore, antibody derived from peritoneal B cells is sufficient to confer protection against Salmonella that express Vi antigen. Expression of Vi by Salmonella during infection did not inhibit the development of early antibody responses to non-Vi antigens. Despite this, the protection conferred by immunization of mice with porin proteins from Salmonella, which induce antibody-mediated protection, was reduced after infection with Vi-expressing Salmonella, although protection was not totally abrogated. This work therefore suggests that in mice, B1b cells contribute to the protection induced by Vi antigen and targeting non-Vi antigens as sub-unit vaccines may offer an attractive strategy to augment current Vi-based vaccine strategies. PMID:23162127

  11. The capsular polysaccharide Vi from Salmonella typhi is a B1b antigen.

    Science.gov (United States)

    Marshall, Jennifer L; Flores-Langarica, Adriana; Kingsley, Robert A; Hitchcock, Jessica R; Ross, Ewan A; López-Macías, Constantino; Lakey, Jeremy; Martin, Laura B; Toellner, Kai-Michael; MacLennan, Calman A; MacLennan, Ian C; Henderson, Ian R; Dougan, Gordon; Cunningham, Adam F

    2012-12-15

    Vaccination with purified capsular polysaccharide Vi Ag from Salmonella typhi can protect against typhoid fever, although the mechanism for its efficacy is not clearly established. In this study, we have characterized the B cell response to this vaccine in wild-type and T cell-deficient mice. We show that immunization with typhoid Vi polysaccharide vaccine rapidly induces proliferation in B1b peritoneal cells, but not in B1a cells or marginal zone B cells. This induction of B1b proliferation is concomitant with the detection of splenic Vi-specific Ab-secreting cells and protective Ab in Rag1-deficient B1b cell chimeras generated by adoptive transfer-induced specific Ab after Vi immunization. Furthermore, Ab derived from peritoneal B cells is sufficient to confer protection against Salmonella that express Vi Ag. Expression of Vi by Salmonella during infection did not inhibit the development of early Ab responses to non-Vi Ags. Despite this, the protection conferred by immunization of mice with porin proteins from Salmonella, which induce Ab-mediated protection, was reduced postinfection with Vi-expressing Salmonella, although protection was not totally abrogated. This work therefore suggests that, in mice, B1b cells contribute to the protection induced by Vi Ag, and targeting non-Vi Ags as subunit vaccines may offer an attractive strategy to augment current Vi-based vaccine strategies.

  12. Cellulose Nanomaterials in Water Treatment Technologies

    OpenAIRE

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, ...

  13. Cellulose Derivatives for Water Repellent Properties

    Science.gov (United States)

    In this poster presentation, we will discuss the synthesis and structural characterizations of nitro-benzyl cellulose (1), amino-benzyl cellulose (2) and pentafluoro –benzyl cellulose (3). All cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide h...

  14. Cellulose synthase complexes: structure and regulation

    Directory of Open Access Journals (Sweden)

    Lei eLei

    2012-04-01

    Full Text Available This review is to update the most recent progress on characterization of the composition, regulation, and trafficking of cellulose synthase complexes. We will highlight proteins that interact with cellulose synthases, e.g. cellulose synthase-interactive protein 1 (CSI1. The potential regulation mechanisms by which cellulose synthase interact with cortical microtubules in primary cell walls will be discussed.

  15. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  16. Thermophilic degradation of cellulosic biomass

    Science.gov (United States)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  17. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja;

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  18. Salmonella Control Programs in Denmark

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Hald, Tine; Wong, Danilo Lo Fo;

    2003-01-01

    We describe Salmonella control programs of broiler chickens, layer hens, and pigs in Denmark. Major reductions in the incidence of foodborne human salmonellosis have occurred by integrated control of farms and food processing plants. Disease control has been achieved by monitoring the herds...... and flocks, eliminating infected animals, and diversifying animals (animals and products are processed differently depending on Salmonella status) and animal food products according to the determined risk. In 2001, the Danish society saved U.S.$25.5 million by controlling Salmonella. The total annual...... Salmonella control costs in year 2001 were U.S.$14.1 million (U.S.$0.075/kg of pork and U.S.$0.02/kg of broiler or egg). These costs are paid almost exclusively by the industry. The control principles described are applicable to most industrialized countries with modern intensive farming systems....

  19. Salmonella control programs in Denmark.

    Science.gov (United States)

    Wegener, Henrik C; Hald, Tine; Lo Fo Wong, Danilo; Madsen, Mogens; Korsgaard, Helle; Bager, Flemming; Gerner-Smidt, Peter; Mølbak, Kåre

    2003-07-01

    We describe Salmonella control programs of broiler chickens, layer hens, and pigs in Denmark. Major reductions in the incidence of foodborne human salmonellosis have occurred by integrated control of farms and food processing plants. Disease control has been achieved by monitoring the herds and flocks, eliminating infected animals, and diversifying animals (animals and products are processed differently depending on Salmonella status) and animal food products according to the determined risk. In 2001, the Danish society saved U.S.$25.5 million by controlling Salmonella. The total annual Salmonella control costs in year 2001 were U.S.$14.1 million (U.S.$0.075/kg of pork and U.S.$0.02/kg of broiler or egg). These costs are paid almost exclusively by the industry. The control principles described are applicable to most industrialized countries with modern intensive farming systems.

  20. Salmonella in Sheep in Iceland

    Directory of Open Access Journals (Sweden)

    Gunnarsson E

    2002-03-01

    Full Text Available In 1995 several outbreaks of food poisoning in humans occurred in Iceland, that were traced to salmonella contamination of singed sheep heads. This prompted us to study the prevalence of salmonella infection in sheep and to trace where and how infection might have occurred. Faecal, intestinal contents and tonsillar samples were collected in the spring and autumn from sheep on 50 farms in the southwestern part of the country, where salmonellosis had been detected and from 5 farms in the northwestern part of the country. All faecal samples from the southwest were negative, whereas samples from 3 farms obtained in the autumn in the northwest were positive. Tonsillae taken in the autumn were positive in sheep from 3 farms in the southwest and 2 in the northwest. Our results show that salmonella infection is rare in Icelandic sheep but healthy carriers may harbour the bacteria in tonsillae. Salmonella was not detected in drainage from slaughterhouses nor in singed sheep heads.

  1. Prevalence of salmonella in captive reptiles from Croatia

    DEFF Research Database (Denmark)

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-01-01

    arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence...

  2. Prevalence of Salmonella serovars from captive reptiles from Croatia

    DEFF Research Database (Denmark)

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-01-01

    arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence...

  3. Characterization of Cellulose Synthesis in Plant Cells

    OpenAIRE

    Samaneh Sadat Maleki; Kourosh Mohammadi; Kong-shu Ji

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the...

  4. Osteomielitis por salmonella

    Directory of Open Access Journals (Sweden)

    Alicia Velázquez Pérez

    2014-08-01

    Full Text Available Se presenta el caso de una paciente femenina de color blanco y dos años de edad, con diagnóstico prenatal de sicklemia, que desde edades tempranas tiene problemas de la enfermedad. Ingresó en esta ocasión por una de las complicaciones infecciosas que ocasiona este padecimiento, una osteomielitis del húmero izquierdo, aislándose el germen en el hemocultivo realizado, una salmonella. Necesitó de tratamiento enérgico y prolongado; se obtuvo un resultado satisfactorio en la evolución de la enfermedad y se sigue sistemáticamente por consulta externa en la actualidad

  5. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  6. An Unusual Case: Salmonella UTI and Orchitis in HIV Patient.

    Science.gov (United States)

    Arshed, Sabrina; Luo, Hongxiu; Middleton, John; Yousif, Abdalla

    2015-01-01

    Salmonellosis is a major cause of gastroenteritis in the United States; however, nontyphoidal strains of Salmonella have also been known to cause urinary tract infections, usually transmitted via the fecal-urethral route. This can lead to critical illness in those patients with immune deficiencies, especially HIV, cancer patients, and those with diabetes mellitus. However, the spread of the infection from the urinary tract to involve the testicles and epididymis is very rare. Here, we present the first documented case of an immune-compromised young male with a urinary tract infection with orchitoepididymitis. PMID:26257784

  7. Surface modification of cellulose nanocrystals

    Science.gov (United States)

    Eyley, Samuel; Thielemans, Wim

    2014-06-01

    Chemical modification of cellulose nanocrystals is an increasingly popular topic in the literature. This review analyses the type of cellulose nanocrystal modification reactions that have been published in the literature thus far and looks at the steps that have been taken towards analysing the products of the nanocrystal modifications. The main categories of reactions carried out on cellulose nanocrystals are oxidations, esterifications, amidations, carbamations and etherifications. More recently nucleophilic substitutions have been used to introduce more complex functionality to cellulose nanocrystals. Multi-step modifications are also considered. This review emphasizes quantification of modification at the nanocrystal surface in terms of degree of substitution and the validity of conclusions drawn from different analysis techniques in this area. The mechanisms of the modification reactions are presented and considered with respect to the effect on the outcome of the reactions. While great strides have been made in the quality of analytical data published in the field of cellulose nanocrystal modification, there is still vast scope for improvement, both in data quality and the quality of analysis of data. Given the difficulty of surface analysis, cross-checking of results from different analysis techniques is fundamental for the development of reliable cellulose nanocrystal modification techniques.

  8. Cellulose biosynthesis in Acetobacter xylinum

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.C.

    1988-01-01

    Time-lapse video microscopy has shown periodic reversals during the synthesis of cellulose. In the presence of Congo Red, Acetobacter produces a band of fine fibrils. The direction of cell movement is perpendicular to the longitudinal axis of cell, and the rate of movement was decreased. A linear row of particles, presumably the cellulose synthesizing complexes, was found on the outer membrane by freeze-fracture technique. During the cell cycle, the increase of particles in linear row, the differentiation to four linear rows and the separation of the linear rows have been observed. A digitonin-solubilized cellulose synthase was prepared from A. xylinum, and incubated under conditions known to lead to active in vitro synthesis of 1,4-{beta}-D-glucan polymer. Electron microscopy revealed that clusters of fibrils were assembled within minutes. Individual fibrils are 17 {plus minus} 2 angstroms in diameter. Evidence for the cellulosic composition of newly synthesized fibrils was based on incorporation of tritium from UDP-({sup 3}H) glucose binding of gold-labeled cellobiohydrolase, and an electron diffraction pattern identified as cellulose II polymorph instead of cellulose I.

  9. Genetics Home Reference: isolated growth hormone deficiency

    Science.gov (United States)

    ... deficiency dwarfism, pituitary growth hormone deficiency dwarfism isolated GH deficiency isolated HGH deficiency isolated human growth hormone deficiency isolated somatotropin deficiency isolated somatotropin deficiency disorder ...

  10. A novel Salmonella serovar isolated from Peregrine Falcon (Falco peregrinus nestlings in Sweden: Salmonella enterica enterica serovar Pajala (Salmonella Pajala

    Directory of Open Access Journals (Sweden)

    Jorge Hernández

    2012-08-01

    Full Text Available A novel Salmonella serovar was isolated from Peregrine falcon (Falco peregrinus nestlings in northern Sweden in 2006. Three isolates of the same clone was retrieved from three falcon siblings and characterized as Salmonella enterica sub-species enterica: O-phase 13, 23:-: e, n, z 15 and the H-phase was not present. We propose the geographical name Salmonella enterica, sub-species enterica serovar Pajala to this novel Salmonella.

  11. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    Science.gov (United States)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  12. Inhibitory Effects of Several Essential Oils towards Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B

    Directory of Open Access Journals (Sweden)

    S.F. Mazhar

    2014-09-01

    Full Text Available Plant essential oils are natural products extracted from plants and because of their antimicrobial properties can be used as natural additives in foods. They are also useful for decontamination of food-borne pathogens and can be a safe additive in foods. The antimicrobial activities of essential oils belonging to Saturiea hortensis, Thymus vulgaris, Mentha polegium, Cuminum cyminum, Lavandula officinalis and Mentha viridis L. (spearmint were investigated at different concentrations (0.1, 0.3, 0.5, 1, 2, 5 and 10%v/v against Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B by using the agar well diffusion method. Essential oils showed inhibitory effect on Salmonella spp. in the agar well diffusion assay. In addition, the capability of essential oils for decontamination of minced row beef, ground beef, minced raw chicken and minced raw fish inoculated with Salmonella spp. at 0.1 and 0.5%v/v were assessed. Reduction of the Salmonella spp. population was observed following the inoculation of the cultures with 0.1 and 0.5%v/v essential oils.

  13. VLCAD deficiency

    DEFF Research Database (Denmark)

    Boneh, A; Andresen, B S; Gregersen, N;

    2006-01-01

    -negative diagnoses of VLCADD in asymptomatic newborn babies. In view of the emerging genotype-phenotype correlation in this disorder, the information derived from mutational analysis can be helpful in designing the appropriate follow-up and therapeutic regime for these patients.......We diagnosed six newborn babies with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) through newborn screening in three years in Victoria (prevalence rate: 1:31,500). We identified seven known and two new mutations in our patients (2/6 homozygotes; 4/6 compound heterozygotes). Blood...... samples taken at age 48-72 h were diagnostic whereas repeat samples at an older age were normal in 4/6 babies. Urine analysis was normal in 5/5. We conclude that the timing of blood sampling for newborn screening is important and that it is important to perform mutation analysis to avoid false...

  14. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Simm, Roger; Ahmad, Irfan; Rhen, Mikael; Le Guyon, Soazig; Römling, Ute

    2014-01-01

    In animals, plants and the environment, Salmonella enterica serovar Typhimurium forms the red dry and rough (rdar) biofilm characterized by extracellular matrix components curli and cellulose. With complex expression control by at least ten transcription factors, the bistably expressed orphan response regulator CsgD directs rdar morphotype development. CsgD expression is an integral part of the Hfq regulon and the complex cyclic diguanosine monophosphate signaling network partially controlled by the global RNA-binding protein CsrA. Cell wall turnover and the periplasmic redox status regulate csgD expression on a post-transcriptional level by unknown mechanisms. Furthermore, phosphorylation of CsgD is a potential inactivation and degradation signal in biofilm dissolution. Including complex incoherent feed-forward loops, regulation of biofilm formation versus motility and virulence is of recognized complexity.

  15. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. - Research highlights: → The likelihood of a significant cellulosic ethanol industry in the US looks dim. → Drop-in biofuels made from cellulosic feedstocks have a more promising future. → The spatial dimension of markets for cellulosic feedstocks will be limited. → Corn ethanol will be a tough competitor for cellulosic ethanol.

  16. A novel contribution of spvB to pathogenesis of Salmonella Typhimurium by inhibiting autophagy in host cells.

    Science.gov (United States)

    Chu, Yuanyuan; Gao, Song; Wang, Ting; Yan, Jing; Xu, Guangmei; Li, Yuanyuan; Niu, Hua; Huang, Rui; Wu, Shuyan

    2016-02-16

    Salmonella plasmid virulence genes (spv) are highly conserved in strains of clinically important Salmonella serovars. It is essential for Salmonella plasmid-correlated virulence, although the exact mechanism remains to be elucidated. Autophagy has been reported to play an important role in host immune responses limiting Salmonella infection. Our previous studies demonstrated that Salmonella conjugative plasmid harboring spv genes could enhance bacterial cytotoxicity by inhibiting autophagy. In the present study, we investigated whether spvB, which is one of the most important constituents of spv ORF could intervene in autophagy pathway. Murine macrophage-like cells J774A.1, human epithelial HeLa cells, and BALB/c mice infected with Salmonella Typhimurium wild type, mutant and complementary strains (carrying or free spvB or complemented only with ADP-ribosyltransferase activity of SpvB) were used in vitro and in vivo assay, respectively. To further explore the molecular mechanisms, both SpvB ectopic eukaryotic expression system and cells deficient in essential autophagy components by siRNA were generated. Results indicated that spvB could suppress autophagosome formation through its function in depolymerizing actin, and aggravate inflammatory injury of the host in response to S. Typhimurium infection. Our studies demonstrated virulence of spvB involving in inhibition of autophagic flux for the first time, which could provide novel insights into Salmonella pathogenesis, and have potential application to develop new antibacterial strategies for Salmonellosis.

  17. Ingestion of a novel galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex affected growth performance and fermentative and immunological characteristics of broiler chicks challenged with Salmonella typhimurium.

    Science.gov (United States)

    Faber, T A; Dilger, R N; Iakiviak, M; Hopkins, A C; Price, N P; Fahey, G C

    2012-09-01

    Fermentable carbohydrates may enhance the ability of the gastrointestinal tract to defend against a pathogenic infection. We hypothesized that a galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex would positively affect immune status and prevent colonization and shedding in Salmonella typhimurium-infected chicks. Using a completely randomized design, 1-d-old commercial broiler chicks (n = 240 chicks; 4 replications/treatment; 5 chicks/replication) were assigned to 1 of 6 dietary treatments differing in concentration of GGMO-AX (0, 1, 2, or 4%) or containing 2% Safmannan or 2% short-chain fructooligosaccharides. Cellulose was used to make diets iso-total dietary fiber. On d 10 posthatch, an equal number of chicks on each diet were inoculated with either phosphate-buffered saline (sham control) or Salmonella typhimurium (1 × 10(8) cfu). All birds were euthanized on d 10 postinoculation (PI) for collection of intestinal contents and select tissues. Body weight gain and feed intake of chicks were greater (P Salmonella typhimurium populations on d 5 and 10 PI, and ileal and cecal Salmonella typhimurium populations, tended to be affected (P Salmonella typhimurium virulence was suppressed. Dietary supplementation with GGMO-AX resulted in prebiotic-like effects but did not limit Salmonella typhimurium intestinal colonization or shedding, but possibly decreased the virulence of Salmonella typhimurium within the digestive tract.

  18. Screening for Salmonella in backyard chickens.

    Science.gov (United States)

    Manning, Johanna; Gole, Vaibhav; Chousalkar, Kapil

    2015-06-15

    Salmonellosis is a significant zoonotic disease which has a considerable economic impact on the egg layer industry. There is limited information about the prevalence of Salmonella spp. in backyard chickens. The current study was conducted to determine the prevalence of Salmonella in backyard chickens, and the associated virulence of any serovars identified. Hundred and fifteen pooled samples from 30 backyard flocks in South Australia were screened. Four flocks tested positive for Salmonella spp. The overall Salmonella isolation rate in the current study was 10.4%. The estimated prevalence at individual bird level was 0.02% (95% CI 0.025-0.975). The serovars isolated were Salmonella Agona, Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) and Salmonella Bovismorbificans. All Salmonella isolates tested positive for the prgH, orfL and spiC genes. The Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) had the most antibiotic resistance, being resistant to ampicillin and cephalothin and having intermediate resistance to florphenicol. All of the Salmonella Agona had intermediate resistance to the ampicillin, while the Salmonella Bovismorbificans were susceptible to all antibiotics tested. With the increased interest of keeping backyard chickens, the current study highlights the zoonotic risk from Salmonella spp. associated with home flocks.

  19. Screening for Salmonella in backyard chickens.

    Science.gov (United States)

    Manning, Johanna; Gole, Vaibhav; Chousalkar, Kapil

    2015-06-15

    Salmonellosis is a significant zoonotic disease which has a considerable economic impact on the egg layer industry. There is limited information about the prevalence of Salmonella spp. in backyard chickens. The current study was conducted to determine the prevalence of Salmonella in backyard chickens, and the associated virulence of any serovars identified. Hundred and fifteen pooled samples from 30 backyard flocks in South Australia were screened. Four flocks tested positive for Salmonella spp. The overall Salmonella isolation rate in the current study was 10.4%. The estimated prevalence at individual bird level was 0.02% (95% CI 0.025-0.975). The serovars isolated were Salmonella Agona, Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) and Salmonella Bovismorbificans. All Salmonella isolates tested positive for the prgH, orfL and spiC genes. The Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) had the most antibiotic resistance, being resistant to ampicillin and cephalothin and having intermediate resistance to florphenicol. All of the Salmonella Agona had intermediate resistance to the ampicillin, while the Salmonella Bovismorbificans were susceptible to all antibiotics tested. With the increased interest of keeping backyard chickens, the current study highlights the zoonotic risk from Salmonella spp. associated with home flocks. PMID:25899620

  20. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Edwin R Lampugnani; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated ...

  1. Microbial Cellulose Assembly in Microgravity

    Science.gov (United States)

    Brown, R. Malcolm, Jr.

    1998-01-01

    Based on evidence indicating a possible correlation between hypo-gravity conditions and alteration of cellulose production by the gram negative bacterium, Acetobacter xylinum, a ground-based study for a possible long term Space Shuttle flight has been conducted. The proposed experiment for A. xylinum aboard the Shuttle is the BRIC (Biological Research in a Canister), a metal container containing spaces for nine Petri plates. Using a common experimental design, the cellulose production capability as well as the survivability of the A. xylinum strains NQ5 and AY201 have been described. It should now be possible to use the BRIC for the first long term microgravity experiments involving the biosynthesis of cellulose.

  2. Development of nonflammable cellulosic foams

    Science.gov (United States)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  3. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  4. Characterization of Cellulose Synthesis in Plant Cells.

    Science.gov (United States)

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-Shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  5. Chemical modification of cellulose for electrospinning applications

    OpenAIRE

    Martín Ferrer, Elena

    2013-01-01

    The aim of the thesis is to develop technology for producing cellulose fatty acid esters that later will be used to produce fibrous materials by means of electrospinning. Main material of the study is cellulose-stearate which is a polymer synthesised by reaction between stearoyl chloride and cellulose. The experimental part consists of synthesis of it by chemical modification of cellulose using ionic liquid as a reaction media. In addition, ionic liquid is also synthesised from the beginning....

  6. Filtration properties of bacterial cellulose membranes

    OpenAIRE

    Lehtonen, Janika

    2015-01-01

    Bacterial cellulose has the same molecular formula as cellulose from plant origin, but it is characterized by several unique properties including high purity, crystallinity and mechanical strength. These properties are dependent on parameters such as the bacterial strain used, the cultivation conditions and post-growth processing. The possibility to achieve bacterial cellulose membranes with different properties by varying these parameters could make bacterial cellulose an interesting materi...

  7. Biocompatibility of Bacterial Cellulose Based Biomaterials

    OpenAIRE

    Omar P. Troncoso; Solene Commeaux; Torres, Fernando G.

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received...

  8. A Molecular Description of Cellulose Biosynthesis

    OpenAIRE

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2015-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by ...

  9. The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators

    Institute of Scientific and Technical Information of China (English)

    Logan BASHLINE; Juan DU; Ying GU

    2011-01-01

    Cellulose biosynthesis is a topic of intensive research not only due to the significance of cellulose in the integrity of plant cell walls,but also due to the potential of using cellulose,a natural carbon source,in the production ot biofuels.Characterization of the composition,regulation,and trafficking of cellulose synthase complexes (CSCs) is critical to an understanding of cellulose biosynthesis as well as the characterization of additional proteins that contribute to the production of cellulose either through direct interactions with CSCs or through indirect mechanisms.In this review,a highlight of a few proteins that appear to affect cellulose biosynthesis,which includes:KORRIGAN (KOR),Cellulose Synthase-Interactive Protein 1 (CSI1),and the poplar microtubule-associated protein,PttMAP20,will accompany a description of cellulose synthase (CESA) behavior and a discussion of CESA trafficking compartments that might act in the regulation of cellulose biosynthesis.

  10. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  11. Adsorption and desorption of cellulose derivatives.

    NARCIS (Netherlands)

    Hoogendam, C.W.

    1998-01-01

    Cellulose derivatives, in particular carboxymethyl cellulose (CMC) are used in many (industrial) applications. The aim of this work is to obtain insight into the adsorption mechanism of cellulose derivatives on solid-liquid interfaces.In chapter 1 of this thesis we discuss some appl

  12. Ex vivo perfusion of the isolated rat small intestine as a novel model of Salmonella enteritis.

    Science.gov (United States)

    Boyle, Erin C; Dombrowsky, Heike; Sarau, Jürgen; Braun, Janin; Aepfelbacher, Martin; Lautenschläger, Ingmar; Grassl, Guntram A

    2016-01-15

    Using an ex vivo perfused rat small intestinal model, we examined pathological changes to the tissue, inflammation induction, as well as dynamic changes to smooth muscle activity, metabolic competence, and luminal fluid accumulation during short-term infection with the enteropathogenic bacteria Salmonella enterica serovar Typhimurium and Yersinia enterocolitica. Although few effects were seen upon Yersinia infection, this system accurately modeled key aspects associated with Salmonella enteritis. Our results confirmed the importance of the Salmonella Pathogenicity Island 1 (SPI1)-encoded type 3 secretion system (T3SS) in pathology, tissue invasion, inflammation induction, and fluid secretion. Novel physiological consequences of Salmonella infection of the small intestine were also identified, namely, SPI-1-dependent vasoconstriction and SPI-1-independent reduction in the digestive and absorptive functions of the epithelium. Importantly, this is the first small animal model that allows for the study of Salmonella-induced fluid secretion. Another major advantage of this model is that one can specifically determine the contribution of resident cell populations. Accordingly, we can conclude that recruited cell populations were not involved in the pathological damage, inflammation induction, fluid accumulation, nutrient absorption deficiency, and vasoconstriction observed. Although fluid loss induced by Salmonella infection is hypothesized to be due to damage caused by recruited neutrophils, our data suggest that bacterial invasion and inflammation induction in resident cell populations are sufficient for fluid loss into the lumen. In summary, this model is a novel and useful tool that allows for detailed examination of the early physiopathological effects of Salmonella infection on the small intestine.

  13. Bacterial virulence, proinflammatory cytokines and host immunity: how to choose the appropriate Salmonella vaccine strain?

    Science.gov (United States)

    Raupach, B; Kaufmann, S H

    2001-01-01

    Salmonella infection in its mammalian host can be dissected into two main components. The co-ordinate expression of bacterial virulence genes which are designed to evade, subvert or circumvent the host response on the one hand, and the host defence mechanisms which are designed to restrict bacterial survival and replication on the other hand. The outcome of infection is determined by the one which succeeds in disturbing this equilibrium more efficiently. This delicate balance between Salmonella virulence and host immunity/inflammation has important implications for vaccine development or therapeutic intervention. Novel Salmonella vaccine candidates and live carriers for heterologous antigens are attenuated strains with defined genetic modifications of metabolic or virulence functions. Although genetic defects of different gene loci can lead to similar degrees of attenuation, effects on the course of infection may vary, thereby altering the quality of the elicited immune response. Studies with gene-deficient animals indicate that Salmonella typhimurium strains with mutations in aroA, phoP/phoQ or ssrA/ssrB invoke different immune responses and that a differential repertoire of pro-inflammatory cytokines is required for clearance. Consequently, Salmonella mutants defective in distinct virulence functions offer the potential to specifically modulate the immune response for defined medical applications.

  14. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  15. Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Cellulose being an excellent biopolymer has cemented its place firmly in many industries as a coating material, textile, composites, and biomaterial applications. In the present study, we have investigated the effect of biofield treatment on physicochemical properties of cellulose and cellulose acetate. The cellulose and cellulose acetate were exposed to biofield and further the chemical and thermal properties were investigated. X-ray diffraction study asserted that the biofield treatment did...

  16. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose

    OpenAIRE

    Lee, K. Y.; Tammelin, T.; Schulfter, K.; Kiiskinen, H.; Samela, J.; Bismarck, A.

    2012-01-01

    This work investigates the surface and bulk properties of nanofibrillated cellulose (NFC) and bacterial cellulose (BC), as well as their reinforcing ability in polymer nanocomposites. BC possesses higher critical surface tension of 57 mN m(-1) compared to NFC (41 mN m(-1)). The thermal degradation temperature in both nitrogen and air atmosphere of BC was also found to be higher than that of NFC. These results are in good agreement with the higher crystallinity of BC as determined by XRD, meas...

  17. Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid.

    OpenAIRE

    Rosner, J. L.

    1993-01-01

    Escherichia coli and Salmonella typhimurium are normally resistant to > 500 micrograms of the antituberculosis drug isonicotinic acid hydrazide (isoniazid; INH) per ml. Susceptibility to INH (< 50 micrograms/ml) has now been found for mutants that are deficient in OxyR, the oxidative stress response regulator. Two OxyR-regulated enzymes, alkyl hydroperoxide reductase and hydroperoxidase I, were identified as playing important roles in INH resistance. OxyR regulon mutants should be useful for ...

  18. Salmonella Infection and Water Frogs

    Centers for Disease Control (CDC) Podcasts

    2010-01-12

    This podcast, featuring lead investigator Shauna Mettee, discusses the first known outbreak of Salmonella in people due to contact with water frogs.  Created: 1/12/2010 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 1/12/2010.

  19. Salmonella radicidation of poultry carcasses

    NARCIS (Netherlands)

    Mulder, R.W.A.W.

    1982-01-01

    Validity of methodsExperiments were carried out In which it was assessed which Salmonella isolation method is the most productive one In the examination of broiler carcasses. Refrigerated, refrigerated and radiated (2.50 kGy), frozen and frozen and radiated (2.50 kGy) samples of broile

  20. Cellulitis Due to Salmonella infantis.

    Directory of Open Access Journals (Sweden)

    Satish R Patil

    2013-01-01

    Full Text Available Bacteria of the genus Salmonella are highly adapted for the growth in both humans and animals and cause a wide spectrum of disease. The growth of Serotypes S. typhi and S. paratyphi is restricted to human hosts, in whom these organisms cause enteric (typhoid fever. The remaining Serotypes (non typhoidal Salmonella or NTS can colonize the gastrointestinal tracts of the broad range of animals, including mammals, reptiles, birds and insects. The usual clinical presentation of non-typhoidal salmonellae (NTS infection is self limited gastroenteritis; however bacteremia and focal extra intestinal infection may occur. However salmonella localization to the skin presenting as cutaneous ulceration is regarded as a rare event. Rates of morbidity and mortality associated with NTS are highest among the elderly, infants, and immunocompromised individuals, including those with hemoglobinopathies, HIV infection, or infections that cause blockade of the reticuloendothelial system. We isolated S.infantis in 50 years old man with left leg cellulitis. The serotype was confirmed at Central Research Institute, Kasauli.

  1. Production of bacterial cellulose from alternate feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  2. Production of Bacterial Cellulose from Alternate Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  3. Salmonella – A Brief Summary

    Directory of Open Access Journals (Sweden)

    Nurmi Esko

    2002-03-01

    Full Text Available Abstract Salmonellosis is the main cause of human bacterial gastroenteritis in most European countries. Infections with Salmonella is usually subclinical, whereas clinical cases show symptoms with a wide range of severity. Infection is most commonly associated with the consumption of meat, especially poultry or pork, and eggs and their products. Salmonella can enter the food chain at any point throughout its length. The principal reservoir of Salmonellae is the gastrointestinal tract of mammals and birds, but Salmonellae are able to survive and even multiply in many external environments. In Norway, Sweden and Finland cost effective prevention methods have been used for several years to prevent and control Salmonellea infections. In addition, competitive exclusion (CE and vaccination might be relevant as biological methods to prevent colonisation of bird intestines by enteropathogens, especially Salmonella. Antibiotic drug resistance has been a problem since the start of the antibiotic era. The cause for anxiety is that more and more bacteria are becoming resistant, often to a whole range of antibiotics. The debate on the use of antimicrobials in veterinary medicine and animal production dates back almost as long as the use itself. There is a clear evidence to show that antibacterial agents given to animals for growth promotion, prophylactic purposes or treatment induce a rise in the number of antibiotic resistant strains isolated from the animals. These bacteria may be transmitted to humans by several possible routes. There are thus strong arguments for preventive efforts which have to be directed towards identifying real critical control points (HACCP throughout the whole food chain, which starts from the farm and ends at the consumer's table.

  4. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  5. Immune Reaction and Survivability of Salmonella Typhimurium and Salmonella Infantis after Infection of Primary Avian Macrophages

    OpenAIRE

    Maria Braukmann; Ulrich Methner; Angela Berndt

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhim...

  6. Isolation and Evaluation Virulence Factors of Salmonella typhimurium and Salmonella enteritidis in Milk and Dairy Products

    Directory of Open Access Journals (Sweden)

    Shima Shaigan nia

    2014-06-01

    Conclusions: To our best knowledge the present study is the first prevalence report of Salmonella spp., Salmonella enteritidis and Salmonella typhimurium in raw sheep and goat samples in Iran. Consumption of pasteurized milk and dairy products can reduce the risk of salmonellosis.

  7. An Outer Membrane Protein Involved in the Uptake of Glucose Is Essential for Cytophaga hutchinsonii Cellulose Utilization.

    Science.gov (United States)

    Zhou, Hong; Wang, Xia; Yang, Tengteng; Zhang, Weixin; Chen, Guanjun; Liu, Weifeng

    2016-03-01

    Cytophaga hutchinsonii specializes in cellulose digestion by employing a collection of novel cell-associated proteins. Here, we identified a novel gene locus, CHU_1276, that is essential for C. hutchinsonii cellulose utilization. Disruption of CHU_1276 in C. hutchinsonii resulted in complete deficiency in cellulose degradation, as well as compromised assimilation of cellobiose or glucose at a low concentration. Further analysis showed that CHU_1276 was an outer membrane protein that could be induced by cellulose and low concentrations of glucose. Transcriptional profiling revealed that CHU_1276 exerted a profound effect on the genome-wide response to both glucose and Avicel and that the mutant lacking CHU_1276 displayed expression profiles very different from those of the wild-type strain under different culture conditions. Specifically, comparison of their transcriptional responses to cellulose led to the identification of a gene set potentially regulated by CHU_1276. These results suggest that CHU_1276 plays an essential role in cellulose utilization, probably by coordinating the extracellular hydrolysis of cellulose substrate with the intracellular uptake of the hydrolysis product in C. hutchinsonii. PMID:26773084

  8. SPECIFIC CONTROL OF SALMONELLA IN POULTRY

    Directory of Open Access Journals (Sweden)

    Pimenov N.V.

    2013-11-01

    Full Text Available Scientifically based and clinically validated new tools and methods to combat Salmonella infection in poultry, allowing to ensure the safety and health safety products - eggs and poultry meat. The method of selective decontamination involves the use of bivalent bacteriophage that is based on highly selected phages Phagum Salmonella typhimurium and Phagum Salmonella enteritidis, as well as probiotic laktobifadola. The developed tools and methods of selective decontamination followed by immunization with inactivated vaccine associated "Virosalm" allows you to eliminate salmonella infection in poultry.

  9. LOCAL IMMUNITY AND GUT MICROFLORA IN THE SALMONELLA CARRIERS АND APPROACHES TO ITS TREATMENT

    Directory of Open Access Journals (Sweden)

    I. N. Chainikova

    2008-01-01

    Full Text Available Abstract. Features of local immunity were studied in the patients with Salmonella infection at reconvalescence, both without carriership, and in reconvalescent carriers of microbial flora (RCM. In RCMs, as compared to non-carriers, some alterations in gut microbiocenosis were revealed, along with local deficiency of antimicrobial defense factors, i.e., lactoferrin, lysozyme, secretory IgA, free secretory component, antibodies to Salmonella O-antigen, IgA, as opposed to high levels of IgM, IgG (due to IgG1 and IgG4, cytokines (IL-6, IL-8, IFNγ, IL-4. It was shown that sIgA and IgA deficiency are connected with their mangling local production, whereas the revealed increase in IgМ and IgG concentrations proved to be a consequence of increased local synthesis. Application of polyoxidonium (PO in RCMs lead to improvement in the gut microenvironment, thus reflected by decreased contamination with facultative flora, disappearance of Proteus, Candida spp. and recovery of indigenous anaerobic flora in 92 per cent of cases. Positive dynamics of local immunity associated with PO treatment was justified by restoration of total IgA and sIgA concentrations, due to enhanced local synthesis, increase in free secretory component, higher titers of antibodies to Salmonella O-antigen, and changes in cytokine contents, with restoration of Th1/Th2 cytokine balance. Under in vitro conditions, a PO-associated suppression of anti-complement Salmonella activity was registered, thus rendering positive effects of the drug towards symbionts in the «host-parasite» system, and shortening the terms of microbial excretion in Salmonella carriers.

  10. Cellulose degradation by oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  11. Salmonella L-forms: formation in human bile in vitro and isolation culture from patients' gallbladder samples by a non-high osmotic isolation technique.

    Science.gov (United States)

    Wang, D N; Wu, W J; Wang, T; Pan, Y Z; Tang, K L; She, X L; Ding, W J; Wang, H

    2015-05-01

    Bacterial L-forms have always been considered as osmotic-pressure-sensitive cell-wall-deficient bacteria and isolation culture of L-forms must use media with high osmotic pressure. However, isolation culture of stable L-forms formed in humans and animals is very difficult because they have adapted to the physiological osmotic pressure condition of the host. We use a non-high osmotic isolation technique to isolate stable L-forms of Salmonella Typhi and Salmonella Paratyphi A from bile-inducer cultures in vitro and from patients' gallbladder specimens. Multiplex PCR assay for Salmonella-specific genes and nucleotide sequencing are used to identify the Salmonella L-forms in stable L-form isolates. Using this method, we confirmed that Salmonella Paratyphi A and Salmonella Typhi cannot be isolated from bile-inducer cultures cultured for 6 h or 48 h, but the L-forms can be isolated from 1 h to 45 days. In the 524 gallbladder samples, the positive rate for bacterial forms was 19.7% and the positive rate for Salmonella spp. was 0.6% by routine bacteriological methods. The positive rate for bacterial L-forms was 75.4% using non-high osmotic isolation culture. In the L-form isolates, the positive rate of Salmonella invA gene was 3.1%. In these invA-positive L-form isolates, four were positive for the invA and flic-d genes of Salmonella Typhi, and ten were positive for the invA and flic-a genes of Salmonella Paratyphi A.

  12. Genetic diversity of Salmonella pathogenicity islands SPI-5 and SPI-6 in Salmonella Newport.

    Science.gov (United States)

    Cao, Guojie; Allard, Marc; Strain, Errol; Stones, Robert; Zhao, Shaohua; Brown, Eric; Meng, Jianghong

    2014-10-01

    Salmonella enterica subspecies enterica serotype Newport is one of the common serotypes causing foodborne salmonellosis outbreaks in the United States. Salmonella Newport consists of three lineages exhibiting extensive genetic diversity. Due to the importance of Salmonella pathogenicity islands 5 and 6 (SPI-5 and SPI-6) in virulence of pathogenic Salmonella, the genetic diversity of these two SPIs may relate to different potentials of Salmonella Newport pathogenicity. Most Salmonella Newport strains from North America belong to Salmonella Newport lineages II and III. A total 28 Salmonella Newport strains of lineages II and III from diverse sources and geographic locations were analyzed, and 11 additional Salmonella genomes were used as outgroup in phylogenetic analyses. SPI-5 was identified in all Salmonella Newport strains and 146 single nucleotide polymorphisms (SNPs) were detected. Thirty-nine lineage-defining SNPs were identified, including 18 nonsynonymous SNPs. Two 40-kb genomic islands (SPI5-GI1 and SPI5-GI2) encoding bacteriophage genes were found between tRNA-ser and pipA. SPI5-GI1 was only present in Salmonella Newport multidrug-resistant strains of lineage II. SPI-6 was found in all strains but three Asian strains in Salmonella Newport lineage II, whereas the three Asian strains carried genomic island SPI6-GI1 at the same locus as SPI-6 in other Salmonella. SPI-6 exhibited 937 SNPs, and phylogenetic analysis demonstrated that clustering of Salmonella Newport isolates was a reflection of their geographic origins. The sequence diversity within SPI-5 and SPI-6 suggests possible recombination events and different virulence potentials of Salmonella Newport. The SNPs could be used as biomarkers during epidemiological investigations.

  13. Ethanolamine utilization in Salmonella typhimurium.

    OpenAIRE

    Roof, D M; Roth, J R

    1988-01-01

    Ethanolamine can serve as the sole source of carbon and nitrogen for Salmonella typhimurium if vitamin B12 is present to serve as a cofactor. The pathway for ethanolamine utilization has been investigated in order to understand its regulation and determine whether the pathway is important to the selective forces that have maintained the ability to synthesize B12 in S. typhimurium. We isolated mutants that are defective in ethanolamine utilization (eut mutants). These mutants defined a cluster...

  14. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex

    NARCIS (Netherlands)

    Vain, T.; Crowell, E.F.; Timpano, H.; Biot, E.; Desprez, T.; Mansoori Zangir, N.; Trindade, L.M.; Pagant, S.; Robert, S.; Hofte, H.; Gonneau, M.; Vernhettes, S.

    2014-01-01

    Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis

  15. Reiter's syndrome after salmonella infection

    Directory of Open Access Journals (Sweden)

    Čanović Predrag S.

    2004-01-01

    Full Text Available Two patients with Reiter's syndrome, after Salmonella infection were treated on the Infections disease ward at Clinical hospital center in Kragujevac. In the first patient, ten days after the onset of Salmonella infection, signs of edema and pain in the right ankle occurred, accompanied by expressed conjunctivitis. Within next two months consecutive metatarsophalanges changes joint of the right foot have appeared. In the second patient, two weeks after the onset of Salmonella infection, edema of the left hand joints and a week later edema of the right hand and right ankle joints appeared. In both patients inflammatory syndrome was expressed (high erythrocyte sedimentation rates, fibrinogen, C-reactive protein along with negative rheumatoid factors and positive antigen HLA-B27. Outcome of the disease in both cases was favorable upon receiving nonsteroid antirheumatic therapy. Signs of arthritis disappeared after three months. No signs of recurrent arthritis have been seen during the next four years in the first and next two years in the second patient.

  16. Procalcitonin levels in salmonella infection

    Directory of Open Access Journals (Sweden)

    Vikas Mishra

    2015-01-01

    Full Text Available Aim: Procalcitonin (PCT as a diagnostic marker for bacteremia and sepsis has been extensively studied. We aimed to study PCT levels in Salmonella infections whether they would serve as marker for early diagnosis in endemic areas to start empiric treatment while awaiting blood culture report. Materials and Methods: BACTEC blood culture was used to isolate Salmonella in suspected enteric fever patients. Serum PCT levels were estimated before starting treatment. Results: In 60 proven enteric fever patients, median value of serum PCT levels was 0.22 ng/ml, values ranging between 0.05 and 4 ng/ml. 95% of patients had near normal or mild increase (<0.5 ng/ml, only 5% of patients showed elevated levels. Notably, high PCT levels were found only in severe sepsis. Conclusion: PCT levels in Salmonella infections are near normal or minimally increased which differentiates it from other systemic Gram-negative infections. PCT cannot be used as a specific diagnostic marker of typhoid.

  17. Leukocyte Adhesion Deficiency (LAD)

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area Leukocyte Adhesion Deficiency (LAD) LAD is an immune deficiency in ... are slow to heal also may have LAD. Treatment and Research Doctors prescribe antibiotics to prevent and ...

  18. Factor VII deficiency

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000548.htm Factor VII deficiency To use the sharing features on this page, please enable JavaScript. Factor VII (seven) deficiency is a disorder caused by a ...

  19. Folate-deficiency anemia

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000551.htm Folate-deficiency anemia To use the sharing features on this page, please enable JavaScript. Folate-deficiency anemia is a decrease in red blood cells (anemia) ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Deficiency Anemia What Is... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS PREVENTION LIVING WITH CLINICAL ... and women are the two groups at highest risk for iron-deficiency anemia. Outlook Doctors usually can ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ... treatment. For more information about living with and managing iron-deficiency anemia, go to the Health Topics ...

  2. Familial lipoprotein lipase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000408.htm Familial lipoprotein lipase deficiency To use the sharing features on this page, please enable JavaScript. Familial lipoprotein lipase deficiency is a group of rare genetic disorders ...

  3. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    Science.gov (United States)

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose.

  4. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  5. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    Science.gov (United States)

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose. PMID:26572398

  6. Micromechanics and poroelasticity of hydrated cellulose networks.

    Science.gov (United States)

    Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J

    2014-06-01

    The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure. PMID:24784575

  7. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  8. Iron deficiency and cognition

    OpenAIRE

    Hulthén, Lena

    2003-01-01

    Iron deficiency is the most prevalent nutritional disorder in the world. One of the most worrying consequences of iron deficiency in children is the alteration of behaviour and cognitive performance. In iron-deficient children, striking behavioural changes are observed, such as reduced attention span, reduced emotional responsiveness and low scores on tests of intelligence. Animal studies on nutritional iron deficiency show effects on learning ability that parallel the human studies. Despite ...

  9. FAKTOR VIRULENSI Salmonella enterica SEROVAR TYPHI

    Directory of Open Access Journals (Sweden)

    Marvy Khrisna Pranamartha

    2015-09-01

    Full Text Available ABSTRAK Demam tifoid disebabkan oleh bakteri Salmonella typhi, dengan gejala umum berupa demam tinggi dan nyeri perut. Tifoid adalah penyakit infeksi yang disebabkan oleh bakteri Salmonella typhi, yang masuk ke dalam tubuh melalui mulut dan saluran cerna.1 Untuk bisa memahami patogenesis dari demam tifoid sampai ke tingkat selular dan molekular, ada 5 hal penting yang harus digaris bawahi, yaitu: 1.\tTipe 3 Sistem Sekresi (T3SS 2.\tVirulence Genes dari Salmonella yang mengkode 5 SIP (Salmonella Invasion Protein SIP A, B, C, D, dan E. 3.\tToll R2 dan toll R3 yang merupakan lapisan luar dari makrofag. 4.\tSistem imun lumen usus sampai ke organ dalam 5.\tFungsi endotelial sel dalam inflamasi. Infeksi Salmonella dapat berakibat fatal kepada bayi, balita, ibu hamil dan kandungannya serta orang lanjut usia. Hal ini disebabkan karena kekebalan tubuh mereka yang menurun. Virulensi salmonella tidak lepas dari peranan SPI, yang terletak di dalam kromosom dan plasmid bakteri. Dimana SPI 1 dan SPI 2 telah dikaji cukup mendalam karena keterkaitannya dengan T3SS, dan berperan sangat penting pada invasi awal serta siklus hidup intrasel dari bakteri Salmonella. Kontaminasi Salmonella dapat dicegah dengan mencuci tangan dan menjaga kebersihan makanan yang dikonsumsi. Selalu menjaga kebersihan lingkungan hidup kita agar terhindar dari kontaminasi dengan bakteri Salmonella typhi. Agar mewaspadai sejak dini pencegahan dan pengobatan penyakit typhus. Studi mendalam perlu dilakukan agar kita mampu lebih memahami proses kompleks antara patogen dan sel inang. Mengingat dari 15 SPI yang sudah diketahui, hanya SPI 1 dan SPI 2 yang sudah dikaji secara mendalam. Kata Kunci: Salmonella, Salmonella Invasion Protein, Typhi.

  10. Liquid crystalline cellulose derivatives for mirrorless lasing

    OpenAIRE

    Wenzlik, Daniel

    2013-01-01

    In this thesis cholesteric films made of liquid crystalline cellulose derivatives with improved optical properties were prepared. The choice of the solvent, hydrogen bond influencing additives, the synthetic realization of a very high degree of substitution on the cellulosic polymer and the use of mechanical stirring at the upper concentration limit of the liquid crystalline range were the basis for an improved alignment of the applied cellulose tricarbamates. In combination with a tuned subs...

  11. Size Effects of Nano-crystalline Cellulose

    Institute of Scientific and Technical Information of China (English)

    Guo Kang LI; Xiao Fang LI; Yong JIANG; Mei Zhen ZENG; En Yong DING

    2003-01-01

    Natural cellulose with the crystal form of cellulose Ⅰ, when treated with condensed lye(e.g. 18%NaOH), can change into new crystal form of cellulose Ⅱ. But the nano-crystallinecellulose(NCC) can do it when only treated with dilute lye (e.g. 1%NaOH) at room temperatureand even can dissolve into slightly concentrated lye (e.g. 4%NaOH).

  12. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Ogata, Satoshi; Numakawa, Tetsuya; Kubo, Takuya

    2010-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  13. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Satoshi Ogata; Tetsuya Numakawa; Takuya Kubo

    2011-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  14. Cellulose biosynthesis and function in bacteria.

    OpenAIRE

    Ross, P; Mayer, R; Benziman, M

    1991-01-01

    The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most e...

  15. Lyocell, The New Generation of Regenerated Cellulose

    OpenAIRE

    Éva Borbély

    2008-01-01

    For the majority of the last century, commercial routes to regenerated cellulosefibres have coped with the difficulties of making a good cellulose solution by using an easyto dissolve derivative (e.g. xanthane in the case of viscose rayon) or complex (e.g.cuprammonium rayon). For the purposes of this paper, advanced cellulosic fibres aredefined as those made from a process involving direct dissolution of cellulose. The firstexamples of such fibres have now been generically designaed as lyocel...

  16. Iron-Deficiency Anemia

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, ... Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  18. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  19. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives

    OpenAIRE

    1982-01-01

    In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives. In the presence of all of these substituted celluloses, normal fasciation of microfibril bundles to form the typical twisting ribbon is prevented. Alteration of ribbon assembly is most extensive in the presen...

  20. Chemo-catalytic valorization of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Palkovits, R. [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie

    2012-07-01

    Cellulose can be utilized as carbon source for the production of novel platform molecules as well as fuel motifs. Promising transformation strategies cover the hydrolytic hydrogenation or hydrogenolysis of cellulose to sugar alcohols, the hydrolysis of cellulose to glucose followed by dehydration to 5-hydroxymethylfurfural or levulinic acid and the further hydrogenation of levulinic acid to {gamma}-valerolactone. Main challenges result from the high degree of functionalization of cellulosic feedstocks. In line, processes are carried out in liquid phase utilizing rather polar solvents and aiming for a tailored defunctionalisation of these oxygen rich compounds. Consequently, such transformations require novel strategies concerning the development of suitable catalysts and appropriate process concepts. (orig.)

  1. Cytocompatible cellulose hydrogels containing trace lignin.

    Science.gov (United States)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. PMID:27127053

  2. Carboxymethylation of Cellulose by Microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Cellulose may be readily converted into ethers involving primary and secondary alcohol groups in each monomer unit and the glycosidic bonds. However, these reactions are rather more complicated than with simple substances, because the stereochemistry of the cellulose molecule is such that the vast majority of its hydroxyl groups form intra-chain hydrogen bonds or inter-chain hydrogen bonds with contiguous molecules. Carboxymethylcellulose (CMC) has played an important part in the commercial uses of cellulose derivatives. CMC becomes alkali and water soluble. The polarity can, in fact, be increased by introduction of ionizing groups, ie carboxymethyl group. CMC is generally produced by the reaction of alkali cellulose with chloroacetic acid.

  3. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis.

    Science.gov (United States)

    Zhang, Guan; Ni, Chengsheng; Huang, Xiubing; Welgamage, Aakash; Lawton, Linda A; Robertson, Peter K J; Irvine, John T S

    2016-01-28

    Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.

  4. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  5. Cephalosporin and Ciprofloxacin Resistance in Salmonella, Taiwan

    OpenAIRE

    Yan, Jing-Jou; Chiou, Chien-Shun; Lauderdale, Tsai-Ling Yang; Tsai, Shu-Huei; Wu, Jiunn-Jong

    2005-01-01

    We report the prevalence and characteristics of Salmonella strains resistant to ciprofloxacin and extended-spectrum cephalosporins in Taiwan from January to May 2004. All isolates resistant to extended-spectrum cephalosporins carried bla CMY-2, and all ciprofloxacin-resistant Salmonella enterica serotype Choleraesuis isolates were genetically related.

  6. Salmonella Typhimurium infection in the porcine intestine

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Olsen, John Elmerdahl; Larsson, Lars-Inge

    2005-01-01

    The normal intestinal epithelium is renewed with a turnover rate of 3-5 days. During Salmonella infection increased cell loss is observed, possibly as a result of programmed cell death (PCD). We have, therefore, studied the effects of Salmonella Typhimurium infection on three elements involved in...

  7. Synthesis, Antibacterial and Thermal Studies of Cellulose Nanocrystal Stabilized ZnO-Ag Heterostructure Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2013-05-01

    Full Text Available Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9–35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.

  8. 9 CFR 113.120 - Salmonella Typhimurium Bacterin.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Salmonella Typhimurium Bacterin. 113... REQUIREMENTS Inactivated Bacterial Products § 113.120 Salmonella Typhimurium Bacterin. Salmonella Typhimurium Bacterin shall be prepared from a culture of Salmonella typhimurium which has been inactivated and...

  9. Significance of salmonella in pork production chain

    Directory of Open Access Journals (Sweden)

    Karabasil Neđeljko

    2008-01-01

    Full Text Available Animals, feed, meat and meat products are often transported across long distances, being an important part of international trade, which enables a dissemination of salmonella, including even of some resistant strains. Pigs are animals which are difficult to manipulate because of their temperament, build, sharp teeth, irritability, good sense of smell, bad sight and their sensitivity to stress. Animals coming from different farms should be separated in stock yards to prevent both contamination with pathogens such as salmonella and their irritation and aggressiveness caused by contacts with other pigs. These animals are usually a significant reservoir of salmonella which are 'inside' the gastrointestinal tract and gut associated lymph tissue. In contrast to our country, in the EU, even countries which have always had low salmonella prevalence, e.g. Finland, have a control program. The program has to be based on a guarantee that all relevant factors will participate in the prevention of salmonella contamination.

  10. Interactions of Salmonella with animals and plants

    Directory of Open Access Journals (Sweden)

    Agnès eWiedemann

    2015-01-01

    Full Text Available Salmonella enterica species is a Gram negative bacterium, which is responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruit with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i attachment to host surfaces; (ii entry processes; (iii, multiplication; (iv suppression of host defence mechanisms ; and to point out similarities and differences between animal and plant infections.

  11. Pathogenesis of Salmonella-induced enteritis

    Directory of Open Access Journals (Sweden)

    R.L. Santos

    2003-01-01

    Full Text Available Infections with Salmonella serotypes are a major cause of food-borne diseases worldwide. Animal models other than the mouse have been employed for the study of nontyphoidal Salmonella infections because the murine model is not suitable for the study of Salmonella-induced diarrhea. The microbe has developed mechanisms to exploit the host cell machinery to its own purpose. Bacterial proteins delivered directly into the host cell cytosol cause cytoskeletal changes and interfere with host cell signaling pathways, which ultimately enhance disease manifestation. Recently, marked advances have been made in our understanding of the molecular interactions between Salmonella serotypes and their hosts. Here, we discuss the molecular basis of the pathogenesis of Salmonella-induced enteritis.

  12. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  13. [Audiometry in the cellulose industry].

    Science.gov (United States)

    Corrao, C R; Milano, L; Pedulla, P; Carlesi, G; Bacaloni, A; Monaco, E

    1993-01-01

    A noise level dosimetry and audiometric testing were conducted in a cellulose factory to determine the hazardous noise level and the prevalence of noise induced hearing loss among the exposed workers. The noise level was recorded up to 90 db (A) in several working areas. 18 workers, potentially exposed to noise injury, evidenced a significant hearing loss. While no evidence of noise injury was recorded in a control group of 100 subjects. This finding suggest a strict relationship between audiometric tests, the noise level recorded in the working place and the working seniority of exposed employers. PMID:7720969

  14. Biomimetic Synthesis of Calcium-Deficient Hydroxyapatite in a Natural Hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A [ORNL; Benson, Roberto S. [University of Tennessee, Knoxville (UTK); Evans, Barbara R [ORNL; O' Neill, Hugh Michael [ORNL; Rawn, Claudia J [ORNL

    2006-01-01

    A novel composite material consisting of calcium-deficient hydroxyapatite (CdHAP) biomimetically deposited in a bacterial cellulose hydrogel was synthesized and characterized. Cellulose produced by Gluconacetobacter hansenii was purified and sequentially incubated in solutions of calcium chloride followed by sodium phosphate dibasic. A substantial amount of apatite (50-90% of total dry weight) was homogeneously incorporated throughout the hydrogel after this treatment. X-ray diffractometry (XRD) showed that CdHAP crystallites had formed in the cellulose. XRD further demonstrated that the CdHAP was comprised of 10-50nm anisotropic crystallites elongated in the c-axis, similar to natural bone apatite. Fourier transform infrared (FTIR) spectroscopy demonstrated that hydroxyl IR bands of the cellulose shifted to lower wave numbers indicating that a coordinate bond had possibly formed between the CdHAP and the cellulose hydroxyl groups. FTIR also suggested that the CdHAP had formed from an octacalcium phosphate precursor similar to physiological bone. Scanning electron microscopy (SEM) images confirmed that uniform ?1 mm spherical CdHAP particles comprised of nanosized crystallites with a lamellar morphology had formed in the cellulose. The synthesis of the composite mimics the natural biomineralization of bone indicating that bacterial cellulose can be used as a template for biomimetic apatite formation. This composite may have potential use as an orthopedic biomaterial.

  15. Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer.

    Science.gov (United States)

    Luukkonen, P; Schaefer, T; Hellén, L; Juppo, A M; Yliruusi, J

    1999-10-25

    The rheological properties of silicified microcrystalline cellulose (Prosolv 50) were compared with those of standard grades of microcrystalline cellulose (Emcocel 50 and Avicel PH 101). Cellulose samples were analyzed using nitrogen adsorption together with particle size, flowability, density and swelling volume studies. The rheological behaviour of the wet powder masses was studied as a function of mixing time using a mixer torque rheometer (MTR). Silicified microcrystalline cellulose exhibited improved flow characteristics and increased specific surface area compared to standard microcrystalline cellulose grades. Although the silicification process affected the swelling properties and, furthermore, the mixing kinetics of microcrystalline cellulose, the source of the microcrystalline cellulose had a stronger influence than silicification on the liquid requirement at peak torque. PMID:10518674

  16. Cellulose nanocrystals: synthesis, functional properties, and applications

    Directory of Open Access Journals (Sweden)

    George J

    2015-11-01

    Full Text Available Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. Keywords: sources of cellulose, mechanical properties, liquid crystalline nature, surface modification, nanocomposites 

  17. Nucleic acids encoding a cellulose binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    S. Saska

    2011-01-01

    Full Text Available The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA, similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

  19. BIODEGRADATION OF REGENERATED CELLULOSE FILMS BY FUNGI

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lina; LIU Haiqing; ZHENG Lianshuang; ZHANG Jiayao; DU Yumin; LIU Weili

    1996-01-01

    The biodegradability of Aspergillus niger (A. niger), Mucor (M-305) and Trichoderma (T-311) strains on regenerated cellulose films in media was investigated. The results showed that T-311 strain isolated from soil adhered on the cellulose film fragments has stronger degradation effect on the cellulose film than A. niger strain. The weights, molecular weights and tensile strengths of the cellulose films in both shake culture and solid media decreased with incubation time, accompanied by producing CO2 and saccharides. HPLC, IR and released CO2 analysis indicated that the biodegradation products of the regenerated cellulose films mainly contain oligosaccharides, cellobiose, glucose, arabinose, erythrose, glycerose,glycerol, ethanal, formaldehyde and organic acid, the end products were CO2 and water.After a month, the films were completely decomposed by fungi in the media at 30℃.

  20. Single-cell protein from waste cellulose

    Science.gov (United States)

    Dunlap, C. E.; Callihan, C. D.

    1973-01-01

    The recycle, reuse, or reclamation of single cell protein from liquid and solid agricultural waste fibers by a fermentation process is reported. It is shown that cellulose comprises the bulk of the fibers at 50% to 55% of the dry weight of the refuse and that its biodegradability is of prime importance in the choice of a substrate. The application of sodium hydroxide followed by heat and pressure serves to de-polymerize and disrupt lignin structure while swelling the cellulose to increase water uptake and pore volume. Some of the lignin, hemi-celluloses, ash, and cellulose of the material is hydrolized and solubilized. Introduction of microorganisms to the substrate fibers mixed with nutrients produces continuous fermentation of cellulose for further protein extraction and purification.

  1. Photophysics of alloxazines on cellulose.

    Science.gov (United States)

    Sikorski, Marek; Sikorska, Ewa; Khmelinskii, Igor V; Gonzalez-Moreno, Rafael; Bourdelande, José L; Siemiarczuk, Aleksander

    2002-09-01

    We report the UV-Vis absorption, fluorescence and transient absorption spectra of selected methylalloxazines adsorbed on cellulose from a polar solvent. The ground-state properties of these probe molecules in the cellulose matrix are similar to those in polar protic solvents. Fluorescence decay data allowed identification of three emitting species for every molecule studied, excluding 1-methyllumichrome which lacks the capacity to rearrange into an isoalloxazinic form. The short-lived emission component was attributed to the neutral form of the molecule, and the two longer-lived components were assigned to the two distinct deprotonated monoanionic forms resulting from dissociation at the respective N(3) and N(1) nitrogen atoms. The two monoanions coexist due to their very similar pKa, values. Transient absorption experiments detected two species created by the laser pulse in these systems. The short-lived species was identified as the triplet excited state, and the long-lived species as the semireduced radical, formed by hydrogen atom or proton transfer from the glycosidic unit to the alloxazine carbonyl group. PMID:12665311

  2. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  3. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  4. Prediction of Salmonella carcass contamination by a comparative quantitative analysis of E. coli and Salmonella during pig slaughter

    DEFF Research Database (Denmark)

    Nauta, Maarten; Barfod, Kristen; Hald, Tine;

    2013-01-01

    carcass contamination with Salmonella, when the distribution of Salmonella concentrations in faeces is known. Paired pig sample data (faecal samples and carcass swabs) were obtained from five slaughterhouses and analysed for prevalence and concentrations of E. coli and Salmonella. A simple model...... extensive data set showed that other factors than the observed faecal carriage of Salmonella by the individual animals brought to slaughter, play a more important role in the Salmonella carcass contamination of pork....

  5. Acquired color vision deficiency.

    Science.gov (United States)

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  6. SALMATcor: microagglutination for Salmonella flagella serotyping.

    Science.gov (United States)

    Duarte Martínez, Francisco; Sánchez-Salazar, Luz Marina; Acuña-Calvo, María Teresa; Bolaños-Acuña, Hilda María; Dittel-Dittel, Isis; Campos-Chacón, Elena

    2010-08-01

    Salmonella is a complex bacterial group with more than 2400 serovars widely distributed in nature; they are considered zoonotic because they can infect a variety of animals and be transmitted to humans. Usually, they cause alimentary acquired diseases such as gastroenteritis, typhoid fever, and others that can lead to severe complications and death. Serotyping is useful to differentiate among Salmonella, because it shows an important correlation with their clinical and epidemiological patterns; consequently, it is of high value for public health, animal health, agriculture, and industry. To characterize all known Kauffmann-White Salmonella serovars, over 250 antisera are required. Due to this and to high prices antisera, many laboratories worldwide have limitations in establishing Salmonella surveillance. Therefore, we developed and validated a Salmonella flagella microagglutination test (SALMATcor) that significantly reduces laboratory requirements of antisera. SALMATcor is based on scaling down, by fivefold, the antigen:antiserum volumes actually required for the reference method: flagella standard tube agglutination technique (STAT). Antigen preparation, temperatures, and incubation periods remained as established for STAT. The SALMATcor was validated according to ISO/DIS 16140:1999 protocol, which included 1187 comparisons of flagella determinations conducted by SALMATcor and STAT, on 141 Salmonella isolates of 12 common serotypes and the use of antiserum recommended for STAT. SALMATcor concordance was excellent (Cohen's kappa index 0.9982), obtaining relative accuracy >99.9% and relative specificity >99.9%. Additionally, SALMATcor has been used by CNRB-INCIENSA since 2004 to respond to all 40 Salmonella proficiency testing strains, provided by World Health Organization-Global Salmonella Surveillance Network, obtaining 100% concordance on serovar identification. On the basis of the results achieved with SALMATcor and considering that it also significantly

  7. Occurrence of Salmonella sp in laying hens

    Directory of Open Access Journals (Sweden)

    Gama NMSQ

    2003-01-01

    Full Text Available This study was carried out to investigate the presence of Salmonella sp in flocks of white laying hens. In different farms, the transport boxes of twelve flocks were inspected at arrival for the presence of Salmonella. Four positive (A, B, L and M and one negative (I flocks were monitored at each four weeks using bacteriological examination of cecal fresh feces up to 52 weeks. Birds were also evaluated at 52 weeks, when 500 eggs were taken randomly, and at 76 weeks, after forced molt. Salmonella enterica serovar Enteritidis and S. enterica rough strain were isolated from the transport boxes of the four positive flocks (flocks A, B, L and M. Salmonella sp was not isolated from the transport boxes or from the feces after 76 weeks-old in flock I. Salmonella sp was isolated in the 1st, 11th, 34th, 42nd and 76th weeks from flock A; in the 1st, 4th, 11th and 76th weeks from flock B; in the first week and in the 17th to 52nd weeks from flock L; and in the 1st and 76th weeks from flock M. S. Enteritidis, S. enterica rough strain and Salmonella enterica serovar Infantis were isolated from the four positive flocks. Besides, Salmonella enterica serovar Javiana was isolated from flocks B and L, and Salmonella enterica serovar Mbandaka was isolated from flock L. Eggs produced by flock A and by flock L were contaminated with S. Enteritidis and S. enterica rough strain. According to these results, Salmonella-infected flocks may produce contaminated eggs.

  8. Salmonella radicidation of poultry carcasses

    International Nuclear Information System (INIS)

    This thesis reports investigations using gamma-radiation to decontaminate poultry carcasses. The application to foods of doses of ionizing radiation sufficient to reduce the number of viable specific non-sporeforming pathogenic microorganisms so that none is detectable in the treated food by any standard method is termed radicidation. The doses used in this study were at such a level that no undesirable or unfavourable side-effects occurred. The effects of these doses were studied on salmonellae and other microorganisms present in, or associated with poultry carcasses and in liquid and on solid culture media as well. Decimal reduction (D10) values were estimated. These represent the dose (kGy) required to achieve a reduction in initial colony count from N0 to 0.1 N0. Together with the estimation of the numbers of Salmonella present per carcass the data were used to predict the effect of an ionizing radiation treatment of poultry. Data on the effect of ionizing radiation on the total microflora of poultry carcasses were also collected. (Auth.)

  9. Pleural Empyema due to Group D Salmonella

    Directory of Open Access Journals (Sweden)

    Jennifer C. Kam

    2012-01-01

    Full Text Available Non-typhi Salmonella normally presents as a bacteremia, enterocolitis, and endovascular infection but rarely manifests as pleuropulmonary disease. We present a case of a 66-year-old female with underlying pulmonary pathology, secondary to an extensive smoking history, who presented with a left-sided pleural effusion. The causative agent was identified as being group D Salmonella. Decortication of the lung was performed and the patient was discharged on antibiotics with resolution of her symptoms. This case helps to support the inclusion of Salmonella group D as a possible etiological agent of infection in the differential causes of exudative pleural effusions.

  10. Pleural Empyema due to Group D Salmonella

    Science.gov (United States)

    Kam, Jennifer C.; Abdul-Jawad, Sami; Modi, Chintan; Abdeen, Yazan; Asslo, Fady; Doraiswamy, Vikram; DePasquale, Joseph R.; Spira, Robert S.; Baddoura, Walid; Miller, Richard A.

    2012-01-01

    Non-typhi Salmonella normally presents as a bacteremia, enterocolitis, and endovascular infection but rarely manifests as pleuropulmonary disease. We present a case of a 66-year-old female with underlying pulmonary pathology, secondary to an extensive smoking history, who presented with a left-sided pleural effusion. The causative agent was identified as being group D Salmonella. Decortication of the lung was performed and the patient was discharged on antibiotics with resolution of her symptoms. This case helps to support the inclusion of Salmonella group D as a possible etiological agent of infection in the differential causes of exudative pleural effusions. PMID:23056966

  11. Salmonella bongori provides insights into the evolution of the Salmonellae.

    Directory of Open Access Journals (Sweden)

    Maria Fookes

    2011-08-01

    Full Text Available The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2 has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L. All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC. Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.

  12. Comparison of the environmental survival characteristics of Salmonella Dublin and Salmonella Typhimurium.

    Science.gov (United States)

    Kirchner, Miranda J; Liebana, Ernesto; McLaren, Ian; Clifton-Hadley, Felicity A; Wales, Andrew D; Davies, Robert H

    2012-10-12

    To examine possible correlations in bovine Salmonella isolates between environmental survival and serovar-associated epidemiological patterns, bovine field isolates of Salmonella serovars Typhimurium and Dublin (two each) were inoculated into bovine faeces slurry and tested monthly by culture for survival during a six-month period of storage at a variable ambient temperature in a disused animal transporter. Low moisture conditions, where the slurry was dried onto wooden dowels, increased detectable survival of a low-level inoculum by up to five months, compared with wet slurry. A more modest increase of survival time was seen with storage of wet slurry under refrigeration at 4°C. Under both dry and wet conditions, the concentration of culturable Salmonella Typhimurium declined at a slower rate than did that of Salmonella Dublin. Salmonella that was naturally contaminating bovine faeces from farms with Salmonella Typhimurium did not show superior survival times compared with Salmonella Typhimurium that had been artificially inoculated into samples. The differing survival characteristics of the two serovars that was observed in environmental faeces may complement their different modes of infection in cattle. Salmonella Dublin, being a bovine host-adapted strain that establishes chronic infection in some animals, may have less need to survive for a prolonged period outside of its host than does Salmonella Typhimurium.

  13. Evaluation of a CHROMagar Salmonella Medium for the Isolation of Salmonella Species

    Directory of Open Access Journals (Sweden)

    yesim cekin

    2014-03-01

    Full Text Available Aim: Salmonella infections are the leading cause of food-borne infections and can cause gastroenteritis outbreaks worldwide. Salmonella species is defined as inability to lactose fermentation, using citrate as a carbon source, using lysine as nitrate source and forming Hydrogen sulfide (H2S in TSI agar. However, confirmation of false positive results is time consuming and lead to increased costs. The aim of this study is to evaluate the performance of CHROMagar Salmonella (CHROMagar Microbiology, France which is developed for isolation and detection of Salmonella species. Material and Method: For this purpose, among a total of 148 isolates which were isolated from various clinical specimens and stocked at the Central Laboratory of Akdeniz University Hospital, 65 were Salmonella spp., 10 were Pseudomonas aeruginosa, 10 were E. coli, 10 were Acinetobacter baumannii, 10 were Klebsiella pneumoniae, 18 were Morganella morganii, 11 were Citrobacter spp., 5 were Providencia spp., 4 were Aeromonas spp., 5 were Proteus spp. were included in this study. All of the 65 Salmonella spp. isolates apperared with mauve colonies at the CHROMagar Salmonella. Results: E. coli and Klebsiella pnemoniae species were seen as blue, Providencia species were seen as pale-blue; Morganella morganii species were seen as pale-pink, mauve; and Pseudomonas aeruginosa species were seen as pale. Acinebacter baumannii and Aeromonas spp. species were also seen as mauve colonies. Dicussion: CHROMagar Salmonella medium can detect Salmonella species with %100 sensitivity, however there is a need to biochemical or serological confirmation.

  14. Pharmacopoeial and physicochemical properties of α-cellulose and microcrystalline cellulose powders derived from cornstalks

    Directory of Open Access Journals (Sweden)

    Chukwuemeka P Azubuike

    2012-01-01

    Full Text Available Background: Suitable α-cellulose and microcrystalline cellulose powders for use in the pharmaceutical industry can be derived from agricultural wastes. Aims: The pharmacopoeial and physicochemical properties of cornstalk α-cellulose (CCC and cornstalk microcrystalline cellulose powders (MCCC were compared to a commercial brand of microcrystalline cellulose (Avicel PH101 to evaluate their usefulness as pharmaceutical excipients. Settings and Design: Physicochemical properties of an excipient play a very crucial role in the functions of the excipient; hence, these properties were evaluated and compared with a commercial brand. Materials and Methods: α-cellulose was extracted from cornstalks. Modification of this α-cellulose powder was carried out by its partial hydrolysis with hydrochloric acid (HCl to obtain a microcrystalline cellulose powder. Their pharmacopoeial, physicochemical and microbiological properties were evaluated using standard methods. Statistical Analysis: OriginPro 8 SR2 v. 0891 (B891 software (OriginLab Corporation USA was used for statistical evaluation. One-way analysis of variance was used to differentiate between samples and decide where significant differences were established. Results: The yield of α-cellulose from the cornstalks was 32.5%w/w and that of microcrystalline cellulose 26%w/w. All the cellulose samples met all the pharmacopoeial parameters that were carried out. The comparison of physicochemical properties of the CCC, MCCC and Avicel PH101 suggests that the microcrystalline celluloses might have better flow and compression properties than the CCC sample. The three cellulose powders were of high microbial excipient quality. For almost all parameters evaluated, it was generally observed that the MCCC has similar characteristics to Avicel PH101. Conclusions: MCCC can be a suitable alternative to the expensive Avicel PH101as pharmaceutical excipients.

  15. Degradation of cellulose by basidiomycetous fungi.

    Science.gov (United States)

    Baldrian, Petr; Valásková, Vendula

    2008-05-01

    Cellulose is the main polymeric component of the plant cell wall, the most abundant polysaccharide on Earth, and an important renewable resource. Basidiomycetous fungi belong to its most potent degraders because many species grow on dead wood or litter, in environment rich in cellulose. Fungal cellulolytic systems differ from the complex cellulolytic systems of bacteria. For the degradation of cellulose, basidiomycetes utilize a set of hydrolytic enzymes typically composed of endoglucanase, cellobiohydrolase and beta-glucosidase. In some species, the absence of cellobiohydrolase is substituted by the production of processive endoglucanases combining the properties of both of these enzymes. In addition, systems producing hydroxyl radicals based on cellobiose dehydrogenase, quinone redox cycling or glycopeptide-based Fenton reaction are involved in the degradation of several plant cell wall components, including cellulose. The complete cellulolytic complex used by a single fungal species is typically composed of more than one of the above mechanisms that contribute to the utilization of cellulose as a source of carbon or energy or degrade it to ensure fast substrate colonization. The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulose degradation in the physiology and ecology of the individual groups. PMID:18371173

  16. Enhancement of Cellulose Degradation by Cattle Saliva.

    Science.gov (United States)

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale.

  17. PREVALENCE OF SALMONELLA IN CAPTIVE REPTILES FROM CROATIA.

    Science.gov (United States)

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-06-01

    Salmonellosis transmitted by pet reptiles is an increasing public health issue worldwide. The aim of this study was to investigate the prevalence of Salmonella strains from captive reptiles in Croatia. From November 2009 to November 2011 a total of 292 skin, pharyngeal, cloacal, and fecal samples from 200 apparently healthy reptiles were tested for Salmonella excretions by bacteriologic culture and serotyping. These 200 individual reptiles included 31 lizards, 79 chelonians, and 90 snakes belonging to private owners or housed at the Zagreb Zoo, Croatia. Salmonella was detected in a total of 13% of the animals, among them 48.4% lizards, 8.9% snakes, and 3.8% turtles. Representatives of five of the six Salmonella enterica subspecies were identified with the following proportions in the total number of isolates: Salmonella enterica enterica 34.6%, Salmonella enterica houtenae 23.1%, Salmonella enterica arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence of Salmonella is considerable in captive reptiles in Croatia, indicating that these animals may harbor serovars not commonly seen in veterinary or human microbiologic practice. This should be addressed in the prevention and diagnostics of human reptile-transmitted infections.

  18. Visual and efficient immunosensor technique for advancing biomedical applications of quantum dots on Salmonella detection and isolation

    Science.gov (United States)

    Tang, Feng; Pang, Dai-Wen; Chen, Zhi; Shao, Jian-Bo; Xiong, Ling-Hong; Xiang, Yan-Ping; Xiong, Yan; Wu, Kai; Ai, Hong-Wu; Zhang, Hui; Zheng, Xiao-Li; Lv, Jing-Rui; Liu, Wei-Yong; Hu, Hong-Bing; Mei, Hong; Zhang, Zhen; Sun, Hong; Xiang, Yun; Sun, Zi-Yong

    2016-02-01

    It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction. More importantly, because this swab can serve as an attachment site for the targeted pathogens to immobilize and immunologically capture nanobioprobes, our mAb-conjugated QD bioprobes were successfully applied on the solid-phase enrichment system to capture the fluorescence of targeted colonies under a designed excitation light instrument based on blue light-emitting diodes combined with stereomicroscopy or laser scanning confocal microscopy. Compared with the traditional methods using 4-7 days to isolate Salmonella from the bacterial mixture, this method took only 2 days to do this, and the process of initial screening and preliminary diagnosis can be completed in only one and a half days. Furthermore, the limit of detection can reach as low as 101 cells per mL Salmonella on the background of 105 cells per mL non-Salmonella (Escherichia coli, Proteus mirabilis or Citrobacter freundii, respectively) in experimental samples, and even in human anal ones. The visual and efficient immunosensor technique may be proved to be a favorable alternative for screening and isolating Salmonella in a large number of samples related to public health surveillance.It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here

  19. A novel cellulose hydrogel prepared from its ionic liquid solution

    Institute of Scientific and Technical Information of China (English)

    LI Lu; LIN ZhangBi; YANG Xiao; WAN ZhenZhen; CUI ShuXun

    2009-01-01

    A novel cellulose hydrogel is prepared by regenerating cellulose from its ionic liquid solution. The transparency cellulose hydrogel presents a good chemical stability and an acceptable mechanical property. This non-toxic cellulose hydrogel should be biocompatibie and may be useful in the future as a biomaterial.

  20. Colonization of Crystalline Cellulose by Clostridium cellulolyticum ATCC 35319

    OpenAIRE

    Gelhaye, E.; Gehin, A; Petitdemange, H.

    1993-01-01

    Cellulose colonization by Clostridium cellulolyticum was studied by using [methyl-3H]thymidine incorporation. The colonization process indicated that a part of the bacterial population was released from cellulose to the liquid phase before binding and colonizing another adhesion site of the cellulose. We postulate that cellulose colonization occurs according to the following process: adhesion, colonization, release, and readhesion.

  1. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.

    Science.gov (United States)

    Song, Won-Jae; Kang, Dong-Hyun

    2016-02-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration.

  2. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.

    Science.gov (United States)

    Song, Won-Jae; Kang, Dong-Hyun

    2016-02-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration. PMID:26678129

  3. Surface modification of cellulose nanocrystals

    Institute of Scientific and Technical Information of China (English)

    WANG Neng; DING Enyong; CHENG Rongshi

    2007-01-01

    In order to improve the dispersibility of cellulose nanocrystal(CNC) particles,three difierent grafted reactions of acetylation,hydroxyethylation and hydroxypropylation were introduced to modify the CNC surface.The main advantages of these methods were the simple and easily controlled reaction conditions,and the dispersibility of the resulting products was distinctly improved.The properties of the modified CNC were characterized by means of Fourier transform infrared spectroscopy(FT-IR),13 C nuclear magnetic resonance(NMR),transmission electron microscopy(TEM)and thermogravimetric analyses(TGA).The results indicated mat after desiccation,the modification products could be dispersed again in the proper solvents by ultrasonic treatments,and the diameter of their particles had no obvious changes.However,their thermal degradation behaviors were quite different.The initial decomposition temperature of the modified products via hydroxyethylation or hydroxypropylation was lower than that of modified products via acetylation.

  4. Lipoprotein lipase deficiency.

    OpenAIRE

    Shankar K; Bava H; Shetty J; Joshi M

    1997-01-01

    A rare case of a 3 month old child with lipoprotein lipase deficiency who presented with bronchopneumonia is reported. After noticing lipaemic serum and lipaemia retinalis, a diagnosis of hyperlipoproteinaemia was considered. Lipoprotein lipase deficiency was confirmed with post heparin lipoprotein lipase enzyme activity estimation.

  5. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  6. Iron deficiency in childhood

    NARCIS (Netherlands)

    L. Uijterschout

    2015-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency in the world. Iron is involved in oxygen transport, energy metabolism, immune response, and plays an important role in brain development. In infancy, ID is associated with adverse effects on cognitive, motor, and behavioral development

  7. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A;

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  8. Vitamin deficiencies and excesses

    Science.gov (United States)

    Vitamins are essential nutrients that must be supplied exogenously either as part of a well balanced diet or as supplements. Deficiency states are uncommon in developed countries except, perhaps, among some food insecure families. In contrast, deficiency states are quite common in many developing ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Blood Tests Blood Transfusion Restless Legs Syndrome Send a link to NHLBI to someone by E-MAIL | ... Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily treated condition that occurs if you ...

  10. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  11. Salmonella vaccines: lessons from the mouse model or bad teaching?

    Science.gov (United States)

    Strugnell, Richard A; Scott, Timothy A; Wang, Nancy; Yang, Chenying; Peres, Newton; Bedoui, Sammy; Kupz, Andreas

    2014-02-01

    Salmonella enterica subsp. enterica includes several very important human serovars including Typhi, Paratyphi, Typhimurium and Enteritidis. These bacteria cause a significant global burden of disease, typically classified into enteric fever, gastroenteritis and, more recently, invasive non-typhoidal salmonellosis (iNTS). Vaccines have been developed for one of these serovars, S. Typhi and the recent increase in iNTS cases has resulted in a push to develop new vaccines that will inhibit disease by S. Typhimurium and S. Enteritidis, the most common iNTS S. enterica serovars. The development of new human vaccines has been informed by studies in the murine model of typhoid fever based on S. Typhimurium infections of very 'sensitive' (Nramp-1(S)) mice, which has some obvious deficiencies, not the least that antibodies protect humans against S. Typhi infection but are only weakly protective in 'sensitive' mice infected with S. Typhimurium. S. Typhimurium also lacks Vi, the target of protective antibodies in typhoid fever. Notwithstanding these deficiencies, the murine model has identified a very complex series of innate and adaptive immune responses to infection that might be exploited to develop new vaccines. Equally, advances in understanding the pathogenesis of infection, through pathogenomics and more sophisticated animal models will likely contribute to the development of novel immunogens.

  12. Lyocell, The New Generation of Regenerated Cellulose

    Directory of Open Access Journals (Sweden)

    Éva Borbély

    2008-06-01

    Full Text Available For the majority of the last century, commercial routes to regenerated cellulosefibres have coped with the difficulties of making a good cellulose solution by using an easyto dissolve derivative (e.g. xanthane in the case of viscose rayon or complex (e.g.cuprammonium rayon. For the purposes of this paper, advanced cellulosic fibres aredefined as those made from a process involving direct dissolution of cellulose. The firstexamples of such fibres have now been generically designaed as lyocell fibres todistinguish them from rayons, and the first commercial lyocell fibre is Courtaulds’ Tencel.

  13. Preparation of membranes from cellulose obtained of sugarcane bagasse

    International Nuclear Information System (INIS)

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  14. Acalculous cholecystitis due to Salmonella enteritidis

    Institute of Scientific and Technical Information of China (English)

    Maria Lourdes Ruiz-Rebollo; Gloria Sánchez-Antolín; Félix García-Pajares; Maria Antonia Vallecillo-Sande; Pilar Fernández-Orcajo; Rosario Velicia-Uames; Agustín Caro-Patón

    2008-01-01

    Acute acalculous cholecystitis (AAC) is defined as an acute inflammation of the gallbladder in the absence of stones. We herein report a case of a young man who developed AAC after a Salmonella enteritidis gastroin-testinal infection.

  15. The Salmonella enterica Pan-genome

    DEFF Research Database (Denmark)

    Jacobsen, Annika; Hendriksen, Rene S.; Aarestrup, Frank Møller;

    2011-01-01

    Salmonella enterica is divided into four subspecies containing a large number of different serovars, several of which are important zoonotic pathogens and some show a high degree of host specificity or host preference. We compare 45 sequenced S. enterica genomes that are publicly available (22......, and the core and pan-genome of Salmonella were estimated to be around 2,800 and 10,000 gene families, respectively. The constructed pan-genomic dendrograms suggest that gene content is often, but not uniformly correlated to serotype. Any given Salmonella strain has a large stable core, whilst...... there is an abundance of accessory genes, including the Salmonella pathogenicity islands (SPIs), transposable elements, phages, and plasmid DNA. We visualize conservation in the genomes in relation to chromosomal location and DNA structural features and find that variation in gene content is localized in a selection...

  16. Seroincidence of non-typhoid Salmonella infections

    DEFF Research Database (Denmark)

    Emborg, H-D; Simonsen, J; Jørgensen, C S;

    2016-01-01

    The incidence of reported infections of non-typhoid Salmonella is affected by biases inherent to passive laboratory surveillance, whereas analysis of blood sera may provide a less biased alternative to estimate the force of Salmonella transmission in humans. We developed a mathematical model...... that enabled a back-calculation of the annual seroincidence of Salmonella based on measurements of specific antibodies. The aim of the present study was to determine the seroincidence in two convenience samples from 2012 (Danish blood donors, n = 500, and pregnant women, n = 637) and a community-based sample...... of healthy individuals from 2006 to 2007 (n = 1780). The lowest antibody levels were measured in the samples from the community cohort and the highest in pregnant women. The annual Salmonella seroincidences were 319 infections/1000 pregnant women [90% credibility interval (CrI) 210-441], 182/1000 in blood...

  17. A carbon nanotube immunosensor for Salmonella

    Directory of Open Access Journals (Sweden)

    Mitchell B. Lerner

    2011-12-01

    Full Text Available Antibody-functionalized carbon nanotube devices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotube transistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (<1000 cfu/ml. In contrast, the carrier mobility is affected comparably by Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml.

  18. Oxidizing Cellulose to 2,3-Dialdehyde Cellulose by Sodium Periodate

    Institute of Scientific and Technical Information of China (English)

    MENG Shuxian; FENG Yaqing; LIANG Zupei; FU Qiang; ZHANG Enzhong

    2005-01-01

    Study on oxidizing cellulose to 2,3-dialdehyde cellulose by sodium periodate (NaIO4) was carried out. The effects of reaction conditions such as pH of solution, temperature, oxidant concentration, oxidation time, the particle size of 2,3-dialdehyde cellulose and alkali treatment temperature on the dialdehyde concentration of cellulose were investigated in detail. The results show that the aldehyde group content was created while reaction temperature and alkali treatment temperature increased.The most principal factors affecting the aldehyde group content of 2,3-dialdehyde cellulose were found out and the best oxidation conditions were as follows: the pH was 2, the reaction temperature was 45 ℃, the mass ratio of cellulose to NaIO4 was 1/2, the reaction time was 4 h, the alkali treatment temperature was 70 ℃ and smaller particle size was 0.80 mm.

  19. Hydrolyzability of xylan after adsorption on cellulose: Exploration of xylan limitation on enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Wang, Xiao; Li, Kena; Yang, Ming; Zhang, Junhua

    2016-09-01

    During pretreatment of lignocellulosic materials, the dissolved xylan would re-adsorb on cellulose, and then inhibits the cellulose hydrolysis by cellulases. However, the hydrolyzability of xylan adsorbed on cellulose is not clear. In this work, the adsorption behavior of xylans on celluloses and the hydrolysis of adsorbed xylan by xylanase (XYL) were investigated. The results indicated that the adsorption of beechwood xylan (BWX) and oat spelt xylan (OSX) on Avicel was conformed to Langmuir-type adsorption isotherm. Higher ion strength increased the adsorption of BWX on Avicel, but not that of OSX. Both BWX and OSX adsorbed on Avicel and corn stover after dilute acid pretreatment (CS-DA) could be hydrolyzed by XYL. Compared to OSX, BWX adsorbed on cellulosic materials could be more easily hydrolyzed by XYL. Thus, supplementation of XYL could hydrolyze the xylan adsorbed on cellulose and potentially improved hydrolysis efficiency of lignocelluloses. PMID:27185150

  20. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth. PMID:21452895

  1. lac repressor is an antivirulence factor of Salmonella enterica: its role in the evolution of virulence in Salmonella.

    Directory of Open Access Journals (Sweden)

    Sandeepa M Eswarappa

    Full Text Available The genus Salmonella includes many pathogens of great medical and veterinary importance. Bacteria belonging to this genus are very closely related to those belonging to the genus Escherichia. lacZYA operon and lacI are present in Escherichia coli, but not in Salmonella enterica. It has been proposed that Salmonella has lost lacZYA operon and lacI during evolution. In this study, we have investigated the physiological and evolutionary significance of the absence of lacI in Salmonella enterica. Using murine model of typhoid fever, we show that the expression of LacI causes a remarkable reduction in the virulence of Salmonella enterica. LacI also suppresses the ability of Salmonella enterica to proliferate inside murine macrophages. Microarray analysis revealed that LacI interferes with the expression of virulence genes of Salmonella pathogenicity island 2. This effect was confirmed by RT-PCR and Western blot analysis. Interestingly, we found that SBG0326 of Salmonella bongori is homologous to lacI of Escherichia coli. Salmonella bongori is the only other species of the genus Salmonella and it lacks the virulence genes of Salmonella pathogenicity island 2. Overall, our results demonstrate that LacI is an antivirulence factor of Salmonella enterica and suggest that absence of lacI has facilitated the acquisition of virulence genes of Salmonella pathogenicity island 2 in Salmonella enterica making it a successful systemic pathogen.

  2. Salmonella typhimurium abscess of the chest wall

    OpenAIRE

    Tonziello, Gilda; Valentinotti, Romina; Arbore, Enrico; Cassetti, Paolo; Luzzati, Roberto

    2013-01-01

    Patient: Male, 73 Final Diagnosis: Salmonella typhimurium abscess of the chest wall Symptoms: — Medication: Ciprofloxacin Clinical Procedure:— Specialty: Infectious Diseases Objective: Unusual clinical course Background: Non-typhoid Salmonella extra-intestinal infections usually develop in infants and in adult patients with pre-existing predisposing conditions. Blood stream infections and urinary tract infections are the most common clinical presentations, but other sites of infection may be ...

  3. Long term prognosis of reactive salmonella arthritis

    OpenAIRE

    Leirisalo-Repo, M; Helenius, P; Hannu, T; Lehtinen, A; Kreula, J; Taavitsainen, M; Koskimies, S

    1997-01-01

    OBJECTIVES—Reactive joint complications triggered by salmonella gastroenteritis are increasingly reported, but the outcome and long term prognosis of the patients is incompletely known. This study looked at the prognosis of salmonella arthritis in patients hospitalised in 1970-1986.
METHODS—Hospital records from two hospitals in southern Finland were screened for patients with the discharge diagnosis of salmonellosis or reactive, postinfectious arthritis or Reiter's disease. For the patients ...

  4. Salmonella in beef and produce from honduras.

    Science.gov (United States)

    Maradiaga, Martha; Miller, Mark F; Thompson, Leslie; Pond, Ansen; Gragg, Sara E; Echeverry, Alejandro; Garcia, Lyda G; Loneragan, Guy H; Brashears, Mindy M

    2015-03-01

    Salmonella continues to cause a considerable number of foodborne illnesses worldwide. The sources of outbreaks include contaminated meat and produce. The purpose of this study was to establish an initial investigation of the burden of Salmonella in produce and beef from Honduras by sampling retail markets and abattoirs. Retail produce samples (cantaloupes, cilantro, cucumbers, leafy greens, peppers, and tomatoes; n = 573) were purchased in three major cities of Honduras, and retail whole-muscle beef (n = 555) samples were also purchased in four major cities. Additionally, both hide and beef carcass (n = 141) samples were collected from two Honduran abattoirs. Whole-muscle beef samples were obtained using a sponge hydrated with buffered peptone water, and 10 ml of the buffered peptone water rinsate of each produce sample was collected with a dry sponge and placed in a bag to be transported back to the United States. Salmonella was detected using a commercially available, closeplatform PCR system, and positive samples were subjected to culture on selective media to obtain isolates. Overall, the prevalence of Salmonella-positive samples, based on PCR detection in Honduras (n = 555) retail beef was 10.1% (95% confidence interval = 7.8, 12.9), whereas 7.8% (n = 141) of beef carcass and hides samples were positive in both beef plants. The overall Salmonella prevalence for all produce samples (n = 573) collected was 2.1% (95% confidence interval = 1.2, 3.6). The most common serotypes identified in Honduras were Salmonella Typhimurium followed by Derby. These results provide an indication of Salmonella contamination of beef and produce in Honduras. Developing a Salmonella baseline for Latin America through an initial investigation like the one presented here contributes to a broader global understanding of the potential exposure through food, thus providing insight into the needs for control strategies. PMID:25719872

  5. Salmonella in beef and produce from honduras.

    Science.gov (United States)

    Maradiaga, Martha; Miller, Mark F; Thompson, Leslie; Pond, Ansen; Gragg, Sara E; Echeverry, Alejandro; Garcia, Lyda G; Loneragan, Guy H; Brashears, Mindy M

    2015-03-01

    Salmonella continues to cause a considerable number of foodborne illnesses worldwide. The sources of outbreaks include contaminated meat and produce. The purpose of this study was to establish an initial investigation of the burden of Salmonella in produce and beef from Honduras by sampling retail markets and abattoirs. Retail produce samples (cantaloupes, cilantro, cucumbers, leafy greens, peppers, and tomatoes; n = 573) were purchased in three major cities of Honduras, and retail whole-muscle beef (n = 555) samples were also purchased in four major cities. Additionally, both hide and beef carcass (n = 141) samples were collected from two Honduran abattoirs. Whole-muscle beef samples were obtained using a sponge hydrated with buffered peptone water, and 10 ml of the buffered peptone water rinsate of each produce sample was collected with a dry sponge and placed in a bag to be transported back to the United States. Salmonella was detected using a commercially available, closeplatform PCR system, and positive samples were subjected to culture on selective media to obtain isolates. Overall, the prevalence of Salmonella-positive samples, based on PCR detection in Honduras (n = 555) retail beef was 10.1% (95% confidence interval = 7.8, 12.9), whereas 7.8% (n = 141) of beef carcass and hides samples were positive in both beef plants. The overall Salmonella prevalence for all produce samples (n = 573) collected was 2.1% (95% confidence interval = 1.2, 3.6). The most common serotypes identified in Honduras were Salmonella Typhimurium followed by Derby. These results provide an indication of Salmonella contamination of beef and produce in Honduras. Developing a Salmonella baseline for Latin America through an initial investigation like the one presented here contributes to a broader global understanding of the potential exposure through food, thus providing insight into the needs for control strategies.

  6. Salmonellae and salmonellosis in captive reptiles.

    OpenAIRE

    Onderka, D K; Finlayson, M. C.

    1985-01-01

    In a survey of 150 pet reptiles submitted for necropsy, 51% of snakes, 48% of lizards and 7% of turtles were infected with Salmonella. About one third of the positive animals had died due to various manifestations of salmonellosis. Thirty-one Salmonella serotypes were identified including three isolates new to Canada. The public health implications are discussed in view of the restricted popularity of reptiles and their possible infection from domestic agricultural products.

  7. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  8. Reaction mechanisms in cellulose pyrolysis: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Demmitt, T.F.

    1977-08-01

    A bibliographic review of 195 references is presented outlining the history of the research into the mechanisms of cellulose pyrolysis. Topics discussed are: initial product identification, mechanism of initial formation of levoglucosan, from cellulose and from related compounds, decomposition of cellulose to other compounds, formation of aromatics, pyrolysis of levoglucosan, crosslinking of cellulose, pyrolytic reactions of cellulose derivatives, and the effects of inorganic salts on the pyrolysis mechanism. (JSR)

  9. Hydrolytic and Oxidative Mechanisms Involved in Cellulose Degradation

    OpenAIRE

    Nutt, Anu

    2006-01-01

    The enzymatic degradation of cellulose is an important process in nature. This thesis has focused on the degradation of cellulose by enzymes from two cellulose-degrading fungi, Hypocrea jecorina and Phanerochaete chrysosporium, including both the action of the individual enzymes and their synergistic interplay. The end-preference of cellobiohydrolases on crystalline cellulose was studied. Cellobiohydrolases belonging to glycosyl hydrolase (GH) family 7 were found to hydrolyse cellulose proce...

  10. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection.

    OpenAIRE

    Matthysse, A G

    1983-01-01

    During the attachment of Agrobacterium tumefaciens to carrot tissue culture cells, the bacteria synthesize cellulose fibrils. We examined the role of these cellulose fibrils in the attachment process by determining the properties of bacterial mutants unable to synthesize cellulose. Such cellulose-minus bacteria attached to the carrot cell surface, but, in contrast to the parent strain, with which larger clusters of bacteria were seen on the plant cell, cellulose-minus mutant bacteria were att...

  11. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiapeng, E-mail: firgexiao@sina.cn; Pang, Zengyuan, E-mail: pangzengyuan1212@163.com; Yang, Jie, E-mail: young1993@126.com; Huang, Fenglin, E-mail: flhuang@jiangnan.edu.cn; Cai, Yibing, E-mail: yibingcai@jiangnan.edu.cn; Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors.

  12. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp

    Directory of Open Access Journals (Sweden)

    Anand Kumar Veeramachineni

    2016-06-01

    Full Text Available Sago biomass is an agro-industrial waste produced in large quantities, mainly in the Asia-Pacific region and in particular South-East Asia. This work focuses on using sago biomass to obtain cellulose as the raw material, through chemical processing using acid hydrolysis, alkaline extraction, chlorination and bleaching, finally converting the material to pharmaceutical grade carboxymethyl sago cellulose (CMSC by carboxymethylation. The cellulose was evaluated using Thermogravimetric Analysis (TGA, Infrared Spectroscopy (FTIR, X-Ray Diffraction (XRD, Differential Scanning Calorimetry (DSC and Field Emission Scanning Electronic Microscopy (FESEM. The extracted cellulose was analyzed for cellulose composition, and subsequently modified to CMSC with a degree of substitution (DS 0.6 by typical carboxymethylation reactions. X-ray diffraction analysis indicated that the crystallinity of the sago cellulose was reduced after carboxymethylation. FTIR and NMR studies indicate that the hydroxyl groups of the cellulose fibers were etherified through carboxymethylation to produce CMSC. Further characterization of the cellulose and CMSC were performed using FESEM and DSC. The purity of CMSC was analyzed according to the American Society for Testing and Materials (ASTM International standards. In this case, acid and alkaline treatments coupled with high-pressure defibrillation were found to be effective in depolymerization and defibrillation of the cellulose fibers. The synthesized CMSC also shows no toxicity in the cell line studies and could be exploited as a pharmaceutical excipient.

  13. Toename Salmonella en Campylobacter bij slacht : Campylobacter in pluimveesector constant, Salmonella sterk gedaald

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Asselt, van E.D.

    2009-01-01

    In vrijwel alle schakels van de pluimveevleesketen is de besmetting met Salmonella in de periode van 2002 tot 2005 gedaald. Campylobacter werd in diezelfde periode juist vaker in slachthuizen aangetroffen. Tijdens het slachten nam de besmetting met beide pathogenen toe, voor Salmonella gold dit voor

  14. Carboxymethylation of Cellulose by Microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    YE; Jun

    2001-01-01

    Cellulose may be readily converted into ethers involving primary and secondary alcohol groups in each monomer unit and the glycosidic bonds. However, these reactions are rather more complicated than with simple substances, because the stereochemistry of the cellulose molecule is such that the vast majority of its hydroxyl groups form intra-chain hydrogen bonds or inter-chain hydrogen bonds with contiguous molecules. Carboxymethylcellulose (CMC) has played an important part in the commercial uses of cellulose derivatives. CMC becomes alkali and water soluble. The polarity can, in fact, be increased by introduction of ionizing groups, ie carboxymethyl group. CMC is generally produced by the reaction of alkali cellulose with chloroacetic acid.……

  15. Rapid saccharification for production of cellulosic biofuels.

    Science.gov (United States)

    Lee, Dae-Seok; Wi, Seung Gon; Lee, Soo Jung; Lee, Yoon-Gyo; Kim, Yeong-Suk; Bae, Hyeun-Jong

    2014-04-01

    The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis. PMID:24607460

  16. Dissolution enthalpies of cellulose in ionic liquids.

    Science.gov (United States)

    Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

    2014-11-26

    In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins.

  17. Cellulosic ethanol is ready to go

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M. [SunOpta BioProcess Group, Brampton, ON (Canada)

    2006-07-01

    A corporate overview of the SunOpta organization was presented. The organization includes three divisions, notably organic food, industrial minerals, and a bioprocess group. It is a Canadian organization that has experienced over 60 per cent growth per year since 1999. The presentation provided a history of the bioprocess group from 1973 to 2003. The presentation also illustrated the biomass process from wood, straw or corn stover to cellulosic ethanol and acetone and butanol. Several images were presented. The production of xylitol from oat hulls and birch and from ryegrass straw to linerboard was also illustrated. Last, the presentation illustrated the biomass production of cellulose, hemicellulose and lignin extraction as well as the ammonia pretreatment of cellulosics. The presentation also listed several current and future developments such as an expansion plan and implementation of cellulosic ethanol. Economic success was defined as requiring proximity to market; high percentage concentration to distillation; and co-located within existing infrastructure. figs.

  18. Genetic characterization and molecular cloning of the tripeptide permease (tpp) genes of Salmonella typhimurium.

    OpenAIRE

    Gibson, M M; Price, M; Higgins, C F

    1984-01-01

    Of the three bacterial peptide transport systems only one, the oligopeptide permease, has been characterized in any detail. We have now isolated Salmonella typhimurium mutants deficient in a second transport system, the tripeptide permease (Tpp), using the toxic peptide alafosfalin. Alafosfalin resistance mutations map at three loci, the gene encoding peptidase A (pepA) and two transport-defective loci, tppA and tppB. Locus tppA has been mapped to 74 min on the S. typhimurium chromosome, cotr...

  19. The capsular polysaccharide Vi from Salmonella Typhi is a B1b antigen

    OpenAIRE

    Marshall, Jennifer L.; Flores-Langarica, Adriana; Kingsley, Robert A.; Hitchcock, Jessica R; Ross, Ewan A.; Lopez-Macias, Constantino; Lakey, Jeremy; Martin, Laura B; Toellner, Kai-michael; MacLennan, Calman A.; MacLennan, Ian C; Henderson, Ian R.; Dougan, Gordon; Cunningham, Adam F.

    2012-01-01

    Vaccination with purified capsular polysaccharide Vi antigen from Salmonella Typhi can protect against typhoid fever, although the mechanism for its efficacy is not clearly established. Here, we have characterised the B cell response to this vaccine in wild-type and T cell-deficient mice. We show that immunization with Typhim Vi rapidly induces proliferation in B1b peritoneal cells, but not in B1a cells or marginal zone (MZ) B cells. This induction of B1b proliferation is concomitant with the...

  20. Cellulose composite structures – by design

    OpenAIRE

    Winkworth-Smith, Charles G.

    2015-01-01

    The aim of the work presented in this thesis was to investigate different mechanical and chemical pre-treatments which can dramatically change the properties of native cellulose and add alternative routes to structure formation. Ball milled cellulose, which had a reduced crystallinity, degree of polymerisation and degradation temperature, was rehydrated in excess water resulting in recrystallisation. Fully amorphous samples recrystallised to the more thermodynamically stable type II polymorph...

  1. Cellulose whisker/epoxy resin nanocomposites

    OpenAIRE

    Tang, Liming; Weder, Christoph

    2010-01-01

    New nanocomposites composed of cellulose nanofibers or “whiskers” and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of ∼10 and ∼84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185−192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtu...

  2. Nanosized Cellulose Fibrils as Stabilizer of Emulsions

    OpenAIRE

    Xhanari, Klodian

    2011-01-01

    Pickering emulsions have been a subject of research for many years due to their practical applications not only in everyday life products but also in industry. The stability of these emulsions is due to the irreversible adsorption of colloid particles at the oil/water interface which prevents droplet coalescence. Cellulose materials are among the different types of particles used as stabilizers. Most of the studies report the use of native cellulose as stabilizer of oil-in-water emulsions due...

  3. Production of Cellulosic Polymers from Agricultural Wastes

    OpenAIRE

    Israel, A. U.; I. B. Obot; Umoren, S. A.; Mkpenie, V.; Asuquo, J. E.

    2008-01-01

    Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis), raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri), stem and cob of maize plant (Zea mays), fruit fiber from coconut fruit (Cocos nucifera), sawdusts from cotton tree (Cossypium hirsutum), pear wood (Manilkara obovata), stem of Southern gamba green (Andropogon tectorus), sugarcane baggase (Sac...

  4. Isolation of cellulose microfibrils - An enzymatic approach

    Directory of Open Access Journals (Sweden)

    Sain, M.

    2006-11-01

    Full Text Available Isolation methods and applications of cellulose microfibrils are expanding rapidly due to environmental benefits and specific strength properties, especially in bio-composite science. In this research, we have success-fully developed and explored a novel bio-pretreatment for wood fibre that can substantially improve the microfibril yield, in comparison to current techniques used to isolate cellulose microfibrils. Microfibrils currently are isolated in the laboratory through a combination of high shear refining and cryocrushing. A high energy requirement of these procedures is hampering momentum in the direction of microfibril isolation on a sufficiently large scale to suit potential applications. Any attempt to loosen up the microfibrils by either complete or partial destruction of the hydrogen bonds before the mechanical process would be a step forward in the quest for economical isolation of cellulose microfibrils. Bleached kraft pulp was treated with OS1, a fungus isolated from Dutch Elm trees infected with Dutch elm disease, under different treatment conditions. The percentage yield of cellulose microfibrils, based on their diameter, showed a significant shift towards a lower diameter range after the high shear refining, compared to the yield of cellulose microfibrils from untreated fibres. The overall yield of cellulose microfibrils from the treated fibres did not show any sizeable decrease.

  5. Utilization of biocatalysts in cellulose waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Evans, B.R.

    1996-09-01

    Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually, approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.

  6. Cellulose fractionation with IONCELL-P.

    Science.gov (United States)

    Stepan, A M; Monshizadeh, A; Hummel, M; Roselli, A; Sixta, H

    2016-10-01

    IONCELL-P is a solvent fractionation process, which can separate pulps almost quantitatively into pure cellulose and hemicellulose fractions using IL-water mixtures. In this work the role of the molecular weight of cellulose on its solubility in ionic liquid-water mixtures is studied. The aim of this study was to understand and identify the determining factors of this IONCELL-P fractionation. Cotton linters (CL) served as model cellulose substrate and was degraded by ozone treatment to adjust the molecular weight to that of hemicelluloses and low molar mass cellulose in commercial pulps. The ozone treated CLs were subjected to the IONCELL-P process using 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) and water mixtures with a water content between 13.5 and 19wt%. Based on the molar mass distributions of dissolved and undissolved cellulose the effect of the molecular weight of cellulose in IL-water mixture appears to be a key factor in the fractionation process. PMID:27312618

  7. Biohydrogen, bioelectricity and bioalcohols from cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.

    2013-03-01

    The demand for renewable energy is increasing due to increasing energy demand and global warming associated with increasing use of fossil fuels. Renewable energy can be derived from biological production of energy carriers from cellulosic biomass. These biochemical processes include biomass fermentation to hydrogen, methane and alcohols, and bioelectricity production in microbial fuel cells (MFCs). The objective of this study was to investigate the production of different energy carriers (hydrogen, methane, ethanol, butanol, bioelectricity) through biochemical processes. Hydrogen production potential of a hot spring enrichment culture from different sugars was determined, and hydrogen was produced continuously from xylose. Cellulolytic and hydrogenic cultures were enriched on cellulose, cellulosic pulp materials, and on silage at different process conditions. The enrichment cultures were further characterized. The effect of acid pretreatment on hydrogen production from pulp materials was studied and compared to direct pulp fermentation to hydrogen. Electricity and alcohol(s) were simultaneously produced from xylose in MFCs and the exoelectrogenic and alcohologenic enrichment cultures were characterized. In the end, the energy yields obtained from different biochemical processes were determined and compared. In this study, cultures carrying out simultaneous cellulose hydrolysis and hydrogen fermentation were enriched from different sources at different operational conditions. These cultures were successfully utilized for cellulose to hydrogen fermentation in batch systems. Based on these results further research should be conducted on continuous hydrogen production from cellulosic materials.

  8. Comparative Virulotyping of Salmonella typhi and Salmonella enteritidis.

    Science.gov (United States)

    Elemfareji, Omar Ismail; Thong, Kwai Lin

    2013-12-01

    Members of Salmonella enterica are important foodborne pathogens of significant public health concern worldwide. This study aimed to determine a range of virulence genes among typhoidal (S. typhi) and non-typhoidal (S. enteritidis) strains isolated from different geographical regions and different years. A total of 87 S. typhi and 94 S. enteritidis strains were tested for presence of 22 virulence genes by employing multiplex PCR and the genetic relatedness of these strains was further characterized by REP-PCR. In S. typhi, invA, prgH, sifA, spiC, sopB, iroN, sitC, misL, pipD, cdtB, and orfL were present in all the strains, while sopE, agfC, agfA, sefC, mgtC, and sefD were present in 98.8, 97.7, 90.8, 87.4, 87.4 and 17.2 %, of the strains, respectively. No lpfA, lpfC, pefA, spvB, or spvC was detected. Meanwhile, in S. enteritidis, 15 genes, agfA, agfC, invA, lpfA, lpfC, sefD, prgH, spiC, sopB, sopE, iroN, sitC, misL, pipD, and orfL were found in all S. enteritidis strains 100 %, followed by sifA and spvC 98.9 %, pefA, spvB and mgtC 97.8 %, and sefC 90.4 %. cdtB was absent from all S. enteritidis strains tested. REP-PCR subtyped S. typhi strains into 18 REP-types and concurred with the virulotyping results in grouping the strains, while in S. enteritidis, REP-PCR subtyped the strains into eight profiles and they were poorly distinguishable between human and animal origins. The study showed that S. typhi and S. enteritidis contain a range of virulence factors associated with pathogenesis. Virulotyping is a rapid screening method to identify and profile virulence genes in Salmonella strains, and improve an understanding of potential risk for human and animal infections.

  9. Comparative Virulotyping of Salmonella typhi and Salmonella enteritidis.

    Science.gov (United States)

    Elemfareji, Omar Ismail; Thong, Kwai Lin

    2013-12-01

    Members of Salmonella enterica are important foodborne pathogens of significant public health concern worldwide. This study aimed to determine a range of virulence genes among typhoidal (S. typhi) and non-typhoidal (S. enteritidis) strains isolated from different geographical regions and different years. A total of 87 S. typhi and 94 S. enteritidis strains were tested for presence of 22 virulence genes by employing multiplex PCR and the genetic relatedness of these strains was further characterized by REP-PCR. In S. typhi, invA, prgH, sifA, spiC, sopB, iroN, sitC, misL, pipD, cdtB, and orfL were present in all the strains, while sopE, agfC, agfA, sefC, mgtC, and sefD were present in 98.8, 97.7, 90.8, 87.4, 87.4 and 17.2 %, of the strains, respectively. No lpfA, lpfC, pefA, spvB, or spvC was detected. Meanwhile, in S. enteritidis, 15 genes, agfA, agfC, invA, lpfA, lpfC, sefD, prgH, spiC, sopB, sopE, iroN, sitC, misL, pipD, and orfL were found in all S. enteritidis strains 100 %, followed by sifA and spvC 98.9 %, pefA, spvB and mgtC 97.8 %, and sefC 90.4 %. cdtB was absent from all S. enteritidis strains tested. REP-PCR subtyped S. typhi strains into 18 REP-types and concurred with the virulotyping results in grouping the strains, while in S. enteritidis, REP-PCR subtyped the strains into eight profiles and they were poorly distinguishable between human and animal origins. The study showed that S. typhi and S. enteritidis contain a range of virulence factors associated with pathogenesis. Virulotyping is a rapid screening method to identify and profile virulence genes in Salmonella strains, and improve an understanding of potential risk for human and animal infections. PMID:24426144

  10. Enjoying Homemade Ice Cream without the Risk of Salmonella Infection

    Science.gov (United States)

    ... Contaminants Buy, Store & Serve Safe Food Enjoying Homemade Ice Cream without the Risk of Salmonella Infection Share Tweet ... it Email Print August 2004 Every year homemade ice cream causes several outbreaks of Salmonella infection with up ...

  11. Test results of Salmonella typing by the National Reference Laboratories for Salmonella in the Member States of the European Union and the EnterNet Laboratories - Collaborative study VII on typing of Salmonella

    NARCIS (Netherlands)

    Korver H; Maas HME; Ward LR; Wannet WJB; Henken AM; MGB; LIS

    2003-01-01

    Het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, Nederland) organiseerde in samenwerking met Public Health Laboratory Services (PHLS), London, Verenigd Koninkrijk een zevende ringonderzoek aangaande de typering van Salmonella. Zeventien Nationale Referentie L

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... intravenous iron therapy. Rate This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the National Heart, Lung, and Blood ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... symptoms. Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in ... 18/2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Entire Site Health Topics News & Resources Intramural Research Public Health Topics Education & Awareness Resources Contact The Health ... Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in children, ...

  15. Sleep Deprivation and Deficiency

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Are Sleep Deprivation and Deficiency? Sleep deprivation (DEP-rih-VA- ... Rate This Content: NEXT >> Updated: February 22, 2012 Sleep Infographic Sleep Disorders & Insufficient Sleep: Improving Health through ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Health Topics Education & Awareness Resources Contact The Health Information Center Health Professionals Systematic Evidence Reviews & Clinical Practice ... and see the benefits of treatment. For more information about living with and managing iron-deficiency anemia, ...

  17. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Digg. Share this page from the NHLBI on Facebook. Add this link to the NHLBI to my ... such as tiredness, poor skin tone, dizziness, and depression. After her doctor diagnosed her with iron-deficiency ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS PREVENTION LIVING WITH CLINICAL TRIALS LINKS Related Topics ... Doctors usually can successfully treat iron-deficiency anemia. Treatment will depend on the cause and severity of ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich protein that carries oxygen from the lungs to the rest of the body. Iron-deficiency ... 2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National Institutes ...

  1. Versatile Molding Process for Tough Cellulose Hydrogel Materials.

    Science.gov (United States)

    Kimura, Mutsumi; Shinohara, Yoshie; Takizawa, Junko; Ren, Sixiao; Sagisaka, Kento; Lin, Yudeng; Hattori, Yoshiyuki; Hinestroza, Juan P

    2015-11-05

    Shape-persistent and tough cellulose hydrogels were fabricated by a stepwise solvent exchange from a homogeneous ionic liquid solution of cellulose exposure to methanol vapor. The cellulose hydrogels maintain their shapes under changing temperature, pH, and solvents. The micrometer-scale patterns on the mold were precisely transferred onto the surface of cellulose hydrogels. We also succeeded in the spinning of cellulose hydrogel fibers through a dry jet-wet spinning process. The mechanical property of regenerated cellulose fibers improved by the drawing of cellulose hydrogel fibers during the spinning process. This approach for the fabrication of tough cellulose hydrogels is a major advance in the fabrication of cellulose-based structures with defined shapes.

  2. Cellulose nanofibers from Curaua fibers

    International Nuclear Information System (INIS)

    Curaua is a plant from Amazon region whose leaves were used by the indians of the region to make nets, ropes, fishing wires, etc., due to their high mechanical resistance. Nowadays, some industries, mainly textile and automobile, have increased their interest on these fibers to prepare polymer composites, because their properties could be compared to composites with glass fibers. In this work, cellulose nanofibers were obtained from curaua fibers, which were submitted to alkaline treatment with a solution of NaOH 5%. Nanofibers, in watery suspension, were characterized morphologically by TEM and AFM, and they show needle like format and the ratio L/D of 14. The suspension was dried by freeze dried process, in vacuum and air circulation oven, and these nanofibers were analyzed by x-ray diffraction, presenting high crystalline index, and by thermogravimetric analysis (TGA), which showed that nanofibers have poorer thermal stability than the treated fiber, but they can reach values next to the ones of the original fibers, depending on the drying process of the suspension. (author)

  3. Adult growth hormone deficiency

    OpenAIRE

    Vishal Gupta

    2011-01-01

    Adult growth hormone deficiency (AGHD) is being recognized increasingly and has been thought to be associated with premature mortality. Pituitary tumors are the commonest cause for AGHD. Growth hormone deficiency (GHD) has been associated with neuropsychiatric-cognitive, cardiovascular, neuromuscular, metabolic, and skeletal abnormalities. Most of these can be reversed with growth hormone therapy. The insulin tolerance test still remains the gold standard dynamic test to diagnose AGHD. Growth...

  4. Clinical significance of complement deficiencies.

    Science.gov (United States)

    Pettigrew, H David; Teuber, Suzanne S; Gershwin, M Eric

    2009-09-01

    The complement system is composed of more than 30 serum and membrane-bound proteins, all of which are needed for normal function of complement in innate and adaptive immunity. Historically, deficiencies within the complement system have been suspected when young children have had recurrent and difficult-to-control infections. As our understanding of the complement system has increased, many other diseases have been attributed to deficiencies within the complement system. Generally, complement deficiencies within the classical pathway lead to increased susceptibility to encapsulated bacterial infections as well as a syndrome resembling systemic lupus erythematosus. Complement deficiencies within the mannose-binding lectin pathway generally lead to increased bacterial infections, and deficiencies within the alternative pathway usually lead to an increased frequency of Neisseria infections. However, factor H deficiency can lead to membranoproliferative glomerulonephritis and hemolytic uremic syndrome. Finally, deficiencies within the terminal complement pathway lead to an increased incidence of Neisseria infections. Two other notable complement-associated deficiencies are complement receptor 3 and 4 deficiency, which result from a deficiency of CD18, a disease known as leukocyte adhesion deficiency type 1, and CD59 deficiency, which causes paroxysmal nocturnal hemoglobinuria. Most inherited deficiencies of the complement system are autosomal recessive, but properidin deficiency is X-linked recessive, deficiency of C1 inhibitor is autosomal dominant, and mannose-binding lectin and factor I deficiencies are autosomal co-dominant. The diversity of clinical manifestations of complement deficiencies reflects the complexity of the complement system. PMID:19758139

  5. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  6. Cellular requirements for systemic control of Salmonella enterica serovar Typhimurium infections in mice.

    Science.gov (United States)

    Kupz, Andreas; Bedoui, Sammy; Strugnell, Richard A

    2014-12-01

    The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555-577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95-101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4(+) T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent. PMID:25225248

  7. Salmonella enteritidis from a case of fever with thrombocytopenia

    Institute of Scientific and Technical Information of China (English)

    Shamma Arora; Naveen Gupta; Ashwani Kumar; IR Kaur

    2011-01-01

    Non typhoidalSalmonella species are thought to be potentially infectious to humans. We isolated Salmonella enteritidis from a 10-year-old boy with fever and thrombocytopenia. We reviewed the literature concerning infections caused bySalmonella but we could not find any such case report from India.

  8. 21 CFR 866.3550 - Salmonella spp. serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Salmonella spp. serological reagents. 866.3550... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3550 Salmonella spp. serological reagents. (a) Identification. Salmonella spp. serological reagents are devices...

  9. 9 CFR 113.30 - Detection of Salmonella contamination.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in...

  10. Laser cleaning of particulates from paper: Comparison between sized ground wood cellulose and pure cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Arif, S.; Kautek, W., E-mail: wolfgang.kautek@univie.ac.at

    2013-07-01

    Visible laser cleaning of charcoal particulates from yellow acid mechanical ground wood cellulose paper was compared with that from bleached sulphite softwood cellulose paper. About one order of magnitude of fluence range is available for a cleaning dynamics between the cleaning threshold and the destruction threshold for two laser pulses. Wood cellulose paper exhibited a higher destruction threshold of the original paper than that of the contaminated specimen because of heat transfer from the hot or evaporating charcoal particulates. In contrast, the contaminated bleached cellulose paper exhibited a higher destruction threshold due to shading by the particulates. The graphite particles are not only detached thermo-mechanically, but also by evaporation or combustion. A cleaning effect was found also outside the illuminated areas due to lateral blasting. Infrared measurements revealed dehydration/dehydrogenation reactions and cross-links by ether bonds together with structural changes of the cellulose chain arrangement and the degree of crystallinity.

  11. Production of Cellulosic Polymers from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    A. U. Israel

    2008-01-01

    Full Text Available Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis, raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri, stem and cob of maize plant (Zea mays, fruit fiber from coconut fruit (Cocos nucifera, sawdusts from cotton tree (Cossypium hirsutum, pear wood (Manilkara obovata, stem of Southern gamba green (Andropogon tectorus, sugarcane baggase (Saccharium officinarum and plantain stem (Musa paradisiaca. They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H2SO4 to obtain cellulose derivatives (Cellulose diacetate and triacetate. The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70. 52.00, 53.00 and 38.70% respectively for all the agricultural wastes utilized. The presence of these cellulose derivatives was confirmed by a solubility test in acetone and chloroform.

  12. Surface modification of cellulose by PCL grafts

    Energy Technology Data Exchange (ETDEWEB)

    Paquet, Olivier; Krouit, Mohammed; Bras, Julien [Laboratoire de Genie des Procedes Papetiers (UMR 5518 CNRS-CTP-INPG), Grenoble INP-Pagora, 461 Rue de la papeterie, F-38402 St Martin d' Heres (France); Thielemans, Wim [Driving Innovation in Chemistry and Chemical Engineering (DICE), School of Chemistry and Process and Environmental Research Division - Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Belgacem, Mohamed Naceur, E-mail: Naceur.Belgacem@efpg.inpg.fr [Laboratoire de Genie des Procedes Papetiers (UMR 5518 CNRS-CTP-INPG), Grenoble INP-Pagora, 461 Rue de la papeterie, F-38402 St Martin d' Heres (France)

    2010-02-15

    Two cellulosic substrates (microcrystalline cellulose, MCC, and bleached kraft softwood pulps, BSK) were grafted by polycaprolactone (PCL) chains with different molecular weights, following a three-step procedure using non-swelling conditions in order to limit the reaction to their surface. First, one of the two OH PCL ends was blocked by phenyl isocyanate and the reaction product (adduct 1) was subsequently reacted with 2,4-toluene diisocyanate (adduct 2) to provide it with an NCO function, capable of reacting with cellulose. The ensuing PCL-grafted cellulosic materials were characterized by weight gain, elemental analysis, contact angle measurements, attenuated total reflexion-Fourier transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and biodegradation tests. The modification was proven to occur by the presence of nitrogen atoms in the elemental analysis tests and XPS spectra of modified and soxhlet-extracted cellulose. The contact angle measurements have also shown that the surface became as hydrophobic as PCL itself. The polar component of the surface energy of cellulosic substrates before treatment was found to be about 32 and 10 mJ m{sup -2}, for MCC and BSK, respectively. This value vanished to practically zero after grafting with different PCLs. The strategy proposed in the present work is original since, to the best of our knowledge, this paper reports for the first time the chemical 'grafting onto' of the cellulose surface by PCL macromolecular structures, with the aim of obtaining fibre-matrix co-continuous fully sustainable and biodegradable composite materials.

  13. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  14. Salmonella capture using orbiting magnetic microbeads

    Science.gov (United States)

    Owen, Drew; Ballard, Matthew; Mills, Zachary; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2014-11-01

    Using three-dimensional simulations and experiments, we examine capture of salmonella from a complex fluid sample flowing through a microfluidic channel. Capture is performed using orbiting magnetic microbeads, which can easily be extracted from the system for analysis after salmonella capture. Numerical simulations are used to model the dynamics of the system, which consists of a microchannel filled with a viscous fluid, model salmonella, magnetic microbeads and a series of angled parallel ridges lining the top of the microchannel. Simulations provide a statistical measure of the ability of the system to capture target salmonella. Our modeling findings guide the design of a lab-on-a-chip experimental device to be used for the detection of salmonella from complex food samples, allowing for the detection of the bacteria at the food source and preventing the consumption of contaminated food. Such a device can be used as a generic platform for the detection of a variety of biomaterials from complex fluids. This work is supported by a grant from the United States Department of Agriculture.

  15. Salmonella and Eggs: From Production to Plate

    Directory of Open Access Journals (Sweden)

    Harriet Whiley

    2015-02-01

    Full Text Available Salmonella contamination of eggs and egg shells has been identified as a public health concern worldwide. A recent shift in consumer preferences has impacted on the egg industry, with a push for cage-free egg production methods. There has also been an increased desire from consumers for raw and unprocessed foods, potentially increasing the risk of salmonellosis. In response to these changes, this review explores the current literature regarding Salmonella contamination of eggs during the production processing through to food handling protocols. The contamination of eggs with Salmonella during the production process is a complex issue, influenced by many variables including flock size, flock age, stress, feed, vaccination, and cleaning routines. Currently there is no consensus regarding the impact of caged, barn and free range egg production has on Salmonella contamination of eggs. The literature regarding the management and control strategies post-collection, during storage, transport and food handling is also reviewed. Pasteurisation and irradiation were identified as the only certain methods for controlling Salmonella and are essential for the protection of high risk groups, whereas control of temperature and pH were identified as potential control methods to minimise the risk for foods containing raw eggs; however, further research is required to provide more detailed control protocols and education programs to reduce the risk of salmonellosis from egg consumption.

  16. Test results of Salmonella serotyping in the Member States of the European Union. (Collaborative study III amongst the National Reference Laboratories for Salmonella)

    NARCIS (Netherlands)

    Voogt N; Maas HME; Leeuwen WJ van; Henken AM; MGB

    1998-01-01

    Het Communautair Referentie Laboratorium (CRL) voor Salmonella heeft een derde ringonderzoek voor de serotypering van Salmonella georganiseerd. Alle Nationale Referentie Laboratoria (NRLs) voor Salmonella van de Europese Unie deden aan het onderzoek mee. Het belangrijkste doel was het vergelijke

  17. Molecular characterization of Salmonella Paratyphi B dT+ and Salmonella Heidelberg from poultry and retail chicken meat in Colombia by pulsed-field gel electrophoresis

    Science.gov (United States)

    Salmonella Paratyphi B dT+ variant (also termed Salmonella Java) and Salmonella Heidelberg are human pathogens frequently isolated from poultry. As a step towards implementing the Colombian Integrated Program for Antimicrobial Resistant Surveillance (COIPARS), this study characterized molecular patt...

  18. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Directory of Open Access Journals (Sweden)

    Ying Deng

    Full Text Available Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC. These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  19. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  20. Salmonella enteritidis and other Salmonella in laying hens and eggs from flocks with Salmonella in their environment.

    OpenAIRE

    Poppe, C; Johnson, R. P.; Forsberg, C M; Irwin, R J

    1992-01-01

    Seven Canadian layer flocks with Salmonella enteritidis in their environment were investigated to determine the numbers of hens infected with S. enteritidis, the localization of S. enteritidis in organs of infected hens and the numbers of S. enteritidis-infected eggs produced by two affected flocks. By a microagglutination test (MAT) using S. pullorum antigens, these flocks had more seropositive hens (mean 51.9 +/- 16.9%) than two Salmonella-free flocks (mean 13.0 +/- 4.2%). Culture of tissue...

  1. PREPARATION AND CHARACTERIZATION OF BAMBOO NANOCRYSTALLINE CELLULOSE

    Directory of Open Access Journals (Sweden)

    Mengjiao Yu,

    2012-02-01

    Full Text Available Nanocrystalline cellulose (NCC has many potential applications because of its special properties. In this paper, NCC was prepared from bamboo pulp. Bamboo pulp was first pretreated with sodium hydroxide, followed by hydrolysis with sulfuric acid. The concentration of sulfuric acid and the hydrolysis time on the yield of NCC were studied. The results showed that sulfuric acid concentration had larger influence than the hydrolysis time on the yield of NCC. When the temperature was 50oC, the concentration of sulfuric acid was 48wt% and the reaction time was 30 minutes, a high quality of nanocrystalline cellulose was obtained; under these conditions, the length of the nanocrystalline cellulose ranged from 200 nm to 500 nm, the diameter was less than 20 nm, the yield was 15.67wt%, and the crystallinity was 71.98%, which is not only higher than those of cellulose nanocrystals prepared from some non-wood materials, but also higher than bamboo cellulose nanocrystals prepared by other methods.

  2. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, S.

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  3. Unveiling ubiquitinome rearrangements induced by Salmonella infection

    Science.gov (United States)

    Bionda, Tihana; Behrends, Christian

    2016-01-01

    ABSTRACT Ubiquitination plays a critical role in the activation of host immune responses to infection and serves as a signal for pathogen delivery to phagophores along the xenophagy pathway. We recently performed systematic ubiquitination site profiling of epithelial cells infected with Salmonella Typhimurium. Our findings specifically highlight components of the NFKB, membrane trafficking pathways and RHO GTPase systems as ubiquitination hubs during infection. In addition, a broad spectrum of bacterial effectors and several outer membrane proteins are ubiquitinated in infected cells. This comprehensive resource of ubiquitinome dynamics during Salmonella infection enables further understanding of the complex host-pathogen interplay and may reveal novel targets for the inhibition of Salmonella invasion and inflammation. PMID:27467224

  4. Inactivation of Salmonellae in Frozen Catfish by Gamma Irradiation

    International Nuclear Information System (INIS)

    The effect of gamma irradiation on salmonellae viability in frozen catfish was investigated using fresh cut of catfish artificially contaminated with stationary phase cells of salmonellae, frozen at-18 οC and irradiated with does ranging from 0.0 to 2.4 kGy. The D10 values for ten serovars of salmonellae ranged from 0.47 to 0.77 kGy. Salmonella Enteritidis was the most resistant serovars found in frozen catfish. Dosage at 2.5 kGy would be sufficient to kill 103.2 Salmonella Enteritidis that may occasionally present in frozen catfish

  5. Septic arthritis of the ankle due to Salmonella enteritidis.

    LENUS (Irish Health Repository)

    Dineen, Patrick F

    2011-06-01

    Salmonella septic arthritis in healthy, immunocompetent patients is extremely rare. We present the case of a 70-year-old man who presented with a one-day history of painful swelling of his ankle from which was aspirated pus which subsequently grew Salmonella enteritidis. There was no history of trauma or symptoms consistent with Salmonella enterocolitis. Our patient recovered fully after two weeks on intravenous ceftriaxone and six weeks on oral ciprofloxacin. Salmonella is a notifiable disease in the European Union and the United States of America, and is associated with outbreaks as a result of food contamination. The nature of Salmonella arthritis and its appropriate management are outlined.

  6. Iron deficiency anaemia.

    Science.gov (United States)

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment.

  7. Highly ordered cellulose II crystalline regenerated from cellulose hydrolyzed by 1-butyl-3-methylimidazolium chloride.

    Science.gov (United States)

    Ahn, Yongjun; Song, Younghan; Kwak, Seung-Yeop; Kim, Hyungsup

    2016-02-10

    This research focused on the preparation of highly ordered cellulose II crystalline by cellulose hydrolysis in ionic liquid, and the influence of molecular mobility on recrystallization of cellulose. The molar mass of cellulose was controlled by hydrolysis using 1-butyl-3-methylimidazolium chloride (BmimCl). The molecular mobility of cellulose dissolved in BmimCl was characterized by rheological properties. After characterization of cellulose solution and regeneration, change of molar mass and conversion to crystalline were monitored using gel-permeation chromatography and powder X-ray diffraction, respectively. The molar mass of the cellulose in BmimCl was remarkably decreased with an increase in duration time, resulting in better mobility and a lower conformational constraint below critical molar mass. The decrease in molar mass surprisingly increased the crystallinity up to ∼ 85%, suggesting a recrystallization rate dependence of the mobility. The correlation between the mobility and recrystallization rate represented quit different behavior above and below a critical molar mass, which strongly demonstrated to the effect of mobility on the conversion of amorphous state to crystalline structure.

  8. Occurrence of Salmonella sp in laying hens

    OpenAIRE

    Gama NMSQ; Berchieri Jr A; SA Fernandes

    2003-01-01

    This study was carried out to investigate the presence of Salmonella sp in flocks of white laying hens. In different farms, the transport boxes of twelve flocks were inspected at arrival for the presence of Salmonella. Four positive (A, B, L and M) and one negative (I) flocks were monitored at each four weeks using bacteriological examination of cecal fresh feces up to 52 weeks. Birds were also evaluated at 52 weeks, when 500 eggs were taken randomly, and at 76 weeks, after forced molt. Salmo...

  9. POLYETHERSULFONE COMPOSITE MEMBRANE BLENDED WITH CELLULOSE FIBRILS

    Directory of Open Access Journals (Sweden)

    Ping Qu

    2010-09-01

    Full Text Available Polyethersulfone (PES is a common material used for ultrafiltration (UF membranes, which has good chemical resistance, high mechanical properties, and wide temperature tolerances. The hydrophobic property of the PES membrane seriously limits its application. Cellulose fibrils are composed of micro-sized and nano-sized elements, which have high hydrophilicity, strength, and biodegradation. A composite membrane was prepared by the phase inversion induced by an immersion process. The characteristics of the composite membrane were investigated with Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and atomic force microscopy (AFM. The pure water flux of the composite membrane increased dramatically with the increase of cellulose firbils. Mean pore size and porosity were significantly increased. Both mechanical properties and hydrophilicity were enhanced due to the addition of the cellulose firbils.

  10. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  11. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  12. Novel Nitrocellulose Made from Bacterial Cellulose

    Science.gov (United States)

    Sun, Dong-Ping; Ma, Bo; Zhu, Chun-Lin; Liu, Chang-Sheng; Yang, Jia-Zhi

    2010-04-01

    Nitrocellulose (NC) is useful in several industrial segments, especially in the production of gun, rocket, and missile propellants. The conventional way to prepare NC is done through the nitration of plant cellulose with nitric acid. In this work, bacterial cellulose nitrate (NBC) is synthesized by bacterial cellulose (BC) and nitro-sulfric acid under heterogeneous conditions. NBC with the degree of substitution (DS) of 1-2.85 was obtained, and the effects of sulfuric to nitric ratio, reaction temperature, and reaction time on the value of DS of NBC are discussed. The samples are also characterized by elemental analysis, thermal analysis, Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction.

  13. Bacterial cellulose membrane as separation medium

    Energy Technology Data Exchange (ETDEWEB)

    Shibazaki, Hideki; Kuga, Shigenori; Onabe, Fumihiko; Usuda, Makoto (Univ. of Toyko, (Japan). Faculty of Agriculture)

    1993-11-10

    A thin membrane of bacterial cellulose (BC) obtained from Acetobacter culture was tested for its performance as a dialysis membrane in aqueous systems. The BC membrane showed superior mechanical strength to that of a dialysis-grade regenerated cellulose membrane, allowing the use of a thinner membrane than the latter. As a result, the BC membrane gave higher permeation rates for poly(ethylene glycols) as probe solutes. The cutoff molecular weight of the original BC membrane, significantly greater than that of regenerated cellulose, could be modified by concentrated alkali treatments of the membrane. The nature of the change at the ultrastructural level caused by the alkali treatments was studied by X-ray diffraction and scanning electron microscopy.

  14. Prospects for Irradiation in Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Anita Saini

    2015-01-01

    Full Text Available Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol.

  15. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II.

    Science.gov (United States)

    Nam, Sunghyun; French, Alfred D; Condon, Brian D; Concha, Monica

    2016-01-01

    The Segal method estimates the amorphous fraction of cellulose Iβ materials simply based on intensity at 18° 2θ in an X-ray diffraction pattern and was extended to cellulose II using 16° 2θ intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and the degree of polymorphic conversion, we simulated the diffraction patterns of cotton celluloses (Iβ and II) and compared the simulated amorphous fractions with the Segal values. The diffraction patterns of control and mercerized cottons, respectively, were simulated with perfect crystals of cellulose Iβ (1.54° FWHM) and cellulose II (2.30° FWHM) as well as 10% and 35% amorphous celluloses. Their Segal amorphous fractions were 15% and 31%, respectively. The higher Segal amorphous fraction for control cotton was attributed to the peak overlap. Although the amorphous fraction was set in the simulation, the peak overlap induced by the increase of FWHM further enhanced the Segal amorphous intensity of cellulose Iβ. For cellulose II, the effect of peak overlap was smaller; however the lower reflection of the amorphous cellulose scattering in its Segal amorphous location resulted in smaller Segal amorphous fractions. Despite this underestimation, the relatively good agreement of the Segal method with the simulation for mercerized cotton was attributed to the incomplete conversion to cellulose II. The (1-10) and (110) peaks of cellulose Iβ remained near the Segal amorphous location of cellulose II for blends of control and mercerized cotton fibers. PMID:26453844

  16. Molecular Detection of Salmonella Serovar Isolated from Eggs

    Directory of Open Access Journals (Sweden)

    Monadi, M. (MSc

    2015-05-01

    Full Text Available Background and Objective: Salmonellosis is the most common type of food poisoning in developed and developing countries that is caused by Salmonella serotype. Hence, we aimed to identify the Salmonella serovars in eggs obtained from Kohgiluyeh and Boyerahmad province and to evaluate antibiotic resistance of the isolated strains. Material and Methods: In this study, 210 eggs were collected from Kohgiluyeh and Boyerahmad Province. The bacteria were isolated and identified using biochemical tests. After extraction of genomic DNA, Salmonella gender, Salmonella enteritidis and Salmonella typhimurium were investigated by invA, fliC and sefA primers, respectively, using Multiplex PCR method. Results: Of 210, 14 (6.66% were contaminated with Salmonella. Of these, 12 (5.71% were Salmonella typhimurium and 2 (0.95% were related to Salmonella spp. None of the samples were contaminated with Salmonella enteritidis. The highest resistance was related to penicillin (100% and neomycin (78.57%. Conclusion: Salmonella typhimurium is the predominant serovar causing contamination in the eggs of this Province. Given the wide spread of antibiotic resistance in different serotypes of Salmonella, we recommend avoiding of indiscriminate use of antibiotics in livestock and poultry

  17. Salmonella in broiler flocks in the republic of Ireland.

    Science.gov (United States)

    Gutierrez, Montserrat; Fanning, June; Murphy, Anne; Murray, Gerardine; Griffin, Margaret; Flack, Alma; Leonard, Nola; Egan, John

    2009-01-01

    In order to obtain an estimation of the prevalence of Salmonella spp. in flocks of broilers in the Republic of Ireland, a study was conducted in 2006 in a total of 362 broiler flocks associated with four integrated companies. Salmonella spp. was isolated from 27.3% of flocks, and eight Salmonella serovars were identified, none of which were Salmonella Enteritidis or Salmonella Typhimurium. The most prevalent serovar was Salmonella Mbandaka, followed by Salmonella Kentucky, which respectively accounted for 61.6% and 27.0% of positive samples. Notable differences were observed among the flocks associated with different integrated companies, both in the Salmonella spp. prevalence and in the serovar distribution. Results from routine official Salmonella testing in broiler production in 2006 showed similar serovar distribution within each integrated company from the associated hatchery and factory samples. In our study, differences in the prevalence of Salmonella at farm level did not correlate with differences in the percentages of positive chicken carcasses officially tested, which were low, for all the four companies investigated. Given the high prevalence of Salmonella Mbandaka, all human isolates obtained in the Republic of Ireland from 2003 to 2006 were compared to a subset of poultry isolates by pulsed-field gel electrophoresis, but an epidemiological link between the animal and the human strains could not be established. Finally the antimicrobial resistance analysis indicated a low proportion of resistant strains among the broiler flock isolates. PMID:19061369

  18. Antepartum ornithine transcarbamylase deficiency.

    Science.gov (United States)

    Nakajima, Hitoshi; Sasaki, Yosuke; Maeda, Tadashi; Takeda, Masako; Hara, Noriko; Nakanishi, Kazushige; Urita, Yoshihisa; Hattori, Risa; Miura, Ken; Taniguchi, Tomoko

    2014-01-01

    Ornithine transcarbamylase deficiency (OTCD) is the most common type urea cycle enzyme deficiencies. This syndrome results from a deficiency of the mitochondrial enzyme ornithine transcarbamylase, which catalyzes the conversion of ornithine and carbamoyl phosphate to citrullin. Our case was a 28-year-old female diagnosed with OTCD following neurocognitive deficit during her first pregnancy. Although hyperammonemia was suspected as the cause of the patient's mental changes, there was no evidence of chronic liver disease. Plasma amino acid and urine organic acid analysis revealed OTCD. After combined modality treatment with arginine, sodium benzoate and hemodialysis, the patient's plasma ammonia level stabilized and her mental status returned to normal. At last she recovered without any damage left. PMID:25759629

  19. Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments.

    Science.gov (United States)

    Grate, Jay W; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G; Kelly, Ryan T; Orr, Galya; Hu, Dehong; Dehoff, Karl J; Brockman, Fred J; Wilkins, Michael J

    2015-03-18

    Methods to covalently conjugate Alexa Fluor dyes to cellulose nanocrystals, at limiting amounts that retain the overall structure of the nanocrystals as model cellulose materials, were developed using two approaches. In the first, aldehyde groups are created on the cellulose surfaces by reaction with limiting amounts of sodium periodate, a reaction well-known for oxidizing vicinal diols to create dialdehyde structures. Reductive amination reactions were then applied to bind Alexa Fluor dyes with terminal amino-groups on the linker section. In the absence of the reductive step, dye washes out of the nanocrystal suspension, whereas with the reductive step, a colored product is obtained with the characteristic spectral bands of the conjugated dye. In the second approach, Alexa Fluor dyes were modified to contain chloro-substituted triazine ring at the end of the linker section. These modified dyes then were reacted with cellulose nanocrystals in acetonitrile at elevated temperature, again isolating material with the characteristic spectral bands of the Alexa Fluor dye. Reactions with Alexa Fluor 546 are given as detailed examples, labeling on the order of 1% of the total glucopyranose rings of the cellulose nanocrystals at dye loadings of ca. 5 μg/mg cellulose. Fluorescent cellulose nanocrystals were deposited in pore network microfluidic structures (PDMS) and proof-of-principle bioimaging experiments showed that the spatial localization of the solid cellulose deposits could be determined, and their disappearance under the action of Celluclast enzymes or microbes could be observed over time. In addition, single molecule fluorescence microscopy was demonstrated as a method to follow the disappearance of solid cellulose deposits over time, following the decrease in the number of single blinking dye molecules with time instead of fluorescent intensity.

  20. Source attribution of human Salmonella cases in Sweden

    DEFF Research Database (Denmark)

    Wahlström, H.; Andersson, Y.; Plym-Forshell, L.;

    2010-01-01

    The aim of this study was to identify the sources of sporadic domestic Salmonella cases in Sweden and to evaluate the usefulness of a source-attribution model in a country in which food animals are virtually free from Salmonella. The model allocates human sporadic domestic Salmonella cases...... to different sources according to distribution of Salmonella subtypes in the different sources. Sporadic domestic human Salmonella cases (n=1086) reported between July 2004 and June 2006 were attributed to nine food-animal and wildlife sources. Of all Salmonella cases, 82% were acquired abroad and 2.9% were...... associated with outbreaks. We estimated that 6.4% were associated with imported food, 0.5% with food-producing animals, and 0.6% with wildlife. Overall, 7.7% could not be attributed to any source. We concluded that domestic food-producing animals are not an important source for Salmonella in humans in Sweden...

  1. Role of Cellulose and Colanic Acid in Attachment of Shiga Toxin-Producing Escherichia coli to Lettuce and Spinach in Different Water Hardness Environments.

    Science.gov (United States)

    Lee, Chi-Ching; Chen, Jinru; Frank, Joseph F

    2015-08-01

    This study investigated the role of extracellular cellulose production by Shiga toxin-producing Escherichia coli (STEC) on attachment to lettuce and spinach in different water hardness environments. Two cellulose-producing wild-type STEC strains, 19 (O5:H-) and 49 (O103:H2), and their cellulose-deficient derivatives were used. Strain 49 also produced colanic acid as a constituent of its extracellular polymeric substances. Attached cells were determined by plate counts on the surface and cut edge of the leaves after an attachment period of 2 h at 4°C. Hydrophobicity and surface charge of the cells were determined. Strain 49 attached at levels 0.3 and 0.6 log greater to the surface and 0.9 and 0.4 log greater to the cut edges of spinach compared to strain 19 for both wild-type and cellulose-deficient cells (P > 0.05). Cellulose-producing cells attached more to the surface of lettuce but not of spinach than did cellulose-deficient cells. However, more cellulose-deficient cells attached (at levels 0.66 and 0.3 log greater) to the cut edge of lettuce (representing damaged tissue) than did cellulose-proficient cells (P > 0.05). Colanic acid production was associated with cell surfaces of low hydrophobicity. There was a decreasing level of attachment for the colanic acid-producing strain when water hardness increased from 200 to 1,000 pm on lettuce and spinach leaf surfaces, but no effects were seen for other cells. This decreased attachment was associated with a more negative surface charge. Cells that produced colanic acid were less hydrophobic and exhibited greater attachment to the surface and cut edge of spinach when compared to cells that did not produce colanic acid. Attachment of colanic acid-producing cells to leafy green surfaces was enhanced in higher water hardness environments. These data indicate that attachment of E. coli O157:H7 to leafy greens involves multiple mechanisms that are influenced by the type of leafy green, damage to the leaf, and the water

  2. Molecular dynamics simulation study of polyelectrolyte adsorption on cellulose surfaces

    OpenAIRE

    Biermann, Oliver

    2002-01-01

    The adsorption of two polyelectrolyte ((carboxy methyl) cellulose and poly(acrylate) in water on crystalline cellulose is studied in this work. The multi-component problem has been splitted up into simulations of solutions of the polyelectrolyte (polyanions including sodium counterions) in water, into simulations of the interface of crystalline cellulose towards water. Finally polyelectrolyte-cellulose systems were studied. Molecular dynamics simulations of diluted (_ 2:5 weight percent) aque...

  3. Microfibrillated cellulose and new nanocomposite materials: a review

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David

    2010-01-01

    Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject of co...... in order to address this hurdle. This review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose....

  4. The pressure-volume-temperature relationship of cellulose

    OpenAIRE

    Jallabert, Bastien; Vaca Medina, Guadalupe; Cazalbou, Sophie; Rouilly, Antoine

    2013-01-01

    Pressure–volume–temperature (PVT) mea- surements of a-cellulose with different water contents, were performed at temperatures from 25 to 180 °C and pressures from 19.6 to 196 MPa. PVT measurements allowed observation of the combined effects of pressure and temperature on the specific volume during cellulose thermo-compression. All isobars showed a decrease in cellulose specific volume with temperature. This densification is associated with a transition process of the cellulose, occurring at a...

  5. Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit

    OpenAIRE

    Rangaswamy, B.E.; Vanitha, K. P.; Hungund, Basavaraj S.

    2015-01-01

    Microbial cellulose, an exopolysaccharide produced by bacteria, has unique structural and mechanical properties and is highly pure compared to plant cellulose. Present study represents isolation, identification, and screening of cellulose producing bacteria and further process optimization. Isolation of thirty cellulose producers was carried out from natural sources like rotten fruits and rotten vegetables. The bacterial isolates obtained from rotten pomegranate, rotten sweet potato, and rott...

  6. Review: current international research into cellulose nanofibres and nanocomposites

    OpenAIRE

    Eichhorn, S. J.; Dufresne, A; Aranguren, M.; Marcovich, N. E.; Capadona, J R; Rowan, S. J.; Weder, Christoph; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, K.

    2010-01-01

    This paper provides an overview of recent progress made in the area of cellulose nanofibre-based nanocomposites. An introduction into the methods used to isolate cellulose nanofibres (nanowhiskers, nanofibrils) is given, with details of their structure. Following this, the article is split into sections dealing with processing and characterisation of cellulose nanocomposites and new developments in the area, with particular emphasis on applications. The types of cellulose nanofibres covered a...

  7. Report on the seventh workshop organised by CRL-Salmonella. Ploufragan (France), 28 May 2002

    NARCIS (Netherlands)

    Korver H; Raamsdonk EC van; Henken AM; MGB

    2002-01-01

    At 28 May 2002 a workshop was organised by the Community Reference Laboratory for Salmonella (CRL-Salmonella) in Ploufragan, France. All National Reference Laboratories for Salmonella (NRLs-Salmonella) of the EU Member States, with the exception of the Greek and the Northern-Ireland NRLs-Salmonella,

  8. Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) for detection of Salmonella on selected environmental surfaces.

    Science.gov (United States)

    Olstein, Alan; Griffith, Leena; Feirtag, Joellen; Pearson, Nicole

    2013-01-01

    The Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) is intended as a single-step selective enrichment indicator broth to be used as a simple screening test for the presence of Salmonella spp. in environmental samples. This method permits the end user to avoid multistep sample processing to identify presumptively positive samples, as exemplified by standard U.S. reference methods. PDX-SIB permits the outgrowth of Salmonella while inhibiting the growth of competitive Gram-negative and -positive microflora. Growth of Salmonella-positive cultures results in a visual color change of the medium from purple to yellow when the sample is grown at 37 +/- 1 degree C. Performance of PDX-SIB has been evaluated in five different categories: inclusivity-exclusivity, methods comparison, ruggedness, lot-to-lot variability, and shelf stability. The inclusivity panel included 100 different Salmonella serovars, 98 of which were SIB-positive during the 30 to 48 h incubation period. The exclusivity panel included 33 different non-Salmonella microorganisms, 31 of which were SIB-negative during the incubation period. Methods comparison studies included four different surfaces: S. Newport on plastic, S. Anatum on sealed concrete, S. Abaetetuba on ceramic tile, and S. Typhimurium in the presence of 1 log excess of Citrobacter freundii. Results of the methods comparison studies demonstrated no statistical difference between the SIB method and the U.S. Food and Drug Administration-Bacteriological Analytical Manual reference method, as measured by the Mantel-Haenszel Chi-square test. Ruggedness studies demonstrated little variation in test results when SIB incubation temperatures were varied over a 34-40 degrees C range. Lot-to-lot consistency results suggest no detectable differences in manufactured goods using two reference Salmonella serovars and one non-Salmonella microorganism.

  9. Iodine Deficiency and Human Development

    Directory of Open Access Journals (Sweden)

    M A Sviridonova

    2014-03-01

    Full Text Available Iodine is а vital microelements that are essential for the normal human development and functions. Iodine deficiency is a global problem: about 2 billion individuals worldwide suffer from a lack of iodine. Despite goiter is the most visually noticeable manifestation of iodine deficiency, the most significant consequence of the iodine deficiency is impaired neurodevelopment, particularly early in life. Moreover, moderate to severe iodine deficiency increases the risk of spontaneous abortion, low birth weight and infant mortality. Babies in utero affected by iodine deficiency are at increased risk of mental developmental disorders, cretinism is their extreme degree. In addition, moderate to severe iodine deficiency in childhood negatively affects somatic growth. Iodine deficiency compensation improves cognitive and motor function in children. Iodine prophylaxis of deficient populations is an extremely effective approach to reduce the substantial adverse effects of iodine deficiency throughout the life cycle.

  10. RAPID DETECTION OF Salmonella IN SHRIMP BY POLYMERASE CHAIN REACTION [Deteksi Cepat Salmonella pada Udang dengan Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Ulfah Amalia

    2014-06-01

    Full Text Available Shrimp is an important non-oil commodity for foreign trade in Indonesia. However, rejection of shrimp exports by the importing countries is still commonly encountered. In 2011, the USFDA recorded two cases of Salmonella spp. contamination in shrimp products from two shrimp processing companies in Indonesia. Analysis of Salmonella spp. in seafood is generally performed using a conventional method which takes at least 5 days. The objective of the study is to get a Salmonellae rapid detection method in shrimp by PCR. In this study, optimization of PCR protocol method to detect Salmonella invA gene was conducted using six different annealing temperatures (59, 59.5, 60.8, 62, 64 and 64.5°C. The results showed that 64°C was the optimum annealing temperature to detect the 284 bp fragment of Salmonella invA gene. The PCR based detection method has a DNA detection limit of 27.81ug/mL and 10°CFU/mL of viable salmonellae with 100% specificity. The PCR protocol is capable of detecting six different Salmonella serovars (S. Enteritidis, S. Hadar, S. Heidelberg, S. Kentucky, S. Paratyphi and S. Typhimurium but none of the non salmonellae isolates. Application of the PCR assay on Salmonella in shrimp after the selective enrichment step suggested that all 16 samples were positive for Salmonella. At the same time, the conventional method could only detected 3 samples for Salmonella positive.

  11. Cyanobacterial cellulose synthesis in the light of the photanol concept

    NARCIS (Netherlands)

    R.M. Schuurmans; H.C.P. Matthijs; L.J. Stal; K.J. Hellingwerf

    2014-01-01

    The detailed knowledge already available about cellulose synthases and their regulation, plus emerging insights into the process of cellulose secretion in cyanobacteria make cellulose an attractive polymer for the application of the photanol concept in an economically viable production process. By v

  12. Structural differences of xylans affect their interaction with cellulose

    NARCIS (Netherlands)

    Kabel, M.A.; Borne, van den H.; Vincken, J.P.; Voragen, A.G.J.; Schols, H.A.

    2007-01-01

    The affinity of xylan to cellulose is an important aspect of many industrial processes, e.g. production of cellulose, paper making and bio-ethanol production. However, little is known about the adsorption of structurally different xylans to cellulose. Therefore, the adsorption of various xylans to b

  13. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  14. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    International Nuclear Information System (INIS)

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  15. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Kristen A., E-mail: kazimmer@vt.edu [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States); LeBlanc, Jill M.; Sheets, Kevin T.; Fox, Robert W. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); Gatenholm, Paul [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States)

    2011-01-01

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  16. Prevalence and Characterization of Salmonella enterica and Salmonella Bacteriophages Recovered from Beef Cattle Feedlots in South Texas.

    Science.gov (United States)

    Xie, Yicheng; Savell, Jeffrey W; Arnold, Ashley N; Gehring, Kerri B; Gill, Jason J; Taylor, T Matthew

    2016-08-01

    Asymptomatic Salmonella carriage in beef cattle is a food safety concern, and the beef feedlot environment may function as a reservoir of this pathogen. The goal of this study was to identify and isolate Salmonella and Salmonella bacteriophages from beef cattle feedlot environments in order to better understand the microbial ecology of Salmonella and identify phages that might be useful as anti-Salmonella beef safety interventions. Three feedlots in south Texas were visited, and 27 distinct samples from each source were collected from dropped feces, feed from feed bunks, drinking water from troughs, and soil in cattle pens (n = 108 samples). Preenrichment, selective enrichment, and selective/differential isolation of Salmonella were performed on each sample. A representative subset of presumptive Salmonella isolates was prepared for biochemical identification and serotyping. Samples were pooled by feedlot and sample type to create 36 samples and enriched to recover phages. Recovered phages were tested for host range against two panels of Salmonella hosts. Salmonella bacteria were identified in 20 (18.5%) of 108 samples by biochemical and/or serological testing. The serovars recovered included Salmonella enterica serovars Anatum, Muenchen, Altona, Kralingen, Kentucky, and Montevideo; Salmonella Anatum was the most frequently recovered serotype. Phage-positive samples were distributed evenly over the three feedlots, suggesting that phage prevalence is not strongly correlated with the presence of culturable Salmonella. Phages were found more frequently in soil and feces than in feed and water samples. The recovery of bacteriophages in the Salmonella-free feedlot suggests that phages might play a role in suppressing the Salmonella population in a feedlot environment.

  17. Alpha1-antitrypsin deficiency

    DEFF Research Database (Denmark)

    Stolk, Jan; Seersholm, Niels; Kalsheker, Noor

    2006-01-01

    biennially to exchange views and research findings. The fourth biennial meeting was held in Copenhagen, Denmark, on 2-3 June 2005. This review covers the wide range of AAT deficiency-related topics that were addressed encompassing advances in genetic characterization, risk factor identification, clinical...... epidemiology, inflammatory and signalling processes, therapeutic advances, and lung imaging techniques....

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron ... Institutes of Health—shows how Susan, a full-time worker and student, has coped with having iron- ...

  19. Iodine-deficiency disorders

    NARCIS (Netherlands)

    Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S.

    2008-01-01

    billion individuals worldwide have insufficient iodine intake, with those in south Asia and sub-Saharan Africa particularly affected. Iodine deficiency has many adverse effects on growth and development. These effects are due to inadequate production of thyroid hormone and are termed iodine-deficien

  20. Mortality and GH deficiency

    DEFF Research Database (Denmark)

    Stochholm, Kirstine; Gravholt, Claus Højbjerg; Laursen, Torben;

    2007-01-01

    OBJECTIVE: To estimate the mortality in Denmark in patients suffering from GH deficiency (GHD). DESIGN: Mortality was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in GHD patients were studied and additional morbidity noted. Patients were divided into chil...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... body. Low iron levels usually are due to blood loss, poor diet, or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type of anemia . The term "anemia" usually refers to ...

  2. Water Frogs, Aquariums, and Salmonella -- Oh My!

    Centers for Disease Control (CDC) Podcasts

    2009-12-09

    This CDC Kidtastics podcast discusses how people can get Salmonella from water frogs and aquariums.  Created: 12/9/2009 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 12/9/2009.

  3. Serovars of Salmonella from captive reptiles

    DEFF Research Database (Denmark)

    Pedersen, Karl; Lassen-Nielsen, Anne Marie; Nordentoft, Steen;

    2009-01-01

    The distribution on serovars of 60 Salmonella isolates from reptiles kept in captivity in Denmark during the period 1995–2006 was investigated. The isolates were all recovered from clinical specimens submitted to the National Veterinary Institute. A majority of the samples were from reptiles...

  4. Salmonella typhi time to change empiric treatment

    DEFF Research Database (Denmark)

    Gade, C.; Engberg, J.; Weis, N.

    2008-01-01

    In the present case series report we describe seven recent cases of typhoid fever. All the patients were travellers returning from Pakistan, where typhoid is endemic. Salmonella typhi isolated from the patients by blood culture were reported as intermediary susceptible to fluoroquinolones in six...

  5. Colicinogeny in Salmonella serovars isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Leila Carvalho Campos

    1988-06-01

    Full Text Available A study of colicinogeny was made in 748 strains of Salmonella (97 serovars isolated from different sources; human (291, animal (119, environmental (141, food (102 and animal feed (95. Colicin production was detected in 64 strains (8.6%, particularly isolated from foods (30.4%. Col. E1 (53 and Ia (44 were the most frequently observed, especially in S. agona for environment and food sources. Col V production was identified in 5 strains of S. typhimurium within 8 producer cultures isolated from humans. Its relationship with the sources and serovars of Salmonella are discussed.Investigou-se a produção de colicina em 748 amostras de Salmonella (97 sorovares advindas de díferentes fontes: humana (291, animal (119, ambiental (141, de alimentos (102 e rações (95. Detectaram-se 64 amostras (8,6% colicinogênicas, particularmente isoladas de alimentos (30,4%. ColE1 (53 e Ia (44 foram as mais freqüentes, especialmente no sorovar S, agona, de origem ambiental e de alimentos. Identificou-se também a produção de col V em 5 amostras de S. typhimurium dentre 8 culturas produtoras de origem humana. Discute-se a relação entre a capacidade colicinogênica e as fontes e sorovares de Salmonella.

  6. Attachment of Salmonella spp. to pork meat

    DEFF Research Database (Denmark)

    Hansen, Trine; Riber, Leise; Löfström, Charlotta;

    2011-01-01

    Five strains of Salmonella, one wildtype and four knock-out mutants (the prg, flhDC, yhjH and fliC genes) were investigated based on their probability to attach and subsequently detach from a surface of pork fillet. The attachment followed by detachment was measured and modelled for two different...

  7. Experimental Salmonella typhimurium infections in rats. I

    DEFF Research Database (Denmark)

    Hougen, H P; Jensen, E T; Klausen, B

    1989-01-01

    The course of experimentally induced Salmonella typhimurium infection was studied in three groups of inbred LEW rats: homozygous +/+, athymic rnu/rnu and isogeneic thymus-grafted rnu/rnu rats. In the first experiment the animals were inoculated intraperitoneally with 10(8) bacteria and all animals...

  8. Virulence factors of Salmonella enterica serovar Enteritidis

    NARCIS (Netherlands)

    Zhao, Y.

    2002-01-01

    Salmonella enterica serovar Enteritidis is one of the major etiologic agents of human food-borne gastrointestinal infections. Efforts to control the number of serovar Enteritidis infections have had a limited success, in part because of the lack of knowledge of the molecular mechanisms that contribu

  9. Persistence of salmonella typhimurium in nopal cladodes

    Science.gov (United States)

    Fresh produce associated outbreaks have increased in the last few years. E.coli O157:H7 and Salmonella have been causative agents of infection in these outbreaks. Fresh produce is consumed raw, and in the absence of terminal kill treatment, it is imperative to understand sources of contamination o...

  10. Persistence of salmonella Typhimurium in Nopal

    Science.gov (United States)

    Having documented information available on the capability of Salmonella to remain in the cladode tissue it is important to understand the role of nopal on the lifecycle of enteropathogenic bacteria in humans, as well as for management and control programs of theses pathogens in plants. Because of th...

  11. Cellulose chain binding free energy drives the processive move of cellulases on the cellulose surface.

    Science.gov (United States)

    Wang, Yefei; Zhang, Shujun; Song, Xiangfei; Yao, Lishan

    2016-09-01

    Processivity is essential for cellulases in their catalysis of cellulose hydrolysis. But what drives the processive move is not well understood. In this work, we use Trichoderma reesei Cel7B as a model system and show that its processivity is directly correlated to the binding free energy difference of a cellulose chain occupying the binding sites -7 to +2 and that occupying sites -7 to -1. Several mutants that have stronger interactions with glycosyl units in sites +1 and +2 than the wild type enzyme show higher processivity. The results suggest that after the release of the product cellobiose located in sites +1 and +2, the enzyme pulls the cellulose chain to fill the vacant sites, which propels its processive move on the cellulose surface. Biotechnol. Bioeng. 2016;113: 1873-1880. © 2016 Wiley Periodicals, Inc. PMID:26928155

  12. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose IB and cellulose II

    Science.gov (United States)

    The Segal method estimates the amorphous fraction of cellulose IB materials simply based on intensity at 18o 20 in an X-ray diffraction pattern and was extended to cellulose II using 16o 2O intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and th...

  13. A model of Salmonella colitis with features of diarrhea in SLC11A1 wild-type mice.

    Directory of Open Access Journals (Sweden)

    Heungjeong Woo

    Full Text Available BACKGROUND: Mice do not get diarrhea when orally infected with S. enterica, but pre-treatment with oral aminoglycosides makes them susceptible to Salmonella colitis. However, genetically susceptible ItyS mice (Nramp1(G169D allele die from systemic infection before they develop diarrhea, so a new model is needed to study the pathogenesis of diarrhea. We pretreated ItyR mice (Nramp1(G169 with oral kanamycin prior to infecting them with virulent S. Typhimurium strain 14028s in order to study Salmonella-induced diarrhea. We used both a visual scoring system and the measurement of fecal water content to measure diarrhea. BALB/c.D2(Nramp1 congenic started losing weight 5 days post-infection and they began to die from colitis 10-14 days after infection. A SPI-1 (invA mutant caused cecal, but not colonic inflammation and did not cause diarrhea. A phoP- mutant did not cause manifestations of diarrhea in either normal or NADPH-deficient (gp91(phox mice. However, strain 14028s caused severe colitis and diarrhea in gp91(phox-deficient mice on an ItyR background. pmr A and F mutants, which are less virulent in orally infected BALB/c mice, were fully virulent in this model of colitis. CONCLUSIONS: S. enterica must be able to invade the colonic epithelium and to persist in the colon in order to cause colitis with manifestations of diarrhea. The NADPH oxidase is not required for diarrhea in Salmonella colitis. Furthermore, a Salmonella phoP mutant can be cleared from the colon by non-oxidative host defenses.

  14. Viscoelastic evaluation of topical creams containing microcrystalline cellulose/sodium carboxymethyl cellulose as stabilizer

    OpenAIRE

    Adeyeye, Moji Christianah; Jain, Ashwinkumar C.; Ghorab, Mohamed K. M.; Reilly, William J.

    2002-01-01

    The purpose of this study was to examine the viscoelastic properties of topical creams containing various concentrations of microcrystalline cellulose and sodium carboxymethyl cellulose (Avicel® CL-611) as a stabilizer. Avicel CL-611 was used at 4 different levels (1%, 2%, 4%, and 6% dispersion) to prepare topical creams, and hydrocortisone acetate was used as a model drug. The viscoelastic properties such as loss modulus (G), storage modulus (G), and loss tangent (tan δ) of these creams were...

  15. Environmental sustainability of cellulosic energy cropping systems

    Science.gov (United States)

    The environmental sustainability of bioenergy production depends on both direct and indirect effects of the production systems to produce bioenergy feedstocks. This chapter evaluates what is known about the environmental sustainability of cellulosic bioenergy crop production for the types of produc...

  16. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Science.gov (United States)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  17. PRODUCTION AND CHARACTERIZATION OF ECONOMICAL BACTERIAL CELLULOSE

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2008-11-01

    Full Text Available The present study investigates the economical production of bacterial cellulose (BC by Gluconacetobacter subsp. Xylinus (ATCC 10245 in 250 ml Erlenmeyer flasks cultivated under static conditions. The fermentation media used contained food industrial by-product liquors, such as black strap molasses solution and corn steep liquor (CSL, which represents some of the most economical carbon and nitrogen sources. However, because of the presence of undesirable components in molasses (such as coloring substances, heavy metals, and other compounds that may act as inhibitors, and in order to eliminate them, crude molasses has been treated with an acid, as an attempt to increase BC productivity. The amount of BC produced using these carbon and nitrogen sources was determined and compared to that produced using previously reported fermentation media. The characterizations of the bacterial cellulose (BC pellicles obtained using either conventional or by-product media were studied by thermal and spectral techniques and compared to those of plant-derived cellulose such as cotton linter, viscose pulp, and microcrystalline cellulose.

  18. Thin blend films of cellulose and polyacrylonitrile

    Science.gov (United States)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  19. Formation of asymmetric cellulose acetate membranes

    NARCIS (Netherlands)

    Bokhorst, H.; Altena, F.W.; Smolders, C.A.

    1981-01-01

    Cellulose acetate membranes were prepared from casting solutions containing dioxane as a solvent and varying concentrations (up to 6%) of maleic acid as an additive. Coagulation took place in water at different temperatures. The effect of these variables on membrane structure and membrane properties

  20. Exploring the Nature of Cellulose Microfibrils

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ying [Stony Brook Univ., NY (United States); Burger, Christian [Stony Brook Univ., NY (United States); Ma, Hongyang [Stony Brook Univ., NY (United States); Chu, Benjamin [Stony Brook Univ., NY (United States); Hsiao, Benjamin S. [Stony Brook Univ., NY (United States)

    2015-03-20

    Ultrathin cellulose microfibril fractions were extracted from spruce wood powder using combined delignification, TEMPO-catalyzed oxidation, and sonication processes. Small-angle X-ray scattering of these microfibril fractions in a “dilute” aqueous suspension (concentration 0.077 wt %) revealed that their shape was in the form of nanostrip with 4 nm width and only about 0.5 nm thicknesses. We found that these dimensions were further confirmed by TEM and AFM measurements. The 0.5 nm thickness implied that the nanostrip could contain only a single layer of cellulose chains. At a higher concentration (0.15 wt %), SAXS analysis indicated that these nanostrips aggregated into a layered structure. The X-ray diffraction of samples collected at different preparation stages suggested that microfibrils were delaminated along the (110) planes from the Iβ cellulose crystals. Moreover, the degree of oxidation and solid-state 13C NMR characterizations indicated that, in addition to the surface molecules, some inner molecules of microfibrils were also oxidized, facilitating the delamination into cellulose nanostrips.

  1. Localization of cellulose synthase in Acetobacter xylinum

    Energy Technology Data Exchange (ETDEWEB)

    Bureau, T.E.

    1987-01-01

    The cytoplasmic and outer membranes of Acetobacter xylinum (ATCC 53582) were isolated by discontinuous sucrose density ultracentrifugation. Both lysozyme and trypsin were required for efficient crude membrane separation. Primary dehydrogenases and NADH oxidase were used as cytoplasmic membrane markers, and 2-keto-3-deoxy-octulosonic acid was used to identify the outer membranes. Cellulose synthetase activity was assayed as the conversion of radioactivity from UDP-(/sup 14/C)glucose into an alkali-insoluble ..beta..-1,4-D-(/sup 14/C)glucan. The cellulosic nature of the product was demonstrated by enzymatic hydrolysis followed by thin-layer chromatography, and by methylation analysis followed by thin-layer chromatography and gas chromatography-mass spectroscopy. X-ray diffraction analysis indicated that the in vitro product is cellulose II which is in contrast to the in vivo product, namely cellulose I. In addition, no microfibrillar morphology could be observed from negative stained and metal shadowed preparations of the in vitro product.

  2. HPMC reinforced with different cellulose nanoparticles

    Science.gov (United States)

    Synthetic polymers, made almost entirely from chemicals derived from crude oil, are widely used as primary packaging in the food industry causing environmental issues. Hydroxypropyl Methyl Cellulose (HPMC) can be used as bio-based packaging material. In this study, the application of nanotechnology ...

  3. Suppression of hepcidin expression and iron overload mediate Salmonella susceptibility in ankyrin 1 ENU-induced mutant.

    Science.gov (United States)

    Yuki, Kyoko E; Eva, Megan M; Richer, Etienne; Chung, Dudley; Paquet, Marilène; Cellier, Mathieu; Canonne-Hergaux, François; Vaulont, Sophie; Vidal, Silvia M; Malo, Danielle

    2013-01-01

    Salmonella, a ubiquitous Gram-negative intracellular bacterium, is a food borne pathogen that infects a broad range of hosts. Infection with Salmonella Typhimurium in mice is a broadly recognized experimental model resembling typhoid fever in humans. Using a N-ethyl-N-nitrosurea (ENU) mutagenesis recessive screen, we report the identification of Ity16 (Immunity to Typhimurium locus 16), a locus responsible for increased susceptibility to infection. The position of Ity16 was refined on chromosome 8 and a nonsense mutation was identified in the ankyrin 1 (Ank1) gene. ANK1 plays an important role in the formation and stabilization of the red cell cytoskeleton. The Ank1(Ity16/Ity16) mutation causes severe hemolytic anemia in uninfected mice resulting in splenomegaly, hyperbilirubinemia, jaundice, extramedullary erythropoiesis and iron overload in liver and kidneys. Ank1(Ity16/Ity16) mutant mice demonstrated low levels of hepcidin (Hamp) expression and significant increases in the expression of the growth differentiation factor 15 (Gdf15), erythropoietin (Epo) and heme oxygenase 1 (Hmox1) exacerbating extramedullary erythropoiesis, tissue iron deposition and splenomegaly. As the infection progresses in Ank1(Ity16/Ity16), the anemia worsens and bacterial load were high in liver and kidneys compared to wild type mice. Heterozygous Ank1(+/Ity16) mice were also more susceptible to Salmonella infection although to a lesser extent than Ank1(Ity16/Ity16) and they did not inherently present anemia and splenomegaly. During infection, iron accumulated in the kidneys of Ank1(+/Ity16) mice where bacterial loads were high compared to littermate controls. The critical role of HAMP in the host response to Salmonella infection was validated by showing increased susceptibility to infection in Hamp-deficient mice and significant survival benefits in Ank1(+/Ity16) heterozygous mice treated with HAMP peptide. This study illustrates that the regulation of Hamp and iron balance are crucial

  4. Essays concerning the cellulosic biofuel industry

    Science.gov (United States)

    Rosburg, Alicia Sue

    Despite market-based incentives and mandated production, the U.S. cellulosic biofuel industry has been slow to develop. This dissertation explores the economic factors that have limited industry development along with important economic tradeoffs that will be encountered with commercial-scale production. The first essay provides an overview of the policies, potential, and challenges of the biofuel industry, with a focus on cellulosic biofuel. The second essay considers the economics of cellulosic biofuel production. Breakeven models of the local feedstock supply system and biofuel refining process are constructed to develop the Biofuel Breakeven (BioBreak) program, a stochastic, Excel-based program that evaluates the feasibility of local biofuel and biomass markets under various policy and market scenarios. An application of the BioBreak program is presented using expected market conditions for 14 local cellulosic biofuel markets that vary by feedstock and location. The economic costs of biofuel production identified from the BioBreak application are higher than frequently anticipated and raise questions about the potential of cellulosic ethanol as a sustainable and economical substitute for conventional fuels. Program results also are extended using life-cycle analysis to evaluate the cost of reducing GHG emissions by substituting cellulosic ethanol for conventional fuel. The third essay takes a closer look at the economic trade-offs within the biorefinery industry and feedstock production processes. A long-run biomass production through bioenergy conversion cost model is developed that incorporates heterogeneity of biomass suppliers within and between local markets. The model builds on previous literature by treating biomass as a non-commoditized feedstock and relaxes the common assumption of fixed biomass density and price within local markets. An empirical application is provided for switchgrass-based ethanol production within U.S. crop reporting districts

  5. Thermal inactivation of Salmonella spp. in pork burger patties.

    Science.gov (United States)

    Gurman, P M; Ross, T; Holds, G L; Jarrett, R G; Kiermeier, A

    2016-02-16

    Predictive models, to estimate the reduction in Escherichia coli O157:H7 concentration in beef burgers, have been developed to inform risk management decisions; no analogous model exists for Salmonella spp. in pork burgers. In this study, "Extra Lean" and "Regular" fat pork minces were inoculated with Salmonella spp. (Salmonella 4,[5],12,i:-, Salmonella Senftenberg and Salmonella Typhimurium) and formed into pork burger patties. Patties were cooked on an electric skillet (to imitate home cooking) to one of seven internal temperatures (46, 49, 52, 55, 58, 61, 64 °C) and Salmonella enumerated. A generalised linear logistic regression model was used to develop a predictive model for the Salmonella concentration based on the internal endpoint temperature. It was estimated that in pork mince with a fat content of 6.1%, Salmonella survival will be decreased by -0.2407log10 CFU/g for a 1 °C increase in internal endpoint temperature, with a 5-log10 reduction in Salmonella concentration estimated to occur when the geometric centre temperature reaches 63 °C. The fat content influenced the rate of Salmonella inactivation (P=0.043), with Salmonella survival increasing as fat content increased, though this effect became negligible as the temperature approached 62 °C. Fat content increased the time required for patties to achieve a specified internal temperature (P=0.0106 and 0.0309 for linear and quadratic terms respectively), indicating that reduced fat pork mince may reduce the risk of salmonellosis from consumption of pork burgers. Salmonella serovar did not significantly affect the model intercepts (P=0.86) or slopes (P=0.10) of the fitted logistic curve. This predictive model can be applied to estimate the reduction in Salmonella in pork burgers after cooking to a specific endpoint temperature and hence to assess food safety risk.

  6. Identification of genes to differentiate closely related Salmonella lineages.

    Directory of Open Access Journals (Sweden)

    Qing-Hua Zou

    Full Text Available BACKGROUND: Salmonella are important human and animal pathogens. Though highly related, the Salmonella lineages may be strictly adapted to different hosts or cause different diseases, from mild local illness like gastroenteritis to fatal systemic infections like typhoid. Therefore, rapid and accurate identification of Salmonella is essential for timely and correct diagnosis of Salmonella infections. The current identification methods such as 16S rRNA sequencing and multilocus sequence typing are expensive and time consuming. Additionally, these methods often do not have sufficient distinguishing resolution among the Salmonella lineages. METHODOLOGIES/PRINCIPAL FINDINGS: We compared 27 completely sequenced Salmonella genomes to identify possible genomic features that could be used for differentiation of individual lineages. We concatenated 2372 core genes in each of the 27 genomes and constructed a neighbor-joining tree. On the tree, strains of each serotype were clustered tightly together and different serotypes were unambiguously separated with clear genetic distances, demonstrating systematic genomic divergence among the Salmonella lineages. We made detailed comparisons among the 27 genomes and identified distinct sets of genomic differences, including nucleotide variations and genomic islands (GIs, among the Salmonella lineages. Two core genes STM4261 and entF together could unambiguously distinguish all Salmonella lineages compared in this study. Additionally, strains of a lineage have a common set of GIs and closely related lineages have similar sets of GIs. CONCLUSIONS: Salmonella lineages have accumulated distinct sets of mutations and laterally acquired DNA (e.g., GIs in evolution. Two genes entF and STM4261 have diverged sufficiently among the Salmonella lineages to be used for their differentiation. Further investigation of the distinct sets of mutations and GIs will lead to novel insights into genomic evolution of Salmonella and

  7. Rheology Behavior of Cellulose/NMMO/Water Solution

    Institute of Scientific and Technical Information of China (English)

    顾广新; 胡赛珠; 邵惠丽; 沈弋弋; 胡学超

    2001-01-01

    Rheology properties of cellulose/NMMO/water solution are important parameters for spinning. The storage and loss modulus and viscosity of the solution decrease with increasing water concentration of solvent in certain range. Flow-activation energy of two kinds of cellulose solution is quite different in view of their molecular weight. The molecular weigh distribution of cellulose samples can be characterized by the value of Gc/c Since the different cellulose samples have different MWD and DP, the relations of the first normal stress difference N1 vs. shear rate are different. Moreover, the rheology properties of cellulose solution produced by twin-screw extruder process are also investigated.

  8. Method of forming an electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  9. Cellulose-Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during Cellulose Synthesis in Arabidopsis.

    Science.gov (United States)

    Liu, Zengyu; Schneider, Rene; Kesten, Christopher; Zhang, Yi; Somssich, Marc; Zhang, Youjun; Fernie, Alisdair R; Persson, Staffan

    2016-08-01

    Cellulose is the most abundant biopolymer on Earth and is the major contributor to plant morphogenesis. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs). Nascent cellulose microfibrils become entangled in the cell wall, and further catalysis therefore drives the CSC forward through the membrane: a process guided by cortical microtubules via the protein CSI1/POM2. Still, it is unclear how the microtubules can withstand the forces generated by the motile CSCs to effectively direct CSC movement. Here, we identified a family of microtubule-associated proteins, the cellulose synthase-microtubule uncouplings (CMUs), that located as static puncta along cortical microtubules. Functional disruption of the CMUs caused lateral microtubule displacement and compromised microtubule-based guidance of CSC movement. CSCs that traversed the microtubules interacted with the microtubules via CSI1/POM2, which prompted the lateral microtubule displacement. Hence, we have revealed how microtubules can withstand the propulsion of the CSCs during cellulose biosynthesis and thus sustain anisotropic plant cell growth. PMID:27477947

  10. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  11. The Synthesis of a Novel Cellulose Physical Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2014-01-01

    Full Text Available Cellulose possessing β-cyclodextrin (β-CD was used as a host molecule and cellulose possessing ferrocene (Fc as a guest polymer. Infrared spectra, differential scanning calorimetry (DSC, ultraviolet spectroscopy (UV, and contact angle analysis were used to characterise the material structure and the inclusion behaviour. The results showed that the β-CD-cellulose and the Fc-cellulose can form inclusion complexes. Moreover, ferrocene oxidation, and reduction of state can be adjusted by sodium hypochlorite (NaClO as an oxidant and glutathione (GSH as a reductant. In this study, a physical gel based on β-CD-cellulose/Fc-cellulose was formed under mild conditions in which autonomous healing between cut surfaces occurred after 24 hours. The physical gel can be controlled in the sol-gel transition. The compressive strength of the Fc-cellulose/β-CD-cellulose gel increased with increased cellulose concentration. The host-guest interaction between the side chains of cellulose could strengthen the gel. The cellulose physical gel may eventually be used as a stimulus-responsive, healing material in biomedical applications.

  12. Nanofibers of cellulose and its derivatives fabricated using direct electrospinning.

    Science.gov (United States)

    Ohkawa, Kousaku

    2015-01-01

    A short review with 49 references describes the electrospinninng (ES) process for polysaccharides, cellulose and chitosan, and their derivatives, including cellulose acetate and hydroxypropyl cellulose. A majority of applied studies adopted a two step-process, in which the cellulose acetate was used for the first ES process, followed by acetyl group removal to regenerate cellulose thin fibers. The electrospun nonwoven fabrics (ESNW) of regenerated cellulose can be modified by introduction of aldehyde groups by oxidative cleavage of vicinal diols using periodates, and these aldehyde groups serve as acceptors of foreign substances, with various chemical/biological functions, to be immobilized on the fiber surfaces in the ESNW matrices. Direct electrospinning of cellulose from trifluroacetic acid solution was also developed and the applied studies were summarized to conclude the current trends of interests in the ES and related technologies. PMID:25996216

  13. Nanofibers of Cellulose and Its Derivatives Fabricated Using Direct Electrospinning

    Directory of Open Access Journals (Sweden)

    Kousaku Ohkawa

    2015-05-01

    Full Text Available A short review with 49 references describes the electrospinninng (ES process for polysaccharides, cellulose and chitosan, and their derivatives, including cellulose acetate and hydroxypropyl cellulose. A majority of applied studies adopted a two step-process, in which the cellulose acetate was used for the first ES process, followed by acetyl group removal to regenerate cellulose thin fibers. The electrospun nonwoven fabrics (ESNW of regenerated cellulose can be modified by introduction of aldehyde groups by oxidative cleavage of vicinal diols using periodates, and these aldehyde groups serve as acceptors of foreign substances, with various chemical/biological functions, to be immobilized on the fiber surfaces in the ESNW matrices. Direct electrospinning of cellulose from trifluroacetic acid solution was also developed and the applied studies were summarized to conclude the current trends of interests in the ES and related technologies.

  14. Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Yue; WU; Bin; YAN; Baixu; GAO; Peiji

    2004-01-01

    An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.

  15. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains.

    Science.gov (United States)

    Fang, Lin; Catchmark, Jeffrey M

    2015-01-22

    This study characterized the cellulosic and non-cellulosic exopolysaccharides (EPS) produced by four Gluconacetobacter strains. The yields of bacterial cellulose and water-soluble polysaccharides were dependent on both carbon source and Gluconacetobacter strain. The carbon substrate also affected the composition of the free EPS. When galactose served as an exclusive carbon source, Gluconacetobacter xylinus (G. xylinus) ATCC 53524 and ATCC 700178 produced a distinct alkaline stable crystalline product, which influenced the crystallization of cellulose. Gluconacetobacter hansenii (G. hansenii) ATCC 23769 and ATCC 53582, however, did not exhibit any significant change in cellulose crystal properties when galactose was used as the carbon source. Microscopic observation further confirmed significant incorporation of EPS into the cellulose composites. The cellulosic network produced from galactose medium showed distinctive morphological and structural features compared to that from glucose medium.

  16. Characterization of cellulose extracted from oil palm empty fruit bunch

    Science.gov (United States)

    Sisak, Muhammad Asri Abdul; Daik, Rusli; Ramli, Suria

    2015-09-01

    Recently, cellulose has been studied by many researchers due to its promising properties such as biodegradability, biocompatibility, hydrophilicity and robustness. Due to that it is applied in many fields such as paper, film, drug delivery, membranes, etc. Cellulose can be extracted from various plants while oil palm empty fruit bunch (OPEFB) is the one of its sources. In this study, cellulose was extracted by chemical treatments which involved the use of formic acid and hydrogen peroxide to remove hemicellulose and lignin components. Maximum yield was 43.22%. Based on the FT-IR spectra, the peak of wax (1735 cm-1), hemicellulose (1375 cm-1) and lignin (1248 cm-1 and 1037 cm-1) were not observed in extracted cellulose. TGA analysis showed that the extracted cellulose starts to thermally degrade at 340 °C. The SEM analysis suggested that the cellulose extracted from OPEFB was not much different from commercial cellulose.

  17. The effect of deuteration on the structure of bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Bali, Garima [Georgia Institute of Technology; Foston, Marcus [Georgia Institute of Technology; O' Neill, Hugh Michael [ORNL; Evans, Barbara R [ORNL; He, Junhong [ORNL; Ragauskas, Arthur [Georgia Institute of Technology

    2013-01-01

    ABSTRACT In vivo generated deuterated bacterial cellulose, cultivated from 100% deuterated glycerol in D2O medium, was analyzed for deuterium incorporation by ionic liquid dissolution and 2H and 1H nuclear magnetic resonance (NMR). A solution NMR method of the dissolved cellulose was used to determine that this bacterial cellulose had 85 % deuterium incorporation. Acetylation and 1H and 2H NMR of deuterated bacterial cellulose indicated near equal deuteration at all sites of the glucopyranosyl ring except C-6 which was partly deuterated. Despite the high level of deuterium incorporation there were no significant differences in the molecular and morphological properties were observed for the deuterated and protio bacterial cellulose samples. The highly deuterated bacterial cellulose presented here can be used as a model substrate for studying cellulose biopolymer properties via future small angle neutron scattering (SANS) studies.

  18. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains.

    Science.gov (United States)

    Fang, Lin; Catchmark, Jeffrey M

    2015-01-22

    This study characterized the cellulosic and non-cellulosic exopolysaccharides (EPS) produced by four Gluconacetobacter strains. The yields of bacterial cellulose and water-soluble polysaccharides were dependent on both carbon source and Gluconacetobacter strain. The carbon substrate also affected the composition of the free EPS. When galactose served as an exclusive carbon source, Gluconacetobacter xylinus (G. xylinus) ATCC 53524 and ATCC 700178 produced a distinct alkaline stable crystalline product, which influenced the crystallization of cellulose. Gluconacetobacter hansenii (G. hansenii) ATCC 23769 and ATCC 53582, however, did not exhibit any significant change in cellulose crystal properties when galactose was used as the carbon source. Microscopic observation further confirmed significant incorporation of EPS into the cellulose composites. The cellulosic network produced from galactose medium showed distinctive morphological and structural features compared to that from glucose medium. PMID:25439946

  19. Method and apparatus for treating a cellulosic feedstock

    Science.gov (United States)

    Nguyen, Quang A.; Burke, Murray J.; Hillier, Sunalie N.

    2015-09-08

    Methods and apparatus for treating, pre-treating, preparing and conveying a cellulosic feedstock, such as for ethanol production, are disclosed. More specifically, the invention relates to methods and apparatus for treating a cellulosic feedstock by mixing and heating the cellulosic feedstock and/or by moistening and heating the cellulosic feedstock. The invention also relates to a holding tank, and a method of utilizing the holding tank whereby bridging may be reduced or eliminated and may result in a product stream from autohydrolysis or hydrolysis having an improved yield. The invention further relates to methods and apparatus for obtaining and conveying a cellulosic feedstock, which may be used for the subsequent production of a fermentable sugar stream from the cellulose and hemicellulose in the cellulosic feedstock wherein the fermentable sugar stream may be used for subsequent ethanol production. The invention also relates to a method and apparatus for withdrawing one or more feedstock stream from a holding tank.

  20. Assessing nano cellulose developments using science and technology indicators

    Energy Technology Data Exchange (ETDEWEB)

    Milanez, Douglas Henrique; Amaral, Roniberto Morato do; Faria, Leandro Innocentini Lopes de; Gregolin, Jose Angelo Rodrigues, E-mail: douglasmilanez@yahoo.com.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Nucleo de Informacao Tecnologica em Materiais. Dept. de Engenharia de Materiais

    2013-11-01

    This research aims to examine scientific and technological trends of developments in nano cellulose based on scientometric and patent indicators obtained from the Science Citation Index and Derwent Innovations Index in 2001-2010. The overall nano cellulose activity indicators were compared to nanotechnology and other selected nano materials. Scientific and technological future developments in nano cellulose were forecasted using extrapolation growth curves and the main countries were also mapped. The results showed that nano cellulose publications and patent documents have increased rapidly over the last five years with an average growth rate higher than that of nanotechnology and fullerene. The USA, Japan, France, Sweden and Finland all played a significant role in nano cellulose development and the extrapolation growth curves suggested that nano cellulose scientific and technological activities are still emerging. Finally, the evidence from this study recommends monitoring nano cellulose S and T advances in the coming years. (author)

  1. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions

    Directory of Open Access Journals (Sweden)

    Sylvia eSchleker

    2015-01-01

    Full Text Available Salmonellosis is the most frequent food-borne disease world-wide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.

  2. Transient partial growth hormone deficiency due to zinc deficiency.

    Science.gov (United States)

    Nishi, Y; Hatano, S; Aihara, K; Fujie, A; Kihara, M

    1989-04-01

    We present here a 13-year-old boy with partial growth hormone deficiency due to chronic mild zinc deficiency. When zinc administration was started, his growth rate, growth hormone levels, and plasma zinc concentrations increased significantly. His poor dietary intake resulted in chronic mild zinc deficiency, which in turn could be the cause of a further loss of appetite and growth retardation. There was also a possibility of renal zinc wasting which may have contributed to zinc deficiency. Zinc deficiency should be carefully ruled out in patients with growth retardation. PMID:2708733

  3. Iron deficiency and cognitive functions

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2014-11-01

    Full Text Available Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. Keywords: iron deficiency, anemia, cognitive functions, supplementation

  4. Outer Membrane Proteins of Fibrobacter succinogenes with Potential Roles in Adhesion to Cellulose and in Cellulose Digestion▿

    OpenAIRE

    Jun, Hyun-Sik; Qi, Meng; Gong, Joshua; Egbosimba, Emmanuel E.; Forsberg, Cecil W.

    2007-01-01

    Comparative analysis of binding of intact glucose-grown Fibrobacter succinogenes strain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membr...

  5. Proximal Focal Femoral Deficiency

    Directory of Open Access Journals (Sweden)

    Vishal Kalia, Vibhuti

    2008-01-01

    Full Text Available Proximal focal femoral deficiency (PFFD is a developmental disorder of the proximal segment of thefemur and of acetabulum resulting in shortening of the affected limb and impairment of the function. It isa spectrum of congenital osseous anomalies characterized by a deficiency in the structure of the proximalfemur. The diagnosis is often made by radiological evaluation which includes identification and descriptionof PFFD and evaluation of associated limb anomalies by plain radiographs. Contrast arthrography orMagnetic Resonance Imaging is indicated when radiological features are questionable and to disclose thepresence and location of the femoral head and any cartilagenous anlage. The disorder is more commonlyunilateral and is apparent at birth. However, bilateral involvement is rarely seen. Therapy of the disorder isdirected towards satisfactory ambulation and specific treatment depending on the severity of dysplasia.

  6. Epidemiology and control measures for Salmonella in pigs and pork

    DEFF Research Database (Denmark)

    Wong, Danilo Lo Fo; Hald, Tine; Wolf, P. J. van der;

    2002-01-01

    In order to effectively manage the problem of human salmonellosis attributable to pork and pork products, control measures should be taken simultaneously at all levels of production. These measures require an understanding of the epidemiology of Salmonella within and between links of the production...... chain. Two major factors of pre-harvest Salmonella epidemiology are the introduction and subsequent transmission of infection within and between herds. Stress imposed by transportation and the associated handling can significantly increase the number of pigs excreting Salmonella upon arrival...... at the abattoir and during lairage, exposing negative pigs to Salmonella. Positive pigs carry Salmonella on the skin, in the gastro-intestinal system or in the mouth. The (cross-)contamination of carcasses is basically a matter of redistributing the Salmonella bacteria from the positive pigs during the various...

  7. Chasing Salmonella Typhimurium in free range egg production system.

    Science.gov (United States)

    Chousalkar, Kapil; Gole, Vaibhav; Caraguel, Charles; Rault, Jean-Loup

    2016-08-30

    Free range production systems are becoming a major source of egg production in Australia and worldwide. This study investigated shedding and ecology of Salmonella Typhimurium and Salmonella species in a free range layer flock, wild birds and foxes in the vicinity of the free range farm in different seasons. Shedding of Salmonella was significantly higher in summer. Within the shed, overall, Salmonella prevalence was highest in dust. Corticosterone level in faeces was highest in spring and lowest in winter. There was no direct association between the Salmonella shedding (MPN/gm) and corticosterone levels in faeces. Salmonella Typhimurium MLVA types isolated from fox and wild birds were similar to MLVA types isolated from layer flock and reported during human food borne illness. Wild birds and foxes appear to play an important role in S. Typhimurium ecology and food safety. Environmental factors could play a role in evolution of S. Typhimurium in free range environment. PMID:27527766

  8. Micronutrient deficiency in children.

    Science.gov (United States)

    Bhan, M K; Sommerfelt, H; Strand, T

    2001-05-01

    Malnutrition increases morbidity and mortality and affects physical growth and development, some of these effects resulting from specific micronutrient deficiencies. While public health efforts must be targeted to improve dietary intakes in children through breast feeding and appropriate complementary feeding, there is a need for additional measures to increase the intake of certain micronutrients. Food-based approaches are regarded as the long-term strategy for improving nutrition, but for certain micronutrients, supplementation, be it to the general population or to high risk groups or as an adjunct to treatment must also be considered. Our understanding of the prevalence and consequences of iron, vitamin A and iodine deficiency in children and pregnant women has advanced considerably while there is still a need to generate more knowledge pertaining to many other micronutrients, including zinc, selenium and many of the B-vitamins. For iron and vitamin A, the challenge is to improve the delivery to target populations. For disease prevention and growth promotion, the need to deliver safe but effective amounts of micronutrients such as zinc to children and women of fertile age can be determined only after data on deficiency prevalence becomes available and the studies on mortality reduction following supplementation are completed. Individual or multiple micronutrients must be used as an adjunct to treatment of common infectious diseases and malnutrition only if the gains are substantial and the safety window sufficiently wide. The available data for zinc are promising with regard to the prevention of diarrhea and pneumonia. It should be emphasized that there must be no displacement of important treatment such as ORS in acute diarrhea by adjunct therapy such as zinc. Credible policy making requires description of not only the clinical effects but also the underlying biological mechanisms. As findings of experimental studies are not always feasible to extrapolate to

  9. Posidonia oceanica as a Renewable Lignocellulosic Biomass for the Synthesis of Cellulose Acetate and Glycidyl Methacrylate Grafted Cellulose

    Directory of Open Access Journals (Sweden)

    Elena Vismara

    2013-05-01

    Full Text Available High-grade cellulose (97% α-cellulose content of 48% crystallinity index was extracted from the renewable marine biomass waste Posidonia oceanica using H2O2 and organic peracids following an environmentally friendly and chlorine-free process. This cellulose appeared as a new high-grade cellulose of waste origin quite similar to the high-grade cellulose extracted from more noble starting materials like wood and cotton linters. The benefits of α-cellulose recovery from P. oceanica were enhanced by its transformation into cellulose acetate CA and cellulose derivative GMA-C. Fully acetylated CA was prepared by conventional acetylation method and easily transformed into a transparent film. GMA-C with a molar substitution (MS of 0.72 was produced by quenching Fenton’s reagent (H2O2/FeSO4 generated cellulose radicals with GMA. GMA grafting endowed high-grade cellulose from Posidonia with adsorption capability. GMA-C removes β-naphthol from water with an efficiency of 47%, as measured by UV-Vis spectroscopy. After hydrolysis of the glycidyl group to glycerol group, the modified GMA-C was able to remove p-nitrophenol from water with an efficiency of 92%, as measured by UV-Vis spectroscopy. α-cellulose and GMA-Cs from Posidonia waste can be considered as new materials of potential industrial and environmental interest.

  10. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  11. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    OpenAIRE

    MacBeth, K J; Lee, C. A.

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase ...

  12. Ludwig′s angina by Salmonella Typhi: A clinical dilemma

    Directory of Open Access Journals (Sweden)

    R K Mahajan

    2015-01-01

    Full Text Available Salmonella Typhi has rarely been associated with focal abscesses; and in literature, there is no evidence of its association with abscesses in the neck spaces. Ability of Salmonella Typhi to invade and localise in the neck spaces not only poses a diagnostic challenge but also underscores the necessity to understand the mechanisms that facilitate Salmonella Typhi to establish infections at sites completely non-traditional to the organism.

  13. Iron-Deficiency Anemia (For Parents)

    Science.gov (United States)

    ... Things to Know About Zika & Pregnancy Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia Print A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  14. Faecal Salmonella shedding in fattening pigs in relation to the presence of Salmonella antibodies in three pig production systems

    DEFF Research Database (Denmark)

    Bonde, Marianne Kjær; Sørensen, Jan Tind

    2012-01-01

    Human salmonellosis originating from pork is an important zoonotic disease, and the production of outdoor pigs may increase the risk of contaminating the food chain with Salmonella from environmental sources. The prevalence of faecal Salmonella shedding has therefore been compared in organic...... was 5.4% with no significant differences between systems. Pigs with Salmonella shedding on farm were more likely to also be shedding Salmonella at slaughter (P<0.001). The serological test result was a significant predictor of Salmonella shedding at slaughter in indi-vidual pigs from conventional......, conventional outdoor and indoor finishing pig herds in a Danish survey with participation of 34 herds. Individual faecal samples were collected from 30 to 50 pigs per herd before and after transport to slaughter and analysed for the presence of Salmonella. Further meat juice samples were collected from the...

  15. Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia.

    Science.gov (United States)

    Thung, T Y; Mahyudin, N A; Basri, D F; Wan Mohamed Radzi, C W J; Nakaguchi, Y; Nishibuchi, M; Radu, S

    2016-08-01

    Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia. PMID:27118863

  16. Prevention of Salmonella contamination of finished soybean meal used for animal feed by a Norwegian production plant despite frequent Salmonella contamination of raw soy beans, 1994–2012

    OpenAIRE

    Wierup, Martin; Kristoffersen, Thor

    2014-01-01

    Background Salmonella contaminated animal feed is a major source for introducing Salmonella into the animal derived food chain. Because soybeans frequently are contaminated with Salmonella, soybean meal used as animal feed material, a by-product of a “crushing plant” which produces oil from soybeans, can be important source of Salmonella in the animal feed. We report the successful control of Salmonella from 1994 to 2012 in a Norwegian crushing plant producing soybean meal from imported soy b...

  17. DETEKSI Salmonella PADA NASI GORENG YANG DISEDIAKAN OLEH RESTORAN KERETA API KELAS EKONOMI [Detection of Salmonella on Fried Rice Served in Restaurant of Economic Class Train

    OpenAIRE

    Srianta; Elisa Rinihapsari

    2003-01-01

    Salmonella is a group of infective pathogenic bacteria for human being that cause many food borne disease outbreaks. Human, animal and some animal-based food products are whicle for Salmonella. Public transportation i.e. train/railway, often serve foods that potentially contaminated with Salmonella. Study on Salmonella detection on fried rice served in economic class train restaurant is necessary for controlling its safety and quality. Standard method was used to detect Salmonella on fried ri...

  18. Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry.

    Science.gov (United States)

    Grant, Ar'Quette; Hashem, Fawzy; Parveen, Salina

    2016-02-01

    Salmonella and Campylobacter are major causes of foodborne related illness and are traditionally associated with consuming undercooked poultry and/or consuming products that have been cross contaminated with raw poultry. Many of the isolated Salmonella and Campylobacter that can cause disease have displayed antimicrobial resistance phenotypes. Although poultry producers have reduced on-the-farm overuse of antimicrobials, antimicrobial resistant Salmonella and Campylobacter strains still persist. One method of bio-control, that is producing promising results, is the use of lytic bacteriophages. This review will highlight the current emergence and persistence of antimicrobial resistant Salmonella and Campylobacter recovered from poultry as well as bacteriophage research interventions and limitations.

  19. Modeling salmonella Dublin into the dairy herd simulation model Simherd

    DEFF Research Database (Denmark)

    Kudahl, Anne Braad

    2010-01-01

    of the simulations will therefore be used for decision support in the national surveillance and eradication program against Salmonella Dublin. Basic structures of the model are programmed and will be presented at the workshop. The model is in a phase of face-validation by a group of Salmonella......Infection with Salmonella Dublin in the dairy herd and effects of the infection and relevant control measures are currently being modeled into the dairy herd simulation model called Simherd. The aim is to compare the effects of different control strategies against Salmonella Dublin on both within...

  20. Detection of salmonellae from fish in a natural river system.

    Science.gov (United States)

    Gaertner, James; Wheeler, Phil E; Obafemi, Shola; Valdez, Jessica; Forstner, Michael R J; Bonner, Timothy H; Hahn, Dittmar

    2008-09-01

    Sediment, water, and fish gut samples taken at three sites near the headwaters of the San Marcos River, Texas, were analyzed for salmonellae Salmonella spp. by culture and molecular techniques. While enrichment cultures from sediment and water samples from the two uppermost sites were negative for salmonellae in polymerase chain reaction analyses, both sediment and water samples were positive at the downstream site. At all sites, salmonellae were present in the guts of different fishes (e.g., largemouth bass Micropterus salmoides, channel catfish Ictalurus punctatus, common carp Cyprinus carpio, and suckermouth catfish Hypostomus plecostomus). The highest percentage of detection (33% of analyzed fish) occurred at the downstream site, whereas detection percentages at the upper two sites were 18% and 17%. Detection of salmonellae was usually limited to one segment of the gut (i.e., upper or lower part). Serovars were highly variable among individuals and differed between the upper and lower gut in the only individual (a common carp) that had salmonellae in both gut segments. In situ hybridization demonstrated that salmonellae were normally associated with particulate material in the gut and occurred in highly variable numbers ranging from an occasional organism to a majority of the gut microbe population. These results demonstrate the presence of different serovars of potentially human pathogenic salmonellae among four ecologically distinct fishes within natural environments. They also suggest that salmonellae are not components of the indigenous microbial community in fish intestines but rather are ingested with particulate material.

  1. Immunity to intracellular Salmonella depends on surface-associated antigens.

    Directory of Open Access Journals (Sweden)

    Somedutta Barat

    Full Text Available Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens.

  2. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  3. A facile route to prepare cellulose-based films.

    Science.gov (United States)

    Xu, Qin; Chen, Chen; Rosswurm, Katelyn; Yao, Tianming; Janaswamy, Srinivas

    2016-09-20

    Cellulose is the most abundant renewable and biodegradable material available in nature. Its insoluble character in water as well as common organic and inorganic liquids, however, curtails the wholesome utility. The continuous rise for biodegradable products based on cellulose coupled with its intrinsic ability to form a viable substitute for the petroleum-based materials necessitates the critical need for solubilizing the cellulose. Herein, we demonstrate the feasibility of ZnCl2 solutions, especially the 64-72% concentrations, to dissolve cellulose. FTIR results suggest that Zn(2+) ions promote Zn⋯O3H interactions, which in-turn weaken the intrinsic O3H⋯O5 hydrogen bonds that are responsible for strengthening the cellulose chains. Interestingly, Ca(2+) ions promote interactions among the Zn-cellulose chains leading to the formation of nano fibrils and yield gelling solutions. The tensile strength of the Ca(2+) added Zn-cellulose films increases by around 250% compared to the Zn-cellulose films. Overall, utilization of inorganic salt solutions to solubilize and crosslink cellulose is cost-effective, recyclable and certainly stands out tall among the other available systems. More importantly, the proposed protocol is simple and is a "green" process, and thus its large-scale adaptability is quite feasible. We strongly believe that the outcome opens up a new window of opportunities for cellulose in the biomedical, pharmaceutical, food and non-food applications. PMID:27261751

  4. Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis

    Directory of Open Access Journals (Sweden)

    Engel Philip

    2012-10-01

    Full Text Available Abstract Background The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now. Results In this work we present a new method to analyze cellulose molecular weight distributions that does not require any prior cellulose swelling, activation, or derivatization. The cellulose samples were directly dissolved in dimethylformamide (DMF containing 10-20% (v/v 1-ethyl-3-methylimidazolium acetate (EMIM Ac for 60 minutes, thereby reducing the sample preparation time from several days to a few hours. The samples were filtrated 0.2 μm to avoid column blocking, separated at 0.5 mL/min using hydrophilic separation media and were detected using differential refractive index/multi angle laser light scattering (dRI/MALLS. The applicability of this method was evaluated for the three cellulose types Avicel, α-cellulose and Sigmacell. Afterwards, this method was used to measure the changes in molecular weight distributions during the enzymatic hydrolysis of the different untreated and ionic liquid pretreated cellulose substrates. The molecular weight distributions showed a stronger shift to smaller molecular weights during enzymatic hydrolysis using a commercial cellulase preparation for cellulose with lower crystallinity. This was even more pronounced for ionic liquid-pretreated cellulose. Conclusions In conclusion, this strongly simplified GPC method for cellulose molecular weight distribution allowed for the first time to demonstrate the influence of cellulose properties and pretreatment on the mode of enzymatic hydrolysis.

  5. Anaerobiosis induced virulence of Salmonella typhi

    DEFF Research Database (Denmark)

    Kapoor, Sarika; Singh, R D; Sharma, P C;

    2002-01-01

    BACKGROUND & OBJECTIVES: Anaerobic conditions are frequently encountered by pathogens invading the gastrointestinal tract due to low/limiting oxygen conditions prevalent in the small intestine. This anaerobic stress has been suggested to enhance the virulence of gut pathogens. In the present study......, we examined the effect of anaerobiosis on the virulence of Salmonella Typhi, a Gram negative bacteria which invades through the gut mucosa and is responsible for typhoid fever. METHODS: Salmonella Typhi (ty2) was cultured in aerobic and anaerobic conditions to compare its virulence by rabbit ileal...... loop assay, hydrophobicity assay, expression of outer membrane proteins (OMPs) and antioxidant enzymes assay. RESULTS: Anaerobically grown S. Typhi showed significantly higher cell surface hydrophobicity as compared to aerobic bacteria. In vivo toxin production by rabbit ileal loop assay also showed...

  6. Salmonella Dublin kan give store tab

    DEFF Research Database (Denmark)

    Nielsen, Torben Dahl; Nielsen, Liza Rosenbaum; Kudahl, Anne Margrethe Braad;

    2012-01-01

    Store besætninger lider størst økonomisk tab ved infektion med Salmonella Dublin. Selv i en veldrevet besætning kan tabet løbe op i mellem 1,3 og 3,3 millioner kr. over en tiårs periode. Ved uhensigtsmæssige hygiejne- og managementrutiner kan tabet nemt blive meget højere.......Store besætninger lider størst økonomisk tab ved infektion med Salmonella Dublin. Selv i en veldrevet besætning kan tabet løbe op i mellem 1,3 og 3,3 millioner kr. over en tiårs periode. Ved uhensigtsmæssige hygiejne- og managementrutiner kan tabet nemt blive meget højere....

  7. Renal abscess caused by Salmonella Typhi

    Directory of Open Access Journals (Sweden)

    Amarjeet Kaur

    2015-01-01

    Full Text Available Salmonella typhi is a true pathogen, which is capable of causing both intestinal and extraintestinal infections. Unusual presentations of Salmonella should always be kept in mind as this organism can cause disease in almost any organ of the body. S. typhi has been reported to cause the life-threatening infections such as meningitis, endocarditis, myocarditis, empyema, and hepatic abscess. Renal involvement by S. typhi is a relatively rare presentation. We report a case of renal abscess caused by S. typhi in an afebrile, 10-year-old child who did not have any clinical history of enteric fever. To our knowledge, this is the first reported case of isolation of S. typhi from the renal abscess, and interestingly this isolate was found to be resistant to quinolones.

  8. Whole Genome Epidemiological Typing of Salmonella

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas

    . Technological advances and effective price in high throughput genome sequencing are making whole genome sequencing (WGS) available as a routine tool for bacterial typing. Typing of Salmonella, especially sub-typing within the same serotype or even the same clone, the genetic variation of the target genes being...... used for typing is crucial for successful discrimination. The core genes or the genes that are conserved in all members of a genus or species are potentially good candidates for investigating genomic variation in phylogeny and epidemiology. A total of 2,882 core genes have been observed among 73...... available Salmonella enterica genomes (accessed in April 2011). A consensus tree based on variation of the core genes gives better resolution than 16S rRNA and MLST that rarely provide separation between closely related strains. The performance of the pan-genome tree which is based on the presence...

  9. Prevalence of Nontyphoidal Salmonella and Salmonella Strains with Conjugative Antimicrobial-Resistant Serovars Contaminating Animal Feed in Texas.

    Science.gov (United States)

    Hsieh, Yi-Cheng; Poole, Toni L; Runyon, Mick; Hume, Michael; Herrman, Timothy J

    2016-02-01

    The objective of this study was to characterize 365 nontyphoidal Salmonella enterica isolates from animal feed. Among the 365 isolates, 78 serovars were identified. Twenty-four isolates (7.0%) were recovered from three of six medicated feed types. Three of these isolates derived from the medicated feed, Salmonella Newport, Salmonella Typhimurium var. O 5- (Copenhagen), and Salmonella Lexington var. 15+ (Manila), displayed antimicrobial resistance. Susceptibility testing revealed that only 3.0% (12) of the 365 isolates displayed resistance to any of the antimicrobial agents. These 12 isolates were recovered from unmedicated dry beef feed (n = 3), medicated dry beef feed (n = 3), cabbage culls (n = 2), animal protein products (n = 2), dry dairy cattle feed (n = 1), and fish meal (n = 1). Only Salmonella Newport and Salmonella Typhimurium var. O 5- (Copenhagen) were multidrug resistant. Both isolates possessed the IncA/C replicon and the blaCMY-2 gene associated with cephalosporin resistance. Plasmid replicons were amplified from 4 of 12 resistant isolates. Plasmids (40 kb) were Salmonella Montevideo and Salmonella Kentucky. Conjugation experiments were done using 7 of the 12 resistant isolates as donors. Only Salmonella Montevideo, possessing a plasmid and amplifying IncN, produced transconjugants. Transconjugants displayed the same antimicrobial resistance profile as did the donor isolate. Three isolates that amplified replicons corresponding to IncA/C or IncHI2 did not produce transconjugants at 30 or 37°C. The results of this study suggest that the prevalence of antimicrobial-resistant Salmonella contaminating animal feed is low in Texas. However, Salmonella was more prevalent in feed by-products; fish meal had the highest prevalence (84%) followed by animal protein products (48%). Ten of the 35 feed types had no Salmonella contamination. Further investigation is needed to understand the possible role of specific feed types in the dissemination of antimicrobial

  10. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  11. Cellulose and the Control of Growth Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tobias I. Baskin

    2004-04-01

    The authors research aims to understand morphogenesis, focusing on growth anisotropy, a process that is crucial to make organs with specific and heritable shapes. For the award, the specific aims were to test hypotheses concerning how growth anisotropy is controlled by cell wall structure, particularly by the synthesis and alignment of cellulose microfibrils, the predominant mechanical element in the cell wall. This research has involved characterizing the basic physiology of anisotropic expansion, including measuring it at high resolution; and second, characterizing the relationship between growth anisotropy, and cellulose microfibrils. Important in this relationship and also to the control of anisotropic expansion are structures just inside the plasma membrane called cortical microtubules, and the research has also investigated their contribution to controlling anisotropy and microfibril alignment. In addition to primary experimental papers, I have also developed improved methods relating to these objectives as well as written relevant reviews. Major accomplishments in each area will now be described.

  12. Process Dependence of Cellulose Nanofiber Fabrication

    Science.gov (United States)

    Henderson, Doug; Zhang, Xin; Mao, Yimin; Jang, Soo-Hwan; Hu, Liangbing; Briber, Robert; Wang, Howard

    Cellulose nanofibers (CNF) are the most abundant natural nanomaterial on earth with potential applications in renewable energy, polymer nanocomposites and flexible electronics. CNF can be produced through TEMPO oxidation which separates the hierarchical structure of cellulose fibers into smaller micro- and nanofibers by altering their surface chemistry, inducing a repulsive electrostatic charge on the fibers. This work will examine the structural evolution of CNF during production. Samples were prepared by removing and quenching aliquots during the TEMPO reaction. The fibers were washed, filtered and re-dispersed into D2O for small angle neutron scattering (SANS) measurements. The SANS data was analyzed to track the changes in the CNF structure as a function of reaction time.

  13. Reinforced plastics and aerogels by nanocrystalline cellulose

    International Nuclear Information System (INIS)

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  14. Structure and properties of a pulp fibre-reinforced composite with regenerated cellulose matrix

    Science.gov (United States)

    Gindl, W.; Schöberl, T.; Keckes, J.

    2006-04-01

    Fully bio-based cellulose cellulose composites were produced by partly dissolving beech pulp fibres in lithium chloride/dimethylacetamide (LiCl/DMAc) and subsequent regeneration of matrix cellulose in the presence of undissolved fibres. Compared to cellulose epoxy composites produced from the same fibres, a two-fold increase in tensile strength and elastic modulus was observed for cellulose cellulose composites. From scanning electron microscopy and nanoindentation it is concluded that changes in the fibre cell wall during LiCl/DMAc treatment, improved matrix properties of regenerated cellulose compared to epoxy, and improved fibre matrix adhesion are responsible for the superior properties of cellulose cellulose composites.

  15. End-functionalization of cellulose nanocrystals

    OpenAIRE

    Lundahl, Meri

    2014-01-01

    Regioselective modification of nanocelluloses can have intriguing applications in self-assembled material synthesis. In this thesis, cellulose nanocrystals (CNC) were selectively functionalized at their reducing ends with thiol and maleimide groups. For thiol end-functionalization, a protocol was developed based on NHS/EDC-catalyzed coupling of NaClO2-oxidized CNCs with NH2 (CH2)6 SH in water. Maleimide end-functionalization was achieved by reacting end-thiolated CNCs (CNC SH) with a homobifu...

  16. Nanofibrillated Cellulose Surface Modification: A Review

    OpenAIRE

    Julien Bras,; Mohamed Naceur Belgacem; Karim Missoum

    2013-01-01

    Interest in nanofibrillated cellulose (NFC) has increased notably over recent decades. This bio-based nanomaterial has been used essentially in bionanocomposites or in paper thanks to its high mechanical reinforcement ability or barrier property respectively. Its nano-scale dimensions and its capacity to form a strong entangled nanoporous network have encouraged the emergence of new high-value applications. It is worth noting that chemical surface modification of this material can be a key fa...

  17. African perspective on cellulosic ethanol production

    DEFF Research Database (Denmark)

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo;

    2015-01-01

    widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most...... materials. Though the falling price of enzymes is improving economic production of ethanol, advancements in heterogeneous catalytic hydrolysis will considerably favour economic production of ethanol in Africa due to the potential of recycling and reusing solid acid catalysts....

  18. PRODUCTION AND CHARACTERIZATION OF ECONOMICAL BACTERIAL CELLULOSE

    OpenAIRE

    Houssni El-Saied; Ahmed I. El-Diwany; Altaf H. Bast; Nagwa A. Atwa; Dina E. El-Ghwas

    2008-01-01

    The present study investigates the economical production of bacterial cellulose (BC) by Gluconacetobacter subsp. Xylinus (ATCC 10245) in 250 ml Erlenmeyer flasks cultivated under static conditions. The fermentation media used contained food industrial by-product liquors, such as black strap molasses solution and corn steep liquor (CSL), which represents some of the most economical carbon and nitrogen sources. However, because of the presence of undesirable components in molasses (such as colo...

  19. Targeted Cancer Therapy Using Engineered Salmonella typhimurium

    Science.gov (United States)

    Zheng, Jin Hai

    2016-01-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy. PMID:27689027

  20. Electrochemical immunosensors for Salmonella detection in food.

    Science.gov (United States)

    Melo, Airis Maria Araújo; Alexandre, Dalila L; Furtado, Roselayne F; Borges, Maria F; Figueiredo, Evânia Altina T; Biswas, Atanu; Cheng, Huai N; Alves, Carlúcio R

    2016-06-01

    Pathogen detection is a critical point for the identification and the prevention of problems related to food safety. Failures at detecting contaminations in food may cause outbreaks with drastic consequences to public health. In spite of the real need for obtaining analytical results in the shortest time possible, conventional methods may take several days to produce a diagnosis. Salmonella spp. is the major cause of foodborne diseases worldwide and its absence is a requirement of the health authorities. Biosensors are bioelectronic devices, comprising bioreceptor molecules and transducer elements, able to detect analytes (chemical and/or biological species) rapidly and quantitatively. Electrochemical immunosensors use antibody molecules as bioreceptors and an electrochemical transducer. These devices have been widely used for pathogen detection at low cost. There are four main techniques for electrochemical immunosensors: amperometric, impedimetric, conductometric, and potentiometric. Almost all types of immunosensors are applicable to Salmonella detection. This article reviews the developments and the applications of electrochemical immunosensors for Salmonella detection, particularly the advantages of each specific technique. Immunosensors serve as exciting alternatives to conventional methods, allowing "real-time" and multiple analyses that are essential characteristics for pathogen detection and much desired in health and safety control in the food industry. PMID:27138197

  1. Targeted Cancer Therapy Using Engineered Salmonella typhimurium.

    Science.gov (United States)

    Zheng, Jin Hai; Min, Jung-Joon

    2016-09-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy. PMID:27689027

  2. Targeted Cancer Therapy Using Engineered Salmonella typhimurium

    Science.gov (United States)

    Zheng, Jin Hai

    2016-01-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy.

  3. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ(E)-regulated SPI-2 gene expression.

    Science.gov (United States)

    Li, Jie; Overall, Christopher C; Nakayasu, Ernesto S; Kidwai, Afshan S; Jones, Marcus B; Johnson, Rudd C; Nguyen, Nhu T; McDermott, Jason E; Ansong, Charles; Heffron, Fred; Cambronne, Eric D; Adkins, Joshua N

    2015-01-01

    The extracytoplasmic functioning sigma factor σ(E) is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well-characterized, especially during infection. Here we used microarray to identify genes regulated by σ(E) in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ(E) regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ(E) in at least one of the three conditions. An important finding is that σ(E) up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ(E) is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ(E) and SPI-2 genes, combined with the global regulatory effect of σ(E), may account for the lethality of rpoE-deficient Salmonella in murine infection.

  4. Immune reaction and survivability of salmonella typhimurium and salmonella infantis after infection of primary avian macrophages.

    Directory of Open Access Journals (Sweden)

    Maria Braukmann

    Full Text Available Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2 for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S. Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS, interleukin (IL-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages.

  5. Immune reaction and survivability of salmonella typhimurium and salmonella infantis after infection of primary avian macrophages.

    Science.gov (United States)

    Braukmann, Maria; Methner, Ulrich; Berndt, Angela

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages. PMID:25811871

  6. Printed optically transparent graphene cellulose electrodes

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2016-02-01

    Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be "tuned" by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to high optical transparency.

  7. Drying of Pigment-Cellulose Nanofibril Substrates

    Directory of Open Access Journals (Sweden)

    Oleg Timofeev

    2014-10-01

    Full Text Available A new substrate containing cellulose nanofibrils and inorganic pigment particles has been developed for printed electronics applications. The studied composite structure contains 80% fillers and is mechanically stable and flexible. Before drying, the solids content can be as low as 20% due to the high water binding capacity of the cellulose nanofibrils. We have studied several drying methods and their effects on the substrate properties. The aim is to achieve a tight, smooth surface keeping the drying efficiency simultaneously at a high level. The methods studied include: (1 drying on a hot metal surface; (2 air impingement drying; and (3 hot pressing. Somewhat surprisingly, drying rates measured for the pigment-cellulose nanofibril substrates were quite similar to those for the reference board sheets. Very high dewatering rates were observed for the hot pressing at high moisture contents. The drying method had significant effects on the final substrate properties, especially on short-range surface smoothness. The best smoothness was obtained with a combination of impingement and contact drying. The mechanical properties of the sheets were also affected by the drying method and associated temperature.

  8. 21 CFR 177.1400 - Hydroxyethyl cellulose film, water-insoluble.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxyethyl cellulose film, water-insoluble. 177... cellulose film, water-insoluble. Water-insoluble hydroxyethyl cellulose film may be safely used for... cellulose film consists of a base sheet manufactured by the ethoxylation of cellulose under...

  9. Treatment of carnitine deficiency.

    Science.gov (United States)

    Winter, S C

    2003-01-01

    Carnitine deficiency is a secondary complication of many inborn errors of metabolism. Pharmacological treatment with carnitine not only corrects the deficiency, it facilitates removal of accumulating toxic acyl intermediates and the generation of mitochondrial free coenzyme A (CoA). The United States Food and Drug Administration (US FDA) approved the use of carnitine for the treatment of inborn errors of metabolism in 1992. This approval was based on retrospective chart analysis of 90 patients, with 18 in the untreated cohort and 72 in the treated cohort. Efficacy was evaluated on the basis of clinical and biochemical findings. Compelling data included increased excretion of disease-specific acylcarnitine derivatives in a dose-response relationship, decreased levels of metabolites in the blood, and improved clinical status with decreased hospitalization frequency, improved growth and significantly lower mortality rates as compared to historical controls. Complications of carnitine treatment were few, with gastrointestinal disturbances and odour being the most frequent. No laboratory or clinical safety issues were identified. Intravenous carnitine preparations were also approved for treatment of secondary carnitine deficiency. Since only 25% of enteral carnitine is absorbed and gastrointestinal tolerance of high doses is poor, parenteral carnitine treatment is an appealing alternative therapeutic approach. In 7 patients treated long term with high-dose weekly to daily venous boluses of parenteral carnitine through a subcutaneous venous port, benefits included decreased frequency of decompensations, improved growth, improved muscle strength and decreased reliance on medical foods with liberalization of protein intake. Port infections were the most troubling complication. Theoretical concerns continue to be voiced that carnitine might result in fatal arrhythmias in patients with long-chain fat metabolism defects. No published clinical studies substantiate these

  10. Assessment of serological response of chickens to Salmonella Gallinarum and Salmonella Pullorum by Elisa

    Directory of Open Access Journals (Sweden)

    GH de Oliveira

    2004-06-01

    Full Text Available This study was done to assess an enzyme-linked immunosorbent assay (ELISA to detect chicken serological response against Salmonella enterica serotypes Gallinarum and Pullorum. The assays have used soluble bacterial proteins of Salmonella Gallinarum strain 9 (AgSG as detecting antigen and peroxidase and alkaline phosphatase conjugates. According to the results, the antigen, sera and conjugate concentrations were optimized. In addition, the assay using alkaline phosphatase and peroxidase conjugates was helpful to distinguish positive serological reaction to serotypes Gallinarum and Pullorum from Enteritidis.

  11. Patogenia de Salmonella enteritidis FT 13a y Salmonella enteritidis biovar Issatschenko en pollos de engorda

    OpenAIRE

    Griselda Ruiz Flores; Fernando Constantino Casas; José Antonio Quintana López; Carlos Cedillo Peláez; Odette Urquiza Bravo

    2008-01-01

    El objetivo del presente estudio fue determinar la patogenia de Salmonella enteritidis fagotipo 13a (SE FT 13a) y de Salmonella enteritidis biovar Issatschenko fagotipo 6a (SI) en pollitos de engorda de cuatro días de edad. Veintiocho aves por tratamiento fueron inoculadas con dosis de 1 × 108 (SE FT 13a) y 1 × 109 (SI), respectivamente, y 14 pollitos fueron inoculados con solución salina fi siológica (SSF), como testigos negativos. Se tomaron muestras de hígado, bazo, corazón, pulmón, buche,...

  12. Study of Salmonella Typhimurium infection in laying hens

    Directory of Open Access Journals (Sweden)

    Kapil eChousalkar

    2016-02-01

    Full Text Available Members of Salmonella enterica are frequently involved in egg and egg product related human food poisoning outbreaks worldwide. In Australia, Salmonella Typhimurium is frequently involved in egg and egg product related foodborne illness and Salmonella Mbandaka has also been found to be a contaminant of the layer farm environment. The ability possessed by Salmonella Enteritidis to colonise reproductive organs and contaminate developing eggs has been well described. However, there are few studies investigating this ability for Salmonella Typhimurium. The hypothesis of this study was that the Salmonella Typhimurium can colonise the gut for a prolonged period of time and that horizontal infection through feces is the main route of egg contamination. At 14 weeks of age hens were orally infected with either S. Typhimurium PT 9 or S. Typhimurium PT 9 and Salmonella Mbandaka. Salmonella shedding in feces and eggs was monitored for 15 weeks post infection. Egg shell surface and internal contents of eggs laid by infected hens were cultured independently for detection of Salmonella spp. The mean Salmonella load in feces ranged from 1.54 to 63.35 and 0.31 to 98.38 most probable number/g (MPN/g in the S. Typhimurium and S. Typhimurium + S. Mbandaka group respectively. No correlation was found between mean fecal Salmonella load and frequency of egg shell contamination. Egg shell contamination was higher in S. Typhimurium + S. Mbandaka infected group (7.2% Typhimurium, 14.1% Mbandaka compared to birds infected with S. Typhimurium (5.66% however, co-infection had no significant impact on egg contamination by S. Typhimurium. Throughout the study Salmonella was not recovered from internal contents of eggs laid by hens. Salmonella was isolated from different segments of oviduct of hens from both the groups, however pathology was not observed on microscopic examination. This study investigated Salmonella shedding for up to 15 weeks p.i which is a longer period of

  13. Study of Salmonella Typhimurium Infection in Laying Hens

    Science.gov (United States)

    Pande, Vivek V.; Devon, Rebecca L.; Sharma, Pardeep; McWhorter, Andrea R.; Chousalkar, Kapil K.

    2016-01-01

    Members of Salmonella enterica are frequently involved in egg and egg product related human food poisoning outbreaks worldwide. In Australia, Salmonella Typhimurium is frequently involved in egg and egg product related foodborne illness and Salmonella Mbandaka has also been found to be a contaminant of the layer farm environment. The ability possessed by Salmonella Enteritidis to colonize reproductive organs and contaminate developing eggs has been well-described. However, there are few studies investigating this ability for Salmonella Typhimurium. The hypothesis of this study was that the Salmonella Typhimurium can colonize the gut for a prolonged period of time and that horizontal infection through feces is the main route of egg contamination. At 14 weeks of age hens were orally infected with either S. Typhimurium PT 9 or S. Typhimurium PT 9 and Salmonella Mbandaka. Salmonella shedding in feces and eggs was monitored for 15 weeks post-infection. Egg shell surface and internal contents of eggs laid by infected hens were cultured independently for detection of Salmonella spp. The mean Salmonella load in feces ranged from 1.54 to 63.35 and 0.31 to 98.38 most probable number/g (MPN/g) in the S. Typhimurium and S. Typhimurium + S. Mbandaka group, respectively. No correlation was found between mean fecal Salmonella load and frequency of egg shell contamination. Egg shell contamination was higher in S. Typhimurium + S. Mbandaka infected group (7.2% S. Typhimurium, 14.1% S. Mbandaka) compared to birds infected with S. Typhimurium (5.66%) however, co-infection had no significant impact on egg contamination by S. Typhimurium. Throughout the study Salmonella was not recovered from internal contents of eggs laid by hens. Salmonella was isolated from different segments of oviduct of hens from both the groups, however pathology was not observed on microscopic examination. This study investigated Salmonella shedding for up to 15 weeks p.i which is a longer period of time

  14. Survival of Salmonella during baking of peanut butter cookies.

    Science.gov (United States)

    Lathrop, Amanda A; Taylor, Tiffany; Schnepf, James

    2014-04-01

    Peanuts and peanut-based products have been the source of recent Salmonella outbreaks worldwide. Because peanut butter is commonly used as an ingredient in baked goods, such as cookies, the potential risk of Salmonella remaining in these products after baking needs to be assessed. This research examines the potential hazard of Salmonella in peanut butter cookies when it is introduced via the peanut-derived ingredient. The survival of Salmonella during the baking of peanut butter cookies was determined. Commercial, creamy-style peanut butter was artificially inoculated with a five-strain Salmonella cocktail at a target concentration of 10(8) CFU/g. The inoculated peanut butter was then used to prepare peanut butter cookie dough following a standard recipe. Cookies were baked at 350 °F (177 °C) and were sampled after 10, 11, 12, 13, 14, and 15 min. Temperature profiles of the oven and cookies were monitored during baking. The water activity and pH of the inoculated and uninoculated peanut butter, raw dough, and baked cookies were measured. Immediately after baking, cookies were cooled, and the survival of Salmonella was determined by direct plating or enrichment. After baking cookies for 10 min, the minimum reduction of Salmonella observed was 4.8 log. In cookies baked for 13 and 14 min, Salmonella was only detectable by enrichment reflecting a Salmonella reduction in the range of 5.2 to 6.2 log. Cookies baked for 15 min had no detectable Salmonella. Results of this study showed that proper baking will reduce Salmonella in peanut butter cookies by 5 log or more.

  15. Survival of Salmonella during baking of peanut butter cookies.

    Science.gov (United States)

    Lathrop, Amanda A; Taylor, Tiffany; Schnepf, James

    2014-04-01

    Peanuts and peanut-based products have been the source of recent Salmonella outbreaks worldwide. Because peanut butter is commonly used as an ingredient in baked goods, such as cookies, the potential risk of Salmonella remaining in these products after baking needs to be assessed. This research examines the potential hazard of Salmonella in peanut butter cookies when it is introduced via the peanut-derived ingredient. The survival of Salmonella during the baking of peanut butter cookies was determined. Commercial, creamy-style peanut butter was artificially inoculated with a five-strain Salmonella cocktail at a target concentration of 10(8) CFU/g. The inoculated peanut butter was then used to prepare peanut butter cookie dough following a standard recipe. Cookies were baked at 350 °F (177 °C) and were sampled after 10, 11, 12, 13, 14, and 15 min. Temperature profiles of the oven and cookies were monitored during baking. The water activity and pH of the inoculated and uninoculated peanut butter, raw dough, and baked cookies were measured. Immediately after baking, cookies were cooled, and the survival of Salmonella was determined by direct plating or enrichment. After baking cookies for 10 min, the minimum reduction of Salmonella observed was 4.8 log. In cookies baked for 13 and 14 min, Salmonella was only detectable by enrichment reflecting a Salmonella reduction in the range of 5.2 to 6.2 log. Cookies baked for 15 min had no detectable Salmonella. Results of this study showed that proper baking will reduce Salmonella in peanut butter cookies by 5 log or more. PMID:24680076

  16. Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose.

    Science.gov (United States)

    Deng, Sha; Huang, Rui; Zhou, Mi; Chen, Feng; Fu, Qiang

    2016-12-10

    Cellulose films with excellent mechanical strength are of interest to many researchers, but unfortunately they often lack the ductility and water resistance. This work demonstrates an efficient and easily industrialized method for hydrophobic cellulose films made of modified microfibrillated cellulose (MFC). Prior to film fabrication, the simultaneous exfoliation and acylation of MFC was achieved through the synergetic effect of mechanical and chemical actions generated from ball milling in the presence of hexanoyl chloride. Largely enhanced tensile strength and elongation at break have been achieved (4.98MPa, 4.37% for original MFC films, 140MPa, 21.3% for modified ones). Due to hydrophobicity and compact structure, modified films show excellent water resistance and decreased water vapor permeability. Moreover, optical performance of modified films is also improved compared with the original MFC films. Our work can largely expand the application of this biodegradable resource and ultimately reduce the need for petroleum-based plastics. PMID:27577904

  17. Biocomposite cellulose-alginate films: promising packaging materials.

    Science.gov (United States)

    Sirviö, Juho Antti; Kolehmainen, Aleksi; Liimatainen, Henrikki; Niinimäki, Jouko; Hormi, Osmo E O

    2014-05-15

    Biocomposite films based on cellulose and alginate were produced using unmodified birch pulp, microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC) and birch pulp derivate, nanofibrillated anionic dicarboxylic acid cellulose (DCC), having widths of fibres ranging from 19.0 μm to 25 nm as cellulose fibre materials. Ionically cross-linked biocomposites were produced using Ca(2+) cross-linking. Addition of micro- and nanocelluloses as a reinforcement increased the mechanical properties of the alginate films remarkably, e.g. addition of 15% of NFC increased a tensile strength of the film from 70.02 to 97.97 MPa. After ionic cross-linking, the tensile strength of the film containing 10% of DCC was increased from 69.63 to 125.31 MPa. The biocomposite films showed excellent grease barrier properties and reduced water vapour permeability (WVP) after the addition of cellulose fibres, except when unmodified birch pulp was used. PMID:24423542

  18. Effect of Surface Attachment on Synthesis of Bacterial Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Barbara R [ORNL; O' Neill, Hugh Michael [ORNL

    2005-01-01

    Gluconacetobacter spp. synthesize a pure form of hydrophilic cellulose that has several industrial specialty applications. Literature reports have concentrated on intensive investigation of static and agitated culture in liquid media containing high nutrient concentrations optimized for maximal cellulose production rates. The behavior of these bacteria on semisolid and solid surfaces has not been specifically addressed. The species Gluconacetobacter hansenii was examined for cellulose synthesis and colony morphology on a range of solid supports, including cotton linters, and on media thickened with agar, methyl cellulose, or gellan. The concentration and chemical structure of the thickening agent were found to be directly related to the formation of contiguous cellulose pellicules. Viability of the bacteria following freezer storage was improved when the bacteria were frozen in their cellulose pellicules.

  19. Cellulose-Based Bio- and Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Susheel Kalia

    2011-01-01

    Full Text Available Cellulose macro- and nanofibers have gained increasing attention due to the high strength and stiffness, biodegradability and renewability, and their production and application in development of composites. Application of cellulose nanofibers for the development of composites is a relatively new research area. Cellulose macro- and nanofibers can be used as reinforcement in composite materials because of enhanced mechanical, thermal, and biodegradation properties of composites. Cellulose fibers are hydrophilic in nature, so it becomes necessary to increase their surface roughness for the development of composites with enhanced properties. In the present paper, we have reviewed the surface modification of cellulose fibers by various methods. Processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed in this paper.

  20. Preparation and Characterization of Super Absorbent Resin from Natural Cellulose

    Institute of Scientific and Technical Information of China (English)

    李杰; 马凤国; 谭惠民

    2003-01-01

    The grafting polyacrylamide onto wood pulp cellulose (cell-g-PAM) was performed with cerous ammonium nitrate as the initiator and hydrolyzed to produce the super absorbent resin. The FTIR shows that the polyacrylamide is grafted on the cellulose. After hydrolyzation, part of acrylamino groups are transformed into carboxyl groups. The XRD analysis shows that the graft polymerization occurred at the amorphous section and the surface of the crystal section of cellulose. The SEM graph reveals that there is a layer of polymer on the surface of cellulose fiber and the fibril structure of the cellulose surface is covered. After hydrolyzation, the surface of the product is different from that of cell-g-PAM's and the surface is scraggy. The technical conditions to prepare high water absorbent resin were confirmed. Through the radical graft copolymerization, the high water absorbent resin can be produced from wood pulp cellulose.

  1. Rheology of lyocell solutions from different cellulosic sources and development of regenerated cellulosic microfibers

    Science.gov (United States)

    Li, Zuopan

    2003-10-01

    The primary goals of the study were to develop manufactured cellulosic fibers and microfibers from wood pulps as well as from lignocellulosic agricultural by-products and to investigate alternative cellulosic sources as raw materials for lyocell solutions. A protocol was developed for the lyocell preparation from different cellulose sources. The cellulose sources included commercial dissolving pulps, commercial bleached hardwood, unbleached hardwood, bleached softwood, unbleached softwood, bleached thermomechanical pulp, unbleached thermomechanical pulp, bleached recycled newsprint, unbleached recycled newsprint, bagasse and kudzu. The rheological behavior of solutions was characterized. Complex viscosities and effective elongational viscosities were measured and the influences of parameters such as cellulose source, concentration, bleaching, and temperature were studied. One-way ANOVA post hoc tests were carried out to identify which cellulose sources have the potential to produce lyocell solutions having similar complex viscosities to those from commercial dissolving pulps. Lyocell solutions from both bleached and unbleached softwood and hardwood were classified as one homogenous subset that had the lowest complex viscosity. Kudzu solutions had the highest complex viscosity. The results showed the potential to substitute DP 1457 dissolving pulp with unbleached recycled newsprint pulps, to substitute DP 1195 dissolving pulp with bleached and unbleached thermomechanical pulps, to substitute DP 932 dissolving pulp with bleached thermomechanical pulps or bleached recycled newsprint pulps, to substitute DP 670 dissolving pulp with bagasse. Lyocell fibers were produced from selected solutions and were treated to produce microfibers. Water, sulfuric acid solutions and sodium hydroxide solutions were used. The treatment of lyocell fibers in 17.5% NaOH solutions for five minutes at 20°C successfully broke the fibers into fibrils along fiber axis. The diameters of the

  2. Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis

    OpenAIRE

    Engel Philip; Hein Lea; Spiess Antje C

    2012-01-01

    Abstract Background The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC) is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now. Results In this work we present a new method to analyze ce...

  3. Cellulose Ester / Polyolefin Binary Blends : Rheology, Morphology and Impact Properties

    OpenAIRE

    Besson, François; Vanhille, Aurélie; Budtova, Tatiana

    2012-01-01

    Due to depletion of fossil resources and global environmental respect awareness, interest in biobased plastic materials is tremendously growing. Direct extraction of vegetal polymers like cellulose followed by a chemical modification to bring new properties is one of the paths to produce a bioplastic. Progressively replaced by oil-based polymers in the sixties, thermoplastic cellulose esters are now reconsidered for various materials applications. To improve mechanical weaknesses of cellulose...

  4. Method for providing a nanocellulose involving modifying cellulose fibers

    OpenAIRE

    Ankerfors, Mikael; Lindström, Tom

    2009-01-01

    The present invention provides a method for the manufacturing of nanocellulose. The method includes a first modification of the cellulose material, where the cellulose fibres are treated with an aqueous electrolyte-containing solution of an amphoteric cellulose derivative. The modification is followed by a mechanical treatment. By using this method for manufacturing nanocellulose, clogging of the mechanical apparatus is avoided. Also disclosed is nanocellulose manufactured in accordance with ...

  5. Genetic organization of the cellulose synthase operon in Acetobacter xylinum.

    OpenAIRE

    Wong, H C; Fear, A L; Calhoon, R D; Eichinger, G H; Mayer, R; Amikam, D; Benziman, M; Gelfand, D H; Meade, J H; Emerick, A W

    1990-01-01

    An operon encoding four proteins required for bacterial cellulose biosynthesis (bcs) in Acetobacter xylinum was isolated via genetic complementation with strains lacking cellulose synthase activity. Nucleotide sequence analysis indicated that the cellulose synthase operon is 9217 base pairs long and consists of four genes. The four genes--bcsA, bcsB, bcsC, and bcsD--appear to be translationally coupled and transcribed as a polycistronic mRNA with an initiation site 97 bases upstream of the co...

  6. T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions

    Directory of Open Access Journals (Sweden)

    Verbrugghe Elin

    2012-03-01

    Full Text Available Abstract The mycotoxin T-2 toxin and Salmonella Typhimurium infections pose a significant threat to human and animal health. Interactions between both agents may result in a different outcome of the infection. Therefore, the aim of the presented study was to investigate the effects of low and relevant concentrations of T-2 toxin on the course of a Salmonella Typhimurium infection in pigs. We showed that the presence of 15 and 83 μg T-2 toxin per kg feed significantly decreased the amount of Salmonella Typhimurium bacteria present in the cecum contents, and a tendency to a reduced colonization of the jejunum, ileum, cecum, colon and colon contents was noticed. In vitro, proteomic analysis of porcine enterocytes revealed that a very low concentration of T-2 toxin (5 ng/mL affects the protein expression of mitochondrial, endoplasmatic reticulum and cytoskeleton associated proteins, proteins involved in protein synthesis and folding, RNA synthesis, mitogen-activated protein kinase signaling and regulatory processes. Similarly low concentrations (1-100 ng/mL promoted the susceptibility of porcine macrophages and intestinal epithelial cells to Salmonella Typhimurium invasion, in a SPI-1 independent manner. Furthermore, T-2 toxin (1-5 ng/mL promoted the translocation of Salmonella Typhimurium over an intestinal porcine epithelial cell monolayer. Although these findings may seem in favour of Salmonella Typhimurium, microarray analysis showed that T-2 toxin (5 ng/mL causes an intoxication of Salmonella Typhimurium, represented by a reduced motility and a downregulation of metabolic and Salmonella Pathogenicity Island 1 genes. This study demonstrates marked interactions of T-2 toxin with Salmonella Typhimurium pathogenesis, resulting in bacterial intoxication.

  7. Phosphorus Deficiency in Ducklins

    Institute of Scientific and Technical Information of China (English)

    CuiHengmin; LuoLingping

    1995-01-01

    20 one-day-old Tianfu ducklings were fed on a natural diet deficient in phosphorus(Ca 0.80%,P 0.366%)for three weeks and examined for signs and lesions.Signs began to appear at the age of one week,and became serous at two weeks.13 ducklings died during the experiment.Morbidity was 100% and mortality was 65%.The affected ducklings mainly showed leg weakness,severe lamencess,deprssion,lack of appetite and stunted growth,The serum alkaline phosphatase activities increased markedly.The serum phosphorus concentration,tibial ash,ash calcium and phosphorus content decreased obviously.At necropsy,maxillae and ribe were soft,and the latter was crooked.Long ones were soft and broke easily.The hypertrophic zone of the growth-plate in the epiphysis of long ones was lengthened and osteoid tissue increased in the metaphyseal spongiosa histopathologically.The above mentioned symptoms and lesions could be prevented by adding phosphorus to the natural deficient diet(up to 0.65%),The relationship between lesions and signs,pathomorphological characterisation and pathogensis were also discussed in this paper.

  8. Identification of bapA in Strains of Salmonella enterica subsp. enterica Isolated from Wild Animals Kept in Captivity in Sinaloa, Mexico.

    Science.gov (United States)

    Silva-Hidalgo, Gabriela; López-Valenzuela, Martin; Cárcamo-Aréchiga, Nora; Cota-Guajardo, Silvia; López-Salazar, Mayra; Montiel-Vázquez, Edith

    2016-01-01

    bapA, previously named stm2689, encodes the BapA protein, which, along with cellulose and fimbriae, constitutes biofilms. Biofilms are communities of microorganisms that grow in a matrix of exopolysaccharides and may adhere to living tissues or inert surfaces. Biofilm formation is associated with the ability to persist in different environments, which contributes to the pathogenicity of several species. We analyzed the presence of bapA in 83 strains belonging to 17 serovars of Salmonella enterica subsp. enterica from wildlife in captivity at Culiacan's Zoo and Mazatlán's Aquarium. Each isolate amplified a product of 667 bp, which corresponds to the expected size of the bapA initiator, with no observed variation between different serovars analyzed. bapA gene was found to be highly conserved in Salmonella and can be targeted for the genus-specific detection of this organism from different sources. Since bapA expression improves bacterial proliferation outside of the host and facilitates resistance to disinfectants and desiccation, the survival of Salmonella in natural habitats may be favored. Thus, the risk of bacterial contamination from these animals is increased. PMID:27379195

  9. Identification of bapA in Strains of Salmonella enterica subsp. enterica Isolated from Wild Animals Kept in Captivity in Sinaloa, Mexico

    Science.gov (United States)

    López-Valenzuela, Martin; Cárcamo-Aréchiga, Nora; Cota-Guajardo, Silvia; López-Salazar, Mayra; Montiel-Vázquez, Edith

    2016-01-01

    bapA, previously named stm2689, encodes the BapA protein, which, along with cellulose and fimbriae, constitutes biofilms. Biofilms are communities of microorganisms that grow in a matrix of exopolysaccharides and may adhere to living tissues or inert surfaces. Biofilm formation is associated with the ability to persist in different environments, which contributes to the pathogenicity of several species. We analyzed the presence of bapA in 83 strains belonging to 17 serovars of Salmonella enterica subsp. enterica from wildlife in captivity at Culiacan's Zoo and Mazatlán's Aquarium. Each isolate amplified a product of 667 bp, which corresponds to the expected size of the bapA initiator, with no observed variation between different serovars analyzed. bapA gene was found to be highly conserved in Salmonella and can be targeted for the genus-specific detection of this organism from different sources. Since bapA expression improves bacterial proliferation outside of the host and facilitates resistance to disinfectants and desiccation, the survival of Salmonella in natural habitats may be favored. Thus, the risk of bacterial contamination from these animals is increased. PMID:27379195

  10. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe

    2011-05-01

    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  11. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda;

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  12. Effects of Ethanol Pulping on the Length of Bamboo Cellulose

    Institute of Scientific and Technical Information of China (English)

    Tao Yang; Liao Junhe; Luo Xuegang

    2006-01-01

    On the conditions of different ethanol concentration, acids and catalyzers, the effects of ethanol pulping on the cellulose length of bamboo were studied. The results indicates that ethanol pulping has remarkable effects on the length of cellulose, which is clearly reduced with adding ethanol and acid. The margin of length of cellulose become smaller with the increase of the catalyzer. When the ethanol concentration was 70%, the concentration of acid was 0.3% and some NaOH was used as catalyzer, the length of cellulose was the longest.

  13. Modeling of Carbohydrate Binding Modules Complexed to Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Nimlos, M. R.; Beckham, G. T.; Bu, L.; Himmel, M. E.; Crowley, M. F.; Bomble, Y. J.

    2012-01-01

    Modeling results are presented for the interaction of two carbohydrate binding modules (CBMs) with cellulose. The family 1 CBM from Trichoderma reesei's Cel7A cellulase was modeled using molecular dynamics to confirm that this protein selectively binds to the hydrophobic (100) surface of cellulose fibrils and to determine the energetics and mechanisms for locating this surface. Modeling was also conducted of binding of the family 4 CBM from the CbhA complex from Clostridium thermocellum. There is a cleft in this protein, which may accommodate a cellulose chain that is detached from crystalline cellulose. This possibility is explored using molecular dynamics.

  14. Studies on cellulose degradation by a Thermoactinimyces Sp

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    Progress in studies on the mechanism of cellulose degradation by Thermoactinomyces is reported. Two pure cellulosic substrates AVICEL and SOLKA FLOC were used in the experiments. A low substituted carboxymethylcellulose (Hercules 4M CMC), cellobiose, and glucose were also used as growth substrates. Results indicate that glucose is not inhibitory to growth up to 1% concetrations, and that cellobiose may not be a good inducer of the cellobiase enzyme activity. Production of biomass and soluble protein was found to be 50% greater on crystalline AVICEL than on the amorphous SOLKA FLOC, even though approximately the same amount and rate of cellulose degradation occurred. A model for cellulose digestion is presented. (JGB)

  15. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    Science.gov (United States)

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry.

  16. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    Science.gov (United States)

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. PMID:26352877

  17. Investigation of Bacterial Cellulose Biosynthesis Mechanism in Gluconoacetobacter hansenii

    OpenAIRE

    Mohite, Bhavna V.; Patil, Satish V

    2014-01-01

    The present study explores the mechanism of cellulose biosynthesis in Gluconoacetobacter hansenii. The cellulose synthase enzyme was purified as membrane fraction and solubilized by treatment with 0.1% digitonin. The enzyme was separated by native-gel electrophoresis and β -D-glucan analysis was carried out using in vitro gel assay. The cellulose synthase has glycoprotein nature and composed two polypeptide subunits of 93 KDa and 85 KDa. The confirmation of β -1,4-glucan (cellulose) was perfo...

  18. Parameter and Process Significance in Mechanistic Modeling of Cellulose Hydrolysis

    Science.gov (United States)

    Rotter, B.; Barry, A.; Gerhard, J.; Small, J.; Tahar, B.

    2005-12-01

    The rate of cellulose hydrolysis, and of associated microbial processes, is important in determining the stability of landfills and their potential impact on the environment, as well as associated time scales. To permit further exploration in this field, a process-based model of cellulose hydrolysis was developed. The model, which is relevant to both landfill and anaerobic digesters, includes a novel approach to biomass transfer between a cellulose-bound biofilm and biomass in the surrounding liquid. Model results highlight the significance of the bacterial colonization of cellulose particles by attachment through contact in solution. Simulations revealed that enhanced colonization, and therefore cellulose degradation, was associated with reduced cellulose particle size, higher biomass populations in solution, and increased cellulose-binding ability of the biomass. A sensitivity analysis of the system parameters revealed different sensitivities to model parameters for a typical landfill scenario versus that for an anaerobic digester. The results indicate that relative surface area of cellulose and proximity of hydrolyzing bacteria are key factors determining the cellulose degradation rate.

  19. Isolated lymphoid follicles are not IgA inductive sites for recombinant Salmonella

    International Nuclear Information System (INIS)

    In this study, we investigated whether isolated lymphoid follicles (ILF) play a role in the regulation of intestinal IgA antibody (Ab) responses. The transfer of wild type (WT) bone marrow (BM) to lymphotoxin-α-deficient (LTα-/-) mice resulted in the formation of mature ILF containing T cells, B cells, and FDC clusters in the absence of mesenteric lymph nodes and Peyer's patches. Although the ILF restored total IgA Abs in the intestine, antigen (Ag)-specific IgA responses were not induced after oral immunization with recombinant Salmonella expressing fragment C of tetanus toxin. Moreover, Ag-specific cell proliferation was not detected in the ILF. Interestingly, no IgA anti-LPS Abs were detected in the fecal extracts of LTα-/- mice reconstituted with WT BM. On the basis of these findings, ILF can be presumed to play a role in the production of IgA Abs, but lymphoid nodules are not inductive sites for the regulation of Ag-specific intestinal IgA responses to recombinant Salmonella

  20. [Iron deficiency and digestive disorders].

    Science.gov (United States)

    Cozon, G J N

    2014-11-01

    Iron deficiency anemia still remains problematic worldwide. Iron deficiency without anemia is often undiagnosed. We reviewed, in this study, symptoms and syndromes associated with iron deficiency with or without anemia: fatigue, cognitive functions, restless legs syndrome, hair loss, and chronic heart failure. Iron is absorbed through the digestive tract. Hepcidin and ferroportin are the main proteins of iron regulation. Pathogenic micro-organisms or intestinal dysbiosis are suspected to influence iron absorption.

  1. Iatrogenic limbal stem cell deficiency.

    OpenAIRE

    Holland, E J; Schwartz, G S

    1997-01-01

    PURPOSE: To describe a group of patients with limbal stem cell (SC) deficiency without prior diagnosis of a specific disease entity known to be causative of SC deficiency. METHODS: We performed a retrospective review of the records of all patients with ocular surface disease presenting to the University of Minnesota between 1987 and 1996. Patients were categorized according to etiology of limbal deficiency. Patients who did not have a specific diagnosis previously described as being causative...

  2. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  3. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  4. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  5. Bacteriophage therapy to reduce salmonella colonization of broiler chickens

    NARCIS (Netherlands)

    Atterbury, R.J.; Bergen, van M.A.P.; Ortiz, F.; Lovell, M.A.; Harris, J.A.; Boer, de A.G.; Wagenaar, J.A.; Allen, V.M.; Barrow, P.A.

    2007-01-01

    Acute enteric infections caused by salmonellas remain a major public health burden worldwide. Poultry, particularly chickens, are known to be the main reservoir for this zoonotic pathogen. Although some progress has been made in reducing Salmonella colonization of broiler chickens by using biosecuri

  6. Genetic mapping of the Salmonella typhimurium pepB locus.

    OpenAIRE

    Green, L; Miller, C G

    1980-01-01

    Transposon technology has been used to map the pepB locus of Salmonella typhimurium. This locus is cotransducible by phage P22 with glyA and strB at min 56 on the Salmonella genetic map. The gene order is strB pepB glyA.

  7. Evaluation of gallium maltolate on fecal Salmonella shedding in cattle

    Science.gov (United States)

    Salmonella is a major cause of foodborne illness in humans and causes over a third of all cases of gastroenteritis in the United States. Human foodborne outbreaks due to Salmonella have been traced to milk, beef, pork, and poultry. Fecal contamination of the carcass and hide is thought to be a maj...

  8. Survival of Salmonella spp. In Waste Egg Wash Water

    Science.gov (United States)

    The survival of salmonellae under various environmental conditions has been subject of numerous research studies. Due to low densities of these organisms in natural samples, laboratory or clinical cultures were used to ensure that the initial density of salmonellae was sufficien...

  9. Salmonella induces PD-L1 expression in B cells.

    Science.gov (United States)

    Lopez-Medina, Marcela; Perez-Lopez, Araceli; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2015-10-01

    Salmonella persists for a long time in B cells; however, the mechanism(s) through which infected B cells avoid effector CD8 T cell responses has not been characterized. In this study, we show that Salmonella infects and survives within all B1 and B2 cell subpopulations. B cells are infected with a Salmonella typhimurium strain expressing an ovalbumin (OVA) peptide (SIINFEKL) to evaluate whether B cells process and present Salmonella antigens in the context of MHC-I molecules. Our data showed that OVA peptides are presented by MHC class I K(b)-restricted molecules and the presented antigen is generated through proteasomal degradation and vacuolar processing. In addition, Salmonella-infected B cells express co-stimulatory molecules such as CD40, CD80, and CD86 as well as inhibitory molecules such as PD-L1. Thus, the cross-presentation of Salmonella antigens and the expression of activation molecules suggest that infected B cells are able to prime and activate specific CD8(+) T cells. However, the Salmonella infection-stimulated expression of PD-L1 suggests that the PD-1/PD-L1 pathway may be involved in turning off the cytotoxic effector response during Salmonella persistent infection, thereby allowing B cells to become a reservoir for the bacteria.

  10. 40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.

    Science.gov (United States)

    2010-07-01

    ... consulted. (1) 40 CFR 798.5265, The Salmonella typhimurium reverse mutation asay. (2) Ames, B.N., McCann, J... recommendations as specified under 40 CFR 79.60, the following specific information shall be reported: (i... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Salmonella typhimurium...

  11. 75 FR 48973 - Draft Guidance for Industry: Prevention of Salmonella

    Science.gov (United States)

    2010-08-12

    ...-1493. SUPPLEMENTARY INFORMATION: I. Background In the Federal Register of July 9, 2009 (74 FR 33030... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry: Prevention of Salmonella... availability of a draft guidance entitled ``Prevention of Salmonella Enteritidis in Shell Eggs...

  12. 21 CFR 118.4 - Salmonella Enteritidis (SE) prevention measures.

    Science.gov (United States)

    2010-04-01

    ... National Poultry Improvement Plan's standards for “U.S. S. Enteritidis Clean” status (9 CFR 145.23(d)) or... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salmonella Enteritidis (SE) prevention measures....4 Salmonella Enteritidis (SE) prevention measures. You must follow the SE prevention measures...

  13. Differences in attachment of Salmonella to fresh produce

    Science.gov (United States)

    Salmonella outbreaks have been associated with the consumption of fresh produce. The produce may be contaminated with Salmonella at any point throughout the food continuum. To develop effective strategies to minimize the risk of foodborne disease caused by this organism, it is essential to examine i...

  14. Orange peel products can reduce Salmonella populations in ruminants

    Science.gov (United States)

    Salmonella can live undetected in the gut of food animals and be spread to humans directly and indirectly. Diet can impact intestinal populations of foodborne pathogens, including Salmonella spp. Orange juice production results in a waste product, orange peel and orange pulp, which has a high nutr...

  15. Serotyping of Salmonella Isolates from Broiler Vertical Integrations in Colombia

    Science.gov (United States)

    This study analyzed 106 Salmonella isolates from different points in broiler vertical integrations of two important poultry areas of Colombia. It was possible to identify the presence of Salmonella in five categories: breeder farm (17.9%), hatchery (6.6 %), broiler farm (38.7 %), processing plant (9...

  16. Modeling of Salmonella Contamination in the Pig Slaughterhouse

    NARCIS (Netherlands)

    Swart, A.N.; Evers, E.G.; Simons, R.L.L.; Swanenburg, M.

    2016-01-01

    In this article we present a model for Salmonella contamination of pig carcasses in the slaughterhouse. This model forms part of a larger QMRA (quantitative microbial risk assessment) on Salmonella in slaughter and breeder pigs, which uses a generic model framework that can be parameterized for E

  17. Salmonella serotype distribution in the Dutch broiler supply chain

    NARCIS (Netherlands)

    Asselt, van E.D.; Thissen, J.T.N.M.; Fels-Klerx, van der H.J.

    2009-01-01

    Salmonella serotype distribution can give insight in contamination routes and persistence along a production chain. Therefore, it is important to determine not only Salmonella prevalence but also to specify the serotypes involved at the different stages of the supply chain. For this purpose, data fr

  18. Development of bioluminescent Salmonella strains for use in food safety

    Directory of Open Access Journals (Sweden)

    Bailey R Hartford

    2008-01-01

    Full Text Available Abstract Background Salmonella can reside in healthy animals without the manifestation of any adverse effects on the carrier. If raw products of animal origin are not handled properly during processing or cooked to a proper temperature during preparation, salmonellosis can occur. In this research, we developed bioluminescent Salmonella strains that can be used for real-time monitoring of the pathogen's growth on food products. To accomplish this, twelve Salmonella strains from the broiler production continuum were transformed with the broad host range plasmid pAKlux1, and a chicken skin attachment model was developed. Results Salmonella strains carrying pAKlux1 constitutively expressed the luxCDABE operon and were therefore detectable using bioluminescence. Strains were characterized in terms of bioluminescence properties and plasmid stability. To assess the usefulness of bioluminescent Salmonella strains in food safety studies, we developed an attachment model using chicken skin. The effect of washing on attachment of Salmonella strains to chicken skin was tested using bioluminescent strains, which revealed the attachment properties of each strain. Conclusion This study demonstrated that bioluminescence is a sensitive and effective tool to detect Salmonella on food products in real-time. Bioluminescence imaging is a promising technology that can be utilized to evaluate new food safety measures for reducing Salmonella contamination on food products.

  19. Split marketing: A risk factor for Salmonella in market pigs?

    Science.gov (United States)

    This study was designed to determine if split marketing affects Salmonella prevalence in market pigs, by comparing the Salmonella prevalence in the first group of pigs selected for slaughter (i.e., “First pull”) versus the last group of pigs selected for slaughter (i.e., “Close out”) from typical co...

  20. Organic acids for control of Salmonella in different feed materials

    DEFF Research Database (Denmark)

    Koyuncu, Sevinc; Andersson, Mats Gunnar; Löfström, Charlotta;

    2013-01-01

    Background Salmonella control in animal feed is important in order to protect animal and public health. Organic acids is one of the control measures used for treatment of Salmonella contaminated feed or feed ingredients. In the present study, the efficacy of formic acid (FA) and different blends...

  1. Zinc deficiency and eating disorders.

    Science.gov (United States)

    Humphries, L; Vivian, B; Stuart, M; McClain, C J

    1989-12-01

    Decreased food intake, a cyclic pattern of eating, and weight loss are major manifestations of zinc deficiency. In this study, zinc status was evaluated in 62 patients with bulimia and 24 patients with anorexia nervosa. Forty percent of patients with bulimia and 54% of those with anorexia nervosa had biochemical evidence of zinc deficiency. The authors suggest that for a variety of reasons, such as lower dietary intake of zinc, impaired zinc absorption, vomiting, diarrhea, and binging on low-zinc foods, patients with eating disorders may develop zinc deficiency. This acquired zinc deficiency could then add to the chronicity of altered eating behavior in those patients. PMID:2600063

  2. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt.

    Science.gov (United States)

    Osman, Kamelia M; Marouf, Sherif H; Zolnikov, Tara R; AlAtfeehy, Nayerah

    2014-01-01

    Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18·5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes.

  3. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    OpenAIRE

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin

    2016-01-01

    Bacterial cellulose is a remarkable material that is malleable, biocompatible, and over 10-times stronger than plant-based cellulose. It is currently used to create materials for tissue engineering, medicine, defense, electronics, acoustics, and fabrics. We describe here a bacterial strain that is readily amenable to genetic engineering and produces high quantities of bacterial cellulose in low-cost media. To reprogram this organism for biotechnology applications, we created a set of genetic ...

  4. Biological production of organic solvents from cellulosic wastes. Six-month progress report, June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Forro, J.R.; Nolan, E.J.

    1977-01-01

    Progress is reported in the following studies: production of cellulose by culturing Thermoactinomyces YX and derived mutants; the development of mutation techniques; cellulose mutant screening techniques; quantification of cellulose mutants; and alternate enhancement techniques. (JGB)

  5. The eleventh CRL-Salmonella workshop, 9 May 2006, Saint Malo, France

    NARCIS (Netherlands)

    Mooijman KA; MGB

    2006-01-01

    De elfde workshop georganiseerd door het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella) werd gehouden op 9 mei 2006 in Saint Malo, Frankrijk. Deelnemers waren vertegenwoordigers van de nationale Referentie Laboratoria voor Salmonella (NRLs-Salmonella) van de lidstaten van de

  6. The tenth CRL-Salmonella workshop; 28 and 29 April 2005, Bilthoven, the Netherlands

    NARCIS (Netherlands)

    Mooijman KA; MGB

    2006-01-01

    De tiende workshop georganiseerd door het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella) werd gehouden op 28 en 29 April 2005 in Bilthoven, Nederland. Deelnemers betroffen vertegenwoordigers van de Nationale Referentie Laboratoria voor Salmonella (NRLs-Salmonella) van de lids

  7. Evaluation of different analysis and identification methods for Salmonella detection in surface drinking water sources

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Bing-Mu, E-mail: bmhsu@ccu.edu.tw [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, ROC (China); Huang, Kuan-Hao; Huang, Shih-Wei [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, ROC (China); Tseng, Kuo-Chih [Department of Internal Medicine, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan, ROC (China); Su, Ming-Jen [Department of Clinical Pathology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan, ROC (China); Lin, Wei-Chen; Ji, Dar-Der [Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, ROC (China); Shih, Feng-Cheng; Chen, Jyh-Larng [Department of Environmental Engineering and Health, Yuanpei University of Science and Technology, HsinChu, Taiwan, ROC (China); Kao, Po-Min [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, ROC (China)

    2011-09-15

    The standard method for detecting Salmonella generally analyzes food or fecal samples. Salmonella often occur in relatively low concentrations in environmental waters. Therefore, some form of concentration and proliferation may be needed. This study compares three Salmonella analysis methods and develops a new Salmonella detection procedure for use in environmental water samples. The new procedure for Salmonella detection include water concentration, nutrient broth enrichment, selection of Salmonella containing broth by PCR, isolation of Salmonella strains by selective culture plates, detection of possible Salmonella isolate by PCR, and biochemical testing. Serological assay and pulsed-field gel electrophoresis (PFGE) can be used to identify Salmonella serotype and genotype, respectively. This study analyzed 116 raw water samples taken from 18 water plants and belonging to 5 watersheds. Of these 116, 10 water samples (8.6%) taken from 7 water plants and belonging to 4 watersheds were positive for a Salmonella-specific polymerase chain reaction targeting the invA gene. Guided by serological assay results, this study identified 7 cultured Salmonella isolates as Salmonella enterica serovar: Alnaby, Enteritidis, Houten, Montevideo, Newport, Paratyphi B var. Java, and Victoria. These seven Salmonella serovars were identified in clinical cases for the same geographical areas, but only one of them was 100% homologous with clinical cases in the PFGE pattern. - Research highlights: {yields} A new Salmonella detecting procedure for environmental water is developed. {yields} Salmonella isolates are identified by serological assay and PFGE. {yields} A total of seven Salmonella serovars is isolated from environmental water.

  8. Prevalence of Salmonella in wild snakes in Japan.

    Science.gov (United States)

    Kuroki, Toshiro; Ishihara, Tomoe; Furukawa, Ichiro; Okatani, Alexandre Tomomitsu; Kato, Yukio

    2013-01-01

    A total of 87 wild snakes of 6 species in 2 families collected in Japan were examined for the presence of Salmonella. The prevalence of Salmonella was 58.6%, and that of Salmonella enterica subspecies I, which includes most human pathogenic serotypes, accounted for 12.6%. S. enterica subspecies I was isolated from Japanese grass snakes and Japanese four-striped snakes, and the isolates belonged to 6 serotypes: S. enterica subspecies enterica serotypes Eastbourne, Mikawashima, Narashino, Newport, Saintpaul, and Thompson. The prevalence of S. enterica subspecies IIIb was higher (41.4%) than that of S. enterica subspecies I, and it was isolated from 4 snake species. The prevalence of Salmonella enterica subspecies and isolation of serotypes that are commonly detected in reptiles and human salmonellosis suggest that wild snakes may become a source of Salmonella infection.

  9. Salmonella serotypes in reptiles and humans, French Guiana.

    Science.gov (United States)

    Gay, Noellie; Le Hello, Simon; Weill, François-Xavier; de Thoisy, Benoit; Berger, Franck

    2014-05-14

    In French Guiana, a French overseas territory located in the South American northern coast, nearly 50% of Salmonella serotypes isolated from human infections belong to serotypes rarely encountered in metropolitan France. A reptilian source of contamination has been investigated. Between April and June 2011, in the area around Cayenne, 151 reptiles were collected: 38 lizards, 37 snakes, 32 turtles, 23 green iguanas and 21 caimans. Cloacal swab samples were collected and cultured. Isolated Salmonella strains were identified biochemically and serotyped. The overall carriage frequency of carriage was 23.2% (95% confidence interval: 16.7-30.4) with 23 serotyped strains. The frequency of Salmonella carriage was significantly higher for wild reptiles. Near two-thirds of the Salmonella serotypes isolated from reptiles were also isolated from patients in French Guiana. Our results highlight the risk associated with the handling and consumption of reptiles and their role in the spread of Salmonella in the environment.

  10. Functional and phenotypic profiling of innate immunity during Salmonella infection

    DEFF Research Database (Denmark)

    Sørensen, Rikke Brandt; Pedersen, Susanne Brix

    Salmonellae are food borne pathogens, typically acquired by the oral ingestion of contaminated food or water, causing disease in both healthy and immunocompromised individuals. To gain insight into early immune regulation events caused by Salmonella as well as inflammatory signatures induced...... in Peyer’s patches 24 hours after murine oral Salmonella challenge and while Mφ and mDC exhibited dose-related cellular atrophy, pDC were less susceptible to bacteria-induced cell death, suggesting a role for pDC in early stage Salmonella containment. Furthermore, we identified a number of both DC and Mφ....... The results presented in this thesis add to the current knowledge about innate immunity to Salmonella, suggest new host immune cell subsets important for bacterial containment and provide a basic understanding of bacteria-induced DC inflammatory programs. The two latter could prove important in regard...

  11. Salmonella enterica Serotype Arizonae Meningitis in a Neonate

    Directory of Open Access Journals (Sweden)

    Wubishet Lakew

    2013-01-01

    Full Text Available Typhoidal and nontyphoidal salmonella infections are common causes of gastroenteritis in the community. However, salmonella only rarely causes invasive infections like meningitis. We report a 13-day-old female neonate with signs and symptoms of meningitis whose cerebrospinal fluid (CSF culture showed Salmonella enterica serotype Arizonae that was sensitive to ceftriaxone. She presented with fever and failure to feed for 2 days. Despite prompt treatment with ampicillin, gentamicin, and ceftriaxone, she developed communicating hydrocephalus, frequent seizures, and coma that progressed to death after 2 weeks of hospitalization. Salmonella enterica serotype Arizonae is a rare cause of human infection known to leading to meningitis symptoms similar to those caused by other salmonella species. This is the first report of it as a cause of meningitis in a child under one month of age. Therefore, it should be included in the differential diagnosis of Gram-negative bacillary meningitis in immunocompromised children, neonates, and those with contacts with reptiles.

  12. Effects of propolis from Brazil and Bulgaria on Salmonella serovars

    Directory of Open Access Journals (Sweden)

    R. O. Orsi

    2007-01-01

    Full Text Available Propolis shows biological properties such as antibacterial action. This bee product has a complex chemical composition, which depends on the local flora where it is produced. Salmonella serovars are responsible for human diseases that range from localized gastroenteritis to systemic infections. The aim of the present study was to investigate the susceptibility of Salmonella strains, isolated from food and infectious processes, to the antibacterial action of Brazilian and Bulgarian propolis, as well as to determine the behavior of these bacteria, according to the incubation period, in medium plus propolis. Dilution of ethanolic extract of propolis in agar was the used method. Brazilian and Bulgarian propolis showed an antibacterial action against all Salmonella serovars. The minimal inhibitory concentrations (MIC of propolis were similar, although they were collected in different geographic regions. Salmonella typhimurium, isolated from human infection, was more resistant to propolis than Salmonella enteritidis.

  13. Prevalence of Salmonella spp. in pet turtles and their environment

    Science.gov (United States)

    Back, Du-San; Shin, Gee-Wook; Wendt, Mitchell

    2016-01-01

    Pet turtles are known as a source of Salmonella infection to humans when handled in captivity. Thirty four turtles purchased from pet shops and online markets in Korea were examined to determine whether the turtles and their environment were contaminated with Salmonella spp. Salmonella spp. were isolated from fecal samples of 17 turtles. These isolates were identified as S. enterica through 16S rRNA gene sequencing. The isolation rate of Salmonella spp. from the soil and water samples increased over time. We concluded that a high percentage of turtles being sold in pet shops were infected with Salmonella spp., and their environments tend to become contaminated over time unless they are maintained properly. These results indicate that pet turtles could be a potential risk of salmonellosis in Korea. PMID:27729933

  14. Antibiotic resistance, integrons and Salmonella genomic island 1 among non-typhoidal Salmonella serovars in The Netherlands.

    NARCIS (Netherlands)

    Vo, An T T; Duijkeren, Engeline van; Fluit, Ad C; Wannet, Wim J B; Verbruggen, Anjo J; Maas, Henny M E; Gaastra, Wim

    2006-01-01

    The objective of this study was to investigate the antimicrobial resistance patterns, integron characteristics and gene cassettes as well as the presence of Salmonella genomic island 1 (SGI1) in non-typhoidal Salmonella (NTS) isolates from human and animal origin. Epidemiologically unrelated Dutch N

  15. Detection of Salmonella spp, Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay

    Science.gov (United States)

    Paião, F.G.; Arisitides, L.G.A.; Murate, L.S.; Vilas-Bôas, G.T.; Vilas-Boas, L.A.; Shimokomaki, M.

    2013-01-01

    The presence of Salmonella in the intestinal tract, on the chickens skin and among their feathers, may cause carcasses contamination during slaughtering and processing and possibly it is responsible by the introduction of this microorganism in the slaughterhouses. A rapid method to identify and monitor Salmonella and their sorovars in farm is becoming necessary. A pre-enriched multiplex polymerase chain reaction (m-PCR) assay employing specific primers was developed and used to detect Salmonella at the genus level and to identify the Salmonella enterica serovar Enteritidis (S. Enteritidis) and Salmonella enterica serovar Typhimurium (S. Typhimurium) in broiler chicken swab samples. The method was validated by testing DNA extract from 90 fresh culture cloacal swab samples from poultry chicken cultured in phosphate buffer peptone water at 37 °C for 18 h. The final results showed the presence of Salmonella spp. in 25% of samples, S. Enteritidis was present in 12% of the Salmonella-positive samples and S. Typhimurium in 3% of the samples. The m-PCR assay developed in this study is a specific and rapid alternative method for the identification of Salmonella spp. and allowed the observation of specific serovar contamination in the field conditions within the locations where these chickens are typically raised. PMID:24159281

  16. Presence of Salmonella Enteritidis and Salmonella Gallinarum in commercial laying hens diagnosed with Fowl Typhoid Disease in Colombia

    Science.gov (United States)

    : A severe outbreak of salmonellosis in commercial brown table egg layers first occurred in Colombia in 2006. From 2008 to 2012, 35 samples collected from commercial layers farms in the states of Cundinamarca, Santander, Bolivar and San Andres, were positive to Salmonella enterica. Salmonella (S) wa...

  17. Salmonella in slaughter pigs: the effect of logistic slaughter procedures of pigs on the prevalence of salmonella on pork

    NARCIS (Netherlands)

    Swanenburg, M.; Wolf, van der P.J.; Urlings, H.A.P.; Snijders, J.M.A.; Knapen, van F.

    2001-01-01

    A substantial part of the finishing pigs in the Netherlands is infected with Salmonella. Infection of pigs with Salmonella can occur already on the farm. Pigs can also get infected or contaminated during transport, lairage or slaughter. The aim of this study was to evaluate the effect of separating

  18. Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis

    OpenAIRE

    Peciulyte, Ausra; Karlström, Katarina; Larsson, Per Tomas; Olsson, Lisbeth

    2015-01-01

    Background The efficiency of enzymatic hydrolysis is reduced by the structural properties of cellulose. Although efforts have been made to explain the mechanism of enzymatic hydrolysis of cellulose by considering the interaction of cellulolytic enzymes with cellulose or the changes in the structure of cellulose during enzymatic hydrolysis, the process of cellulose hydrolysis is not yet fully understood. We have analysed the characteristics of the complex supramolecular structure of cellulose ...

  19. Chemical modification of viscose fibres by adsorption of carboxymethyl cellulose and click chemistry

    OpenAIRE

    Anufrijeva, Olga

    2014-01-01

    Functionalization of cellulosic materials to achieve new and advanced properties is a widely explored research area. This thesis is focused on the novel approach for modification of cellulosic materials by the combination of adsorption of carboxymethyl cellulose (CMC) onto cellulose surface and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) “click” reaction. The literature part gives an overview on the basics of cellulose chemistry, chemical functionalization of cellulose, as wel...

  20. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  1. Impact of CAD-deficiency in flax on biogas production.

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Jabłoński, Sławomir; Szperlik, Jakub; Dymińska, Lucyna; Łukaszewicz, Marcin; Rymowicz, Waldemar; Hanuza, Jerzy; Szopa, Jan

    2015-12-01

    Global warming and the reduction in our fossil fuel reservoir have forced humanity to look for new means of energy production. Agricultural waste remains a large source for biofuel and bioenergy production. Flax shives are a waste product obtained during the processing of flax fibers. We investigated the possibility of using low-lignin flax shives for biogas production, specifically by assessing the impact of CAD deficiency on the biochemical and structural properties of shives. The study used genetically modified flax plants with a silenced CAD gene, which encodes the key enzyme for lignin synthesis. Reducing the lignin content modified cellulose crystallinity, improved flax shive fermentation and optimized biogas production. Chemical pretreatment of the shive biomass further increased biogas production efficiency.

  2. Composite edible films based on hydroxypropyl methyl cellulose reinforced with microcrystalline cellulose nanoparticles

    Science.gov (United States)

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of th...

  3. Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose

    Directory of Open Access Journals (Sweden)

    E.S. Abdel-Halim

    2014-07-01

    Full Text Available Cellulose was extracted from sugarcane bagasse by alkaline extraction with sodium hydroxide followed by delignification/bleaching using sodium chlorite/hexamethylenetetramine system. Factors affecting extraction process, including sodium hydroxide concentration, hexamethylenetetramine concentration and temperature were studied and optimum conditions for alkaline extraction were found to be boiling finely ground bagasse under reflux in 1 N sodium hydroxide solution and then carrying out the delignification/bleaching treatment at 95 °C using 5 g/l sodium chlorite together with 0.02 g/l hexamethylenetetramine. The extracted cellulose was used in the preparation of hydroxyethyl cellulose through reaction with ethylene oxide in alkaline medium. Factors affecting the hydroxyethylation reaction, like sodium hydroxide concentration during the alkali formation step, ethylene oxide concentration, reaction temperature and reaction duration were studied. Optimum conditions for hydroxyethylation reaction were using 20% NaOH solution and 200% ethylene oxide (based on weight of cellulose, carrying out the reaction at 100 °C for 60 min.

  4. Chromophores in cellulosics, XI: isolation and identification of residual chromophores from bacterial cellulose

    Science.gov (United States)

    Cotton or linen fabrics and paper, as well as other items composed chiefly of cellulose, tend to change to a yellow or brown color as they age. The change in color is usually accompanied by increased brittleness and loss of strength, as well. A cause of these phenomena is thought to be the formation...

  5. Chromosphores in cellulosics, XI: isoloation and identification of residual chromophores from bacterial cellulose

    Science.gov (United States)

    In the present work, bacterial cellulose (BC) was analyzed for its chromophore content with the chromophore release and identification (CRI) method. In aged BC, seven chromophores were unambiguously identified, despite their very low (ppb) presence. The compounds contain 2-hydroxy-[1,4]benzoquinone,...

  6. Iron deficiency and iron deficiency anemia in women.

    Science.gov (United States)

    Coad, Jane; Pedley, Kevin

    2014-01-01

    Iron deficiency is one of the most common nutritional problems in the world and disproportionately affects women and children. Stages of iron deficiency can be characterized as mild deficiency where iron stores become depleted, marginal deficiency where the production of many iron-dependent proteins is compromised but hemoglobin levels are normal and iron deficiency anemia where synthesis of hemoglobin is decreased and oxygen transport to the tissues is reduced. Iron deficiency anemia is usually assessed by measuring hemoglobin levels but this approach lacks both specificity and sensitivity. Failure to identify and treat earlier stages of iron deficiency is concerning given the neurocognitive implications of iron deficiency without anemia. Most of the daily iron requirement is derived from recycling of senescent erythrocytes by macrophages; only 5-10 % comes from the diet. Iron absorption is affected by inhibitors and enhancers of iron absorption and by the physiological state. Inflammatory conditions, including obesity, can result in iron being retained in the enterocytes and macrophages causing hypoferremia as a strategic defense mechanism to restrict iron availability to pathogens. Premenopausal women usually have low iron status because of iron loss in menstrual blood. Conditions which further increase iron loss, compromise absorption or increase demand, such as frequent blood donation, gastrointestinal lesions, athletic activity and pregnancy, can exceed the capacity of the gastrointestinal tract to upregulate iron absorption. Women of reproductive age are at particularly high risk of iron deficiency and its consequences however there is a controversial argument that evolutionary pressures have resulted in an iron deficient phenotype which protects against infection.

  7. Mineralization of cellulose in frozen boreal soils

    Science.gov (United States)

    Oquist, Mats G.; Segura, Javier; Sparrman, Tobias; Nilsson, Mats; Schleucher, Jurgen

    2015-04-01

    Soils of high-latitude ecosystems store a large fraction of the global soil carbon. In boreal forests, the microbial mineralization of soil organic matter (SOM) during winter can affect the ecosystems net carbon balance. Recent research has shown that microorganisms in the organic surface layer of boreal forest soil can mineralize and grow on simple, soluble monomeric substrates under frozen conditions. However, any substantial impacts of microbial activity in frozen soils on long-term soil carbon balances ultimately depends on whether soil microorganisms can utilize and grow the more complex, polymeric constituents of SOM. In order to evaluate the potential for soil microorganisms to metabolize carbon polymers at low temperatures, we incubated boreal forest soil samples amended with [13C]-cellulose and studied the microbial catabolic and anabolic utilization of the substrate under frozen and unfrozen conditions (-4 and +4°C). Freezing of the soil markedly reduced microbial utilization of the cellulose. The [13C]-CO2 production rate in the samples at +4°C were 0.52 mg CO2 SOM -1 day-1 while rates in the frozen samples (-4°C) were 0.01 mg CO2 SOM -1 day-1. However, newly synthetized [13C]-enriched cell membrane lipids, PLFAs, were detected in soil samples incubated both above and below freezing, confirming that cellulose can sustain also anabolic activity of the microbial populations under frozen conditions. The reduced metabolic rates induced by freezing indicate constraints on exoenzymatic activity, as well as substrate diffusion rates that we can attribute to reduced liquid water content of the frozen soil. We conclude that the microbial population in boreal forest soil has the capacity to metabolize, and grow, on polymeric substrates at temperatures below zero, which involves maintaining exoenzymatic activity in frozen soils. This capacity manifests the importance of SOM mineralization during the winter season and its importance for the net carbon balance of

  8. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin

    OpenAIRE

    Georgelis, Nikolaos; Yennawar, Neela H.; Cosgrove, Daniel J.

    2012-01-01

    Components of modular cellulases, type-A cellulose-binding modules (CBMs) bind to crystalline cellulose and enhance enzyme effectiveness, but structural details of the interaction are uncertain. We analyzed cellulose binding by EXLX1, a bacterial expansin with ability to loosen plant cell walls and whose domain D2 has type-A CBM characteristics. EXLX1 strongly binds to crystalline cellulose via D2, whereas its affinity for soluble cellooligosaccharides is weak. Calorimetry indicated cellulose...

  9. Electrospun cellulose nitrate and polycaprolactone blended nanofibers

    Science.gov (United States)

    Nartker, Steven; Hassan, Mohamed; Stogsdill, Michael

    2015-03-01

    Pure cellulose nitrate (CN) and blends of CN and polycaprolactone were electrospun to form nonwoven mats. Polymers were dissolved in a mixed solvent system of tetrahydrofuran and N,N-dimethylformamide. The concentrations were varied to obtain sub-micron and nanoscale fiber mats. Fiber mats were analyzed using scanning electron microscopy, contact angle analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The fiber morphology, surface chemistry and contact angle data show that these electrospun materials are suitable for applications including biosensing, biomedical and tissue engineering.

  10. Mechanical Properties of Cellulose Microfiber Reinforced Polyolefin

    Science.gov (United States)

    Kobayashi, Satoshi; Yamada, Hiroyuki

    Cellulose microfiber (CeF) has been expected as a reinforcement of polymer because of its high modulus and strength and lower cost. In the present study, mechanical properties of CeF/polyolefin were investigated. Tensile modulus increased with increasing CeF content. On the other hand, tensile strength decreased. Fatigue properties were also investigated with acoustic emission measurement. Stiffness of the composites gradually decreased with loading. Drastic decrease in stiffness was observed just before the final fracture. Based on the Mori-Tanaka's theory, the method to calculate modulus of CeF were proposed to evaluate dispersion of CeF.

  11. A Sorption Hysteresis Model For Cellulosic Materials

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Damkilde, Lars

    2006-01-01

    The equilibrium concentration of adsorbed water in cellulosic materials is dependent on the history of the variations of vapor pressure in the ambient air, i.e. sorption hysteresis. Existing models to describe this phenomenon such as the independent domain theory have numerical drawbacks and....../or imply accounting for the entire history variations of every material point. This paper presents a sorption hysteresis model based on a state formulation and expressed in closed-form solutions, which makes it suitable for implementation into a numerical method....

  12. Immediate differentiation of salmonella-resembling colonies on brilliant green agar

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Hoorfar, Jeffrey

    2000-01-01

    A rapid biochemical system (OBIS) based on immediate enzymatic differentiation of Citrobacter, Proteus, Providencia, Hafnia and Morganella spp. from Salmonella on brilliant green agar was evaluated A total of 96 field isolates from various Salmonella serotypes, 18 Citrobacter freundii and 25...... isolates of other Enterobacteriaceae were tested All Salmonella isolates were identified correctly by the kit, and none of the Enterobacteriaceae isolates were identified as Salmonella. The results indicate complete specificity for Salmonella colonies on brilliant green agar....

  13. Iron deficiency and cardiovascular disease

    NARCIS (Netherlands)

    von Haehling, Stephan; Jankowska, Ewa A.; van Veldhuisen, Dirk J.; Ponikowski, Piotr; Anker, Stefan D.

    2015-01-01

    Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of card

  14. Phosphate starvation regulon of Salmonella typhimurium.

    OpenAIRE

    Foster, J. W.; Spector, M P

    1986-01-01

    Several phosphate-starvation-inducible (psi) genetic loci in Salmonella typhimurium were identified by fusing the lacZ gene to psi promoters by using the Mu d1 and Mu d1-8 bacteriophages. Although several different starvation conditions were examined, the psi loci responded solely to phosphate deprivation. A regulatory locus, psiR, was identified as controlling the psiC locus. The psiR locus did not affect the expression of the Escherichia coli phoA locus or any of the other psi loci described.

  15. Iron deficiency anemia in children.

    Science.gov (United States)

    Subramaniam, Girish; Girish, Meenakshi

    2015-06-01

    Iron deficiency is not just anemia; it can be responsible for a long list of other manifestations. This topic is of great importance, especially in infancy and early childhood, for a variety of reasons. Firstly, iron need is maximum in this period. Secondly, diet in infancy is usually deficient in iron. Thirdly and most importantly, iron deficiency at this age can result in neurodevelopmental and cognitive deficits, which may not be reversible. Hypochromia and microcytosis in a complete blood count (CBC) makes iron deficiency anemia (IDA) most likely diagnosis. Absence of response to iron should make us look for other differential diagnosis like β thalassemia trait and anemia of chronic disease. Celiac disease is the most important cause of true IDA not responding to oral iron therapy. While oral ferrous sulphate is the cheapest and most effective therapy for IDA, simple nonpharmacological and pharmacological measures can go a long way in prevention of iron deficiency. PMID:25636824

  16. Cellulose-Lignin interactions during slow and fast pyrolysis

    NARCIS (Netherlands)

    Hilbers, T.J.; Wang, Z.; Pecha, B.; Westerhof, R.J.M.; Kersten, S.R.A.; Pelaez-Samaniego, M.R.; Garcia-Perez, M.

    2015-01-01

    The interactions between lignin and cellulose during the slow pyrolysis of their blends were studied by means of Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). Fast pyrolysis was studied using Pyrolysis-Gas Chromatography/Mass Spectroscopy (Py–GC/MS). Crystalline cellulose

  17. Cellulose synthesizing Complexes in Vascular Plants andProcaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard M, Jr; Saxena, Inder Mohan

    2009-07-07

    Continuing the work initiated under DE-FG03-94ER20145, the following major accomplishments were achieved under DE-FG02-03ER15396 from 2003-2007: (a) we purified the acsD gene product of the Acetobacter cellulose synthase operon as well as transferred the CesA cellulose gene from Gossypium into E. coli in an attempt to crystallize this protein for x-ray diffraction structural analysis; however, crystallization attempts proved unsuccessful; (b) the Acetobacter cellulose synthase operon was successfully incorporated into Synechococcus, a cyanobacterium2; (c) this operon in Synechococcus was functionally expressed; (d) we successfully immunolabeled Vigna cellulose and callose synthase components and mapped their distribution before and after wounding; (e) we developed a novel method to produce replicas of cellulose synthases in tobacco BY-2 cells, and we demonstrated the cytoplasmic domain of the rosette TC; (f) from the moss Physcomitrella, we isolated two full-length cDNA sequences of cellulose synthase (PpCesA1 and PpCesA2) and attempted to obtain full genomic DNA sequences; (g) we examined the detailed molecular structure of a new form of non-crystalline cellulose known as nematic ordered cellulose (=NOC)3.

  18. Methods of use of cellulose binding domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Methods of detection using a cellulose binding domain fusion product

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Shimshon, IL); Shpiegl, Itai (North Gallilea, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    Science.gov (United States)

    Valente, Marco; Tirillò, Jacopo; Quitadamo, Alessia; Santulli, Carlo

    2016-05-01

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.