WorldWideScience

Sample records for cellulolytic enzyme system

  1. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian;

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  2. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian;

    2004-01-01

    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from...

  3. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.

    Science.gov (United States)

    Strakowska, Judyta; Błaszczyk, Lidia; Chełkowski, Jerzy

    2014-07-01

    The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma.

  4. Structure/function relationships in cellulolytic enzymes

    Institute of Scientific and Technical Information of China (English)

    Marc Claeyssens

    2004-01-01

    @@ Cellulose and hemicellulose (mostly xylan), together with lignin, are the major polymeric constituents of plant cell walls and from the largest reservoir of fixed carbon in nature. The enzymatic hydrolysis of polymeric substances by extracellular enzymes, such as cellulases, hemicellulases and laccases, is preferred to chemical depolymerisation to avoid the production of toxic by-products and waste that are expensive to treat. The monosaccharides released through enzymatic hydrolysis can subsequently be microbially converted to commercial commodities, such as bio-ethanol (fuel extender) or microbial protein as feed supplements. The individual depolymerisering enzymes used, such as cellulases,xylanases and laccases, also have industrial application in (i) biobleaching in the paper and pulp industry, (ii) improvement of animal feed (poultry and ruminants) digestibility in feed industries, and (iii) dough rheology and bread volume in the baking process, and beer viscosity and filtration velocity during brewing. The cloning of the genes, coding for several xylan degrading enzymes, and their expression in Baker' s yeast (Saccharomyces cerevisiae) and filamentous fungi (Aspergillus species)opened the possibility to study the pure enzymes, without contaminating activity.Trichoderma reesei produces several of these enzymes and detailed information on their specificity,synergies and structure/activity relationships is known. An overview will be presented.

  5. Extracellular cellulolytic enzyme system of Aspergillus japonicus: Pt. 2. Purification and characterization of an inducible extracellular. beta. -glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Arunik; Kundu, R.K.; Dube, S.; Dube, D.K.

    1988-02-01

    A high molecular weight ..beta..-glucosidase (mol. wt. > 240 000 daltons) was isolated from the culture filtrate of Aspergillus japonicus and was finally purified to 86-fold by alcohol precipitation, gel filtration and ion exchange chromatography on Whatman DE-52. An apparently homogeneous form of the enzyme appeared in the polyacrylamide gel electrophoresis. It is capable of utilizing cellobiose, salicin, o-nitrophenyl-..beta..-D-glucoside (ONPG), methyl-..beta..-D-glucoside and amygdalin effectively as substrates but not arbutin, esculin hydrate and phloridzin. No metal ion is required for its catalytic activity. Hg/sup ++/ and p-chloromercuricbenzoate (PCMB) are strong inhibitors for the enzyme. Nojirimycin and glucono-delta-lactone are two competitive inhibitors of the same enzyme, and nojirimycin is the more potent of the two.

  6. Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangsheng [ORNL; Post, Wilfred M [ORNL; Mayes, Melanie [ORNL; Frerichs, Joshua T [ORNL; Jagadamma, Sindhu [ORNL

    2012-01-01

    While soil enzymes have been explicitly included in the soil organic carbon (SOC) decomposition models, there is a serious lack of suitable data for model parameterization. This study provides well-documented enzymatic parameters for application in enzyme-driven SOC decomposition models from a compilation and analysis of published measurements. In particular, we developed appropriate kinetic parameters for five typical ligninolytic and cellulolytic enzymes ( -glucosidase, cellobiohydrolase, endo-glucanase, peroxidase, and phenol oxidase). The kinetic parameters included the maximum specific enzyme activity (Vmax) and half-saturation constant (Km) in the Michaelis-Menten equation. The activation energy (Ea) and the pH optimum and sensitivity (pHopt and pHsen) were also analyzed. pHsen was estimated by fitting an exponential-quadratic function. The Vmax values, often presented in different units under various measurement conditions, were converted into the same units at a reference temperature (20 C) and pHopt. Major conclusions are: (i) Both Vmax and Km were log-normal distributed, with no significant difference in Vmax exhibited between enzymes originating from bacteria or fungi. (ii) No significant difference in Vmax was found between cellulases and ligninases; however, there was significant difference in Km between them. (iii) Ligninases had higher Ea values and lower pHopt than cellulases; average ratio of pHsen to pHopt ranged 0.3 0.4 for the five enzymes, which means that an increase or decrease of 1.1 1.7 pH units from pHopt would reduce Vmax by 50%. (iv) Our analysis indicated that the Vmax values from lab measurements with purified enzymes were 1 2 orders of magnitude higher than those for use in SOC decomposition models under field conditions.

  7. Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon

    2014-09-30

    The present invention relates to compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and an organic compound comprising a carboxylic acid moiety, a lactone moiety, a phenolic moiety, a flavonoid moiety, or a combination thereof, wherein the combination of the GH61 polypeptide having cellulolytic enhancing activity and the organic compound enhances hydrolysis of a cellulosic material by a cellulolytic enzyme compared to the GH61 polypeptide alone or the organic compound alone. The present invention also relates to methods of using the compositions.

  8. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, John M.; Zhang, Ruoran; Mittal, Ashutosh; Vander Wall, Todd; Bomble, Yannick J.; Decker, Stephen R.; Himmel, Michael E.; Ciesielski, Peter N.

    2017-03-07

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical 'free enzyme' system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.

  9. [Biosynthesis of cellulolytic enzymes and xylanase during submerged cultivation of the fungus Aspergillus terreus 17P].

    Science.gov (United States)

    Loginova, L G; Guzhova, E P; Ismanlova, D Iu; Burdenko, L G

    1978-01-01

    The fungus Aspergillus terreus 17P--producer of cellulolytic enzymes--was cultivated in the Biotec 10 l fermenter on the medium containing minced and heated (at 200 degrees) wheat straw aerated with a different rate. At the mixing rate of 350 rpm and aeration rate of 0.7 r/rpm on the fourth day the culture liquid was obtained whose filtrate contained an active complex of cellulolytic enzymes and xylanase: CI--3.4; APB--1.1, Cx--35.7, cellobiase--0.23, xylanase--73.8 units/ml. The fractionation of the culture liquid filtrate with ammonium sulphate showed that the fraction precipitated at an interval of saturation of 0.3--0.7 contained the largest portion of cellulolytic enzymes and xylanase. The isolated enzymic preparations had a cellulolytic and xylanase activity and contained lipase, pectinase, laminarinase. They also contained low quantities of amylase, protease, beta-1,4- and beta-1,6-glucanase. Enzymic hylrolysis by the Asp. terreus 17P preparation of straw yielded glucose and xylose, of cotton, Na-KMC, cellobiose--glucose, Xylane hydrolyzate contained xylose and arabinose.

  10. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production.

    Science.gov (United States)

    Haitjema, Charles H; Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2014-08-01

    Anaerobic gut fungi are an early branching family of fungi that are commonly found in the digestive tract of ruminants and monogastric herbivores. It is becoming increasingly clear that they are the primary colonizers of ingested plant biomass, and that they significantly contribute to the decomposition of plant biomass into fermentable sugars. As such, anaerobic fungi harbor a rich reservoir of undiscovered cellulolytic enzymes and enzyme complexes that can potentially transform the conversion of lignocellulose into bioenergy products. Despite their unique evolutionary history and cellulolytic activity, few species have been isolated and studied in great detail. As a result, their life cycle, cellular physiology, genetics, and cellulolytic metabolism remain poorly understood compared to aerobic fungi. To help address this limitation, this review briefly summarizes the current body of knowledge pertaining to anaerobic fungal biology, and describes progress made in the isolation, cultivation, molecular characterization, and long-term preservation of these microbes. We also discuss recent cellulase- and cellulosome-discovery efforts from gut fungi, and how these interesting, non-model microbes could be further adapted for biotechnology applications.

  11. Hyperthermostable cellulolytic and hemicellulolytic enzymes and their biotechnological applications

    Directory of Open Access Journals (Sweden)

    Tipparat Hongpattarakere

    2002-07-01

    Full Text Available Hyperthermal cellulases and hemicellulases have been intensively studied due to their highly potential applications at extreme temperatures, which mimic industrial processes involving cellulose and hemicellulose degradation. More than 50 species of hyperthermophiles have been isolated, many of which possess hyperthermal enzymes required for hydrolyzing cellulose and hemicelluloses. Endoglucanases, exoglucanases, cellobiohydrolases, xylanases, β-glucosidase and β-galactosidase, which are produced by the hyperthermophiles, are resistant to boiling temperature. The characteristics of these enzymes and the ability to maintain their functional integrity at high temperature as well as their biotechnological application are discussed.

  12. Hyperthermostable cellulolytic and hemicellulolytic enzymes and their biotechnological applications

    OpenAIRE

    Tipparat Hongpattarakere

    2002-01-01

    Hyperthermal cellulases and hemicellulases have been intensively studied due to their highly potential applications at extreme temperatures, which mimic industrial processes involving cellulose and hemicellulose degradation. More than 50 species of hyperthermophiles have been isolated, many of which possess hyperthermal enzymes required for hydrolyzing cellulose and hemicelluloses. Endoglucanases, exoglucanases, cellobiohydrolases, xylanases, β-glucosidase and β-galactosidase, which are produ...

  13. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  14. Isolation of Cellulolytic Bacteria and Characterization of the Enzyme

    Directory of Open Access Journals (Sweden)

    Nisa Rachmania

    2009-04-01

    Full Text Available Four of cellulolitic bacteria isolates had beencharacterized. The determination of cellulase activity was conducted at the highest production time, using crudeenzymes with the modification of Miller methods (1959 on pure cellulose substrates such as CMC (Carboxymethylcellulose, Avicel and Filter paper Whatman No. 1 as well as agriculture waste such as rice straw, corn cob and bananapeel. Cellulase from C4-4, C5-1, C5-3 and C11-1 showed optimum activity at pH 5, 70°C, pH 3.5, 90°C, pH 5, 80°Cand pH 8, 70°C, respectively. Avicel is a appropriate substrate for C4-4 cellulase whereas CMC for the other three.C11-1 cellulase has the highest cellulase enzyme activity on rice straw substrate whereas C4-4 cellulase on banana peelsubstrates. C5-1 and C5-3 cellulase have relatively low cellulase activities in degrading substrates of agriculture waste.However, isolates of C5-1 and C5-3 have high cellulase activities on banana peel substrates.

  15. Production of cellulolytic enzymes by Pleurotus species on lignocellulosic wastes using novel pretreatments.

    Science.gov (United States)

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K; Singh, V K

    2014-12-24

    In the present investigation three species of Pleurotus i.e. P. sajor—caju (P1), P. florida (P2) and P. flabellatus (P3) along with two lignocellulosic substrates namely paddy straw and wheat straw were selected for evaluation of production of extracellular cellulolytic enzymes. During the cultivation of three species of Pleurotus under in vivo condition, the two lignocellulosic substrates were treated with plants extracts (aqueous extracts of ashoka leaves (A) and neem oil (B)), hot water (H) and chemicals (C).Among all treatments, neem oil treated substrates supported better enzyme production followed by aqueous extract of ashoka leaves, hot water and chemical treatment. Between the two substrates paddy straw supported better enzyme production than wheat straw. P. flabellatus showed maximum activity of exoglucanase, endoglucanase and β—glucosidase followed by P. florida and P. sajor—caju.

  16. A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves.

    Science.gov (United States)

    Thompson, Claudia Elizabeth; Beys-da-Silva, Walter Orlando; Santi, Lucélia; Berger, Markus; Vainstein, Marilene Henning; Guima Rães, Jorge Almeida; Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    The mangroves are among the most productive and biologically important environments. The possible presence of cellulolytic enzymes and microorganisms useful for biomass degradation as well as taxonomic and functional aspects of two Brazilian mangroves were evaluated using cultivation and metagenomic approaches. From a total of 296 microorganisms with visual differences in colony morphology and growth (including bacteria, yeast and filamentous fungus), 179 (60.5%) and 117 (39.5%) were isolated from the Rio de Janeiro (RJ) and Bahia (BA) samples, respectively. RJ metagenome showed the higher number of microbial isolates, which is consistent with its most conserved state and higher diversity. The metagenomic sequencing data showed similar predominant bacterial phyla in the BA and RJ mangroves with an abundance of Proteobacteria (57.8% and 44.6%), Firmicutes (11% and 12.3%) and Actinobacteria (8.4% and 7.5%). A higher number of enzymes involved in the degradation of polycyclic aromatic compounds were found in the BA mangrove. Specific sequences involved in the cellulolytic degradation, belonging to cellulases, hemicellulases, carbohydrate binding domains, dockerins and cohesins were identified, and it was possible to isolate cultivable fungi and bacteria related to biomass decomposition and with potential applications for the production of biofuels. These results showed that the mangroves possess all fundamental molecular tools required for building the cellulosome, which is required for the efficient degradation of cellulose material and sugar release.

  17. Industrial waste based compost as a source of novel cellulolytic strains and enzymes.

    Science.gov (United States)

    Amore, Antonella; Pepe, Olimpia; Ventorino, Valeria; Birolo, Leila; Giangrande, Chiara; Faraco, Vincenza

    2013-02-01

    Ninety bacteria isolated from raw composting materials were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. The bacteria producing the highest cellulolytic activity levels were identified by 16S rRNA sequencing as Bacillus licheniformis strain 1, Bacillus subtilis subsp. subtilis strain B7B, Bacillus subtilis subsp. spizizenii strain 6, and Bacillus amyloliquefaciens strain B31C. Cellulase activity production by the most productive strain B. amyloliquefaciens B31C was optimized in liquid culture varying the carbon source. Comparison of growth curves of B. amyloliquefaciens B31C at temperatures from 28 to 47 °C indicated its thermotolerant nature. Moreover, analysis of time courses of cellulase activity production in this thermal range showed that increase of temperature from 28 to 37 °C causes an increase of cellulase activity levels. Investigating the enzymes responsible for cellulase activity produced by B. amyloliquefaciens B31C by proteomic analyses, an endoglucanase was identified. It was shown that the purified enzyme catalyzes carboxymethylcellulose's hydrolysis following Michaelis-Menten kinetics with a K(M) of 9.95 mg ml(-1) and a v(max) of 284 μM min(-1) . It shows a retention of 90% of its activity for at least 144 h of incubation at 40 °C and exhibits a range of optimum temperatures from 50 to 70 °C.

  18. [Construction of Producers of Cellulolytic and Pectinolytic Enzymes Based on the Fungus Penicillium verruculosum].

    Science.gov (United States)

    Bushina, E V; Rubtsova, E A; Rozhkova, A M; Sinitsyna, O A; Koshelev, A V; Matys, V Yu; Nemashkalov, V A; Sinitsyn, A P

    2015-01-01

    Based on the fungus Penicillium verruculosum, we created strains with a complex of extracellular enzymes that contains both cellulolytic enzymes of the fungus and heterologous pectin lyase A from P. canescens and endo- 1,4-α-polygalacturonase from Aspergillus niger. The endopolygalacturonase and pectin lyase activities of enzyme preparations obtained from culture media of the producer strains reached 46-53 U/mg of protein and 1.3-2.3 U/mg of protein, respectively. The optimal temperature and pH values for recombinant pectin lyase and endopolygalacturonase corresponded to those described in the literature for these enzymes. The content of heterologous endopolygalacturonase and pectin lyase in the studied enzyme preparations was 4-5% and 23% of the total protein content, respectively. The yield of reducing sugars upon the hydrolysis of sugar beet and apple processing wastes with the most efficient preparation was 41 and 71 g/L, respectively, which corresponded to a polysaccharide conversion of 49% and 65%. Glucose was the main product of the hydrolysis of sugar beet and apple processing wastes.

  19. Assessment of multi-enzyme operon engineering of tobacco chloroplast genome for high-level simultaneous expression of cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kolotilin, I. [Agriculture and Agri-Food Canada, London, ON (Canada); Pereira, E.O.; Menassa, R. [Western Ontario Univ., London, ON (Canada). Dept. of Biology; Agriculture and Agri-Food Canada, London, ON (Canada)

    2009-07-01

    The use of biofuels as an environmentally-sound substitute for depleting fossil fuels was discussed. Commercially produced biofuels are generated primarily from starch or sugar and supply only a small fraction of global fuel requirements. Although cellulosic biomass can serve as an abundant and renewable source of fermentable sugars, the cost of converting biomass to fuel is too high. Plant genetic engineering techniques are more economical for producing recombinant proteins because of the low-cost of the growing bioreactors. The transformation of the tobacco chloroplast genome has proven to be very prolific in terms of recombinant protein yield, which typically reaches 10 to 20 per cent of total soluble protein. In addition, plastid transcription-translation machinery allows for the simultaneous expression of several genes from artificial operons, providing the potential to engineer several proteins in one transformation step. The purpose of this study was to produce transplastomic tobacco plants bearing single genes as well as operons of cell wall-degrading enzymes for high-level expression. An attempt was made to reproduce an engineering approach in tobacco chloroplasts to generate a potent mini-cellulosome. The resulting enzymes were evaluated for their ability to degrade biomass. The study also examined the feasibility of using crude extracts of highly-expressing plants as an additive in the biomass fermentation process. The productivity of transplastomic plants was compared with plants transiently expressing cellulolytic enzymes directed to other cellular compartments.

  20. THE INFLUENCE OF KAPOK (Ceiba pentandra SEED OIL SUPPLEMENTATION ON CELLULOLYTIC ENZYME AND RUMEN MICROBIAL FERMENTATION ACTIVITY OF LOCAL SHEEP

    Directory of Open Access Journals (Sweden)

    W. Widiyanto

    2014-10-01

    Full Text Available This research was conducted to study the influence of kapok seed oil (KSO supplementation oncellulolytic enzyme and microbial fermentation activity. Sheep rumen fluid was used as enzyme sourceand inoculant, whereas carboxymethylcellulose (CMC was used as the substrate. There were 4 levels ofKSO supplementation as treatment, i.e. : 0% (T0, 5% (T1, 10% (T2, and 15% (T3. Two measuredvariables were reduced sugar production rate and gas fermentation production. The data were analyzedby analysis of variance in completely randomized design. The result showed that reduced sugarproduction rate in T0, T1, T2 and T3 treatment groups were 2.58; 2.93; 2.08 and 1.58 mg/gCMC/minute, respectively, whereas gas production were : 15.97; 13.26; 10.54 and 7.57 mg/g CMC,respectively. Kapok seed oil supplementation up to 5% DM of cellulose substrate (CMC did notinfluence the ruminal cellulolytic enzyme activity. The KSO supplementation level 10% - 15%decreased the ruminal cellulolytic enzyme activity.

  1. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1.

    Science.gov (United States)

    Lo, Yung-Chung; Huang, Chi-Yu; Cheng, Chieh-Lun; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    A thermophilic anaerobic bacterium Clostridium sp. TCW1 was isolated from dairy cow dung and was used to produce hydrogen from cellulosic feedstock. Extracellular cellulolytic enzymes produced from TCW1 strain were identified as endoglucanases (45, 53 and 70 kDa), exoglucanase (70 kDa), xylanases (53 and 60 kDa), and β-glucosidase (45 kDa). The endoglucanase and xylanase were more abundant. The optimal conditions for H2 production and enzyme production of the TCW1 strain were the same (60 °C, initial pH 7, agitation rate of 200 rpm). Ten cellulosic feedstock, including pure or natural cellulosic materials, were used as feedstock for hydrogen production by Clostridium strain TCW1 under optimal culture conditions. Using filter paper at 5.0 g/L resulted in the most effective hydrogen production performance, achieving a H2 production rate and yield of 57.7 ml/h/L and 2.03 mol H2/mol hexose, respectively. Production of cellulolytic enzyme activities was positively correlated with the efficiency of dark-H2 fermentation.

  2. Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding.

    Science.gov (United States)

    Fritz, Consuelo; Ferrer, Ana; Salas, Carlos; Jameel, Hasan; Rojas, Orlando J

    2015-12-14

    Understanding enzyme-substrate interactions is critical in designing strategies for bioconversion of lignocellulosic biomass. In this study we monitored molecular events, in situ and in real time, including the adsorption and desorption of cellulolytic enzymes on lignins and cellulose, by using quartz crystal microgravimetry and surface plasmon resonance. The effect of a nonionic surface active molecule was also elucidated. Three lignin substrates relevant to the sugar platform in biorefinery efforts were considered, namely, hardwood autohydrolysis cellulolytic (HWAH), hardwood native cellulolytic (MPCEL), and nonwood native cellulolytic (WSCEL) lignin. In addition, Kraft lignins derived from softwoods (SWK) and hardwoods (HWK) were used as references. The results indicated a high affinity between the lignins with both, monocomponent and multicomponent enzymes. More importantly, the addition of nonionic surfactants at concentrations above their critical micelle concentration reduced remarkably (by over 90%) the nonproductive interactions between the cellulolytic enzymes and the lignins. This effect was hypothesized to be a consequence of the balance of hydrophobic and hydrogen bonding interactions. Moreover, the reduction of surface roughness and increased wettability of lignin surfaces upon surfactant treatment contributed to a lower affinity with the enzymes. Conformational changes of cellulases were observed upon their adsorption on lignin carrying preadsorbed surfactant. Weak electrostatic interactions were determined in aqueous media at pH between 4.8 and 5.5 for the native cellulolytic lignins (MPCEL and WSCEL), whereby a ∼20% reduction in the enzyme affinity was observed. This was mainly explained by electrostatic interactions (osmotic pressure effects) between charged lignins and cellulases. Noteworthy, adsorption of nonionic surfactants onto cellulose, in the form cellulose nanofibrils, did not affect its hydrolytic conversion. Overall, our results

  3. Synergy between cellulolytic enzymes during the biodegradation of cellulose microfibrils measured using angle-scanning surface plasmon resonance (SPR) imaging

    Science.gov (United States)

    Raegen, Adam; Dion, Alexander; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2014-03-01

    The use of cellulosic ethanol, a promising emerging energy source, is limited by the energy intensive and costly step of first converting the cellulose fibers into their constituent glucose monomers. Industrial processes mimic those that occur in nature, using mixtures or ``cocktails'' of different classes of cellulolytic enzymes derived from fungi. Despite several decades of investigation, the molecular mechanisms for enzyme synergy remain poorly understood. To gain additional insight, we have used a custom angle-scanning surface plasmon resonance (SPR) imaging apparatus to obtain a sensitive measure of enzymatic degradation. By implementing a novel SPR data analysis procedure, we have been able to track the thickness and roughness of laterally heterogeneous cellulose microfibril-coated substrates as enzymatic degradation proceeds. This has allowed us to measure the synergistic actions of the different enzymes, providing data that are directly relevant to the cellulosic ethanol industry.

  4. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Shuhei; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Hasunuma, Tomohisa; Tanaka, Tsutomu; Fukuda, Hideki [Kobe Univ. (Japan). Organization of Advanced Science and Technology

    2010-09-15

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 C and 37 C, while the activity of cellulolytic enzymes is highest at around 50 C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus {beta}-glucosidase on the cell surface, which successfully converts a cellulosic {beta}-glucan to ethanol directly at 48 C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of {beta}-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface. (orig.)

  5. PRODUCTION AND CHARACTERIZATION OF CELLULOLYTIC ENZYMES BY ASPERGILLUS NIGER AND RHIZOPUS SP . BY SOLID STATE FERMENTATION OF PRICKLY PEAR

    Directory of Open Access Journals (Sweden)

    TAMIRES CARVALHO DOS SANTOS

    2016-01-01

    Full Text Available Prickly palm cactus husk was used as a solid - state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box - Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp . Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.

  6. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian;

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...

  7. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian;

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  8. Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia

    Directory of Open Access Journals (Sweden)

    W. P. Lokapirnasari

    2015-03-01

    Full Text Available Aim: This study aims to produce and assay cellulolytic enzyme activity (endo-(1,4-β-D-glucanase, exo-(1,4-β-Dglucanase, and β-glucosidase, at optimum temperature and optimum pH of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya Abbatoir, Indonesia. Materials and Methods: To produce enzyme from a single colony of E. cloacae WPL 214, 98 × 1010 CFU/ml of isolates was put into 20 ml of liquid medium and incubated in a shaker incubator for 16 h at 35°C in accordance with growth time and optimum temperature of E. cloacae WPL 214. Further on, culture was centrifuged at 6000 rpm at 4°C for 15 min. Pellet was discarded while supernatant containing cellulose enzyme activity was withdrawn to assay endo-(1,4-β-D-glucanase, exo-(1,4-β-D-glucanase, and β-glucosidase. Results: Cellulase enzyme of E. cloacae WPL 214 isolates had endoglucanase activity of 0.09 U/ml, exoglucanase of 0.13 U/ml, and cellobiase of 0.10 U/ml at optimum temperature 35°C and optimum pH 5. Conclusion: E. cloacae WPL 214 isolated from bovine rumen fluid waste produced cellulose enzyme with activity as cellulolytic enzyme of endo-(1,4-β-D-glucanase, exo-(1,4-β-D-glucanase and β-glucosidase.

  9. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?

    DEFF Research Database (Denmark)

    Cannella, David; Jørgensen, Henning

    2014-01-01

    Production of ethanol from lignocellulosic materials has a promising market potential, but the process is still only at pilot/demonstration scale due to the technical and economical difficulties of the process. Operating the process at very high solids concentrations (above 20% dry matter—DM) has...... matter conditions. In this work the impact of selected enzyme preparation and processing strategy (SHF, presaccharification and simultaneous saccharification and fermentation—PSSF, and SSF) on final ethanol yield and overall performance was investigated with pretreated wheat straw up to 30% DM....... The experiments revealed that an SSF strategy was indeed better than SHF when applying an older generation enzyme cocktail (Celluclast-Novozym 188). In case of the newer product Cellic CTec 2, SHF resulted in 20% higher final ethanol yield compared to SSF. It was possible to close the mass balance around...

  10. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?

    Science.gov (United States)

    Cannella, David; Jørgensen, Henning

    2014-01-01

    Production of ethanol from lignocellulosic materials has a promising market potential, but the process is still only at pilot/demonstration scale due to the technical and economical difficulties of the process. Operating the process at very high solids concentrations (above 20% dry matter-DM) has proven essential for economic feasibility at industrial scale. Historically, simultaneous saccharification and fermentation (SSF) was found to give better ethanol yields compared to separate hydrolysis and fermentation (SHF), but data in literature are typically based on operating the process at low dry matter conditions. In this work the impact of selected enzyme preparation and processing strategy (SHF, presaccharification and simultaneous saccharification and fermentation-PSSF, and SSF) on final ethanol yield and overall performance was investigated with pretreated wheat straw up to 30% DM. The experiments revealed that an SSF strategy was indeed better than SHF when applying an older generation enzyme cocktail (Celluclast-Novozym 188). In case of the newer product Cellic CTec 2, SHF resulted in 20% higher final ethanol yield compared to SSF. It was possible to close the mass balance around cellulose to around 94%, revealing that the most relevant products could be accounted for. One observation was the presence of oxidized sugar (gluconic acid) upon enzymatic hydrolysis with the latest enzyme preparation. Experiments showed gluconic acid formation by recently discovered enzymatic class of lytic polysaccharides monoxygenases (LPMO's) to be depending on the processing strategy. The lowest concentration was achieved in SSF, which could be correlated with less available oxygen due to simultaneous oxygen consumption by the yeast. Quantity of glycerol and cell mass was also depending on the selected processing strategy.

  11. Optimization of Arundo donax Saccharification by (Hemi)cellulolytic Enzymes from Pleurotus ostreatus

    Science.gov (United States)

    Liguori, Rossana; Ionata, Elena; Marcolongo, Loredana; Vandenberghe, Luciana Porto de Souza; La Cara, Francesco; Faraco, Vincenza

    2015-01-01

    An enzymatic mixture of cellulases and xylanases was produced by Pleurotus ostreatus using microcrystalline cellulose as inducer, partially characterized and tested in the statistical analysis of Arundo donax bioconversion. The Plackett-Burman screening design was applied to identify the most significant parameters for the enzymatic hydrolysis of pretreated A. donax. As the most significant influence during the enzymatic hydrolysis of A. donax was exercised by the temperature (°C), pH, and time, the combined effect of these factors in the bioconversion by P. ostreatus cellulase and xylanase was analyzed by a 33 factorial experimental design. It is worth noting that the best result of 480.10 mg of sugars/gds, obtained at 45°C, pH 3.5, and 96 hours of incubation, was significant also when compared with the results previously reached by process optimization with commercial enzymes. PMID:26634214

  12. Optimization of Arundo donax Saccharification by (Hemi)cellulolytic Enzymes from Pleurotus ostreatus.

    Science.gov (United States)

    Liguori, Rossana; Ionata, Elena; Marcolongo, Loredana; Vandenberghe, Luciana Porto de Souza; La Cara, Francesco; Faraco, Vincenza

    2015-01-01

    An enzymatic mixture of cellulases and xylanases was produced by Pleurotus ostreatus using microcrystalline cellulose as inducer, partially characterized and tested in the statistical analysis of Arundo donax bioconversion. The Plackett-Burman screening design was applied to identify the most significant parameters for the enzymatic hydrolysis of pretreated A. donax. As the most significant influence during the enzymatic hydrolysis of A. donax was exercised by the temperature (°C), pH, and time, the combined effect of these factors in the bioconversion by P. ostreatus cellulase and xylanase was analyzed by a 3(3) factorial experimental design. It is worth noting that the best result of 480.10 mg of sugars/gds, obtained at 45 °C, pH 3.5, and 96 hours of incubation, was significant also when compared with the results previously reached by process optimization with commercial enzymes.

  13. Investigations on potato pulp as a dietary fiber source. The influence of pectolytic and cellulolytic enzymes. Untersuchungen an Kartoffelpuelpe als Ballaststoffquelle. Zum Einfluss von pektolytischen und cellulolytischen Enzymen

    Energy Technology Data Exchange (ETDEWEB)

    Dongowski, G. (Deutsches Inst. fuer Ernaehrungsforschung Potsdam-Rehbruecke, Bergholz-Rehbruecke (Germany))

    1993-05-01

    The influence of treatment with pectolytic and cellulolytic enzyme preparations was investigated with reference to the separation of water and the composition of potato pulp. In contrast to pectinesterase, pectate lyase or cellulase it was found an intensive action on the pulp after incubation with Pectinex Ultra SP-L or pectinase/cellulase combinations. The content of pectin, starch and protein as well as the water binding capacity are varied in dependence of the used enzyme preparations. The occurring changes in the supermolecular structure of the potato pulp tissue are investigated by scanning electron microscopy. The grown biological structure is partly or extensive destroyed especially after action of pectinases and cellulases. The content of starch in the potato pulp preparations remains relatively high even after intensive treatment with cell wall degrading enzymes. (orig.)

  14. Prospection and Evaluation of (Hemi) Cellulolytic Enzymes Using Untreated and Pretreated Biomasses in Two Argentinean Native Termites

    Science.gov (United States)

    Ben Guerrero, Emiliano; Arneodo, Joel; Bombarda Campanha, Raquel; Abrão de Oliveira, Patrícia; Veneziano Labate, Mônica T.; Regiani Cataldi, Thaís; Campos, Eleonora; Cataldi, Angel; Labate, Carlos A.; Martins Rodrigues, Clenilson; Talia, Paola

    2015-01-01

    Saccharum officinarum bagasse (common name: sugarcane bagasse) and Pennisetum purpureum (also known as Napier grass) are among the most promising feedstocks for bioethanol production in Argentina and Brazil. In this study, both biomasses were assessed before and after acid pretreatment and following hydrolysis with Nasutitermes aquilinus and Cortaritermes fulviceps termite gut digestome. The chemical composition analysis of the biomasses after diluted acid pretreatment showed that the hemicellulose fraction was partially removed. The (hemi) cellulolytic activities were evaluated in bacterial culture supernatants of termite gut homogenates grown in treated and untreated biomasses. In all cases, we detected significantly higher endoglucanase and xylanase activities using pretreated biomasses compared to untreated biomasses, carboxymethylcellulose and xylan. Several protein bands with (hemi) cellulolytic activity were detected in zymograms and two-dimensional gel electrophoresis. Some proteins of these bands or spots were identified as xylanolytic peptides by mass spectrometry. Finally, the diversity of cultured cellulolytic bacterial endosymbionts associated to both Argentinean native termite species was analyzed. This study describes, for the first time, bacterial endosymbionts and endogenous (hemi) cellulases of two Argentinean native termites as well as their potential application in degradation of lignocellulosic biomass for bioethanol production. PMID:26313257

  15. Prospection and Evaluation of (Hemi Cellulolytic Enzymes Using Untreated and Pretreated Biomasses in Two Argentinean Native Termites.

    Directory of Open Access Journals (Sweden)

    Emiliano Ben Guerrero

    Full Text Available Saccharum officinarum bagasse (common name: sugarcane bagasse and Pennisetum purpureum (also known as Napier grass are among the most promising feedstocks for bioethanol production in Argentina and Brazil. In this study, both biomasses were assessed before and after acid pretreatment and following hydrolysis with Nasutitermes aquilinus and Cortaritermes fulviceps termite gut digestome. The chemical composition analysis of the biomasses after diluted acid pretreatment showed that the hemicellulose fraction was partially removed. The (hemi cellulolytic activities were evaluated in bacterial culture supernatants of termite gut homogenates grown in treated and untreated biomasses. In all cases, we detected significantly higher endoglucanase and xylanase activities using pretreated biomasses compared to untreated biomasses, carboxymethylcellulose and xylan. Several protein bands with (hemi cellulolytic activity were detected in zymograms and two-dimensional gel electrophoresis. Some proteins of these bands or spots were identified as xylanolytic peptides by mass spectrometry. Finally, the diversity of cultured cellulolytic bacterial endosymbionts associated to both Argentinean native termite species was analyzed. This study describes, for the first time, bacterial endosymbionts and endogenous (hemi cellulases of two Argentinean native termites as well as their potential application in degradation of lignocellulosic biomass for bioethanol production.

  16. An Efficient and Improved Methodology for the Screening of Industrially Valuable Xylano-Pectino-Cellulolytic Microbes

    OpenAIRE

    2015-01-01

    Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic pot...

  17. Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lindsey N.; Culley, David E.; Hofstad, Beth A.; Chauvigne-Hines, Lacie M.; Zink, Erika M.; Purvine, Samuel O.; Smith, Richard D.; Callister, Stephen J.; Magnuson, Jon M.; Wright, Aaron T.

    2013-12-01

    Development of alternative, non-petroleum based sources of bioenergy that can be applied in the short-term find great promise in the use of highly abundant and renewable lignocellulosic plant biomass.1 This material obtained from different feedstocks, such as forest litter or agricultural residues, can yield liquid fuels and other chemical products through biorefinery processes.2 Biofuels are obtained from lignocellulosic materials by chemical pretreatment of the biomass, followed by enzymatic decomposition of cellulosic and hemicellulosic compounds into soluble sugars that are converted to desired chemical products via microbial metabolism and fermentation.3, 4 To release soluble sugars from polymeric cellulose multiple enzymes are required, including endoglucanase, exoglucanase, and β-glucosidase.5, 6 However, the enzymatic hydrolysis of cellulose into soluble sugars remains a significant limiting factor to the efficient and economically viable utilization of lignocellulosic biomass for transport fuels.7, 8 The primary industrial source of cellulose and hemicellulases is the mesophilic soft-rot fungus Trichoderma reesei,9 having widespread applications in food, feed, textile, pulp, and paper industries.10 The genome encodes 200 glycoside hydrolases, including 10 cellulolytic and 16 hemicellulolytic enzymes.11 The hypercellulolytic catabolite derepressed strain RUT-C30 was obtained through a three-step UV and chemical mutagenesis of the original T. reesei strain QM6a,12, 13 in which strains M7 and NG14 were intermediate, having higher cellulolytic activity than the parent strain but less activity and higher catabolite repression than RUT-C30.14 Numerous methods have been employed to optimize the secreted enzyme cocktail of T. reesei including cultivation conditions, operational parameters, and mutagenesis.3 However, creating an optimal and economical enzyme mixture for production-scale biofuels synthesis may take thousands of experiments to identify.

  18. EXTRACELLULAR CELLULOLYTIC COMPLEXES PRODUCTION BY MICROSCOPIC FUNGI

    Directory of Open Access Journals (Sweden)

    S. O. Syrchin

    2015-10-01

    Full Text Available The aim of this work was to screen and to study the effect of inducers on the synthesis of the cellulolytic enzyme complexes by microscopic fungi. Cellulolytic and xylanolytic activities were determined by reducing sugar with DNS reagent, and β-glucosidase activity by pNPG hydrolysis. The enzyme preparations were obtained by ammonium sulphate precipitation. Among 32 studied strains of microscopic fungi 14 produced cellulo- and xylanolytic enzyme complexes. Fusarium sp. 5 and Fennellia sp. 2806 demonstrated the highest levels of all studied enzyme activities. Enzyme preparations with high endo-, exoglucanase, xylanase and β-glucosidase activities were obtained from these strains. Fusarium sp. 5 and Fennellia sp. 2806 were active producers of cellulase enzyme complexes during growth on natural substrates. It was shown that inductors of cellulolytic enzymes in Fusarium sp. 5 and Fennellia sp. 2806 differed from the ones in Trichoderma reesei.

  19. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  20. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization.

    Science.gov (United States)

    Manfredi, Adriana P; Pisa, José H; Valdeón, Daniel H; Perotti, Nora I; Martínez, María A

    2016-04-01

    A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications.

  1. Characterization of cellulolytic activity from digestive fluids of Dissosteira carolina (Orthoptera: Acrididae).

    Science.gov (United States)

    Willis, Jonathan D; Klingeman, William E; Oppert, Cris; Oppert, Brenda; Jurat-Fuentes, Juan L

    2010-11-01

    Previous screening of head-derived and gut fluid extracts of Carolina grasshoppers, Dissosteira carolina (L.) revealed relatively high activity against cellulase substrates when compared to other insect groups. In this work we report on the characterization and identification of enzymes involved in cellulolytic activity in digestive fluids of D. carolina. In zymograms using carboxymethylcellulose (CMC) as substrate, we detected four distinct cellulolytic protein bands in D. carolina gut fluids, common to all developmental stages. These cellulolytic enzymes were localized to foregut and midgut regions of the D. carolina digestive tract. Cellulases were purified from D. carolina head and gut fluid extracts by liquid chromatography to obtain N-terminal amino acid sequence tags. Database searches with sequence tags from head fluids indicated high similarity with invertebrate, bacterial and plant beta1,4-endoglucanases, while no homologues were identified for the gut-derived protein. Our data demonstrate the presence of cellulolytic activity in the digestive system of D. carolina and suggest that cellulases of endogenous origin are present in this organism. Considering that this grasshopper species is a pest of grasses, including switchgrass that has been suggested bioethanol feedstock, characterization of insect cellulolytic systems may aid in developing applications for plant biomass biodegradation for biofuel production.

  2. The effects of ethanol on hydrolysis of cellulose and pretreated barley straw by some commercial cellulolytic enzyme products

    Science.gov (United States)

    The effect of ethanol at levels ranging from 2.5% v/v to 15% v/v on the activities of two recently developed commercial cellulosic biomass hydrolytic enzyme products, Accellerase® 1500 and Accellerase® XY, was investigated. The substrates used for study of the effect of ethanol on Accellerase® 1500 ...

  3. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    -OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial...

  4. Cellulosomes - promising supramolecular machines of anaerobic cellulolytic microorganisms.

    Science.gov (United States)

    Vodovnik, Maša; Marinšek-Logar, Romana

    2010-12-01

    Cellulose is the main structural component of plant cell wall and thus the most abundant carbohydrate in nature. However, extracting the energy from this abundant source is limited by its recalcitrant nature. The hydrolysis of plant cell wall requires synergystic action of different enzymes, including multiple cellulases, hemicellulases, pectinases, etc. Meanwhile aerobic cellulolytic microorganisms release large quantities of synergistically acting free enzymes in their environment, most anaerobic microorganisms evolved more efficient strategies to optimize the process of plant cell wall degradation, for example production of extracellular multi-enzyme complexes (cellulosomes). Cellulosomes consist of at least one core structural protein, named scaffoldin, which firmly binds numerous enzymatic subunits, and usually also plays a major role in substrate binding. Although the general structure of cellulosomes seems universal, differences in number and identity of complex components do exist among microorganisms. The article surveys the current knowledge about cellulosomes, focusing on three best investigated cellulolytic clostridia, one representative of ruminal bacteria and novel findings concerning anaerobic fungi. Efforts in construction of artificially engineered cellulosomal systems (designer cellulosomes) as well as their biotechnological potential are also discussed.

  5. Isolation,Identification and Optimization of Enzyme Production of Cellulolytic Bacteria from the Goose Gut%鹅肠道纤维素分解菌的分离鉴定及其产酶条件的优化

    Institute of Scientific and Technical Information of China (English)

    高云航; 张喜宏; 刘佳丽; 战利; 李长亮

    2011-01-01

    A strain of highly cellulolytic bacteria was obtained from goose gut, and the conditions in enzyme production have been studied in this study. The strain of highly cellulolytic bacterial E2 has been isolated by the Congo red ( primary screening) and shaking flask method ( secondary screening) . The 16S rDNA sequence analysis indicated that strain E2 was Bacillus pumilus sp. On the basis of single factor experiment, the optimal carbon source, nitrogen source, initial pH, fermentation temperature and fermentation time of strain E2 for enzyme production were maizena, beef extract and peptone mixture, 6.0, 42℃ , and 48 h, respectively. [ Chinese Journal of Animal Nutrition ,2011 ,23 ( 3) : 466-472 ]%本研究拟在鹅肠道筛选1株高效降解纤维素的菌株,并对该菌株的产酶条件进行研究.通过对鹅肠道菌群进行富集培养、分离纯化,利用刚果红法(初筛)和摇瓶法(复筛)得到1株产酶活较高的纤维素分解菌E2.经16S rDNA核苷酸序列比对分析表明,该菌株为芽孢杆菌属的短小芽孢杆菌.单因素试验得出菌株E2的产酶最适碳源为玉米粉,最适氮源为牛肉膏和蛋白胨混合物,最适初始pH为6.0,最适发酵温度为42 ℃,最适发酵时间为48 h.

  6. Enzyme therapeutics for systemic detoxification.

    Science.gov (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  7. An efficient and improved methodology for the screening of industrially valuable xylano-pectino-cellulolytic microbes.

    Science.gov (United States)

    Singh, Avtar; Kaur, Amanjot; Dua, Anita; Mahajan, Ritu

    2015-01-01

    Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic potential were obtained. The probability of getting the desired combination was low, so efforts were made to further improve this cost effective methodology for obtaining the high yield of the microbes capable of producing desired combination of enzymes. By inclusion of multiple enrichment steps in sequence, using only practically low cost substrates and without any nutrient media till primary screening stage, this improved novel protocol for screening gave only the desired microorganisms with xylano-pectino-cellulolytic activity. Using this rapid, efficient, cost effective, and improved methodology, microbes with required combination of enzymes can be obtained and the probability of getting the desired microorganisms is cent percent. This is the first report presenting the methodology for the isolation of xylano-pectino-cellulolytic positive microorganisms at low cost and consuming less time.

  8. Cellulolytic and xylanolytic activities of common indoor fungi

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Poulsen, Rehab; Hansen, Gustav Hammerich

    2016-01-01

    or no cellulolytic and xylanolytic activities using AZCL-assays. On the other hand, both Cladosporium sphaerospermum and Penicillium chrysogenum showed the highest cellulase, β-glucosidase, mannase, β-galactanase and arabinanase activities and would be good candidates for over-producers of enzymes needed...

  9. 纤维素分解酶处理玉米秸秆对肉牛生产性能和经济效益的影响%Effects of corn stover fermented by cellulolytic enzyme on production performance and economic benefit in beef cattle

    Institute of Scientific and Technical Information of China (English)

    高月平; 张贵花; 王聪; 刘强; 白元生; 师周戈; 刘晓妮

    2013-01-01

    研究玉米秸秆经纤维素分解酶(纤维素酶和木聚糖酶)处理后的化学成分变化以及对肉牛生产性能和经济效益的影响.选用12月龄左右的西门塔尔牛36头,对照组饲喂基础日粮(混合精料十玉米秸秆,精粗比45∶55),试验组分别以0.5%、1.0%和1.5%的纤维素分解酶处理玉米秸秆替代基础饲粮中的玉米秸秆进行为期70 d的试验.结果表明:采用纤维素分解酶处理玉米秸秆后化学成分发生变化,粗蛋白质含量增加显著,中性洗涤纤维和酸性洗涤纤维降低显著,1.5%的纤维素分解酶处理组中性洗涤纤维和酸性洗涤纤维显著低于1.0%的纤维素分解酶处理组.1.0%、1.5%的纤维素分解酶处理组西门塔尔牛干物质采食量、平均日增重和经济效益提高显著(P<0.05).适宜的纤维素分解酶添加水平为1.0%.%The objective was to evaluate the effects of corn stover fermented by cellulolytic enzyme on nutrition of corn stover,production performance of beef cattles and economic benefit.Thirty-six Simmenta beef cattles (12-month-old) were randomly divided into 4 groups.The control group was fed the basal diet (mixed concentrate and corn stover,concentrate to roughage as 45 to 55).Treatments lasted for 70 days were fed corn stover fermented by cellulolytic enzyme at 0.5%,1.0% and 1.5 %,respectively.The results showed that chemical composition of corn stover changed with the addition of cellulolytic enzymes.The crude protein content increased significantly,neutral detergent fiber and acid detergent fiber decreased significantly.neutral detergent fiber and acid detergent fiber of 1.5 % cellulolytic enzyme treatment were significantly lower than that of 1% cellulolytic enzyme treatment.The dry matter intake,average daily gain and economic benefit of 1.0%,1.5% cellulolytic enzyme treatment increased significantly (P<0.05).The cellulolytic enzyme addition level as 1% was good.

  10. Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30†

    Science.gov (United States)

    Anderson, Lindsey N.; Culley, David E.; Hofstad, Beth A.; Chauvigné-Hines, Lacie M.; Zink, Erika M.; Purvine, Samuel O.; Smith, Richard D.; Callister, Stephen J.; Magnuson, Jon M.; Wright, Aaron T.

    2014-01-01

    Lignocellulosic biomass has great promise as a highly abundant and renewable source for the production of biofuels. However, the recalcitrant nature of lignocellulose toward hydrolysis into soluble sugars remains a significant challenge to harnessing the potential of this source of bioenergy. A primary method for deconstructing lignocellulose is via chemical treatments, high temperatures, and hydrolytic enzyme cocktails, many of which are derived from the fungus Trichoderma reesei. Herein, we use an activity-based probe for glycoside hydrolases to rapidly identify optimal conditions for maximum enzymatic lignocellulose deconstruction. We also demonstrate that subtle changes to enzyme composition and activity in various strains of T. reesei can be readily characterized by our probe approach. The approach also permits multimodal measurements, including fluorescent gel-based analysis of activity in response to varied conditions and treatments, and mass spectrometry-based quantitative identification of labelled proteins. We demonstrate the promise this probe approach holds to facilitate rapid production of enzyme cocktails for high-efficiency lignocellulose deconstruction to accommodate high-yield biofuel production. PMID:24121482

  11. Polypeptide from a cellulolytic fungus having cellulolytic enhancing activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly (Elk Grove, CA); Harris, Paul (Carnation, WA); Zaretsky, Elizabeth (Reno, NV); Re, Edward (Davis, CA); Vlasenko, Elena (Davis, CA); McFarland, Keith (Davis, CA); Lopez de Leon, Alfredo (Davis, CA)

    2008-04-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  12. Cellulolytic Microorganisms from Thermal Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vishnivetskaya, Tatiana A [ORNL; Raman, Babu [ORNL; Phelps, Tommy Joe [ORNL; Podar, Mircea [ORNL; Elkins, James G [ORNL

    2012-01-01

    Thermal, anaerobic environments rich in decaying plant material are a potential source of novel cellulolytic bacteria. Samples collected from geothermal aquifers in the Yellowstone National Park (YNP) were used to select for cellulolytic thermophiles. Laboratory enrichments on dilute-acid pretreated plant biomass (switchgrass, Populus), and crystalline cellulose (Avicel) resulted in the isolation of 247 environmental clones. The majority of individual clones were affiliated with the cellulolytic bacteria of phylum Firmicutes, followed by xylanolytic and saccharolytic members of the phylum Dictyoglomi. Among the Firmicutes, the clones were affiliated with the genera Caldicellulosiruptor (54.4%), Caloramator (11.5%), Thermoanaerobacter (8.8%), Thermovenabulum (4.1%), and Clostridium (2.0%). From established anaerobic thermophilic enrichments a total of 81 single strains of the genera Caldicellulosiruptor (57%) and Thermoanaerobacter (43%) were isolated. With continuous flow enrichment on Avicel, increases in the relative abundance of Caloramator sp. was observed over clones detected from the Caldicellulosiruptor. Complex communities of interacting microorganisms bring about cellulose decomposition in nature, therefore using up-to-date approaches may yield novel cellulolytic microorganisms with high activity and a rapid rate of biomass conversion to biofuels.

  13. Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase.

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuji

    Full Text Available Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds. In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa. Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase and 2 ß-glucosidases (110K and 210K were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU-ß-glucoside, 4MU-ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K

  14. Cellulolytic potential of thermophilic species from four fungal orders

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Lene

    2013-01-01

    Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi...... and in characterization of their industrially useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus covering all fungal orders that include thermophiles....... Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45 ºC. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we...

  15. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  16. NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The discovery of a new mode of action by C. thermocellum to convert biomass to biofuels is significant because the bacterium is already recognized as one of the most effective in the biosphere. Researchers found that, in addition to using common cellulase degradation mechanisms attached to cells, C. thermocellum also uses a new category of cell-free scaffolded enzymes. The new discovery will influence the strategies used to improve the cellulolytic activity of biomass degrading microbes going forward. Better understanding of this bacterium could lead to cheaper production of ethanol and drop-in fuels. Also, this discovery demonstrates that nature's biomass conversion behaviors are not fully understood and remain as opportunities for future microbial/enzyme engineering efforts.

  17. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica

    Science.gov (United States)

    Pinheiro, Guilherme L.; Correa, Raquel F.; Cunha, Raquel S.; Cardoso, Alexander M.; Chaia, Catia; Clementino, Maysa M.; Garcia, Eloi S.; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes. PMID:26347735

  18. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica

    Directory of Open Access Journals (Sweden)

    Guilherme L. Pinheiro

    2015-08-01

    Full Text Available The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC, p-nitrophenyl-b-D-glucopyranoside (pNPG, p-nitrophenyl-b-D-cellobioside (pNPC, 4-methylumbelliferyl-b-D-glucopyranoside (MUG, 4-methylumbelliferyl-b-D-cellobioside (MUC and 4-methylumbelliferyl-b-D-xylopyranoside (MUX. Our results indicate that the snail Achatina fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes.

  19. Enzyme efficiency: An open reaction system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Kinshuk, E-mail: kb36@rice.edu [Department of Chemistry, University of Calcutta, Rajabazar Science College Campus, Kolkata 700 009 (India); Bhattacharyya, Kamal, E-mail: pchemkb@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009 (India)

    2015-12-21

    A measure of enzyme efficiency is proposed for an open reaction network that, in suitable form, applies to closed systems as well. The idea originates from the description of classical enzyme kinetics in terms of cycles. We derive analytical expressions for the efficiency measure by treating the network not only deterministically but also stochastically. The latter accounts for any significant amount of noise that can be present in biological systems and hence reveals its impact on efficiency. Numerical verification of the results is also performed. It is found that the deterministic equation overestimates the efficiency, the more so for very small system sizes. Roles of various kinetics parameters and system sizes on the efficiency are thoroughly explored and compared with the standard definition k{sub 2}/K{sub M}. Study of substrate fluctuation also indicates an interesting efficiency-accuracy balance.

  20. Cellulolytic and proteolytic ability of bacteria isolated from gastrointestinal tract and composting of a hippopotamus.

    Science.gov (United States)

    da Cruz Ramos, Geomárcia Feitosa; Ramos, Patricia Locosque; Passarini, Michel Rodrigo Zambrano; Vieira Silveira, Marghuel A; Okamoto, Débora Noma; de Oliveira, Lilian Caroline Gonçalves; Zezzo, Larissa Vieira; Marem, Alyne; Santos Rocha, Rafael Costa; da Cruz, João Batista; Juliano, Luiz; de Vasconcellos, Suzan Pantaroto

    2016-03-01

    The bioprospection for cellulase and protease producers is a promise strategy for the discovery of potential biocatalysts for use in hydrolysis of lignocellulosic materials as well as proteic residues. These enzymes can increment and turn viable the production of second generation ethanol from different and alternative sources. In this context, the goal of this study was the investigation of cellulolytic and proteolytic abilities of bacteria isolated from the gastrointestinal tract of a hippopotamus as well as from its composting process. It is important to highlight that hippopotamus gastrointestinal samples were a non-typical sources of efficient hydrolytic bacteria with potential for application in biotechnological industries, like biofuel production. Looking for this, a total of 159 bacteria were isolated, which were submitted to qualitative and quantitative enzymatic assays. Proteolytic analyzes were conducted through the evaluation of fluorescent probes. Qualitative assays for cellulolytic abilities revealed 70 positive hits. After quantitative analyzes, 44 % of these positive hits were selected, but five (5) strains showed cellulolytic activity up to 11,8 FPU/mL. Regarding to proteolytic activities, six (6) strains showed activity above 10 %, which overpassed results described in the literature. Molecular analyzes based on the identification of 16S rDNA, revealed that all the selected bacterial isolates were affiliated to Bacillus genus. In summary, these results strongly indicate that the isolated bacteria from a hippopotamus can be a potential source of interesting biocatalysts with cellulolytic and proteolytic activities, with relevance for industrial applications.

  1. Construction and Characterization of a Cellulolytic Consortium Enriched from the Hindgut of Holotrichia parallela Larvae

    Directory of Open Access Journals (Sweden)

    Ping Sheng

    2016-09-01

    Full Text Available Degradation of rice straw by cooperative microbial activities is at present the most attractive alternative to fuels and provides a basis for biomass conversion. The use of microbial consortia in the biodegradation of lignocelluloses could reduce problems such as incomplete synergistic enzymes, end-product inhibition, and so on. In this study, a cellulolytic microbial consortium was enriched from the hindgut of Holotrichia parallela larvae via continuous subcultivation (20 subcultures in total under static conditions. The degradation ratio for rice straw was about 83.1% after three days of cultivation, indicating its strong cellulolytic activity. The diversity analysis results showed that the bacterial diversity and richness decreased during the consortium enrichment process, and the consortium enrichment process could lead to a significant enrichment of phyla Proteobacteria and Spirochaetes, classes Clostridia, Epsilonproteobacteria, and Betaproteobacteria, and genera Arcobacter, Treponema, Comamonas, and Clostridium. Some of these are well known as typical cellulolytic and hemicellulolytic microorganisms. Our results revealed that the microbial consortium identified herein is a potential candidate for use in the degradation of waste lignocellulosic biomass and further highlights the hindgut of the larvae as a reservoir of extensive and specific cellulolytic and hemicellulolytic microbes.

  2. Construction and Characterization of a Cellulolytic Consortium Enriched from the Hindgut of Holotrichia parallela Larvae

    Science.gov (United States)

    Sheng, Ping; Huang, Jiangli; Zhang, Zhihong; Wang, Dongsheng; Tian, Xiaojuan; Ding, Jiannan

    2016-01-01

    Degradation of rice straw by cooperative microbial activities is at present the most attractive alternative to fuels and provides a basis for biomass conversion. The use of microbial consortia in the biodegradation of lignocelluloses could reduce problems such as incomplete synergistic enzymes, end-product inhibition, and so on. In this study, a cellulolytic microbial consortium was enriched from the hindgut of Holotrichia parallela larvae via continuous subcultivation (20 subcultures in total) under static conditions. The degradation ratio for rice straw was about 83.1% after three days of cultivation, indicating its strong cellulolytic activity. The diversity analysis results showed that the bacterial diversity and richness decreased during the consortium enrichment process, and the consortium enrichment process could lead to a significant enrichment of phyla Proteobacteria and Spirochaetes, classes Clostridia, Epsilonproteobacteria, and Betaproteobacteria, and genera Arcobacter, Treponema, Comamonas, and Clostridium. Some of these are well known as typical cellulolytic and hemicellulolytic microorganisms. Our results revealed that the microbial consortium identified herein is a potential candidate for use in the degradation of waste lignocellulosic biomass and further highlights the hindgut of the larvae as a reservoir of extensive and specific cellulolytic and hemicellulolytic microbes. PMID:27706065

  3. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost

    Directory of Open Access Journals (Sweden)

    Amore Antonella

    2012-12-01

    Full Text Available Abstract Background The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. Results Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose

  4. SACCHARIFICATION OF CORNCOB USING CELLULOLYTIC BACTERIA FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    TITI CANDRA SUNARTI

    2010-08-01

    Full Text Available The use of cellulose degrading enzyme (cellulases for hydrolysis of lignocellulosic material is a part of bioethanol production process. In this experiment, delignified corncob, its cellulose fraction and alpha cellulose were used as substrates to produce fermentable sugar by using three local isolates of celluloytic bacteria (C5-1, C4-4, C11-1 and Cmix ; mixed cultures of three isolates, and Saccharomyces cereviseae to produce ethanol. The results showed that all isolates of cellulolytic bacteria can grow on cellulose fraction better than on delignified corncob, and alpha cellulose. The highest hydrolytic activity produced from cellulose fraction was by isolate C4-4, which liberated 3.50 g/l of total sugar. Ethanol can be produced by mixed culture of bacteria and yeast, but because of competitive growth, the fermentation only produced 0.39-0.47 g/l of ethanol.

  5. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid...

  6. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  7. Enzyme system comprising an enzyme bonded in a porous matrix

    Science.gov (United States)

    Ackerman, Eric [Richland, WA; Liu, Jun [West Richland, WA

    2010-12-07

    A protein system is described in which a protein is bound within a matrix material that has pores that are sized to achieve excellent properties such as: activity, protein density, and stability. In a preferred embodiment, the pore sizes range from 50 to 400 .ANG.. One protein that has demonstrated surprisingly good results in this system is OPH. This protein is known to degrade organophosphorus compounds such as are found in chemical weapons and pesticides. Novel methods of forming the protein system and methods of making OPH are also described.

  8. Cellulolytic Activity of Clostridium acetobutylicum.

    Science.gov (United States)

    Lee, S F; Forsberg, C W; Gibbins, L N

    1985-08-01

    Clostridium acetobutylicum NRRL B527 and ATCC 824 exhibited extracellular and cell-bound endoglucanase and cellobiase activities during growth in a chemically defined medium with cellobiose as the sole source of carbohydrate. For both strains, the endoglucanase was found to be mainly extracellular (70 to 90%) during growth in continuous or batch cultures with the pH maintained at 5.2, whereas the cellobiase was mainly cell associated (60 to 90%). During continuous cultivation of strain B527 with cellobiose as the limiting nutrient, maximum production of the endoglucanase and cellobiase occurred at pH values of 5.2 and 4.8, respectively. In the carbon-limited continuous cultures, strain 824 produced similar levels of endoglucanase, cellobiosidase, and cellobiase activities regardless of the carbon source used. However, in ammonium- or phosphate-limited cultures, with an excess of glucose, only 1/10 of the endoglucanase was produced, and neither cellobiosidase nor cellobiase activities were detectable. A crude extracellular enzyme preparation from strain B527 hydrolyzed carboxymethylcellulose and phosphoric acid-swollen cellulose readily and microcrystalline cellulose (A vicel) to a lesser extent. Glucose accounted for more than 90% of the reducing sugar produced by the hydrolysis of acid-swollen cellulose and Avicel. Strain B527 did not grow in medium with acid-swollen cellulose as the sole source of carbohydrate, although it grew readily on the products obtained by hydrolyzing the cellulose in vitro with a preparation of extracellular cellulase derived from the same organism.

  9. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  10. Enzymic hydrolysis of chlorella cells

    Energy Technology Data Exchange (ETDEWEB)

    Khraptsova, G.I.; Tsaplina, I.A.; Burdenko, L.G.; Khoreva, S.L.; Loginova, L.G.

    1981-01-01

    Treatment of C. ellipsoidea, C. pyrenoidosa, and C. vulgaris with cellulolytic enzymes (from Aspergillus terreus) and pectofoetidin p10x (from A. foetidus) resulted in the degradation and lysis of the algae cells. The cells were more sensitive to cellulase than to pectinase. The combination of both enzymes produced a synergistic effect on cell lysis.

  11. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. BRENDA, AMENDA and FRENDA: the enzyme information system in 2007.

    Science.gov (United States)

    Barthelmes, Jens; Ebeling, Christian; Chang, Antje; Schomburg, Ida; Schomburg, Dietmar

    2007-01-01

    The BRENDA (BRaunschweig ENzyme DAtabase) enzyme information system (http://www.brenda.uni-koeln.de) is the largest publicly available enzyme information system worldwide. The major parts of its contents are manually extracted from primary literature. It is not restricted to specific groups of enzymes, but includes information on all identified enzymes irrespective of the enzyme's source. The range of data encompasses functional, structural, sequence, localisation, disease-related, isolation, stability information on enzyme and ligand-related data. Each single entry is linked to the enzyme source and to a literature reference. Recently the data repository was complemented by text-mining data in AMENDA (Automatic Mining of ENzyme DAta) and FRENDA (Full Reference ENzyme DAta). A genome browser, membrane protein prediction and full-text search capacities were added. The newly implemented web service provides instant access to the data for programmers via a SOAP (Simple Object Access Protocol) interface. The BRENDA data can be downloaded in the form of a text file from the beginning of 2007.

  13. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Directory of Open Access Journals (Sweden)

    Chang Jui-Jen

    2012-07-01

    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  14. Mixed Enzyme Systems for Delignification of Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Elisa M. Woolridge

    2014-01-01

    Full Text Available The application of enzymes such as laccase and xylanase for the preparation of cellulose from lignocellulosic material is an option for those industries seeking to reduce the use of chlorine-containing bleach agents, thus minimizing the environmental impact of their processes. Mixed hydrolytic and oxidative enzyme systems have been well described in the context of biopulping, and thus provide good precedent regarding effectiveness, despite the susceptibility of xylanase to inactivation by laccase-generated oxidants. This paper examines the progress towards development of sequential and simultaneous mixed enzyme systems to accomplish delignification.

  15. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    Directory of Open Access Journals (Sweden)

    Adam J Book

    2016-06-01

    Full Text Available The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.

  16. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    Science.gov (United States)

    Book, Adam J; Lewin, Gina R; McDonald, Bradon R; Takasuka, Taichi E; Wendt-Pienkowski, Evelyn; Doering, Drew T; Suh, Steven; Raffa, Kenneth F; Fox, Brian G; Currie, Cameron R

    2016-06-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.

  17. Utilization of mixed cellulolytic microbes from termite extract, elephant faecal solution and buffalo ruminal fluid to increase in vitro digestibility of King Grass

    Directory of Open Access Journals (Sweden)

    Agung Prabowo

    2007-06-01

    Full Text Available Cellulose is a compound of plant cell walls which is difficult to be degraded because it composed of glucose monomers linked by β-(1.4-bound. It will be hydrolysed by cellulase enzyme secreted by cellulolytic microbes. The effective digestion of cellulose needs high activity of cellulase enzyme. This research aims to increase in vitro king grass digestibility utilizing mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid. Twelve syringes contained gas test media were randomly divided into four treatments based on sources of microbe (SM, namely: S (SM: cattle ruminal fluid [S], RGK (SM: mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid [RGK], with composition 1 : 1 : 1, S-RGK (SM: S + RGK, with composition 1:1, and TM (without given treatment microbe. Digestibility was measured using gas test method. Average of gas production treatment of S-RGK (70.2 + 0.6 ml was higher and significantly different (P<0.01 compared to treatment of S (60.3 + 0.8 ml, RGK (40.8 + 2.3 ml, and TM (13.3 + 2.0 ml. Utilization of mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid (RGK that combined with microbes of cattle ruminal fluid (S could increase in vitro digestibility of king grass.

  18. Development of a synchronous enzyme-reaction system for a highly sensitive enzyme immunoassay.

    Science.gov (United States)

    Inouye, Kuniyo; Ueno, Iori; Yokoyama, Shin-ichi; Sakaki, Toshiyuki

    2002-01-01

    A synchronous enzyme-reaction system using water-soluble formazan and a non-enzymatic electron mediator was developed and applied to an enzyme immunoassay (EIA). The reaction system consists of four steps: (I) dephosphorylation of NADP(+) to produce NAD(+) by alkaline phosphatase (ALP), (II) reduction of NAD(+) to produce NADH with oxidation of ethanol to yield acetaldehyde by alcohol dehydrogenase (ADH), (III) reduction of water-soluble tetrazolium salt (WST-1) to produce formazan by NADH via 1-methoxy-5-methyl-phenazinium methyl sulfate (PMS), and (IV) re-reduction of NAD(+) to produce NADH by ADH. During each cycle, one molecule of tetrazolium is converted to one molecule of formazan. The concentration of formazan during the reaction was given by second-order polynomials of the reaction time. Kinetic studies strongly suggested that the synchronous enzyme-reaction system had the potential to detect an analyte at the attomole level in EIA. On the basis of the kinetic studies, optimal conditions for EIA incorporating the synchronous system were examined. NADP(+) was purified thoroughly to remove minor traces of NAD(+) in the preparation, and an ADH preparation contaminated with the lowest level of ALP activity was used. When the synchronous system was applied to a sandwich-type EIA for human C-reactive protein, the protein was detected with a sensitivity of 50 attomole per well of a micro-titer plate (0.1 ml) in a 1-h reaction. In addition, EIA with water-soluble formazan showed a more quantitative and sensitive result than that with insoluble formazan. These findings indicated that the (WST-1)-PMS system introduced in this study has a great potential for highly sensitive enzyme immunoassay.

  19. Cellulolytic and xylanolytic potential of high β-glucosidase-producing Trichoderma from decaying biomass.

    Science.gov (United States)

    Okeke, Benedict C

    2014-10-01

    Availability, cost, and efficiency of microbial enzymes for lignocellulose bioconversion are central to sustainable biomass ethanol technology. Fungi enriched from decaying biomass and surface soil mixture displayed an array of strong cellulolytic and xylanolytic activities. Strains SG2 and SG4 produced a promising array of cellulolytic and xylanolytic enzymes including β-glucosidase, usually low in cultures of Trichoderma species. Nucleotide sequence analysis of internal transcribed spacer 2 (ITS2) region of rRNA gene revealed that strains SG2 and SG4 are closely related to Trichoderma inhamatum, Trichoderma piluliferum, and Trichoderma aureoviride. Trichoderma sp. SG2 crude culture supernatant correspondingly displayed as much as 9.84 ± 1.12, 48.02 ± 2.53, and 30.10 ± 1.11 units mL(-1) of cellulase, xylanase, and β-glucosidase in 30 min assay. Ten times dilution of culture supernatant of strain SG2 revealed that total activities were about 5.34, 8.45, and 2.05 orders of magnitude higher than observed in crude culture filtrate for cellulase, xylanase, and β-glucosidase, respectively, indicating that more enzymes are present to contact with substrates in biomass saccharification. In parallel experiments, Trichoderma species SG2 and SG4 produced more β-glucosidase than the industrial strain Trichoderma reesei RUT-C30. Results indicate that strains SG2 and SG4 have potential for low cost in-house production of primary lignocellulose-hydrolyzing enzymes for production of biomass saccharides and biofuel in the field.

  20. Enzyme-catalyzed reaction of voltammetric enzyme-linked immunoassay system based on OAP as substrate

    Institute of Scientific and Technical Information of China (English)

    张书圣; 陈洪渊; 焦奎

    1999-01-01

    The o-aminophenol (OAP)-H2O2-horseradish peroxidase (HRP) voltammetric enzyme-linked immunoassay new system has extremely high sensitivity. HRP can be measured with a detection limit of 6.0×10-(10) g/L and a linear range of 1.0×10-9—4.0×10-6 g/L. The pure product of H2O2 oxidizing OAP catalyzed by HRP was prepared with chemical method. The enzyme-catalyzed reaction has been investigated with electroanalytical chemistry, UV/Vis spectrum, IR spectrum, 13C NMR, 1H NMR, mass spectrum, elemental analysis, etc. Under the selected enzyme-catalyzed reaction conditions, the oxidation product of OAP with H2O2 catalyzed by HRP is 2-aminophe-noxazine-3-one. The processes of the enzyme-catalyzed reaction and the electroreduction of the product of the enzymecatalyzed reaction have been described.

  1. Integrated microdroplet-based system for enzyme synthesis and sampling

    Science.gov (United States)

    Lapierre, Florian; Best, Michel; Stewart, Robert; Oakeshott, John; Peat, Thomas; Zhu, Yonggang

    2013-12-01

    Microdroplet-based microfluidic devices are emerging as powerful tools for a wide range of biochemical screenings and analyses. Monodispersed aqueous microdroplets from picoliters to nanoliters in volume are generated inside microfluidic channels within an immiscible oil phase. This results in the formation of emulsions which can contain various reagents for chemical reactions and can be considered as discrete bioreactors. In this paper an integrated microfluidic platform for the synthesis, screening and sorting of libraries of an organophosphate degrading enzyme is presented. The variants of the selected enzyme are synthesized from a DNA source using in-vitro transcription and translation method. The synthesis occurs inside water-in-oil emulsion droplets, acting as bioreactors. Through a fluorescence based detection system, only the most efficient enzymes are selected. All the necessary steps from the enzyme synthesis to selection of the best genes (producing the highest enzyme activity) are thus integrated inside a single and unique device. In the second part of the paper, an innovative design of the microfluidic platform is presented, integrating an electronic prototyping board for ensuring the communication between the various components of the platform (camera, syringe pumps and high voltage power supply), resulting in a future handheld, user-friendly, fully automated device for enzyme synthesis, screening and selection. An overview on the capabilities as well as future perspectives of this new microfluidic platform is provided.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  6. Soil Enzyme Activities under Agroforestry Systems in Northern Jiangsu Province

    Institute of Scientific and Technical Information of China (English)

    Wan Fuxu; Chen Ping

    2004-01-01

    The authors presented the enzyme characteristics of catalase, sucrase, urease and alkaline phosphatase under agroforestry systems in northern Jiangsu Province. The results show that soil enzyme activities reduce gradually from top to bottom layer of the soil profile, and the fluctuations of catalase and urease are smaller than those of sucrase and alkaline phosphatase. Soil enzyme activities differe significantly in different samples, and the order is arranged as poplar-crop intercropping segment (A, D) > paulownia-crop intercropping segment (B, C) > CK. Furthermore, soil enzyme activities increase with intercropping age. On the other hand, in the same plot, there are closer relationships between enzymes in the soil samples. Catalase, alkaline phosphatase and urease are negatively related, while alkaline phosphatase and urease are positively related (except in samples B and C). In addition, the enzyme activities have a close relationship with the fertilizers. Catalase is positively correlated with the soil pH value (r = 0.854, 0.804, 0.078 and 0.082, respectively), and is negatively correlated with total N (r = -0.201, -0.529, -0.221 and -0.821, respectively), total P (r = -0.143, -0.213, -0.362 and -0.751, respectively) and available P (r = -0.339, -0.351, -0.576, and -0.676, respectively). Sucrase, urease and alkaline phosphatase are negatively correlated with the pH value, while positively correlated with the other fertilizers (r ≈ 1). The authors suggest that enzyme activity will be a great potential as an indicator of soil quality.

  7. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences.

    Science.gov (United States)

    Aurilia, V; Martin, J C; McCrae, S I; Scott, K P; Rincon, M T; Flint, H J

    2000-06-01

    Three enzymes carrying esterase domains have been identified in the rumen cellulolytic anaerobe Ruminococcus flavefaciens 17. The newly characterized CesA gene product (768 amino acids) includes an N-terminal acetylesterase domain and an unidentified C-terminal domain, while the previously characterized XynB enzyme (781 amino acids) includes an internal acetylesterase domain in addition to its N-terminal xylanase catalytic domain. A third gene, xynE, is predicted to encode a multidomain enzyme of 792 amino acids including a family 11 xylanase domain and a C-terminal esterase domain. The esterase domains from CesA and XynB share significant sequence identity (44%) and belong to carbohydrate esterase family 3; both domains are shown here to be capable of deacetylating acetylated xylans, but no evidence was found for ferulic acid esterase activity. The esterase domain of XynE, however, shares 42% amino acid identity with a family 1 phenolic acid esterase domain identified from Clostridum thermocellum XynZ. XynB, XynE and CesA all contain dockerin-like regions in addition to their catalytic domains, suggesting that these enzymes form part of a cellulosome-like multienzyme complex. The dockerin sequences of CesA and XynE differ significantly from those previously described in R. flavefaciens polysaccharidases, including XynB, suggesting that they might represent distinct dockerin specificities.

  8. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    Directory of Open Access Journals (Sweden)

    Lizeth Manuela Avellaneda-Torres

    2014-12-01

    Full Text Available A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP, Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS of ribosomal DNA for fungi. Multivariate statistical analysis (MVA was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  9. Genomics of aerobic cellulose utilization systems in actinobacteria.

    Directory of Open Access Journals (Sweden)

    Iain Anderson

    Full Text Available Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.

  10. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  11. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  12. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-10-04

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  13. Actinomycetes: A Source of Lignocellulolytic Enzymes

    Science.gov (United States)

    Saini, Anita; Aggarwal, Neeraj K.; Sharma, Anuja; Yadav, Anita

    2015-01-01

    Lignocellulose is the most abundant biomass on earth. Agricultural, forest, and agroindustrial activities generate tons of lignocellulosic wastes annually, which present readily procurable, economically affordable, and renewable feedstock for various lignocelluloses based applications. Lignocelluloses are the focus of present decade researchers globally, in an attempt to develop technologies based on natural biomass for reducing dependence on expensive and exhaustible substrates. Lignocellulolytic enzymes, that is, cellulases, hemicellulases, and lignolytic enzymes, play very important role in the processing of lignocelluloses which is prerequisite for their utilization in various processes. These enzymes are obtained from microorganisms distributed in both prokaryotic and eukaryotic domains including bacteria, fungi, and actinomycetes. Actinomycetes are an attractive microbial group for production of lignocellulose degrading enzymes. Various studies have evaluated the lignocellulose degrading ability of actinomycetes, which can be potentially implemented in the production of different value added products. This paper is an overview of the diversity of cellulolytic, hemicellulolytic, and lignolytic actinomycetes along with brief discussion of their hydrolytic enzyme systems involved in biomass modification. PMID:26793393

  14. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila

    Directory of Open Access Journals (Sweden)

    Anthi eKarnaouri

    2014-06-01

    Full Text Available The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Cellulolytic fungi represent a promising group of organisms, as they have evolved complex systems for adaptation to their natural habitat. The filamentous fungus Myceliophthora thermophila constitutes an exceptionally powerful cellulolytic microorganism that synthesizes a complete set of enzymes necessary for the breakdown of plant cell wall. The genome of this fungus has been recently sequenced and annotated, allowing systematic examination and identification of enzymes required for the degradation of lignocellulosic biomass. The genomic analysis revealed the existence of an expanded enzymatic repertoire including numerous cellulases, hemicellulases and enzymes with auxiliary activities, covering the most of the recognized CAZy families. Most of them were predicted to possess a secretion signal and undergo through post translational glycosylation modifications. These data offer a better understanding of activities embedded in fungal lignocellulose decomposition mechanisms and suggest that M. thermophila could be made usable as an industrial production host for cellulolytic and hemicellulolytic enzymes.

  15. The genome sequences of Cellulomonas fimi and "Cellvibrio gilvus" reveal the cellulolytic strategies of two facultative anaerobes, transfer of "Cellvibrio gilvus" to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov.

    Directory of Open Access Journals (Sweden)

    Melissa R Christopherson

    Full Text Available Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484(T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic "Cellvibrio gilvus" ATCC 13127(T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that "Cellvibrio gilvus" belongs to the genus Cellulomonas. We thus propose to assign "Cellvibrio gilvus" to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482(T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.

  16. Enzyme-Based Logic Systems for Information Processing

    CERN Document Server

    Katz, Evgeny

    2009-01-01

    We review enzymatic systems which involve biocatalytic reactions utilized for information processing (biocomputing). Extensive ongoing research in biocomputing, mimicking Boolean logic gates has been motivated by potential applications in biotechnology and medicine. Furthermore, novel sensor concepts have been contemplated with multiple inputs processed biochemically before the final output is coupled to transducing "smart-material" electrodes and other systems. These applications have warranted recent emphasis on networking of biocomputing gates. First few-gate networks have been experimentally realized, including coupling, for instance, to signal-responsive electrodes for signal readout. In order to achieve scalable, stable network design and functioning, considerations of noise propagation and control have been initiated as a new research direction. Optimization of single enzyme-based gates for avoiding analog noise amplification has been explored, as were certain network-optimization concepts. We review a...

  17. Nanolipoprotein particles comprising a natural rubber biosynthetic enzyme complex and related products, methods and systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoeprich, Paul D.; Whalen, Maureen

    2016-04-05

    Provided herein are nanolipoprotein particles that comprise a biosynthetic enzyme more particularly an enzyme capable of catalyzing rubber or other rubbers polymerization, and related assemblies, devices, methods and systems.

  18. Alternations of salivary antioxidant enzymes in systemic lupus erythematosus.

    Science.gov (United States)

    Zaieni, S H; Derakhshan, Z; Sariri, R

    2015-11-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic systemic inflammation. Oxidative stress may play a role in the pathogenesis of SLE. An increase in free radicals or an impaired antioxidant defense system in SLE causes oxidative stress. Therefore, oxidative damage plays an important role in the pathogenesis of SLE. Variations in antioxidant activity have been previously studied in serum of patients with this disease. However, salivary factors have not been evaluated. Considering that saliva, the noninvasive biological fluid, could be a reflection of the state of health, the purpose of this study was evaluation of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activity in the saliva of patients with SLE. During the course of the practical part of the project, 30 patients with SLE and 30 healthy controls were selected to donate their saliva samples. After centrifugation of un-stimulated saliva, biological activity of POD, CAT and SOD were evaluated on their appropriate substrates using spectrophotometric methods and the results were statistically analyzed. The results showed that activities of antioxidant enzymes SOD and CAT were significantly reduced in saliva of SLE patients as compared to controls. The results suggest that antioxidant status was impaired in the saliva of SLE patients, and antioxidant status of saliva could be one of the non-invasive markers for SLE.

  19. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  20. Enzyme-based logic systems for information processing.

    Science.gov (United States)

    Katz, Evgeny; Privman, Vladimir

    2010-05-01

    In this critical review we review enzymatic systems which involve biocatalytic reactions utilized for information processing (biocomputing). Extensive ongoing research in biocomputing, mimicking Boolean logic gates has been motivated by potential applications in biotechnology and medicine. Furthermore, novel sensor concepts have been contemplated with multiple inputs processed biochemically before the final output is coupled to transducing "smart-material" electrodes and other systems. These applications have warranted recent emphasis on networking of biocomputing gates. First few-gate networks have been experimentally realized, including coupling, for instance, to signal-responsive electrodes for signal readout. In order to achieve scalable, stable network design and functioning, considerations of noise propagation and control have been initiated as a new research direction. Optimization of single enzyme-based gates for avoiding analog noise amplification has been explored, as were certain network-optimization concepts. We review and exemplify these developments, as well as offer an outlook for possible future research foci. The latter include design and uses of non-Boolean network elements, e.g., filters, as well as other developments motivated by potential novel sensor and biotechnology applications (136 references).

  1. ENZYME KINETICS FOR SYSTEMS BIOLOGY : WHEN, WHY AND HOW

    NARCIS (Netherlands)

    Adamczyk, Malgorzata; van Eunen, Karen; Bakker, Barbara M.; Westerhoff, Hans V.; Jameson, D; Verma, M; Westerhoff, HV

    2011-01-01

    In vitro enzymatic assays of cell-free extracts offer an opportunity to assess in vivo enzyme concentrations. If performed under conditions that resemble the conditions in vivo, they may also reveal some of the capacities and properties of the same enzymes in vivo; we shall call this the ex vivo app

  2. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    Full Text Available Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs, carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.

  3. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M.; Negro, M. J.; Saez, R.; Martin, C.

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  4. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing.

    Science.gov (United States)

    Yamada, Ryosuke; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-11-01

    With the exhaustion of fossil fuels and with the environmental issues they pose, utilization of abundant lignocellulosic biomass as a feedstock for biofuels and bio-based chemicals has recently become an attractive option. Lignocellulosic biomass is primarily composed of cellulose, hemicellulose, and lignin and has a very rigid and complex structure. It is accordingly much more expensive to process than starchy grains because of the need for extensive pretreatment and relatively large amounts of cellulases for efficient hydrolysis. Efficient and cost-effective methods for the production of biofuels and chemicals from lignocellulose are required. A consolidated bioprocess (CBP), which integrates all biological steps consisting of enzyme production, saccharification, and fermentation, is considered a promising strategy for reducing production costs. Establishing an efficient CBP using lignocellulosic biomass requires both lignocellulose degradation into glucose and efficient production of biofuels or chemicals from glucose. With this aim, many researchers are attempting to endow selected microorganisms with lignocellulose-assimilating ability. In this review, we focus on studies aimed at conferring lignocellulose-assimilating ability not only to yeast strains but also to bacterial strains by recombinant technology. Recent developments in improvement of enzyme productivity by microorganisms and in improvement of the specific activity of cellulase are emphasized.

  5. Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro.

    Science.gov (United States)

    Ding, Dongqin; Liu, Yongfei; Xu, Yiran; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    L-Phenylalanine (L-Phe) is an important amino acid used in both food and medicinal applications. We developed an in vitro system that allowed a direct, quantitative investigation of phenylalanine biosynthesis in E. coli. Here, the absolute concentrations of six enzymes (AroK, AroL, AroA, AroC, PheA and TyrB) involved in the shikimate (SHIK) pathway were determined by a quantitative proteomics approach and in vitro enzyme titration experiments. The reconstitution of an in vitro reaction system for these six enzymes was established and their effects on the phenylalanine production were tested. The results showed that the yield of phenylalanine increased 3.0 and 2.1 times when the concentrations of shikimate kinase (AroL) and 5-enolpyruvoyl shikimate 3-phosphate (EPSP) synthase (AroA) were increased 2.5 times. Consistent results were obtained from in vivo via the overexpression of AroA in a phenylalanine-producing strain, and the titer of phenylalanine reached 62.47 g/l after 48 h cultivation in a 5-liter jar fermentor. Our quantitative findings provide a practical method to detect the potential bottleneck in a specific metabolic pathway to determine which gene products should be targeted to improve the yield of the desired product.

  6. Exploration of two-enzyme coupled catalysis system using scanning electrochemical microscopy.

    Science.gov (United States)

    Wu, Zeng-Qiang; Jia, Wen-Zhi; Wang, Kang; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-12-18

    In biological metabolism, a given metabolic process usually occurs via a group of enzymes working together in sequential pathways. To explore the metabolism mechanism requires the understanding of the multienzyme coupled catalysis systems. In this paper, an approach has been proposed to study the kinetics of a two-enzyme coupled reaction using SECM combining numerical simulations. Acetylcholine esterase and choline oxidase are immobilized on cysteamine self-assembled monolayers on tip and substrate gold electrodes of SECM via electrostatic interactions, respectively. The reaction kinetics of this two-enzyme coupled system upon various separation distance precisely regulated by SECM are measured. An overall apparent Michaelis-Menten constant of this enzyme cascade is thus measured as 2.97 mM at an optimal tip-substrate gap distance of 18 μm. Then, a kinetic model of this enzyme cascade is established for evaluating the kinetic parameters of individual enzyme by using the finite element method. The simulated results demonstrate the choline oxidase catalytic reaction is the rate determining step of this enzyme cascade. The Michaelis-Menten constant of acetylcholine esterase is evaluated as 1.8 mM. This study offers a promising approach to exploring mechanism of other two-enzyme coupled reactions in biological system and would promote the development of biosensors and enzyme-based logic systems.

  7. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.

    Science.gov (United States)

    Yang, Yuyi; Wei, Buqing; Zhao, Yuhua; Wang, Jun

    2013-02-01

    Azo dyes are toxic and carcinogenic and are often present in industrial effluents. In this research, azoreductase and glucose 1-dehydrogenase were coupled for both continuous generation of the cofactor NADH and azo dye removal. The results show that 85% maximum relative activity of azoreductase in an integrated enzyme system was obtained at the conditions: 1U azoreductase:10U glucose 1-dehydrogenase, 250mM glucose, 1.0mM NAD(+) and 150μM methyl red. Sensitivity analysis of the factors in the enzyme system affecting dye removal examined by an artificial neural network model shows that the relative importance of enzyme ratio between azoreductase and glucose 1-dehydrogenase was 22%, followed by dye concentration (27%), NAD(+) concentration (23%) and glucose concentration (22%), indicating none of the variables could be ignored in the enzyme system. Batch results show that the enzyme system has application potential for dye removal.

  8. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes.

    Science.gov (United States)

    Wei, Yongjun; Zhou, Haokui; Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.

  9. Aspartate aminotransferase – key enzyme in the human systemic metabolism

    Directory of Open Access Journals (Sweden)

    Dagmara Otto-Ślusarczyk

    2016-03-01

    Full Text Available Aspartate aminotransferase is an organ - nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms - cytoplasmic (AST1 and mitochondrial (AST2, that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys – 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  10. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009.

    Science.gov (United States)

    Chang, Antje; Scheer, Maurice; Grote, Andreas; Schomburg, Ida; Schomburg, Dietmar

    2009-01-01

    The BRENDA (BRaunschweig ENzyme DAtabase) (http://www.brenda-enzymes.org) represents the largest freely available information system containing a huge amount of biochemical and molecular information on all classified enzymes as well as software tools for querying the database and calculating molecular properties. The database covers information on classification and nomenclature, reaction and specificity, functional parameters, occurrence, enzyme structure and stability, mutants and enzyme engineering, preparation and isolation, the application of enzymes, and ligand-related data. The data in BRENDA are manually curated from more than 79,000 primary literature references. Each entry is clearly linked to a literature reference, the origin organism and, where available, to the protein sequence of the enzyme protein. A new search option provides the access to protein-specific data. FRENDA (Full Reference ENzyme DAta) and AMENDA (Automatic Mining of ENzyme DAta) are additional databases created by continuously improved text-mining procedures. These databases ought to provide a complete survey on enzyme data of the literature collection of PubMed. The web service via a SOAP (Simple Object Access Protocol) interface for access to the BRENDA data has been further enhanced.

  11. Standardization in enzymology—Data integration in the world׳s enzyme information system BRENDA

    Directory of Open Access Journals (Sweden)

    Ida Schomburg

    2014-05-01

    The BRENDA enzyme database and its addenda (AMENDA, FRENDA, DRENDA as the world׳s main information system for enzyme function and other properties makes use of standards as far as possible, but also provides non-standard names and other non-standard data, relating them to the appropriate standard. For example the enzyme nomenclature part of BRENDA includes about 82,000 synonyms for the classified enzymes, linking them to the standard accepted name. The definition of the biological enzyme sources are based on ontologies and controlled vocabularies. Kinetic data are reported together with the experimental conditions where available from the literature. For the enzyme ligands chemical structures allow an unambiguous identification.

  12. Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System : Equilibrium Kinetics and Mechanism of Enzyme I Phosphorylation

    NARCIS (Netherlands)

    Hoving, H; Lolkema, Juke S.; Robillard, George T.

    1981-01-01

    The phosphorylation of enzyme I from the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system was studied by means of isotope exchange between phosphoenolpyruvate and pyruvate. Experiments monitoring 1H-2H exchange showed that enzyme I phosphorylation is accompanied by the transf

  13. Cellulolytic Bacteria Associated with the Gut of Dendroctonus armandi Larvae (Coleoptera: Curculionidae: Scolytinae

    Directory of Open Access Journals (Sweden)

    Xia Hu

    2014-03-01

    Full Text Available The object of this study was to investigate the cellulolytic bacterial community in the intestine of the Chinese white pine beetle (Dendroctonus armandi larvae. A total of 91 cellulolytic bacteria were isolated and assigned to 11 genotypes using amplified ribosomal DNA restriction analysis (ARDRA. Partial 16S rDNA sequence analysis and morphological tests were used to assign the 11 representative isolates. The results showed that the isolates belonged to α-Proteobacteria, γ-Proteobacteria and Firmicutes. Members of γ-Proteobacteria were the most frequently represented species and accounted for 73.6% of all the cellulolytic bacteria. The majority of cellulolytic bacteria in D. armandi larva gut were identified as Serratia and accounted for 49.5%, followed by Pseudomonas, which accounted for 22%. In addition, members of Bacillus, Brevundimonas, Paenibacillus, Pseudoxanthomonas, Methylobacterium and Sphingomonas were found in the D. armandi larva gut. Brevundimonas kwangchunensis, Brevundimonas vesicularis, Methylobacterium populi and Pseudoxanthomonas mexicana were reported to be cellulolytic for the first time in this study. Information generated from the present study might contribute towards understanding the relationship between bark beetle and its gut flora.

  14. Effects of frying oil and Houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents

    Institute of Scientific and Technical Information of China (English)

    Ya-Yen Chen; Chiao-Ming Chen; Pi-Yu Chao; Tsan-Ju Chang; Jen-Fang Liu

    2005-01-01

    AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents.METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO)for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase Ⅱ enzymes, the rest of the enzymes tested represented phase Ⅰ enzymes.RESULTS: The oxidized frying oil feeding produced a significant increase in phase Ⅰ and Ⅱ enzyme systems,including the content of CYP450 and microsomal protein,and the activities of NADPH reductase, EROD, PROD, ANH,AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect.CONCLUSION: The OFO diet induces phases Ⅰ and Ⅱ enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system.

  15. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens.

    Science.gov (United States)

    Liu, Guodong; Zhang, Lei; Wei, Xiaomin; Zou, Gen; Qin, Yuqi; Ma, Liang; Li, Jie; Zheng, Huajun; Wang, Shengyue; Wang, Chengshu; Xun, Luying; Zhao, Guo-Ping; Zhou, Zhihua; Qu, Yinbo

    2013-01-01

    Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species.

  16. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens.

    Directory of Open Access Journals (Sweden)

    Guodong Liu

    Full Text Available Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species.

  17. Isolation and Identification of Cellulolytic Bacteria from the Gut of Three Phytophagus Insect Species

    Directory of Open Access Journals (Sweden)

    Rajib Kumar Shil

    2014-12-01

    Full Text Available The cellulolytic bacteria from the gut of three different phytophagous insects were studied to isolate novel cellulolytic organism for biofuel industry. Among the threse, gut of P. quatuordecimpunctata larvae contained both highest no of total bacterial count (6.8x107CFU/gut and cellulolytic bacteria (5.42x103CFU/gut. Fifteen different isolates were obtained from the gut of O. velox, A. miliarisand P. quatuordecimpunctata. All the isolates produced clear zone in CMC medium staining with Congo red. The isolates included Gram positive Enterococcus, Microbacterium and Gram negative Aeromonas, Erwinia, Serretia, Flavobacterium, Acenitobacter, Klebsiella, Yersinia, Xenorhabdus, Psedomonas and Photorhabdus. Out of the fifteen isolated and identified bacterial species, twelve bacterial species were novel being reported for first time as having cellulase activity.

  18. Unique stress response to the lactoperoxidase-thiocyanate enzyme system in Escherichia coli.

    Science.gov (United States)

    Sermon, Jan; Vanoirbeek, Kristof; De Spiegeleer, Philipp; Van Houdt, Rob; Aertsen, Abram; Michiels, Chris W

    2005-03-01

    Using a differential fluorescence induction approach, we screened a promoter trap library constructed in a vector with a promoterless gfp gene for Escherichia coli MG1655 promoters that are induced upon challenge with the antimicrobial lactoperoxidase-thiocyanate enzyme system. None of the thirteen identified lactoperoxidase-inducible open reading frames was inducible by H(2)O(2) or by the superoxide generator plumbagin. However, analysis of specific promoters of known stress genes showed some of these, including recA, dnaK and sodA, to be inducible by the lactoperoxidase-thiocyanate enzyme system. The results show that the lactoperoxidase-thiocyanate enzyme system elicits a distinct stress response different from but partly overlapping other oxidative stress responses. Several of the induced genes or pathways may be involved in bacterial defense against the toxic effects of the lactoperoxidase-thiocyanate enzyme system.

  19. Technique for preparation of anaerobic microbes: Rodshaped cellulolytic bacteria

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2001-10-01

    Full Text Available Preparation of anaerobic-rod cellulolytic bacteria with coating technique has been conducted. Steps of the processes involved were cultivation, coating, evaporation, and drying. Coating agent used was Gum Arabic, and drying techniquesconducted were freeze drying and sun drying. pH of culture media was firstly optimized to obtain the maximal population ofbacteria. Both coated and uncoated preparates were subjected to drying. Morphological and Gram type identifications showed that uncoated preparate dried with freeze drying is not contaminated (ie. all bacteria are rod shape with Gram-negative type while the one dried with sun drying is not morphologically pure (ie. containing of both rod and coccus shapes with Gram negative and positive. The coated preparates dried by both freeze and sun drying, were not contaminated (ie. all are rods with Gram-negative. The coating and drying processes decreased viability of preparates significantly. However, the decreasing of viability of coated preparate are lower than uncoated preparate (ie. 89 vs. 97%. Total count of bacteria in sun-drying coated preparate are higher (P<0.05 than the uncoated preparate (ie. 3.38 x 1010 vs. 1.97 x 1010 colony/g DM. Activity of sun-drying coated preparate to digest elephant grass and rice straw was higher (P<0.01 than the sun-drying uncoated preparate with the in vitro DMD values were 42.7 vs. 35.5% for elephant grass substrate and 29.3 vs. 24.6% for rice straw substrate. Therefore, it is concluded that coating technique has a positive effects on the preparation of rumen bacteria.

  20. Isolation and characterization of cellulolytic bacteria from the Stain house Lake, Antarctica.

    Science.gov (United States)

    Melo, Itamar S; Zucchi, Tiago D; Silva, Rafael E; Vilela, Elke S D; Sáber, Mirian Lobo; Rosa, Luiz H; Pellizari, Vivian H

    2014-07-01

    The main aim was to evaluate the occurrence of cellulolytic bacteria from the Stain house Lake, located at Admiralty Bay, Antarctica. Thick cotton string served as a cellulose bait for the isolation of bacteria. A total of 52 bacterial isolates were recovered and tested for their cellulase activity, and two of them, isolates CMAA 1184 and CMAA 1185, showed significant cellulolytic activity on carboxymethylcellulose agar plates. Phylogenetic analysis placed the isolates into the Bacillus 16S ribosomal RNA gene subclade. Both isolates produced a cold-active cellulase which may play a crucial role in this extreme environment.

  1. Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum.

    Science.gov (United States)

    Hu, Yibo; Xue, Haizhao; Liu, Guodong; Song, Xin; Qu, Yinbo

    2015-06-01

    Native lignocellulolytic enzyme systems secreted by filamentous fungi can be further optimized by protein engineering or supplementation of exogenous enzyme components. We developed a protein production and evaluation system in cellulase-producing fungus Penicillium oxalicum. First, by deleting the major amylase gene amy15A, a strain Δ15A producing few extracellular proteins on starch was constructed. Then, three lignocellulolytic enzymes (BGL4, Xyn10B, and Cel12A) with originally low expression levels were successfully expressed with selected constitutive promoters in strain Δ15A. BGL4 and Cel12A overexpression resulted in increased specific filter paper activity (FPA), while the overexpression of Xyn10B improved volumetric FPA but not specific FPA. By switching the culture medium, this platform is convenient to produce originally low-expressed lignocellulolytic enzymes in relatively high purities on starch and to evaluate the effect of their supplementation on the performance of a complex cellulase system on cellulose.

  2. Enzyme catalyzed electricity-driven water softening system.

    Science.gov (United States)

    Arugula, Mary A; Brastad, Kristen S; Minteer, Shelley D; He, Zhen

    2012-12-10

    Hardness in water, which is caused by divalent cations such as calcium and magnesium ions, presents a major water quality problem. Because hard water must be softened before use in residential applications, there is great interest in the saltless water softening process because, unlike ion exchange softeners, it does not introduce additional ions into water. In this study, a saltless hardness removal driven by bioelectrochemical energy produced through enzymatic oxidation of glucose was proposed and investigated. Glucose dehydrogenase was coated on a carbon electrode to catalyze glucose oxidation in the presence of NAD⁺ as a cofactor/mediator and methylene green as an electrocatalyst. The results showed that electricity generation stimulated hardness removal compared with non-electricity conditions. The enzymatic water softener worked upon a 6h batch operation per day for eight days, and achieved an average hardness removal of 46% at a high initial concentration of 800 mg/L as CaCO₃. More hardness was removed at a lower initial concentration. For instance, at 200mg/L as CaCO₃ the enzymatic water softener removed 76.4±4.6% of total hardness. The presence of magnesium ions decreased hardness removal because of its larger hydrated radius than calcium ions. The enzymatic water softener removed 70-80% of total hardness from three actual hard water samples. These results demonstrated a proof-of-concept that enzyme catalyzed electricity generation can be used to soften hard water.

  3. Development of a Commerical Enzyme System for Lignocellulosic Biomass Saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Incorporated, San Francisco, CA (United States)

    2011-02-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  4. Insect-derived enzymes: a treasure for industrial biotechnology and food biotechnology.

    Science.gov (United States)

    Mika, Nicole; Zorn, Holger; Rühl, Martin

    2013-01-01

    Insects are the most diverse group of organisms on earth, colonizing almost every ecological niche of the planet. To survive in various and sometimes extreme habitats, insects have established diverse biological and chemical systems. Core components of these systems are enzymes that enable the insects to feed on diverse nutrient sources. The enzymes are produced by either the insects themselves (homologous) or by symbiotic organisms located in the insects' bodies or in their nests (heterologous). The use of these insect-associated enzymes for applications in the fields of food biotechnology and industrial (white) biotechnology is gaining more and more interest. Prominent examples of insect-derived enzymes include peptidases, amylases, lipases, and β-D-glucosidases. Highly potent peptidases for the degradation of gluten, a storage protein that can cause intestinal disorders, may be received from grain pests. Several insects, such as bark and ambrosia beetles and termites, are able to feed on wood. In the field of white biotechnology, their cellulolytic enzyme systems of mainly endo-1,4-β-D-glucanases and β-D-glucosidases can be employed for saccharification of the most prominent polymer on earth-cellulose.

  5. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.

  6. Determination of the cellulolytic activities of microorganisms isolated from poultry litter for sawdust degradation

    Directory of Open Access Journals (Sweden)

    Akpomie O.OF

    2013-03-01

    Full Text Available Cellulolytic activities of bacterial and fungal isolates obtained from poultry droppings were determined using the ability of each isolate to produce clear zones on Carboxyl Methyl Cellulose Agar plates. The bacterial isolates were Klebsiella, Streptococcus, Celulomonas, Escherichia coli and Micrococus species. The cellulolytic counts ranged from 5.02 x 104 + 3.42 to 7.20 x 109 + 6.12 cfu/g. The cellulolytic activities of the bacterial isolates ranged from 0.04 to 0.26 iu/m with Cellulomonas having the highest cellulose activity. The fungal isolates were Aspergillus niger, Mucor mucedo, Trichoderma sp. and Penicllium chrysogenum with cellulose activities of 0.24 + 0.021 0.19 + 0.031, 0.23 + 0.05 and 0.23 + 0.028iu/ml respectively. All the isolates were able to degrade the sawdust to varying extent. The percentage degradation was highest with Micrococcus sp. (78.20% and least with Trichoderma sp. (65.83%. The study shows that is a potential source of cellulolytic microorganisms which could be employed in the degradation of sawdust.

  7. Recombinant host cells and nucleic acid constructs encoding polypeptides having cellulolytic enhancing activity

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Kirk; Kramer, Randall

    2017-03-28

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Sample handling factors affecting the enumeration of lactobacilli and cellulolytic bacteria in equine feces

    Science.gov (United States)

    The objectives were to compare media types and evaluate the effects of fecal storage time and temperature on the enumeration of cellulolytic bacteria and lactobacilli from horses. Fecal samples were collected from horses (n = 3) and transported to the lab (CO2, 37 ºC, 0.5 h). The samples were assign...

  9. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays.

    Science.gov (United States)

    Barrientos, Antoni; Fontanesi, Flavia; Díaz, Francisca

    2009-10-01

    The oxidative phosphorylation (OXPHOS) system consists of five multimeric complexes embedded in the mitochondrial inner membrane. They work in concert to drive the aerobic synthesis of ATP. Mitochondrial and nuclear DNA mutations affecting the accumulation and function of these enzymes are the most common cause of mitochondrial diseases and have also been associated with neurodegeneration and aging. For this reason, several approaches for the assessment of the OXPHOS system enzymes have been developed. Based on the methods described elsewhere, the assays describe methods that form a biochemical characterization of the OXPHOS system in cells and mitochondria isolated from cultured cells or tissues.

  10. Screening for cellulose and hemicellulose degrading enzymes from the fungal genus Ulocladium

    DEFF Research Database (Denmark)

    Pedersen, Mads; Hollensted, Morten; Lange, L.

    2009-01-01

    The fungal genus Ulocladium consists mostly of saprotrophic species and can readily be isolated from dead vegetation, rotten wood. paper, textiles and other cellulose containing materials. Thus, they must produce cellulolytic and hemicellulolytic enzymes. In this study fifty Ulocladium strains from...

  11. FERROFLUIDS INFLUENCE ON DEHYDROGENASES ACTIVITY IN CELLULOLYTIC FUNGUS CHAETOMIUM GLOBOSUM

    Directory of Open Access Journals (Sweden)

    Alexandru Manoliu

    2003-08-01

    Different results were noticed for different ferrofluids concentrations: 20, 40, 60, 80 and 100 μl/L. Inhibitory or stimulatory ferrofluids effect was obtained depending on the nature of the investigated enzyme.

  12. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production.

    Science.gov (United States)

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants.

  13. Topography and function of androgen-metabolizing enzymes in the central nervous system.

    Science.gov (United States)

    Tsuruo, Yoshihiro

    2005-03-01

    The present review describes concisely the topography and function of the three androgen-metabolizing enzymes, namely aromatase, 5alpha-reductase and 3alpha-hydroxysteroid dehydrogenase, in the central nervous system (CNS). Aromatase, estrogen synthetase, is the key enzyme for converting androgens to estrogens. Aromatase is indispensable for the sexual differentiation of the brain and the enzyme activity and expression of aromatase are high during the critical period of neural development, which extends from the late embryonal to the early neonatal period in rodents. Aromatase is expressed in neurons within specific hypothalamic and limbic regions. The locations of aromatase-immunoreactive neurons are divided into three groups according to the period of enzyme expression. Steroid 5alpha-reductase converts a number of steroids with a C3 ketone group and a C4-C5 double bond (delta4; androgens, progestins and glucocorticoids) to their 5alpha-reduced metabolites. Two isoforms of 5alpha-reductase are found and type 1 is predominant in neural tissues. The enzyme activity of 5alpha-reductase is found widely in the CNS and is high in white matter regions. The enzyme expression of 5alpha-reductase peaks during the late embryonic period. 3alpha-Hydroxysteroid dehydrogenase is the oxidoreductase that interconverts 3-ketosteroids to 3alpha-hydroxysteroids. Four isozymes have been found in humans and only one type has been found in rats. The enzyme converts 5alpha-reduced steroids (e.g. 5alpha-dihydroprogesterone) to tetrahydrosteroids (e.g. 3alpha,5alpha-tetrahydroprogesterone). The latter steroid is a potent stimulator of the GABA(A) receptor. The activity of 3alpha-hydroxysteroid dehydrogenase is high during the first 1-2 postnatal weeks, decreases with development and this enzyme is highly expressed in astrocytes.

  14. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system.

    Science.gov (United States)

    Asgher, Muhammad; Bhatti, Haq Nawaz; Ashraf, Muhammad; Legge, Raymond L

    2008-11-01

    Increasing discharge and improper management of liquid and solid industrial wastes have created a great concern among industrialists and the scientific community over their economic treatment and safe disposal. White rot fungi (WRF) are versatile and robust organisms having enormous potential for oxidative bioremediation of a variety of toxic chemical pollutants due to high tolerance to toxic substances in the environment. WRF are capable of mineralizing a wide variety of toxic xenobiotics due to non-specific nature of their extracellular lignin mineralizing enzymes (LMEs). In recent years, a lot of work has been done on the development and optimization of bioremediation processes using WRF, with emphasis on the study of their enzyme systems involved in biodegradation of industrial pollutants. Many new strains have been identified and their LMEs isolated, purified and characterized. In this review, we have tried to cover the latest developments on enzyme systems of WRF, their low molecular mass mediators and their potential use for bioremediation of industrial pollutants.

  15. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems

    Science.gov (United States)

    López-Mondéjar, Rubén; Zühlke, Daniela; Becher, Dörte; Riedel, Katharina; Baldrian, Petr

    2016-04-01

    Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, β-glucosidases, endoxylanases, β-xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.

  16. The EnzymeTracker: an open-source laboratory information management system for sample tracking

    Directory of Open Access Journals (Sweden)

    Triplet Thomas

    2012-01-01

    Full Text Available Abstract Background In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. Results In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. Conclusions The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50

  17. The EnzymeTracker: an open-source laboratory information management system for sample tracking

    Science.gov (United States)

    2012-01-01

    Background In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. Results In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. Conclusions The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50 scientists. The EnzymeTracker is

  18. On the role of phospholipids in the cytochrome P450 enzyme system.

    NARCIS (Netherlands)

    Balvers, W.G.

    1994-01-01

    The cytochrome P450 enzyme system is involved in the metabolism and elimination of an almost unlimited number of endogenous and exogenous substrates. Biotransformation by cytochromes P450 plays a role in the conversion xenobiotics into more hydrophilic products. Generally, this process of biotransfo

  19. A new concept in hybridization: Bromelain enzyme for deproteinizing dentin before application of adhesive system

    Directory of Open Access Journals (Sweden)

    Raad Niama Dayem

    2013-01-01

    Full Text Available Objective: The objective of this study is to assess the deproteinizing effect of bromelain enzyme and compare it with neodymium-doped yttrium aluminum garnet (Nd:YAG laser and 10% sodium hypochlorite (NaOCl by using scanning electron microscope (SEM and polarized microscope. Materials and Methods: A total of 60 extracted human upper premolars were selected to be given standardized buccal and lingual class V cavities. The teeth were divided into three groups each one consisted of 20 teeth. Thirty teeth were recruited for SEM study and the other 30 for polarized microscope. Group 1: Teeth were deproteinized with Nd:YAG laser, Group 2: Teeth were deproteinized with bromelain enzyme and Group 3: Teeth were deproteinized with 10% NaOCl. Results and Conclusions: Application of bromelain enzyme has led to removing collagen network and significantly decreased the global leakage scores of the adhesive system.

  20. Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls.

    Science.gov (United States)

    Sylvestre, Michel

    2013-03-01

    The fate of polychlorinated biphenyls (PCBs) in soil is driven by a combination of interacting biological processes. Several investigations have brought evidence that the rhizosphere provides a remarkable ecological niche to enhance the PCB degradation process by rhizobacteria. The bacterial oxidative enzymes involved in PCB degradation have been investigated extensively and novel engineered enzymes exhibiting enhanced catalytic activities toward more persistent PCBs have been described. Furthermore, recent studies suggest that approaches involving processes based on plant-microbe associations are very promising to remediate PCB-contaminated sites. In this review emphasis will be placed on the current state of knowledge regarding the strategies that are proposed to engineer the enzymes of the PCB-degrading bacterial oxidative pathway and to design PCB-degrading plant-microbe systems to remediate PCB-contaminated soil.

  1. Enzyme- and affinity biomolecule-mediated polymerization systems for biological signal amplification and cell screening.

    Science.gov (United States)

    Malinowska, Klara H; Nash, Michael A

    2016-06-01

    Enzyme-mediated polymerization and polymerization-based signal amplification have emerged as two closely related techniques that are broadly applicable in the nanobio sciences. We review recent progress on polymerization systems mediated by biological molecules (e.g., affinity molecules and enzymes), and highlight newly developed formats and configurations of these systems to perform such tasks as non-instrumented biodetection, synthesis of core-shell nanomaterials, isolation of rare cells, and high-throughput screening. We discuss useful features of biologically mediated polymerization systems, such as multiple mechanisms of amplification (e.g., enzymatic, radical chain propagation), and the ability to localize structures at interfaces and at cell surfaces with microscopic spatial confinement. We close with a perspective on desirable improvements that need to be addressed to adapt these molecular systems to future applications.

  2. Hepatoprotective effects of Nigella sativa L and Urtica dioica L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats

    Institute of Scientific and Technical Information of China (English)

    Mehmet Kanter; Omer Coskun; Mustafa Budancamanak

    2005-01-01

    AIM: To investigate the effects of Nigella sativa L (NS)and Urtica dioica L (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats.METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals.All groups received CCl4 (0.8 mL/kg of body weight, sc,twice a week for 60 d). Tn addition, B, C and D groups also received daily J.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand,received only 2 mL/kg normal saline solution for 60 d.Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment.RESULTS: The CCl4 treatment for 60 d increased thelipid peroxidation and liver enzymes,and also decreasedthe antioxidant enzyme levels. NS or UD treatment (aloneor combination) for 60 d decreased the elevated lipidperoxidation and liver enzyme levels and also increasedthe reduced antioxidant enzyme levels.The weight ofrats decreased in group A,and increased in groups B, Cand D.CONCLUSION: NS and UD decrease the lipid peroxidation and liver enzymes, and increase the antioxidant defense system activity in the CCl4-treated rats.

  3. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  4. Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.).

    Science.gov (United States)

    Lü, Yucai; Li, Ning; Yuan, Xufeng; Hua, Binbin; Wang, Jungang; Ishii, Masaharu; Igarashi, Yasuo; Cui, Zongjun

    2013-12-01

    The effect of a non-cellulolytic bacterium W2-10 (Geobacillus sp.) on the cellulose-degrading activity of a cellulolytic bacterium CTL-6 (Clostridium thermocellum) was determined using cellulose materials (paper and straw) in peptone cellulose solution (PCS) medium under aerobic conditions. The results indicated that in the co-culture, addition of W2-10 resulted in a balanced medium pH, and may provide the required anaerobic environment for CTL-6. Overall, addition of W2-10 was beneficial to CTL-6 growth in the adverse environment of the PCS medium. In co-culture with W2-10, the CTL-6 cellulose degradation efficiency of filter paper and alkaline-treated wheat straw significantly increased up to 72.45 and 37.79 %, respectively. The CMCase activity and biomass of CTL-6 also increased from 0.23 U ml(-1) and 45.1 μg ml(-1) (DNA content) up to 0.47 U ml(-1) and 112.2 μg ml(-1), respectively. In addition, co-culture resulted in accumulation of acetate and propionate up to 4.26 and 2.76 mg ml(-1). This was a respective increase of 2.58 and 4.45 times, in comparison to the monoculture with CTL-6.

  5. Oxidative stress and the antioxidant enzyme system in the developing brain

    Directory of Open Access Journals (Sweden)

    So-Yeon Shim

    2013-03-01

    Full Text Available Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide (O2&#8226;-, hydroxyl radical (OH&#8226;, and hydrogen peroxide (H2O2. Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx, is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.

  6. Application of thermophilic enzymes and water jet system to cassava pulp.

    Science.gov (United States)

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products.

  7. Enzyme kinetics and transport in a system crowded by mobile macromolecules.

    Science.gov (United States)

    Echeverria, Carlos; Kapral, Raymond

    2015-11-21

    The dynamics of an elastic network model for the enzyme 4-oxalocrotonate tautomerase is studied in a system crowded by mobile macromolecules, also modeled by elastic networks. The system includes a large number of solvent molecules, as well as substrate and product molecules which undergo catalytic reactions with this hexameric protein. The time evolution of the entire system takes place through a hybrid dynamics that combines molecular dynamics for solute species and multiparticle collision dynamics for the solvent. It is shown that crowding leads to subdiffusive dynamics for the protein, in accord with many studies of diffusion in crowded environments, and increases orientational relaxation times. The enzyme reaction kinetics is also modified by crowding. The effective Michaelis constant decreases with crowding volume fraction, and this decrease is attributed to excluded volume effects, which dominate over effects due to reduced substrate diffusion that would cause the Michaelis constant to increase.

  8. Enzyme-Assisted Extraction of Polyphenols From Rose (Rosa Damascena Mill.) Petals

    OpenAIRE

    Kalcheva-Karadzhova Krasimira; Shikov Vasil; Mihalev Kiril; Dobrev Georgi; Ludneva Danka; Penov Nikolai

    2014-01-01

    : The efficiency of enzyme-assisted extraction for the recovery of polyphenols from rose (Rosa damascena Mill.) petals was evaluated performing a simplex centroid experimental design for mixture with three components (pectinolytic, cellulolytic and hemicellulolytic preparation). The ternary enzyme combinations leaded to the highest contents of total polyphenols, reaching 43% higher average value as compared to the control (without enzymatic treatment) sample. Enzymatic treatments also enhance...

  9. Highlighting the Need for Systems-Level Experimental Characterization of Plant Metabolic Enzymes.

    Science.gov (United States)

    Engqvist, Martin K M

    2016-01-01

    The biology of living organisms is determined by the action and interaction of a large number of individual gene products, each with specific functions. Discovering and annotating the function of gene products is key to our understanding of these organisms. Controlled experiments and bioinformatic predictions both contribute to functional gene annotation. For most species it is difficult to gain an overview of what portion of gene annotations are based on experiments and what portion represent predictions. Here, I survey the current state of experimental knowledge of enzymes and metabolism in Arabidopsis thaliana as well as eleven economically important crops and forestry trees - with a particular focus on reactions involving organic acids in central metabolism. I illustrate the limited availability of experimental data for functional annotation of enzymes in most of these species. Many enzymes involved in metabolism of citrate, malate, fumarate, lactate, and glycolate in crops and forestry trees have not been characterized. Furthermore, enzymes involved in key biosynthetic pathways which shape important traits in crops and forestry trees have not been characterized. I argue for the development of novel high-throughput platforms with which limited functional characterization of gene products can be performed quickly and relatively cheaply. I refer to this approach as systems-level experimental characterization. The data collected from such platforms would form a layer intermediate between bioinformatic gene function predictions and in-depth experimental studies of these functions. Such a data layer would greatly aid in the pursuit of understanding a multiplicity of biological processes in living organisms.

  10. A novel pH–enzyme-dependent mesalamine colon-specific delivery system

    OpenAIRE

    Jin L; Ding Y; Zhang Y; Xu X; Cao Q

    2016-01-01

    Lei Jin, Yi-cun Ding, Yu Zhang, Xiao-qing Xu, Qin Cao Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China Abstract: The aim of the present study was to design a new pH–enzyme double-dependent mesalamine colon-specific delivery system. The drug release behaviors in vitro and pharmacokinetics and biodistribution in vivo were further evaluated. The mean particle diameters of mesal...

  11. Role of porins in sensitivity of Escherichia coli to antibacterial activity of the lactoperoxidase enzyme system.

    Science.gov (United States)

    De Spiegeleer, Philipp; Sermon, Jan; Vanoirbeek, Kristof; Aertsen, Abram; Michiels, Chris W

    2005-07-01

    Lactoperoxidase is an enzyme that contributes to the antimicrobial defense in secretory fluids and that has attracted interest as a potential biopreservative for foods and other perishable products. Its antimicrobial activity is based on the formation of hypothiocyanate (OSCN-) from thiocyanate (SCN-), using H2O2 as an oxidant. To gain insight into the antibacterial mode of action of the lactoperoxidase enzyme system, we generated random transposon insertion mutations in Escherichia coli MG1655 and screened the resultant mutants for an altered tolerance of bacteriostatic concentrations of this enzyme system. Out of the ca. 5,000 mutants screened, 4 showed significantly increased tolerance, and 2 of these had an insertion, one in the waaQ gene and one in the waaO gene, whose products are involved in the synthesis of the core oligosaccharide moiety of lipopolysaccharides. Besides producing truncated lipopolysaccharides and displaying hypersensitivity to novobiocin and sodium dodecyl sulfate (SDS), these mutants were also shown by urea-SDS-polyacrylamide gel electrophoresis analysis to have reduced amounts of porins in their outer membranes. Moreover, they showed a reduced degradation of p-nitrophenyl phosphate and an increased resistance to ampicillin, two indications of a decrease in outer membrane permeability for small hydrophilic solutes. Additionally, ompC and ompF knockout mutants displayed levels of tolerance to the lactoperoxidase system similar to those displayed by the waa mutants. These results suggest that mutations which reduce the porin-mediated outer membrane permeability for small hydrophilic molecules lead to increased tolerance to the lactoperoxidase enzyme system because of a reduced uptake of OSCN-.

  12. Cloning of novel cellulases from cellulolytic fungi: heterologous expression of a family 5 glycoside hydrolase from Trametes versicolor in Pichia pastoris.

    Science.gov (United States)

    Salinas, Alejandro; Vega, Marcela; Lienqueo, María Elena; Garcia, Alejandro; Carmona, Rene; Salazar, Oriana

    2011-12-10

    Total cDNA isolated from cellulolytic fungi cultured in cellulose was examined for the presence of sequences encoding for endoglucanases. Novel sequences encoding for glycoside hydrolases (GHs) were identified in Fusarium oxysporum, Ganoderma applanatum and Trametes versicolor. The cDNA encoding for partial sequences of GH family 61 cellulases from F. oxysporum and G. applanatum shares 58 and 68% identity with endoglucanases from Glomerella graminicola and Laccaria bicolor, respectively. A new GH family 5 endoglucanase from T. versicolor was also identified. The cDNA encoding for the mature protein was completely sequenced. This enzyme shares 96% identity with Trametes hirsuta endoglucanase and 22% with Trichoderma reesei endoglucanase II (EGII). The enzyme, named TvEG, has N-terminal family 1 carbohydrate binding module (CBM1). The full length cDNA was cloned into the pPICZαB vector and expressed as an active, extracellular enzyme in the methylotrophic yeast Pichia pastoris. Preliminary studies suggest that T. versicolor could be useful for lignocellulose degradation.

  13. Determining Enzyme Kinetics for Systems Biology with Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Johann J. Eicher

    2012-11-01

    Full Text Available Enzyme kinetics for systems biology should ideally yield information about the enzyme’s activity under in vivo conditions, including such reaction features as substrate cooperativity, reversibility and allostery, and be applicable to enzymatic reactions with multiple substrates. A large body of enzyme-kinetic data in the literature is based on the uni-substrate Michaelis–Menten equation, which makes unnatural assumptions about enzymatic reactions (e.g., irreversibility, and its application in systems biology models is therefore limited. To overcome this limitation, we have utilised NMR time-course data in a combined theoretical and experimental approach to parameterize the generic reversible Hill equation, which is capable of describing enzymatic reactions in terms of all the properties mentioned above and has fewer parameters than detailed mechanistic kinetic equations; these parameters are moreover defined operationally. Traditionally, enzyme kinetic data have been obtained from initial-rate studies, often using assays coupled to NAD(PH-producing or NAD(PH-consuming reactions. However, these assays are very labour-intensive, especially for detailed characterisation of multi-substrate reactions. We here present a cost-effective and relatively rapid method for obtaining enzyme-kinetic parameters from metabolite time-course data generated using NMR spectroscopy. The method requires fewer runs than traditional initial-rate studies and yields more information per experiment, as whole time-courses are analyzed and used for parameter fitting. Additionally, this approach allows real-time simultaneous quantification of all metabolites present in the assay system (including products and allosteric modifiers, which demonstrates the superiority of NMR over traditional spectrophotometric coupled enzyme assays. The methodology presented is applied to the elucidation of kinetic parameters for two coupled glycolytic enzymes from Escherichia coli

  14. Evaluation of efficacy of four commercial enzyme-based cleaners of ultrafiltration systems.

    Science.gov (United States)

    Smith, K E; Bradley, R L

    1987-06-01

    Use of UF and RO in the dairy industry is rapidly expanding. Because the dairy industry demands high levels of cleanliness, this new technology requires close evaluation to assure adherence to these standards. Efficacy of four commercial enzyme-based cleaners (pH 7.0 to 8.4) in UF systems was determined by microbiological evaluation and permeate flux restoration. The UF system containing two polysulfone UF membranes in parallel, was soiled by recycling 380 L of sweet whey (40 degrees C) for 2.0 h followed by concentrating whey for .5 h. The cleaning cycle consisted of acid cleaner (.5 h, 40 degrees C), followed by enzyme cleaner (10.0 h, 40 degrees C), and rinsing (2.0 h, 40 degrees C). A chlorine sanitizer was circulated (5 min, 40 degrees C) and the unit containing sanitizing solution left idle overnight. Flux was determined and swabs and rinse water samples were taken immediately after soiling, after cleaning, and the next morning to check sanitizing. The four enzyme-based cleaners were unsatisfactory when microbiological criteria were considered. Loss of sanitizer strength and problems with yeast and especially mold growth over time also indicated lack of effective cleaning. Flux, however, was restored easily and did not correlate with efficacy of cleaning based on numbers of microorganisms remaining.

  15. Droplet-Free Digital Enzyme-Linked Immunosorbent Assay Based on a Tyramide Signal Amplification System.

    Science.gov (United States)

    Akama, Kenji; Shirai, Kentaro; Suzuki, Seigo

    2016-07-19

    Digital enzyme-linked immunosorbent assay (ELISA) is a single molecule counting technology and is one of the most sensitive immunoassay methods. The key aspect of this technology is to concentrate enzyme reaction products from a single target molecule in femtoliter droplets. This study presents a novel Digital ELISA that does not require droplets; instead, enzyme reaction products are concentrated using a tyramide signal amplification system. In our method, tyramide substrate reacts with horseradish peroxidase (HRP) labeled with an immunocomplex on beads, and the substrate is converted into short-lived radical intermediates. By adjusting the bead concentration in the HRP-tyramide reaction and conducting the reaction using freely moving beads, tyramide radicals are deposited only on beads labeled with HRP and there is no diffusion to other beads. Consequently, the fluorescence signal is localized on a portion of the beads, making it possible to count the number of labeled beads digitally. The performance of our method was demonstrated by detecting hepatitis B surface antigen with a limit of detection of 0.09 mIU/mL (139 aM) and a dynamic range of over 4 orders of magnitude. The obtained limit of detection represents a >20-fold higher sensitivity than conventional ELISA. Our method has potential applications in simple in vitro diagnostic systems for detecting ultralow concentrations of protein biomarkers.

  16. Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering

    Directory of Open Access Journals (Sweden)

    Zou Gen

    2012-02-01

    Full Text Available Abstract Background Trichoderma reesei is the preferred organism for producing industrial cellulases. However, a more efficient heterologous expression system for enzymes from different organism is needed to further improve its cellulase mixture. The strong cbh1 promoter of T. reesei is frequently used in heterologous expression, however, the carbon catabolite repressor CREI may reduce its strength by binding to the cbh1 promoter at several binding sites. Another crucial point to enhance the production of heterologous enzymes is the stability of recombinant mRNA and the prevention of protein degradation within the endoplasmic reticulum, especially for the bacteria originated enzymes. In this study, the CREI binding sites within the cbh1 promoter were replaced with the binding sites of transcription activator ACEII and the HAP2/3/5 complex to improve the promoter efficiency. To further improve heterologous expression efficiency of bacterial genes within T. reesei, a flexible polyglycine linker and a rigid α-helix linker were tested in the construction of fusion genes between cbh1 from T. reesei and e1, encoding an endoglucanase from Acidothermus cellulolyticus. Results The modified promoter resulted in an increased expression level of the green fluorescent protein reporter by 5.5-fold in inducing culture medium and 7.4-fold in repressing culture medium. The fusion genes of cbh1 and e1 were successfully expressed in T. reesei under the control of promoter pcbh1m2. The higher enzyme activities and thermostability of the fusion protein with rigid linker indicated that the rigid linker might be more suitable for the heterologous expression system in T. reesei. Compared to the parent strain RC30-8, the FPase and CMCase activities of the secreted enzyme mixture from the corresponding transformant R1 with the rigid linker increased by 39% and 30% at 60°C, respectively, and the reduced sugar concentration in the hydrolysate of pretreated corn stover

  17. [THE DEVELOPMENT OF IMMUNE ENZYME AND IMMUNE CHROMATOGRAPHIC MONOCLONAL TEST-SYSTEM FOR DETECTING TULAREMIA AGENT].

    Science.gov (United States)

    Eremkin, A V; Elagin, G D; Petchenkin, D V; Fomenkov, O O; Bogatcheva, N V; Kitmanov, A A; Kuklina, G V; Tikhvinskaya, O V

    2016-03-01

    The immune enzyme and immunochromatographic test-systems for detecting tularemia agent were developed on the basis of selected set of monoclonal antibodies having immunochemical activity to antigens Francisella tularensis. The evaluation of sensitivity and specificity of developed test-systems demonstrated that samples provided detection of strains of F. tularensis in concentration from 5.0 x 105 mkxcm-3 to 1.0 x 106 mkxcm-3 and gave no false positive results in analysis of heterologous microorganisms in concentration of 1.0 x 108 mkxcm-3.

  18. Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions.

    Science.gov (United States)

    Soldatkin, O O; Kucherenko, I S; Pyeshkova, V M; Kukla, A L; Jaffrezic-Renault, N; El'skaya, A V; Dzyadevych, S V; Soldatkin, A P

    2012-02-01

    A differential pair of planar thin-film interdigitated electrodes, deposited on a ceramic pad, was used as a conductometric transducer. The three-enzyme system (invertase, mutarotase, glucose oxidase), immobilized on the transducer surface, was used as a bioselective element. The ratio between enzymes in the membrane was found experimentally considering the highest biosensor sensitivity to substrate (sucrose) and heavy metal ions. Optimal concentration of sucrose for inhibitory analysis was 1.25 mM and incubation time in the investigated solution amounted to 10-20 min. The developed biosensor demonstrated the best sensitivity toward ions Hg(2+) and Ag(+). A principal possibility of the biosensor reactivation either by EDTA solution after inhibition with silver ions or by cysteine solution after inhibition with mercury ions was shown.

  19. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, John C [Los Alamos National Laboratory; Bruce, David C [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Necsulea, Anamaria [UNIV LYON; Daubin, Vincent [UNIV LYON; Medigue, Claudine [GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [JGI; Pujic, Pierre [UNIV LYON; Berry, Alison M [UC DAVIS; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Phillipe [UNIV LYON

    2009-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus 11B, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudo genes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  20. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, Chris [Los Alamos National Laboratory; Bruce, David [Los Alamos National Laboratory; Challacome, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Philippe [CNRS, UNIV LYON; Necsula, Anamaria [CNRS, UNIV LYON; Daubin, Vincent [CNRS, UNIV LYON; Medigue, Claudine [CNRS/GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [DOE JOINT GENOME INST.; Pujic, Pierre [CNRS, UNIV LYON; Richardson, Paul [DOE JOINT GENOME INST; Berry, Alison M [UC DAVIS

    2008-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus lIB, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudogenes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  1. Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System. Functional Asymmetry in Enzyme I Subunits Demonstrated by Reaction with 3-Bromopyruvate

    NARCIS (Netherlands)

    Hoeve-Duurkens, Ria ten; Robillard, George T.

    1984-01-01

    In the bacterial phosphoenolpyruvate-dependent sugar transport systems, enzyme I (EI) is responsible for the initial reaction step which is the transfer of the phosphoryl group from phosphoenolpyruvate to a cytoplasmic phosphocarrier protein (HPr). The inactivation of enzyme I by the substrate analo

  2. Draft Genome Sequences of Three Cellulolytic Bacillus licheniformis Strains Isolated from Imperial Geyser, Amphitheater Springs, and Whiterock Springs inside Yellowstone National Park

    Science.gov (United States)

    O' Hair, Joshua A.; Li, Hui; Thapa, Santosh; Scholz, Matthew

    2017-01-01

    ABSTRACT Novel cellulolytic microorganisms are becoming more important for rapidly growing biofuel industries. This paper reports the draft genome sequences of Bacillus licheniformis strains YNP2-TSU, YNP3-TSU, and YNP5-TSU. These cellulolytic isolates were collected from several hydrothermal features inside Yellowstone National Park. PMID:28360181

  3. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2012-04-01

    Full Text Available Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera wood-chips and mown lawn grass clippings (85:15 in dry-weight and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  4. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.

    Science.gov (United States)

    Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2007-05-25

    The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.

  5. Inhalation of butanols: changes in the cytochrome P-450 enzyme system.

    Science.gov (United States)

    Aarstad, K; Zahlsen, K; Nilsen, O G

    1985-01-01

    After inhalation of different butanol isomers for 3 days (2000 ppm) and 5 days (500 ppm), liver and kidney parameters of the microsomal cytochrome P-450 enzyme system were increased. sec-Butanol caused the highest increase in cytochrome P-450 concentration with a 47% rise in the kidneys (500 ppm for 5 days) and 33% in the liver (2000 ppm for 3 days). A concomitant increase of the in vitro n-hexane metabolism in liver microsomes was observed with a 77% increased formation of the preneurotoxic metabolite 2-hexanol compared with control. iso-Butanol did not alter total cytochrome P-450 concentration but caused a significant 30% decrease in the formation of 2-hexanol. Inhalation of all butanols slightly decreased the enzyme levels in the lung. Changes in microsomal enzymes did not correlate with measured serum concentrations of the different butanols showing different inducing capacities among the butanol isomers themselves or the participation of metabolites in the inducing process. As a conclusion sec-butanol, probably through its metabolite methyl-ethyl-ketone, is the most potent inducer of microsomal cytochrome P-450 in liver and kidney while iso-butanol does not alter total cytochrome P-450.

  6. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems.

    Science.gov (United States)

    Yang, Qingxiang; Zhang, Hao; Li, Xueling; Wang, Zhe; Xu, Ying; Ren, Siwei; Chen, Xuanyu; Xu, Yuanyuan; Hao, Hongxin; Wang, Hailei

    2013-02-01

    The abilities of yeasts to produce different extracellular enzymes and their distribution characteristics were studied in municipal, inosine fermentation, papermaking, antibiotic fermentation, and printing and dyeing wastewater treatment systems. The results indicated that of the 257 yeasts, 16, 14, 55, and 11 produced lipase, protease, manganese dependant peroxidase (MnP), and lignin peroxidase (LiP), respectively. They were distributed in 12 identified and four unidentified genera, in which Candida rugosa (AA-M17) and an unidentified Saccharomycetales (AA-Y5), Pseudozyma sp. (PH-M15), Candida sp. (MO-Y11), and Trichosporon montevideense (MO-M16) were shown to have the highest activity of lipase, protease, Mnp, and LiP, respectively. No yeast had amylase, cellulose, phytase, or laccase activity. Although only 60 isolates produced ligninolytic enzymes, 249 of the 257 yeasts could decolorize different dyes through the mechanism of biodegradation (222 isolates) or bio-sorption. The types of extracellular enzymes that the yeasts produced were significantly shaped by the types of wastewater treated.

  7. Effect of lindane on testicular antioxidant system and steroidogenic enzymes in adult rats

    Institute of Scientific and Technical Information of China (English)

    R. Sujatha; K.C. Chitin; C. Latchoumycandane; P.P. Mathur

    2001-01-01

    Aim: To find out the effect of lindane on testicular antioxidant system and testicular steroidogenesis in adult male rats. Methods: Adult male rats were orally administered with lindane at a dose of 5.0 mg/kg body weight per day for 30 days. Twenty-four hours after the last treatment the rats were killed using anesthetic ether. Testes, epididymis,seminal vesicles and ventral prostate were removed and weighed. A 10% testicular homogenate was prepared and cen trifuged at 4°C. The supematant was used for various biochemical estimations. Results: The body weight and the weights of testes, epididymis, seminal vesicles and ventral prostate were reduced in lindane-treated rars. There was asignificant decline in the activities of antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione reduc tase while an increase in hydrogen peroxide (H2O2) generation was observed. The specific activities of testicular steroidogenic enzymes 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were decreased. The levels of DNA, RNA and protein were also decreased in lindane-treated rats. Conclusion: Lindane induces oxida tive stress and decreases antioxidant enzymes in adult male rats.

  8. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.;

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness....... From the preliminary results obtained, it is proposed that the cellulolytic activity can be used as an enzymatic approach to study the microbial turnover of organic matter in soils and as indicator of seedling blight of barley caused by F. culmorum. (C) 2002 Elsevier Science B.V. All rights reserved....

  9. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    Science.gov (United States)

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants.

  10. Systemic vascular resistance during brief withdrawal of angiotensin converting enzyme inhibition in heart failure

    DEFF Research Database (Denmark)

    Gabrielsen, A; Bie, P; Christensen, N J

    2002-01-01

    We tested the hypothesis that moderate increases in endogenous angiotensin II (Ang II) concentrations, induced by withdrawal of angiotensin converting enzyme inhibition (ACE-I) in patients with compensated heart failure (HF) on chronic medical therapy, do not increase or impair control of systemic...... vascular resistance (SVR). SVR was determined in supine and seated positions in 12 HF patients [NYHA class II-III; ejection fraction=0.29 +/- 0.03 (mean +/- SE)] and 9 control subjects. HF patients were investigated during high (n=11; withdrawal of ACE-I treatment for 24 h) and low (n=9; sustained ACE...

  11. Diffusive coupling can discriminate between similar reaction mechanisms in an allosteric enzyme system

    Directory of Open Access Journals (Sweden)

    Nicola Ernesto M

    2010-11-01

    Full Text Available Abstract Background A central question for the understanding of biological reaction networks is how a particular dynamic behavior, such as bistability or oscillations, is realized at the molecular level. So far this question has been mainly addressed in well-mixed reaction systems which are conveniently described by ordinary differential equations. However, much less is known about how molecular details of a reaction mechanism can affect the dynamics in diffusively coupled systems because the resulting partial differential equations are much more difficult to analyze. Results Motivated by recent experiments we compare two closely related mechanisms for the product activation of allosteric enzymes with respect to their ability to induce different types of reaction-diffusion waves and stationary Turing patterns. The analysis is facilitated by mapping each model to an associated complex Ginzburg-Landau equation. We show that a sequential activation mechanism, as implemented in the model of Monod, Wyman and Changeux (MWC, can generate inward rotating spiral waves which were recently observed as glycolytic activity waves in yeast extracts. In contrast, in the limiting case of a simple Hill activation, the formation of inward propagating waves is suppressed by a Turing instability. The occurrence of this unusual wave dynamics is not related to the magnitude of the enzyme cooperativity (as it is true for the occurrence of oscillations, but to the sensitivity with respect to changes of the activator concentration. Also, the MWC mechanism generates wave patterns that are more stable against long wave length perturbations. Conclusions This analysis demonstrates that amplitude equations, which describe the spatio-temporal dynamics near an instability, represent a valuable tool to investigate the molecular effects of reaction mechanisms on pattern formation in spatially extended systems. Using this approach we have shown that the occurrence of inward

  12. A New Voltammetric Enzyme Immunoassay System for the Detection of Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)

    KuiJIAO; WeiSUN; 等

    2002-01-01

    A new voltammetric enzyme immunoassay system was invesigated based on p-nitrophenyl phosphate (PNPP) as the subsrate for alkaline phosphatase (ALP). PNPP is enzymatically hydrolyzed and the product p-nitrophenol (PNP) is detected by differential pulse voltammetry (DPV), which can be oxidized at +1.02 V(vs.Ag/AgCl) on bare glass carbon electrode (GCE). The conditions for enzymatic reaction and electrochemical detection were studied. According to this method,ALP can be detected with a detection limit of 2.8×102 mU/L and a linear range of 4.0×102-1.0×106mU/L.

  13. A New Voltammetric Enzyme Immunoassay System for the Detection of Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new voltammetric enzyme immunoassay system was investigated based on p-nitrophenyl phosphate (PNPP) as the substrate for alkaline phosphatase (ALP). PNPP is enzymatically hydrolyzed and the product p-nitrophenol (PNP) is detected by differential pulse voltammetry (DPV), which can be oxidized at +1.02 V (vs. Ag/AgCl) on bare glass carbon electrode (GCE). The conditions for enzymatic reaction and electrochemical detection were studied. According to this method, ALP can be detected with a detection limit of 2.8′102 mU/L and a linear range of 4.0′102 ~ 1.0′106 mU/L.

  14. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    Science.gov (United States)

    Lu, Yi; Liu, Juewen

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  15. Correlation between enzyme activity and substrate storage in a cell culture model system for Gaucher disease.

    Science.gov (United States)

    Schueler, U H; Kolter, T; Kaneski, C R; Zirzow, G C; Sandhoff, K; Brady, R O

    2004-01-01

    Gaucher disease, the most common sphingolipidosis, is caused by a decreased activity of glucosylceramide beta-glucosidase, resulting in the accumulation of glucosylceramide in macrophage-derived cells known as Gaucher cells. Much of the storage material is thought to originate from the turnover of cell membranes, such as phagocytosed red and white blood cells. In this study, an in vitro model of Gaucher disease was developed by treating the murine macrophage cell line J774 with a specific inhibitor of glucosylceramide beta-glucosidase, conduritol B-epoxide, and feeding red blood cell ghosts, in order to mimic the disease state. It was found in this model system that glucosylceramide beta-glucosidase activity could be reduced to about 11-15% of the normal control level before increased storage of glucosylceramide occurred. This in vitro system allows insight into the correlation between enzyme activity and lipid storage as predicted by the theory of residual enzyme activity that was proposed by Conzelmann and Sandhoff.

  16. In vitro Cellulose Rich Organic Material Degradation by Cellulolytic Streptomyces albospinus (MTCC 8768

    Directory of Open Access Journals (Sweden)

    Pinky Prasad

    2012-09-01

    Full Text Available Aims: Cellulosic biomass is the only foreseeable sustainable source of fuels and is also one of the dominating waste materials in nature resulting from human activities. Keeping in view the environmental problems like disposal of large volumes of cellulosic wastes and shortage of fossil fuel in the world, the main aim of the present investigation was to characterize and study the cellulolytic activity of Streptomyces albospinus (MTCC 8768, isolated from municipal wastes, on natural cellulosic substrates viz. straw powder, wood powder and finely grated vegetable peels.Methodology and Result: Stanier’s Basal broth with 100 mg of each of the substrates was inoculated separately with S. albospinus (MTCC No. 8768 and incubated at 37 °C for 8 days. The cellulosic substrates were re-weighed at an interval of 2 days and the difference between the initial weight and the final weight gave the amount of substratesdegraded by the isolate. It was observed that maximum degradation was observed in the grated vegetable peels (64 mg followed by straw powder (38 mg and wood powder (28 mg over a period of 8 days.Conclusion, significance and impact of study: By the selection of efficient cellulolytic microorganisms and cost-effective operational techniques, the production of useful end products from the biodegradation of the low cost enormous stock of cellulose in nature can be very beneficial.

  17. Diarrhea-associated pathogens, lactobacilli and cellulolytic bacteria in equine feces: responses to antibiotic challenge.

    Science.gov (United States)

    Harlow, Brittany E; Lawrence, Laurie M; Flythe, Michael D

    2013-09-27

    Antibiotics are important to equine medicine, but antibiotic-associated diarrhea (AAD) can lead to poor performance and even mortality. AAD is attributed to disruption of the hindgut microbiota, which permits proliferation of pathogenic microbes. The goal of this study was to evaluate the effects of common antibiotics on cellulolytic bacteria, lactobacilli, and AAD-associated pathogens in the feces of healthy horses. Fifteen horses were assigned to three treatment groups (blocked by age and sex): control (no antibiotics), trimethoprim-sulfadiazine (PO), or ceftiofur (IM). Fecal samples (n=8 per horse) were taken during dietary adaptation (3 weeks), antibiotic challenge (1 week), and withdrawal (1 week). Bacteria were enumerated by serial dilution and viable count. Cellulolytic bacteria decreased by >99% during administration of either antibiotic (Pantibiotic challenge period (PAntibiotic challenged horses also shed more salmonella than control horses (PAntibiotics had no effect on the number of Clostridium perfringens isolates. There was no detectable Clostridium difficile during adaptation or in any control horse. C. difficile increased (Pantibiotics, and were still detectable 1 week after withdrawal. These results indicate that antibiotics can disrupt the normal gastrointestinal microbiota and allow proliferation of Salmonella spp. and C. difficile.

  18. From 20th century metabolic wall charts to 21st century systems biology: database of mammalian metabolic enzymes.

    Science.gov (United States)

    Corcoran, Callan C; Grady, Cameron R; Pisitkun, Trairak; Parulekar, Jaya; Knepper, Mark A

    2017-03-01

    The organization of the mammalian genome into gene subsets corresponding to specific functional classes has provided key tools for systems biology research. Here, we have created a web-accessible resource called the Mammalian Metabolic Enzyme Database (https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/MetabolicEnzymeDatabase.html) keyed to the biochemical reactions represented on iconic metabolic pathway wall charts created in the previous century. Overall, we have mapped 1,647 genes to these pathways, representing ~7 percent of the protein-coding genome. To illustrate the use of the database, we apply it to the area of kidney physiology. In so doing, we have created an additional database (Database of Metabolic Enzymes in Kidney Tubule Segments: https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/), mapping mRNA abundance measurements (mined from RNA-Seq studies) for all metabolic enzymes to each of 14 renal tubule segments. We carry out bioinformatics analysis of the enzyme expression pattern among renal tubule segments and mine various data sources to identify vasopressin-regulated metabolic enzymes in the renal collecting duct.

  19. Complete genome sequence of Desulfurococcus fermentans, a hyperthermophilic cellulolytic crenarchaeon isolated from a freshwater hot spring in Kamchatka, Russia.

    Science.gov (United States)

    Susanti, Dwi; Johnson, Eric F; Rodriguez, Jason R; Anderson, Iain; Perevalova, Anna A; Kyrpides, Nikos; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne; Pitluck, Sam; Mavrommatis, Konstantinos; Peters, Lin; Land, Miriam L; Hauser, Loren; Gopalan, Venkat; Chan, Patricia P; Lowe, Todd M; Atomi, Haruyuki; Bonch-Osmolovskaya, Elizaveta A; Woyke, Tanja; Mukhopadhyay, Biswarup

    2012-10-01

    Desulfurococcus fermentans is the first known cellulolytic archaeon. This hyperthermophilic and strictly anaerobic crenarchaeon produces hydrogen from fermentation of various carbohydrates and peptides without inhibition by accumulating hydrogen. The complete genome sequence reported here suggested that D. fermentans employs membrane-bound hydrogenases and novel glycohydrolases for hydrogen production from cellulose.

  20. Complete Genome Sequence of Desulfurococcus fermentans, a Hyperthermophilic Cellulolytic Crenarchaeon Isolated from a Freshwater Hot Spring in Kamchatka, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Susanti, Dwi [Virginia Polytechnic Institute and State University (Virginia Tech); Johnson, Eric F [Virginia Polytechnic Institute and State University (Virginia Tech); Rodriquez, Jason [Virginia Polytechnic Institute and State University (Virginia Tech); Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Perevalova, Anna [Virginia Polytechnic Institute and State University (Virginia Tech); Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Han, James [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Gopapan, Venkay [Ohio State University; Chan, Patricia [University of California, Santa Cruz; Atomi, Haruyuki [Kyoto University, Japan; Bonch-Osmolovskaya, Elizaveta [Russian Academy of Sciences, Moscow; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Mukhopadhyay, Biswarup [Virginia Polytechnic Institute and State University (Virginia Tech)

    2012-01-01

    Desulfurococcus fermentans is the first known cellulolytic archaeon. This hyperthermophilic and strictly anaerobic crenarchaeon produces hydrogen from fermentation of various carbohydrates and peptides without inhibition by accumulating hydrogen. The complete genome sequence reported here suggested that D. fermentans employs membrane-bound hydrogenases and novel glycohydrolases for hydrogen production from cellulose.

  1. Multi-Enzyme Complexes in the Thermophilic Archaea: The Effects of Temperature on Stability, Catalysis and Enzyme Interactions in a Multi-Component System

    Science.gov (United States)

    2012-01-01

    components of a 2-oxoacid dehydrogenase complex: • E1a and E1ß genes were expressed in E. coli to give a soluble a2ß2 active enzyme that catalysed the...affinity chromatography They self-assembled into a large (Mr = 5 x 10 6) multienzyme complex, which was shown to catalyse the oxidative decarboxylation of...protein products showed significant sequence identity to the two domains of the single LplA protein of bacterial systems, which catalyses the reactions

  2. Toxic effects of nitenpyram on antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers.

    Science.gov (United States)

    Yan, Saihong; Wang, Jinhua; Zhu, Lusheng; Chen, Aimei; Wang, Jun

    2015-12-01

    Nitenpyram is one of the most commonly used neonicotinoid pesticide worldwide and was found to be toxic to non-target aquatic organisms. Therefore, the purpose of this study was to investigate the oxidative stress, changes in the detoxifying system and DNA damage in zebrafish induced by nitenpyram. In the present study, zebrafish (Danio rerio) were exposed to four concentrations (0.6, 1.2, 2.5, and 5.0 mg L(-1)) for 28 d and then sampled in triplicate on days 7, 14, 21 and 28. Superoxide dismutase (SOD) and catalase (CAT) activities were dramatically inhibited at most exposure times compared with the control group, except SOD at low concentration (0.6 mg L(-1)) of nitenpyram and CAT on day 21. This difference is due to the excess reactive oxygen species (ROS) produced and increased malondialdehyde (MDA) content in zebrafish livers. The activity of glutathione S-transferase (GST) increased in in the treatment groups at a higher concentration compared with the control group. We found that nitenpyram exposure could affect the antioxidant enzymes and DNA damage in the exposed zebrafish livers. Additionally, the changes in the antioxidant enzyme activities could be an adaptive response protecting against the toxicity induced by nitenpyram.

  3. A novel pH–enzyme-dependent mesalamine colon-specific delivery system

    Directory of Open Access Journals (Sweden)

    Jin L

    2016-06-01

    Full Text Available Lei Jin, Yi-cun Ding, Yu Zhang, Xiao-qing Xu, Qin Cao Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China Abstract: The aim of the present study was to design a new pH–enzyme double-dependent mesalamine colon-specific delivery system. The drug release behaviors in vitro and pharmacokinetics and biodistribution in vivo were further evaluated. The mean particle diameters of mesalamine-coated microparticles were 312.2 µm. In vitro, a small amount of mesalamine was released in HCl at a pH of 1.2 and PBS medium at a pH of 7.4 for 5 hours, and 71% of the entrapped mesalamine was further released during the subsequent 20 hours of incubation. A greater area under the plasma concentration–time curve (AUC0–t was obtained for the coated microparticles (1.9-fold compared to the suspensions group, which indicated that the encapsulated mesalamine had mostly been absorbed in rats over the period of 12 hours. The AUC0–t of the coated microparticles in colon was 2.63-fold higher compared to the suspensions (P<0.05. Hence, mesalamine-coated microparticles are considered to maintain the drug concentration within target ranges for a long period of time. Keywords: pH–enzyme, mesalamine, colon specific, pharmacokinetics, biodistribution

  4. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient.

    Science.gov (United States)

    Bui, Minh-Phuong Ngoc; Li, Cheng Ai; Han, Kwi Nam; Choo, Jaebum; Lee, Eun Kyu; Seong, Gi Hun

    2011-03-01

    In this paper, we propose a microfluidic device that is capable of generating a concentration gradient followed by parallel droplet formation within channels with a simple T-junction geometry. Linear concentration gradient profiles can be obtained based on fluid diffusion under laminar flow. Optimized conditions for generating a linear concentration gradient and parallel droplet formation were investigated using fluorescent dye. The concentration gradient profile under diffusive mixing was dominated by the flow rate at sample inlets, while parallel droplet formation was affected by the channel geometry at both the inlet and outlet. The microfluidic device was experimentally characterized using optimal layout and operating conditions selected through a design process. Furthermore, in situ enzyme kinetic measurements of the β-galactosidase-catalyzed hydrolysis of resorufin-β-d-galactopyranoside were performed to demonstrate the application potential of our simple, time-effective, and low sample volume microfluidic device. We expect that, in addition to enzyme kinetics, drug screening and clinical diagnostic tests can be rapidly and accurately performed using this droplet-based microfluidic system.

  5. Effect of dietary supplementation of probiotics and enzymes on the haematology of rabbits reared under two housing systems

    Directory of Open Access Journals (Sweden)

    Sarat Chandra Amaravadhi

    Full Text Available Aim : To study the influence of housing system and dietary supplementation of probiotics and enzymes on haematological parameters of rabbits. Materials and Methods: A total of 144 weaned rabbits were divided into 2 groups of 72 in each group and housed under conventional cage system and backyard system. The rabbits in each housing system were divided into 4 groups of 18 in each group and the diets were supplemented with probiotics, enzymes and both. Results: The housing system and supplementation of probiotics and enzymes did not exert significant influence on any of the haematological parameters studied. However, there was slight positive influence of probiotic and enzyme supplementation on the health status of rabbits as revealed by haematological parameters. The overall mean Total erythrocyte count, total leucocyte count, lymphocytes, neutrophils, eosinophils, monocytes, haemoglobin and packed cell volume were 7.52, 6.29 (103/mm3, 60.27%, 35.71%, 1.35%, 1.92%, 10.67 g/dl and 34.25%, respectively. Conclusion: Rabbits can be reared on low input backyard system without any adverse effect on health and supplementation of probiotics and enzymes had a positive influence on health status of rabbits. [Vet World 2012; 5(12.000: 748-753

  6. Diagnosis of internal acariasis with avidin-biotin system enzyme-linked immunosorbent assay

    Institute of Scientific and Technical Information of China (English)

    Rong-Bo Zhang; Yong Huang; Chao-Pin Li; Yu-Bao Cui

    2004-01-01

    AIM: To explore the value of avidin-biotin system enzymelinked immunosorbent assay (ABC-ELISA) in diagnosis of intestinal acariasis.METHODS: Mite-specific IgG levels in serum of 48 patients with intestinal acariasis were measured with ABC-ELISA.The sensitivity of this method was compared with that of staphylococcal protein A enzyme-linked immunosorbent assay (SPA-ELISA).RESULTS: The positive rate of mite-specific IgG detected with ABC-ELISA and SPA-ELISA was 89.58% (43/48) and 56.25% (27/48), respectively. The positive rate with ABCELISA was statistically higher than that with SPA-ELISA (X2=13.50, P<0.01).CONCLUSION: ABC-ELISA is an effective method for the diagnosis of intestinal acariasis.

  7. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect - a case study on loamy haplic Luvisol

    Directory of Open Access Journals (Sweden)

    Bahar S. eRazavi

    2015-10-01

    Full Text Available The temperature sensitivity of enzymes responsible for organic matter decomposition in soil is crucial for predicting the effects of global warming on the carbon cycle and sequestration. We tested the hypothesis that differences in temperature sensitivity of enzyme kinetic parameters Vmax and Km will lead to a canceling effect: strong reduction of temperature response of catalytic reactions. Short-term temperature response of Vmax and Km of three hydrolytic enzymes responsible for decomposition of cellulose (β-glucosidase, cellobiohydrolase and hemicelluloses (xylanase were analyzed in situ from 0 to 40 °C. The apparent activation energy varied between enzymes from 20.7 to 35.2 kJ mol-1 corresponding to the Q10 values of the enzyme activities of 1.4–1.9 (with Vmax-Q10 1.0–2.5 and Km-Q10 0.94–2.3. Temperature response of all tested enzymes fitted well to the Arrhenius equation. Despite that, the fitting of Arrhenius model revealed the non-linear increase of two cellulolytic enzymes activities with two distinct thresholds at 10–15 °C and 25–30 °C, which were less pronounced for xylanase. The nonlinearity between 10 and 15 °C was explained by 30–80% increase in Vmax. At 25–30 °C, however, the abrupt decrease of enzyme-substrate affinity was responsible for non-linear increase of enzyme activities. Our study is the first demonstrating nonlinear response of Vmax and Km to temperature causing canceling effect, which was most strongly pronounced at low substrate concentrations and at temperatures above 15 °C. Under cold climate, however, the regulation of hydrolytic activity by canceling in response to warming is negligible because canceling was never observed below 10 °C. The canceling, therefore, can be considered as natural mechanism reducing the effects of global warming on decomposition of soil organics at moderate temperatures. The non-linearity of enzyme responses to warming and the respective thresholds should therefore be

  8. Genetically engineered theranostic mesenchymal stem cells for the evaluation of the anticancer efficacy of enzyme/prodrug systems.

    Science.gov (United States)

    Nouri, Faranak Salman; Wang, Xing; Hatefi, Arash

    2015-02-28

    Over the past decade, various enzyme/prodrug systems such as thymidine kinase/ganciclovir (TK/GCV), yeast cytosine deaminase/5-fluorocytosine (yCD/5-FC) and nitroreductase/CB1954 (NTR/CB1954) have been used for stem cell mediated suicide gene therapy of cancer. Yet, no study has been conducted to compare and demonstrate the advantages and disadvantages of using one system over another. Knowing that each enzyme/prodrug system has its own strengths and weaknesses, we utilized mesenchymal stem cells (MSCs) as a medium to perform for the first time a comparative study that illustrated the impact of subtle differences among these systems on the therapeutic outcome. For therapeutic purposes, we first genetically modified MSCs to stably express a panel of four suicide genes including TK (TK007 and TK(SR39) mutants), yeast cytosine deaminase:uracil phosphoribosyltransferase (yCD:UPRT) and nitroreductase (NTR). Then, we evaluated the anticancer efficacies of the genetically engineered MSCs in vitro and in vivo by using SKOV3 cell line which is sensitive to all four enzyme/prodrug systems. In addition, all MSCs were engineered to stably express luciferase gene making them suitable for quantitative imaging and dose-response relationship studies in animals. Considering the limitations imposed by the prodrugs' bystander effects, our findings show that yCD:UPRT/5-FC is the most effective enzyme/prodrug system among the ones tested. Our findings also demonstrate that theranostic MSCs are a reliable medium for the side-by-side evaluation and screening of the enzyme/prodrug systems at the preclinical level. The results of this study could help scientists who utilize cell-based, non-viral or viral vectors for suicide gene therapy of cancer make more informed decisions when choosing enzyme/prodrug systems.

  9. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Kevin A; Zhao, Lishan; Cayouette, Michelle H

    2015-11-04

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  10. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A.; Zhao, Lishan; Cayouette, Michelle H.

    2015-09-08

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  11. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  12. A Suite of Activity-Based Probes for Cellulose Degrading Enzymes

    Science.gov (United States)

    Chauvigné-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-01-01

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes, in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic microbial cellulose degrading systems, and facilitates a greater understanding of the organismal role associated with biofuel development. PMID:23176123

  13. Enzyme-based logic gates switchable between OR, NXOR and NAND Boolean operations realized in a flow system.

    Science.gov (United States)

    Fratto, Brian E; Roby, Lucas J; Guz, Nataliia; Katz, Evgeny

    2014-10-18

    The enzyme-based system performing a biocatalytic cascade reaction was realized in a flow device and was used to mimic Boolean logic operations. Chemical inputs applied to the system resulted in the activation of additional reaction steps, allowing the reversible switch of the logic operations between OR, NXOR and NAND gates for processing of two other biomolecular inputs.

  14. Study of cellulolytic soil fungi and two nova species and new medium

    Institute of Scientific and Technical Information of China (English)

    KHALID Mahmood; YANG Wei-jun; KISHWAR Nazir; RAJPUT Zahid Iqbal; ARIJO Abdullah G.

    2006-01-01

    This study is aimed at identifying and determining the percentage of occurrence frequency of cellulose decomposing soil fungi. The soil samples were inoculated into culture plates prepared in Sabouraud medium under sterilized conditions and incubated at 30 ℃ for 4 to 7 d. The identified fungal species were incubated in self-designed cellulose medium for testing their cellulolytic ability. Forty-two species, including 2 nova species, representing sixteen genera showed growth and sporulation in the cellulose medium. Most of the isolated species were from genus Aspergillus and Penicillium. Aspergillus niger and Mucor hiemalis showed highest occurrence frequency (45% and 36% respectively), as these species were collected from about 80% of soil samples. Being agar free and cheaper, the new fungal medium designed showed results equivalent to Sabouraud medium.

  15. Novel identification of biofluids using a multiplex methylation sensitive restriction enzyme-PCR system.

    Science.gov (United States)

    Lin, Yu-Chih; Tsai, Li-Chin; Lee, James Chun-I; Su, Chih-Wen; Tzen, Jason Tze-Cheng; Linacre, Adrian; Hsieh, Hsing-Mei

    2016-11-01

    The identification of a specific body fluid encountered in a forensic investigation can give crucial information. This identification can be aided by methylation profiles based on selected markers specific to a range of biofluids. In this study, the open database of Infinium HumanMethylation450 BeadChip was searched for markers specific for semen, vaginal fluids, saliva, venous blood and menstrual blood. A total of 8 biofluid-specific methylated markers and 2 control markers were combined into a 10-plex methylation sensitive restriction enzyme-PCR (MSRE-PCR) system. Based upon the analysis of 100 DNA samples from these 5 biofluid types, unambiguous results were obtained to identify the body fluid from which it originated. Validation studies of the developed 10-plex MSRE-PCR included sensitivity, reproducibility and mixed body fluids. Co-amplification of the established MSRE-PCR system and the microsatellite loci in AmpFlSTR(®) MiniFiler™ PCR Amplification Kit was performed to generate both the methylation profile for biofluid type and the miniSTR profile. This allowed human identification and the identification of the body fluid type to be performed in a single reaction. The results of this study displayed the applicability of this 10-plex MSRE-PCR system in forensic science.

  16. Systemically Injectable Enzyme-Loaded Polyion Complex Vesicles as In Vivo Nanoreactors Functioning in Tumors.

    Science.gov (United States)

    Anraku, Yasutaka; Kishimura, Akihiro; Kamiya, Mako; Tanaka, Sayaka; Nomoto, Takahiro; Toh, Kazuko; Matsumoto, Yu; Fukushima, Shigeto; Sueyoshi, Daiki; Kano, Mitsunobu R; Urano, Yasuteru; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2016-01-11

    The design and construction of nanoreactors are important for biomedical applications of enzymes, but lipid- and polymeric-vesicle-based nanoreactors have some practical limitations. We have succeeded in preparing enzyme-loaded polyion complex vesicles (PICsomes) through a facile protein-loading method. The preservation of enzyme activity was confirmed even after cross-linking of the PICsomes. The cross-linked β-galactosidase-loaded PICsomes (β-gal@PICsomes) selectively accumulated in the tumor tissue of mice. Moreover, a model prodrug, HMDER-βGal, was successfully converted into a highly fluorescent product, HMDER, at the tumor site, even 4 days after administration of the β-gal@PICsomes. Intravital confocal microscopy showed continuous production of HMDER and its distribution throughout the tumor tissues. Thus, enzyme-loaded PICsomes are useful for prodrug activation at the tumor site and could be a versatile platform for enzyme delivery in enzyme prodrug therapy.

  17. An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Baumann, Martin Johannes; Borch, Kim

    2010-01-01

    is heat production. This can be converted to the rate of reaction and allows direct and continuous monitoring of the hydrolysis of complex substrates. To overcome the low molar enthalpy of the hydrolysis of the glycosidic bond, which is typically on the order of −2.5 kJ mol−1, an enzymatic signal......The study of cellulolytic enzymes has traditionally been carried out using endpoint measurements by quantitation of reaction products using high-performance liquid chromatography (HPLC) or overall determination of produced reducing ends. To measure catalytic activity, model substrates...... amplification method has been developed to measure even slow hydrolytically active enzymes such as cellobiohydrolases. This method is explained in detail for the amplification of the heat signal by more than 130 times by using glucose oxidase and catalase. The kinetics of this complex coupled reaction system...

  18. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae.

    Science.gov (United States)

    Noguchi, Yuji; Sano, Motoaki; Kanamaru, Kyoko; Ko, Taro; Takeuchi, Michio; Kato, Masashi; Kobayashi, Tetsuo

    2009-11-01

    XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5'-GGCTAA-3', 5'-GGCTAG-3', and 5'-GGCTGA-3') in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of beta-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of D-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and L-arabinitol-4- dehydrogenase involved in D-glucose and L-arabinose catabolism also appeared to be targets of AoXlnR.

  19. Miniaturized flow system based on enzyme modified PMMA microreactor for amperometric determination of glucose.

    Science.gov (United States)

    Cerdeira Ferreira, Luís Marcos; da Costa, Eric Tavares; do Lago, Claudimir Lucio; Angnes, Lúcio

    2013-09-15

    This paper describes the development of a microfluidic system having as main component an enzymatic reactor constituted by a microchannel assembled in poly(methyl methacrylate) (PMMA) substrate connected to an amperometric detector. A CO2 laser engraving machine was used to make the channels, which in sequence were thermally sealed. The internal surfaces of the microchannels were chemically modified with polyethyleneimine (PEI), which showed good effectiveness for the immobilization of the glucose oxidase enzyme using glutaraldehyde as crosslinking agent, producing a very effective microreactor for the detection of glucose. The hydrogen peroxide generated by the enzymatic reaction was detected in an electrochemical flow cell localized outside of the reactor using a platinum disk as the working electrode. The proposed system was applied to the differential amperometric determination of glucose content in soft drinks showing good repeatability (DPR=1.72%, n=50), low detection limit (1.40×10(-6)molL(-1)), high sampling frequency (calculated as 345 samples h(-1)), and relatively good stability for long-term use. The results were in close agreement with those obtained by the classical spectrophotometric method utilized to quantify glucose in biological fluids.

  20. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Nielsen, Sidsel Marie; Pedersen, Hanne Høst;

    2015-01-01

    Enzymes have recently been considered as possible agents for enhanced oil recovery (EOR) acting at the liquid-solid interface. One way to assess this is via measuring the wettability of calcite surfaces, important for EOR methods in carbonaceous reservoirs. In the present work, we have experiment......Enzymes have recently been considered as possible agents for enhanced oil recovery (EOR) acting at the liquid-solid interface. One way to assess this is via measuring the wettability of calcite surfaces, important for EOR methods in carbonaceous reservoirs. In the present work, we have...... experimentally investigated the effect of enzymes on the wettability of calcite mineral surfaces with oil-brine systems. The action of various enzymes, including esterases/lipases, carbohydrases, proteases and oxidoreductases (along with two commercial mixtures) was studied by contact angle measurements.......1% of the enzyme product (corresponding to 0.002-0.005% protein). Likewise, proteases could also improve wettability, although the effect was not consistent and was dependent on impurities. Other enzymes had no effect on the wettability of calcite at the concentration studied. The main mechanism of enzymatic...

  1. Toward single enzyme analysis in a droplet-based micro and nanofluidic system

    NARCIS (Netherlands)

    Arayanarakool, Rerngchai

    2012-01-01

    In this thesis, we have demonstrated the application of micro- and nanofluidic devices to generate an array of aqueous droplets in oil phase for single-enzyme encapsulation and activity measurement. We chose droplet-based microfluidics for this purpose of monitoring single-enzyme reactions since the

  2. Investigation of voltammetric enzyme-linked immunoassay based on new system of ODA-H2O2-HRP

    Institute of Scientific and Technical Information of China (English)

    焦奎; 张书圣; 韦璐

    1996-01-01

    A voltammetric enzyme-linked immunoassay based on a new system of ODA-H2O2-HRP has first been developed and used in the detection of HRP and labelled HRP. By this method, the enzyme-catalyzing reaction of H2O2 oxidizing odianisidine (ODA) couples the electrode-reduction reaction of the oxidizing product of odianisidine, which produces a sensitive polarographic wave at potential of -0.56V (SCE) in Britton-Robinson buffer solution. In using this polarographic wave, a detection limit to HRP is 3.7×10-12g/mL and a linear range 1.0×10-11-2.0×10-9g/mL. And the mechanisms of the coupling reaction and the process of electro-reduction in the ODA-H2O2-HRP voltammetric enzyme-linked immunoassay system have also been carefully studied.

  3. Microfluidic tectonics platform: A colorimetric, disposable botulinum toxin enzyme-linked immunosorbent assay system.

    Science.gov (United States)

    Moorthy, Jaisree; Mensing, Glennys A; Kim, Dongshin; Mohanty, Swomitra; Eddington, David T; Tepp, William H; Johnson, Eric A; Beebe, David J

    2004-06-01

    A fabrication platform for realizing integrated microfluidic devices is discussed. The platform allows for creating specific microsystems for multistep assays in an ad hoc manner as the components that perform the assay steps can be created at any location inside the device via in situ fabrication. The platform was utilized to create a prototype microsystem for detecting botulinum neurotoxin directly from whole blood. Process steps such as sample preparation by filtration, mixing and incubation with reagents was carried out on the device. Various microfluidic components such as channel network, valves and porous filter were fabricated from prepolymer mixture consisting of monomer, cross-linker and a photoinitiator. For detection of the toxoid, biotinylated antibodies were immobilized on streptavidin-functionalized agarose gel beads. The gel beads were introduced into the device and were used as readouts. Enzymatic reaction between alkaline phosphatase (on secondary antibody) and substrate produced an insoluble, colored precipitate that coated the beads thus making the readout visible to the naked eye. Clinically relevant amounts of the toxin can be detected from whole blood using the portable enzyme-linked immunosorbent assay (ELISA) system. Multiple layers can be realized for effective space utilization and creating a three-dimensional (3-D) chaotic mixer. In addition, external materials such as membranes can be incorporated into the device as components. Individual components that were necessary to perform these steps were characterized, and their mutual compatibility is also discussed.

  4. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    Science.gov (United States)

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  5. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  6. Flexibility of syntrophic enzyme systems in Desulfovibrio species ensures their adaptation capability to environmental changes.

    Science.gov (United States)

    Meyer, Birte; Kuehl, Jennifer V; Deutschbauer, Adam M; Arkin, Adam P; Stahl, David A

    2013-11-01

    The mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers obligately linked by interspecies metabolite exchange in syntrophic consortia that may include sulfate reducing species such as Desulfovibrio. To evaluate the metabolic flexibility of syntrophic Desulfovibrio to adapt to naturally fluctuating methanogenic environments, we studied Desulfovibrio alaskensis strain G20 grown in chemostats under respiratory and syntrophic conditions with alternative methanogenic partners, Methanococcus maripaludis and Methanospirillum hungatei, at different growth rates. Comparative whole-genome transcriptional analyses, complemented by G20 mutant strain growth experiments and physiological data, revealed a significant influence of both energy source availability (as controlled by dilution rate) and methanogen on the electron transfer systems, ratios of interspecies electron carriers, energy generating systems, and interspecies physical associations. A total of 68 genes were commonly differentially expressed under syntrophic versus respiratory lifestyle. Under low-energy (low-growth-rate) conditions, strain G20 further had the capacity to adapt to the metabolism of its methanogenic partners, as shown by its differing gene expression of enzymes involved in the direct metabolic interactions (e.g., periplasmic hydrogenases) and the ratio shift in electron carriers used for interspecies metabolite exchange (hydrogen/formate). A putative monomeric [Fe-Fe] hydrogenase and Hmc (high-molecular-weight-cytochrome c3) complex-linked reverse menaquinone (MQ) redox loop become increasingly important for the reoxidation of the lactate-/pyruvate oxidation-derived redox pair, DsrC(red) and Fd(red), relative to the Qmo-MQ-Qrc (quinone-interacting membrane-bound oxidoreductase; quinone-reducing complex) loop. Together, these data underscore the high enzymatic and metabolic adaptive flexibility that likely sustains

  7. Expression of the glutathione enzyme system of human colon mucosa by localisation, gender and age.

    NARCIS (Netherlands)

    Hoensch, H.; Peters, W.H.M.; Roelofs, H.M.J.; Kirch, W.

    2006-01-01

    BACKGROUND: The glutathione S-transferases (GST) can metabolise endogenous and exogenous toxins and carcinogens by catalysing the conjugation of diverse electrophiles with reduced glutathione (GSH). Variations of GST enzyme activity could influence the susceptibility of developing cancers in certain

  8. Enzyme assays.

    Science.gov (United States)

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-07

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  9. [Regularities of organ-specific expression of enzyme systems in cattle].

    Science.gov (United States)

    Tatarenko, O F; Glazko, V I

    1992-01-01

    The organ specificity of creatine kinase, esterase, isocitrate dehydrogenase lactate dehydrogenase, nucleoside phosphorylase, adenylate kinase, hexokinase, malate dehydrogenase, malic enzyme, glucose-6-phosphate dehydrogenase of black-white cattle has been studied. Esterases, creatine kinase, adenylate kinase, hexokinase and glucose-6-phosphate dehydrogenase have a very wide spectrum of the organ variabilities. Liver and heart have the largest specificity of enzymes activity. Some peculiarities of isozyme spectrum are found in ovaries and spleen.

  10. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment.

    Directory of Open Access Journals (Sweden)

    Joseph P Peacock

    Full Text Available To characterize high-temperature cellulolytic microbial communities, two lignocellulosic substrates, ammonia fiber-explosion-treated corn stover and aspen shavings, were incubated at average temperatures of 77 and 85°C in the sediment and water column of Great Boiling Spring, Nevada. Comparison of 109,941 quality-filtered 16S rRNA gene pyrosequences (pyrotags from eight enrichments to 37,057 quality-filtered pyrotags from corresponding natural samples revealed distinct enriched communities dominated by phylotypes related to cellulolytic and hemicellulolytic Thermotoga and Dictyoglomus, cellulolytic and sugar-fermenting Desulfurococcales, and sugar-fermenting and hydrogenotrophic Archaeoglobales. Minor enriched populations included close relatives of hydrogenotrophic Thermodesulfobacteria, the candidate bacterial phylum OP9, and candidate archaeal groups C2 and DHVE3. Enrichment temperature was the major factor influencing community composition, with a negative correlation between temperature and richness, followed by lignocellulosic substrate composition. This study establishes the importance of these groups in the natural degradation of lignocellulose at high temperatures and suggests that a substantial portion of the diversity of thermophiles contributing to consortial cellulolysis may be contained within lineages that have representatives in pure culture.

  11. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect—a case study on loamy haplic Luvisol

    Science.gov (United States)

    Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-01-01

    The temperature sensitivity of enzymes responsible for organic matter decomposition in soil is crucial for predicting the effects of global warming on the carbon cycle and sequestration. We tested the hypothesis that differences in temperature sensitivity of enzyme kinetic parameters Vmax and Km will lead to a canceling effect: strong reduction of temperature response of catalytic reactions. Short-term temperature response of Vmax and Km of three hydrolytic enzymes responsible for decomposition of cellulose (β-glucosidase, cellobiohydrolase) and hemicelluloses (xylanase) were analyzed in situ from 0 to 40°C. The apparent activation energy varied between enzymes from 20.7 to 35.2 kJ mol−1 corresponding to the Q10 values of the enzyme activities of 1.4–1.9 (with Vmax-Q10 1.0–2.5 and Km-Q10 0.94–2.3). Temperature response of all tested enzymes fitted well to the Arrhenius equation. Despite that, the fitting of Arrhenius model revealed the non-linear increase of two cellulolytic enzymes activities with two distinct thresholds at 10–15°C and 25–30°C, which were less pronounced for xylanase. The nonlinearity between 10 and 15°C was explained by 30–80% increase in Vmax. At 25–30°C, however, the abrupt decrease of enzyme-substrate affinity was responsible for non-linear increase of enzyme activities. Our study is the first demonstrating nonlinear response of Vmax and Km to temperature causing canceling effect, which was most strongly pronounced at low substrate concentrations and at temperatures above 15°C. Under cold climate, however, the regulation of hydrolytic activity by canceling in response to warming is negligible because canceling was never observed below 10°C. The canceling, therefore, can be considered as natural mechanism reducing the effects of global warming on decomposition of soil organics at moderate temperatures. The non-linearity of enzyme responses to warming and the respective thresholds should therefore be investigated for

  12. Detection of virus-specific intrathecally synthesised immunoglobulin G with a fully automated enzyme immunoassay system

    Directory of Open Access Journals (Sweden)

    Weissbrich Benedikt

    2007-05-01

    Full Text Available Abstract Background The determination of virus-specific immunoglobulin G (IgG antibodies in cerebrospinal fluid (CSF is useful for the diagnosis of virus associated diseases of the central nervous system (CNS and for the detection of a polyspecific intrathecal immune response in patients with multiple sclerosis. Quantification of virus-specific IgG in the CSF is frequently performed by calculation of a virus-specific antibody index (AI. Determination of the AI is a demanding and labour-intensive technique and therefore automation is desirable. We evaluated the precision and the diagnostic value of a fully automated enzyme immunoassay for the detection of virus-specific IgG in serum and CSF using the analyser BEP2000 (Dade Behring. Methods The AI for measles, rubella, varicella-zoster, and herpes simplex virus IgG was determined from pairs of serum and CSF samples of patients with viral CNS infections, multiple sclerosis and of control patients. CSF and serum samples were tested simultaneously with reference to a standard curve. Starting dilutions were 1:6 and 1:36 for CSF and 1:1386 and 1:8316 for serum samples. Results The interassay coefficient of variation was below 10% for all parameters tested. There was good agreement between AIs obtained with the BEP2000 and AIs derived from the semi-automated reference method. Conclusion Determination of virus-specific IgG in serum-CSF-pairs for calculation of AI has been successfully automated on the BEP2000. Current limitations of the assay layout imposed by the analyser software should be solved in future versions to offer more convenience in comparison to manual or semi-automated methods.

  13. Cyanidin-horseradish peroxidase-hydroperoxide reaction system and its application in enzyme linked immunosensing assays

    Institute of Scientific and Technical Information of China (English)

    GONG FuChun; LI DingZhong; YANG Rong; WEI JianKe; CAO Zhong; TAN ShuZhen; TAN YaFei

    2009-01-01

    A cyanidin-based horseradish peroxidase(HRP)-catalyzed reaction system was established in this work.In B-R buffer solutions(pH 6.8),a UV-visible ebsorbance peak of cyanidin(CAG)at 540 nm(Ap1)appeared.After the oxidation reaction of CAG catalyzed by HRP in the presence of H2O2,a significant absorbance peak at 482 nm(Ap2)occurred.The ratio R(Ap2/Ap1)was proportional to the HRP concentration.The application of CAG in the enzyme-linked immunosensing assays was investigated using food and mouth disease virus antigen(FMDVAg)as e model analyte.in sandwich immunoreaction,the analyte FMDVAg and food and mouth disease virus antibody(FMDVAb)-modified magnetic nanoparticles bound the supported conconvalina(Con A)bound with HRP-FMDVAb.After de-absorbing and separating,the HRP-FMDVAb-FMDVAg-FMDVAb-magnetic nanoparticles complexes were subject to enzymatic reaction and UV-visible absorbance measurements.The HRP moiety of the immunoreaction complexes can catalyze the oxidation reaction of CAG by H2O2,and the substrate CAG is converted to products.Based on this principle,a sandwich assay model has been employed to determine FMDVAg in rabbit serum samples with the aid of FMDVAb-Fe3O4 magnetic nanoparticles.The linear range of the FMDVAg determination is 1.5×10-8-2.7×10-6 g/mL with the relatively standard deviation of 3.7%(n=11).The detection limit is 3.1×10 g/mL.Additional advantages of the typical substrate such as OPD,OAP and TMB are good water-solubility and stability.

  14. [Genetic polymorphism of steroidogenic enzymes and steroid receptor level in tumors of the reproductive system].

    Science.gov (United States)

    Berstein, L M; Zimarina, T S; Tsyrlina, E V; Kovalevskiĭ, A Iu; Imianitov, E N

    2004-01-01

    The strategy of therapy and prognosis of reproductive system neoplasia generally depend on the steroid receptor status of tumor. The causes of formation of steroid receptor-free tumors are to be investigated. The genetic polymorphism of CYP19 (aromatase), CYP17 (17-hydroxylase; 17,20-lyase), CYP1B1 (4-estrogen hydroxylase) and COMT (catechol-O-methyl transferase) was studied in a total of 254 patients with breast and endometrial cancer, with particular reference to the association of certain polymorphisms and receptor status of tumor. It was found that the lack of estrogen receptor (ER) in breast tumor was due to a deficit in the A3A6 allele (p(0.01), while the absence of progesterone receptors was associated with a lower incidence of the A1A1 and A1A2 variants (p = 0.022) of tetranucleotide repeats in the CYP19 gene. In the same patients, receptor-negative tumors occurred more often (p = 0.032) than in combinations of higher level of 4-hydroxylase estradiol of S-allele in position 48 (Gly/Arg) of the CYP1B1 gene. Moreover, endometrial carcinoma patients tended to reveal (p = 0.058) an increased ratio of A6A7-CYP19 to allele A1-containing variant. No other distinctions between R(+) and R(-) tumors were identified. It is suggested that peculiar polymorphisms of steroidogenic enzymes may moderately influence the genesis of R(-) neoplasms which may be associated with either the rate of estrogen biosynthesis or, as in the case of CYP1B1, with formation of genotoxic derivatives of estrogens. The latter point is to be investigated further.

  15. Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile.

    Science.gov (United States)

    Bala, Anju; Singh, Bijender

    2016-01-01

    Economical production of xylanase and three cellulases, endo-β-1,4-glucanase (CMCase), exo-β-1,4-glucanase (FPase), β-glucosidase (BGL) was studied in submerged fermentation using cane molasses medium. A statistical optimization approach involving Plackett-Burman design and response surface methodology (RSM) resulted in the production of 72,410, 36,420, 32,420 and 5180 U/l of xylanase, CMCase, FPase and β-glucosidase, respectively. Optimization resulted in more than fourfold improvements in production of xylanolytic and cellulolytic enzymes. Scale up of enzymes production in shake flasks of varied volumes was sustainable, suggesting a good scope for large scale enzyme production. Addition of microparticles engineered fungal morphology and enhanced enzymes production. Xylanase of S. thermophile is a neutral xylanase displaying its optimal activity at 60 °C while all the cellulases are optimally active at pH 5.0 and 60 °C. The efficacy of enzyme cocktail in waste tea cup paper and rice straw hydrolysis showed that maximum sugar yield of 578.12 and 421.79 mg/g substrate for waste tea cup and rice straw, respectively, were achieved after 24 h. Therefore, concomitant production of cellulolytic and xylanolytic enzymes will be beneficial for the saccharification of lignocellulosics in generating both monomeric and oligomeric sugars for biofuels and other biotechnological applications.

  16. Which one of the two common reporter systems is more suitable for chemiluminescent enzyme immunoassay: alkaline phosphatase or horseradish peroxidase?

    Science.gov (United States)

    Yu, Songcheng; Yu, Fei; Liu, Lie; Zhang, Hongquan; Zhang, Zhenzhong; Qu, Lingbo; Wu, Yongjun

    2016-05-01

    Alkaline phosphatase and horseradish peroxidase are the most commonly used reporter systems in chemiluminescent enzyme immunoassay (CLEIA). Which one, therefore, would be better when establishing a CLEIA method for a new target substance? There was no standard answer. In this study, both reporters were compared systematically including luminescence kinetics, conjugation methods, optimal condition and detection performance, using two common drugs, SD-methoxy-pyrimidine and enrofloxacin, as determination objects. The results revealed that there was much difference between the luminescence kinetics of the two systems. However, there was little difference between these systems when detecting the same substance, including in optimal conditions and determination of performance. Both reporters were suitable for establishing chemiluminescent enzyme immunoassays. Therefore, the choice of alkaline phosphatase or horseradish peroxidase as the reporter system in chemiluminescent enzyme immunoassays depends on availability. Conversely, these two report systems could be applied in simultaneous analysis of multicomponents due to their different optical behaviors and similar performances. But attention should be paid to conjugation method and coating buffer, which affected the luminescent intensity of different determination targets.

  17. Evaluation of Organic Matter Removal Efficiency and Microbial Enzyme Activity in Vertical-Flow Constructed Wetland Systems

    Directory of Open Access Journals (Sweden)

    Qiaoling Xu

    2016-09-01

    Full Text Available In this study, enzyme activities and their relationships to organics purification were investigated in three different vertical flow constructed wetlands, namely system A (planting Pennisetum sinese Roxb, system B (planting Pennisetum purpureum Schum., and system C (no plant. These three wetland systems were fed with simulation domestic sewage at an influent flow rate of 20 cm/day. The results showed that the final removal efficiency of Chemical Oxygen Demand (COD in these three systems was 87%, 85% and 63%, respectively. Planting Pennisetum sinese Roxb and Pennisetum purpureum Schum. could improve the amount of adsorption and interception for organic matter in the substrate, and the amount of interception of organic matter in planting the Pennisetum sinese Roxb system was higher than that in planting the Pennisetum purpureum Schum. system. The activities of enzymes (urease, phosphatase and cellulase in systems A and B were higher than those in system C, and these enzyme activities in the top layer (0–30 cm were significantly higher than in the other layers. The correlations between the activities of urease, phosphatase, cellulase and the COD removal rates were R = 0.815, 0.961 and 0.973, respectively. It suggests that using Pennisetum sinese Roxb and Pennisetum purpureum Schum. as wetland plants could promote organics removal, and the activities of urease, phosphatase and cellulase in those three systems were important indicators for COD purification from wastewater. In addition, 0–30 cm was the main function layer. This study could provide a theoretical basis for COD removal in the wetland system and supply new plant materials for selection.

  18. DECREASE Final Technical Report: Development of a Commercial Ready Enzyme Application System for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Teter, Sarah A

    2012-04-18

    Conversion of biomass to sugars plays a central in reducing our dependence on petroleum, as it allows production of a wide range of biobased fuels and chemicals, through fermentation of those sugars. The DECREASE project delivers an effective enzyme cocktail for this conversion, enabling reduced costs for producing advanced biofuels such as cellulosic ethanol. Benefits to the public contributed by growth of the advanced biofuels industry include job creation, economic growth, and energy security. The DECREASE primary project objective was to develop a two-fold improved enzyme cocktail, relative to an advanced cocktail (CZP00005) that had been developed previously (from 2000- 2007). While the final milestone was delivery of all enzyme components as an experimental mixture, a secondary objective was to deploy an improved cocktail within 3 years following the close of the project. In February 2012, Novozymes launched Cellic CTec3, a multi-enzyme cocktail derived in part from components developed under DECREASE. The externally validated performance of CTec3 and an additional component under project benchmarking conditions indicated a 1.8-fold dose reduction in enzyme dose required for 90% conversion (based on all available glucose and xylose sources) of NREL dilute acid pretreated PCS, relative to the starting advanced enzyme cocktail. While the ability to achieve 90% conversion is impressive, targeting such high levels of biomass digestion is likely not the most cost effective strategy. Novozymes techno economic modeling showed that for NREL's dilute acid pretreated corn stover (PCS), 80% target conversion enables a lower total production cost for cellulosic ethanol than for 90% conversion, and this was also found to be the case when cost assumptions were based on the NREL 2002 Design Report. A 1.8X dose-reduction was observed for 80% conversion in the small scale (50 g) DECREASE benchmark assay for CTec3 and an additional component. An upscaled experiment (in 0

  19. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis.

    Science.gov (United States)

    Piriya, P Sobana; Vasan, P Thirumalai; Padma, V S; Vidhyadevi, U; Archana, K; Vennison, S John

    2012-01-01

    The ethanol fermenting genes such as pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh II) were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v) ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.

  20. Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora.

    Science.gov (United States)

    Kim, Byung-Chun; Lee, Kang Hyun; Kim, Mi Na; Kim, Eun-Mi; Rhee, Moon-Soo; Kwon, O-Yu; Shin, Kee-Sun

    2009-10-01

    A novel cellulolytic bacterium, strain S23(T), was isolated from the rhizosphere of the pine trees in Daejeon, Republic of Korea. This isolate was Gram-positive, strictly aerobic, rod-shaped, catalase-negative, oxidase-positive, motile by means of peritrichous flagella, and tested positive for alkaline phosphatase, esterase lipase, leucine arylamidase, alpha-galactosidase, and beta-galactosidase activities. The DNA G+C content was 49.5 mol%. The main cellular fatty acids were anteiso-C(15:0) (51.9%), iso-C(16:0) (14.7%), and iso-C(15:0) (13.2%). The major isoprenoid quinone was menaquinone 7 (MK-7). Diagnostic diamino acid in the cell-wall pepti-doglycan was meso-diaminopimelic acid. Comparative 16S rRNA gene sequence analysis showed that this strain clustered with Paenibacillus species. The 16S rRNA gene sequence similarity values between S23(T) and other Paenibacillus species were between 89.9% and 95.9%, and S23(T) was most closely related to Paenibacillus tarimensis SA-7-6(T). On the basis of phylogenetic and phenotypic properties of strain S23(T), the isolate is considered as a novel species belonging to the genus Paenibacillus. Therefore, the name, Paenibacillus pinihumi sp. nov., is proposed for the rhizosphere isolate; the type strain is S23(T) (=KCTC 13695(T) =KACC 14199(T) =JCM 16419(T)).

  1. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    P. Sobana Piriya

    2012-01-01

    Full Text Available The ethanol fermenting genes such as pyruvate decarboxylase (pdc and alcohol dehydrogenase II (adh II were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.

  2. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    Science.gov (United States)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the

  3. Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: application in an amperometric nitrate biosensor.

    Science.gov (United States)

    Plumeré, Nicolas; Henig, Jörg; Campbell, Wilbur H

    2012-03-06

    Electroanalytical procedures are often subjected to oxygen interferences. However, achieving anaerobic conditions in field analytical chemistry is difficult. In this work, novel enzymatic systems were designed to maintain oxygen-free solutions in open, small volume electrochemical cells and implemented under field conditions. The oxygen removal system consists of an oxidase enzyme, an oxidase-specific substrate, and catalase for dismutation of hydrogen peroxide generated in the enzyme catalyzed oxygen removal reaction. Using cyclic voltammetry, three oxidase enzyme/substrate combinations with catalase were analyzed: glucose oxidase with glucose, galactose oxidase with galactose, and pyranose 2-oxidase with glucose. Each system completely removed oxygen for 1 h or more in unstirred open vessels. Reagents, catalysts, reaction intermediates, and products involved in the oxygen reduction reaction were not detected electrochemically. To evaluate the oxygen removal systems in a field sensing device, a model nitrate biosensor based on recombinant eukaryotic nitrate reductase was implemented in commercial screen-printed electrochemical cells with 200 μL volumes. The products of the aldohexose oxidation catalyzed by glucose oxidase and galactose oxidase deactivate nitrate reductase and must be quenched for biosensor applications. For general application, the optimum catalyst is pyranose 2-oxidase since the oxidation product does not interfere with the biorecognition element.

  4. The Peroxidase-Glucose Oxidase Enzyme System in the Undergraduate Laboratory.

    Science.gov (United States)

    Woolridge, Elisa; And Others

    1986-01-01

    Offers a series of experiments which introduce students to the general principles of enzymology. The experiment demonstrates several basic enzyme properties and the chromatographic exercises provide an analysis of each enzymatic activity. Questions are also presented for extending discussion on the activities. (ML)

  5. Responses of membrane protection enzyme system of tobacco leaves on Hg, Cd and Pb stresses in soil.

    Science.gov (United States)

    Yan, Chong Ling; Lin, Peng; Wang, Xiao Rong

    2002-09-01

    Pot experiment was used to study the responses of membrane protection enzyme system of tobacco leaves on Hg, Cd and Pb stresses in soil. The results showed that POD activity gradually increased with increasing concetrations of Hg, Cd and Pb. CAT and SOD activity gradually decreased under three heavy metals common existing and SOD variation curve showed unimodal curve under single or two elements existing with increase of concentration of Hg, Cd and Pb. The effects of Hg, Cd and Pb in soil: three elemets together > two elements together > single element only. The effects resulted in an imbalance--activated oxygen produce and scavenge and physiological biochemical process disorder. There was a synergistic action for the effect of Hg, Cd and Pb in soil on membrane protection enzyme system in tobacco leaves.

  6. Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production.

    Science.gov (United States)

    Kolasa, Marta; Ahring, Birgitte Kiær; Lübeck, Peter Stephensen; Lübeck, Mette

    2014-10-01

    Co-cultivation of fungi may be an excellent system for on-site production of cellulolytic enzymes in a single bioreactor. Enzyme supernatants from mixed cultures of Trichoderma reesei RutC30, with either the novel Aspergillus saccharolyticus AP, Aspergillus carbonarius ITEM 5010 or Aspergillus niger CBS 554.65 cultivated in solid-state fermentation were tested for avicelase, FPase, endoglucanase and beta-glucosidase activity as well as in hydrolysis of pretreated wheat straw. Around 30% more avicelase activity was produced in co-cultivation of T. reesei and A. saccharolyticus than in T. reesei monoculture, suggesting synergistic interaction between those fungi. Fermentation broths of mixed cultures of T. reesei with different Aspergillus strains resulted in approx. 80% efficiency of hydrolysis which was comparable to results obtained using blended supernatants from parallel monocultures. This indicates that co-cultivation of T. reesei with A. saccharolyticus or A. carbonarius could be a competitive alternative for monoculture enzyme production and a cheaper alternative to commercial enzymes.

  7. Development of FIA-enzyme systems for on-line monitoring of starch, cellulose and amygdalin concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Umoh, E.

    1993-07-02

    Immobilized enzyme - FIA systems were developed for application in monitoring starch concentration during fermentation, cellulose concentration in hydrolysis process and amygdalin concentration in industrial effluents as an index of toxic potentiality of such effluents. The starch measuring system consisting of glucoamylase, glucose oxidase and mutarotase was employed to measure glucose and starch simultaneously. The system was used for on-line monitoring of starch concentration in a 24 hour Bacillus lichenifonnis fermentation and dextrin concentration in a 140 hour fermentation of Cephalosporium acremonium. The on-line measurements agree well with the concentrations determined off-line using both calorimetric and enzymatic methods. (orig.)

  8. Asymmetric reduction of α-hydroxy aromatic ketones to chiral aryl vicinal diols using carrot enzymes system

    Institute of Scientific and Technical Information of China (English)

    Xiang Liu; Yi Wang; Hai Yan Gao; Jian He Xu

    2012-01-01

    Asymmetric reduction of α-hydroxy aromatic ketones was carried out by using carrot enzymes system,yielding corresponding chiral vicinal diols with special functional groups.The optimum reaction conditions were obtained after investigation of various influencing factors.Chiral aryl vicinal diols were produced with good yields and excellent enantiomeric excesses under appropriate conditions,Meanwhile,the steric factors and electronic effects of the substituents on the aromatic ring were shown to have an interesting influence on both yield and enantioselectivity.

  9. Comparison of colorimetric, fluorescent, and enzymatic amplification substrate systems in an enzyme immunoassay for detection of DNA-RNA hybrids.

    OpenAIRE

    Coutlee, F; Viscidi, R. P.; Yolken, R. H.

    1989-01-01

    The monoclonal antibody solution hybridization assay is a novel enzyme immunoassay for detection of RNA with a biotinylated DNA probe. To increase the sensitivity of this test, a fluorescent substrate and an enzymatic amplification cycling system were compared with a conventional colorigenic substrate for alkaline phosphatase. The fluorescent, cycling, and colorigenic substrates detected, respectively, 10, 10, and 100 amol of unbound alkaline phosphatase in 2 h. With a prolonged incubation pe...

  10. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.

    Science.gov (United States)

    Najah, Majdi; Calbrix, Raphaël; Mahendra-Wijaya, I Putu; Beneyton, Thomas; Griffiths, Andrew D; Drevelle, Antoine

    2014-12-18

    Discovery of microorganisms producing enzymes that can efficiently hydrolyze cellulosic biomass is of great importance for biofuel production. To date, however, only a miniscule fraction of natural biodiversity has been tested because of the relatively low throughput of screening systems and their limitation to screening only culturable microorganisms. Here, we describe an ultra-high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 cells in less than 20 min. Uncultured bacteria from a wheat stubble field were screened directly by compartmentalization of single bacteria in 20 pl droplets containing a fluorogenic cellobiohydrolase substrate. Sorting of droplets based on cellobiohydrolase activity resulted in a bacterial population with 17- and 7-fold higher cellobiohydrolase and endogluconase activity, respectively, and very different taxonomic diversity than when selected for growth on medium containing starch and carboxymethylcellulose as carbon source.

  11. Effects of prolonged recombinant human erythropoietin administration on muscle membrane transport systems and metabolic marker enzymes

    DEFF Research Database (Denmark)

    Juel, C; Thomsen, J J; Rentsch, R L;

    2007-01-01

    Adaptations to chronic hypoxia involve changes in membrane transport proteins. The underlying mechanism of this response may be related to concomitant occurring changes in erythropoietin (Epo) levels. We therefore tested the direct effects of recombinant human erythropoietin (rHuEpo) treatment...... on the expression of muscle membrane transport proteins. Likewise, improvements in performance may involve upregulation of metabolic enzymes. Since Epo is known to augment performance we tested the effect of rHuEpo on some marker enzymes that are related to aerobic capacity. For these purposes eight subjects...... received 5,000 IU rHuEpo every second day for 14 days, and subsequently a single dose of 5,000 IU weekly for 12 weeks. Muscle biopsies were obtained before and after 14 weeks of rHuEpo treatment. The treatment increased hematocrit (from 44.7 to 48.8%), maximal oxygen uptake by 8.1%, and submaximal...

  12. Redistribution of mineral elements in wheat grain when applying the complex enzyme preparations based on phytase

    Directory of Open Access Journals (Sweden)

    Elena Kuznetsova

    2016-01-01

    Full Text Available Biogenic minerals play an important role in the whole human nutrition, but they are included in the grain of the phytates that reduces their bioavailability. Whole wheat bread is generally considered a healthy food, but the presence of mineral elements in it is insignificant, because of weak phytate degradation. From all sources of exogenous phytase the most productive are microscopic fungi. To accelerate the process of transition hard mineral elements are mobilized to implement integrated cellulolytic enzyme preparation based on the actions of phytase (producer is Penicillium canescens. Phytase activity was assessed indirectly by the rate of release of phosphate from the substrate. It has been established that the release rate of the phosphoric acid substrate is dependent on the composition of the drug and the enzyme complex is determined by the presence of xylanase. The presented experimental data shows that a cellulase treatment of the grain in conjunction with the β-glucanase or xylanase leading to an increase in phytase activity could be 1.4 - 2.3 times as compared with the individual enzymes. As a result of concerted action of enzymes complex preparation varies topography grain, increase the pore sizes in seed and fruit shells that facilitate the penetration of the enzyme phytase in the aleurone layer to the site of phytin hydrolysis and leads to an increase in phytase activity. In terms of rational parameters of enzymatic hydrolysis, the distribution of mineral elements in the anatomical parts of the grain after processing complex enzyme preparation with the help of X-ray detector EMF miniCup system in a scanning electron microscope JEOL JSM 6390 were investigated. When processing enzyme preparation wheat trend in the distribution of mineral elements, characteristic of grain - the proportion of these elements in the aleurone layer decreases, and in the endosperm increases. Because dietary fiber and phytate found together in the

  13. DESIGN AND EVLUATION OF COLLOIDAL CARRIER SYSTEM FOR ORAL DELIVERY OF ENZYME

    OpenAIRE

    B. Srinath*, K.S. Jaganathan and K.N. Jayaveera

    2013-01-01

    The purpose of this work is to evaluate the possibility of enzyme therapy through microencapsulation of serratiopeptidase (SP) in biodegradable nanoparticles of chitosan (CS). This drug has short biological half-life and thus frequent administration makes it a suitable candidate for controlled release. In this study, serratiopeptidase loaded chitosan nanoparticles were prepared by ionotropic gelation of CS with tripolyphosphate (TPP) anions. Reversible physical cross-linking by electrostatic ...

  14. A Systems Biology Framework for Modeling Metabolic Enzyme Inhibition of Mycobacterium Tuberculosis

    Science.gov (United States)

    2009-09-15

    between single nucleotide poly- morphisms and anemia [20]. Kinetics of inhibiting enzymes can be incorporated into such models [21]. However, due to the...mycobactin syn- thesis [53]. Although the effects of this inhibitor in the host environment have not yet been reported, its inhibi- tion of the in vitro...92where vMS and denote the flux of the mycobactin syn- thesis reaction in the presence and in the absence of the sAMS inhibitor, respectively, and is

  15. Catalytic Enzyme-Based Methods for Water Treatment and Water Distribution System Decontamination. 1. Literature Survey

    Science.gov (United States)

    2006-06-01

    polyacrylamide 238 were very widely used, although not in the food industry where its toxicity was an issue. Since the production polymers such as polyacrylamide ...technology for OPAA as well. In addition to the type of synthetic polymers commonly thought of in regards to enzyme entrapment ( polyacrylamide and...entrapment can be diffusional limitations as well as steric hindrance, especially when the substrates are large macromolecular materials such as starch and

  16. A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2009-09-01

    Full Text Available Abstract Background Because metabolism is fundamental in sustaining microbial life, drugs that target pathogen-specific metabolic enzymes and pathways can be very effective. In particular, the metabolic challenges faced by intracellular pathogens, such as Mycobacterium tuberculosis, residing in the infected host provide novel opportunities for therapeutic intervention. Results We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in its metabolic pathways are inhibited. Combining detailed models of enzyme kinetics, a complete metabolic network description as modeled by flux balance analysis, and a dynamic cell population growth model, we quantitatively modeled and predicted the dose-response of the 3-nitropropionate inhibitor on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5'-O-(N-salicylsulfamoyl adenosine inhibitor in a medium with low-iron concentration. Conclusion The predicted results quantitatively reproduced the experimentally measured dose-response curves, ranging over three orders of magnitude in inhibitor concentration. Thus, by allowing for detailed specifications of the underlying enzymatic kinetics, metabolic reactions/constraints, and growth media, our model captured the essential chemical and biological factors that determine the effects of drug inhibition on in vitro growth of M. tuberculosis cells.

  17. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system.

    Science.gov (United States)

    Mafra, Agnes Cristina Oliveira; Furlan, Felipe Fernando; Badino, Alberto Colli; Tardioli, Paulo Waldir

    2015-04-01

    Sucrose from sugarcane is produced in abundance in Brazil, which provides an opportunity to manufacture other high-value products. Gluconic acid (GA) can be produced by multi-enzyme conversion of sucrose using the enzymes invertase, glucose oxidase, and catalase. In this process, one of the byproducts is fructose, which has many commercial applications. This work concerns the batch mode production of GA in an airlift reactor fed with sucrose as substrate. Evaluation was made of the influence of temperature and pH, as well as the thermal stability of the enzymes. Operational conditions of 40 °C and pH 6.0 were selected, based on the enzymatic activity profiles and the thermal stabilities. Under these conditions, the experimental data could be accurately described by kinetic models. The maximum yield of GA was achieved within 3.8 h, with total conversion of sucrose and glucose and a volumetric productivity of around 7.0 g L(-1) h(-1).

  18. Genome Sequence and Analysis of the Soil Cellulolytic ActinomyceteThermobifida fusca

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Land, Miriam; DiBartolo, Genevieve; Martinez, Michele; Lapidus, Alla; Lucas, Susan; Copeland, Alex; Richardson, Paul; Wilson,David B.; Kyrpides, Nikos

    2007-02-01

    Thermobifida fusca is a moderately thermophilic soilbacterium that belongs to Actinobacteria. 3 It is a major degrader ofplant cell walls and has been used as a model organism for the study of 4secreted, thermostable cellulases. The complete genome sequence showedthat T. fusca has a 5 single circular chromosome of 3642249 bp predictedto encode 3117 proteins and 65 RNA6 species with a coding densityof 85percent. Genome analysis revealed the existence of 29 putative 7glycoside hydrolases in addition to the previously identified cellulasesand xylanases. The 8 glycosyl hydrolases include enzymes predicted toexhibit mainly dextran/starch and xylan 9 degrading functions. T. fuscapossesses two protein secretion systems: the sec general secretion 10system and the twin-arginine translocation system. Several of thesecreted cellulases have 11 sequence signatures indicating theirsecretion may be mediated by the twin-arginine12 translocation system. T.fusca has extensive transport systems for import of carbohydrates 13coupled to transcriptional regulators controlling the expression of thetransporters and14 glycosylhydrolases. In addition to providing anoverview of the physiology of a soil 15 actinomycete, this study presentsinsights on the transcriptional regulation and secretion of16 cellulaseswhich may facilitate the industrial exploitation of thesesystems.

  19. Indigenous cellulolytic and hemicellulolytic bacteria enhanced rapid co-composting of lignocellulose oil palm empty fruit bunch with palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Hassan, Mohd Ali; Tokura, Mitsunori; Shirai, Yoshihito

    2013-11-01

    The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified.

  20. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning;

    2017-01-01

    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  1. A study of overproduction and enhanced secretion of enzymes. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Dashek, W.V.

    1993-09-01

    Wood decay within forests, a significant renewable photosynthetic energy resource, is caused primarily by Basidiomycetous fungi, e.g., white rot fungi. These organisms possess the ability to degrade lignin, cellulose and hemicellulose, the main organic polymers of wood. In the case of the white rot fungi, e.g., Coriolus versicolor, the capacity results from the fungus` ability to elaborate extracellular cellulolytic and ligninolytic enzymes. With regard to the latter, at least one of the enzymes, polyphenol oxidase (PPO) appears within a defined growth medium. This proposal focuses on the over-production and enhanced secretion of PPO, cellulase and lignin peroxidase. There are two major sections to the proposal: (1) overproduction of lignocellulolytic enzymes by genetic engineering methodologies and hyper-production and enhanced secretion of these enzymes by biochemical/electro microscopical techniques and (2) the biochemical/electron microscopical method involves substrate induction and the time-dependent addition of respiration and PPO enzymes.

  2. DESIGN AND EVLUATION OF COLLOIDAL CARRIER SYSTEM FOR ORAL DELIVERY OF ENZYME

    Directory of Open Access Journals (Sweden)

    B. Srinath*, K.S. Jaganathan and K.N. Jayaveera

    2013-11-01

    Full Text Available The purpose of this work is to evaluate the possibility of enzyme therapy through microencapsulation of serratiopeptidase (SP in biodegradable nanoparticles of chitosan (CS. This drug has short biological half-life and thus frequent administration makes it a suitable candidate for controlled release. In this study, serratiopeptidase loaded chitosan nanoparticles were prepared by ionotropic gelation of CS with tripolyphosphate (TPP anions. Reversible physical cross-linking by electrostatic interaction, instead of chemical cross-linking, has been applied to avoid the possible toxicity of reagents and other undesirable effects. The enzyme loaded particles optimized formulation was coated with sodium alginate solution to protect its release in stomach. The enzyme loaded nanoparticle formulations were characterized for by morphology, particle size, encapsulation efficiency and in-vitro drug release. The preliminary studies show that TPP and CS were compatible with SP. The ratio of CS to TPP has an influence on the mean particle size and when CS: TPP is 4:1 nanoparticles with smallest diameter are formed. Entrapment efficiency depends on the degree of deacetylation of chitosan. The formulation F-3.3 showed 75.22 % In-vitro drug release at 24 hours in PBS at pH7.4 and only 16.03% at 2 hr in SGF at pH 1.2. It is inferred that dissociation of the associated macromolecule from chitosan predominantly governs the release process. This dissociation is in turn, affected by the intensity of the interactions and the ionic strength of the release medium.

  3. Biomonitoring of air pollution using antioxidative enzyme system in two genera of family Pottiaceae (Bryophyta).

    Science.gov (United States)

    Bansal, Pooja; Verma, Sonam; Srivastava, Alka

    2016-09-01

    Bryophyte particularly mosses, have been found to serve as reliable indicators of air pollution and can serve as bryometers-biological instruments for measuring air pollution. They are remarkable colonizers, as they have the ability to survive in adverse environments and are also particular in their requirement of environmental conditions, which makes them appropriate ecological indicators. The purpose of this study was to evaluate the activity of antioxidative enzymes in two mosses viz., Hyophila rosea R.S. Williams and Semibarbula orientalis (Web.) Wijk. & Marg. and assess their suitability as biomonitors. Three different locations viz., Lucknow University, Residency (contaminated sites) and Dilkusha Garden (reference site) within Lucknow city with different levels of air pollutants were used for comparison. Our results indicate that air pollution caused marked enhancement in activity of antioxidative enzymes viz., catalase, peroxidase and superoxide dismutase. All the three are capable of scavenging reactive oxygen species. In the genus S. orientalis, catalase, peroxidase and superoxide dismutase activity was minimum at the reference site Dilkusha Garden and was significantly higher at the two contaminated sites for catalase and peroxidase, whereas the difference was non significant for superoxide dismutase. In H. rosea the activity of catalase and peroxidase at the three locations was almost similar, however superoxide dismutase activity showed a significant increase in the two contaminated sites when compared to the reference site, the value being highest for Lucknow University site. It was thus observed that the two genera, from the same location, showed difference in the activity of the antioxidative enzymes. Based on our results, we recommend bryophytes as good monitors of air pollution.

  4. Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system

    DEFF Research Database (Denmark)

    Santos-Moriano, Paloma; Woodley, John; Plou, Francisco J.

    2016-01-01

    profile (with chitotriose and chitobiose as major products, using chitosans of different polymerization and deacetylation degrees), but significantly increased the enzyme thermostability. A two-step process was proposed, in which chitosan was first hydrolyzed in a batch reactor to a viscosity that could...... flow through a packed-bead reactor (PBR), thus avoiding clogging of the column. The relationship between hydrolysis degree of chitosan (1% w/v) and viscosity of the solution was assessed in a batch reactor. A 50% hydrolyzed chitosan did not cause any clogging of the PBR. Under these conditions...

  5. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    Science.gov (United States)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  6. Systems pharmacology modeling of drug‐induced hyperbilirubinemia: Differentiating hepatotoxicity and inhibition of enzymes/transporters

    Science.gov (United States)

    Battista, C; Woodhead, JL; Stahl, SH; Mettetal, JT; Watkins, PB; Siler, SQ; Howell, BA

    2017-01-01

    Elevations in serum bilirubin during drug treatment may indicate global liver dysfunction and a high risk of liver failure. However, drugs also can increase serum bilirubin in the absence of hepatic injury by inhibiting specific enzymes/transporters. We constructed a mechanistic model of bilirubin disposition based on known functional polymorphisms in bilirubin metabolism/transport. Using physiologically based pharmacokinetic (PBPK) model‐predicted drug exposure and enzyme/transporter inhibition constants determined in vitro, our model correctly predicted indinavir‐mediated hyperbilirubinemia in humans and rats. Nelfinavir was predicted not to cause hyperbilirubinemia, consistent with clinical observations. We next examined a new drug candidate that caused both elevations in serum bilirubin and biochemical evidence of liver injury in rats. Simulations suggest that bilirubin elevation primarily resulted from inhibition of transporters rather than global liver dysfunction. We conclude that mechanistic modeling of bilirubin can help elucidate underlying mechanisms of drug‐induced hyperbilirubinemia, and thereby distinguish benign from clinically important elevations in serum bilirubin. PMID:28074467

  7. The Role of Deubiquitinating Enzymes in Synaptic Function and Nervous System Diseases

    Directory of Open Access Journals (Sweden)

    Jennifer R. Kowalski

    2012-01-01

    Full Text Available Posttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs. The balance of activity of these enzymes determines the localization, function, and stability of target proteins. While some DUBs counter the action of specific ubiquitin ligases by removing ubiquitin and editing ubiquitin chains, other DUBs function more generally to maintain the cellular pool of free ubiquitin monomers. The importance of DUB function at the synapse is underscored by the association of specific mutations in DUB genes with several neurological disorders. Over the last decade, although much research has led to the identification and characterization of many ubiquitin ligases at the synapse, our knowledge of the relevant DUBs that act at the synapse has lagged. This review is focused on highlighting our current understanding of DUBs that regulate synaptic function and the diseases that result from dysfunction of these DUBs.

  8. Signaling properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity.

    Science.gov (United States)

    Lund, Frances E

    2006-01-01

    The 5th international CD38 meeting, held in Torino, Italy, spanned a range of topics from the role of CD38 as a signaling receptor in lymphocytic tumors to the importance of CD38-derived metabolites in NAD(+) metabolism, calcium signaling, and immune function. This meeting was particularly exciting as data were presented demonstrating that collaborative experiments between enzymologists, biochemists, cell biologists, immunologists, and clinicians have started to unravel the secrets of CD38 biology. It is now clear that all of the products of the CD38 enzyme reaction regulate calcium signal transduction in cell types as diverse as sea urchin oocytes and mammalian lymphocytes. It is also apparent that CD38 plays important immunomodulatory role(s), however there is still much debate on how CD38 mediates its immunoregulatory functions and whether the enzymatic products generated by CD38 are important for immunity. The data presented at this meeting have begun to resolve some of these controversies. First, CD38 regulates the function of leukocytes by enzyme-dependent and enzyme-independent mechanisms. Second, CD38 regulates inflammatory responses by modulating the activity of the responding leukocytes and by altering the activity of non-hematopoietic cells in the inflamed tissue. Finally, crosstalk between CD38 and other NAD(+) utilizing enzymes such as ART2, SIRT1, and PARP-1 impacts NAD(+) homeostasis, inflammation, and immunity. Thus, immunity is regulated by CD38 in multiple and unexpected ways and the new research challenge will be to determine whether we can exploit the complex biology of CD38 to therapeutically regulate the immune system.

  9. Fundamental study of the mechanism and kinetics of cellulose hydrolysis by acids and enzymes. Final report, June 1, 1978-January 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Gong, C.S.; Chang, M.

    1981-02-01

    There are three basic enzymes (e.g., endoglucanase (C/sub x/), exoglucanase (C/sub 1/) and cellobiase) comprising the majority of extracellular cellulase enzymes produced by the cellulolytic mycelial fungi, Trichoderma reesei, and other cellulolytic microorganisms. The enzymes exhibited different mode of actions in respect to the hydrolysis of cellulose and cellulose derived oligosaccharides. In combination, these enzymes complimented each other to hydrolyze cellulose to its basic constituent, glucose. The kinetics of cellobiase were developed on the basis of applying the pseudo-steady state assumption to hydrolyze cellobiose to glucose. The results indicated that cellobiase was subjected to end-product inhibition by glucose. The kinetic modeling of exoglucanase (C/sub 1/) with respect to cellodextrins was studied. Both glucose and cellobiose were found to be inhibitors of this enzyme with cellobiose being a stronger inhibitor than glucose. Similarly, endoglucanase (C/sub x/) is subject to end-product inhibition by glucose. Crystallinity of the cellulose affects the rate of hydrolysis by cellulases. Hence, the changes in crystallinity of cellulose in relation to chemical pretreatment and enzyme hydrolysis was compared. The study of cellulase biosynthesis resulted in the conclusion that exo- and endo-glucanases are co-induced while cellobiase is synthesized independent of the other two enzymes. The multiplicity of cellulase enzymes are the end results of post-translational modification during and/or after the secretion of enzymes into growth environment.

  10. Genetic variation in cultivars of diploid ryegrass,Lolium perenne andL. multiflorum, at five enzyme systems

    DEFF Research Database (Denmark)

    Østergaard, H.; Nielsen, Gretha; Johansen, H.

    1985-01-01

    Samples of .apprx. 100 plants from each of 22 populations of L. perenne representing 15 cultivars, and from 13 populations of L. multiflorum representing 6 cultivars were scored for isozyme variants in 5 enzyme systems: PGI, GOT, ACP, PGM and 6-PGD [phosphoglucoisomerase, glutamate oxaloacetate t...... and Got 2 indicated presumably selection working on the linkage group including these loci. Gametic phase disequilibrium was observed between Pgi 2 and Pgd 1 for populations of 1 cultivar. These results were discussed in relation to the variation expected within a cultivar....

  11. Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential.

    Science.gov (United States)

    Koeck, Daniela E; Zverlov, Vladimir V; Liebl, Wolfgang; Schwarz, Wolfgang H

    2014-07-01

    Clostridium thermocellum is among the most prevalent of known anaerobic cellulolytic bacteria. In this study, genetic and phenotypic variations among C. thermocellum strains isolated from different biogas plants were determined and different genotyping methods were evaluated on these isolates. At least two C. thermocellum strains were isolated independently from each of nine different biogas plants via enrichment on cellulose. Various DNA-based genotyping methods such as ribotyping, RAPD (Random Amplified Polymorphic DNA) and VNTR (Variable Number of Tandem Repeats) were applied to these isolates. One novel approach - the amplification of unknown target sequences between copies of a previously discovered Random Inserted Mobile Element (RIME) - was also tested. The genotyping method with the highest discriminatory power was found to be the amplification of the sequences between the insertion elements, where isolates from each biogas plant yielded a different band pattern. Cellulolytic potentials, optimal growth conditions and substrate spectra of all isolates were characterized to help identify phenotypic variations. Irrespective of the genotyping method used, the isolates from each individual biogas plant always exhibited identical patterns. This is suggestive of a single C. thermocellum strain exhibiting dominance in each biogas plant. The genotypic groups reflect the results of the physiological characterization of the isolates like substrate diversity and cellulase activity. Conversely, strains isolated across a range of biogas plants differed in their genotyping results and physiological properties. Both strains isolated from one biogas plant had the best specific cellulose-degrading properties and might therefore achieve superior substrate utilization yields in biogas fermenters.

  12. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.

    Science.gov (United States)

    Say, R; Şenay, R Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. Km values were 0.26 and 0.87 mM and Vmax values were 0.36 IU mg(-1) and 22.32 IU mg(-1) for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70-80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst.

  13. 6-Hydroxydopamine-induced glutathione alteration occurs via glutathione enzyme system in primary cultured astrocytes

    Institute of Scientific and Technical Information of China (English)

    Ji ZHANG; Jun HU; Jian-hua DING; Hong-hong YAO; Gang HU

    2005-01-01

    Aim: To define the role of enzymes involved in glutathione metabolism in 6-hydroxydopamine (6-OHDA)-induced glutathione alteration in primary cultured astrocytes.Methods: Total glutathione (GSx) levels were determined using the modified enzymatic microtiter plate assay.The mRNA levels ofγ-glutamylcysteine synthetase (γGCS), γ-glutamyltransferase (γGT), glutathione peroxidase (GPx), GR (glutathione reductase), and glutathione transferases (GST) were determined using RT-PCR.γGT activity was determined using γGT assay kits.Results: In primary cultured astrocytes, 6-OHDA induced a significant elevation of cellular GSx levels after treatment for 24 h.However, the GSx levels decreased after 24 h and the values were even lower than the value in the control group without 6-OHDA at 48 h.RT-PCR data showed that the mRNA levels of γGCS, the ratelimiting enzyme of γ-L-glutamyl-L-cysteinylglycine (GSH) synthesis, were increased by 6-OHDA after treatment for 24 h and 48 h; the mRNA levels of GPx, GR, and GST did not alter in 6-OHDA-treated astrocytes after treatment for 24 h and 48 h; and 6-OHDA increased the mRNA levels and the activity of γGT after treatment for 48 h,which induced a decrease in GSx levels, despite the up-regulation of γGCS after exposure to 6-OHDA for 48 h.Conclusion: The change in γGCS correlated with the increase in GSH levels induced by 6-OHDA after treatment for 24 h.GSx levels decreased because of increased γGT mRNA levels and γGT activity induced by 6-OHDA after treatment for 48 h.

  14. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch

    Energy Technology Data Exchange (ETDEWEB)

    Say, R. [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Şenay, R. Hilal [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Akgöl, Sinan, E-mail: sinanakgol@yahoo.co.uk [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Denizli, Adil [Hacettepe University, Faculty of Science, Chemistry Department, 06532 Ankara (Turkey)

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. K{sub m} values were 0.26 and 0.87 mM and V{sub max} values were 0.36 IU mg{sup −1} and 22.32 IU mg{sup −1} for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70–80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. - Highlights: ► Developing to prepare nanoprotein particles carrying α-amylase ► Characterization of nanostructured α-amylase ► Usability of α-amylase nanoparticles in hydrolysis of starch.

  15. A Laboratory Exercise To Understand the Importance of Enzyme Technology in the Fruit-Processing Industry: Viscosity Decrease and Phenols Release from Apple Mash

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Nielsen, Michael Krogsgaard; Meyer, Anne S.

    2011-01-01

    . The exercise shows the impact of enzyme-catalyzed plant cell-wall degradation on the viscosity of apple fruit mash and on the extraction of antioxidant phenols into experimentally prepared apple juice. The exercise also demonstrates that pectinolytic and cellulolytic enzymes have different effects......In a 4-h laboratory exercise, students accomplish a series of enzymatic macerations of apple mash, assess the viscosity of the mash during the maceration, extract the juice by centrifugation, and measure the levels of antioxidant phenols extracted into the juice after different enzyme treatments...

  16. Enzymic liquefaction and saccharification of agricultural biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beldman, G.; Searle-Van Leeuwen, M.J.F.; Voragen, A.G.J.; Rombouts, F.M.; Pilnik, W.

    1985-01-01

    The aim of this project was to study the application of polysaccharide degrading enzymes (cellulases, hemicellulases, pectinases) in the conversion of agricultural and horticultural raw materials, surpluses and wastes to fermentable sugar solutions. Several aspects of such a process had to be investigated. In order to select optimal enzyme combinations, the polysaccharide composition of the raw materials had to be studied. Commercial enzyme preparations had to be screened on their liquefying and saccharifying capability. We had to study optimal reaction conditions of these enzymes such as pH, temperature and reactor design as well as the effect of pretreatment of the raw materials on enzyme action. Ligno-cellulosic materials like wood chips and tomato plant waste gave low sugar yields, when treated with enzymes alone. Extrusion of wood chips in a single screw extruder at 170/sup 0/C gave a 5 fold increase of its enzymic digestibility. The same pretreatment on tomato plant waste gave less satisfactory results. Preliminary experiments were carried out on the improvement of the solid phase fermentation of sugar beets. Addition of pectolytic and cellulolytic enzymes to the mash gave a liquid product, faster fermentation and more ethanol. The cellulase preparation Maxazyme was studied into more detail by fractionation and characterization of the different endoglucanases, exoglucanases and ..beta..-glucosidases. Binding of the individual enzymes to crystalline cellulose was studied, as well as the endoglucanase/exoglucanase ratio for maximum synergism between the two enzymes. From experiments with the original enzyme preparation Maxazyme Cl, enriched with the purified enzymes, we concluded that a harmoniously composed mixture is needed to obtain maximal cellulose hydrolysis.

  17. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.

    Science.gov (United States)

    Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K

    2012-07-18

    The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).

  18. Exploring and integrating cellulolytic systems of insects to advance biofuel technology

    Institute of Scientific and Technical Information of China (English)

    Jian-Zhong Sun; Michael E. Scharf

    2010-01-01

    @@ In line with the requirements for sustainable economics and clean environments, cellulose-based biofuels have recently received tremendous attention both in industry and academic communities worldwide.Alternative and renewable fuels derived from lignocellulosic biomass of-fer the potential to reduce our dependence on fossil fuels and mitigate global climate change.

  19. Overproduction of ligninolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  20. Enzyme-assisted extraction of lycopene from tomato processing waste.

    Science.gov (United States)

    Zuorro, Antonio; Fidaleo, Marcello; Lavecchia, Roberto

    2011-12-10

    A central composite design was used to optimize the enzyme-assisted extraction of lycopene from the peel fraction of tomato processing waste. Tomato skins were pretreated by a food-grade enzyme preparation with pectinolytic and cellulolytic activities and then subjected to hexane extraction. The factors investigated included extraction temperature (10-50 °C), pretreatment time (0.5-6.5 h), extraction time (0.5-4.5 h), enzyme solution-to-solid ratio (10-50 dm³/kg) and enzyme load (0-0.2 kg/kg). Overall, an 8- to 18-fold increase in lycopene recovery was observed compared to the untreated plant material. From a response surface analysis of the data, a second-degree polynomial equation was developed which provided the following optimal extraction conditions: T=30 °C, extraction time=3.18 h and enzyme load=0.16 kg/kg. The obtained results strongly support the idea of using cell-wall degrading enzymes as an effective means for recovering lycopene from tomato waste.

  1. The PGI enzyme system and fitness response to temperature as a measure of environmental tolerance in an invasive species

    Directory of Open Access Journals (Sweden)

    Marie-Caroline Lefort

    2014-11-01

    Full Text Available In the field of invasion ecology, the determination of a species’ environmental tolerance, is a key parameter in the prediction of its potential distribution, particularly in the context of global warming. In poikilothermic species such as insects, temperature is often considered the most important abiotic factor that affects numerous life-history and fitness traits through its effect on metabolic rate. Therefore the response of an insect to challenging temperatures may provide key information as to its climatic and therefore spatial distribution. Variation in the phosphoglucose-6-isomerase (PGI metabolic enzyme-system has been proposed in some insects to underlie their relative fitness, and is recognised as a key enzyme in their thermal adaptation. However, in this context it has not been considered as a potential mechanism contributing to a species invasive cability. The present study aimed to compare the thermal tolerance of an invasive scarabaeid beetle, Costelytra zealandica (White with that of the closely related, and in part sympatrically occurring, congeneric non-invasive species C. brunneum (Broun, and to consider whether any correlation with particular PGI genotypes was apparent. Third instar larvae of each species were exposed to one of three different temperatures (10, 15 and 20 °C over six weeks and their fitness (survival and growth rate measured and PGI phenotyping performed via cellulose acetate electrophoresis. No consistent relationship between PGI genotypes and fitness was detected, suggesting that PGI may not be contributing to the invasion success and pest status of C. zealandica.

  2. An aryl-alcohol oxidase of Pleurotus sapidus: heterologous expression, characterization, and application in a 2-enzyme system.

    Science.gov (United States)

    Galperin, Ilya; Javeed, Aysha; Luig, Hanno; Lochnit, Günter; Rühl, Martin

    2016-09-01

    Aryl-alcohol oxidases (AAOs) are enzymes supporting the degradation of lignin by fungal derived class II peroxidases produced by white-rot fungi. AAOs are able to generate H2O2 as a by-product via oxidation of an aryl-alcohol into its correspondent aldehyde. In this study, an AAO was heterologously expressed in a basidiomycete host for the first time. The gene for an AAO of the white-rot fungus Pleurotus sapidus, a close relative to the oyster mushroom Pleurotus ostreatus, was cloned into an expression vector and put under control of the promotor of the glyceraldehyde-3-phosphate dehydrogenase gene 2 (gpdII) of the button mushroom Agaricus bisporus. The expression vector was transformed into the model basidiomycete Coprinopsis cinerea, and several positive transformants were obtained. The best producing transformants were grown in shake-flasks and in a stirred tank reactor reaching enzymatic activities of up to 125 U L(-1) using veratryl alcohol as a substrate. The purified AAO was biochemically characterized and compared to the previously described native and recombinant AAOs from other Pleurotus species. In addition, a two-enzyme system comprising a dye-decolorizing peroxidase (DyP) from Mycetinis scorodonius and the P. sapidus AAO was successfully employed to bleach the anthraquinone dye Reactive Blue 5.

  3. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    Science.gov (United States)

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (Plycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors.

  4. Identification and molecular modeling of a family 5 endocellulase from Thermus caldophilus GK24, a cellulolytic strain of Thermus thermophilus

    Directory of Open Access Journals (Sweden)

    Dae-Sil Lee

    2006-12-01

    Full Text Available The genome of T. caldophilus GK24 was recently sequenced and annotated as 14contigs, equivalent to 2.3 mega basepairs (Mbp of DNA. In the current study, we identifieda unique 13.7 kbp DNA sequence, which included the endocellulase gene of T. caldophilusGK24, which did not appear to be present in the complete genomic sequence of the closelyrelated species T. thermophilus HB27 and HB8. Congo-red staining revealed a uniquephenotype of cellulose degradation by strain GK24 that was distinct from other closelyrelated Thermus strains. The results showed that strain GK24 is an aerobic, thermophilic,cellulolytic eubacterium which belongs to the group T. thermophilus. In order to understandthe mechanism of production of cellobiose in T. caldophilus GK24, a three-dimensionalmodel of the endocellulase, TcCel5A, was generated based on known crystal structures.Using this model, we carried out a flexible cellotetraose docking study.

  5. Retraction: Characterization of cellulolytic activities of newly isolated Thelephora sowerbyi from North-Western Himalayas on different lignocellulosic substrates.

    Science.gov (United States)

    Sharma, Deepika; Goel, Gunjan; Bansal, Saurabh; Mahajan, Rishi; Sharma, B M; Chauhan, Rajinder Singh

    2016-12-01

    Characterization of cellulolytic activities of newly isolated Thelephora sowerbyi from North-Western Himalayas on different lignocellulosic substrate J. Basic Microbiol. 2015, 55, 1-11 - DOI: 10.1002/jobm.201500107 The above article from the Journal of Basic Microbiology, published online on 08 June 2015 in Wiley Online Library as Early View (http://onlinelibrary.wiley.com/doi/10.1002/jobm.201500107/pdf), has been retracted by agreement between the authors, the Editor-in-Chief and Wiley-VCH GmbH & Co. KGaA. The retraction has been agreed because the microorganism studied in the described experiments has been identified as the fungus Cotylidia pannosa (Gene Accession No. KT008117) instead of Thelephora sowerbyi. The culture has been identified on the basis of the sequence of the amplified ITS region of the microorganism which was submitted by the authors to the NCBI database.

  6. Denitrification enzyme activity in swine wastewater effluent of a nitrification/denitrification treatment system

    Science.gov (United States)

    Intensification of swine production in the USA and around the world requires advanced manure management. For swine manure management in the state of North Carolina, one system met all of the required advanced management criteria, and it was qualified as a superior technology. This investigation was ...

  7. Comparison of detergent and protease enzyme combinations for the detection of scrapie-associated fibrils from the central nervous system of sheep naturally affected with scrapie.

    Science.gov (United States)

    Stack, M J; Aldrich, A M; Davis, L A

    1997-02-01

    Standardized samples of tissue from the central nervous system of four sheep naturally affected with scrapie and from four healthy control sheep were subjected to a centrifugal extraction technique used to obtain scrapie-associated fibrils; the latter were then demonstrated by negative-contrast transmission electron microscopy. This regime was used to evaluate the fibril yield obtained from the 25 possible combinations of five different detergents and five different proteolytic enzymes. N-lauroylsarcosine detergent was found to be the most efficient detergent for all five enzymes, followed by sulphabetaine 3-14. Sodium dodecyl sulphate detergent was successful only in combination with a subtilisin Carlsberg enzyme. Octylglucoside and nonidet P40 detergents did not produce fibrils with any of the enzymes. Proteinase K was the least efficient of the five enzymes when used in combination with N-lauroylsarcosine; subtilisin Carlsberg, clostripain, pronase and trypsin enzymes all gave higher fibril yields. A combination of N-lauroylsarcosine detergent and subtilisin Carlsberg proteolytic enzyme gave the highest fibril yield.

  8. A novel triculture system (CC3 for simultaneous enzyme production and hydrolysis of common grasses through submerged fermentation

    Directory of Open Access Journals (Sweden)

    Vincent Vineeth Leo

    2016-03-01

    Full Text Available The perennial grasses are considered as a rich source of lignocellulosic biomass, making it a second generation alternative energy source and can diminish the use of fossil fuels. In this work, four perennial grasses Saccharum arundinaceum, Panicum antidotale, Thysanolaena latifolia and Neyraudia reynaudiana were selected to verify their potential as a substrate to produce hydrolytic enzymes and to evaluate them as second generation energy biomass. Here, cellulase and hemi-cellulase producing three endophytic bacteria (Burkholderia cepacia BPS-GB3, Alcaligenes faecalis BPS-GB5 and Enterobacter hormaechei BPS-GB8 recovered from N. reynaudiana and S. arundinaceum were selected to develop a triculture (CC3 consortium. During 12 days of submerged cultivation, a 55-70% loss in dry weight was observed and the maximum activity of β-glucosidase (5.36 to 12.34 IU and Xylanase (4.33 to 10.91 IU were observed on 2nd and 6th day respectively, whereas FPase (0.26 to 0.53 IU and CMCase (2.31 to 4.65 IU showed maximum activity on 4th day. Around 15-30% more enzyme activity was produced in CC3 as compared to monoculture (CC1 and coculture (CC2 treatments, suggested synergetic interaction among the selected three bacterial strains. Further, the biomass was assessed using Fourier-transform infrared spectroscopy (FTIR and Scanning electron microscopy (SEM. The FTIR analysis provides important insights into the reduction of cellulose and hemicellulose moieties in CC3 treated biomass and SEM studies shed light into the disruption of surface structure leading to access of cellulose or hemicelluloses microtubules. The hydrolytic potential of the CC3 system was further enhanced due to reduction in lignin as evidenced by 1-4% lignin reduction in biomass compositional analysis. Additionally, laccase gene was detected from A. faecalis and E. hormaechei which further shows the laccase production potential of the isolates. To our knowledge, first time we develop an

  9. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  10. "Mixed inhibitor-prodrug" as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes.

    Science.gov (United States)

    Fournié-Zaluski, M C; Coric, P; Turcaud, S; Lucas, E; Noble, F; Maldonado, R; Roques, B P

    1992-06-26

    In order to evaluate the possible advantages of potentiating the effects of the endogenous enkephalins, to obtain analgesia without the serious drawbacks of morphine, it was essential to design systemically active compounds which inhibit the two metabolizing enzymes, aminopeptidase N (APN) and neutral endopeptidase 24.11 (NEP). A new concept combining the idea of "prodrug" and "mixed inhibitor" was therefore developed. Given the high efficiency of beta-mercaptoalkylamines as APN inhibitors and of N-(mercaptoacyl) amino acids as NEP inhibitors, compounds associating these molecules through disulfide or thioester bonds, which are known to increase lipophilicity and to favor passage across the blood-brain barrier, have been synthesized. An HPLC study indicated that the disulfide bridge was resistant to serum enzymes but was cleaved by brain membrane homogenates, suggesting that the active inhibitors were released in the central nervous system. The validity of the approach was verified by the efficient antinociceptive responses obtained in the hot plate test in mice after iv administration of disulfide-containing inhibitors (ED50s of from 4 to 26 mg/kg on the jump latency time). The analgesic potencies of the "mixed inhibitor-prodrug" RB 101 [H2NCH(CH2CH2SCH3)CH2SSCH2CH(CH2Ph)CONHCH( CH2Ph)COOCH2Ph] after iv administration were three times greater than those of a similar combined dose of its two constitutive moieties. The separation of the two diastereoisomers constituting RB 101 showed that the analgesia has a stereochemical dependence, the (S,S,S)-isomer being more active than the (S,R,S)-isomer. Furthermore, in the tail flick test in the rat, RB 101 gave 38% analgesia at a dose of 80 mg/kg. Due to its high efficiency and its longer pharmacological effect, RB 101 was selected for a complete study of its analgesic properties.

  11. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    DEFF Research Database (Denmark)

    Zhang, Zhao; Birkedal, Victoria; Gothelf, Kurt Vesterager

    2016-01-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, w...... G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection....

  12. STD-DOSY: A new NMR method to analyze multi-component enzyme/substrate systems

    Science.gov (United States)

    Kramer, Markus; Kleinpeter, Erich

    2010-02-01

    A new approach to analyze multi-component Saturation Transfer Difference (STD) NMR spectra by combining the STD and the DOSY experiment is proposed. The resulting pulse sequence was successfully used to simplify an exemplary multi-component protein/substrate system by means of standard DOSY processing methods. Furthermore, the same experiment could be applied to calculate the ratio of saturated substrate molecules and its saturation rate in the case of competitive interactions. This ratio depends on the strength of this interaction between the substrates and the protein, so that this kind of information could be extracted from the results of our experiment.

  13. Application of the VPp1 bacteriophage combined with a coupled enzyme system in the rapid detection of Vibrio parahaemolyticus.

    Science.gov (United States)

    Peng, Yong; Jin, Yanqiu; Lin, Hong; Wang, Jingxue; Khan, Muhammad Naseem

    2014-03-01

    For rapid and quantitative detection of Vibrio parahaemolyticus, a method combining the specific lysis of bacteriophages with a bacterial luciferase-flavin mononucleotide:nicotinamide adenine dinucleotide oxidoreductase bioluminescent system in vitro was developed. A V. parahaemolyticus detection system was established by optimizing three main influencing factors: bacteriophage titer, volume ratio of the bacteriophage to its host bacterium, and lysis time. A standard curve between the number of bacteria and the luminescence intensity of the coupled enzyme system was studied and revealed a good linear relationship. More than 10(7)colony-forming units (cfu)·ml(-1) bacteria in pure culture and >10(8) cfu·ml(-1) bacteria in oyster samples were readily detected without pre-enrichment. Furthermore, >10(0) cfu·ml(-1) bacteria in oyster samples were readily detected after 4h of enrichment culture. Because of its rapid detection, high specificity, and simplicity in operation, this method is an effective tool for detecting living bacteria in food and environmental samples.

  14. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    Science.gov (United States)

    Zhang, Z.; Birkedal, V.; Gothelf, K. V.

    2016-05-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection.

  15. Abnormal cardiac enzymes in systemic sclerosis: a report of four patients and review of the literature.

    Science.gov (United States)

    Vasta, B; Flower, V; Bucciarelli-Ducci, C; Brown, S; Korendowych, E; McHugh, N J; Pauling, J D

    2014-03-01

    Cardiac involvement in systemic sclerosis (SSc) is heterogeneous and can include primary involvement of the myocardium, pericardium and coronary arteries or be secondary to cardiac complications of pulmonary and renal disease. Primary cardiac involvement in SSc is uncommon but can result in ventricular dysfunction, organ failure, arrhythmias and death. It can remain clinically silent and the prevalence is likely to be under-reported. We report four cases of SSc associated with a raised serum troponin T (TnT), in a proportion of whom cardiac MRI myocardial abnormalities were detected. These cases highlight the heterogeneity of cardiac involvement in SSc, the role of cardiac MRI and promising biochemical responses to immunosuppression. Cardiac biomarkers such as TnT may be useful screening tools to identify subclinical cardiac disease and assess response to therapeutic intervention.

  16. Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1.

    Science.gov (United States)

    Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin

    2016-06-08

    The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50-60 °C and pH 5.5-6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates.

  17. A Three-Enzyme-System to Degrade Curcumin to Natural Vanillin

    Directory of Open Access Journals (Sweden)

    Vida Esparan

    2015-04-01

    Full Text Available The symmetrical structure of curcumin includes two 4-hydroxy-3-methoxyphenyl substructures. Laccase catalyzed formation of a phenol radical, radical migration and oxygen insertion at the benzylic positions can result in the formation of vanillin. As vanillin itself is a preferred phenolic substrate of laccases, the formation of vanillin oligomers and polymers is inevitable, once vanillin becomes liberated. To decelerate the oligomerization, one of the phenolic hydroxyl groups was protected via acetylation. Monoacetyl curcumin with an approximate molar yield of 49% was the major acetylation product, when a lipase from Candida antarctica (CAL was used. In the second step, monoacetyl curcumin was incubated with purified laccases of various basidiomycete fungi in a biphasic system (diethyl ether/aqueous buffer. A laccase from Funalia trogii (LccFtr resulted in a high conversion (46% molar yield of curcumin monoacetate to vanillin acetate. The non-protected vanillin moiety reacted to a mixture of higher molecular products. In the third step, the protecting group was removed from vanillin acetate using a feruloyl esterase from Pleurotus eryngii (PeFaeA (68% molar yield. Alignment of the amino acid sequences indicated that high potential laccases performed better in this mediator and cofactor-free reaction.

  18. A three-enzyme-system to degrade curcumin to natural vanillin.

    Science.gov (United States)

    Esparan, Vida; Krings, Ulrich; Struch, Marlene; Berger, Ralf G

    2015-04-14

    The symmetrical structure of curcumin includes two 4-hydroxy-3-methoxyphenyl substructures. Laccase catalyzed formation of a phenol radical, radical migration and oxygen insertion at the benzylic positions can result in the formation of vanillin. As vanillin itself is a preferred phenolic substrate of laccases, the formation of vanillin oligomers and polymers is inevitable, once vanillin becomes liberated. To decelerate the oligomerization, one of the phenolic hydroxyl groups was protected via acetylation. Monoacetyl curcumin with an approximate molar yield of 49% was the major acetylation product, when a lipase from Candida antarctica (CAL) was used. In the second step, monoacetyl curcumin was incubated with purified laccases of various basidiomycete fungi in a biphasic system (diethyl ether/aqueous buffer). A laccase from Funalia trogii (LccFtr) resulted in a high conversion (46% molar yield of curcumin monoacetate) to vanillin acetate. The non-protected vanillin moiety reacted to a mixture of higher molecular products. In the third step, the protecting group was removed from vanillin acetate using a feruloyl esterase from Pleurotus eryngii (PeFaeA) (68% molar yield). Alignment of the amino acid sequences indicated that high potential laccases performed better in this mediator and cofactor-free reaction.

  19. Microbial biomass and enzyme activity of a Cerrado Oxisol under agroecological production system

    Directory of Open Access Journals (Sweden)

    Enderson Petrônio de Brito Ferreira

    2011-01-01

    Full Text Available Aiming to evaluate the effects of soil management and cover crops on microbial indicators of soil quality, an experiment was carried out under field conditions in which common bean and corn were cropped under no-tillage (NT and conventional tillage (CT after sunnhemp, velvet bean, pigeon pea, jack bean, sorghum and fallow (weeds. The basal soil respiration (BSR, C and N of the microbial biomass (Cmic and Nmic, metabolic quotient (qCO2, total enzymatic activity (TEA, β-glycosidase (β-GA activity and acid phosphatase activity (APA were evaluated in samples collected in 0-0.10 m depth. Cmic, qCO2, TEA, β-GA and APA were more sensitive in determining the effects caused by tillage and cover crops. Although the cover crops had not provided a remarkably influence on the studied indicators, in general, the highest values of Cmic, Nmic, BSR, TEA, β-GA and APA and the lowest values of qCO2 were observed under NT compared to CT. Cmic and TEA values were 35% and 13% higher under NT when compared to CT, respectively. In addition, NT showed values closer to those found under "Cerrado" area for the studied parameters, indicating a greater sustainability under this soil management system compared to CT management.

  20. A wireless transmission system powered by an enzyme biofuel cell implanted in an orange.

    Science.gov (United States)

    MacVittie, Kevin; Conlon, Tyler; Katz, Evgeny

    2015-12-01

    A biofuel cell composed of catalytic electrodes made of "buckypaper" modified with PQQ-dependent glucose dehydrogenase and FAD-dependent fructose dehydrogenase on the anode and with laccase on the cathode was used to activate a wireless information transmission system. The cathode/anode pair was implanted in orange pulp extracting power from its content (glucose and fructose in the juice). The open circuit voltage, Voc, short circuit current density, jsc, and maximum power produced by the biofuel cell, Pmax, were found as ca. 0.6 V, ca. 0.33 mA·cm(-2) and 670 μW, respectively. The voltage produced by the biofuel cell was amplified with an energy harvesting circuit and applied to a wireless transmitter. The present study continues the research line where different implantable biofuel cells are used for the activation of electronic devices. The study emphasizes the biosensor and environmental monitoring applications of implantable biofuel cells harvesting power from natural sources, rather than their biomedical use.

  1. On-line monitoring system of lactic acid fermentation by using integrated enzyme sons ors; Shusekika koso sensa wo mochiita nyusan hakko keisokuyo onrain monitaringu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayasu; Kumagi, Takeshi; Nakashima, Yuuichi [Kyushu University, Fukuoka (Japan). Dept. of Biochemical Engineering and Science

    1999-03-10

    An on-line monitoring system for lactic acid fermentation is developed by using integrated micro enzyme sensors, a flow injection analysis system, and a micro dialysis system. The calibration curves of micro glucose, lactose and lactate sensors show good linearity in the concentration range below 70 mM. By combination with the micro dialysis system, the enzyme sensors can measure the whole concentration range of lactic acid fermentation, and interference by the medium can not be observed. The on-line sensor system is then applied to lactic acid fermentation of Lactobacillus delbrueckii. The sensor system can monitor the glucose and lactate concentrations simultaneously during 24-h fermentation, and the measurements show good agreement with those of the conventional colorimetric method. The sensor system can also be applied to on-line monitoring of lactose and lactate during Lactobacillus lactis fermentation. (author)

  2. Complete Detoxification of Short Chain Chlorinated Aliphatic Compounds: Isolation of Halorespiring Organisms and Biochemical Studies of the Dehalogenating Enzyme Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tiedje, J.M.

    1999-10-01

    Work focused on the isolation and characterization of halorespiring populations, and the initial investigation of the dechlorinating enzyme systems. In addition, tools to evaluate the presence/activity to halorespiring populations in the environment were developed. The tools developed in this work (measurements of hydrogen consumption thresholds, molecular probes) are relevant for regulatory agencies in order to facilitate decisions on which bioremediation technology (biostimulation or bioaugmentation) is most promising at a particular site. In addition, a better understanding of the physiology of the halorespiring organisms as well as the biochemistry of the dehalogenating enzyme systems enhances our knowledge of how these organisms can successfully be employed in the bioremediation of contaminated sites.

  3. Antithyroid drug detection using an enzyme cascade blocking in a nanoparticle-based lab-on-a-chip system.

    Science.gov (United States)

    Kurbanoglu, Sevinc; Mayorga-Martinez, Carmen C; Medina-Sánchez, Mariana; Rivas, Lourdes; Ozkan, Sibel A; Merkoçi, Arben

    2015-05-15

    A methimazole (MT) biosensor based on a nanocomposite of magnetic nanoparticles (MNPs) functionalized with iridium oxide nanoparticles (IrOx NPs) and tyrosinase (Tyr) immobilized onto screen printed electrode (SPE) by using a permanent magnet is presented. This system is evaluated in batch mode via chelating copper at the active site of tyrosinase and in flow mode by thioquinone formation. The MT detection in flow mode is achieved using a hybrid polydimethylsiloxane/polyester amperometric lab-on-a-chip (LOC) microsystem with an integrated SPE. Both systems are very sensitive with low limit of detection (LOD): 0.006 μM and 0.004 μM for batch and flow modes, respectively. Nevertheless, the flow mode has advantages such as its reusability, automation, low sample volume (6 μL), and fast response (20 s). Optimization and validation parameters such as enzyme-substrate amount, flow rate, inhibition conditions, repeatability and reproducibility of the biosensor have been performed. The proposed methods have been applied in MT detection in spiked human serum and pharmaceutical dosage forms.

  4. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  5. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  6. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.

    Directory of Open Access Journals (Sweden)

    Riffat I Munir

    Full Text Available Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes, sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199 and carbohydrate binding modules (95 were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.

  7. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.

    Science.gov (United States)

    Munir, Riffat I; Schellenberg, John; Henrissat, Bernard; Verbeke, Tobin J; Sparling, Richard; Levin, David B

    2014-01-01

    Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes), sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199) and carbohydrate binding modules (95) were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.

  8. Activity of the glutathione antioxidant system and NADPH-generating enzymes in blood serum of rats with type 2 diabetes mellitus after administration of melatonin-correcting drugs.

    Science.gov (United States)

    Agarkov, A A; Popova, T N; Verevkin, A N; Matasova, L V

    2014-06-01

    We studied the effects of epifamin and melaxen on serum content of reduced glutathione and activities of glutathione peroxidase, glutathione reductase, and NADPH-generating enzymes (glucose-6-phosphate dehydrogenase and NADP-isocitrate dehydrogenase) in rats with type 2 diabetes mellitus. The concentration of reduced glutathione was decreased in rats with this disease (by 1.8 times), but increased after treatment with epifamin and melaxen (by 1.6 and 1.7 times, respectively). Activities of glutathione peroxidase, glutathione reductase, and NADPH-generating enzymes returned to the control level. Correction of melatonin concentration after treatment with the test drugs was probably followed by inhibition of free radical processes. The observed changes were accompanied by normalization of activity of the glutathione antioxidant system and NADPH-generating enzymes required for normal function of this system.

  9. Effect of Feeding Palm Oil By-Products Based Diets on Total Bacteria, Cellulolytic Bacteria and Methanogenic Archaea in the Rumen of Goats

    OpenAIRE

    Abdelrahim Abubakr; Abdul Razak Alimon; Halimatun Yaakub; Norhani Abdullah; Michael Ivan

    2014-01-01

    Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: cont...

  10. A NOVEL STRAIN OF Aspergillus niger PRODUCING A COCKTAIL OF HYDROLYTIC DEPOLYMERISING ENZYMES FOR THE PRODUCTION OF SECOND GENERATION BIOFUELS

    Directory of Open Access Journals (Sweden)

    Namita Bansal

    2011-02-01

    Full Text Available The screening and isolation of fungi producing a cocktail of hydrolytic enzymes was studied. Among the various isolates obtained from different soil samples, a strain NS-2 was selected. The phylogenetic analysis of this strain showed highest homology (99% with Aspergillus niger. It was capable of producing cellulolytic, hemicellulolytic, amylolytic, and pectinolytic enzymes in appreciable titers on wheat bran based liquid and solid state media. The mixture of enzymes produced by this organism could effectively hydrolyze various domestic waste residues, revealing conversion efficiencies of 89 to 92% and produced high reducing sugar yields of 0.48 to 0.66 g/g of dry residue. This enzyme cocktail could potentially find a significant application in the conversion of agricultural and other waste residues having cellulose, hemicellulose, starch, and pectin as carbohydrates to produce simpler sugars which can be fermented for the production of second generation biofuels.

  11. Isolation, Identification, and Characterization of a Cellulolytic Bacillus amyloliquefaciens Strain SS35 from Rhinoceros Dung

    OpenAIRE

    2013-01-01

    Cellulose hydrolyzing bacteria were isolated from rhinoceros dung and tested for clear zone formation around the colonies on the agar plates containing the medium amended with carboxymethylcellulose as a sole carbon source. Isolates were further screened on the basis of carboxymethylcellulase production in liquid medium. Out of 36 isolates, isolate no. 35 exhibited maximum enzyme activity of 0.079 U/mL and was selected for further identification by using conventional biochemical tests and phy...

  12. Alkylating enzymes.

    Science.gov (United States)

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  13. Effect of modified atmosphere packaging (MAP) with low and superatmospheric oxygen on the quality and antioxidant enzyme system of golden needle mushrooms (Flammulina velutipes) during postharvest storage

    NARCIS (Netherlands)

    Wang, Cheng T.; Wang, Chang T.; Cao, Y.P.; Nout, M.J.R.; Sun, B.G.; Liu, L.

    2011-01-01

    To quantify the effect of oxygen concentrations on the quality and antioxidant enzyme system of stored golden needle mushroom, modified atmosphere packaging (MAP) with low and initial superatmospheric oxygen was applied during mushroom storage, and physiological changes associated with postharvest d

  14. Systemic uptake of miconazole during vaginal suppository use and effect on CYP1A2 and CYP3A4 associated enzyme activities in women

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Nielsen, Flemming; Nøhr-Jensen, Lene;

    2010-01-01

    To investigate if the ordinary use of a vaginal suppository containing miconazole results in systemic absorption that is sufficient to affect the activities of CYP1A2 and CYP3A4, which are major drug- and steroid-metabolising enzymes....

  15. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    Science.gov (United States)

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  16. Use of a new enzyme extraction system to improve the sensitivity of SOS/umu test and application to environmental samples.

    Science.gov (United States)

    Tian, Zhe; Oda, Yoshimitsu; Zhang, Yu; Yang, Min; Li, Hongyan

    2015-03-01

    The purpose of this study was to find a better enzyme extraction reagent for the SOS/umu test to replace the conventional one (the combination of sodium dodecyl sulfate (SDS) and Z-buffer), which has the disadvantage of denaturing β-galactosidase leading to decreased measurement sensitivity. By adopting a microplate system, the performance of the umu test using BugBuster Master Mix, a commercially available enzyme extraction reagent, was compared with that using the conventional reagent for detecting the genotoxicity of known mutagens as well as environmental samples. BugBuster Master Mix was found to increase the detection sensitivities of the selected genotoxins and environmental water samples, due to the fact that it doesn't denature β-galactosidase. The result of this study showed that BugBuster Master Mix could be a better enzyme extraction reagent for umu test.

  17. Cellulolytic potential of a novel strain of Paenibacillus sp. isolated from the armored catfish Parotocinclus maculicauda gut

    Directory of Open Access Journals (Sweden)

    André L. M. de Castro

    2011-12-01

    Full Text Available A cellulolytic bacterial strain, designated P118, isolated from the gut of the tropical fish Parotocinclus maculicauda was identified as belonging to the genus Paenibacillus based on phenotypic and chemotaxonomic characteristics and the 16S rRNA gene sequence. The novel strain was Gram-positive, spore-forming and rod-shaped. Catalase but not oxidase was produced. Carboxymethylcellulose was hydrolyzed but starch or gelatin was not. Acetoin production was negative whereas nitrate reduction and urease production were positive. Many carbohydrates served as carbon sources for growth. MK-7 was the predominant isoprenoid quinone. Anteiso-C15:0 (38.73% and C16:0 (20.85% were the dominant cellular fatty acids. Strain P118 was closely related to Paenibacillus amylolyticus NRRL NRS-290, P. pabuli HSCC 492, P. tundrae Ab10b, P. xylanexedens B22a, and P. tylopili MK2 with 98.3-98.8% 16S rRNA gene sequence similarity. The results presented here suggest that strain P118 represents a novel species of the genus Paenibacillus and it is a potential strain for further studies concerning its role in the production of industrially important products from cellulosic biomass.

  18. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton-Brehm, Scott [ORNL; Elkins, James G [ORNL; Phelps, Tommy Joe [ORNL; Keller, Martin [ORNL; Carroll, Sue L [ORNL; Allman, Steve L [ORNL; Podar, Mircea [ORNL; Mosher, Jennifer J [ORNL; Vishnivetskaya, Tatiana A [ORNL

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY, USA. The isolate was a non-motile, non-spore forming, Gram-positive rod approximately 2 m long by 0.2 m wide and grew at temperatures between 55-85oC with the optimum at 78oC. The pH range for growth was 6.0-8.0 with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rates at 0.75 hr-1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbital, carboxymethylcellulose and casein. Yeast extract stimulated growth and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2 although lactate and ethanol were produced in 5 l batch fermentations. The G+C content of the DNA was 35 mol% and sequence analysis of the small subunit ribosomal RNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47T is the type stain (ATCC = ____, JCM = ____).

  19. Cyanidin-horseradish peroxidase-hydroperoxide reaction system and its application in enzyme-linked immunosensing assays

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A cyanidin-based horseradish peroxidase(HRP)-catalyzed reaction system was established in this work.In B-R buffer solutions(pH 6.8),a UV-visible absorbance peak of cyanidin(CAG) at 540 nm(Ap1) appeared.After the oxidation reaction of CAG catalyzed by HRP in the presence of H2O2,a significant absorbance peak at 482 nm(Ap2) occurred.The ratio R(AP2/AP1)was proportional to the HRP concentration.The application of CAG in the enzyme-linked immunosensing assays was investigated using food and mouth disease virus antigen(FMDVAg) as a model analyte.In sandwich immunoreaction,the analyte FMDVAg and food and mouth disease virus antibody(FMDVAb)-modified magnetic nanoparticles bound the supported conconvalina(Con A) bound with HRP-FMDVAb.After de-absorbing and separating,the HRP-FMDVAb-FMDVAg-FMDVAb-magnetic nanoparticles complexes were subject to enzymatic reaction and UV-visible absorbance measurements.The HRP moiety of the immunoreaction complexes can catalyze the oxidation reaction of CAG by H2O2,and the substrate CAG is converted to products.Based on this principle,a sandwich assay model has been employed to determine FMDVAg in rabbit serum samples with the aid of FMDVAb-Fe3O4 magnetic nanoparticles.The linear range of the FMDVAg determination is 1.5×10-8-2.7×10-6 g/mL with the relatively standard deviation of 3.7%(n = 11).The detection limit is 3.1×10-9 g/mL.Additional advantages of the typical substrate such as OPD,OAP and TMB are good water-solubility and stability.

  20. Fluorometric enzyme immunosensing system based on natural product resveratrol for horseradish peroxidase and Ag/SiO2 nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The properties of resveratrol (3′, 4′, 5-trihydroxystlbene, RST) were for the first time evaluated as a potential substrate for horseradish peroxidase (HRP)-catalyzed fluorogenic reaction. The properties of RST for use as fluorogenic substrates for HRP and its application in immunoassays were compared with commercially available substrates such as p-hydroxyphenylpropionic acid (pHPPA), chavicol and Amplex red by a fluoroimmunosensing method in the use of Schistosomia japonicum antibody (SjAb) as a model analyte. The fluoroimmunosensing device was constructed by dispersing Schistosomia japonicum antigen (SjAg), nano-Ag/SiO2 particles and sol-gel at low temperature. In pH 5.8 Britton-Robinson buffer (B-R), HRP-SjAb conjugates can catalyze the polymerization reaction of RST by H2O2 forming fluorescent dimmers. The increase of the fluorescence intensity of the dimmers product at emission of 462 nm (excitation: 315 nm) is proportional to the concentration of HRP-SjAb binding to the SjAg entrapped in the nano-Ag/SiO2 particles-sol-gel matrix. A competitive binding assay has been used to determine SjAb in rabbit serum with the aid of SjAb labeled with HRP. Substrate RST showed comparable ability for HRP detection and its enzyme-linked immunosensing reaction system, in a linear detection ranging of 1.5×10-6-7.3×10-4 g/L and with a detection limit of 1.5×10-6 g/L. The immobilized biocomposites surface could be regenerated by simply polishing with an alumina paper, with an excellent reproducibility (RSD = 4.7%). The proposed method has been successfully used for analysis of the rabbit serum sample with satisfactory results.

  1. A feasible enzyme-linked immunosorbent assay system using monoclonal and polyclonal antibodies against glucosyltransferase-B from Streptococcus mutans.

    Science.gov (United States)

    Shinozaki-Kuwahara, Noriko; Hashizume-Takizawa, Tomomi; Hirasawa, Masatomo; Takada, Kazuko

    2012-06-01

    Streptococcus mutans has been considered the principal etiological agent of dental caries in humans. S. mutans can secrete three kinds of glucosyltransferases (GTFs). One of these, GTF-B, which synthesizes water-insoluble glucans from sucrose, has been considered to be one of the most important factors of cariogenic dental plaque formation. Therefore, determination of whether GTF-B is present in plaque and saliva samples may contribute to the evaluation of individual virulence potential (caries risk). The aim of this study was to develop a feasible enzyme-linked immunosorbent assay (ELISA) for the routine quantification of GTF-B in plaque-derived cultures and clinical samples, and to apply this assay to an epidemiological study. To determine the presence of GTF-B in plaque samples, a sandwich-ELISA was devised, consisting of mouse monoclonal and rabbit polyclonal antibodies against GTF-B and a horseradish peroxidase-conjugated anti-rabbit antibody. The developed ELISA allowed for quantification of the amounts of purified GTF-B with satisfactory sensitivity and specificity; this method was not affected by other components such as plaque and saliva. Plaque samples from healthy volunteers were examined using this ELISA method and microbial analysis to apply the assay to an epidemiological study. A correlation was observed between the amount of extracted GTF-B and S. mutans levels as determined by ELISA and cultivated with Mitis Salivarius Bacitracin agar plates derived from plaque samples, although there were some exceptions. In this regard, this ELISA system has the advantage of estimating both the individual numbers of S. mutans and the productivity of GTF-B, namely, the cariogenic potential of S. mutans simultaneously. These results indicate that this ELISA method is a useful tool for the diagnosis of caries risk.

  2. Alternaria alternata as a new fungal enzyme system for the release of phenolic acids from wheat and triticale brans.

    Science.gov (United States)

    Xiao, Zhizhuang; Bergeron, Hélène; Lau, Peter C K

    2012-05-01

    This study describes the release of antioxidant ferulic acid from wheat and triticale brans by mixtures of extracellular enzymes produced in culture by a strain FC007 of Alternaria alternata, a dark mold originally isolated from Canadian wood log. The genus of the mold was confirmed as Alternaria by 18S ribosomal DNA characterization. Enzyme activities for feruloyl esterase (FAE) and polysaccharide hydrolyzing enzymes were measured, and conditions for release of ferulic acid and reducing sugars from the mentioned brans were evaluated. The highest level of FAE activity (89 ± 7 mU ml(-1) fermentation culture) was obtained on the fifth day of fermentation on wheat bran as growth substrate. Depending on biomass and processing condition, up to 91.2 or 72.3% of the ferulic acid was released from wheat bran and triticale bran, respectively, indicating the proficiency of A. alternata extracellular enzymes in plant cell wall deconstruction. The apparent high extraction of ferulic acid from wheat and triticale brans represents a potential advantage of using a whole fungal cell enzyme complement over yields reported previously through an artificial assembly of cloned FAE with a particular xylanase in a cocktail format.

  3. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    Science.gov (United States)

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (Penzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, PMnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  4. Cellulolytic Activity of Thermophilic Bacilli Isolated from Tattapani Hot Spring Sediment in North West Himalayas.

    Science.gov (United States)

    Priya, Indu; Dhar, M K; Bajaj, B K; Koul, Sanjana; Vakhlu, Jyoti

    2016-06-01

    Eight thermophilic bacterial strains were isolated from Tattapani Hot spring and screened for various hydrolytic enzymes including cellulases. The isolated bacterial strains were identified as Geobacillus thermodenitrificans IP_WH1(KP842609), Bacillus licheniformis IP_WH2(KP842610), B. aerius IP_WH3(KP842611), B. licheniformis IP_WH4(KP842612), B. licheniformis IP_60Y(KP842613), G. thermodenitrificans IP_60A1(KP842614), Geobacillus sp. IP_60A2(KP842615) and Geobacillus sp. IP_80TP(KP842616) after 16S ribotying. Out of the eight isolates Geobacillus sp. IP_80TP grew best at 80 °C whereas rest of the isolates showed optimal growth at 60 °C. G. thermodenitrificans IP_WH1 produced a thermotolerant cellulase with maximum activity at 60 °C.

  5. Enzyme-linked immunosorbent assay characterization of basal variation and heritability of systemic microfibrillar-associated protein 4.

    Directory of Open Access Journals (Sweden)

    Susanne Gjørup Sækmose

    Full Text Available BACKGROUND: Microfibrillar-associated protein 4 (MFAP4 is a systemic biomarker that is significantly elevated in samples from patients suffering from hepatic cirrhosis. The protein is generally localized to elastic fibers and other connective tissue fibers in the extracellular matrix (ECM, and variation in systemic MFAP4 (sMFAP4 has the potential to reflect diverse diseases with increased ECM turnover. Here, we aimed to validate an enzyme-linked immunosorbent assay (ELISA for the measurement of sMFAP4 with an emphasis on the robustness of the assay. Moreover, we aimed to determine confounders influencing the basal sMFAP4 variability and the genetic contribution to the basal variation. METHODS: The sandwich ELISA was based on two monoclonal anti-MFAP4 antibodies and was optimized and calibrated with a standard of recombinant MFAP4. The importance of pre-analytical sample handling was evaluated regarding sample tube type, time, and temperature conditions. The mean value structure and variance structure was determined in a twin cohort including 1,417 Danish twins (age 18-67 years by mixed-effect linear regression modeling. RESULTS: The practical working range of the sandwich ELISA was estimated to be 4-75 U/ml. The maximum intra- and inter-assay variation was estimated to be 8.7% and 6.6%, respectively. Sample handling and processing appeared to influence MFAP4 measurements only marginally. The average concentration of sMFAP4 in the serum was 18.9 ± 8.4 (SD U/ml in the twin cohort (95% CI: 18.5-19.4, median sMFAP4 17.3 U/ml. The mean structure model was demonstrated to include waist-hip ratio, age, and cigarette smoking status in interactions with gender. A relatively low heritability of h(2 = 0.24 was found after applying a model including additive genetic factors and shared and non-shared environmental factors. CONCLUSIONS: The described ELISA provides robust measures of the liver fibrosis marker sMFAP4. The low heritability and the relatively

  6. A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts.

    Directory of Open Access Journals (Sweden)

    Andrew G McDonald

    2016-04-01

    Full Text Available O-linked glycosylation is an important post-translational modification of mucin-type protein, changes to which are important biomarkers of cancer. For this study of the enzymes of O-glycosylation, we developed a shorthand notation for representing GalNAc-linked oligosaccharides, a method for their graphical interpretation, and a pattern-matching algorithm that generates networks of enzyme-catalysed reactions. Software for generating glycans from the enzyme activities is presented, and is also available online. The degree distributions of the resulting enzyme-reaction networks were found to be Poisson in nature. Simple graph-theoretic measures were used to characterise the resulting reaction networks. From a study of in-silico single-enzyme knockouts of each of 25 enzymes known to be involved in mucin O-glycan biosynthesis, six of them, β-1,4-galactosyltransferase (β4Gal-T4, four glycosyltransferases and one sulfotransferase, play the dominant role in determining O-glycan heterogeneity. In the absence of β4Gal-T4, all Lewis X, sialyl-Lewis X, Lewis Y and Sda/Cad glycoforms were eliminated, in contrast to knockouts of the N-acetylglucosaminyltransferases, which did not affect the relative abundances of O-glycans expressing these epitopes. A set of 244 experimentally determined mucin-type O-glycans obtained from the literature was used to validate the method, which was able to predict up to 98% of the most common structures obtained from human and engineered CHO cell glycoforms.

  7. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    Directory of Open Access Journals (Sweden)

    Witoon Purahong

    Full Text Available Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity had significantly higher decomposition rates and nutrient release (most nutrients than unmanaged deciduous forest reserves (P<0.05. The site with near-to-nature forest management (low forest management intensity exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP, P = 0.0260. Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  8. Mechanics of Solute Translocation Catalyzed by Enzyme IImtl of the Phosphoenolpyruvate-Dependent Phosphotransferase System of Escherichia coli

    NARCIS (Netherlands)

    Lolkema, Juke S.; Swaving Dijkstra, Dolf; Robillard, George T.

    1992-01-01

    The kinetics of binding of mannitol to enzyme II(mtl) embedded in the membrane of vesicles with an inside-out or a right-side-out orientation were analyzed at 4-degrees-C in the absence of the phosphoryl group donor, P-HPr. The binding to the right-side-out oriented vesicles equilibrated too fast to

  9. Mechanistic Coupling of Transport and Phosphorylation Activity by Enzyme IImtl of the Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System

    NARCIS (Netherlands)

    Lolkema, Juke S.; Duurkens, Hinderika; Swaving Dijkstra, Dolf; Robillard, George T.

    1991-01-01

    Mannitol bound to enzyme II(mtl) could be trapped specifically by rapid phosphorylation with P-HPr. The assay was used to demonstrate transport of mannitol across the cytoplasmic membrane with and without phosphorylation of mannitol. The latter was 2-3 orders of magnitude slower. The fraction of bou

  10. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    Directory of Open Access Journals (Sweden)

    S. P. Gautam

    2012-01-01

    Full Text Available Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days.

  11. Genetic variability of glutathione S-transferase enzymes in human populations: functional inter-ethnic differences in detoxification systems.

    Science.gov (United States)

    Polimanti, Renato; Carboni, Cinzia; Baesso, Ilenia; Piacentini, Sara; Iorio, Andrea; De Stefano, Gian Franco; Fuciarelli, Maria

    2013-01-01

    Glutathione S-Transferase enzymes (GSTs) constitute the principal Phase II superfamily which plays a key role in cellular detoxification and in other biological processes. Studies of GSTs have revealed that genetic polymorphisms are present in these enzymes and that some of these are Loss-of-Function (LoF) variants, which affect enzymatic functions and are related to different aspects of human health. The aim of this study was to analyze functional genetic differences in GST enzymes among human populations. Attention was focused on LoF polymorphisms of GSTA1, GSTM1, GSTO1, GSTO2, GSTP1 and GSTT1 genes. These LoF variants were analyzed in 668 individuals belonging to six human groups with different ethnic backgrounds: Amhara and Oromo from Ethiopia; Colorado and Cayapa Amerindians and African Ecuadorians from Ecuador; and one sample from central Italy. The HapMap database was used to compare our data with reference populations and to analyze the haplotype and Linkage Disequilibrium diversity in different ethnic groups. Our results highlighted that ethnicity strongly affects the genetic variability of GST enzymes. In particular, GST haplotypes/variants with functional impact showed significant differences in human populations, according to their ethnic background. These data underline that human populations have different structures in detoxification genes, suggesting that these ethnic differences influence disease risk or response to drugs and therefore have implications for genetic association studies involving GST enzymes. In conclusion, our investigation provides data about the distribution of important LoF variants in GST genes in human populations. This information may be useful for designing and interpreting genetic association studies.

  12. The anaerobic fungus Neocallimastix sp. strain L2 : Growth and production of (Hemi)cellulolytic enzymes on a range of carbohydrate substrates

    NARCIS (Netherlands)

    Dijkerman, R; Ledeboer, J; op den Camp, H.J M; Prins, R.A; van der Drift, C

    1997-01-01

    The anaerobic fungus Neocallimastix sp. strain L2, isolated from the feces of a Ilama, was tested for growth on a range of soluble and insoluble carbohydrate substrates. The fungus was able to ferment glucose, cellobiose, fructose, lactose, maltose, sucrose, soluble starch, inulin, filter paper cell

  13. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt;

    2010-01-01

    Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and gluco...

  14. Determination of chemopreventive role of Foeniculum vulgare and Salvia officinalis infusion on trichloroacetic acid-induced increased serum marker enzymes lipid peroxidation and antioxidative defense systems in rats.

    Science.gov (United States)

    Celik, Ismail; Isik, Ismail

    2008-01-10

    Today's world is increasingly seeking ways to replace the synthetic drugs with the therapeutic power of natural products. This study was designed to investigate the protective effects of Foeniculum vulgare (FV) and Salvia officinalis (SO) waters infusions against carcinogen chemical trichloroacetic acid (TCA)-exposure in rats. The chemopreventive potential of the plant infusions were evaluated by measuring levels of serum marker enzymes [aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), acid phosphatase (ACP), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)], antioxidant defense systems [Reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)] and lipid peroxidation level (Malondialdehyde = MDA) in various tissues of rats. Female Sprague-Dawley rats, weighing 150-200 g, were randomly allotted into four experimental groups. While the control group (A) received only natural spring water, the treatment B group (0.2% TCA) supplied with the drinking water containing 0.2% TCA, the treatment C (TCA + FV infusion) and D (TCA + SO infusion) groups drank the drinking water containing 0.2% TCA and 2.5% the plant grains and leaves ad libitum for 50 days during experiment. At the end of the 50 days experiment, TCA and the plant's infusions caused different affect on the serum marker enzymes, tissues antioxidant defense systems and lipid peroxidation against TCA-exposed in rats with comparison to those of TCA exposed and control rats. According to the results, both TCA and TCA + plants infusions caused a significant increase in serum AST, ALT and CPK activity. Non-enzymic antioxidant GSH level significantly increased in the brain whereas reduced in the erythrocytes and kidney of TCA + FV and TCA + SO as compared to TCA group and control. While MDA content slightly increased in tissues of TCA group in comparison to those of control, significantly

  15. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

    Science.gov (United States)

    van den Brink, Joost; Maitan-Alfenas, Gabriela Piccolo; Zou, Gen; Wang, Chengshu; Zhou, Zhihua; Guimarães, Valéria Monteze; de Vries, Ronald P

    2014-10-01

    Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant substrates, such as monosaccharides. In this study, Aspergillus niger and Trichoderma reesei were evaluated for the production of enzyme sets after growth on two "second generation" substrates: wheat straw (WS) and sugarcane bagasse (SCB). A. niger and T. reesei produced different sets of (hemi-)cellulolytic enzymes after growth on WS and SCB. This was reflected in an overall strong synergistic effect in releasing sugars during saccharification using A. niger and T. reesei enzyme sets. T. reesei produced less hydrolytic enzymes after growth on non-washed SCB. The sensitivity to non-washed plant substrates was not reduced by using CreA/Cre1 mutants of T. reesei and A. niger with a defective carbon catabolite repression. The importance of removing monosaccharides for producing enzymes was further underlined by the decrease in hydrolytic activities with increased glucose concentrations in WS media. This study showed the importance of removing monosaccharides from the enzyme production media and combining T. reesei and A. niger enzyme sets to improve plant biomass saccharification.

  16. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems.

    Science.gov (United States)

    Warren, Frederick J; Zhang, Bin; Waltzer, Gina; Gidley, Michael J; Dhital, Sushil

    2015-03-06

    In vitro hydrolysis assays are a key tool in understanding differences in rate and extent of digestion of starchy foods. They offer a greater degree of simplicity and flexibility than dynamic in vitro models or in vivo experiments for quantifiable, mechanistic exploration of starch digestion. In the present work the influence of α-amylase and amyloglucosidase activities on the digestion of maize and potato starch granules was measured using both glucose and reducing sugar assays. Data were analysed through initial rates of digestion, and by 1st order kinetics, utilising logarithm of slope (LOS) plots. The rate and extent of starch digestion was dependent on the activities of both enzymes and the type of starch used. Potato required more enzyme than maize to achieve logarithmic reaction curves, and complete digestion. The results allow targeted design of starch digestion experiments through a thorough understanding of the contributions of α-amylase and amyloglucosidase to digestion rates.

  17. The role of a commercial enzyme immuno assay antigen detection system for diagnosis of C. trachomatis in genital swab samples

    Directory of Open Access Journals (Sweden)

    A Mukherjee

    2011-01-01

    Full Text Available In the present pilot study, endocervical and urethral swabs collected from 100 patients attending sexually transmitted disease (STD clinics and regional centre for STD in two referral hospitals in New Delhi were analyzed by enzyme immune assay (EIA, polymerase chain reaction (PCR and direct fluorescent antibody (DFA for detection of C. trachomatis. It was found that EIA could detect a very low number of cases (3/100 as against DFA (11/100 and PCR (9/100. Thus, in spite of the widespread availability, lower cost and ease of performance of the enzyme-linked-immunosorbent serologic assay, the present study highlights the need to employ sophisticated diagnostic tools like DFA and PCR for detection of Chlamydia trachomatis in STD patients.

  18. Utilization of peptide carrier system to improve intestinal absorption: targeting prolidase as a prodrug-converting enzyme

    Science.gov (United States)

    Bai, J. P.; Hu, M.; Subramanian, P.; Mosberg, H. I.; Amidon, G. L.

    1992-01-01

    The feasibility of targeting prolidase as a peptide prodrug-converting enzyme has been examined. The enzymatic hydrolysis by prolidase of substrates for the peptide transporter L-alpha-methyldopa-pro and several dipeptide analogues without an N-terminal alpha-amino group (phenylpropionylproline, phenylacetylproline, N-benzoylproline, and N-acetylproline) was investigated. The Michaelis-Menten parameters Km and Vmax for L-alpha-methyldopa-pro are 0.09 +/- 0.02 mM and 3.98 +/- 0.25 mumol/min/mg protein, respectively. However, no hydrolysis of the dipeptide analogues without an N-terminal alpha-amino group is observed, suggesting that an N-terminal alpha-amino group is required for prolidase activity. These results demonstrate that prolidase may serve as a prodrug-converting enzyme for the dipeptide-type prodrugs, utilizing the peptide carrier for transport of prodrugs into the mucosal cells and prolidase, a cytosolic enzyme, to release the drug. However, a free alpha-amino group appears to be necessary for prolidase hydrolysis.

  19. Enzyme activity of β-galactosidase from Kluyveromyces lactis and Aspergillus oryzae on simulated conditions of human gastrointestinal system

    Directory of Open Access Journals (Sweden)

    Alessandra Bosso

    2015-09-01

    Full Text Available An alternative to relieve the symptoms of lactose intolerance is the intake of the enzyme β-galactosidase in pharmaceutical dosage forms. The ability of β-galactosidase produced by Kluyveromyces lactis and Aspergillus oryzae to hydrolyze lactose in simulated conditions of the human gastrointestinal tract was investigated. The experiment was carried out in the optimum temperature for each enzyme activity, 40 and 55°C, respectively, and at the normal human body temperature (37°C at concentrations of 1.5, 3.0, and 5.0 g/L (enzyme from A. oryzae or mL/L (enzyme from K. lactis. Both enzymes were completely inactivated under simulated gastric conditions (pH 2. When the enzymes were subjected to simulated small intestine conditions (pH 7.4, lactose hydrolysis has occurred, but at 37°C the percentage was lower than that under the optimal temperatures. At concentrations of 1.5, 3.0, and 5.0 mL/L the enzyme from K. lactis hydrolyzed 76.63%, 88.91% and 94.80% of lactose at 40°C, and 55.99%, 80.91% and 81.53% at 37°C, respectively. In contrast, the enzyme from A. oryzae hydrolyzed 7.11%, 16.18% and 21.29% at 55°C, and 8.4%, 11.85% and 16.43% at 37°C. It was observed that under simulated intestinal conditions, the enzyme from K. lactis was more effective on lactose hydrolysis as compared to the enzyme from A. oryzae. Considering the findings of this study, it is extremely necessary to use an enteric coating on β-galactosidase capsules so that this enzyme is released only in the small intestine, which is its site of action, thus not suffering the action of the stomach pH.Keywords: Lactase. Hydrolysis. Lactose intolerance. Gastrointestinal tract. RESUMOAtividade de β-galactosidase de Kluyveromyces lactis e Aspergillus oryzae, em condições simuladas do sistema gastrintestinal humanoUma das alternativas para amenizar os sintomas da intolerância à lactose é a ingestão de β-galactosidase em formas farmacêuticas. Neste trabalho avaliou-se a

  20. Activatable molecular systems using homologous near-infrared fluorescent probes for monitoring enzyme activities in vitro, in cellulo, and in vivo.

    Science.gov (United States)

    Zhang, Zongren; Fan, Jinda; Cheney, Philip P; Berezin, Mikhail Y; Edwards, W Barry; Akers, Walter J; Shen, Duanwen; Liang, Kexian; Culver, Joseph P; Achilefu, Samuel

    2009-01-01

    We have developed a generic approach to determine enzyme activities in vitro and monitor their functional status in vivo. Specifically, a method to generate donor (CbOH)-acceptor (Me2NCp) near-infrared (NIR) fluorescent dye pairs for preparing enzyme activatable molecular systems were developed based on the structural template of heptamethine cyanine dyes. Using caspase-3 as a model enzyme, we prepared two new caspase-3 sensitive compounds with high fluorescence quenching efficiency: Me2NCp-DEVD-K(CbOH)-OH (4) and AcGK(Me2NCp)-DEVD-APK(CbOH)-NH2 (5). The mechanism of quenching was based on combined effects of direct (classical) and reverse fluorescence resonance energy transfer (FRET). Caspase-3 cleavage of the scissile DEVD amide bond regenerated the NIR fluorescence of both donor and acceptor dyes. While both compounds were cleaved by caspase-3, substrate 5 was cleaved more readily than 4, yielding k(cat) and K(M), values of 1.02 +/- 0.06 s(-1) and 15 +/- 3 microM, respectively. Treatment of A549 tumor cells with paclitaxel resulted in > 2-fold increase in the fluorescence intensity by NIR confocal microscopy, suggesting the activation of pro-caspase-3 to caspase-3. A similar trend was observed in a mouse model, where the fluorescence intensity was nearly twice the value in caspase-3-rich tissue relative to the control. These results demonstrate the use of the same NIR activatable molecular systems for monitoring the activities of enzymes across a wide spatial scale ranging from in vitro kinetics measurements to in cellulo and in vivo localization of caspase-3 activation. The NIR activatable molecular probes provide an effective strategy to screen new drugs in vitro and monitor treatment response in living organisms.

  1. Development of yeast molecular display systems focused on therapeutic proteins, enzymes, and foods: functional analysis of proteins and its application to bioconversion.

    Science.gov (United States)

    Shibasaki, Seiji; Ueda, Mitsuyoshi

    2010-11-01

    Molecular display systems using yeast have been developed for industrial, medical, pharmaceutical, and biological studies. Although several host cells are available to construct a molecular display system, the yeast Saccharomyces cerevisiae is a well-established and convenient organism in eukaryotes. A wide variety of prokaryotic and eukaryotic proteins have been displayed on yeast cell surfaces. In addition, functional analyses and applications to bioconversion have been performed on the cell surface, and cells are conveniently engineered by molecular display systems. In this review, we focus on the yeast molecular display system with regard to therapeutic proteins, several enzymes, and food ingredients. In addition, recent patents on molecular display using yeast cell for production of those compounds, screening technology and related techniques are introduced. Development of devices for functional analysis of created and modified proteins in the yeast display system is also described.

  2. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Liu, Y H; Yang, X P; Sharov, V G; Sigmon, D H; Sabbath, H N; Carretero, O A

    1996-01-01

    After transient episodes of ischemia, benefits of thrombolytic or angioplastic therapy may be limited by reperfusion injury. Angiotensin-converting enzyme inhibitors protect the heart against ischemia/reperfusion injury, an effect mediated by kinins. We examined whether the protective effect of the angiotensin-converting enzyme inhibitor ramiprilat on myocardial ischemia/reperfusion is due to kinin stimulation of prostaglandin and/or nitric oxide release. The left anterior descending coronary artery of Lewis inbred rats was occluded for 30 minutes, followed by 120 minutes of reperfusion. Immediately before reperfusion rats were treated with vehicle, ramiprilat, or the angiotensin II type 1 receptor antagonist losartan. We tested whether pretreatment with the kinin receptor antagonist Hoe 140, the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester, or the cyclooxygenase inhibitor indomethacin blocked the effect of ramiprilat on infarct size and reperfusion arrhythmias. In controls, infarct size as a percentage of the area at risk was 79 +/- 3%; ramiprilat reduced this to 49 +/- 4% (P < .001), but losartan had little effect (74 +/- 6%, P = NS). Pretreatment with Hoe 140, NG-nitro-L-arginine methyl ester, or indomethacin abolished the beneficial effect of ramiprilat. Compared with the 30-minute ischemia/120-minute reperfusion group, nonreperfused hearts with 30 minutes of ischemia had significantly smaller infarct size as a percentage of the area at risk, whereas in the 150-minute ischemia group it was significantly larger. This suggests that reperfusion caused a significant part of the myocardial injury, but it also suggests that compared with prolonged ischemia, reperfusion salvaged some of the myocardium. Ventricular arrhythmias mirrored the changes in infarct size. Thus, angiotensin-converting enzyme inhibitors protect the myocardium against ischemia/reperfusion injury and arrhythmias; these beneficial effects are mediated primarily by a kinin

  3. Multiscale Dynamics in Soft-Matter Systems: Enzyme Catalysis, Sec-Facilitated Protein Translocation, and Ion-Conduction in Polymers

    Science.gov (United States)

    Miller, Thomas

    Nature exhibits dynamics that span extraordinary ranges of space and time. In some cases, these dynamical hierarchies are well separated, simplifying their understanding and description. But chemistry and biology are replete with examples of dynamically coupled scales. In this talk, we will discuss the use of high-performance computing and new simulation methods that enable the inclusion of nuclear quantum effects, such as zero point energy and tunneling, in the reaction dynamics of enzymes, as well as coarse-graining strategies to enable minute-timescale simulations of protein targeting to cell membranes and ion-conduction in polymer electrolytes for lithium-ion battery applications.

  4. On the Direct Electron Transfer, Sensing, and Enzyme Activity in the Glucose Oxidase/Carbon Nanotubes System

    OpenAIRE

    2013-01-01

    The signal transduction and enzyme activity were investigated in biosensors based on the glucose oxidase (GOx) and carbon nanotubes (CNT) embedded in a bio-adhesive film of chitosan (CHIT). The voltammetric studies showed that, regardless of CHIT matrix, the GOx adsorbed on CNT yielding a pair of surface-confined current peaks at -0.48 V. The anodic peak did not increase in the presence of glucose in an O2-free solution indicating the lack of direct electron transfer (DET) between the enzymat...

  5. Influence of an aerobic fungus grown on solid culture on ruminal degradability and on a mixture culture of anaerobic cellulolytic bacteria.

    Science.gov (United States)

    Hernández-Díaz, R; Pimentel-González, D J; Figueira, A C; Viniegra-González, G; Campos-Montiel, R G

    2010-06-01

    In this work, the effect of a solid fungal culture of Aspergillus niger (An) grown on coffee pulp on the in situ ruminal degradability (RD) of corn stover was evaluated. In addition, the effect of its extracts on the in vitro dry matter disappearance (IVDMD) and on a mixed culture of anaerobic cellulolytic bacteria (MCACB) was also investigated. The solid ferment was a crude culture of An, grown on coffee pulp. Regarding in situ RD, a significant difference (p < 0.05) was found between treatment with 200 g/day of the solid culture and control (no solid culture added) on dry matter, crude protein and neutral detergent fibre on RD. All the water extracts (pH 4, 7 and 10) enhanced IVDMD and stimulated the cellulolytic activity on a MCACB. Ultrafiltration results showed that active compounds with a molecular weight lower than 30 kDa were responsible for the effect on MCACB. Such results suggest that the effects of the solid An culture in RD are related to the presence of water soluble compounds having a molecular weight lower than 30 kDa.

  6. Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats.

    Directory of Open Access Journals (Sweden)

    Abdelrahim Abubakr

    Full Text Available Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO, decanter cake (DC or palm kernel cake (PKC on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD, decanter cake diet (DCD, palm kernel cake diet (PKCD and CD plus 5% PO diet (CPOD were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0 and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05 DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05 in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats.

  7. Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats.

    Science.gov (United States)

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2014-01-01

    Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD), decanter cake diet (DCD), palm kernel cake diet (PKCD) and CD plus 5% PO diet (CPOD) were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0) and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05) DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05) in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats.

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  9. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system.

    Science.gov (United States)

    Meyer, Birte; Imhoff, Johannes F; Kuever, Jan

    2007-12-01

    The soxB gene encodes the SoxB component of the periplasmic thiosulfate-oxidizing Sox enzyme complex, which has been proposed to be widespread among the various phylogenetic groups of sulfur-oxidizing bacteria (SOB) that convert thiosulfate to sulfate with and without the formation of sulfur globules as intermediate. Indeed, the comprehensive genetic and genomic analyses presented in the present study identified the soxB gene in 121 phylogenetically and physiologically divergent SOB, including several species for which thiosulfate utilization has not been reported yet. In first support of the previously postulated general involvement of components of the Sox enzyme complex in the thiosulfate oxidation process of sulfur-storing SOB, the soxB gene was detected in all investigated photo- and chemotrophic species that form sulfur globules during thiosulfate oxidation (Chromatiaceae, Chlorobiaceae, Ectothiorhodospiraceae, Thiothrix, Beggiatoa, Thiobacillus, invertebrate symbionts and free-living relatives). The SoxB phylogeny reflected the major 16S rRNA gene-based phylogenetic lineages of the investigated SOB, although topological discrepancies indicated several events of lateral soxB gene transfer among the SOB, e.g. its independent acquisition by the anaerobic anoxygenic phototrophic lineages from different chemotrophic donor lineages. A putative scenario for the proteobacterial origin and evolution of the Sox enzyme system in SOB is presented considering the phylogenetic, genomic (sox gene cluster composition) and geochemical data.

  10. Degradation of Granular Starch by the Bacterium Microbacterium aurum Strain B8.A Involves a Modular α-Amylase Enzyme System with FNIII and CBM25 Domains.

    Science.gov (United States)

    Valk, Vincent; Eeuwema, Wieger; Sarian, Fean D; van der Kaaij, Rachel M; Dijkhuizen, Lubbert

    2015-10-01

    The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant wastewater facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multidomain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1,417-amino-acid (aa) protein with a predicted molecular mass of 148 kDa. Sequence analysis of MaAmyA showed that its catalytic core is a family GH13_32 α-amylase with the typical ABC domain structure, followed by a fibronectin (FNIII) domain, two carbohydrate binding modules (CBM25), and another three FNIII domains. Recombinant expression and purification yielded an enzyme with the ability to degrade wheat and potato starch granules by introducing pores. Characterization of various truncated mutants of MaAmyA revealed a direct relationship between the presence of CBM25 domains and the ability of MaAmyA to form pores in starch granules, while the FNIII domains most likely function as stable linkers. At the C terminus, MaAmyA carries a 300-aa domain which is uniquely associated with large multidomain amylases; its function remains to be elucidated. We concluded that M. aurum B8.A employs a multidomain enzyme system to initiate degradation of starch granules via pore formation.

  11. Simultaneous Monitoring of Glucose, Lactate and L-Glutamate in Rat Blood by a Flow-injection Enzyme Electrode Array System

    Institute of Scientific and Technical Information of China (English)

    万巧; 张芬芬; 刘梅川; 朱自强; 鲜跃仲; 金利通

    2005-01-01

    Rapid measurement of glucose, lactate and L-glutamate level in blood is important for studying the balance of energy in body. The flow-injection analysis (FIA) system with enzyme electrode array was based on neutral red-doped silica (NRDS) nanoparticles as electrocatalyst. These uniform NRDS nanoparticles (about 50±3 nm) were prepared by a water-in-oil (W/O) microemulsion method, and characterized by TEM technique. The doped inside neutral red maintained its high electron-activity, while the outside nano silica surface prevented neutral red from leaching out into the aqueous solutions and showed high biocompability. These nanoparticles were then mixed with the glucose oxidase (GOD), lactate oxidase (LOD) or L-glutamate oxidase (L-GLOD), and immobilized on a three carbon-disk electrode (CE) array, respectively. A thin Nation film was coated on the enzyme layer to prevent interference such as ascorbic acid and uric acid in the blood. The proposed flow-injection analysis with NRDS-enzyme electrode array method enables simultaneously monitoring various levels of glucose, lactate and L-glutamate in blood.

  12. Age-dependent variations in mitochondrial and cytosolic antioxidant enzymes and lipid peroxidation in different regions of central nervous system of guinea pigs.

    Science.gov (United States)

    Vohra, B P; Sharma, S P; Kansal, V K

    2001-10-01

    The age-related changes in the activities of antioxidant enzymes of mitochondrial and cytosolic fractions were measured in different regions of the central nervous system (CNS) in 10 and 32 months old guinea pigs. In old animals, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were reduced (p < 0.05) in all the regions of CNS studied but catalase (CAT) declined significantly only in the cerebral cortex, hypothalamus and cerebellum. Glutathione reductase (GRd) activity declined in cerebral cortex and hypothalamus in the cytosolic fractions and only in cerebellum in the mitochondrial fraction. It is concluded that age-related decline in the activities of antioxidant enzymes is both region and enzyme specific. The endogenous lipid peroxide was found to be significantly higher (p < 0.05) in the 32 month old animals whereas, lipid peroxidation after incubating the tissue homogenate in air was found to be lower (p < 0.05). The in vitro mitochondrial lipid peroxidation decreased with age. The results indicate that accumulation of lipid peroxides takes place with ageing but the susceptibility of lipid peroxidation decreases in the older animals.

  13. Efficient Production of Enantiopure d-Lysine from l-Lysine by a Two-Enzyme Cascade System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-10-01

    Full Text Available The microbial production of d-lysine has been of great interest as a medicinal raw material. Here, a two-step process for d-lysine production from l-lysine by the successive microbial racemization and asymmetric degradation with lysine racemase and decarboxylase was developed. The whole-cell activities of engineered Escherichia coli expressing racemases from the strains Proteus mirabilis (LYR and Lactobacillus paracasei (AAR were first investigated comparatively. When the strain BL21-LYR with higher racemization activity was employed, l-lysine was rapidly racemized to give dl-lysine, and the d-lysine yield was approximately 48% after 0.5 h. Next, l-lysine was selectively catabolized to generate cadaverine by lysine decarboxylase. The comparative analysis of the decarboxylation activities of resting whole cells, permeabilized cells, and crude enzyme revealed that the crude enzyme was the best biocatalyst for enantiopure d-lysine production. The reaction temperature, pH, metal ion additive, and pyridoxal 5′-phosphate content of this two-step production process were subsequently optimized. Under optimal conditions, 750.7 mmol/L d-lysine was finally obtained from 1710 mmol/L l-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. d-lysine yield could reach 48.8% with enantiomeric excess (ee ≥ 99%.

  14. Structure, function and protein engineering in starch debranching enzyme systems. Barley limit dextrinase and its endogenous inhibitor

    DEFF Research Database (Denmark)

    Møller, Marie Sofie

    Starch is the most abundant storage carbohydrate in cereal grains. It is composed primarily of amylopectin, a polymer of glucose in which α-1,4-linked glucan chains are branched with α-1,6-bonds. Enzymatic degradation of starch in germinating barley seeds involves an initial solubilisation, mainly...... by α-amylase, followed by hydrolysis of the resulting dextrins to oligosaccharides and glucose by the concerted action of α- and β-amylase, limit dextrinase (LD), and α-glucosidase. Only LD is able to hydrolyse α-1,6-linkages in limit dextrins. Since LD is the sole debranching enzyme in the germinating...... on these comparisons. In the second part of the thesis I present the crystal structure of the complex between LD and LDI determined to 2.7 Å. The structure revealed a novel mode of inhibition distinctly different from that of the interaction between LDI-like inhibitors and α-1,4-acting enzymes (α-amylases) from...

  15. Testicular toxicity in cannabis extract treated mice: association with oxidative stress and role of antioxidant enzyme systems.

    Science.gov (United States)

    Mandal, Tapas K; Das, Nildari S

    2010-02-01

    Intraperitoneal injection of cannabis extract at low doses (total doses ranging from 40 mg to 60 mg per mouse) induced adverse effect on testes and oxidative stress. At low doses, there was a significant increase in lipid peroxidation and decrease in testicular lipid content, but the effects were significantly less at higher doses and at the withdrawal of cannabis treatment (recovery dose). There was a marked decrease in antioxidant enzyme profiles (superoxide dismutase, catalase and glutathione peroxidase) and glutathione content at low doses, but these effects were higher at higher dose and at withdrawal of the treatment (recovery effect). Histology revealed significant shrinkage of tubular diameter and detrimental changes in seminiferous epithelium of testis with resulting lowered serum testosterone and pituitary gonadotropins (follicular stimulating [FSH] and luteinizing hormones [LH]) levels at low doses. But at higher doses and particularly at withdrawal of the treatment, regression of various germ cell layers of testes through the revival of testosterone hormone and pituitary gonadotropins (FSH and LH) were observed, indicating that recovery effects on testes became operative possibly through the corrective measure of endogenous testicular antioxidant enzymes profiles and pituitary gonadotropins hormones feedback mechanisms.

  16. OmpA signal peptide leads to heterogenous secretion of B. subtilis chitosanase enzyme from E. coli expression system.

    Science.gov (United States)

    Pechsrichuang, Phornsiri; Songsiriritthigul, Chomphunuch; Haltrich, Dietmar; Roytrakul, Sittiruk; Namvijtr, Peenida; Bonaparte, Napolean; Yamabhai, Montarop

    2016-01-01

    The production of secreted recombinant proteins from E. coli is pivotal to the biotechnological industry because it reduces the cost of downstream processing. Proteins destined for secretion contain an N-terminal signal peptide that is cleaved by secretion machinery in the plasma membrane. The resulting protein is released in an active mature form. In this study, Bacillus subtilis chitosanase (Csn) was used as a model protein to compare the effect of two signal peptides on the secretion of heterologous recombinant protein. The results showed that the E. coli secretion machinery could recognize both native bacillus and E. coli signal peptides. However, only the native bacillus signal peptide could generate the same N-terminal sequence as in the wild type bacteria. When the recombinant Csn constructs contained the E. coli OmpA signal peptide, the secreted enzymes were heterogeneous, comprising a mixed population of secreted enzymes with different N-terminal sequences. Nevertheless, the E. coli OmpA signal peptide was found to be more efficient for high expression and secretion of bacillus Csn. These findings may be used to help engineer other recombinant proteins for secretory production in E. coli.

  17. Monitoring on-line system for the lactic fermentation measurement using the integration enzyme sensor; Shusekika koso sensa wo mochiita nyusan hakko keisokuyo onrain monitringu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayasu; Kumagaya, Tsuyoshi; Nakajima, Yoichi [Kyushu Institute of Technology, Fukuoka (Japan)

    1999-04-05

    The monitoring on-line system for the lactic fermentation measurement in which the simultaneous measurement of the substrate. Generation was possible was constructed without consuming the culture medium by using soliciting small enzyme sensor and flow injection analysis system integrate. There was the linearity that anyway was also range of concentration of 70mM or less and that it is good on the calibration curve of minute glucose, lactose, and lactic acid sensor. It became clear that it proved that all range of concentration of the substrate of these three which combining with the micro diary system, breaks in the lactic fermentation measurement with the necessity can be measured and not observe the interference by medium components, etc. either. Constructed monitoring on-line system is Lactobacillus delbrueckii and, it was applied to the lactic fermentation process of Lactobacillus lactis. Through the fermentation process for 24 hours, simultaneous measurement of glucose (or lactose) and lactic acid is possible. The measured value agreed well with the result of colorimetric method using the enzyme. (translated by NEDO)

  18. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay.

    Science.gov (United States)

    Cai, Long-Fei; Zhu, Ying; Du, Guan-Sheng; Fang, Qun

    2012-01-03

    We described a microfluidic chip-based system capable of generating droplet array with a large scale concentration gradient by coupling flow injection gradient technique with droplet-based microfluidics. Multiple modules including sample injection, sample dispersion, gradient generation, droplet formation, mixing of sample and reagents, and online reaction within the droplets were integrated into the microchip. In the system, nanoliter-scale sample solution was automatically injected into the chip under valveless flow injection analysis mode. The sample zone was first dispersed in the microchannel to form a concentration gradient along the axial direction of the microchannel and then segmented into a linear array of droplets by immiscible oil phase. With the segmentation and protection of the oil phase, the concentration gradient profile of the sample was preserved in the droplet array with high fidelity. With a single injection of 16 nL of sample solution, an array of droplets with concentration gradient spanning 3-4 orders of magnitude could be generated. The present system was applied in the enzyme inhibition assay of β-galactosidase to preliminarily demonstrate its potential in high throughput drug screening. With a single injection of 16 nL of inhibitor solution, more than 240 in-droplet enzyme inhibition reactions with different inhibitor concentrations could be performed with an analysis time of 2.5 min. Compared with multiwell plate-based screening systems, the inhibitor consumption was reduced 1000-fold.

  19. The Use of Multiscale Molecular Simulations in Understanding a Relationship between the Structure and Function of Biological Systems of the Brain: The Application to Monoamine Oxidase Enzymes.

    Science.gov (United States)

    Vianello, Robert; Domene, Carmen; Mavri, Janez

    2016-01-01

    HIGHLIGHTS Computational techniques provide accurate descriptions of the structure and dynamics of biological systems, contributing to their understanding at an atomic level.Classical MD simulations are a precious computational tool for the processes where no chemical reactions take place.QM calculations provide valuable information about the enzyme activity, being able to distinguish among several mechanistic pathways, provided a carefully selected cluster model of the enzyme is considered.Multiscale QM/MM simulation is the method of choice for the computational treatment of enzyme reactions offering quantitative agreement with experimentally determined reaction parameters.Molecular simulation provide insight into the mechanism of both the catalytic activity and inhibition of monoamine oxidases, thus aiding in the rational design of their inhibitors that are all employed and antidepressants and antiparkinsonian drugs. Aging society and therewith associated neurodegenerative and neuropsychiatric diseases, including depression, Alzheimer's disease, obsessive disorders, and Parkinson's disease, urgently require novel drug candidates. Targets include monoamine oxidases A and B (MAOs), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and various receptors and transporters. For rational drug design it is particularly important to combine experimental synthetic, kinetic, toxicological, and pharmacological information with structural and computational work. This paper describes the application of various modern computational biochemistry methods in order to improve the understanding of a relationship between the structure and function of large biological systems including ion channels, transporters, receptors, and metabolic enzymes. The methods covered stem from classical molecular dynamics simulations to understand the physical basis and the time evolution of the structures, to combined QM, and QM/MM approaches to probe the chemical mechanisms of enzymatic

  20. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  1. New perspectives in the renin-angiotensin-aldosterone system (RAAS I: endogenous angiotensin converting enzyme (ACE inhibition.

    Directory of Open Access Journals (Sweden)

    Miklós Fagyas

    Full Text Available Angiotensin-converting enzyme (ACE inhibitors represent the fifth most often prescribed drugs. ACE inhibitors decrease 5-year mortality by approximately one-fifth in cardiovascular patients. Surprisingly, there are reports dating back to 1979 suggesting the existence of endogenous ACE inhibitors, which endogenous inhibitory effects are much less characterized than that for the clinically administered ACE inhibitors. Here we aimed to investigate this endogenous ACE inhibition in human sera. It was hypothesized that ACE activity is masked by an endogenous inhibitor, which dissociates from the ACE when its concentration decreases upon dilution. ACE activity was measured by FAPGG hydrolysis first. The specific (dilution corrected enzyme activities significantly increased by dilution of human serum samples (23.2 ± 0.7 U/L at 4-fold dilution, 51.4 ± 0.3 U/L at 32-fold dilution, n = 3, p = 0.001, suggesting the presence of an endogenous inhibitor. In accordance, specific enzyme activities did not changed by dilution when purified renal ACE was used, where no endogenous inhibitor was present (655 ± 145 U/L, 605 ± 42 U/L, n = 3, p = 0.715, respectively. FAPGG conversion strongly correlated with angiotensin I conversion suggesting that this feature is not related to the artificial substrate. Serum samples were ultra-filtered to separate ACE (MW: 180 kDa and the hypothesized inhibitor. Filtering through 50 kDa filters was without effect, while filtering through 100 kDa filters eliminated the inhibiting factor (ACE activity after <100 kDa filtering: 56.4 ± 2.4 U/L, n = 4, control: 26.4 ± 0.7 U/L, n = 4, p<0.001. Lineweaver-Burk plot indicated non-competitive inhibition of ACE by this endogenous factor. The endogenous inhibitor had higher potency on the C-terminal active site than N-terminal active site of ACE. Finally, this endogenous ACE inhibition was also present in mouse, donkey, goat, bovine sera besides men (increasing of specific ACE activity

  2. Production of cellulase enzymes during the solid-state fermentation of empty palm fruit bunch fiber.

    Science.gov (United States)

    Kim, Seonghun; Kim, Chul Ho

    2012-01-01

    Penicillium verruculosum COKE4E is a fungal strain isolated from bituminous coal. The microorganism cultivated in a minimal medium supplemented with Avicel, carboxymethylcellulose, and oat spelt xylan produced cellulase enzymes as exhibiting carboxymethylcellulase (CMCase), Avicelase, xylanase, and cellobiosidase activities. In this study, the productivity of the extracellular enzymes in the strain was evaluated by using empty palm fruit bunch fiber (EPFBF), a lignocellulosic biomass, as a substrate for solid-state bioconversion. The highest cellulase activities were observed after 6 days of fermentation at pH 6.0 and 30 °C. The enzymes were secreted as cellulosomes for the degradation of EPFBF as a sole carbon source. Focused ion beam analysis showed that P. verruculosum COKE4E produced cellulolytic enzymes that were able to effectively biodegrade EPFBF during solid-state fermentation. In this process, 6.5 U of CMCase, 6.8 U of Avicelase, and 8.8 U of xylanase per gram of dry solid EPFBF were produced. These results demonstrate that EPFBF may be a potential raw material in solid-state fermentation for the production of cellulase enzymes to be used for biofuel production.

  3. Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides.

    Directory of Open Access Journals (Sweden)

    Tara A Gianoulis

    Full Text Available The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system.

  4. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste - a compost maturity analysis perspective.

    Science.gov (United States)

    Raut, M P; Prince William, S P M; Bhattacharyya, J K; Chakrabarti, T; Devotta, S

    2008-09-01

    An investigation was carried out in the laboratory to find out the microbial dynamics and enzyme activities during rapid composting of municipal solid waste (MSW). Various treatments such as aeration (A), addition of chemical agents (glucose (G) and acetic acid (AA) and application of cellulolytic microbial (M) inoculum (Phanerochaete chrysosporium and Trichoderma reesei) were used to facilitate the decomposition of MSW. The result of the present investigation revealed that the degradation of organic substrates were quick (within 9-12 days) in case of rapid composting as indicated by the reduction (below 20) in C/N ratio. Whereas, normal composting took more than 20 days to attain C/N ratio of below 20. Estimation of selected enzymes (amylase, protease, phosphatase and cellulase) provided information on the substrate specific degradation profiles of various labile substrates contained in organic waste.

  5. [Variability of enzyme systems in the coenopopulation of Taraxacum officinale s.l. from the zone of East-Ural- radioactive trace].

    Science.gov (United States)

    Ul'ianova, E V; Pozolotina, V N

    2004-01-01

    Levels of soil contamination with 90Sr and 137Cs radionuclides on the plots within the zone of Eastern-Ural radioactive trace exceed values of the global level 4-240 times. We have carried out allozyme analysis of apomict species Taraxacum officinale s.l. from this zone. Zimogrammes were interpreted as allozyme phenotypes. In condition of chronic irradiation the plants had increased phenogenetic variability of majority enzymes systems and high frequency of rare morphs. Thus, in plant coenopopoulations situated in radioactive-polluted zone, genomic recombination processes show higher intensity. High enzymatic variability provides the material for natural selection and increase the adaptive potential of coenopopulations.

  6. Cyclization of farnesyl pyrophosphate to the sesquiterpene olefins humulene and caryophyllene by an enzyme system from sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.; Gundy, A.

    1984-09-01

    A soluble enzyme preparation obtained from sage (Salvia officinalis) leaves was shown to catalyze the divalent metal-ion dependent cyclization of trans, trans-farnesyl pyrophosphate to the macrocyclic sesquiterpene olefins humulene and caryophyllene. The identities of the biosynthetic products were confirmed by radiochromatographic analysis and by preparation of crystalline derivatives, and the specificity of labeling in the cyclization reaction was established by chemical degradation of the olefins derived enzymatically from (1-3H2)farnesyl pyrophosphate. These results constitute the first report on the cyclization of farnesyl pyrophosphate to humulene and caryophyllene, two of the most common sesquiterpenes in nature, and the first description of a soluble sesquiterpene cyclase to be isolated from leaves of a higher plant.

  7. [THE EFFECT OF DIETARY RESTRICTION DURING DEVELOPMENT OF DROSOPHILA MELANOGASTER ON THE ACTIVITY OF ANTIOXIDANT SYSTEM ENZYMES].

    Science.gov (United States)

    Zabuga, O G; Koliada, A K; Kukharskyy, V M; Bazhynova, A I; Vaiserman, A M

    2015-01-01

    In the previous study we demonstrated that dietary restriction only at the development stage of Drosophila melanogaster may impact the life span of adult flies. It was important that we didn't use qualitative (restriction of proteins or other macro- or microelements) and not a calorie restriction as well, but quantitative dietary restriction that was the proportional reduction of all food components in the larval medium. In the situations when the larvae were reared in the medium types, that contained protein and carbohydrate components in concentrations of 90-10% of food components compared to the standard one (100%), the males were characterised with the significant increase in the maximum life span. The average life span was also increased, but only in those male individuals that developed in the medium types, that contained 50% and 60% of food components compared to controls. Such an effect we haven't detected in the female flies. To study the biochemical changes associated with the physiological effects we have determined the activity of the antioxidant enzymes--superoxide dismutase (SOD) and catalase. In the male flies the 50% dietary restriction implemented during the development has led to the significant increase in a SOD and catalase activity. Also the flies of both sexes reared in the medium with the 50% of food components have been characterised with the reduction in the accumulation of glycation end products. According to these results, we suggest that the changes in the activity of antioxidant enzymes may play a role in the increase of the flies life span caused by the dietary restriction during the development.

  8. Arabinoxylan-degrading enzyme system of the fungus Aspergillus awamori: purification and properties of an alpha-L-arabinofuranosidase.

    Science.gov (United States)

    Wood, T M; McCrae, S I

    1996-05-01

    An alpha-L-arabinofuranosidase produced by the fungus Aspergillus awamori had a molecular mass of approximately 64 kDa on sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS-PAGE) and was optimally active at pH 4.6 and 50 degrees C. The enzyme, which chromatographed as a single component on SDS-PAGE, appeared to consist of two isoenzymes of pI 3.6 and 3.2. Acting in isolation, the alpha-L-arabinofuranosidase had only a very limited capacity to release L-arabinose (less than 11%) directly from arabinoxylans that had been extracted from a number of plant cell wall preparations using 18% alkali, but a much higher proportion of the L-arabinose (46%) was released from a wheat straw arabinoxylan that had been isolated by steam treatment. There was a marked synergistic effect between the alpha-L-arabinofuranosidase and an endo-(1 --> 4)-beta-D-xylanase produced by A. awamori in both the rate and extent of the release of L-arabinose from both oat straw and wheat straw arabinoxylans, suggesting that L-arabinose-substituted oligosaccharides generated by the endoxylanase action were better substrates for enzyme action. A novel property of the alpha-L-arabinofuranosidase was its capacity to release a substantial proportion (42%) of feruloyl L-arabinose from intact wheat straw arabinoxylan. The concerted action of the alpha-L-arabinofuranosidase and endoxylanase released 71% of the feruloyl L-arabinose and 69% of the p-coumaroyl L-arabinose substituents from wheat straw arabinoxylan.

  9. Comparison among Different Gilthead Sea Bream (Sparus aurata Farming Systems: Activity of Intestinal and Hepatic Enzymes and 13C-NMR Analysis of Lipids

    Directory of Open Access Journals (Sweden)

    Vincenzo Zonno

    2009-12-01

    Full Text Available In order to evaluate differences in general health and nutritional values of gilthead sea bream (Sparus aurata, the effects of semi-intensive, land-based tanks and sea-cages intensive rearing systems were investigated, and results compared with captured wild fish. The physiological state was determined by measuring the activity of three different intestinal digestive enzymes: alkaline phosphatase (ALP, leucine aminopeptidase (LAP and maltase; and the activity of the hepatic ALP. Also, the hepatic content in protein, cholesterol, and lipid were assessed. 13C-NMR analysis for qualitative and quantitative characterization of the lipid fraction extracted from fish muscles for semiintensive and land based tanks intensive systems was performed. The lipid fraction composition showed small but significant differences in the monounsaturated/saturated fatty acid ratio, with the semi-intensive characterized by higher monounsaturated and lower saturated fatty acid content with respect to land based tanks intensive rearing system.

  10. A green approach to the synthesis of novel ``Desert rose stone''-like nanobiocatalytic system with excellent enzyme activity and stability

    Science.gov (United States)

    Wang, Min; Bao, Wen-Jing; Wang, Jiong; Wang, Kang; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2014-10-01

    3D hierarchical layer double hydroxides (LDHs) have attracted extensive interest due to their unique electronic and catalytic properties. Unfortunately, the existing preparation methods require high temperature or toxic organic compounds, which limits the applications of the 3D hierarchical LDHs in biocatalysis and biomedicine. Herein, we present a green strategy to synthesize ``Desert Rose Stone''-like Mg-Al-CO3 LDH nanoflowers in situ deposited on aluminum substrates via a coprecipitation method using atmospheric carbon dioxide. Using this method, we construct a novel ``Desert Rose Stone''-like nanobiocatalytic system by using HRP as the model enzyme. Compared with the free HRP, the HRP/Mg-Al-LDH nanobiocatalytic system exhibits higher catalytic activity and stability. A smaller apparent Michaelis-Menten constant (0.16 mM) of this system suggests that the encapsulated HRP shows higher affinity towards H2O2.

  11. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme.

    Science.gov (United States)

    Knecht, W; Bergjohann, U; Gonski, S; Kirschbaum, B; Löffler, M

    1996-08-15

    Human mitochondrial dihydroorotate dehydrogenase (the fourth enzyme of pyrimidine de novo synthesis) has been overproduced by means of a recombinant baculovirus that contained the human cDNA fragment for this protein. After virus infection and protein expression in Trichoplusia ni cells (BTI-Tn-5B1-4), the subcellular distribution of the recombinant dihydroorotate dehydrogenase was determined by two distinct enzyme-activity assays and by Western blot analysis with anti-(dihydroorotate dehydrogenase) Ig. The targeting of the recombinant protein to the mitochondria of the insect cells was verified. The activity of the recombinant enzyme in the mitochondria of infected cells was about 740-fold above the level of dihydroorotate dehydrogenase in human liver mitochondria. In a three-step procedure, dihydroorotate dehydrogenase was purified to a specific activity of greater than 50 U/mg. Size-exclusion chromatography showed a molecular mass of 42 kDa and confirmed the existence of the fully active enzyme as a monomeric species. Fluorimetric cofactor analysis revealed the presence of FMN in recombinant dihydroorotate dehydrogenase. By kinetics analysis, Km values for dihydroorotate and ubiquinone-50 were found to be 4 microM and 9.9 microM, respectively, while Km values for dihydroorotate and decylubiquinone were 9.4 microM and 13.7 microM, respectively. The applied expression system will allow preparation of large quantities of the enzyme for structure and function studies. Purified recombinant human dihytdroorotate dehydrogenase was tested for its sensitivity to a reported inhibitor A77 1726 (2-hydroxyethyliden-cyanoacetic acid 4-trifluoromethyl anilide), which is the active metabolite of the isoxazole derivative leflunomide [5-methyl-N-(4-trifluoromethyl-phenyl)-4-isoxazole carboximide]. An IC50 value of 1 microM was determined for A77 1726. Detailed kinetics experiments revealed uncompetitive inhibition with respect to dihydroorotate (Kiu = 0.94 microM) and non

  12. Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate.

    Science.gov (United States)

    Lai, Wenqiang; Tang, Dianping; Zhuang, Junyang; Chen, Guonan; Yang, Huanghao

    2014-05-20

    This work reports on a simple and feasible colorimetric immunoassay with signal amplification for sensitive determination of prostate-specific antigen (PSA, used as a model) at an ultralow concentration by using a new enzyme-chromogenic substrate system. We discovered that glucose oxidase (GOx), the enzyme broadly used in enzyme-linked immunosorbent assay (ELISA), has the ability to stimulate in situ formation of squaric acid (SQA)-iron(III) chelate. GOx-catalyzed oxidization of glucose leads to the formation of gluconic acid and hydrogen peroxide (H2O2). The latter can catalytically oxidize iron(II) to iron(III), which can rapidly (immunoassay protocol with GOx-labeled anti-PSA detection antibody can be designed for the detection of target PSA on capture antibody-functionalized magnetic immunosensing probe, monitored by recording the color or absorbance (λ = 468 nm) of the generated SQA-iron(III) chelate. The absorbance intensity shows to be dependent on the concentration of target PSA. A linear dependence between the absorbance and target PSA concentration is obtained under optimal conditions in the range from 1.0 pg mL(-1) to 30 ng mL(-1) with a detection limit (LOD) of 0.5 pg mL(-1) (0.5 ppt) estimated at the 3Sblank level. The sensitivity displays to be 3-5 orders of magnitude better than those of most commercialized human PSA ELISA kits. In addition, the developed colorimetric immunoassay was validated by assaying 12 human serum samples, receiving in good accordance with those obtained by the commercialized PSA ELISA kit. Importantly, the SQA-based immunosensing system can be further extended for the detection of other low-abundance proteins or biomarkers by controlling the target antibody.

  13. Enzymatic Filter for Improved Separation of Output Signals in Enzyme Logic Systems towards 'Sense and Treat' Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Mailloux, Shay [Clarkson University, Potsdam, NY; Zavalov, Oleksandr [Clarkson University, Potsdam, NY; Guz, Nataliia [Clarkson University, Potsdam, NY; Katz, Evgeny [Clarkson University, Potsdam, NY; Bocharova, Vera [ORNL

    2014-01-01

    The major challenge for application of autonomous medical sensing systems is the noise produced by non-zero physiological concentrations of the sensed target. If the level of noise is high, then a real signal indicating abnormal changes in the physiological levels of the analytes might be hindered. Inevitably, this could lead to wrong diagnostics and treatment, and would have a negative impact on human health. Here, we report the realization of a filter system implemented to improve both the fidelity of sensing and accuracy of consequent drug release. A new filtering method was tested in the sensing system for the diagnosis of liver injury. This sensing system used the enzymes alanine transaminase (ALT) and aspartate transaminase (AST) as the inputs. Furthermore, the output of the sensing system was designed to trigger drug release, and therefore, the role of the filter in drug release was also investigated. The drug release system consists of beads with an iron - cross-linked alginate core coated with different numbers of layers of poly-L-lysine. Dissolution of the beads by the output signals of the sensing system in the presence and absence of the filter was monitored by release of encapsulated in the beads rhodamine - 6G dye mimicking release of a real drug. The obtained results offer a new view on the problem of noise reduction for systems intended to be part of sense and treat medical devices.

  14. Association of angiotensin-converting enzyme inhibitor therapy and comorbidity in diabetes: results from the Vermont diabetes information system

    Directory of Open Access Journals (Sweden)

    MacLean Charles D

    2008-12-01

    Full Text Available Abstract Background Angiotensin converting enzyme inhibitors (ACE inhibitors reduce peripheral vascular resistance via blockage of angiotensin converting enzyme (ACE. ACE inhibitors are commonly used to treat congestive heart failure and high blood pressure, but other effects have been reported. In this study, we explored the association between ACE inhibitor therapy and the prevalence of comorbid conditions in adults with diabetes Methods We surveyed 1003 adults with diabetes randomly selected from community practices. Patients were interviewed at home and self-reported their personal and clinical characteristics including comorbidity. Current medications were obtained by direct observation of medication containers. We built logistic regression models with the history of comorbidities as the outcome variable and the current use of ACE inhibitors as the primary predictor variable. We adjusted for possible confounding by social (age, sex, alcohol drinking, cigarette smoking and clinical factors (systolic blood pressure, body mass index (BMI, glycosolated hemoglobin (A1C, number of comorbid conditions, and number of prescription medications. Results ACE users reported a history of any cancer (except the non-life-threatening skin cancers less frequently than non-users (10% vs. 15%; odd ratio = 0.59; 95% confidence interval [0.39, 0.89]; P = 0.01; and a history of stomach ulcers or peptic ulcer disease less frequently than non-users (12% vs. 16%, odd ratio = 0.70, [0.49, 1.01], P = 0.06. After correcting for potential confounders, ACE inhibitors remained significantly inversely associated with a personal history of cancer (odds ratio = 0.59, [0.39, 0.89]; P = 0.01 and peptic ulcer disease (odd ratio = 0.68, [0.46, 1.00], P = 0.05. Conclusion ACE inhibitor use is associated with a lower likelihood of a history of cancer and peptic ulcers in patients with diabetes. These findings are limited by the cross sectional study design, self-report of comorbid

  15. Garlic attenuates chrysotile-mediated pulmonary toxicity in rats by altering the phase I and phase II drug metabolizing enzyme system.

    Science.gov (United States)

    Ameen, Mohamed; Musthapa, M Syed; Abidi, Parveen; Ahmad, Iqbal; Rahman, Qamar

    2003-01-01

    Asbestos and its carcinogenic properties have been extensively documented. Asbestos exposure induces diverse cellular events associated with lung injury. Previously, we have shown that treatment with chrysotile shows significant alteration in phase I and phase II drug metabolizing enzyme system. In this study we have examined some potential mechanisms by which garlic treatment attenuates chrysotile-mediated pulmonary toxicity in rat. Female Wistar rats received an intratracheal instillation of 5 mg chrysotile (0.5 mL saline) as well as intragastric garlic treatment (1% body weight (v/w); 6 days per week). Effect of garlic treatment was evaluated after 1, 15, 30, 90, and 180 days by assaying aryl hydrocarbon hydroxylase (AHH), glutathione (GSH), glutathione S-transferase (GST), and production of thiobarbituric acid reactive substances (TBARS) in rat lung microsome. The results showed that AHH and TBARS formation were significantly reduced at day 90 and day 180 in chrysotile treated garlic cofed rats; GSH recovered 15 days later to the near normal level and GST elevated significantly after treatment of garlic as compared to chrysotile alone treated rat lung microsome. The data obtained shows that inhibition of AHH activity and induction of GST activity could be contributing factor in chrysotile-mediated pulmonary toxicity in garlic cofed rats. However, recovery of GSH and inhibition of TBARS formation by garlic and its constituent(s) showed that garlic may give protection by altering the drug metabolizing enzyme system.

  16. A novel aqueous micellar two-phase system composed of surfactant and sorbitol for purification of pectinase enzyme from Psidium guajava and recycling phase components.

    Science.gov (United States)

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.

  17. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and enzyme activities involved in N cycling is largely unknown. Therefore, an on-farm experiment, for two years, has been conducted, to elucidate the effects of DMPP on mineral N (NH4+-N and NO3--N) leaching, nitrifying organisms, and denitrifying enzymes in a rice-oilseed rape cropping system. Three treatments including urea alone (UA), urea + 1% DMPP (DP), and no fertilizer (CK), have been carried out. The results showed that DP enhanced the mean NH4+-N concentrations by 19.1%-24.3%, but reduced the mean NO3--N concentrations by 44.9%-56.6% in the leachate,under a two-year rice-rape rotation, compared to the UA treatment. The population of ammonia oxidizing bacteria, the activity of nitrate reductase, and nitrite reductase in the DP treatment decreased about 24.5%-30.9%, 14.9%-43.5%, and 14.7%-31.6%, respectively, as compared to the UA treatment. However, nitrite oxidizing bacteria and hydroxylamine reductase remained almost unaffected by DMPP.It is proposed that DMPP has the potential to either reduce NO3--N leaching by inhibiting ammonia oxidization or N losses from denitrification, which is in favor of the N conversations in the rice-oilseed rape cropping system.

  18. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system.

    Science.gov (United States)

    Li, Hua; Liang, Xinqiang; Chen, Yingxu; Lian, Yanfeng; Tian, Guangming; Ni, Wuzhong

    2008-01-01

    DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and enzyme activities involved in N cycling is largely unknown. Therefore, an on-farm experiment, for two years, has been conducted, to elucidate the effects of DMPP on mineral N (NH4(+)-N and NO3(-)-N) leaching, nitrifying organisms, and denitrifying enzymes in a rice-oilseed rape cropping system. Three treatments including urea alone (UA), urea + 1% DMPP (DP), and no fertilizer (CK), have been carried out. The results showed that DP enhanced the mean NH4(+)-N concentrations by 19.1%--24.3%, but reduced the mean NO3(-)-N concentrations by 44.9%--56.6% in the leachate, under a two-year rice-rape rotation, compared to the UA treatment. The population of ammonia oxidizing bacteria, the activity of nitrate reductase, and nitrite reductase in the DP treatment decreased about 24.5%--30.9%, 14.9%--43.5%, and 14.7%--31.6%, respectively, as compared to the UA treatment. However, nitrite oxidizing bacteria and hydroxylamine reductase remained almost unaffected by DMPP. It is proposed that DMPP has the potential to either reduce NO3(-)-N leaching by inhibiting ammonia oxidization or N losses from denitrification, which is in favor of the N conversations in the rice-oilseed rape cropping system.

  19. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec).

    Science.gov (United States)

    Wang, Y; McAllister, T A; Rode, L M; Beauchemin, K A; Morgavi, D P; Nsereko, V L; Iwaasa, A D; Yang, W

    2001-03-01

    The effects of an exogenous enzyme preparation, the application method and feed type on ruminal fermentation and microbial protein synthesis were investigated using the rumen simulation technique (Rusitec). Steam-rolled barley grain and chopped alfalfa hay were sprayed with water (control, C), an enzyme preparation with a predominant xylanase activity (EF), or autoclaved enzyme (AEF) 24 h prior to feeding, or the enzyme was supplied in the buffer infused into the Rusitec (EI). Microbial N incorporation was measured using (15NH4)2SO4 in the buffer. Spent feed bags were pummelled mechanically in buffer to segregate the feed particle-associated (FPA) and feed particle-bound (FPB) bacterial fractions. Enzymes applied to feed reduced neutral-detergent fibre content, and increased the concentration of reducing sugars in barley grain, but not alfalfa hay. Ruminal cellulolytic bacteria were more numerous with EF than with C. Disappearance of DM from barley grain was higher with EF than with C, but alfalfa was unaffected by EF. Treatment EF increased incorporation of 15N into FPA and FPB fractions at 24 and 48 h. In contrast, AEF reduced the 24 h values, relative to C; AEF and C were similar at 48 h. Infused enzyme (EI) did not affect 15N incorporation. Xylanase activity in effluent was increased by EF and EI, compared to C, but not by AEF. Xylanase activity in FPA was higher at 48 h than at 24 h with all treatments; it was higher with EF than C at 24 and 48 h, but was not altered by AEF or EI. Applying enzymes onto feeds before feeding was more effective than dosing directly into the artificial rumen for increasing ruminal fibrolytic activity.

  20. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue.

    Science.gov (United States)

    Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal

    2016-08-01

    The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer.

  1. Editorial: Special Issue — Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Roberto Fernandez-Lafuente

    2014-12-01

    Full Text Available Immobilization of enzymes and proteins is a requirement for many industrial enzyme applications, as this facilitates enzyme recovery and reuse. Bearing in mind this necessity, the coupling of immobilization to the improvement of other enzyme features has been pursued by many researchers, and nowadays immobilization is recognized as a tool to improve not only stability, but also enzyme selectivity, specificity, resistance to inhibition or chemical modifiers, etc. To achieve these overall improvements of enzymes’ properties via immobilization, it is necessary to both develop new immobilization systems suitable for these purposes, and to achieve a deeper knowledge of the mechanisms of interaction between enzymes and activated solids. That way, immobilization of enzymes, far being an old-fashioned methodology to just reuse these expensive biocatalysts, is a tool of continuous interest that requires a continuous effort to be exploited in all its potential. This special issue collects 23 papers reporting advances in the field of immobilization of enzymes.[...

  2. Investigation of Comparative Regulation on Antioxidant Enzyme System under Copper Treatment and Drought Stress in Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Hatice CETİNKYA

    2014-12-01

    Full Text Available The present study was conducted to present the responses of drought-sensitive ‘Shemal’ and drought-tolerant ‘71MAY69’ maize cultivars under drought condition (20% Polyethylene glycol, -0.40 MPa and three different copper concentrations (0.5 mM, 1 mM, 1.5 mM uSO4.5H2O for 5 days to determine the enzymatic responses of copper treatment in maize leaves. Copper treatments alone did not change stomatal conductance, relative water content, malondialdehyde, proline, hydrogen peroxide content and abscisic acid level according to control groups.  Combined treatment (drought and copper alleviated the damage of PEG- induced drought stress in maize leaves. Superoxide dismutase (SOD, catalase (CAT, glutatione reductase (GR activity increased and glutathione -S transferase (GST activity decreased, while ascorbate peroxidase (APX activity did not change under drought stress in the tolerant cultivar. SOD, CAT and APX were decreased and GST activities were increased while GR did not change in ‘Shemal’. Also SOD, APX and CAT activity increased by copper treatment alone in both cultivars. Otherwise combined treatment increased SOD, APX and CAT activity at all concentrations, but GR and GST activity increased only by (PEG+1.5 mM treatment when compared with PEG treatment alone in sensitive ones. As a result, exogenous copper alleviated drought stress, while it induced an oxidative damage by increasing antioxidant enzyme activities differently from drought tolerance. Copper tolerance in maize is not a common response of its defense mechanism because of different response to copper and drought in the same cultivar. 

  3. Anti-DNase I antibodies in systemic lupus erythematosus: diagnostic value and share in the enzyme inhibition.

    Science.gov (United States)

    Trofimenko, A S; Gontar, I P; Zborovsky, A B; Paramonova, O V

    2016-04-01

    Diagnostic accuracy of anti-DNase I antibodies measurement in a differentiation between SLE and other autoimmune rheumatic diseases was evaluated. The share of anti-DNase I and actin in the DNase I activity decrease in SLE was established. Serum samples were obtained from 54 patients with verified SLE, 52 control patients with other autoimmune rheumatic diseases, and 44 healthy persons. Anti-DNase I concentrations were measured by ELISA. Free and actin inhibited DNase I activities were evaluated in the fresh serum samples. The appraisal of antibodies and actin effects on DNase I activity was made using multiple regression. Anti-DNase I antibodies were positive in 35 SLE and 8 control patients, without significant difference between the mean antibody concentrations. Sensitivity of this test was 64.81 %, and specificity-84.62 %. Mean free DNase I activity in SLE was somewhat lower than in the control group as a result of augmented frequency of extremely low enzyme activities. On the contrary, after the exclusion of the latter cases we have revealed elevated mean free DNase I activity in the other SLE patients comparing to the similar control subgroup. Unlike the controls, low serum DNase I activity in SLE arose not only from actin and antibody action, but also, in half of the cases, from unidentified factor, related to active SLE. The accuracy of the anti-DNase I antibodies measurement is approximate to the present reference standard of SLE diagnostics. We first demonstrated that neither antibodies nor actin caused DNase I activity decrease in SLE.

  4. Inoculation effects of endophytic fungus (Piriformospora indica on antioxidant enzyme activity and wheat tolerance under phosphorus deficiency in hydroponic system

    Directory of Open Access Journals (Sweden)

    D. Rahmani Iranshahi

    2016-02-01

    Full Text Available Information about the effect of endophytic fungus Piriformospora indica on wheat response to stress conditions is very limited and sometime contradictory. This greenhouse research was conducted in a hydroponic culture to investigate the inoculation effects of mycorrizhal-like fungus, P. indica, on enzymatic and non–enzymatic defense mechanisms of wheat (Triticum aestivum L., cv. Niknejad at two levels of phosphorus (P supply (deficient and sufficient. The experiment was factorial, based on a completely randomized design with three replications. Sixty days after applying the treatments, plants were harvested and shoot dry weight and concentration of P, iron, zinc and activity of antioxidant enzymes like catalase (CAT, ascorbate peroxidase (APX, guaiacol peroxidase (GPX and chlorophyll a, b and carotenoids contents were measured. Results showed that P-deficiency reduced shoot dry weight and concentration of P and iron and increased concentration of zinc in the shoots. Inoculation of wheat roots with P. indica in P-deficiency condition resulted in significant increasing of shoot dry weight and P concentration. Also, chlorophyll a, b contents and concentration of carotenoids in P-deficiency condition was significantly higher than P-sufficiency condition. Inoculation of P. indica to wheat roots decreased chorophyll a, b contents and concentration of carotenoids. Inoculation of P. indica in P-deficiency condition significantly decreased the activity of GPX and significantly increased the activity of CAT and GPX in P-sufficiency condition. In general, inoculation of fungus P. indica to wheat plant could be recommended as an effective method to alleviate deleterious effects of P-deficiency and increase its tolerance to this stress.

  5. Anaerobic cellulolytic rumen fungal populations in goats fed with and without Leucaena leucocephala hybrid, as determined by real-time PCR.

    Science.gov (United States)

    Kok, Ching Mun; Sieo, Chin Chin; Tan, Hui Yin; Saad, Wan Zuhainis; Liang, Juan Boo; Ho, Yin Wan

    2013-10-01

    The effect of Leucaena leucocephala hybrid-Bahru (LLB), which contains a high concentration of condensed tannins, on cellulolytic rumen fungal population in goats was investigated using real-time PCR. The fungal population in goats fed LLB was inhibited during the first 10 days of feeding, but after 15 days of feeding, there was a tremendous increase of fungal population (157.0 μg/ml), which was about fourfold more than that in control goats (39.7 μg/ml). However, after this period, the fungal population decreased continuously, and at 30 days of feeding, the fungal population (50.6 μg/ml) was not significantly different from that in control goats (55.4 μg/ml).

  6. Binding of the Substrate Analogue Perseitol to Phosphorylated and Unphosphorylated Enzyme IImtl of the Phosphoenolpyruvate-Dependent Phosphotransferase System of Escherichia coli

    NARCIS (Netherlands)

    Lolkema, Juke S.; Wartna, Ellen S.; Robillard, George T.

    1993-01-01

    Enzyme IImtl catalyzes the concomitant transport and phosphorylation of the hexitol mannitol. Here we demonstrate that the heptitol perseitol is not phosphorylated and not transported by the enzyme. However, the enzyme binds perseitol with an affinity comparable to the affinity for mannitol. Apparen

  7. BINDING OF THE SUBSTRATE-ANALOG PERSEITOL TO PHOSPHORYLATED AND UNPHOSPHORYLATED ENZYME-IIMTL OF THE PHOSPHOENOLPYRUVATE-DEPENDENT PHOSPHOTRANSFERASE SYSTEM OF ESCHERICHIA-COLI

    NARCIS (Netherlands)

    LOLKEMA, JS; WARTNA, ES; ROBILLARD, GT

    1993-01-01

    Enzyme II(mtl) catalyzes the concomitant transport and phosphorylation of the hexitol mannitol. Here we demonstrate that the heptitol perseitol is not phosphorylated and not transported by the enzyme. However, the enzyme binds perseitol with an affinity comparable to the affinity for mannitol. Appar

  8. BACILLUS SUBTILIS SJ01 PRODUCES HEMICELLULOSE DEGRADING MULTI-ENZYME COMPLEXES

    Directory of Open Access Journals (Sweden)

    Brett Ivan Pletschke

    2012-01-01

    Full Text Available Cellulose and hemicellulose account for a large portion of the world’s plant biomass. In nature, these polysaccharides are intertwined, forming complex materials that require multiple enzymes to degrade them. Multi-enzyme complexes (MECs consist of a number of enzymes working in close proximity and synergistically to degrade complex substrates with higher efficiency than individual enzymes. The aim of this study was to isolate and characterise a (hemi- cellulolytic MEC from the aerobic bacterium, Bacillus subtilis SJ01, using ultrafiltration followed by size-exclusion chromatography on a Sephacryl S-400 column. Two MECs, C1 and C2 of 371 and 267 kDa, respectively, were purified, consisting of 16 and 18 subunits, respectively, five of which degraded birchwood and oat spelt xylan. The MECs degraded xylan substrates (C1: 0.24 U/mg, C2: 0.14 U/mg birchwood xylan with higher efficiency than amorphous cellulose substrates (C1: 0.002 U/mg, C2: 0.01 U/mg carboxymethyl cellulose - CMC. Low or no binding to insoluble substrates indicated that the MECs lacked some of the features characteristic of cellulosomes. The significance of this study lies in the discovery of MECs that differ structurally from cellulosomes that can hydrolyse substrates with high hemicellulose content.

  9. PEG-salt aqueous two-phase systems: an attractive and versatile liquid-liquid extraction technology for the downstream processing of proteins and enzymes.

    Science.gov (United States)

    Glyk, Anna; Scheper, Thomas; Beutel, Sascha

    2015-08-01

    Nowadays, there is an increasing demand to establish new feasible, efficient downstream processing (DSP) techniques in biotechnology and related fields. Although several conventional DSP technologies have been widely employed, they are usually expensive and time-consuming and often provide only low recovery yields. Hence, the DSP is one major bottleneck for the commercialization of biological products. In this context, polyethylene glycol (PEG)-salt aqueous two-phase systems (ATPS) represent a promising, efficient liquid-liquid extraction technology for the DSP of various biomolecules, such as proteins and enzymes. Furthermore, ATPS can overcome the limitations of traditional DSP techniques and have gained importance for applications in several fields of biotechnology due to versatile advantages over conventional DSP methods, such as biocompatibility, technical simplicity, and easy scale-up potential. In the present review, various practical applications of PEG-salt ATPS are presented to highlight their feasibility to operate as an attractive and versatile liquid-liquid extraction technology for the DSP of proteins and enzymes, thus facilitating the approach of new researchers to this technique. Thereby, single- and multi-stage extraction, several process integration methods, as well as large-scale extraction and purification of proteins regarding technical aspects, scale-up, recycling of process chemicals, and economic aspects are discussed.

  10. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jesse; Gieler, Brandon; Heisler, Devon; Palisoc, Maryknoll; Williams, Amanda; Dohnalkova, Alice; Ming, Hong; Yu, Tian T.; Dodsworth, Jeremy A.; Li, Wen J.; Hedlund, Brian P.

    2013-08-15

    Several closely-related, thermophilic, and cellulolytic bacterial strains, designated JKG1T, JKG2, JKG3, JKG4, and JKG5, were isolated from a cellulolytic enrichment (corn stover) incubated in the water column of Great Boiling Spring, NV. Strain JKG1T had cells of a diameter of 0.7 - 0.9 μm and length of ~2.0 μm that formed non-branched multicellular filaments reaching >300 μm. Spores were not formed and dense liquid cultures were red. The temperature range for growth was 45-65 °C, with an optimum of 55 °C. The pH range for growth was 5.6-9.0, with an optimum of 7.5. JKG1T grew as an aerobic heterotroph, utilizing glucose, sucrose, xylose, arabinose, cellobiose, carboxymethylcellulose, filter paper, microcrystalline cellulose, xylan, starch, casamino acids, tryptone, peptone, yeast extract, acetate, citrate, lactate, pyruvate, and glycerol as sole carbon sources, and was not observed to photosynthesize. The cells stained Gram-negative. Phylogenetic analysis using 16S rRNA gene sequences placed the new isolates in the class Chloroflexia, but distant from other cultivated members, with the highest sequence identity of 82.5% to Roseiflexus castenholzii. The major quinone was menaquinone-9; no ubiquinones were detected. The major cellular fatty acids (>5%) were C18:0, anteiso-C17:0, iso-C18:0, and iso-C17:0. C16:0, iso-C16:0, and C17:0. The peptidoglycan amino acids were alanine, ornithine, glutamic acid, serine, and asparagine. Whole-cell sugars included mannose, rhamnose, glucose, galactose, ribose, arabinose, and xylose. Morphological, phylogenetic, and chemotaxonomic results suggest that JKG1T is representative of a new lineage within the class Chloroflexia, which we propose to designate Kallotenue papyrolyticum gen. nov., sp. nov., Kallotenuaceae fam. nov., Kallotenuales ord. nov.

  11. Effects of Neutral Detergent Soluble Fiber and Sucrose Supplementation on Ruminal Fermentation, Microbial Synthesis, and Populations of Ruminal Cellulolytic Bacteria Using the Rumen Simulation Technique (RUSITEC)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang-hui; LIU Chan-juan; LI Chao-yun; YAO Jun-hu

    2013-01-01

    We evaluated the effects of neutral detergent soluble fiber (NDSF) and sucrose supplementation on ruminal fermentation, microbial synthesis, and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). The experiment had a 2×2 factorial design with two dosages of sucrose, low (ca. 0.26 g d-1, low-sucrose) and high (ca. 1.01 g d-1, high-sucrose), and two dosages of supplied NDSF, low (1.95 g d-1, low-NDSF) and high (2.70 g d-1, high-NDSF). Interactions between NDSF and sucrose were detected for xylanase activity from solid fraction and apparent disappearance of neutral detergent fiber (NDF) and hemicellulose, with the lowest values observed for high-NDSF and high-sucrose treatment. Supplemental NDSF appeared to increase the molar proportion of acetate and reduce that of butyrate;however, the effects of supplemental sucrose on VFA profiles depended upon NDSF amount. There was a NDSF×sucrose interaction for the production of methane. High-NDSF fermenters had lower ammonia-N production, greater daily N flow of solid-associated microbial pellets and total microorganisms, and greater microbial synthesis efficiency compared with low-NDSF fermenters. Supplementation with NDSF resulted in an increase in 16S rDNA copies of Ruminococcus flavefaciens and a reduction in copies of Ruminococcus albus. Supplementation with sucrose tended to increase the 16S rDNA copies of R. albus from liquid fraction, but did not affect daily total microbial N flow and cellulolytic bacterium populations from solid fraction. These data indicate that the effects of the interaction between NDSF and sugars on ruminal fermentation and fiber digestion should be taken into account in diet formulation. Ruminal fermentation and metabolism of sugars warrant further investigation.

  12. CorA affects tolerance of Escherichia coli and Salmonella enterica serovar Typhimurium to the lactoperoxidase enzyme system but not to other forms of oxidative stress.

    Science.gov (United States)

    Sermon, Jan; Wevers, Eva M-R P; Jansen, Leentje; De Spiegeleer, Philipp; Vanoirbeek, Kristof; Aertsen, Abram; Michiels, Chris W

    2005-11-01

    The enzyme lactoperoxidase is part of the innate immune system in vertebrates and owes its antimicrobial activity to the formation of oxidative reaction products from various substrates. In a previous study, we have reported that, with thiocyanate as a substrate, the lactoperoxidase system elicits a distinct stress response in Escherichia coli MG1655. This response is different from but partly overlapping with the stress responses to hydrogen peroxide and to superoxide. In the current work, we constructed knockouts in 10 lactoperoxidase system-inducible genes to investigate their role in the tolerance of E. coli MG1655 to this antimicrobial system. Five mutations resulted in a slightly increased sensitivity, but one mutation (corA) caused hypersensitivity to the lactoperoxidase system. This hypersensitive phenotype was specific to the lactoperoxidase system, since neither the sensitivity to hydrogen peroxide nor to the superoxide generator plumbagin was affected in the corA mutant. Salmonella enterica serovar Typhimurium corA had a similar phenotype. Although corA encodes an Mg2+ transporter and at least three other inducible open reading frames belonged to the Mg2+ regulon, repression of the Mg stimulon by Mg2+ did not change the lactoperoxidase sensitivity of either the wild-type or corA mutant. Prior exposure to 0.3 mM Ni2+, which is also transported by CorA, strongly sensitized MG1655 but not the corA mutant to the lactoperoxidase system. Furthermore, this Ni2+-dependent sensitization was suppressed by the CorA-specific inhibitor Co(III) hexaammine. These results indicate that CorA affects the lactoperoxidase sensitivity of E. coli by modulating the cytoplasmic concentrations of transition metals that enhance the toxicity of the lactoperoxidase system.

  13. A sensitive enzyme-linked immunosorbent assay amplified by biotin-streptavidin system for detecting non-steroidal anti-inflammatory drug ketoprofen.

    Science.gov (United States)

    Bu, Dan; Zhuang, Hui S; Yang, Guang X

    2014-01-01

    A sensitive biotin-streptavidin-amplified enzyme-linked immunosorbent assay (BA-ELISA) method was developed for detecting non-steroidal anti-inflammatory drug ketoprofen. Compared with traditional ELISA method, the sensitivity of proposed immunoassay was enhanced by the biotin-streptavidin system. Under the optimal condition, the median inhibitory concentration (IC50) was 0.25 ng mL(-1), with minor cross-reactivity to a number of structural analogs. This developed assay was successfully applied to detect the ketoprofen residues in different fish samples, and good recoveries (72.6-105.5%) were obtained. The results indicated that this immunoassay method could specifically detect trace ketoprofen residues and could be widely used for routine monitoring of food samples.

  14. Participation of stress-inducible systems and enzymes involved in BER and NER in the protection of Escherichia coli against cumene hydroperoxide.

    Science.gov (United States)

    Asad, L M; Medeiros, D C; Felzenszwalb, I; Leitão, A C; Asad, N R

    2000-09-15

    We studied the participation of the stress-inducible systems, as the OxyR, SoxRS and SOS regulons in the protection of Escherichia coli cells against lethal effects of cumene hydroperoxide (CHP). Moreover, we evaluated the participation of BER and NER in the repair of the DNA damage produced by CHP. Our results suggest that the hypersensitivity observed in the oxyR mutants to the lethal effect of CHP does not appear to be due to SOS inducing DNA lesions, but rather to cell membrane damage. On the other hand, DNA damage induced by CHP appears to be repaired by enzymes involved in BER and NER pathways. In this case, Fpg protein and UvrABC complex could be involved cooperatively in the elimination of a specific DNA lesion. Finally, we have detected the requirement for the uvrA gene function in SOS induction by CHP treatment.

  15. Enzyme-linked immunosorbent assay characterization of Basal variation and heritability of systemic microfibrillar-associated protein 4

    DEFF Research Database (Denmark)

    Sækmose, Susanne Gjørup; Schlosser, Anders; Holst, René;

    2013-01-01

    Microfibrillar-associated protein 4 (MFAP4) is a systemic biomarker that is significantly elevated in samples from patients suffering from hepatic cirrhosis. The protein is generally localized to elastic fibers and other connective tissue fibers in the extracellular matrix (ECM), and variation...

  16. DNA Adduct Formation from Metabolic 5'-Hydroxylation of the Tobacco-Specific Carcinogen N'-Nitrosonornicotine in Human Enzyme Systems and in Rats.

    Science.gov (United States)

    Zarth, Adam T; Upadhyaya, Pramod; Yang, Jing; Hecht, Stephen S

    2016-03-21

    N'-Nitrosonornicotine (NNN) is carcinogenic in multiple animal models and has been evaluated as a human carcinogen. NNN can be metabolized by cytochrome P450s through two activation pathways: 2'-hydroxylation and 5'-hydroxylation. While most previous studies have focused on 2'-hydroxylation in target tissues of rats, available evidence suggests that 5'-hydroxylation is a major activation pathway in human enzyme systems, in nonhuman primates, and in target tissues of some other rodent carcinogenicity models. In the study reported here, we investigated DNA damage resulting from NNN 5'-hydroxylation by quantifying the adduct 2-(2-(3-pyridyl)-N-pyrrolidinyl)-2'-deoxyinosine (py-py-dI). In rats treated with NNN in the drinking water (7-500 ppm), py-py-dI was the major DNA adduct resulting from 5'-hydroxylation of NNN in vivo. Levels of py-py-dI in the lung and nasal cavity were the highest, consistent with the tissue distribution of CYP2A3. In rats treated with (S)-NNN or (R)-NNN, the ratios of formation of (R)-py-py-dI to (S)-py-py-dI were not the expected mirror image, suggesting that there may be a carrier for one of the unstable intermediates formed upon 5'-hydroxylation of NNN. Rat hepatocytes treated with (S)- or (R)-NNN or (2'S)- or (2'R)-5'-acetoxyNNN exhibited a pattern of adduct formation similar to that of live rats. In vitro studies with human liver S9 fraction or human hepatocytes incubated with NNN (2-500 μM) demonstrated that py-py-dI formation was greater than the formation of pyridyloxobutyl-DNA adducts resulting from 2'-hydroxylation of NNN. (S)-NNN formed more total py-py-dI adducts than (R)-NNN in human liver enzyme systems, which is consistent with the critical role of CYP2A6 in the 5'-hydroxylation of NNN in human liver. The results of this study demonstrate that the major DNA adduct resulting from NNN metabolism by human enzymes is py-py-dI and provide potentially important new insights into the metabolic activation of NNN in rodents and humans.

  17. The non-specific inhibition of enzymes by environmental pollutants: a study of a model system towards the development of electrochemical biosensor arrays.

    Science.gov (United States)

    Young, S J; Hart, J P; Dowman, A A; Cowell, D C

    2001-12-01

    Previous research has shown that lactate dehydrogenase (LDH) was competitively inhibited by pentachlorophenol (PCP) and a modified assay produced a detection limit of 1 microM (270 microg l(-1)). This work used spectrophotometric rate-determination but in order to move towards biosensor development the selected detection method was electrochemical. The linkage of LDH to lactate oxidase (LOD) provided the electroactive species, hydrogen peroxide. This could be monitored using a screen-printed carbon electrode (SPCE) incorporating the mediator, cobalt phthalocyanine, at a potential of +300 mV (vs. Ag/AgCl). A linked LDH/LOD system was optimised with respect to inhibition by PCP. It was found that the SPCE support material, PVC, acted to reduce inhibition, possibly by combining with PCP. A cellulose acetate membrane removed this effect. Inhibition of the system was greatest at enzyme activities of 5 U ml(-1) LDH and 0.8 U ml(-1) LOD in reactions containing 246 microM pyruvate and 7.5 microM NADPH. PCP detection limits were an EC(10) of 800 nM (213 microg l(-1)) and a minimum inhibition detectable (MID) limit of 650 nM (173 microg l(-1)). The inclusion of a third enzyme, glucose dehydrogenase (GDH), provided cofactor recycling to enable low concentrations of NADPH to be incorporated within the assay. NADPH was reduced from 7.5 to 2 microM. PCP detection limits were obtained for an assay containing 5 U ml(-1) LDH, 0.8 U ml(-1) LOD and 0.1 U ml(-1) GDH with 246 microM pyruvate, 400 mM glucose and 2 microM NADPH. The EC(10) limit was 150 nM (39.9 microg l(-1)) and the MID was 100 nM (26.6 microg l(-1)). The design of the inhibition assays discussed has significance as a model for other enzymes and moves forward the possibility of an electrochemical biosensor array for pollution monitoring.

  18. Antiproliferative effects of palladium(II) complexes of 5-nitrosopyrimidines and interactions with the proteolytic regulatory enzymes of the renin-angiotensin system in tumoral brain cells.

    Science.gov (United States)

    Illán-Cabeza, Nuria A; García-García, Antonio R; Martínez-Martos, José M; Ramírez-Expósito, María J; Moreno-Carretero, Miguel N

    2013-09-01

    Seventeen new palladium(II) complexes of general formulaes PdCl2L, PdCl(LH-1)(solvent) and PdCl2(PPh3)2L containing pyrimidine ligands derived from 6-amino-5-nitrosouracil and violuric acid have been prepared and characterized by elemental analysis, IR and NMR ((1)H and (13)C) methods and, two of them, PdCl(DANUH-1)(CH3CN)]·½H2O and [PdCl(2MeOANUH-1)(CH3CN)] by X-ray single-crystal diffraction (DANU: 6-amino-1,3-dimethyl-5-nitrosouracil; 2MeOANU: 6-amino-2-methoxy-5-nitroso-3H-pyrimidin-4-one). The coordination environment around palladium is nearly square planar in the two compounds with different supramolecular arrangements. Crystallographic and spectral data are consistent with a bidentate coordination mode through N5 and O4 atoms when the ligands act in neutral form and N5 and N6 atoms in the monodeprotonated ones. The cytotoxicity of the complexes against human neuroblastoma (NB69) and human glioma (U373-MG) cell lines has been tested showing a considerable antiproliferative activity. Also, the study of the effects of palladium(II) complexes on the renin-angiotensin system (RAS) regulating proteolytic regulatory enzymes aminopeptidase A (APA), aminopeptidase N (APN) and insulin-regulated aminopeptidase (IRAP) shows a strong dependence on the compound tested and the tumoral cell type, also affecting different catalytic routes; the compounds affect in a different way the activities of enzymes of the RAS system, changing their functional roles as initiators of cell proliferation in tumors as autocrine/paracrine mediators.

  19. Angiotensin-converting enzyme 2, Angiotensin-(1-7) and Mas: new players of the Renin Angiotensin System

    DEFF Research Database (Denmark)

    Santos, Robson AS; Ferreira, Anderson J; Verano-Braga, Thiago;

    2013-01-01

    Angiotensin(Ang)-(1-7) is now recognized as a biologically active component of renin-angiotensin system (RAS). Ang-(1-7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II....../proliferative arm of the RAS consisting of ACE, Ang II and AT1 receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions...

  20. Electrochemical monitoring of intracellular enzyme activity of single living mammalian cells by using a double-mediator system

    Energy Technology Data Exchange (ETDEWEB)

    Matsumae, Yoshiharu [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Takahashi, Yasufumi [Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba, Sendai 980-8577 (Japan); Ino, Kosuke [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Shiku, Hitoshi, E-mail: shiku@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Matsue, Tomokazu, E-mail: matsue@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba, Sendai 980-8577 (Japan)

    2014-09-09

    Graphical abstract: NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells were evaluated by using the menadione–ferrocyanide double mediator system combined with scanning electrochemical microscopy (SECM). - Highlights: • NAD(P)H:quinone oxidoreductase activity of single cells were evaluated with SECM. • Fe(CN){sub 6}{sup 3−}/menadione concentrations were optimized for long-term SECM monitoring. • Menadione affect the intracellular levels of reactive oxygen species and GSH. • At 100 μM menadione, the Fe(CN){sub 6}{sup 3−} generation rate decreased rapidly within 30 min. - Abstract: We evaluated the intracellular NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells by using the menadione–ferrocyanide double-mediator system combined with scanning electrochemical microscopy (SECM). The double-mediator system was used to amplify the current response from the intracellular NQO activity and to reduce menadione-induced cell damage. The electron shuttle between the electrode and menadione was mediated by the ferrocyanide/ferricyanide redox couple. Generation of ferrocyanide was observed immediately after the addition of a lower concentration (10 μM) of menadione. The ferrocyanide generation rate was constant for 120 min. At a higher menadione concentration (100 μM), the ferrocyanide generation rate decreased within 30 min because of the cytotoxic effect of menadione. We also investigated the relationship between intracellular reactive oxygen species or glutathione levels and exposure to different menadione concentrations to determine the optimal condition for SECM with minimal invasiveness. The present study clearly demonstrates that SECM is useful for the analysis of intracellular enzymatic activities in single cells with a double-mediator system.

  1. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis

    Science.gov (United States)

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736

  2. The isolation and characterization of new C. thermocellum strains and the evaluation of multiple anaerobic digestion systems

    Science.gov (United States)

    Lv, Wen

    The overall objective of my research was to improve the efficiencies of bioconversions that produce renewable energy from lignocellulosic biomass. To this end, my studies addressed issues important to two promising strategies: consolidated bioprocessing (CBP) and anaerobic digestion (AD). CBP achieves saccharolytic enzyme production, hydrolysis, and fermentation in a single step and is considered to be the most cost-effective model. Anaerobic bacteria that can be used in CBP are highly desirable. To that end, two thermophilic and cellulolytic bacterial strains were isolated and characterized (Chapter 3). Based on 16S rRNA gene sequence analysis, both strains CS7 and CS8 are closely related to Clostridium thermocellum ATCC 27405. However, they had significantly higher specific cellulase activities and ethanol/acetate ratios than C. thermocellum ATCC 27405. As a result, CS7 and CS8 are two new highly cellulolytic and ethanologenic C. thermocellum strains, with application potentials in research and development of CBP. As some of the most promising AD processes, two temperature-phased AD (TPAD) systems, in comparison with a thermophilic single-stage AD (TSAD) system and a mesophilic two-stage AD (MTAD) system, were studied in treating high-strength dairy cattle manure. The TPAD systems, with the thermophilic digesters acidified (AT-TPAD, Chapter 4) or operated at neutral pH (NT-TPAD, Chapter 5), were optimized at the thermophilic temperature of 50°C and a volume ratio between the thermophilic and the mesophilic digesters of 1:2. Despite similar methane productions, the NT-TPAD system achieved significantly higher volatile solid (VS) removal than the AT-TPAD system and needed no external pH adjustments (Chapter 6). At the same overall OLR, the TSAD system achieved the highest performance, followed by the NT-TPAD and the MTAD systems (Chapter 7). Each digester harbored distinct yet dynamic microbial populations, some of which were significantly correlated or associated

  3. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sundarraj, Shenbagamoorthy, E-mail: sundarrajbu09@gmail.com [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Thangam, Ramar [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Department of Virology, King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, TN (India); Sujitha, Mohanan V.; Vimala, Karuppaiya [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Kannan, Soundarapandian, E-mail: skperiyaruniv@gmail.com [Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, TN (India); Department of Zoology, Periyar University, Salem 636 011, TN (India)

    2014-03-15

    Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA{sub 2}α activity, arachidonic acid release and cell proliferation were considerably reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems. - Highlights: • EGFRAb-SN developed for receptor-mediated Drug delivery system (DDS). • EGFRAb-SN-pyrrolidine-2 targeted DDS for cPLA2α inhibition in NSLC. • Study indicates EGFRAb-SN-pyrrolidine-2 as an efficient in target dug delivery carrier. • Study explains entire efficiency of EGFRAb-SN-pyrrolidine-2 in vitro and in vivo models.

  4. Effect of culturing conditions on the expression of key enzymes in the proteolytic system of Lactobacillus bulgaricus.

    Science.gov (United States)

    Hou, Jun-cai; Liu, Fei; Ren, Da-xi; Han, Wei-wei; Du, Yue-ou

    2015-04-01

    The proteolytic system of Lactobacillus bulgaricus breaks down milk proteins into peptides and amino acids, which are essential for the growth of the bacteria. The aim of this study was to determine the expressions of seven key genes in the proteolytic system under different culturing conditions (different phases, initial pH values, temperatures, and nitrogen sources) using real-time polymerase chain reaction (RT-PCR). The transcriptions of the seven genes were reduced by 30-fold on average in the stationary phase compared with the exponential growth phase. The transcriptions of the seven genes were reduced by 62.5-, 15.0-, and 59.0-fold in the strains KLDS 08006, KLDS 08007, and KLDS 08012, respectively, indicating that the expressions of the seven genes were significantly different among strains. In addition, the expressions of the seven genes were repressed in the MRS medium containing casein peptone. The effect of peptone supply on PepX transcription was the weakest compared with the other six genes, and the impact on OppD transcription was the strongest. Moreover, the expressions of the seven genes were significantly different among different strains (PLactobacillus bulgaricus at the transcription level.

  5. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  6. An integrated enzyme-linked immunosorbent assay system with an organic light-emitting diode and a charge-coupled device for fluorescence detection.

    Science.gov (United States)

    Nakajima, Hizuru; Okuma, Yukiko; Morioka, Kazuhiro; Miyake, Mayo; Hemmi, Akihide; Tobita, Tatsuya; Yahiro, Masayuki; Yokoyama, Daisuke; Adachi, Chihaya; Soh, Nobuaki; Nakano, Koji; Xue, Shuhua; Zeng, Hulie; Uchiyama, Katsumi; Imato, Toshihiko

    2011-10-01

    A fluorescence detection system for a microfluidic device using an organic light-emitting diode (OLED) as the excitation light source and a charge-coupled device (CCD) as the photo detector was developed. The OLED was fabricated on a glass plate by photolithography and a vacuum deposition technique. The OLED produced a green luminescence with a peak emission at 512 nm and a half bandwidth of 55 nm. The maximum external quantum efficiency of the OLED was 7.2%. The emission intensity of the OLED at 10 mA/cm(2) was 13 μW (1.7 mW/cm(2)). The fluorescence detection system consisted of the OLED device, two band-pass filters, a five microchannel poly(dimethylsiloxane) (PDMS) microfluidic device and a linear CCD. The fluorescence detection system was successfully used in a flow-based enzyme-linked immunosorbent assay on a PDMS microfluidic device for the rapid determination of immunoglobulin A (IgA), a marker for human stress. The detection limit (S/N=3) for IgA was 16.5 ng/mL, and the sensitivity was sufficient for evaluating stress. Compared with the conventional 96-well microtiter plate assay, the analysis time and the amounts of reagent and sample solutions could all be reduced.

  7. Development of an enzyme-linked immunosorbent assay system for detecting β'-component (Onk k 5), a major IgE-binding protein in salmon roe.

    Science.gov (United States)

    Shimizu, Yutaka; Oda, Hiroshi; Seiki, Kohsuke; Saeki, Hiroki

    2015-08-15

    A novel enzyme-linked immunosorbent assay (ELISA) system has been established for selective detection of chum salmon (Oncorhynchus keta) yolk protein (SYP). Rabbit and rat polyclonal Immunoglobulin G antibodies to β'-component (the major allergic protein in fish roe; anti-β) were applied for designing the ELISA system. The sandwich ELISA using rabbit anti-β for the capture antibody and horseradish peroxidase-labeled F(ab')2 fragment of rat anti-β for the detection antibody obtained high sensitivity and narrow specificity for SYP. Protein extraction using sodium dodecyl sulfate and 2-mercaptoethanol ensured strict specificity of the ELISA, and components of three popular processed foods had no effect on the ELISA response. The limits of determination and quantification of SYP were estimated to be 0.78 μg/g and 2.60 μg/g of food sample, respectively. In conclusion, the developed ELISA system has a probability to be applied for the detection of contaminated chum salmon roe in processed food.

  8. [Evaluation of the API ZYM system and RPMI agar plates supplemented with Tween 40 for detection of lipolytic enzymes of Candida spp].

    Science.gov (United States)

    Ciok-Pater, Emilia; Wróblewska, Joanna; Białucha, Agata; Gospodarek, Eugenia

    2011-01-01

    Lipolytic activity of 40 strains of Candida spp. was tested on API ZYM system and on RPMI agar plates supplemented with 1% Tween 40. Lipolytic activity was indicated by opaque zones around the inoculum cylindrical holes were punched in the medium. Clearing of the medium around the bacterial colonies indicated that an isolate produce lipase. Only 4 (21.1%) strains of C. albicans, and 3 (14.1%) strains of non-C. albicans which hydrolyzed 2-naftylomirystylan by use of the API ZYM system was observed. In contrast, 16 (78.9%) strains of C. albicans and 17 (80.7%) strains of non-C. albicans produced lipases on the agar plate using RPMI agar plates supplemented with 1.0% Tween 40. Determination oflipase activities with the API ZYM system were in no agreement with lipase tests in RPMI supplemented with Tween 40. Our study verify greater usefulness of RPMI supplemented with Tween 40 for detection of lipolytic enzymes of Candida species in comparison to the API ZYM.

  9. Detection of bisphenol A in food packaging based on fluorescent conjugated polymer PPESO3 and enzyme system.

    Science.gov (United States)

    Huang, Hui; Li, Yongxin; Liu, Jintong; Tong, Jin; Su, Xingguang

    2015-10-15

    Bisphenol A (BPA) is a kind of carcinogen, which can interfere with the body's endocrine system. In this paper, a new kind of fluorescent sensor for BPA detection was established based on the fluorescent conjugated polymer PPESO3. The oxidative product of BPA is able to quench PPESO3 in the presence of HRP and H2O2, and the quenched PL intensity of PPESO3 was proportionally to the concentration of BPA in the range of 1-100 μmol/L with a detection limit of 4 × 10(-7) mol/L. The proposed method has been applied to detect BPA in eight food packaging samples with satisfactory results. The proposed method has the potential for the assay of BPA in food or food packaging samples.

  10. The use of multiscale molecular simulations in understanding a relationship between the structure and function of biological systems of the brain: the application to monoamine oxidase enzymes

    Directory of Open Access Journals (Sweden)

    Robert Vianello

    2016-07-01

    Full Text Available Aging society and therewith associated neurodegenerative and neuropsychiatric diseases, including depression, Alzheimer’s disease, obsessive disorders, and Parkinson’s disease, urgently require novel drug candidates. Targets include monoamine oxidases A and B (MAOs, acetylcholinesterase (AChE and butyrylcholinesterase (BChE, and various receptors and transporters. For rational drug design it is particularly important to combine experimental synthetic, kinetic, toxicological and pharmacological information with structural and computational work. This paper describes the application of various modern computational biochemistry methods in order to improve the understanding of a relationship between the structure and function of large biological systems including ion channels, transporters, receptors and metabolic enzymes. The methods covered stem from classical molecular dynamics simulations to understand the physical basis and the time evolution of the structures, to combined QM and QM/MM approaches to probe the chemical mechanisms of enzymatic activities and their inhibition. As an illustrative example, the later will focus on the monoamine oxidase family of enzymes, which catalyze the degradation of amine neurotransmitters in various parts of the brain, the imbalance of which is associated with the development and progression of a range of neurodegenerative disorders. Inhibitors that act mainly on MAO A are used in the treatment of depression, due to their ability to raise serotonin concentrations, while MAO B inhibitors decrease dopamine degradation and improve motor control in patients with Parkinson disease. Our results give strong support that both MAO isoforms, A and B, operate through the hydride transfer mechanism. Relevance of MAO catalyzed reactions and MAO inhibition in the context of neurodegeneration will be discussed.

  11. Inhibitive effect of cremophor RH40 or tween 80-based self-microemulsiflying drug delivery system on cytochrome P450 3A enzymes in murine hepatocytes.

    Science.gov (United States)

    Rao, Zichao; Si, Luqin; Guan, Yanbin; Pan, Hongping; Qiu, Jun; Li, Gao

    2010-10-01

    This study examined the effect of self-microemulsiflying drug delivery system (SMEDDS) containing Cremophor RH40 or Tween 80 at various dilutions on cytochrome P450 3A (CYP3A) enzymes in rat hepatocytes, with midazolam serving as a CYP3A substrate. The particle size and zeta potential of microemulsions were evaluated upon dilution with aqueous medium. In vitro release was detected by a dialysis method in reverse. The effects of SMEDDS at different dilutions and surfactants at different concentrations on the metabolism of MDZ were investigated in murine hepatocytes. The cytotoxicity of SMEDDS at different dilutions was measured by LDH release and MTT technique. The effects of SMEDDS on the CYP3A enzymes activity were determined by Western blotting. Our results showed that dilution had less effect on the particle size and zeta potential in the range from 1:25 to 1:500. The MDZ was completely released in 10 h. A significant decrease in the formation of 1'-OH-MDZ in rat hepatocytes was observed after treatment with both SMEDDS at dilutions ranging from 1:50 to 1:250 and Cremophor RH 40 or Tween 80 at concentrations ranging from 0.1% to 1% (w/v), with no cytotoxicity observed. A significant decrease in CYP3A protein expression was observed in cells by Western blotting in the presence of either Cremophor RH40 or Tween 80-based SMEDDS at the dilutions ranging from 1:50 to 1:250. This study suggested that the excipient inhibitor-based formulation is a potential protective platform for decreasing metabolism of sensitive drugs that are CYP3A substrates.

  12. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory.

  13. Expression and enzyme activity determination of human cyclooxygenase-1 and -2 in a baculovirus-insect cell system

    Institute of Scientific and Technical Information of China (English)

    Wei-yu ZHANG; Xin-ning YANG; Dao-zhong JIN; Xing-zu ZHU

    2004-01-01

    AIM: To develop an in vitro intact cell-based assay for screening selective cyclooxygenase inhibitors. METHODS:Human cyclooxygenase-1 (hCOX-1) and cyclooxygenase-2 (hCOX-2) genes were cloned from human monocyte cell line THP-1 cells and expressed in Spodopterafrugiperda (sf9) insect cell line by Bac-to-Bac baculovirus expression systems. Infected sr9 cells were harvested 24 h post-infection (hpi), and distributed to a 24-well plate,preincubated with various nonsteroidal anti-inflammatory drugs, and challenged with 10 mmol/L arachidonic acid;the cyclooxygenase activity was assessed indirectly by prostaglandin E2-specific radioimmunoassay. RESULTS:Polymerase chain reaction detection demonstrated that hCOX-1 and hCOX-2 were transposed to the bacmid.Western blot analysis showed that infected sf9 cells could express hCOX-1 and hCOX-2 proteins. Radioimmunoassay demonstrated that both recombinant proteins functioned well in sf9 cells. CONCLUSION: Human cyclooxygenase-1 and cyclooxygenase-2 were successfully expressed in sf9 insect cell line. It can be utilized for the identification of potent and selective inhibitors of hCOX- 1 and/or hCOX-2.

  14. Use of remazol blue dyed avicel for the determination of cellulolytic activity in basidiomycetes Uso de Avicel colorida com Remazol Blue para determinação da atividade celulolítica em Basidiomycetos

    OpenAIRE

    Marcos José Correia; José Antônio de Sousa Pereira Junior; Jefferson Cunha dos Santos; Maria Auxiliadora de Queiroz Cavalcanti

    1998-01-01

    A modified method for direct determination of cellulolytic activity using Avicel colored with Remazol Brilliant Blue R (RBBR) in Agar test tubes is discussed. Refinements were introduced in a simple method for quantitation of cellulase activity, based on the release of dye from Avicel-RBBR medium by the enzymatic hydrolysis. Modifications in Avicel-dye preparation were enhanced and a spectrophotometer for direct OD measurement in agar test tubes used. The use of a spectrophotometer improved t...

  15. Does cypermethrin affect enzyme activity, respiration rate and walking behavior of the maize weevil (Sitophilus zeamais)?

    Institute of Scientific and Technical Information of China (English)

    Ronnie Von Santos Veloso; Eliseu José G.Pereira; Raul Narciso C.Guedes; Maria Goreti A.Oliveira

    2013-01-01

    Insecticides cause a range of sub-lethal effects on targeted insects,which are frequently detrimental to them.However,targeted insects are able to cope with insecticides within sub-lethal ranges,which vary with their susceptibility.Here we assessed the response of three strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera:Curculionidae) to sub-lethal exposure to the pyrethoid insecticide cypermethrin.We expected enzyme induction associated with cypermethrin resistance since it would aid the resistant insects in surviving such exposure.Lower respiration rate and lower activity were also expected in insecticide-resistant insects since these traits are also likely to favor survivorship under insecticide exposure.Curiously though,cypermethrin did not affect activity of digestive and energy metabolism enzymes,and even reduced the activity of some enzymes (particularly for cellulase and cysteine-proteinase activity in this case).There was strain variation in response,which may be (partially) related to insecticide resistance in some strains.Sub-lethal exposure to cypermethrin depressed proteolytic and mainly cellulolytic activity in the exposed insects,which is likely to impair their fitness.However,such exposure did not affect respiration rate and walking behavior of the insects (except for the susceptible strain where walking activity was reduced).Walking activity varies with strain and may minimize insecticide exposure,which should be a concern,particularly if associated with (physiological) insecticide resistance.

  16. Does cypermethrin affect enzyme activity, respiration rate and walking behavior of the maize weevil (Sitophilus zeamais)?

    Science.gov (United States)

    Von Santos Veloso, Ronnie; Pereira, Eliseu José G; Guedes, Raul Narciso C; Oliveira, Maria Goreti A

    2013-06-01

    Insecticides cause a range of sub-lethal effects on targeted insects, which are frequently detrimental to them. However, targeted insects are able to cope with insecticides within sub-lethal ranges, which vary with their susceptibility. Here we assessed the response of three strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) to sub-lethal exposure to the pyrethoid insecticide cypermethrin. We expected enzyme induction associated with cypermethrin resistance since it would aid the resistant insects in surviving such exposure. Lower respiration rate and lower activity were also expected in insecticide-resistant insects since these traits are also likely to favor survivorship under insecticide exposure. Curiously though, cypermethrin did not affect activity of digestive and energy metabolism enzymes, and even reduced the activity of some enzymes (particularly for cellulase and cysteine-proteinase activity in this case). There was strain variation in response, which may be (partially) related to insecticide resistance in some strains. Sub-lethal exposure to cypermethrin depressed proteolytic and mainly cellulolytic activity in the exposed insects, which is likely to impair their fitness. However, such exposure did not affect respiration rate and walking behavior of the insects (except for the susceptible strain where walking activity was reduced). Walking activity varies with strain and may minimize insecticide exposure, which should be a concern, particularly if associated with (physiological) insecticide resistance.

  17. Water-soluble fluorescent conjugated polymer-enzyme hybrid system for the determination of both hydroquinone and hydrogen peroxide.

    Science.gov (United States)

    Huang, Hui; Xu, Min; Gao, Yuan; Wang, Guannan; Su, Xingguang

    2011-10-30

    In this paper, a sensitive and simple detecting system was developed for quantitative analysis of both hydroquinone (H(2)Q) and hydrogen peroxide (H(2)O(2)), based on the successful combination of horse radish peroxidase (HRP) and water-soluble conjugate fluorescence polymers PPESO(3). In the presence of HRP and H(2)O(2), H(2)Q could be oxidized to 1,4-benzoquinone (BQ), an intermediate, which plays the main role in the enhanced quenching of the photoluminescence (PL) intensity of PPESO(3). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of H(2)Q and H(2)O(2) in the range of 1.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.996) and 6.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.999), respectively. The detection limit for H(2)Q and H(2)O(2) was 5.0 × 10(-7)mol/L and 1.0 × 10(-6)mol/L, respectively. The present fluorescence quenching method was successfully applied for the determination of H(2)Q in the lake water, rainwater, tap-water and chemical plant wastewater samples. Compared with previous reports, the fluorescence quenching approach described in this work is simple and rapid with high sensitivity, which has a potential application for detecting various analytes which can be translated into quinone.

  18. Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system.

    Science.gov (United States)

    Wan, Leo C K; Mao, Daniel Y L; Neculai, Dante; Strecker, Jonathan; Chiovitti, David; Kurinov, Igor; Poda, Gennadiy; Thevakumaran, Neroshan; Yuan, Fang; Szilard, Rachel K; Lissina, Elena; Nislow, Corey; Caudy, Amy A; Durocher, Daniel; Sicheri, Frank

    2013-07-01

    The universally conserved Kae1/Qri7/YgjD and Sua5/YrdC protein families have been implicated in growth, telomere homeostasis, transcription and the N6-threonylcarbamoylation (t(6)A) of tRNA, an essential modification required for translational fidelity by the ribosome. In bacteria, YgjD orthologues operate in concert with the bacterial-specific proteins YeaZ and YjeE, whereas in archaeal and eukaryotic systems, Kae1 operates as part of a larger macromolecular assembly called KEOPS with Bud32, Cgi121, Gon7 and Pcc1 subunits. Qri7 orthologues function in the mitochondria and may represent the most primitive member of the Kae1/Qri7/YgjD protein family. In accordance with previous findings, we confirm that Qri7 complements Kae1 function and uncover that Qri7 complements the function of all KEOPS subunits in growth, t(6)A biosynthesis and, to a partial degree, telomere maintenance. These observations suggest that Kae1 provides a core essential function that other subunits within KEOPS have evolved to support. Consistent with this inference, Qri7 alone is sufficient for t(6)A biosynthesis with Sua5 in vitro. In addition, the 2.9 Å crystal structure of Qri7 reveals a simple homodimer arrangement that is supplanted by the heterodimerization of YgjD with YeaZ in bacteria and heterodimerization of Kae1 with Pcc1 in KEOPS. The partial complementation of telomere maintenance by Qri7 hints that KEOPS has evolved novel functions in higher organisms.

  19. Kathepsine C : Een allosterisch enzyme

    NARCIS (Netherlands)

    Gorter, Jeannette

    1969-01-01

    In chapter I an introduction into allosteric systems is given. In chapter II is a detailed method is described for the applica of Gly-Phe--p. nitroanilide (GPNA) as a substrate for the activity assay of the lysosomal enzyme cathepsin C. It is an allosteric which is activated by Cl-, Br-, 1-, CNS-, N

  20. Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.

    Science.gov (United States)

    Du, L; Lykkesfeldt, J; Olsen, C E; Halkier, B A

    1995-01-01

    An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 microM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides. Images Fig. 1 Fig. 2 Fig. 4 PMID:8618930

  1. A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement.

    Directory of Open Access Journals (Sweden)

    Bai Xue

    artificial bone substitute and controlled-release system for delivery of lysostaphin to treat bone defects and infections.

  2. Conductometric transducers for enzyme-based biosensors.

    Science.gov (United States)

    Mikkelsen, S R; Rechnitz, G A

    1989-08-01

    The use of alternating current conductometric transducers in biosensing devices has been investigated for urea and D-amino acid sensors using the enzyme systems urease and D-amino acid oxidase/catalase. Transducers with copper and platinum electrodes were constructed and characterized, and two enzyme immobilization methods were tested. Detection limits of 1 x 10(-6)M and linear ranges of 2 orders of magnitude were routinely achieved for these model sensors with enzymes covalently immobilized on collagen films.

  3. Sub-toxic Ethanol Exposure Modulates Gene Expression and Enzyme Activity of Antioxidant Systems to Provide Neuroprotection in Hippocampal HT22 Cells

    Science.gov (United States)

    Casañas-Sánchez, Verónica; Pérez, José A.; Quinto-Alemany, David; Díaz, Mario

    2016-01-01

    Ethanol is known to cause severe systemic damage often explained as secondary to oxidative stress. Brain is particularly vulnerable to ethanol-induced reactive oxygen species (ROS) because the high amounts of lipids, and because nerve cell membranes contain high amounts of peroxidable fatty acids. Usually these effects of ethanol are associated to high and/or chronic exposure to ethanol. However, as we show in this manuscript, a low and acute dose of ethanol trigger a completely different response in hippocampal cells. Thus, we have observed that 0.1% ethanol exposure to HT22 cells, a murine hippocampal-derived cell line, increases the transcriptional expression of different genes belonging to the classical, glutathione/glutaredoxin and thioredoxin/peroxiredoxin antioxidant systems, these including Sod1, Sod2, Gpx1, Gclc, and Txnrd1. Paralleling these changes, enzyme activities of total superoxide dismutase (tSOD), catalase, total glutathione peroxidase (tGPx), glutathione-S-reductase (GSR), and total thioredoxin reductase (tTXNRD), were all increased, while the generation of thiobarbituric acid reactive substances (TBARS), as indicators of lipid peroxidation, and glutathione levels remained unaltered. Ethanol exposure did not affect cell viability or cell growing as assessed by real-time cell culture monitoring, indicating that low ethanol doses are not deleterious for hippocampal cells, but rather prevented glutamate-induced excitotoxicity. In summary, we conclude that sub-toxic exposure to ethanol may well be neuroprotective against oxidative insults in hippocampal cells. PMID:27512374

  4. Improvement in enzyme activity and stability by addition of low molecular weight polyethylene glycol to sodium bis(2-ethyl-L-hexyl)sulfosuccinate/isooctane reverse micellar system.

    Science.gov (United States)

    Talukder, M M R; Takeyama, T; Hayashi, Y; Wu, J C; Kawanishi, T; Shimizu, N; Ogino, C

    2003-08-01

    The activity and stability of Chromobacterium viscosum lipase (glycerolester hydrolase, EC 3.1.1.3)-catalyzed olive oil hydrolysis in sodium bis (2-ethyl-l-hexyl)sulfosuccinate (AOT)/isooctane reverse micelles is increased appreciably when low molecular weight polyethylene glycol (PEG 400) is added to the reverse micelles. To understand the effect of PEG 400 on the phase behavior of the reverse micellar system, the phase diagram of AOT/ PEG 400/water/isooctane system was studied. The influences of relevant parameters on the catalytic activity in AOT/PEG 400 reverse micelles were investigated and compared with the results in the simple AOT reverse micelles. In the presence of PEG 400, the linear decreasing trend of the lipase activity with AOT concentration, which is observed in the simple AOT reverse micelles, disappeared. Enzyme entrapped in AOT/PEG reverse micelles was very stable, retaining >75% of its initial activity after 60 d, whereas the half-life in simple AOT reverse micelles was 38 d. The kinetics parameter maximum velocity (Vmax) exhibiting the temperature dependence and the activation energy obtained by Arrhenius plot was suppressed significantly by the addition of PEG 400.

  5. Purification of pectinase from mango (Mangifera indica L. cv. Chokanan) waste using an aqueous organic phase system: a potential low cost source of the enzyme.

    Science.gov (United States)

    Amid, Mehrnoush; Abdul Manap, Mohd Yazid; Mustafa, Shuhaimi

    2013-07-15

    As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%.

  6. Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System : Stereospecificity of Proton Transfer in the Phosphorylation of Enzyme I from (Z)-Phosphoenolbutyrate

    NARCIS (Netherlands)

    Hoving, H; Nowak, Thomas; Robillard, George T.

    1983-01-01

    The stereochemistry of the proton transfer in the reaction of phosphoenolbutyrate with enzyme I has been established. During the reaction of the pure Z isomer of this analogue of phosphoenolpyruvate with enzyme I, to yield phosphoenzyme I and 2-oxobutyrate, the substrate is protonated at C-3 from th

  7. Enzyme kinetics of conjugating enzymes: PAPS sulfotransferase.

    Science.gov (United States)

    James, Margaret O

    2014-01-01

    The sulfotransferase (SULT) enzymes catalyze the formation of sulfate esters or sulfamates from substrates that contain hydroxy or amine groups, utilizing 3'-phosphoadenosyl-5'-phosphosulfate (PAPS) as the donor of the sulfonic group. The rate of product formation depends on the concentrations of PAPS and substrate as well as the sulfotransferase enzyme; thus, if PAPS is held constant while varying substrate concentration (or vice versa), the kinetic constants derived are apparent constants. When studied over a narrow range of substrate concentrations, classic Michaelis-Menten kinetics can be observed with many SULT enzymes and most substrates. Some SULT enzymes exhibit positive or negative cooperativity during conversion of substrate to product, and the kinetics fit the Hill plot. A characteristic feature of most sulfotransferase-catalyzed reactions is that, when studied over a wide range of substrate concentrations, the rate of product formation initially increases as substrate concentration increases, then decreases at high substrate concentrations, i.e., they exhibit substrate inhibition or partial substrate inhibition. This chapter gives an introduction to sulfotransferases, including a historical note, the nomenclature, a description of the function of SULTs with different types of substrates, presentation of examples of enzyme kinetics with SULTs, and a discussion of what is known about mechanisms of substrate inhibition in the sulfotransferases.

  8. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings.

    Science.gov (United States)

    Zeng, Jun; Aigner, Achim; Czubayko, Frank; Kissel, Thomas; Wendorff, Joachim H; Greiner, Andreas

    2005-01-01

    Protein-loaded (bovine serum albumin (BSA) or luciferase) poly(vinyl alcohol) (PVA) nanofibers were obtained by electrospinning. Poly(p-xylylene) (PPX, also coined as parylene) coated PVA/BSA nanofibers were prepared by chemical vapor deposition (CVD). The release of BSA from PVA nanofibers under physiological conditions was monitored by absorption spectroscopy. Burst release of BSA was noted with uncoated PVA nanofibers. In contrast, PPX-coated nanofibers exhibited a significantly retarded release of BSA depending on the coating thickness of PPX (ranging from 40 to 300 nm). Luciferase was used here as model enzyme, which after electrospinning retained its enzyme activity. This preservation of enzyme activity and the continuous release of the intact enzyme from the immersed fibers meets a fundamental prerequisite for the application of enzymes or other sensitive agents released from electrospun nanofibers under physiological conditions.

  9. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    methods. Protein engineering targets to improve cellulases include reducing enzyme inhibition, improving inter-enzyme synergy, and increasing enzyme thermotolerance. Ameliorating enzyme inhibition could improve catalytic activity and thus the speed of conversion from biomass to fermentable sugars. Improved enzyme synergy could reduce the enzyme loading required to achieve equivalent biomass conversion. Finally, thermostable enzymes could enable more biomass to be processed at a time, due to high temperatures decreasing the viscosity of biomass slurries. A high-temperature enzyme saccharification reaction could also decrease the risk of contamination in the resulting concentrated sugar solution. Throughout my PhD, I have explored research projects broadly across all of these topics, with the most success in addressing the issue of enzyme inhibition. Cellulase enzyme Cel7A is the most abundant cellulase employed by natural systems for cellulose hydrolysis. Cellobiohydrolase enzymes like Cel7A break down cellulose into cellobiose (two glucose molecules). Unfortunately, upon cleavage, this product molecule interferes with continued hydrolysis activity of Cel7A; the strong binding of cellobiose in the active site can obstruct the enzyme from processing down the cellulase chain. This phenomenon, known as product inhibition, is a bottleneck to efficient biomass breakdown. Using insights from computational protein modeling studies, I experimentally generated and tested mutant Cel7A enzymes for improved tolerance to cellobiose. Indeed, this strategy yielded Cel7A enzymes exhibiting reduced product inhibition, including some mutants completely impervious to cellobiose. The improvements in tolerance to cellobiose, however, resulted in an overall reduction of enzyme activity for the mutants tested. Nevertheless, my findings substantiated computational reports with experimental evidence and pinpointed an amino acid residue in the Cel7A product binding site that is of interest for

  10. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim......The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  11. An improved system for the surface immobilisation of proteins on Bacillus thuringiensis vegetative cells and spores through a new spore cortex-lytic enzyme anchor.

    Science.gov (United States)

    Shao, Xiaohu; Ni, Hong; Lu, Ting; Jiang, Mengtian; Li, Hua; Huang, Xinfeng; Li, Lin

    2012-02-15

    An improved surface-immobilisation system was engineered to target heterologous proteins onto vegetative cells and spores of Bacillus thuringiensis plasmid-free recipient strain BMB171. The sporulation-dependent spore cortex-lytic enzyme from B. thuringiensis YBT-1520, SceA, was expressed in vegetative cells and used as the surface anchoring motif. Green fluorescent protein (GFP) and a Bacillus endo-β-1,3-1,4-glucanase (BglS) were used as the fusion partners to test the binding efficiency and the functional activities of immobilised surface proteins. The surface localisation of the SceA-GFP fusion protein on vegetative cells and spores was confirmed by Western blot, immunofluorescence microscopy and flow cytometry. The GFP fluorescence intensity from both vegetative cells and spores was measured and compared to a previously characterised surface display system using a peptidoglycan hydrolase anchor (Mbg). Results demonstrated comparable efficiency of SceA- and Mbg-mediated immobilisation on vegetative cells but a more efficient immobilisation on spores using the SceA anchor, suggesting SceA has greater potential for spore-based applications. The SceA protein was then applied to target BglS onto vegetative cells and spores, and the surface immobilisation was verified by the substantial whole-cell enzymatic activity and enhanced whole-spore enzymatic activity compared to vegetative cells. A dually active B. thuringiensis vegetative cell and spore display system could prove especially valuable for the development of regenerable and heat-stable biocatalysts that function under adverse environmental conditions, for example, an effective feed additive for improved digestion and nutrient absorption by livestock.

  12. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  13. Unhairing with enzymes

    OpenAIRE

    Crispim, A.; Mota, M.

    2003-01-01

    The use of enzymes in the leather industry is increasing and their application is being widened to include operations such as de-greasing, unhairing and other wet-end operations. Enzymes can also be used to assist with recycling leather wastes as well as to avoid pollution. The present work is devoted to illustrate the potential application of enzymes in unhairing without hair destruction. Enzymatic unhairing is based upon the weakening of the epidermis basal layer to which the hair is at...

  14. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto;

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3...

  15. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  16. A toy quantum analog of enzymes

    CERN Document Server

    Svetlichny, George

    2015-01-01

    We present a quantum system incorporating qualitative aspects of enzyme action in which the possibility of quantum superposition of several conformations of the enzyme-substrate complex is investigated. We present numerical results showing quantum effects that transcend the case of a statistical mixture of conformations.

  17. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    Directory of Open Access Journals (Sweden)

    Margret E Berg Miller

    Full Text Available BACKGROUND: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. METHODOLOGY/PRINCIPAL FINDINGS: The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb, and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs, polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs. Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315 exhibited the highest levels of up-regulation. CONCLUSIONS/SIGNIFICANCE: The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional

  18. Microbial amylolytic enzymes.

    Science.gov (United States)

    Vihinen, M; Mäntsälä, P

    1989-01-01

    Starch-degrading, amylolytic enzymes are widely distributed among microbes. Several activities are required to hydrolyze starch to its glucose units. These enzymes include alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, pullulan-degrading enzymes, exoacting enzymes yielding alpha-type endproducts, and cyclodextrin glycosyltransferase. Properties of these enzymes vary and are somewhat linked to the environmental circumstances of the producing organisms. Features of the enzymes, their action patterns, physicochemical properties, occurrence, genetics, and results obtained from cloning of the genes are described. Among all the amylolytic enzymes, the genetics of alpha-amylase in Bacillus subtilis are best known. Alpha-Amylase production in B. subtilis is regulated by several genetic elements, many of which have synergistic effects. Genes encoding enzymes from all the amylolytic enzyme groups dealt with here have been cloned, and the sequences have been found to contain some highly conserved regions thought to be essential for their action and/or structure. Glucoamylase appears usually in several forms, which seem to be the results of a variety of mechanisms, including heterogeneous glycosylation, limited proteolysis, multiple modes of mRNA splicing, and the presence of several structural genes.

  19. Adenylate-forming enzymes

    Science.gov (United States)

    Schmelz, Stefan; Naismith, James H.

    2012-01-01

    Thioesters, amides and esters are common chemical building blocks in a wide array of natural products. The formation of these bonds can be catalyzed in a variety of ways. For chemists, the use of an activating group is a common strategy and adenylate enzymes are exemplars of this approach. Adenylating enzymes activate the otherwise unreactive carboxylic acid by transforming the normal hydroxyl leaving group into adenosine monophosphate. Recently there have been a number of studies of such enzymes and in this review we suggest a new classification scheme. The review highlights the diversity in enzyme fold, active site architecture and metal coordination that has evolved to catalyze this particular reaction. PMID:19836944

  20. Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti.

    Science.gov (United States)

    Goodwin, Reed A; Gage, Daniel J

    2014-05-01

    In Sinorhizobium meliloti, catabolite repression is influenced by a noncanonical nitrogen-type phosphotransferase system (PTS(Ntr)). In this PTS(Ntr), the protein HPr is phosphorylated on histidine-22 by the enzyme EI(Ntr) and the flux of phosphate through this residue onto downstream proteins leads to an increase in succinate-mediated catabolite repression (SMCR). In order to explore the molecular determinants of HPr phosphorylation by EI(Ntr), both proteins were purified and the activity of EI(Ntr) was measured. Experimentally determined kinetic parameters of EI(Ntr) activity were significantly slower than those determined for the carbohydrate-type EI in Escherichia coli. Enzymatic assays showed that glutamine, a signal of nitrogen availability in many Gram-negative bacteria, strongly inhibits EI(Ntr). Binding experiments using the isolated GAF domain of EI(Ntr) (EIGAF) showed that it is the domain responsible for detection of glutamine. EI(Ntr) activity was not affected by α-ketoglutarate, and no binding between the EIGAF and α-ketoglutarate could be detected. These data suggest that in S. melilloti, EI(Ntr) phosphorylation of HPr is regulated by signals from both carbon metabolism (phosphoenolpyruvate) and nitrogen metabolism (glutamine).

  1. Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production.

    Science.gov (United States)

    Pinedo, Catalina Arango; Bringhurst, Ryan M; Gage, Daniel J

    2008-04-01

    Sinorhizobium meliloti is a member of the Alphaproteobacteria that fixes nitrogen when it is in a symbiotic relationship. Genes for an incomplete phosphotransferase system (PTS) have been found in the genome of S. meliloti. The genes present code for Hpr and ManX (an EIIA(Man)-type enzyme). HPr and EIIA regulate carbon utilization in other bacteria. hpr and manX in-frame deletion mutants exhibited altered carbon metabolism and other phenotypes. Loss of HPr resulted in partial relief of succinate-mediated catabolite repression, extreme sensitivity to cobalt limitation, rapid die-off during stationary phase, and altered succinoglycan production. Loss of ManX decreased expression of melA-agp and lac, the operons needed for utilization of alpha- and beta-galactosides, slowed growth on diverse carbon sources, and enhanced accumulation of high-molecular-weight succinoglycan. A strain with both hpr and manX deletions exhibited phenotypes similar to those of the strain with a single hpr deletion. Despite these strong phenotypes, deletion mutants exhibited wild-type nodulation and nitrogen fixation when they were inoculated onto Medicago sativa. The results show that HPr and ManX (EIIA(Man)) are involved in more than carbon regulation in S. meliloti and suggest that the phenotypes observed occur due to activity of HPr or one of its phosphorylated forms.

  2. The ameliorating effects of vitamin E on hepatic antioxidant system and xenobiotic-metabolizing enzymes in fenvalerate-exposed iodine-deficient rats.

    Science.gov (United States)

    Kocer-Gumusel, Belma; Erkekoglu, Pinar; Caglayan, Aydan; Hincal, Filiz

    2016-01-01

    This study investigated the effects of vitamin E (VE) on hepatic antioxidant system and drug-metabolizing enzymes in fenvalerate (FEN)-exposed iodine-deficient (ID) Wistar rats. ID was produced by perchlorate containing drinking water. VE was introduced by a loading dose of 100 mg/kg/d, i.g. for the first three days in the last week of feeding period; then with a single maintenance dose of 40 mg/kg on the 4th day. During last week, FEN groups (F) received 100 mg/kg/d, i.p. FEN. VE alone did not significantly affect thyroid hormones and antioxidant parameters; however, significantly increased total cytochrome P450 (38%) and cytochrome b5 levels (36%). In all ID groups, plasma thyroid-stimulating hormone (TSH) levels increased markedly, but remained at control level in vitamin E plus FEN receiving iodine-deficient group (IDVF) group. Glutathione peroxidase activity showed marked increases in F (19%) and FEN-exposed iodine-deficient group (IDF, 48%) groups. FEN treatment significantly increased total cytochrome P450 (28%) and thiobarbituric acid reactive substance levels (36%), as well as 7-ethoxyresorufin O-deethylase (120%), 7-penthoxyresorufin O-deethylase (139%) and glutathione S-transferase (15%) activities and decreased total glutathione concentrations (28%) versus control. Overall results suggest that vitamin E has ameliorating effects on the measured parameters in ID and/or FEN exposure.

  3. Association of DD Genotype of Insertion/Deletion Polymorphism of Angiotensin-Converting Enzyme Gene with Systemic Lupus Erythematosus and Lupus Nephropathy

    Directory of Open Access Journals (Sweden)

    Saeedeh Salimi

    2013-10-01

    Full Text Available Background: Systemic lupus erythematosus (SLE is a multisystem disease with unknown etiology. We hypothesized that insertion/deletion (I/D polymorphism of angiotensin-converting enzyme (ACE gene may influence the development and/or progression of SLE and lupus nephritis. Materials and Methods: In a crass sectional case-control study, genomic DNA from 106 SLE patients and 103 healthy controls matched for sex, age, and ethnicity, were genotyped for the (I/D polymorphism of ACE gene by polymerase chain reaction (PCR. Comparison of quantitative variants between two groups was assessed by student t-test and association between qualitative variables was analyzed by the chi-square or Fisher exact tests. Results: The frequency of DD genotype in SLE patients was significantly higher than control group (25.5 % vs. 14 %, and the risk of SLE was 2.2 times greater in subjects with DD genotype than the individual by DI and II genotypes (OR, 2.2 [95% CI, 1.1 to 4.4]; p=0.023. The distribution of D allele in SLE patients was significantly higher (p=0.021 compare to controls (47 and 36.4, respectively. The Risk of nephropathy in SLE patients with DD genotype was three times more than other genotypes (OR, 3 [95% CI, 1.1 to 8]; p=0.027].Conclusion: This study demonstrated that ACE DD genotype acts as a risk factor on SLE and Lupus nephropathy in an Iranian population.

  4. In Vitro Regulation of Enzymes of the Renin-angiotensin-aldosterone System by Isoquercitrin, Phloridzin and their Long Chain Fatty Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Khushwant S. Bhullar

    2014-05-01

    Full Text Available Background: Hypertension is a crucial risk factor for development of cardiovascular and neurological diseases. Flavonoids exhibit a wide range of biological effects and have had increased interest as a dietary approach for the prevention or possible treatment of hypertension. However, continuous efforts have been made to structurally modify natural flavonoids with the hope of improving their biological activities. One of the methods used for the possible enhancement of flavonoid efficacy is enzymatic esterification of flavonoids with fatty acids. Objective: The current study is designed to investigate the antihypertensive activity of isoquercitrin (quercetin-3-O-glucoside, Q3G and phloridzin (PZ in comparison to their twelve long chain fatty acid derivatives via enzymatic inhibition of renin angiotensin aldosterone system (RAAS enzymes. Methods: The novel flavonoid esters were synthesized by the acylation of isoquercitrin and phloridzin with long chain unsaturated and saturated fatty acids (C18–C22. These acylated products were then tested for their in vitro angiotensin converting enzyme (ACE, renin and aldosterone synthase activities. Results: The linoleic and α-linolenic acid esters of PZ were the strongest (IC50 69.9-70.9 µM while Q3G and PZ (IC50 >200 µM were the weakest renin inhibitors in vitro (p≤0.05. The eicosapentaenoic acid ester of PZ (IC50 16.0 µM was the strongest inhibitor of ACE, while PZ (IC50 124.0 µM was the weakest inhibitor (p≤0.05 among all tested compounds. However, all investigated compounds had low (5.0-11.9% or no effect on aldosterone synthase inhibition (p≤0.05. The parent compound Q3G and the eicosapentaenoic acid ester of PZ emerged as the strongest ACE inhibitors. Conclusions: The structural modification of Q3G and PZ significantly improved their antihypertensive activities. The potential use of PZ derivatives as natural health products to treat hypertension needs to be further evaluated

  5. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  6. Complete detoxification of short chain chlorinated aliphatic compounds: Isolation of halorespiring organisms and biochemical studies of the dehalogenating enzyme systems. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Tiedje, J.M.

    1998-06-01

    'Widespread use and careless handling, storage and disposal practices, have lead to the dissemination of chlorinated short chain aliphatics into groundwater systems. These compounds are toxic and the presence of chlorinated ethenes and chlorinated propanes in the environment is of public concern. Halorespiration is a newly recognized anaerobic process by which certain bacteria use chlorinated compounds as terminal electron acceptors in their energy metabolism. In contrast to co-metabolic dechlorination, which is fortuitous, slow, and without benefit to the organisms, halorespiration, characterized by high dechlorination rates, is a specific metabolic process beneficial to the organism. The goals are to isolate and characterize organisms which use chlorinated ethenes (including tetrachloroethene [PCE], trichloroethene [TCE], cis-dichloroethene [cis-DCE], and vinyl chloride [VC], or 1,2-dichloropropane [1,2-D]) as electron acceptors in their energy metabolism. Better understanding of the physiology and phylogeny of the halorespiring organisms as well as the biochemistry of the dehalogenating enzyme systems, will greatly enhance the authors knowledge of how these organisms can successfully be employed in the bioremediation of contaminated sites. This report summarizes the results of 1.5 years of a 2-year project. Anaerobic microcosms were established using a variety of geographically distinct sediments. In several microcosms complete dechlorination of PCE to ethene (ETH), and 1,2-D to propene was observed. Upon subsequent transfers to anaerobic medium, four sediment-free, methanogenic enrichment cultures were obtained that dechlorinated PCE to ETH, and two cultures that dechlorinated 1,2-D to propene. 2-Bromoethanesulfonate (BES), a well known inhibitor of methanogens, did not inhibit the dechlorination of 1,2-D to propene or the dechlorination of PCE to cis-DCE. However, the complete dechlorination of PCE to VC and ETH was severely inhibited. They could also

  7. Effect of fat feeding on pro-oxidant and anti-oxidant enzyme systems in rat intestine: possible role in the turnover of enterocytes.

    Science.gov (United States)

    Turan, Aasma; Gill, Ravinder; Dudeja, Pradeep K; Mohan, Harsh; Mahmood, Akhtar

    2009-06-01

    Immature epithelial cells generated in the crypt base undergo differentiation while progressing to the villus tip, where the cells upon apoptosis are detached from the underlying muscular tissue. We previously reported that lipid peroxidation might be involved in the turnover of enterocytes across the crypt-villus axis in rat intestine (Dig Dis Sci 52:1840-1844, 2007). To examine whether long-term feeding of fat with different fatty-acid composition influences this process, in the present study we investigated the effect of feeding fish oil (n - 3) and corn oil (n - 6) polyunsaturated fatty acids on lipid per-oxidation and anti-oxidant systems in different epithelial cell fractions isolated in rat intestine. Feeding fish oil or corn oil markedly enhanced lipid per-oxidation levels of enterocytes throughout villus height compared with control, but there was no difference in the distribution profile of pro- and anti-oxidant enzyme systems and lipid per-oxidation across the crypt-villus axis under these conditions. Analysis of lipid peroxidation levels in different cell fractions revealed that the thiobarbituric acid reactive substance were 9- to 11-fold higher at the villus tip compared with at the crypt base. The activities of glutathione reductase and glutathione-S-transferase were 2- to 5-fold higher in villus tip compared to the crypt region. However, the activities of superoxide dismutase and catalase were 6- to 8-fold high at the crypt base compared with at villus tip cells. Immunocytolocalization of superoxide dismutase showed high staining in crypt base compared with that in villus, tip cells. These findings further suggest that generation of reactive oxygen species in enterocytes across the crypt-villus axis may be involved in turnover of enterocytes across the crypt-villus unit in rat intestine.

  8. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  9. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Bergstrom Gary C

    2011-02-01

    Full Text Available Abstract Background The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of T. reesei enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides. Results Large-scale screening identified a range of hydrolytic activities among 348 unique isolates representing 156 species of plant pathogenic and non-pathogenic fungi. Hierarchical clustering was used to identify groups of species with similar hydrolytic profiles. Among moderately and highly active species, plant pathogenic species were found to be more active than non-pathogens on six of eight substrates tested, with no significant difference seen on the other two substrates. Among the pathogenic fungi, greater hydrolysis was seen when they were tested on biomass and hemicellulose derived from their host plants (commelinoid monocot or dicot. Although T. reesei has a hydrolytic profile that is highly active on cellulose and pretreated biomass, it was less active than some natural isolates of fungi when tested on xylans and untreated biomass. Conclusions Several highly active isolates of plant pathogenic fungi were identified, particularly when tested on xylans and untreated biomass. There were statistically significant preferences for biomass type reflecting the monocot or dicot host preference of the

  10. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  11. Engineering cytochrome p450 enzymes.

    Science.gov (United States)

    Gillam, Elizabeth M J

    2008-01-01

    The last 20 years have seen the widespread and routine application of methods in molecular biology such as molecular cloning, recombinant protein expression, and the polymerase chain reaction. This has had implications not only for the study of toxicological mechanisms but also for the exploitation of enzymes involved in xenobiotic clearance. The engineering of P450s has been performed with several purposes. The first and most fundamental has been to enable successful recombinant expression in host systems such as bacteria. This in turn has led to efforts to solubilize the proteins as a prerequisite to crystallization and structure determination. Lagging behind has been the engineering of enzyme activity, hampered in part by our still-meager comprehension of fundamental structure-function relationships in P450s. However, the emerging technique of directed evolution holds promise in delivering both engineered enzymes for use in biocatalysis and incidental improvements in our understanding of sequence-structure and sequence-function relationships, provided that data mining can extract the fundamental correlations underpinning the data. From the very first studies on recombinant P450s, efforts were directed toward constructing fusions between P450s and redox partners in the hope of generating more efficient enzymes. While this aim has been allowed to lie fallow for some time, this area merits further investigation as does the development of surface-displayed P450 systems for biocatalytic and biosensor applications. The final application of engineered P450s will require other aspects of their biology to be addressed, such as tolerance to heat, solvents, and high substrate and product concentrations. The most important application of these enzymes in toxicology in the near future is likely to be the biocatalytic generation of drug metabolites for the pharmaceutical industry. Further tailoring will be necessary for specific toxicological applications, such as in

  12. Peptide-modified surfaces for enzyme immobilization.

    Directory of Open Access Journals (Sweden)

    Jinglin Fu

    Full Text Available BACKGROUND: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity. METHODOLOGY/PRINCIPAL FINDINGS: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation. CONCLUSIONS/SIGNIFICANCE: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

  13. Cotton cellulose: enzyme adsorption and enzymic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Cattaneo, M.

    1982-01-01

    The adsorption of a crude cellulase complex from Trichoderma viride on variously pretreated cotton cellulose samples was studied in the framework of the Langmuir approach at 2-8 degrees. The saturation amount of adsorbed enzyme was related to the susceptibility of the substrates to hydrolysis. In every case the adsorption process was faster by 2-3 orders of magnitude than the hydrolysis step to give end products. For ZnCl/sub 2/-treated cotton cellulose the Langmuir parameters correlated fairly well with the value of the Michaelis constant, measured for its enzymic hydrolysis, and the adsorptive complex was indistinguishable from the complex of the Michaelis-Menten model for the hydrolysis.

  14. Enzyme stereospecificity as a powerful tool in searching for new enzymes.

    Science.gov (United States)

    Skarydová, Lucie; Skarka, Adam; Solich, Petr; Wsól, Vladimír

    2010-07-01

    Chirality is a ubiquitous feature present in all biological systems that plays a very important role in many processes. Drug metabolism is one of these and is the subject of this review. Chiral drugs can be metabolized without changes in their chiral characteristics, but also their biotransformation may give rise to a new chiral center. On the other hand, prochiral drugs are always metabolized to chiral metabolites. The ratio of formed enantiomers/diastereoisomers is the constant known as enzyme stereospecificity, and this is as important a characteristic for each enzyme-substrate pair as is the Michaelis constant. Drugs are often substrates for multiple biotransformation enzymes, and all enzymes involved may metabolize a chiral or prochiral drug with different stereospecificity so that variant enantiomer ratios are achieved. Enzyme stereospecificity of whole cell fraction is the sum of the stereospecificities of all enzymes participating in metabolism of a substrate. Differing stereospecificities in the metabolism of a drug between whole cell fraction and enzymes point to the contribution of other enzymes. Using several drugs as examples, this review shows that enzyme stereospecificity can serve as a powerful tool in searching for new biotransformation enzymes. Although it is not often used in this way, it is clear that this is possible. There are today drugs with well-known chiral metabolism, but, inasmuch as many xenobiotics are poorly characterized in terms of chiral metabolism, enzyme stereospecificity could be widely utilized in researching such substances.

  15. The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity.

    Science.gov (United States)

    Hoskisson, Paul A; Sumby, Paul; Smith, Margaret C M

    2015-03-01

    The phage growth limitation system of Streptomyces coelicolor A3(2) is an unusual bacteriophage defence mechanism. Progeny ϕC31 phage from an initial infection are thought to be modified such that subsequent infections are attenuated in a Pgl(+) host but normal in a Pgl(-) strain. Earlier work identified four genes required for phage resistance by Pgl. Here we demonstrate that Pgl is an elaborate and novel phage restriction system that, in part, comprises a toxin/antitoxin system where PglX, a DNA methyltransferase is toxic in the absence of a functional PglZ. In addition, the ATPase activity of PglY and a protein kinase activity in PglW are shown to be essential for phage resistance by Pgl. We conclude that on infection of a Pgl(+) cell by bacteriophage ϕC31, PglW transduces a signal, probably via phosphorylation, to other Pgl proteins resulting in the activation of the DNA methyltransferase, PglX and this leads to phage restriction.

  16. Identification of Antarctic culturable bacteria able to produce diverse enzymes of potential biotechnological interest

    Institute of Scientific and Technical Information of China (English)

    Ignacio Ferrés; Vanesa Amarelle; Francisco Noya; Elena Fabiano

    2015-01-01

    It is estimated that more than three quarters of the Earth’s biosphere is in perennially cold environments. Despite the extreme environmental conditions of desiccation and freezing, microbes can colonize these habitats through the adaptation of metabolic functions and the synthesis of structurally adapted enzymes. Enzymes within psychrophilic microbes exhibit high specific activity at low and moderate temperature, with low thermostability. In this study we used a classic microbiological approach to isolate Antarctic bacteria with cellulolytic, lipolytic, and ligninolytic activities. From 15 different environmental samples, we generated a collection of approximately 800 bacterial isolates that could grow on R2A or Marine medium at 4°C. This collection was then screened for the presence of the three types of activity at 4°C. We found that 47.7% of the isolates displayed lipolytic activity, 10.2% had cellulase/xylanase activity, and 7.7% showed guaiacol oxidase activity. Of these, 10% displayed two different types of activity, while 0.25% displayed all three types of activity. Our results indicate that cold environments represent outstanding resources for bioprospecting and the study of enzymatic adaptation.

  17. The effect of a dietary carbohydrase enzyme system on blood glucose levels when combined with foods of varying glycemic index in male Sprague-Dawley rats.

    Science.gov (United States)

    Anderson, Mark L

    2012-01-01

    Extensive research has shown that physical performance and recovery can be improved by maintaining or enhancing glucose availability. Carbogen(®) (Triarco Industries, Wayne, NJ, USA), a patented dietary fungal carbohydrase enzyme system, converts complex carbohydrates and fiber into simpler carbohydrates when ingested. Supplementing the enzymatic digestion of complex carbohydrates and fiber that may be digested very slowly or not at all in vivo may increase the availability of glucose. This may be reflected by increased absorption rates and higher measurable levels of whole blood glucose (WBG) that may be bioavailable for extended energy production. These preliminary investigations evaluate the ability of Carbogen to produce a rapid and more sustained increase in WBG levels when combined with a variety of food substrates commonly used by athletes and non-athletes to increase levels of physical activity. To investigate this, food substrates having a low, moderate, or high glycemic index (GI) with various amounts of total carbohydrates and dietary fiber were used. The individually tested substrates include soy nuts, cooked pasta, meal replacement bars, a nutrition shake, and a carbohydrate sports supplement. The investigations presented here consist of seven separate preclinical rat feasibility studies conducted over a period of approximately 12 months. The collective results presented here identify specific attributes of a category of food substrates common to sports nutrition enthusiasts that may significantly increase WBG levels over an extended time when dosed with Carbogen. Specifically, using Carbogen with a food substrate having a low or moderate GI and containing dietary fiber may increase the rate of glucose absorption and maintain significant increases in WBG levels.

  18. Tryptophan catabolizing enzymes – party of three

    Directory of Open Access Journals (Sweden)

    Helen J Ball

    2014-10-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO and tryptophan 2,3-dioxygenase (TDO are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway. The depletion of tryptophan and formation of kynurenine pathway metabolites modulates the activity of the mammalian immune, reproductive and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties and biological functions. This review analyses the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.

  19. Dual enzyme-responsive "turn-on" fluorescence sensing systems based on in situ formation of 7-hydroxy-2-iminocoumarin scaffolds.

    Science.gov (United States)

    Debieu, Sylvain; Romieu, Anthony

    2015-11-01

    A new strategy for the simultaneous fluorogenic detection of two distinct enzyme activities namely hydrolase (amidase or esterase) and reductase is described. This innovative biosensing method is based on the powerful "covalent-assembly" principle that involves in situ synthesis of a fluorophore from a non-fluorescent caged precursor and through domino reactions triggered by the two analytes of interest. To establish this approach, penicillin G acylase (PGA) (or pig liver esterase (PLE)) and nitroreductase (NTR) were chosen as model enzymes, and original bis-O-protected 2,4-dihydroxycinnamonitrile derivatives acting as dual-reactive probes readily convertible to highly fluorescent 7-hydroxy-2-iminocoumarin scaffolds upon reacting with the two selected enzymes were synthesised. The two phenolic groups available within the core structure of these probes play a pivotal role in generating iminocoumarin scaffold through an intramolecular cyclisation reaction (hydroxyl group in C-2 position) and in enhancing its push-pull character (hydroxyl group in C-4 position). Their orthogonal and temporary protection with two different enzyme-labile masking groups is the cornerstone in the design of this novel class of fluorogenic "turn-on" probes. Their evaluation using fluorescence-based in vitro assays and HPLC-fluorescence/-MS analyses have enabled us both to demonstrate the claimed activation mechanism (in particular the specific order in which the two enzymes react with the probe) and to highlight the potential utility of these advanced chemical tools in multi-analyte sensing applications.

  20. Enzyme molecules as nanomotors.

    Science.gov (United States)

    Sengupta, Samudra; Dey, Krishna K; Muddana, Hari S; Tabouillot, Tristan; Ibele, Michael E; Butler, Peter J; Sen, Ayusman

    2013-01-30

    Using fluorescence correlation spectroscopy, we show that the diffusive movements of catalase enzyme molecules increase in the presence of the substrate, hydrogen peroxide, in a concentration-dependent manner. Employing a microfluidic device to generate a substrate concentration gradient, we show that both catalase and urease enzyme molecules spread toward areas of higher substrate concentration, a form of chemotaxis at the molecular scale. Using glucose oxidase and glucose to generate a hydrogen peroxide gradient, we induce the migration of catalase toward glucose oxidase, thereby showing that chemically interconnected enzymes can be drawn together.

  1. A novel aqueous two phase system composed of a thermo-separating polymer and an organic solvent for purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel.

    Science.gov (United States)

    Amid, Mehrnoush; Manap, Yazid; Zohdi, Nor Khanani

    2014-05-22

    The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel for the first time was investigated using a novel aqueous two-phase system (ATPS) consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO) copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR), pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w) EOPO 2500 and 15% (w/w) 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w) at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.

  2. A Novel Aqueous Two Phase System Composed of a Thermo-Separating Polymer and an Organic Solvent for Purification of Thermo-Acidic Amylase Enzyme from Red Pitaya (Hylocereus polyrhizus Peel

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-05-01

    Full Text Available The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus peel for the first time was investigated using a novel aqueous two-phase system (ATPS consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR, pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w EOPO 2500 and 15% (w/w 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.

  3. Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures.

    Science.gov (United States)

    Mori, Toshio; Kamei, Ichiro; Hirai, Hirofumi; Kondo, Ryuichiro

    2014-01-01

    To obtain cellulases that are capable of degrading crystalline cellulose and cedar wood, metagenomic libraries were constructed from raw soil sample which was covered to pile of cedar wood sawdust or from its enrichment cultures. The efficiency of screening of metagenomic library was improved more than 3 times by repeating enrichment cultivation using crystalline cellulose as a carbon source, compared with the library constructed from raw soil. Four cellulase genes were obtained from the metagenomic libraries that were constructed from the total genome extracted from an enrichment culture that used crystalline cellulose as a carbon source. A cellulase gene and a xylanase gene were obtained from the enrichment culture that used unbleached kraft pulp as a carbon source. The culture supernatants of Escherichia coli expressing three clones that were derived from the enrichment culture that used crystalline cellulose showed activity against crystalline cellulose. In addition, these three enzyme solutions generated a reducing sugar from cedar wood powder. From these results, the construction of a metagenomic library from cultures that were repetition enriched using crystalline cellulose demonstrated that this technique is a powerful tool for obtaining cellulases that have activity toward crystalline cellulose.

  4. Evaluation of milk enzymes and electrolytes, plasma metabolites, and oxidative status in twin cows milked in an automatic milking system or twice daily in a conventional milking parlor.

    Science.gov (United States)

    Abeni, F; Terzano, M G; Speroni, M; Migliorati, L; Capelletti, M; Calza, F; Bianchi, L; Pirlo, G

    2008-09-01

    The aim of this paper was to evaluate the effects of automatic milking (AM) on milk enzymes and minerals related to mammary epithelial integrity in comparison with twice-daily conventional milking (CM). One cow from each of 6 pairs of twins was assigned to be milked with AM or with CM throughout first lactation. Milk production was recorded and milk samples were collected at 4, 11, 18, 25, 32, and 39 wk of lactation (WOL) to determine fat and protein content, somatic cell count, pH, plasminogen (pl) and plasmin (Pl) activities, Na, K, and Cl. Body condition score was monitored; blood samples were collected to determine energy-related metabolites in the first third of lactation (14 WOL), and plasma oxidative status throughout lactation. Overall mean and standard deviation of milking frequency (MF) in AM were 2.69 and 0.88, respectively. Milk production, fat and protein contents, and somatic cell count did not differ between milking systems. The pl and pl+Pl activities were lesser in AM than in CM. Milk pH was greater in AM than in CM. Milk Na, K, Na/K ratio, and Cl did not differ across the whole lactation. Milk pH had a positive correlation with milk Pl activity (r = 0.41), Na (r = 0.37), and Cl (r = 0.40) concentration, and negative correlation with the log(10) of pl/Pl ratio (r = -0.47). The milk Na/K ratio had a positive correlation (r = 0.55) with milk Pl activity. Milking system (MS) did not seem to affect mammary epithelial permeability. The differences in enzymatic (proteolytic) activity due to the MS, probably related to daily MF, lead one to suppose that the quality of the protein fraction for the cheese-making process was preserved better with AM than with CM, even if differences in pH might negatively interfere. No difference was detected in BCS, and in plasma concentration of triglycerides and nonesterified fatty acids, whereas plasma cholesterol concentration during the first 10 WOL was lesser in AM than CM. Oxidative status, measured by plasma

  5. Enzymes involved in triglyceride hydrolysis.

    Science.gov (United States)

    Taskinen, M R; Kuusi, T

    1987-08-01

    The lipolytic enzymes LPL and HL play important roles in the metabolism of lipoproteins and participate in lipoprotein interconversions. LPL was originally recognized to be the key enzyme in the hydrolysis of chylomicrons and triglyceride, but it also turned out to be one determinant of HDL concentration in plasma. When LPL activity is high, chylomicrons and VLDL are rapidly removed from circulation and a concomitant rise of the HDL2 occurs. In contrast, low LPL activity impedes the removal of triglyceride-rich particles, resulting in the elevation of serum triglycerides and a decrease of HDL (HDL2). Concordant changes of this kind in LPL and HDL2 are induced by many physiological and pathological perturbations. Finally, the operation of LPL is also essential for the conversion of VLDL to LDL. This apparently clear-cut role of LPL in lipoprotein interconversions is contrasted with the enigmatic actions of HL. The enzyme was originally thought to participate in the catalyses of chylomicron and VLDL remnants generated in the LPL reaction. However, substantial in vitro and in vivo data indicate that HL is a key enzyme in the degradation of plasma HDL (HDL2) in a manner which opposes LPL. A scheme is presented for the complementary actions of the two enzymes in plasma HDL metabolism. In addition, recent studies have attributed a role to HL in the catabolism of triglyceride-rich lipoproteins, particularly those containing apo E. However, this function becomes clinically important only under conditions where the capacity of the LPL-mediated removal system is exceeded. Such a situation may arise when the input of triglyceride-rich particles (chylomicrons and/or VLDL) is excessive or LPL activity is decreased or absent.

  6. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.J.; Brand, J.C.

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  7. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  8. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  9. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates.

    Science.gov (United States)

    Peciulyte, Ausra; Anasontzis, George E; Karlström, Katarina; Larsson, Per Tomas; Olsson, Lisbeth

    2014-11-01

    The industrial production of cellulolytic enzymes is dominated by the filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina). In order to develop optimal enzymatic cocktail, it is of importance to understand the natural regulation of the enzyme profile as response to the growth substrate. The influence of the complexity of cellulose on enzyme production by the microorganisms is not understood. In the present study we attempted to understand how different physical and structural properties of cellulose-rich substrates affected the levels and profiles of extracellular enzymes produced by T. reesei. Enzyme production by T. reesei Rut C-30 was studied in submerged cultures on five different cellulose-rich substrates, namely, commercial cellulose Avicel® and industrial-like cellulosic pulp substrates which consist mainly of cellulose, but also contain residual hemicellulose and lignin. In order to evaluate the hydrolysis of the substrates by the fungal enzymes, the spatial polymer distributions were characterised by cross-polarisation magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS (13)C-NMR) in combination with spectral fitting. Proteins in culture supernatants at early and late stages of enzyme production were labeled by Tandem Mass Tags (TMT) and protein profiles were analysed by liquid chromatography-tandem mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD001304. In total 124 proteins were identified and quantified in the culture supernatants, including cellulases, hemicellulases, other glycoside hydrolases, lignin-degrading enzymes, auxiliary activity 9 (AA9) family (formerly GH61), supporting activities of proteins and enzymes acting on cellulose, proteases, intracellular proteins and several hypothetical proteins. Surprisingly, substantial differences in the enzyme profiles were found even though there were minor differences in the chemical composition between the cellulose-rich substrates.

  10. RNA-modifying enzymes.

    Science.gov (United States)

    Ferré-D'Amaré, Adrian R

    2003-02-01

    A bewildering number of post-transcriptional modifications are introduced into cellular RNAs by enzymes that are often conserved among archaea, bacteria and eukaryotes. The modifications range from those with well-understood functions, such as tRNA aminoacylation, to widespread but more mysterious ones, such as pseudouridylation. Recent structure determinations have included two types of RNA nucleobase modifying enzyme: pseudouridine synthases and tRNA guanine transglycosylases.

  11. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...... to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF...... coating is not yet available commercially. The technology is mainly limited by the instability of substrate supply, whether the substrates are found in the surrounding seawater or in the coating itself. Legislative issues regarding which part(s) of an enzyme system should be regarded as biocidal...

  12. Chaos in an enzyme reaction.

    Science.gov (United States)

    Olsen, L F; Degn, H

    1977-05-12

    Dynamic systems are usually thought to have either monotonic or periodic behaviour. Although the possibility of other types of behaviour has been recognised for many years, the existence of non-monotonic, non-periodic behaviour in dynamic systems has been firmly established only recently. It is termed chaotic behaviour. A review on the rapidly expanding literature on chaos in discrete model systems described by difference equations has been published by May. Rössler, on the other hand, has discussed a few published works on systems of differential equations with chaotic solutions, and he has proposed a three-component chemical model system which he argues has chaotic solutions [figure see text]. The argument is based on a theorem by Li and Yorke. Here we report the finding of chaotic behaviour as an experimental result in an enzyme system (peroxidase). Like Rössler we base our identification of chaos on the theorem by Li and Yorke.

  13. Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production.

    Directory of Open Access Journals (Sweden)

    Hui Wei

    Full Text Available Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory, 3 β-D-glucosidases (2 of them secretory and 243 other glycoside hydrolase (GH proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one β-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose and cellobiose, confirming the enzymatic activities of endoglucanases and β-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP strain by introducing a CBH (e.g. CBHI into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation.

  14. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    Science.gov (United States)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  15. The use of enzyme-linked immunosorbent assay systems for the serology and antigen detection in parvovirus, coronavirus and rotavirus infections in dogs in The Netherlands.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. Groen (Jan); H.F. Egberink (Herman); G.H.A. Borst (Gerrit); F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1991-01-01

    textabstractComplex trapping blocking (CTB) enzyme-linked immunosorbent assays (ELISAs) and indirect ELISAs for the detection of antibodies to canine parvovirus (CPV), canine coronavirus (CCV) and rotavirus in sera of dogs were established. Double antibody sandwich ELISAs for the detection of CPV-,

  16. Degradation of granular starch by the bacterium Microbacterium aurum B8.A involves a novel modular α-amylase enzyme system with FNIII and CBM25 domains

    NARCIS (Netherlands)

    Valk, Vincent; Eeuwema, Wieger; Sarian, Fean D; van der Kaaij, Rachel M; Dijkhuizen, Lubbert

    2015-01-01

    The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant waste water facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multi-domain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1417 amino

  17. Finding homes for orphan enzymes

    Directory of Open Access Journals (Sweden)

    Frank M. Raushel

    2016-12-01

    Full Text Available The rate at which new genes are being sequenced greatly exceeds our ability to correctly annotate the functional properties of the corresponding proteins. Annotations based primarily on sequence identity to experimentally characterized proteins are often misleading because closely related sequences may have different functions, while highly divergent sequences may have identical functions. Our understanding of the principles that dictate the catalytic properties of enzymes, based on protein sequence alone, is often insufficient to correctly annotate proteins of unknown function. To address these problems, we are working to develop a comprehensive strategy for the functional annotation of newly sequenced genes using a combination of structural biology, bioinformatics, computational biology, and molecular enzymology. The power of this multidisciplinary approach for discovering new reactions catalyzed by uncharacterized enzymes has been tested using the amidohydrolase superfamily as a model system.

  18. Photolithographically patterned enzyme membranes for the detection of pesticides and copper(II) based on enzyme inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Zuern, A. (Inst. fuer Analytik und Umweltchemie, Univ. Halle, FB Chemie, Merseburg (Germany)); Mueller, H. (Inst. fuer Analytik und Umweltchemie, Univ. Halle, FB Chemie, Merseburg (Germany))

    A non-aqueous and an aqueous photopolymer system with an enzyme are used to prepare photolithographically patterned enzyme membranes for amperometric (thinfilm platinum electrode) and potentiometric (ISFET) sensors based on enzyme inhibition. Flow methods for enzyme inhibition tests are described. The decrease in enzyme (AChE) activity after incubation in a solution of dichlorvos as inhibitor is detected amperometrically. The enzyme urease is immobilized onto the pH-sensitive gate area of an ISFET. Such a biosensor is able to detect copper(II) in water in the ppm-range without preconcentration. (orig.)

  19. Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5'-Phosphate Production in E. coli.

    Directory of Open Access Journals (Sweden)

    Matthew A Oberhardt

    2016-01-01

    Full Text Available Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous 'replacer' gene rescues lethality caused by inactivation of a 'target' gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13. We then validate three novel predicted target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG for an essential enzyme (pdxB in production of pyridoxal 5'-phosphate (the active form of Vitamin B6, which we validate experimentally via multicopy suppression. We perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.

  20. Dipeptidyl peptidase IV (CD26 activity in the hematopoietic system: differences between the membrane-anchored and the released enzyme activity

    Directory of Open Access Journals (Sweden)

    D.A. Pereira

    2003-05-01

    Full Text Available Dipeptidyl peptidase IV (DPP-IV; CD26 (EC 3.4.14.5 is a membrane-anchored ectoenzyme with N-terminal exopeptidase activity that preferentially cleaves X-Pro-dipeptides. It can also be spontaneously released to act in the extracellular environment or associated with the extracellular matrix. Many hematopoietic cytokines and chemokines contain DPP-IV-susceptible N-terminal sequences. We monitored DPP-IV expression and activity in murine bone marrow and liver stroma cells which sustain hematopoiesis, myeloid precursors, skin fibroblasts, and myoblasts. RT-PCR analysis showed that all these cells produced mRNA for DPP-IV. Partially purified protein reacted with a commercial antibody to CD26. The K M values for Gly-Pro-p-nitroanilide ranged from 0.43 to 0.98 mM for the membrane-associated enzyme of connective tissue stromas, and from 6.76 to 8.86 mM for the enzyme released from the membrane, corresponding to a ten-fold difference, but only a two-fold difference in K M was found in myoblasts. K M of the released soluble enzyme decreased in the presence of glycosaminoglycans, nonsulfated polysaccharide polymers (0.8-10 µg/ml or simple sugars (320-350 µg/ml. Purified membrane lipid rafts contained nearly 3/4 of the total cell enzyme activity, whose K M was three-fold decreased as compared to the total cell membrane pool, indicating that, in the hematopoietic environment, DPP-IV activity is essentially located in the lipid rafts. This is compatible with membrane-associated events and direct cell-cell interactions, whilst the long-range activity depending upon soluble enzyme is less probable in view of the low affinity of this form.

  1. Accessory enzymes from Aspergillus involved in xylan and pectin degradation

    NARCIS (Netherlands)

    Vries, de R.P.

    1999-01-01

    The xylanolytic and pectinolytic enzyme systems from Aspergillus have been the subject of study for many years. Although the main chain cleaving enzymes and their encoding genes have been studied in detail, little information is available about most of the accessory enzymes and their corresponding g

  2. Enhanced cellulose degradation by nano-complexed enzymes: Synergism between a scaffold-linked exoglucanase and a free endoglucanase.

    Science.gov (United States)

    Moraïs, Sarah; Heyman, Arnon; Barak, Yoav; Caspi, Jonathan; Wilson, David B; Lamed, Raphael; Shoseyov, Oded; Bayer, Edward A

    2010-06-01

    Protein molecular scaffolds are attracting interest as natural candidates for the presentation of enzymes and acceleration of catalytic reactions. We have previously reported evidence that the stable protein 1 (SP1) from Populustremula can be employed as a molecular scaffold for the presentation of either catalytic or structural binding (cellulosomal cohesin) modules. In the present work, we have displayed a potent exoglucanase (Cel6B) from the aerobic cellulolytic bacterium, Thermobifida fusca, on a cohesin-bearing SP1 scaffold. For this purpose, a chimaeric form of the enzyme, fused to a cellulosomal dockerin module, was prepared. Full incorporation of 12 dockerin-bearing exoglucanase molecules onto the cohesin-bearing scaffold was achieved. Cellulase activity was tested on two cellulosic substrates with different levels of crystallinity, and the activity of the scaffold-linked exoglucanase was significantly reduced, compared to the free dockerin-containing enzyme. However, addition of relatively low concentrations of a free wild-type endoglucanase (T. fusca Cel5A) that bears a cellulose-binding module, in combination with the complexed exoglucanase resulted in a marked rise in activity on both cellulosic substrates. The endoglucanase cleaves internal sites of the cellulose chains, and the new chain ends of the substrate were now readily accessible to the scaffold-borne exoglucanase, thereby resulting in highly effective, synergistic degradation of cellulosic substrates.

  3. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    Energy Technology Data Exchange (ETDEWEB)

    Khadempour, Lily [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Zoology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA; Burnum-Johnson, Kristin E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Nicora, Carrie D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Webb-Robertson, Bobbie-Jo M. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; White, Richard A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Huang, Eric L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Currie, Cameron R. [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA

    2016-10-26

    Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles were significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.

  4. CADEE: Computer-Aided Directed Evolution of Enzymes

    Science.gov (United States)

    Amrein, Beat Anton; Steffen-Munsberg, Fabian; Szeler, Ireneusz; Purg, Miha; Kamerlin, Shina Caroline Lynn

    2017-01-01

    The tremendous interest in enzymes as biocatalysts has led to extensive work in enzyme engineering, as well as associated methodology development. Here, a new framework for computer-aided directed evolution of enzymes (CADEE) is presented which allows a drastic reduction in the time necessary to prepare and analyze in silico semi-automated directed evolution of enzymes. A pedagogical example of the application of CADEE to a real biological system is also presented in order to illustrate the CADEE workflow. PMID:28250941

  5. Red cell enzymes.

    Science.gov (United States)

    Paniker, N V

    1975-03-01

    As compared to other cells of the body, the mammalian red cell has one of the simplest structural organizations. As a result, this cell has been extensively used in studies involving the structure, function, and integrity of cell membranes as well as cytoplasmic events. Additionally, the metabolic activities of the red blood cell are also relatively simple. During the past quarter century or so, an ocean of knowledge has been gathered on various aspects of red cell metabolism and function. The fields of enzymes, hemoglobin, membrane, and metabolic products comprise the major portion of this knowledge. These advances have made valuable contributions to biochemistry and medicine. Despite these favorable aspects of this simple, anucleated cell, it must be conceded that our knowledge about the red cell is far from complete. We are still in the dark concerning the mechanism involved in several aspects of its membrane, hemoglobin, enzymes, and a large number of other constituents. For example, a large number of enzymes with known catalytic activity but with unknown function have eluded investigators despite active pursuit. This review will be a consolidation of our present knowledge of human red cell enzymes, with particular reference to their usefulness in the diagnosis and therapy of disease. Owing to the multitude of publications by prominent investigators on each of the approximately 50 enzymes discussed in this review, it was impossible to cite a majority of them.

  6. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  7. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  8. Random-walk enzymes.

    Science.gov (United States)

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  9. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  10. Entropy and Enzyme Catalysis.

    Science.gov (United States)

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  11. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical...

  12. Chemomodulatory action of Foeniculum vulgare (Fennel) on skin and forestomach papillomagenesis, enzymes associated with xenobiotic metabolism and antioxidant status in murine model system.

    Science.gov (United States)

    Singh, B; Kale, R K

    2008-12-01

    The chemopreventive effect of different doses of test diet of Foeniculum vulgare Mill (Fennel) seeds was examined on DMBA-induced skin and B(a)P-induced forestomach papillomagenesis in Swiss albino mice. To the best of our knowledge, this is the first report of Fennel seeds exhibiting a significant reduction in the skin and the forestomach tumor incidence and tumor multiplicity as compared to the control group. Further, biochemical assays showed a significant increase in the content/activities of phase I enzymes especially in the case of 6% test diet. A concomitant increase in the activities of the phase II enzymes were observed with all the doses of test diet under study. A significant enhancement in the activities of antioxidant enzymes were observed especially at 4% and 6% test diets of Fennel. Glyoxalase I activity and the content of reduced glutathione were significantly elevated. Expectedly, the levels of peroxidative damage along with lactate dehydrogenase activity, exhibited a significant reduction at all three doses of test diets. These findings were indicative of chemopreventive potential of Fennel against carcinogenesis.

  13. Effect of TYLCV Infection on Leaf Anatomical Structure and Protective Enzyme System of Tomato%TYLCV侵染对番茄叶片解剖结构和保护酶系统的影响

    Institute of Scientific and Technical Information of China (English)

    张永平; 张辉; 朱龙英; 朱为民

    2009-01-01

    [Objective] The aim was to study the effect of tomato yellow leaf curl virus (TYLCV) infection on leaf anatomical structure and protective enzyme system of tomato. [Method] The anatomical structure of infected and healthy leaves of tomato were observed and compared by using paraffin section method. The activity changes of SOD, POD and CAT in the infected leaves of tomato were determined. [Result] The results revealed that there were some differences in anatomical structure between healthy and infected leaves. Some cells of infected leaves were damaged so that the leaves curled and became yellow, which affected the normal function of organs. Compared with control, enzyme activities in the tomato plants infected by TYLCV were enhanced at the early periods and higher than that in control, then started to decline at the middle and late periods but lower than that in control. [Conclusion] After infection by TYLCV, the leaf anatomical structure of tomato was changed greatly and the protective enzyme system was damaged severely, and affected the normal physiological metabolic functions of tissues and organs in tomato in further.

  14. Induction of furano-terpene production and formation of the enzyme system from mevalonate to isopentenyl pyrophosphate in sweet potato root tissue injured by Ceratocystis fimbriata and by toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Oba, K.; Tatematsu, H.; Yamashita, K.; Uritani, I.

    1976-07-01

    When sweet potato (Ipomoea batatas) root tissue was infected by Ceratocystis fimbriata, activity of the enzyme system from mevalonate to isopentenyl pyrophosphate, especially of pyrophosphomevalonate decarboxylase (EC 4.1.1.33), was increased in the noninfected tissue adjacent to the infected region, preceding the furano-terpene production in the infected region. Cutting and incubation of sweet potato slices did not produce furano-terpenes, and only slightly increased the activity of the enzyme system from mevalonate to isopentenyl pyrophosphate. The enzymic activity in diseased tissue was localized in the soluble fraction, and was higher in the tissue from the surface to a depth of about 5 mm with gradual decrease toward the inner part. Mercuric chloride (0.1%, w/v) and sodium dodecyl sulfate (1.0%, w/v) were utilized as model inducers of furano-terpenes and pyrophosphomevalonate decarboxylase. The mercuric chloride- or sodium dodecyl sulfate-induced response was inhibited by administration of cycloheximide to the discs together with the inducer immediately after disc preparation. When cycloheximide or blasticidin S was applied together with the inducer, to the discs 9 hours or more after disc preparation, the induction was not inhibited but rather stimulated.

  15. Transition state theory can be used in studies of enzyme catalysis: lessons from simulations of tunnelling and dynamical effects in lipoxygenase and other systems.

    Science.gov (United States)

    Olsson, Mats H M; Mavri, Janez; Warshel, Arieh

    2006-08-29

    The idea that enzyme catalysis involves special factors such as coherent fluctuations, quantum mechanical tunnelling and non-equilibrium solvation (NES) effects has gained popularity in recent years. It has also been suggested that transition state theory (TST) cannot be used in studies of enzyme catalysis. The present work uses reliable state of the art simulation approaches to examine the above ideas. We start by demonstrating that we are able to simulate any of the present catalytic proposals using the empirical valence bond (EVB) potential energy surfaces, the dispersed polaron model and the quantized classical path (QCP) approach, as well as the approximate vibronic method. These approaches do not treat the catalytic effects by phenomenological treatments and thus can be considered as first principles approaches (at least their ability to compare enzymatic reaction to the corresponding solution reactions). This work will consider the lipoxygenase reaction, and to lesser extent other enzymes, for specific demonstration. It will be pointed out that our study of the lipoxygenase reaction reproduces the very large observed isotope effect and the observed rate constant while obtaining no catalytic contribution from nuclear quantum mechanical (NQM) effects. Furthermore, it will be clarified that our studies established that the NQM effect decreases rather than increases when the donor-acceptor distance is compressed. The consequences of these findings in terms of the temperature dependence of the kinetic isotope effect and in terms of different catalytic proposals will be discussed. This paper will also consider briefly the dynamical effects and conclude that such effects do not contribute in a significant way to enzyme catalysis. Furthermore, it will be pointed out that, in contrast to recent suggestions, NES effects are not dynamical effects and should therefore be part of the activation free energy rather than the transmission factor. In view of findings of the

  16. Complete detoxification of short chain chlorinated aliphatics: Isolation of halorespiring organisms and biochemical studies of the dehalogenating enzyme systems. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, F.E.; Tiedje, J.M.

    1997-01-01

    'The objectives of the research within this grant are: (1) Isolation and characterization of chlororespiring organisms responsible for the complete dehalogenation of chlorinated ethenes and propanes. (2) Development of conditions that yield high cell densities and induce dechlorinating activity. (3) Development of assay systems to detect the dechlorinating activity in cell-free extracts. (4) Purification and characterization of the dehalogenating enzymes. Anaerobic microcosms were obtained from a variety of geographically different sediment samples. In several microcosms complete dechlorination of tetrachloroethene (PCE) to ethene (ETH), and 1,2-dichloropropane ( 1,2-D) and/or 1,2,3-trichloropropane to propene was observed. Upon subsequent transfers to anaerobic medium, sediment-free, methanogenic enrichment cultures were obtained that dechlorinated PCE to ETH, and 1,2-D to propene, respectively. 2-Bromoethanesulfonate (BES), a well known inhibitor of methanogens, did not inhibit the dechlorination of 1,2-D to propene and the dechlorination of PCE to cis-dichloroethene (cis-DCE). However,-the complete dechlorination of PCE to vinyl chloride (VC) and ETH was severely inhibited. The authors could show that BES inhibited the dechlorination of chloroethenes in cultures not containing methanogens. Previous to this study, BES was believed to be aspecific inhibitor of methanogens and the inhibitory effect of BES on declorination was explained by the involvement of methanogens in the dechlorination process. The non-methanogenic cultures obtained after the BES treatment were subsequently transferred to medium riot containing BES and complete dechlorination of PCE to ETH was observed as was in the original microcosms. Subcultures were further enriched with PCE, cis-DCE, VC, or 1,2-D as the only available electron acceptor and acetate, or acetate plus hydrogen as the only available electron donor(s). To date these cultures have undergone up to 45 transfers. Interestingly

  17. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  18. Amperometric Enzyme Electrodes

    Science.gov (United States)

    1989-12-01

    form of carbon (glascy carbon, graphite, reticulated vitreous carbon, carbon paste, fiber or foil). Carbon is favored for enzyme immoblization...interference from spurious electroactive species in blood, t proprietary multilayer membranie that includes a cellulose acetate memirane and a Nucleopore

  19. Computational enzyme design

    Science.gov (United States)

    Bolon, Daniel N.

    2002-08-01

    The long-term objective of computational enzyme design is the ability to generate efficient protein catalysts for any chemical reaction. This thesis develops and experimentally validates a general computational approach for the design of enzymes with novel function. In order to include catalytic mechanism in protein design, a high-energy state (HES) rotamer (side chain representation) was constructed. In this rotamer, substrate atoms are in a HES. In addition, at least one amino acid side chain is positioned to interact favorably with substrate atoms in their HES and facilitate the reaction. Including an amino acid side chain in the HES rotamer automatically positions substrate relative to a protein scaffold and allows protein design algorithms to search for sequences capable of interacting favorably with the substrate. Because chemical similarity exists between the transition state and the high-energy state, optimizing the protein sequence to interact favorably with the HES rotamer should lead to transition state stabilization. In addition, the HES rotamer model focuses the subsequent computational active site design on a relevant phase space where an amino acid is capable of interacting in a catalytically active geometry with substrate. Using a HES rotamer model of the histidine mediated nucleophilic hydrolysis of p-nitrophenyl acetate, the catalytically inert 108 residue E. coli thioredoxin as a scaffold, and the ORBIT protein design software to compute sequences, an active site scan identified two promising active site designs. Experimentally, both candidate ?protozymes? demonstrated catalytic activity significantly above background. In addition, the rate enhancement of one of these ?protozymes? was the same order of magnitude as the first catalytic antibodies. Because polar groups are frequently buried at enzyme-substrate interfaces, improved modeling of buried polar interactions may benefit enzyme design. By studying native protein structures, rules have been

  20. Enzyme dynamics from NMR spectroscopy.

    Science.gov (United States)

    Palmer, Arthur G

    2015-02-17

    conformational transition in AlkB between an open state, in which the side chains of methionine residues in the active site are disordered, and a closed state, in which these residues are ordered. The open state is highly populated in the AlkB/Zn(II) complex, and the closed state is highly populated in the AlkB/Zn(II)/2OG/substrate complex, in which 2OG is the 2-oxoglutarate cosubstrate and the substrate is a methylated DNA oligonucleotide. The equilibrium is shifted to approximately equal populations of the two conformations in the AlkB/Zn(II)/2OG complex. The conformational shift induced by 2OG ensures that 2OG binds to AlkB/Zn(II) prior to the substrate. In addition, the opening rate of the closed conformation limits premature release of substrate, preventing generation of toxic side products by reaction with water. Closure of active site loop 6 in triosephosphate isomerase is critical for forming the Michaelis complex, but reopening of the loop after the reaction is (partially) rate limiting. NMR spin relaxation and MD simulations of triosephosphate isomerase in complex with glycerol 3-phosphate demonstrate that closure of loop 6 is a highly correlated rigid-body motion. The MD simulations also indicate that motions of Gly173 in the most flexible region of loop 6 contribute to opening of the active site loop for product release. Considered together, these three enzyme systems illustrate the power of NMR spin relaxation investigations in providing global insights into the role of conformational dynamic processes in the mechanisms of enzymes from initial activation to final product release.

  1. The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness.

    Science.gov (United States)

    Bar-Even, Arren; Milo, Ron; Noor, Elad; Tawfik, Dan S

    2015-08-18

    The pioneering model of Henri, Michaelis, and Menten was based on the fast equilibrium assumption: the substrate binds its enzyme reversibly, and substrate dissociation is much faster than product formation. Here, we examine this assumption from a somewhat different point of view, asking what fraction of enzyme-substrate complexes are futile, i.e., result in dissociation rather than product formation. In Knowles' notion of a "perfect" enzyme, all encounters of the enzyme with its substrate result in conversion to product. Thus, the perfect enzyme's catalytic efficiency, kcat/KM, is constrained by only the diffusion on-rate, and the fraction of futile encounters (defined as φ) approaches zero. The available data on >1000 different enzymes suggest that for ≥90% of enzymes φ > 0.99 and for the "average enzyme" φ ≥ 0.9999; namely, <1 of 10(4) encounters is productive. Thus, the "fast equilibrium" assumption holds for the vast majority of enzymes. We discuss possible molecular origins for the dominance of futile encounters, including the coexistence of multiple sub-states of an enzyme's active site (enzyme floppiness) and/or its substrate. Floppiness relates to the inherent flexibility of proteins, but also to conflicting demands, or trade-offs, between rate acceleration (the rate-determining chemical step) and catalytic turnover, or between turnover rate and accuracy. The study of futile encounters and active-site floppiness may contribute to a better understanding of enzyme catalysis, enzyme evolution, and improved enzyme design.

  2. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing

    Directory of Open Access Journals (Sweden)

    Vasudeo Zambare, Archana Zambare, Kasiviswanath Muthukumarappan, Lew P. Christopher

    2011-01-01

    Full Text Available A thermophilic microbial consortium (TMC producing hydrolytic (cellulolytic and xylanolytic enzymes was isolated from yard waste compost following enrichment with carboxymethyl cellulose and birchwood xylan. When grown on 5% lignocellulosic substrates (corn stover and prairie cord grass at 600C, the thermophilic consortium produced more xylanase (up to 489 U/l on corn stover than cellulase activity (up to 367 U/l on prairie cord grass. Except for the carboxymethyl cellulose-enriched consortium, thermo-mechanical extrusion pretreatment of these substrates had a positive effect on both activities with up to 13% and 21% increase in the xylanase and cellulase production, respectively. The optimum temperatures of the crude cellulase and xylanase were 600C and 700C with half-lives of 15 h and 18 h, respectively, suggesting higher thermostability for the TMC xylanase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the crude enzyme exhibited protein bands of 25-77 kDa with multiple enzyme activities containing 3 cellulases and 3 xylanases. The substrate specificity declined in the following descending order: avicel>birchwood xylan>microcrystalline cellulose>filter paper>pine wood saw dust>carboxymethyl cellulose. The crude enzyme was 77% more active on insoluble than soluble cellulose. The Km and Vmax values were 36.49 mg/ml and 2.98 U/mg protein on avicel (cellulase, and 22.25 mg/ml and 2.09 U/mg protein, on birchwood xylan (xylanase. A total of 50 TMC isolates were screened for cellulase and xylanase secretion on agar plates. All single isolates showed significantly lower enzyme activities when compared to the thermophilic consortia. This is indicative of the strong synergistic interactions that exist within the thermophilic microbial consortium and enhance its hydrolytic capabilities. It was further demonstrated that the thermostable enzyme-generated lignocellulosic hydrolyzates can be fermented to bioethanol by a recombinant strain of

  3. Abeta-degrading enzymes in Alzheimer's disease.

    Science.gov (United States)

    Miners, James Scott; Baig, Shabnam; Palmer, Jennifer; Palmer, Laura E; Kehoe, Patrick G; Love, Seth

    2008-04-01

    In Alzheimer's disease (AD) Abeta accumulates because of imbalance between the production of Abeta and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of Abeta is partly, if not in some cases solely, because of defects in its removal--mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading Abeta. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced Abeta-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading Abetain vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOEepsilon4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to Abeta plaque load. Up-regulation of some Abeta-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other Abeta-clearance pathways, reductions in the activity of particular Abeta-degrading enzymes may become critical, leading to the development of AD and CAA.

  4. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    Energy Technology Data Exchange (ETDEWEB)

    Siuti, Piro [ORNL; Retterer, Scott T [ORNL; Choi, Chang Kyoung [Michigan Technological University; Doktycz, Mitchel John [ORNL

    2012-01-01

    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  5. Expanding the alkane oxygenase toolbox: new enzymes and applications.

    Science.gov (United States)

    van Beilen, Jan B; Funhoff, Enrico G

    2005-06-01

    As highly reduced hydrocarbons are abundant in the environment, enzymes that catalyze the terminal or subterminal oxygenation of alkanes are relatively easy to find. A number of these enzymes have been biochemically characterized in detail, because the potential of alkane hydroxylases to catalyze high added-value reactions is widely recognized. Nevertheless, the industrial application of these enzymes is restricted owing to the complex biochemistry, challenging process requirements, and the limited number of cloned and expressed enzymes. Rational and evolutionary engineering approaches have started to yield more robust and versatile enzyme systems, broadening the alkane oxygenase portfolio. In addition, metagenomic approaches provide access to many novel alkane oxygenase sequences.

  6. Halophilic adaptation of enzymes.

    Science.gov (United States)

    Madern, D; Ebel, C; Zaccai, G

    2000-04-01

    It is now clear that the understanding of halophilic adaptation at a molecular level requires a strategy of complementary experiments, combining molecular biology, biochemistry, and cellular approaches with physical chemistry and thermodynamics. In this review, after a discussion of the definition and composition of halophilic enzymes, the effects of salt on their activity, solubility, and stability are reviewed. We then describe how thermodynamic observations, such as parameters pertaining to solvent-protein interactions or enzyme-unfolding kinetics, depend strongly on solvent composition and reveal the important role played by water and ion binding to halophilic proteins. The three high-resolution crystal structures now available for halophilic proteins are analyzed in terms of haloadaptation, and finally cellular response to salt stress is discussed briefly.

  7. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Science.gov (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates.

  8. A model study of sequential enzyme reactions and electrostatic channeling.

    Science.gov (United States)

    Eun, Changsun; Kekenes-Huskey, Peter M; Metzger, Vincent T; McCammon, J Andrew

    2014-03-14

    We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal rate of product generation in a series of sequential reactions is dependent on the enzyme distribution and the electrostatic composition of its participant enzymes and substrates. We find that close proximity between enzymes does not guarantee optimal reaction rates, as the benefit of decreasing enzyme separation is countered by the volume excluded by adjacent enzymes. We further quantify the extent to which the electrostatic potential increases the efficiency of transferring substrate between enzymes, which supports the existence of electrostatic channeling in nature. Here, a major finding is that the role of attractive electrostatic interactions in confining intermediate substrates in the vicinity of the enzymes can contribute more to net reactive throughput than the directional properties of the electrostatic fields. These findings shed light on the interplay of long-range interactions and enzyme distributions in coupled enzyme-catalyzed reactions, and their influence on signaling in biological systems.

  9. Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane.

    Science.gov (United States)

    Harrison, Mark D; Geijskes, Jason; Coleman, Heather D; Shand, Kylie; Kinkema, Mark; Palupe, Anthony; Hassall, Rachael; Sainz, Manuel; Lloyd, Robyn; Miles, Stacy; Dale, James L

    2011-10-01

    A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.

  10. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    Science.gov (United States)

    Suenaga, Hikaru

    2015-01-01

    Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose. PMID:26441940

  11. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    Directory of Open Access Journals (Sweden)

    Hikaru eSuenaga

    2015-09-01

    Full Text Available Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and therefore enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose.

  12. Catalytic efficiency of enzymes: a theoretical analysis.

    Science.gov (United States)

    Hammes-Schiffer, Sharon

    2013-03-26

    This brief review analyzes the underlying physical principles of enzyme catalysis, with an emphasis on the role of equilibrium enzyme motions and conformational sampling. The concepts are developed in the context of three representative systems, namely, dihydrofolate reductase, ketosteroid isomerase, and soybean lipoxygenase. All of these reactions involve hydrogen transfer, but many of the concepts discussed are more generally applicable. The factors that are analyzed in this review include hydrogen tunneling, proton donor-acceptor motion, hydrogen bonding, pKa shifting, electrostatics, preorganization, reorganization, and conformational motions. The rate constant for the chemical step is determined primarily by the free energy barrier, which is related to the probability of sampling configurations conducive to the chemical reaction. According to this perspective, stochastic thermal motions lead to equilibrium conformational changes in the enzyme and ligands that result in configurations favorable for the breaking and forming of chemical bonds. For proton, hydride, and proton-coupled electron transfer reactions, typically the donor and acceptor become closer to facilitate the transfer. The impact of mutations on the catalytic rate constants can be explained in terms of the factors enumerated above. In particular, distal mutations can alter the conformational motions of the enzyme and therefore the probability of sampling configurations conducive to the chemical reaction. Methods such as vibrational Stark spectroscopy, in which environmentally sensitive probes are introduced site-specifically into the enzyme, provide further insight into these aspects of enzyme catalysis through a combination of experiments and theoretical calculations.

  13. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  14. Directed evolution of enzymes using microfluidic chips

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  15. Diagnostic criteria for an enzyme-linked immunosorbent assay for occult heartworm disease: standardization of the test system in naturally exposed dogs.

    Science.gov (United States)

    Gillis, J M; Smith, R D; Todd, K S

    1984-11-01

    The development of criteria for interpreting and reporting the results of an occult heartworm enzyme-linked immunosorbent assay to practitioners is described. The antigen is a saline extract of adult female Dirofilaria immitis. The cutoff absorbance A400 nm values were estimated, using 106 dogs free of infection. Any A400 nm value less than 0.526 is considered negative and values greater than or equal to 0.784 are positive. Intermediate A400 nm values are interpreted as suspect. Absorbance values for serum samples from 13 client-owned amicrofilaremic dogs revealed a bimodal distribution consistent with presumptive diagnosis based on clinical signs, which indicates that the test may be used to support a diagnosis of occult heartworm disease. The present serotest, however, is unable to distinguish microfilaremic dogs from noninfected dogs. Serum from dogs infected with other common helminths failed to crossreact with the D immitis antigen, with the exception of Dipetalonema reconditum.

  16. Plant growth-promoting rhizobacterial strain-mediated induced systemic resistance in tea (Camellia sinensis (L.) O. Kuntze) through defense-related enzymes against brown root rot and charcoal stump rot.

    Science.gov (United States)

    Mishra, A K; Morang, P; Deka, M; Nishanth Kumar, S; Dileep Kumar, B S

    2014-09-01

    Induction of systemic resistance in host plants through microbes and their bioactive metabolites are attaining popularity in modern agricultural practices. In this regard, individual application of two strains of Pseudomonas, RRLJ 134 and RRLJ 04, exhibited development of induced systemic resistance in tea plants against brown root rot and charcoal stump rot under split root experiments. The experimental findings also confirmed that the cuttings treated with fungal test pathogen and plant growth-promoting rhizobacteria (PGPR) strains survived longer as compared with pathogen-alone-treated cuttings. The enzyme level studies revealed that the presence of PGPR strains reduced the viscosity loss of cellulose and pectin by both the pathogens to a significant level. The activity of defense-related enzymes like L-phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase were also recorded higher in tea cuttings treated with PGPR strains in presence of pathogen. Crude bioactive metabolites isolated from these strains also showed in vitro antagonism against the test pathogens besides reducing the number of diseased plants under gnotobiotic conditions. These findings confirm the utilization of these two strains for induction of systemic resistance against two major root diseases in tea plants under plantation conditions.

  17. Treating Wastewater With Immobilized Enzymes

    Science.gov (United States)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  18. Cellulolytic Activity of Clostridium acetobutylicum

    OpenAIRE

    Lee, Song F.; Forsberg, Cecil W.; Gibbins, L N

    1985-01-01

    Clostridium acetobutylicum NRRL B527 and ATCC 824 exhibited extracellular and cell-bound endoglucanase and cellobiase activities during growth in a chemically defined medium with cellobiose as the sole source of carbohydrate. For both strains, the endoglucanase was found to be mainly extracellular (70 to 90%) during growth in continuous or batch cultures with the pH maintained at 5.2, whereas the cellobiase was mainly cell associated (60 to 90%). During continuous cultivation of strain B527 w...