WorldWideScience

Sample records for cellulolytic bacterium isolated

  1. Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge.

    Science.gov (United States)

    Nahm, Chang Hyun; Lee, Seonki; Lee, Sang Hyun; Lee, Kibaek; Lee, Jaewoo; Kwon, Hyeokpil; Choo, Kwang-Ho; Lee, Jung-Kee; Jang, Jae Young; Lee, Chung-Hak; Park, Pyung-Kyu

    2017-03-28

    Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic ( i.e ., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads ( i.e ., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

  2. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...... activity. The G + C content of the cellular DNA of strain 6A was 35.2 +/- 0.8 mol%. Complete 16S rDNA sequence analysis showed that strain 6A was phylogenetically related to Caldicellulosiruptor saccharolyticus. It is proposed that the isolated bacterium be named Caldicellulosiruptor lactoaceticus sp. nov....

  3. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree.

    Science.gov (United States)

    Rivas, Raúl; Trujillo, Martha E; Mateos, P F; Martínez-Molina, E; Velázquez, Encarna

    2004-03-01

    A Gram-positive, aerobic, non-motile bacterium was isolated from a decayed elm tree. Phylogenetic analysis based on 16S rDNA sequences revealed 99.0 % similarity to Cellulomonas humilata. Chemotaxonomic data that were determined for this isolate included cell-wall composition, fatty acid profiles and polar lipids; the results supported the placement of strain XIL11(T) in the genus Cellulomonas. The DNA G+C content was 73 mol%. The results of DNA-DNA hybridization with C. humilata ATCC 25174(T), in combination with chemotaxonomic and physiological data, demonstrated that isolate XIL11(T) should be classified as a novel Cellulomonas species. The name Cellulomonas xylanilytica sp. nov. is proposed, with strain XIL11(T) (=LMG 21723(T)=CECT 5729(T)) as the type strain.

  4. Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost.

    Science.gov (United States)

    Kang, Myung-Suk; Im, Wan-Taek; Jung, Hae-Min; Kim, Myung Kyum; Goodfellow, Michael; Kim, Kwang Kyu; Yang, Hee-Chan; An, Dong-Shan; Lee, Sung-Taik

    2007-06-01

    A bacterial strain, TR7-06(T), which has cellulase and beta-glucosidase activities, was isolated from compost at a cattle farm near Daejeon, Republic of Korea. It was a Gram-positive, aerobic or facultatively anaerobic, non-motile, rod-shaped bacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belongs to the genus Cellulomonas, with highest sequence similarity to Cellulomonas uda DSM 20107(T) (98.5 %). Cell wall analysis revealed the presence of type A4beta, L-orn-D-Glu peptidoglycan. The cell-wall sugars detected were mannose and glucose. The predominant menaquinone was MK-9(H(4)); MK-8(H(4)) was detected in smaller quantities. The major fatty acids were anteiso-C(15 : 0), C(16 : 0), C(14 : 0) and C(18 : 0). The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that TR7-06(T) represents a novel species. The combined genotypic and phenotypic data show that strain TR7-06(T) (=KCTC 19030(T)=NBRC 100758(T)) merits description as the type strain of a novel Cellulomonas species, Cellulomonas composti sp. nov.

  5. Ferrovibrio soli sp. nov., a novel cellulolytic bacterium isolated from stream bank soil.

    Science.gov (United States)

    Dahal, Ram Hari; Kim, Jaisoo

    2018-01-01

    Two isolates of bacterial strains A15 T and A17 were isolated from stream bank soil in Kyonggi University. Cells were aerobic, Gram-stain-negative, oxidase- and catalase-positive, motile, non-spore-forming, rod-shaped, opaque, and cream coloured. Both strains hydrolysed CM-cellulose. Strains were able to grow at 20-42 °C, pH 5.5-10.0 and at 1.5 % NaCl concentration (w/v). Indole test was positive. Analyses of phylogenetic trees based on its 16S rRNA gene sequences indicated that strain A15 T formed a lineage within the family Rhodospirillaceae of the phylum Proteobacteria which was distinct from Ferrovibrio denitrificans S3 T (98.4 % sequence similarity) and Ferrovibrio xuzhouensis LM-6 T (97.4 %). The sole detected respiratory quinone was Q-10. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. The major cellular fatty acids were C19 : 0 cycloω8c, C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C18 : 0cyclo and C12 : 0. The DNA G+C contents of strains A15 T and A17 were 63.4 and 62.9 mol%, respectively. DNA-DNA relatedness between strain A15 T and other two members of the genus Ferrovibrioranged from 25 to 37 %. The polyphasic characterization revealed strains A15 T and A17 represent a novel species in the genus Ferrovibrio, for which the name Ferrovibriosoli sp. nov. is proposed. The type strain is A15 T (=KEMB 9005-522 T =KACC 19102 T =NBRC 112682 T ).

  6. Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil.

    Science.gov (United States)

    An, Dong-Shan; Im, Wan-Taek; Yang, Hee-Chan; Kang, Myung Suk; Kim, Kwang Kyu; Jin, Long; Kim, Myung Kyum; Lee, Sung-Taik

    2005-07-01

    A bacterial strain (DB5(T)), with polysaccharide-degrading activities, was isolated from garden soil in Daejeon, Republic of Korea. The cells were Gram-positive, aerobic or facultatively anaerobic, non-motile straight rods. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belongs to the genus Cellulomonas and that it is most closely related to Cellulomonas xylanilytica LMG 21723(T) and Cellulomonas humilata ATCC 25174(T) (98.0 and 97.9% similarity, respectively). Chemotaxonomic data also supported the classification of strain DB5(T) in the genus Cellulomonas, i.e. L-ornithine as the cell-wall diamino acid, anteiso-C(15:0) and iso-C(15:0) as the major fatty acids, MK-9(H(4)) as the predominant menaquinone and the presence of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol mannosides in the polar lipid profile. The results of DNA-DNA hybridization in combination with chemotaxonomic and physiological data demonstrated that strain DB5(T) (=KCTC 19081(T)=NBRC 100819(T)) should be classified as the type strain of a novel species within the genus Cellulomonas, for which the name Cellulomonas terrae sp. nov. is proposed.

  7. Cellulomonas macrotermitis sp. nov., a chitinolytic and cellulolytic bacterium isolated from the hindgut of a fungus-growing termite.

    Science.gov (United States)

    Sun, Xinxin; Li, Jingjing; Du, Jiao; Xiao, Hesheng; Ni, Jinfeng

    2018-03-01

    To investigate the symbiotic roles of the gut microbiota in the fungus-growing termite Macrotermes barneyi, a novel strain with chitinolytic and cellulolytic activity, designated strain an-chi-1 T , was isolated from the hindgut of M. barneyi. Strain an-chi-1 T grows optimally at 28-30 °C, pH 8.0 in PYG medium. On the basis of 16S rRNA gene sequence analysis, this isolate belongs to the genus Cellulomonas with high sequence similarity to Cellulomonas iranensis (99.4%), followed by Cellulomonas flavigena (98.4%), Cellulomonas phragmiteti (97.4%), Cellulomonas oligotrophica (97.2%) and Cellulomonas terrae (97.0%). The DNA-DNA relatedness between an-chi-1 T and the type strains of C. iranensis and C. flavigena DSM20109 T are 35.4% and 23.7%, respectively. The major cellular fatty acids are anteiso-C 15:0 and C 14:0 . The polar lipid profile consists of diphosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylinositol dimannosides and one unidentified phospholipid. The cell-wall sugar is ribose. The peptidoglycan contains glutamic acid, aspartic acid and alanine. The DNA G+C content is 67.3 mol%. Based on its distinctive phenotypic, phylogenetic, and chemotaxonomic characteristics, an-chi-1 T represents a novel species of the genus Cellulomonas, for which the name Cellulomonas macrotermitis sp. nov. is proposed. The type strain is an-chi-1 T (= JCM 31923 T  = CICC 24195 T ).

  8. Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond.

    Science.gov (United States)

    Rusznyák, Anna; Tóth, Erika M; Schumann, Peter; Spröer, Cathrin; Makk, Judit; Szabó, Gitta; Vladár, Péter; Márialigeti, Károly; Borsodi, Andrea K

    2011-07-01

    An alkalitolerant and moderately halophilic strain, designated KB23(T), characterized by optimal growth at pH 8.0-9.0 and in the presence of 5-7 % (w/v) NaCl, was isolated from a reed (Phragmites australis) periphyton sample originating from an extremely shallow, alkaline soda pond located in Hungary. Cells of strain KB23(T) were Gram-stain-positive, motile straight rods. Strain KB23(T) was facultatively anaerobic, catalase-positive, oxidase-negative and contained peptidoglycan type A4β (L-Orn-D-Asp). MK-9(H4) was the predominant isoprenoid quinone and anteiso-C(15 : 0), C(16 : 0) and anteiso-C(15 : 1) were the major cellular fatty acids. The DNA G+C content of strain KB23(T) was 74.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belongs to the genus Cellulomonas and that it is related most closely to Cellulomonas flavigena DSM 20109(T) (97.35 % similarity), Cellulomonas terrae DB5(T) (96.81 %), Cellulomonas iranensis O(T) (96.75), Cellulomonas chitinilytica X.bu-b(T) (96.60 %), Cellulomonas persica I(T) (96.53 %), Cellulomonas composti TR7-06(T) (96.45 %), Cellulomonas biazotea DSM 20112(T) (96.34 %) and Cellulomonas fimi DSM 20113(T) (96.20 %). According to these results, together with DNA-DNA hybridization and physiological data, strain KB23(T) is considered to represent a novel species of the genus Cellulomonas, for which the name Cellulomonas phragmiteti sp. nov. is proposed. The type strain is KB23(T) ( = DSM 22512(T)  = NCAIM B002303(T)).

  9. Isolation of cellulolytic activities from Tribolium castaneum (red flour ...

    African Journals Online (AJOL)

    Cellulolytic enzymes have immense potential to convert cellulosic biomass into useful products. Tribolium castaneum crude proteins were isolated to screen the cellulolytic activities. The activity was established by substrate-agar plate assay and confirmed by endoglucanase assay. Cellulolytic activity was further purified ...

  10. saccharification of maize agrowastes by cellulolytic fungi isolated

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    This work isolated cellulolytic fungi from soil sampled from Ejura farms ... Soil was sampled from Ejura farms because the agrowastes are left on the field and ploughed back into the soil making it a good habitat for cellulolytic fungi but has not been ..... Although Trichoderma sp. had the highest sig- nificant mean mycelial ...

  11. Isolation and characterization of efficient cellulolytic fungi from ...

    African Journals Online (AJOL)

    This study was thus aimed to isolate and characterize efficient cellulose degrading fungi from their common natural habitats. Decaying Acacia wood and industrial water effluent samples were used for isolation and screening of cellulolytic fungi. Both samples were serially diluted and cultured on cellulose basal medium ...

  12. Isolation and characterization of cellulolytic Bacillus licheniformis ...

    African Journals Online (AJOL)

    Eight cellulose degrading bacteria were isolated from compost and were identified as Bacillus licheniformis by 16S rRNA sequencing. Among the eight isolates, Bacillus licheniformis B4, B7 and B8 showed the highest cellulase activity. B. licheniformis B4 and B8 showed the maximum cellulase activity during the stationary ...

  13. Isolation and mutation of cellulolytic fungi.

    Science.gov (United States)

    Gupta, J K; Shirkot, C K; Dhawan, S

    1981-01-01

    Nineteen fungi were isolated from different soil samples on the basis of clear zones formed on Rose Bengal Cellulose agar medium. In shake flasks th isolate K1 gave 12.1 units/ml of CMCase activity. A mutant of the isolate K1, KM7, was selected after N-methyl-N'-nitro-N-nitrosoguanidine treatment of the wild-type. This mutant differed morphologically from the parent strain on RBCA medium and gave 36.2 units/ml of CMCase activity which represented about 50% of the enzyme yield from the standard organism, Trichoderma viride QM 9414 (80 units/ml of CMCase activity). The isolate K1, which was identified as a Phoma species, produced 48 units of beta-glucosidase. The yield of beta-glucosidase was increased about 8-fold in the mutant KM7 and was about 68% higher than the level found in T. viride QM 9414.

  14. Rock phosphate solubilizing and cellulolytic actinomycete isolates of earthworm casts

    Science.gov (United States)

    Mba, Caroline C.

    1994-03-01

    Four microbial isolates, OP2, OP3, OP6, and OP7, of earthworm casts of Pontoscolex corethrurus were found to be acid tolerant actinomycetes and efficient rock phosphate (RP) solubilizers that could grow fast on NH4Cl-enriched or N-free carboxymethyl cellulose or glucose as sole carbon source. CMC (carboxymethyl cellulose) induced production of extracellular cellulase enzyme and the production of reducing sugar in all the isolates. RP solubilizing power was observed to be inversely related to glucose consumption. The most efficient RP solubilizer was found to consume the least glucose. Growth was faster on cellulose than on glucose media. N-free CMC induced greater glucose production than NH4Cl-enriched CMC medium. Both CMC and glucose media were acidified by all the isolates, however, RP solubilizing power decreased with acidification. Solubilization power was greatest with isolate OP7, which also produced the greatest amount of reducing sugar per gram CMC. Both RP solubilizing power and the cellulolytic efficiency varied among isolates. A minimum of 631 µg P/0.1 g RP and a maximum of 951.4 µg P/0.1 g RP was recorded.

  15. Characterization and Identification of Cellulolytic Bacteria from gut of Worker Macrotermes gilvus

    Directory of Open Access Journals (Sweden)

    Andri Ferbiyanto

    2015-10-01

    Full Text Available As a social insect, termite colony consists of three castes, i.e. reproductive, soldier, and worker castes. In their role of cellulose digestion, the worker termites use two sources of cellulolytic enzyme that include cellulases produced by the termite and the gut symbions. Macrotermes gilvus classified in mound builder termite, mostly depend on cellulolytic bacteria for cellulose digestion. This study aims to characterize cellulolytic bacteria of termite gut symbionts of worker M. gilvus and to identify the cellulolytic bacteria based on sequences of 16S ribosomal RNA (rRNA gene. Cellulolytic bacteria of termite gut were isolated and cultured in CMC (Carboxymethyl cellulose media. The biochemical characters of bacterial isolates were assayed using Microbact 12A and 12B. Cellulolytic activity was determined based on formation of clear zone and cellulolytic index on CMC plate media. The bacterial isolate that has the highest cellulolytic index was analyzed for its 16S rRNA gene sequences. Four isolates of cellulolytic bacteria were successfully isolated from gut of M. gilvus with aerobic and anaerobic conditions. The highest formation of cellulolytic index (2.5 was revealed by RA2. BLAST-N (Basic Local Alignment Search Tool for Nucleotides result of 16S rRNA gene sequences of RU4 and RA2 isolates showed that the isolate has similarity with Bacillus megaterium and Paracoccus yeei, respectively. This result indicated that RA2 isolate was P. yeei, a cellulolytic bacterium of a termite gut of M. gilvus.

  16. Isolation and characterization of aerobic microorganisms with cellulolytic activity in the gut of endogeic earthworms.

    Science.gov (United States)

    Fujii, Katsuhiko; Ikeda, Kana; Yoshida, Seo

    2012-09-01

    The ability of earthworms to decompose lignocellulose involves the assistance of microorganisms in their digestive system. While many studies have revealed a diverse microbiota in the earthworm gut, including aerobic and anaerobic microorganisms, it remains unclear which of these species contribute to lignocellulose digestion. In this study, aerobic microorganisms with cellulolytic activity isolated from the gut of two endogeic earthworms, Amynthas heteropoda (Megascolecidae) and Eisenia fetida (Lumbricidae) were isolated by solid culture of gut homogenates using filter paper as a carbon source. A total of 48 strains, including four bacterial and four fungal genera, were isolated from two earthworm species. Characterization of these strains using enzyme assays showed that the most representative ones had exocellulase and xylanase activities, while some had weak laccase activity. These findings suggest that earthworms digest lignocellulose by exploiting microbial exocellulase and xylanase besides their own endocellulase. Phylogenetic analysis showed that among the cellulolytic isolates in both earthworm species Burkholderia and Chaetomium were the dominant bacterial and fungal members.

  17. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production.

    Science.gov (United States)

    Haitjema, Charles H; Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2014-08-01

    Anaerobic gut fungi are an early branching family of fungi that are commonly found in the digestive tract of ruminants and monogastric herbivores. It is becoming increasingly clear that they are the primary colonizers of ingested plant biomass, and that they significantly contribute to the decomposition of plant biomass into fermentable sugars. As such, anaerobic fungi harbor a rich reservoir of undiscovered cellulolytic enzymes and enzyme complexes that can potentially transform the conversion of lignocellulose into bioenergy products. Despite their unique evolutionary history and cellulolytic activity, few species have been isolated and studied in great detail. As a result, their life cycle, cellular physiology, genetics, and cellulolytic metabolism remain poorly understood compared to aerobic fungi. To help address this limitation, this review briefly summarizes the current body of knowledge pertaining to anaerobic fungal biology, and describes progress made in the isolation, cultivation, molecular characterization, and long-term preservation of these microbes. We also discuss recent cellulase- and cellulosome-discovery efforts from gut fungi, and how these interesting, non-model microbes could be further adapted for biotechnology applications. © 2014 Wiley Periodicals, Inc.

  18. Screening And Isolation Of Thermophilic Cellulolytic Bacteria From ...

    African Journals Online (AJOL)

    Thermophilic cellulase producing bacteria were isolated from the heap of decaying cassava peels and cocoa pods in Ile-Ife, Southwest, Nigeria. Out of the fifteen thermophilic bacterial isolates - thirteen of which were from cassava peels and two from cocoa pods - only three (2NA3, Ca3 and Co4) hydrolyzed carboxymethyl ...

  19. Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium.

    Science.gov (United States)

    Aikawa, Shimpei; Baramee, Sirilak; Sermsathanaswadi, Junjarus; Thianheng, Phakhinee; Tachaapaikoon, Chakrit; Shikata, Ayumi; Waeonukul, Rattiya; Pason, Patthra; Ratanakhanokchai, Khanok; Kosugi, Akihiko

    2018-02-11

    An anaerobic, cellulolytic-xylanolytic bacterium, designated strain A7, was isolated from a cellulose-degrading bacterial community inhabiting bovine manure compost on Ishigaki Island, Japan, by enrichment culture using unpretreated corn stover as the sole carbon source. The strain was Gram-positive, non-endospore forming, non-motile, and formed orange colonies on solid medium. Strain A7 was identified as Herbivorax saccincola by DNA-DNA hybridization, and phylogenetic analysis based on 16S rRNA gene sequences showed that it was closely related to H. saccincola GGR1 (= DSM 101079 T ). H. saccincola A7 (= JCM 31827=DSM 104321) had quite similar phenotypic characteristics to those of strain GGR1. However, the optimum growth of A7 was at alkaline pH (9.0) and 55°C, compared to pH 7.0 at 60°C for GGR1, and the fatty acid profile of A7 contained 1.7-times more C 17:0 iso than GGR1. The draft genome sequence revealed that H. saccincola A7 possessed a cellulosome-like extracellular macromolecular complex, which has also been found for Clostridium thermocellum and C. clariflavum. H. saccincola A7 contained more glycoside hydrolases (GHs) belonging to GH families-11 and -2, and more diversity of xylanolytic enzymes, than C. thermocellum and C. clariflavum. H. saccincola A7 could grow on xylan because it encoded essential genes for xylose metabolism, such as a xylose transporter, xylose isomerase, xylulokinase, and ribulose-phosphate 3-epimerase, which are absent from C. thermocellum. These results indicated that H. saccincola A7 has great potential as a microorganism that can effectively degrade lignocellulosic biomass. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost

    Directory of Open Access Journals (Sweden)

    Amore Antonella

    2012-12-01

    Full Text Available Abstract Background The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. Results Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose

  1. Amylase activity of a yellow pigmented bacterium isolated from ...

    African Journals Online (AJOL)

    This study investigated the amylase activity of a yellow pigmented bacterium isolated from cassava wastes obtained from a dumpsite near a gari processing factory in Ibadan, Nigeria. Isolate was grown in nutrient broth containing 1% starch and then centrifuged at 5,000 rpm. Amylase activity was assayed using the DNSA ...

  2. Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential.

    Science.gov (United States)

    Koeck, Daniela E; Zverlov, Vladimir V; Liebl, Wolfgang; Schwarz, Wolfgang H

    2014-07-01

    Clostridium thermocellum is among the most prevalent of known anaerobic cellulolytic bacteria. In this study, genetic and phenotypic variations among C. thermocellum strains isolated from different biogas plants were determined and different genotyping methods were evaluated on these isolates. At least two C. thermocellum strains were isolated independently from each of nine different biogas plants via enrichment on cellulose. Various DNA-based genotyping methods such as ribotyping, RAPD (Random Amplified Polymorphic DNA) and VNTR (Variable Number of Tandem Repeats) were applied to these isolates. One novel approach - the amplification of unknown target sequences between copies of a previously discovered Random Inserted Mobile Element (RIME) - was also tested. The genotyping method with the highest discriminatory power was found to be the amplification of the sequences between the insertion elements, where isolates from each biogas plant yielded a different band pattern. Cellulolytic potentials, optimal growth conditions and substrate spectra of all isolates were characterized to help identify phenotypic variations. Irrespective of the genotyping method used, the isolates from each individual biogas plant always exhibited identical patterns. This is suggestive of a single C. thermocellum strain exhibiting dominance in each biogas plant. The genotypic groups reflect the results of the physiological characterization of the isolates like substrate diversity and cellulase activity. Conversely, strains isolated across a range of biogas plants differed in their genotyping results and physiological properties. Both strains isolated from one biogas plant had the best specific cellulose-degrading properties and might therefore achieve superior substrate utilization yields in biogas fermenters. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica

    Science.gov (United States)

    Pinheiro, Guilherme L.; Correa, Raquel F.; Cunha, Raquel S.; Cardoso, Alexander M.; Chaia, Catia; Clementino, Maysa M.; Garcia, Eloi S.; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes. PMID:26347735

  4. Draft Genome Sequence of the Cellulolytic Strain Clostridium sp. Bc-iso-3 Isolated from an Industrial-Scale Anaerobic Digester.

    Science.gov (United States)

    Sun, Li; Schnürer, Anna

    2016-10-27

    Clostridium sp. Bc-iso-3 is a cellulolytic strain isolated from a Swedish industrial-scale biogas digester. Here, we present the draft genome sequence of this strain, which consists of four contigs with a total length of 4,327,139 bp and an average coverage of 312.97×. Copyright © 2016 Sun and Schnürer.

  5. Isolation and Screening of Potential Cellulolytic and Xylanolytic Bacteria from Soil Sample for Degradation of Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Bhupal Govinda Shrestha

    2016-11-01

    them with the aptitude to produce stable enzymes, little emphasis has been given to cellulose/xylanase production from bacteria. Seven soil samples were collected from eastern hilly districts of Nepal viz. Taplejung, Panchthar and Sankhuwasabha districts, from soil surface and at depth of 10cm to 20cm, and were isolated separately. From the seven soil samples, four bacterial isolates were obtained. Isolates (PSS, P1D, TLC, SNK were then screened for cellulolytic/xylanolytic activity using Congo red assay on Carboxymethylcellulose (CMC/xylan agar plates. The enzyme activity obtained from isolates was dependent on substrate concentration. The activity of enzymes produced by isolates were also measured and compared on pretreated sugarcane bagasse. Among those samples, the greatest zone of inhibition in both CMC (1.3 cm and xylan (1.0 cm agar media was seen in isolate P1D. It also produced the highest activity of endoglucanase and xylanase i.e. activity 0.035 U/mL and 0.050 U/mL respectively at 0.010 mg mL-1 standard substrate concentration of CMC and xylan.

  6. Polypeptide from a cellulolytic fungus having cellulolytic enhancing activity

    Science.gov (United States)

    Brown, Kimberly [Elk Grove, CA; Harris, Paul [Carnation, WA; Zaretsky, Elizabeth [Reno, NV; Re, Edward [Davis, CA; Vlasenko, Elena [Davis, CA; McFarland, Keith [Davis, CA; Lopez de Leon, Alfredo [Davis, CA

    2008-04-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  7. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    Science.gov (United States)

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Choi, Hak-Jong

    2016-09-01

    A novel halophilic bacterium, strain K7(T), was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0-25.0% (w/v) NaCl (optimum 10-15% NaCl), pH 5.5-8.5 (optimum pH 7.0-7.5), and 15-42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7(T) and Gracilibacillus orientalis XH-63(T) (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7(T) is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7(T) (KACC 18669(T); JCM 31344(T)).

  8. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously: Cellulose-degrading bacteria co-ferment hemicellulose-derived sugars

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Wei [National Renewable Energy Laboratory, BioSciences Center, 15013 Denver West Parkway, Golden CO 80401; Reyes, Luis H. [National Renewable Energy Laboratory, BioSciences Center, 15013 Denver West Parkway, Golden CO 80401; Process and Product Design Group (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá D.C. Colombia; Michener, William E. [National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Parkway, Golden CO 80401; Maness, Pin-Ching [National Renewable Energy Laboratory, BioSciences Center, 15013 Denver West Parkway, Golden CO 80401; Chou, Katherine J. [National Renewable Energy Laboratory, BioSciences Center, 15013 Denver West Parkway, Golden CO 80401

    2018-03-14

    Cellulose and hemicellulose are the most abundant components in plant biomass. A preferred Consolidated Bioprocessing (CBP) system is one which can directly convert both cellulose and hemicellulose into target products without adding the costly hydrolytic enzyme cocktail. In this work, the thermophilic, cellulolytic, and anaerobic bacterium, Clostridium thermocellum DSM 1313, was engineered to grow on xylose in addition to cellulose. Both xylA (encoding for xylose isomerase) and xylB (encoding for xylulokinase) genes from the thermophilic anaerobic bacterium Thermoanaerobacter ethanolicus were introduced to enable xylose utilization while still retaining its inherent ability to grow on 6-carbon substrates. Targeted integration of xylAB into C. thermocellum genome realized simultaneous fermentation of xylose with glucose, with cellobiose (glucose dimer), and with cellulose, respectively, without carbon catabolite repression. We also showed that the respective H2 and ethanol production were twice as much when both xylose and cellulose were consumed simultaneously than when consuming cellulose alone. Moreover, the engineered xylose consumer can also utilize xylo-oligomers (with degree of polymerization of 2-7) in the presence of xylose. Isotopic tracer studies also revealed that the engineered xylose catabolism contributed to the production of ethanol from xylan which is a model hemicellulose in mixed sugar fermentation, demonstrating immense potential of this enhanced CBP strain in co-utilizing both cellulose and hemicellulose for the production of fuels and chemicals.

  9. Virgibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    Science.gov (United States)

    Oh, Young Joon; Jang, Ja-Young; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Kim, NamHee; Shin, Mi-Young; Park, Hyo Kyeong; Seo, Myung-Ji; Choi, Hak-Jong

    2017-12-01

    A Gram-stain-positive, halophilic, rod-shaped, non-motile, spore forming bacterium, strain NKC1-2 T , was isolated from kimchi, a Korean fermented food. Comparative analysis based on 16S rRNA gene sequence demonstrated that the isolated strain was a species of the genus Virgibacillus. Strain NKC1-2 T exhibited high level of 16S rRNA gene sequence similarity with the type strains of Virgibacillus xinjiangensis SL6-1 T (96.9%), V. sediminis YIM kkny3 T (96.8%), and V. salarius SA-Vb1 T (96.7%). The isolate grew at pH 6.5-10.0 (optimum, pH 8.5-9.0), 0.0-25.0% (w/v) NaCl (optimum, 10-15% NaCl), and 15-50°C (optimum, 37°C). The major menaquinone in the strain was menaquinone-7, and the main peptidoglycan of the strain was meso-diaminopimelic acid. The predominant fatty acids of the strain were iso-C 14:0 , anteisio-C 15:0 , iso- C 15:0 , and iso-C 16:0 (other components were < 10.0%). The polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G + C content of NKC1-2 T was 42.5 mol%. On the basis of these findings, strain NKC1-2 T is proposed as a novel species in the genus Virgibacillus, for which the name Virgibacillus kimchii sp. nov. is proposed (=KACC 19404 T =JCM 32284 T ). The type strain of Virgibacillus kimchii is NKC1-2T.

  10. Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia

    Directory of Open Access Journals (Sweden)

    W. P. Lokapirnasari

    2015-03-01

    Full Text Available Aim: This study aims to produce and assay cellulolytic enzyme activity (endo-(1,4-β-D-glucanase, exo-(1,4-β-Dglucanase, and β-glucosidase, at optimum temperature and optimum pH of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya Abbatoir, Indonesia. Materials and Methods: To produce enzyme from a single colony of E. cloacae WPL 214, 98 × 1010 CFU/ml of isolates was put into 20 ml of liquid medium and incubated in a shaker incubator for 16 h at 35°C in accordance with growth time and optimum temperature of E. cloacae WPL 214. Further on, culture was centrifuged at 6000 rpm at 4°C for 15 min. Pellet was discarded while supernatant containing cellulose enzyme activity was withdrawn to assay endo-(1,4-β-D-glucanase, exo-(1,4-β-D-glucanase, and β-glucosidase. Results: Cellulase enzyme of E. cloacae WPL 214 isolates had endoglucanase activity of 0.09 U/ml, exoglucanase of 0.13 U/ml, and cellobiase of 0.10 U/ml at optimum temperature 35°C and optimum pH 5. Conclusion: E. cloacae WPL 214 isolated from bovine rumen fluid waste produced cellulose enzyme with activity as cellulolytic enzyme of endo-(1,4-β-D-glucanase, exo-(1,4-β-D-glucanase and β-glucosidase.

  11. Porphyrobacter algicida sp. nov., an algalytic bacterium isolated from seawater.

    Science.gov (United States)

    Kristyanto, Sylvia; Lee, Sang Don; Kim, Jaisoo

    2017-11-01

    A novel Gram-stain-negative, yellow-pigmented, catalase- and oxidase-positive, non-endospore-forming, flagellated bacterium, designated strain Yeonmyeong 2-22 T , was isolated from surface seawater of Geoje Island, Republic of Korea. Strain Yeonmyeong 2-22 T showed algalytic activity against the seven strains tested: Cochlodinium polykrikoides, Chattonella marina, Heterosigma akashiwo, Scrippsiella trochoidea, Heterocapsa triquetra, Prorocentrum minimum and Skeletonema costatum. A taxonomic study was carried out based on a polyphasic approach to characterize the exact taxonomic position of strain Yeonmyeong 2-22 T . The bacterium was able to grow at 10-40 °C, at salinities from 0 to 9 %, at pH from 4.0 to 9.0 and was not able to degrade gelatin or casein. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain Yeonmyeong 2-22 T was considered to represent a novel species of the genus Porphyrobacter, which belongs to the family Erythrobacteraceae, and was related most closely to Porphyrobacter dokdonensis DSW-74 T with 97.23 % 16S rRNA gene sequence similarity. The dominant cellular fatty acids of strain Yeonmyeong 2-22 T were C18 : 1ω7c (49.7 %), C16 : 0 (12.0 %) and 11-methyl C18 : 1ω7c (11.5 %), and ubiquinone-10 (Q-10) was the predominant respiratory lipoquinone. The genomic DNA G+C content of strain Yeonmyeong 2-22 T was calculated to be 63.0 mol%. Phenotypic characteristics of the novel strain also differed from other members of the genus Porphyrobacter. On the basis of polyphasic taxonomic data, strain Yeonmyeong 2-22 T represents as a novel species of the genus Porphyrobacter, for which the name of Porphyrobacter algicida sp. nov. is proposed. The type strain is Yeonmyeong 2-22 T (=KEMB 9005-328 T =JCM 31499 T ).

  12. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil.

    Science.gov (United States)

    Gao, Zhao-Ming; Xu, Xun; Ruan, Ling-Wei

    2014-01-01

    Enrichment of microbial consortia provides an approach to simulate and investigate microbial communities in natural environments. In this study, a cellulolytic microbial consortium SQD-1.1 was enriched from mangrove soil of Qinglan port (Hainan, China) by 27 times continuous subcultivation under anaerobic static conditions. The consortium could completely degrade 0.2% (w/v) filter paper within 3 days and utilized it as the sole carbon source. PCR-denaturing gradient gel electrophoresis analysis revealed a stable microbial community structure in the incubation process of 10 days and in the procedure of subcultivation. Twenty-four operational taxonomic units belonging to seven phyla were obtained from the full-length 16S rRNA gene library. Five clones, closest related to the genera Alkaliflexus, Clostridium, Alistipes, Spirochaeta, and Trichococcus, were the predominant ones. Among them, M117, phylogeneticly showing high similarity (16S rRNA gene identity, 95.3%) with the cellulolytic anaerobic bacterium Clostridium straminisolvens CSK1(T), was the potential key cellulolytic bacterium. Using the plate cultivation method, 12 strains, including one potential new species and four potential new species of new genera, were isolated. The strain P2, corresponding to the most frequently detected clone (M05) in the 16S rRNA gene library, showed both CMCase and xylanase activity and may be another important cellulolytic bacterium. The findings of cellulase activity in cell pellet and cohesion and dockerin domains in metagenome data further suggested the potential of utilization of cellulosomes by the consortium to degrade cellulose. Consortium SQD-1.1 provides a candidate for investigating the mechanism of cellulose degradation under anoxic conditions in natural environments.

  13. Bioconversion process of rice straw by thermotolerant cellulolytic ...

    African Journals Online (AJOL)

    state fermentation for bioethanol production is a focus of current attention. A total of 10 actinomycetes isolates were isolated from soils and decayed rice straw. All these isolates were purified and screened for their cellulolytic activity; one strain ...

  14. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    Science.gov (United States)

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  15. Draft genome sequence of a denitrifying bacterium Paracoccus marcusii PAMC 22219 isolated from Arctic marine sediment.

    Science.gov (United States)

    Cha, In-Tae; Song, Eun-Ji; Seok, Yoon Ji; Lee, Hyunjin; Park, Inhye; Lee, Yoo Kyung; Roh, Seong Woon; Choi, Hak-Jong; Nam, Young-Do; Seo, Myung-Ji

    2015-06-01

    A denitrifying bacterium, Paracoccus marcusii PAMC 22219, was isolated from Arctic marine sediment in Svalbard, Norway. The obtained contigs were 265 with genome size of 4.0Mb and G+C content of 66.1%. This bacterial genome revealed that it had nitrate and nitrite ammonification genes involved in the denitrification process, suggesting that P. marcusii PAMC 22219 is a denitrifying bacterium. This is the first genome that has been sequenced in the genus Paracoccus, isolated from an Arctic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey.

    Science.gov (United States)

    Zhao, Xin; Zhou, Zhi-jiang; Han, Ye; Wang, Zhan-zhong; Fan, Jie; Xiao, Hua-zhi

    2013-11-07

    A bacterial strain BH072 isolated from a honey sample showed antifungal activity against mold. Based on morphological, biochemical, physiological tests, and analysis of 16S rDNA sequence, the strain was identified to be a new subspecies of Bacillus sp. It had a broad spectrum of antifungal activity against various mold, such as Aspergillus niger, Pythium, and Botrytis cinerea. Six pairs of antifungal genes primers were designed and synthesized, and ituA, hag, tasA genes were detected by PCR analysis. The remarkable antifungal activity could be associated with the co-production of these three peptides. One of them was purified by 30-40% ammonium sulfate precipitation, Sephadex G-75 gel filtration and anion exchange chromatography on D201 resin. The purified peptide was estimated to be 35.615 kDa and identified to be flagellin by micrOTOF-Q II. By using methanol extraction, another substance was isolated from fermentation liquor, and determined to be iturin with liquid chromatography-mass spectrometry (LC-MS) method. The third possible peptide encoded by tasA was not isolated in this study. The culture liquor displayed antifungal activity in a wide pH range (5.0-9.0) and at 40-100°C. The result of the present work suggested that Bacillus BH072 might be a bio-control bacterium of research value. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Isolation, Screening, and Identification of Cellulolytic Bacteria from Natural Reserves in the Subtropical Region of China and Optimization of Cellulase Production by Paenibacillus terrae ME27-1

    Directory of Open Access Journals (Sweden)

    Yan-Ling Liang

    2014-01-01

    Full Text Available From different natural reserves in the subtropical region of China, a total of 245 aerobic bacterial strains were isolated on agar plates containing sugarcane bagasse pulp as the sole carbon source. Of the 245 strains, 22 showed hydrolyzing zones on agar plates containing carboxymethyl cellulose after Congo-red staining. Molecular identification showed that the 22 strains belonged to 10 different genera, with the Burkholderia genus exhibiting the highest strain diversity and accounting for 36.36% of all the 22 strains. Three isolates among the 22 strains showed higher carboxymethyl cellulase (CMCase activity, and isolate ME27-1 exhibited the highest CMCase activity in liquid culture. The strain ME27-1 was identified as Paenibacillus terrae on the basis of 16S rRNA gene sequence analysis as well as physiological and biochemical properties. The optimum pH and temperature for CMCase activity produced by the strain ME27-1 were 5.5 and 50°C, respectively, and the enzyme was stable at a wide pH range of 5.0–9.5. A 12-fold improvement in the CMCase activity (2.08 U/mL of ME27-1 was obtained under optimal conditions for CMCase production. Thus, this study provided further information about the diversity of cellulose-degrading bacteria in the subtropical region of China and found P. terrae ME27-1 to be highly cellulolytic.

  19. Cellulolytic potential of probiotic Bacillus Subtilis AMS6 isolated from traditional fermented soybean (Churpi): An in-vitro study with regards to application as an animal feed additive.

    Science.gov (United States)

    Manhar, Ajay K; Bashir, Yasir; Saikia, Devabrata; Nath, Dhrubajyoti; Gupta, Kuldeep; Konwar, Bolin K; Kumar, Rahul; Namsa, Nima D; Mandal, Manabendra

    2016-01-01

    The aim of the present study is to evaluate the probiotic attributes of Bacillus subtilis AMS6 isolated from fermented soybean (Churpi). This isolate exhibited tolerance to low pH (pH 2.0) and bile salt (0.3%), capability to autoaggregate and coaggregate. AMS6 also showed highest antibacterial activity against the pathogenic indicator strain Salmonella enterica typhimurium (MTCC 1252) and susceptibility towards different antibiotics tested. The isolate was effective in inhibiting the adherence of food borne pathogens to Caco-2 epithelial cell lines, and was also found to be non-hemolytic which further strengthen the candidature of the isolate as a potential probiotic. Further studies revealed B. subtilis AMS6 showed cellulolytic activity (0.54±0.05 filter paper units mL(-1)) at 37°C. The isolate was found to hydrolyze carboxymethyl cellulose, filter paper and maize (Zea mays) straw. The maize straw digestion was confirmed by scanning electron microscopy studies. The isolate was able to degrade filter paper within 96h of incubation. A full length cellulase gene of AMS6 was amplified using degenerate primers consisting of 1499 nucleotides. The ORF encoded for a protein of 499 amino acids residues with a predicted molecular mass of 55.04kDa. The amino acids sequence consisted of a glycosyl hydrolase family 5 domain at N-terminal; Glycosyl hydrolase catalytic core and a CBM-3 cellulose binding domain at its C terminal. The study suggests potential probiotic B. subtilis AMS6 as a promising candidate envisaging its application as an animal feed additive for enhanced fiber digestion and gut health of animal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Thermaerobacter litoralis sp. nov., a strictly aerobic and thermophilic bacterium isolated from a coastal hydrothermal field

    DEFF Research Database (Denmark)

    Tanaka, Reiji; Kawaichi, Satoshi; Nishimura, Hiroshi

    2006-01-01

    A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52-78°C (optimum, 70°C), pH 5-8 (optimum, pH 7...

  1. Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium Pseudoalteromonas tunicata

    Directory of Open Access Journals (Sweden)

    N. Kumar

    2005-10-01

    Full Text Available The marine environment is a major source for many novel natural compounds. A new yellow pigment has been isolated from the marine bacterium P. tunicata and identified as a new member of the tambjamine class of compounds. The structural identification was achieved by a combination of 1D and 2D-NMR spectroscopy and high resolution mass spectrometry data.

  2. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2016-12-01

    Full Text Available Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene. Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

  3. Biodegradation of 2 - methoxyethanol by a new bacterium isolate ...

    African Journals Online (AJOL)

    Microbial biodegradation of 2-methoxyethanol also known as Methyl glycol (MG) under anaerobic conditions has received much attention during the past decade. However, not much is known about the aerobic degradation of 2-methoxyethanol. Samples from various environmental niches were enriched to isolate and ...

  4. Studies on amylase activity of an amylolytic bacterium isolated from ...

    African Journals Online (AJOL)

    Enzyme activity gradually got reduced with the addition of increasing concentrations of ethylenediaminetetraacetic acid (EDTA), confirming the need for calcium for enzyme action. The amylase produced in the medium was isolated by centrifugation and partially purified by ammonium sulphate fractionation followed by ...

  5. A probiotic bacterium, Pediococcus pentosaceus OZF, isolated from ...

    African Journals Online (AJOL)

    Pediococcus pentosaceus OZF, originally isolated from healthy human breast milk, produces antimicrobial activities against many gram-positive bacterial species, including the food borne pathogen, Listeria monocytogenes. A bacteriocin was purified to homogeneity from the supernatant of exponentially growing cells using ...

  6. Azospirillum brasilense, a Beneficial Soil Bacterium: Isolation and Cultivation.

    Science.gov (United States)

    Alexandre, Gladys

    2017-11-09

    Bacteria of the genus Azospirillum comprise 15 species to date, with A. brasilense the best studied species in the genus. Azospirillum are soil bacteria able to promote the growth of plants from 113 species spanning 35 botanical families. These non-pathogenic and beneficial bacteria are ubiquitous in soils and inhabit the roots of diverse plants. These bacteria are microaerophilic, able to fix nitrogen under free-living conditions, motile, and able to navigate in gradients of various chemicals, including oxygen. These physiological traits are used to isolate these soil bacteria from soil and plant root samples, providing isolates that can be used for studying microbial physiology and plant growth promotion. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  7. [Isolation of endophytic antagonistic bacterium from Amorphophallus konjac and research on its antibacterial metabolite].

    Science.gov (United States)

    Zhou, Ying; Chen, Lin; Chai, Xin-Li; Yu, Zi-Niu; Sun, Ming

    2007-12-01

    An endophytic antagonistic bacterium was isolated from Amorphophallus konjac calli. In order to identify this bacterium, 16S rDNA was amplified and partially sequenced. Sequence comparison showed that this sequence has the highest similarity to that in Bacillus subtilis, with 99.0% identities. That demonstrated this bacterium belongs to Bacillus subtili , named BSn5. The extracted extracellular protein from strain BSn5 had antibacterial activity against Erwinia carotovora subp. carotovora, which was unstable after heated, sensitive to proteinase K and resistant to trypsin. There was only a 31.6kDa protein component as by SDS-PAGE detection. Nondenaturing polyacrylaminde gel was used to purify this protein. The purified 31.6kDa protein exhibited inhibitory activity against Erwinia carotovora subp. carotovora. This protein is different from all known metabolites from Bacillus subtilis, suggesting that it may be a novel antibacterial protein.

  8. Studies on fibrolytic bacterium Butyrivibrio fibrisolvens isolated from sheep rumen

    Directory of Open Access Journals (Sweden)

    Sawanon, S.

    2007-03-01

    Full Text Available Fibrolytic Butyrivibrio fibrisolvens was an attractive target for genetic engineering in rumen bacteria. The experiment was initiated in making culture collection of this species, some of which may be useful ascandidate strain in the future. Hay suspended in sheep rumen was used as the source of isolates. The source was enriched with filter paper degradation, diluted with an anaerobic solution and used for pure culturing bya roll tube technique. After colony forming, Gram-negative curved rods bacteria were selected and screened for further identification with volatile fatty acid (VFA profiling and 16S rDNA sequencing. Fibrolyticstrains were selected to find fibrolytic enzymes and attachment to and digestion of various fibers. Fortyseven strains of Gram-negative curved rods were isolated. After determining cellulase, xylanase activities and VFA profile, 2 strains were chosen and employed for 16S rDNA sequencing. Both strains producingbutyrate were B. fibrisolvens. Of these 2 strains, most fibrolytic S-28 was selected. The strain S-28 could degrade natural fibers but not cellulose and showed strong attachment to them. A strong xylanase activitywas detected and presence of cellulase, β-glucosidase, β-xylosidase, α-L-arabinofuranosidase and β- cellobiosidase were also demonstrated.

  9. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  10. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium.

    OpenAIRE

    Beller, H R; Spormann, A M; Sharma, P K; Cole, J R; Reinhard, M

    1996-01-01

    A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of tolu...

  11. [Identification and antagonistic activities of an endophytic bacterium MGP3 isolated from papaya fruit].

    Science.gov (United States)

    Shi, Jingying; Liu, Aiyuan; Li, Xueping; Chen, Weixin

    2011-09-01

    Postharvest decay resulted from anthracnose caused by pathogens Colletotrichum gloeosporioides and blight diseases caused by Phytophthora nicotianae leads to significant loss of papaya fruits. In order to reduce such loss, we isolated endophytic bacteria that may possess powerful antagonistic activities toward these pathogens for effective biological control of anthracnose and blight diseases. The methods of dilution and inhibition circle were used for isolating and screening endophytic bacteria from papaya fruit. Based on morphological, physiological and biochemical characteristics, and homology analysis of the partial sequence of 16S rDNA, an endophytic bacterium was identified. The colonization of the antagonistic endophyte in papaya was detected by inoculating suspension of strains in caudices of papaya plant after Rifampicin-resistant mutants (rif(r)) induction. The effects on diseases caused by Colletotrichum gloeosporioides and Phytophthora nicotianae were tested by preharvest and postharvest experiments. One of the endophytic bacteria named MGP3 was selected from the papaya pericarp and identified as Pseudomonas aeruginosa (Accession No. JF708186). This bacterium was able to colonize in the laminae, leafstalk or pericarp of papaya, and strongly inhibit 10 phytopathogens. In the postharvest experiment, MGP3 inhibited 50% anthracnose and 71% blight of harvested papaya fruits. The application of MGP3 at five preharvest stages of papaya significantly reduced latent infection rate of Colletotrichum gloeosporioides and disease index of anthracnose. Antagonistic endophytic bacterium MGP3 isolated from papaya fruit had potential application value as a biological control agent.

  12. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

    Directory of Open Access Journals (Sweden)

    Jun-Feng Shi

    Full Text Available ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.

  13. Draft Genome Sequence of Cellulolytic and Xylanolytic Cellulomonas sp. Strain B6 Isolated from Subtropical Forest Soil

    Science.gov (United States)

    Piccinni, Florencia; Murua, Yanina; Ghio, Silvina; Talia, Paola; Rivarola, Máximo

    2016-01-01

    Cellulomonas sp. strain B6 was isolated from a subtropical forest soil sample and presented (hemi)cellulose-degrading activity. We report here its draft genome sequence, with an estimated genome size of 4 Mb, a G+C content of 75.1%, and 3,443 predicted protein-coding sequences, 92 of which are glycosyl hydrolases involved in polysaccharide degradation. PMID:27563050

  14. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir.

    Science.gov (United States)

    Jeanthon, C; Reysenbach, A L; L'Haridon, S; Gambacorta, A; Pace, N R; Glénat, P; Prieur, D

    1995-08-01

    A thermophilic, strictly anaerobic bacterium, designated strain SL1, was isolated from a deep, continental oil reservoir in the East Paris Basin (France). This organism grew between 50 and 75 degrees C, with an optimum at 70 degrees C. It was inhibited by elemental sulfur and was able to reduce cystine and thiosulfate to hydrogen sulfide. The G+C content (40 mol%), the presence of a lipid structure unique to the genus Thermotoga, and the 16S rRNA sequence of strain SL1 indicated that the isolate belongs to the genus Thermotoga. Based on DNA-DNA hybridization, isolate SL1 does not show species-level similarity with the recognized species T. maritima, T. neapolitana, and T. thermarum. Based on this description of strain SL1, we propose the recognition of a new species: Thermotoga subterranea.

  15. IDENTIFICATION AND PATHOGENICITY OF ISOLATE OF BACTERIUM CAUSED LEAF BLIGHT DISEASE ON Maranta arundinacea

    Directory of Open Access Journals (Sweden)

    Supriadi Supriadi

    2018-01-01

    Full Text Available Arrowroot (Maranta arundinacea L is a multi-functional plant used as a source of medicinal, carbohydrate (especially the green leaf type and also as ornamental plant (the streaked white leaf type. A leaf blight disease is recently found on the streaked white type in Bogor. Preliminary observation indicated that the disease was associated with bacterial infection. The cause of the disease has not been studied. This study was aimed to identify the cause of bacterial leaf blight disease. Experiments were conducted in the laboratory of Research Institute for Spice and Medicinal Crops in Bogor. Suspected bacteria were isolated from diseased leaves. The results showed that the bacterium produced white to brownish colonies on rich agar media containing peptone or cassamino acid. 3-5 mm in diameter, circular, and did not yield fluorescent pigment on King’s B medium. The bacterium formed rod cells, Gram negative, accumulated poly β hydroxybutyrate, utilized glucose under aerobic condition, not hydrolyse arginine and starch, positive catalase, insensitive to tetrazolium salt (0.1%, and grew at 35oC. The bacterium neither producted xanthomonadin pigment nor reduced nitrate to nitrite. The pathogen was tolerant to penicillin and oxolinic acid, but sensitive to streptomycin and oxytetracycline at high concentration (1.000 ppm. These characteristics met to those of Pseudomonas cepacia. Pathogenicity test on detached leaves showed that the typical symptom of blight was similar to that of natural infection on arrowroot. This is the first report on occurrence of P cepacia on arrowroot plant.

  16. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+).

  17. Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate.

    Science.gov (United States)

    Lee, Jung-Bok; Sohn, Ho-Yong; Shin, Kee-Sun; Jo, Min-Sub; Kim, Jang-Eok; Lee, Se-Won; Shin, Ji-Won; Kum, Eun-Joo; Kwon, Gi-Seok

    2006-11-15

    Endosulfan, an endocrine disrupting chemical, is a widely used cyclodiene organochlorine pesticide worldwide, and it blocks neuronal GABA(A)-gated chloride channels in mammals and aquatic organisms. Endosulfan and its metabolites, such as endosulfan sulfate, are persistent in environments and are considered as toxic chemicals. For bioremediation of endosulfan, in this study, an attempt was made to isolate an endosulfan and endosulfan sulfate degrading bacterium from endosulfan-polluted agricultural soil. Through repetitive enrichment and successive subculture using endosulfan or endosulfan sulfate as the sole carbon source, a bacterium KS-2P was isolated. The KS-2P was identified as Pseudomonas sp. on the basis of the results of a 16S rDNA sequencing analysis and MIDI test. The degradation ratios for endosulfan or endosulfan sulfate in minimal medium containing endosulfan (23.5 microg mL(-1)) or endosulfan sulfate (21 microg mL(-1)) were 52% and 71%, respectively. Our results suggest that Pseudomonas sp. KS-2P has potential as a biocatalyst for endosulfan bioremediation.

  18. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  19. Novel Poly[(R-3-Hydroxybutyrate]-Producing Bacterium Isolated from a Bolivian Hypersaline Lake

    Directory of Open Access Journals (Sweden)

    María Soledad Marqués-Calvo

    2013-01-01

    Full Text Available Poly[(R-3-hydroxybutyrate] (PHB constitutes a biopolymer synthesized from renewable resources by various microorganisms. This work focuses on finding a new PHB-producing bacterium capable of growing in conventional media used for industrial biopolymer production, its taxonomical identification, and characterization of its biopolymer. Thus, a bacterial isolation process was carried out from environmental samples of water and mud. Among the isolates, strain S29 was selected and used in a fed-batch fermentation to generate a biopolymer. This biopolymer was recovered and identified as PHB homopolymer. Surprisingly, it featured several fractions of different molecular masses, and thermal properties unusual for PHB. Hence, the microorganism S29, genetically identified as a new strain of Bacillus megaterium, proved to be interesting not only due to its growth and PHB accumulation kinetics under the investigated cultivation conditions, but also due to the thermal properties of the produced PHB.

  20. Chitinolytic enzymes from bacterium inhabiting human gastrointestinal tract -- critical parameters of protein isolation from anaerobic culture.

    Science.gov (United States)

    Dušková, Jarmila; Tishchenko, Galina; Ponomareva, Evgenia; Šimůnek, Jiří; Koppová, Ingrid; Skálová, Tereza; Štěpánková, Andrea; Hašek, Jindřich; Dohnálek, Jan

    2011-01-01

    The object of this study are chitinolytic enzymes produced by bacterium Clostridium paraputrificum J4 isolated from the gastrointestinal tract of a healthy human. In particular, we focus on the development of purification protocols, determination of properties of the enzymes and their activity profiles. The process of bacteria cultivation and isolation of chitinolytic complex of enzymes showing specific activities of endo-, exo-chitinase and N-acetyl-β-glucosaminidase was optimized. A range of various purification procedures were used such as ultrafiltration, precipitation, chromatographic separations (ion-exchange, size exclusion, chromatofocusing) in altered combinations. The optimal purification protocol comprises two or three steps. Individual samples were analyzed by SDS/PAGE electrophoresis and after renaturation their activity could be detected using zymograms. Mass spectroscopy peptide fragment analysis and MALDI analysis of the purest samples indicate presence of endochitinase B (molecular mass about 85 kDa) and of 60-kDa endo- and exochitinases.

  1. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA.

    Science.gov (United States)

    Simbahan, Jessica; Drijber, Rhae; Blum, Paul

    2004-09-01

    A thermo-acidophilic Gram-positive bacterium, strain CsHg2T, which grows aerobically at 35-65 degrees C (optimum 55 degrees C) and at pH 2.0-6.0 (optimum 4.0), was isolated from a geothermal pool located in Coso Hot Springs in the Mojave Desert, California, USA. Phylogenetic analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to the type strains of Alicyclobacillus acidocaldarius (97.8 % identity) and Alicyclobacillus sendaiensis (96.9 %), three Japanese strains denoted as UZ-1, KHA-31 and MIH 332 (96.1-96.5 %) and Alicyclobacillus genomic species FR-6 (96.3 %). Phenotypic characteristics including temperature and pH optima, G+C composition, acid production from a variety of carbon sources and sensitivity to different metal salts distinguished CsHg2T from A. acidocaldarius, A. sendaiensis and FR-6. The cell lipid membrane was composed mainly of omega-cyclohexyl fatty acid, consistent with membranes from other Alicyclobacillus species. Very low DNA-DNA hybridization values between CsHg2T and the type strains of Alicyclobacillus indicate that CsHg2T represents a distinct species. On the basis of these results, the name Alicyclobacillus vulcanalis sp. nov. is proposed for this organism. The type strain is CsHg2T (ATCC BAA-915T = DSM 16176T).

  2. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    Directory of Open Access Journals (Sweden)

    Min Liu

    Full Text Available In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity.

  3. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    Science.gov (United States)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  4. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    Science.gov (United States)

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Isolation and characterization of transducing bacteriophage BP1 for Bacterium anitratum (Achromobacter sp.).

    Science.gov (United States)

    Twarog, R; Blouse, L E

    1968-07-01

    A small transducing phage has been isolated against a strain of Bacterium anitratum. The particle has a head dimension of 450 A and a tail approximately 200 A long. The latent period is 16 min and the average burst size is 98. The intact particle has an absorption maximum and minimum at 260 and 237 mmu, respectively. The sedimentation coefficient (S(20)) is 460. The phage contains double-stranded DNA with an S degrees (20,w) of 32.8. Molecular weight estimates of the deoxyribonucleic acid ranged from 2.33 x 10(7) to 2.66 x 10(7) based on sedimentation velocity studies. The percentage guanine plus cytosine compositions of the deoxyribonucleic acid, determined by melting temperature and cesium chloride equilibrium centrifugation, were 40.7 and 42.0, respectively.

  6. Emergence of a New Population of Rathayibacter toxicus: An Ecologically Complex, Geographically Isolated Bacterium.

    Science.gov (United States)

    Arif, Mohammad; Busot, Grethel Y; Mann, Rachel; Rodoni, Brendan; Liu, Sanzhen; Stack, James P

    2016-01-01

    Rathayibacter toxicus is a gram-positive bacterium that infects the floral parts of several Poaceae species in Australia. Bacterial ooze is often produced on the surface of infected plants and bacterial galls are produced in place of seed. R. toxicus is a regulated plant pathogen in the U.S. yet reliable detection and diagnostic tools are lacking. To better understand this geographically-isolated plant pathogen, genetic variation as a function of geographic location, host species, and date of isolation was determined for isolates collected over a forty-year period. Discriminant analyses of recently collected and archived isolates using Multi-Locus Sequence Typing (MLST) and Inter-Simple Sequence Repeats (ISSR) identified three populations of R. toxicus; RT-I and RT-II from South Australia and RT-III from Western Australia. Population RT-I, detected in 2013 and 2014 from the Yorke Peninsula in South Australia, is a newly emerged population of R. toxicus not previously reported. Commonly used housekeeping genes failed to discriminate among the R. toxicus isolates. However, strategically selected and genome-dispersed MLST genes representing an array of cellular functions from chromosome replication, antibiotic resistance and biosynthetic pathways to bacterial acquired immunity were discriminative. Genetic variation among isolates within the RT-I population was less than the within-population variation for the previously reported RT-II and RT-III populations. The lower relative genetic variation within the RT-I population and its absence from sampling over the past 40 years suggest its recent emergence. RT-I was the dominant population on the Yorke Peninsula during the 2013-2014 sampling period perhaps indicating a competitive advantage over the previously detected RT-II population. The potential for introduction of this bacterial plant pathogen into new geographic areas provide a rationale for understanding the ecological and evolutionary trajectories of R. toxicus.

  7. Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus

    Directory of Open Access Journals (Sweden)

    Anmar Hameed Bloh

    2016-02-01

    Full Text Available Aim: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03. Materials and Methods: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup’s Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree. Results: Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06 were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity. Conclusion: On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates.

  8. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Production of cellulolytic and xylanolytic enzymes by a ...

    African Journals Online (AJOL)

    The cellulolytic and xylanolytic activity of a pathogenic Myrothecium roridum Tode (IMI 394934) and non-pathogenic Fusarium solani and Curvularia pallescence Boedjin isolates from water hyacinth were investigated. The mycelial plugs of each isolate was grown in submerged cultures of Czapeck Dox broth containing the ...

  11. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Kirk; Kramer, Randall

    2017-08-08

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    Science.gov (United States)

    Duan, Junxin; Schnorr, Kirk Matthew; Wu, Wenping

    2013-11-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2016-11-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-11-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Science.gov (United States)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2017-09-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2017-09-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1.

    Science.gov (United States)

    Khan, Sana; Malik, Abdul

    2016-03-01

    The textile and dye industries are considered as one of the major sources of environmental pollution. The present study was conducted to investigate the degradation of the azo dye Reactive Black 5 (RB 5) using a bacterium isolated from soil samples collected around a textile industry. The bacterial strain BS1 capable of degrading RB 5 was isolated and identified as Pseudomonas entomophila on the basis of 16S rDNA sequencing. The effects of different parameters on the degradation of RB 5 were studied to find out the optimal conditions required for maximum degradation, which was 93% after 120 h of incubation. Static conditions with pH in the range of 5-9 and a temperature of 37 °C were found to be optimum for degrading RB 5. Enzyme assays demonstrated that P. entomophila possessed azoreductase, which played an important role in degradation. The enzyme was dependent on flavin mononucleotide and NADH for its activity. Furthermore, a possible degradation pathway of the dye was proposed through gas chromatography - mass spectrometry analysis, which revealed that the metabolic products were naphthalene-1,2-diamine and 4-(methylsulfonyl) aniline. Thus the ability of this indigenous bacterial isolate for simultaneous decolorization and degradation of the azo dye signifies its potential application for treatment of industrial wastewaters containing azo dyes.

  3. Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates

    International Nuclear Information System (INIS)

    Jeffrey, W.H.; Paul, J.H.

    1990-01-01

    One assumption made in bacterial production estimates from [ 3 H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported the thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibro sp. strain DI9, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems

  4. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat

    Directory of Open Access Journals (Sweden)

    Debajit Kalita

    2017-12-01

    Full Text Available Lead released from manufacturing factories, recycling plants, automobile company and landfill leachate is abundantly found in wastewater. An efficient bioremediating agent for lead removal from wastewater is expected to ease the ever increasing problem. The present study reports Pseudomonas sp. W6 isolated from extreme habitat of hot water spring of North–East India evaluated for its Lead biosorption property. The bacterium showed capacity to resist 1.0 mM lead in both solid and liquid minimal media. Epifluorescence microscopy reveal the viability of bacterial cells under metal stress condition. ICP-MS analysis revealed 65% and 61.2% removal of lead from the Synthetic Bangladesh Ground Water medium in batch culture and column study respectively which was higher when compared to biosorption capacity of P. aeruginosa MTCC2474, P. alcaligenes MJ7 from forest soil and P. ficuserectae PKRS11 from uranium rich soil. Exopolysaccharide released by the isolate which influenced biosorption revealed the presence of ligands assayed using microbial hydrophobicity and FTIR. The extremophilic isolate is proposed as a choice for efficient bioremediation of lead contaminated wastewater. Keywords: Extremophile, Pseudomonas, Lead bioremediation, Epifluorescence microscopy, ICP-MS, FTIR

  5. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat.

    Science.gov (United States)

    Kalita, Debajit; Joshi, S R

    2017-12-01

    Lead released from manufacturing factories, recycling plants, automobile company and landfill leachate is abundantly found in wastewater. An efficient bioremediating agent for lead removal from wastewater is expected to ease the ever increasing problem. The present study reports Pseudomonas sp. W6 isolated from extreme habitat of hot water spring of North-East India evaluated for its Lead biosorption property. The bacterium showed capacity to resist 1.0 mM lead in both solid and liquid minimal media. Epifluorescence microscopy reveal the viability of bacterial cells under metal stress condition. ICP-MS analysis revealed 65% and 61.2% removal of lead from the Synthetic Bangladesh Ground Water medium in batch culture and column study respectively which was higher when compared to biosorption capacity of P. aeruginosa MTCC 2474, P. alcaligenes MJ7 from forest soil and P. ficuserectae PKRS11 from uranium rich soil. Exopolysaccharide released by the isolate which influenced biosorption revealed the presence of ligands assayed using microbial hydrophobicity and FTIR. The extremophilic isolate is proposed as a choice for efficient bioremediation of lead contaminated wastewater.

  6. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    Science.gov (United States)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  7. Isolation of a Campylobacter lanienae-like bacterium from laboratory chinchillas (Chinchilla laniger).

    Science.gov (United States)

    Turowski, E E; Shen, Z; Ducore, R M; Parry, N M A; Kirega, A; Dewhirst, F E; Fox, J G

    2014-12-01

    Routine necropsies of 27 asymptomatic juvenile chinchillas revealed a high prevalence of gastric ulcers with microscopic lymphoplasmacytic gastroenteritis and typhlocolitis. Polymerase chain reaction (PCR) analysis using Campylobacter genus-specific partial 16S rRNA primers revealed the presence of Campylobacter spp. DNA in the faeces of 12 of 27 animals (44.4%). Species-specific partial 16S rRNA PCR and sequencing confirmed that these animals were colonized with Campylobacter lanienae, a gram-negative, microaerophilic bacterium that was first identified on routine faecal screening of slaughterhouse employees and subsequently isolated from faeces of livestock. Campylobacter lanienae was isolated from the faeces of six PCR-positive animals and identified with species-specific PCR and full 16S rRNA sequencing. Phylogenetic analysis showed that these isolates clustered with C. lanienae strain NCTC 13004. PCR analysis of DNA extracted from gastrointestinal tissues revealed the presence of C. lanienae DNA in the caecum and colon of these chinchillas. Gastrointestinal lesions were scored and compared between C. lanienae-positive and C. lanienae-negative animals. There was no correlation between colonization status and lesion severity in the stomach, liver, duodenum, or colon. Possible routes of C. lanienae infection in chinchillas could include waterborne transmission and faecal-oral transmission from wild mice and rats or livestock. Based on these findings, the authors conclude that C. lanienae colonizes the lower bowel of chinchillas in the absence of clinical disease. This is the first report of C. lanienae in any rodent species. Campylobacter lanienae isolates from different mammalian species demonstrate heterogeneity by 16S rRNA sequence comparison. Analysis using rpoB suggests that isolates and clones currently identified as C. lanienae may represent multiple species or subspecies. © 2014 Blackwell Verlag GmbH.

  8. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  9. Draft genome sequence of Enterobacter sp. Sa187, an endophytic bacterium isolated from the desert plant Indigofera argentea

    NARCIS (Netherlands)

    Lafi, Feras F.; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged M.

    2017-01-01

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth-promoting activity and

  10. First Insights into the Genome Sequence of Clostridium thermopalmarium DSM 5974, a Butyrate-Producing Bacterium Isolated from Palm Wine.

    Science.gov (United States)

    Poehlein, Anja; Hettwer, Eva; Mohnike, Lennart; Daniel, Rolf

    2018-04-26

    Clostridium thermopalmarium is a moderate thermophilic, rod-shaped, and endospore-forming bacterium, which was isolated from palm wine in Senegal. Butyrate is produced from a broad variety of sugar substrates. Here, we present the draft genome sequence of C. thermopalmarium DSM 5974 (2.822 Mb) containing 2,665 predicted protein-encoding genes. Copyright © 2018 Poehlein et al.

  11. Microbacter margulisiae gen. nov., sp. nov., a novel propionigenic bacterium isolated from sediments of an acid rock drainage pond

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Luis Sanz, J.; Stams, A.J.M.

    2014-01-01

    A novel anaerobic propionigenic bacterium, strain ADRIT, was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4-0.6 x 1-1.7 µm), non-motile and non-spore forming rods. Cells possessed a Gram-negative cell wall structure and were vancomycin

  12. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

    Science.gov (United States)

    Lim, Yan-Lue; Ee, Robson; Yong, Delicia; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-11-20

    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Thermotoga lettingae sp. nov. : a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Stams, A.J.M.

    2002-01-01

    A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMO(T), was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 degrees C with methanol as the sole substrate. The G C content of the DNA of strain TMO(T) was 39.2 molÐThe optimum pH,

  14. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-02-17

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  15. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    International Nuclear Information System (INIS)

    Liang Xinle; Yang Long; Zhang Hong; Zhang Lei

    2011-01-01

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60 Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C 14:1 (48.8%) and C 15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m 2 and 60 Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  16. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium.

    Science.gov (United States)

    Beller, H R; Spormann, A M; Sharma, P K; Cole, J R; Reinhard, M

    1996-01-01

    A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of toluene consumed was consistent with the theoretical ratio for mineralization of toluene coupled with the reduction of sulfate to hydrogen sulfide. Strain PRTOL1 also transforms o- and p-xylene to metabolic products when grown with toluene. However, xylene transformation by PRTOL1 is slow relative to toluene degradation and cannot be sustained over time. Stable isotope-labeled substrates were used in conjunction with gas chromatography-mass spectrometry to investigate the by-products of toluene and xylene metabolism. The predominant by-products from toluene, o-xylene, and p-xylene were benzylsuccinic acid, (2-methylbenzyl)succinic acid, and 4-methylbenzoic acid (or p-toluic acid), respectively. Metabolic by-products accounted for nearly all of the o-xylene consumed. Enzyme assays indicated that acetyl coenzyme A oxidation proceeded via the carbon monoxide dehydrogenase pathway. Compared with the only other reported toluene-degrading, sulfate-reducing bacterium, strain PRTOL1 is distinct in that it has a novel 16S rRNA gene sequence and was derived from a freshwater rather than marine environment. PMID:8919780

  17. Tenacibaculum agarivorans sp. nov., an agar-degrading bacterium isolated from marine alga Porphyra yezoensis Ueda.

    Science.gov (United States)

    Xu, Zhen-Xing; Yu, Pei; Mu, Da-Shuai; Liu, Yan; Du, Zong-Jun

    2017-12-01

    A novel Gram-stain-negative, aerobic, rod-shaped, non-flagellated and agar-digesting marine bacterium, designated as HZ1 T , was isolated from the marine alga Porphyra yezoensis Ueda (AST58-103) collected from the coastal area of Weihai, PR China. Phylogenetic analysis based on 16S rRNA gene sequences placed HZ1 T in the genus Tenacibaculum, and it formed a distinct clade in the phylogenetic tree with the type strains of Tenacibaculum amylolyticum and Tenacibaculum skagerrakense, with 97.0 % and 96.7 % 16S rRNA gene sequence similarities, respectively. The DNA G+C content of the isolate was 31.8 mol%. HZ1 T contained MK-6 as the predominant menaquinone and iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C17 : 0 3-OH and iso-C15 : 1G as the major fatty acids. The major polar lipids were phosphatidylethanolamine, four unidentified lipids and five unidentified aminolipids. On the basis of the results of the phylogenetic analysis and phenotypic properties, it is concluded that HZ1 T represents a novel species of the genus Tenacibaculum, for which the name Tenacibaculumagarivorans sp. nov. is proposed. The type strain is HZ1 T (=MCCC 1H00174 T =KCTC 52476 T ).

  18. Isolation of Aureimonas altamirensis, a Brucella canis-like bacterium, from an edematous canine testicle.

    Science.gov (United States)

    Reilly, Thomas J; Calcutt, Michael J; Wennerdahl, Laura A; Williams, Fred; Evans, Tim J; Ganjam, Irene K; Bowman, Jesse W; Fales, William H

    2014-11-01

    Microbiological and histological analysis of a sample from a swollen testicle of a 2-year-old Border Collie dog revealed a mixed infection of the fungus Blastomyces dermatitidis and the Gram-negative bacterium Aureimonas altamirensis. When subjected to an automated microbial identification system, the latter isolate was provisionally identified as Psychrobacter phenylpyruvicus, but the organism shared several biochemical features with Brucella canis and exhibited agglutination, albeit weakly, with anti-B. canis antiserum. Unequivocal identification of the organism was only achieved by 16S ribosomal RNA gene sequencing, ultimately establishing the identity as A. altamirensis. Since its first description in 2006, this organism has been isolated infrequently from human clinical samples, but, to the authors' knowledge, has not been reported from a veterinary clinical sample. While of unknown clinical significance with respect to the pathology observed for the polymicrobial infection described herein, it highlights the critical importance to unambiguously identify the microbe for diagnostic, epidemiological, infection control, and public health purposes. © 2014 The Author(s).

  19. Isolation and characterization of mercuric reductase by newly isolated halophilic bacterium, Bacillus firmus MN8

    Directory of Open Access Journals (Sweden)

    M. Noroozi

    2017-12-01

    Full Text Available The current study was aimed at isolating and identifying the halophilic and halotolerant bacteria which can produce mercuric reductase in Gavkhuni wetland in Iran. Moreover, tracking and sequencing merA gene and kinetic properties of mercuric reductase in the selected strain were performed in this study. Soil samples were taken from Gavkhuni wetland and cultured in nutrient agar medium with 5% NaCl. To examine the tolerance of purified colonies to mercury, agar dilution method was administered. Similarly, the phylogenetic analysis based on 16SrRNA gene sequencing was conducted. To investigate enzyme activity of kinetic parameters, a spectrophotometer was used to measure the NADPH oxidation decrease at 340 n.m. The results showed that among the 21 halophilic and halotolerant strains isolated from Gavkhuni wetland, 4 were resistant to mercuric chloride. A strain designated MN8 was selected for further studies because it showed the highest resistance to mercury. According to phylogenetic sequencing of 16S rRNA gene and phenotypic characteristics, the strain was categorized in the Bacillus genus and nearly related to Bacillus firmus. This strain had merA gene. The mercuric reductase showed Vmax and Km values of 0.106 U/mg and 24.051 µM, respectively. Evaluation of different concentrations of NaCl at 37°C and pH=7.5 in mercuric reductase enzyme activity indicated that the enzyme shows 50% activity in concentration of 1.5 M. Optimum pH and temperature of  enzyme activity were 7.5 and 35 °C, respectively. The results suggested that MN8 strain could be a proper candidate for bioremediation of mercury-contaminated environments such as industrial wastewaters.

  20. Effects of an equol-producing bacterium isolated from human faeces on isoflavone and lignan metabolism in mice.

    Science.gov (United States)

    Tamura, Motoi; Hori, Sachiko; Nakagawa, Hiroyuki; Yamauchi, Satoshi; Sugahara, Takuya

    2016-07-01

    Equol is a metabolite of daidzein that is produced by intestinal microbiota. The oestrogenic activity of equol is stronger than daidzein. Equol-producing bacteria are believed to play an important role in the gut. The rod-shaped and Gram-positive anaerobic equol-producing intestinal bacterium Slackia TM-30 was isolated from healthy human faeces and its effects on urinary phyto-oestrogen, plasma and faecal lipids were assessed in adult mice. The urinary amounts of equol in urine were significantly higher in mice receiving the equol-producing bacterium TM-30 (BAC) group than in the control (CO) group (P mice. The equol-producing bacterium TM-30 likely influences the metabolism of phyto-oestrogen via changes in the gastrointestinal environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis.

    Science.gov (United States)

    Park, Jin-Soo; Joe, Inseong; Rhee, Paul Dong; Jeong, Choon-Soo; Jeong, Gajin

    2017-04-01

    Some species of lactic acid bacteria have been shown to be beneficial in inflammatory bowel disease (IBD). In the present study, a strain of lactic acid bacterium (Lactobacillus paracasei LS2) was isolated from the Korean food, kimchi, and was shown to inhibit the development of experimental colitis induced by dextran sulfate sodium (DSS). To investigate the role of LS2 in IBD, mice were fed DSS in drinking water for seven days along with LS2 bacteria which were administered intragastrically to some of the mice, while phosphate-buffered saline (PBS) was administered to others (the controls). The administration of LS2 reduced body weight loss and increased survival, and disease activity indexes (DAI) and histological scores indicated that the severity of colitis was significantly reduced. The production of inflammatory cytokines and myeloperoxidase (MPO) activity also decreased. Flow cytometry analysis showed that the number of Th1 (IFN-γ) population cells was significantly reduced in the LS2-administered mice compared with the controls. The administration of LS2 induced the increase of CD4 + FOXP3 + Treg cells, which are responsible for IL-10. Numbers of macrophages (CD11b + F4/80 + ), and neutrophils (CD11b + Gr-1 + ) among lamina propria lymphocytes (LPL) were also reduced. These results indicate that LS2 has an anti-inflammatory effect and ameliorates DSS-induced colitis.

  2. [Isolation, identification and characterization of a microcystin-degrading bacterium Paucibacter sp. strain CH].

    Science.gov (United States)

    You, Di-Jie; Chen, Xiao-Guo; Xiang, Hui-Yi; Ouyang, Liao; Yang, Bing

    2014-01-01

    A bacterium capable of degrading microcystin (MC), strain CH, was isolated from the sediment of Lake Chaohu, China. Strain CH was tentatively identified as Paucibacter sp. based on the analysis of 16S rRNA gene sequences. Paucibacter sp. strain CH can use microcystin LR (MCLR) as the sole carbon and energy sources, and 11.6 microg x mL(-1) of MCLR was degraded to below the detection limit within 10 hours with the first-order reaction rate constant of 0.242 h(-1). The optimum temperature and initial pH for MC degradation were 25-30 degrees C and pH 6-9, respectively. A novel intermediate product containing the Adda residue was detected during the degradation of MCLR, which is different from those produced by strain ACM-3962, and Adda was recognized as the final product of the degradation process. Furthermore, no homologue to any of the four genes, mlrA, mlrB, mlrC and mlrD previously associated with the degradation of MCLR by strain ACM-3962 was found in strain CH. These findings suggest that Paucibacter sp. strain CH mighe degrade MC through a different pathway from that of strain ACM-3962.

  3. Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand.

    Science.gov (United States)

    Khunthongpan, Suwannee; Bourneow, Chaiwut; H-Kittikun, Aran; Tanasupawat, Somboon; Benjakul, Soottawat; Sumpavapol, Punnanee

    2013-01-01

    A novel strain of Enterobacter, C2361(T), a Gram-negative, non-spore-forming, rod-shaped and facultative anaerobic bacterium with the capability to produce transglutaminase, was isolated from seafood processing wastewater collected from a treatment pond of a seafood factory in Songkhla Province, Thailand. Phylogenetic analyses and phenotypic characteristics, including chemotaxonomic characteristics, showed that the strain was a member of the genus Enterobacter. The 16S rRNA gene sequence similarities between strain C2361(T) and Enterobacter cloacae subsp. cloacae ATCC 13047(T) and Enterobacter cloacae subsp. dissolvens LMG 2683(T) were 97.5 and 97.5%, respectively. Strain C2361(T) showed a low DNA-DNA relatedness with the above-mentioned species. The major fatty acids were C16:0, C17:0cyclo and C14:0. The DNA G+C content was 53.0 mol%. On the basis of the polyphasic evidence gathered in this study, it should be classified as a novel species of the genus Enterobacter for which the name Enterobacter siamensis sp. nov. is proposed. The type strain is C2361(T) (= KCTC 23282(T) = NBRC 107138(T)).

  4. Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of Panax notoginseng.

    Science.gov (United States)

    Zhang, Meng-Yue; Cheng, Juan; Cai, Ying; Zhang, Tian-Yuan; Wu, Ying-Ying; Manikprabhu, Deene; Li, Wen-Jun; Zhang, Yi-Xuan

    2017-08-01

    A Gram-stain-positive, rod-shaped, motile bacterium designated as SYP-B691T was isolated from rhizospheric soil of Panax notoginseng. Phylogenetic analysis indicated that SYP-B691T clearly represented a member of the genus Bacillus and showed 16S rRNA gene similarity lower than 97.0 % with the type strains of species of the genus Bacillus, which indicates that it should be considered as a candidate novel species within this genus. The optimum growth of the strain was found to occur at 37 °C and pH 7.0-9.0. The genomic DNA G+C content was determined to be 45.2 mol%. It contained meso-2,6-diaminopimelic acid in the cell-wall peptidoglycan. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. MK-7 was the only menaquinone identified. The major cellular fatty acids of SYP-B691T were identified as iso-C15 : 0 and anteiso-C15 : 0. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, SYP-B691T merits recognition as a representative of a novel species of the genus Bacillus, for which the name Bacillus notoginsengisoli sp. nov. is proposed, with SYP-B691T(=DSM 29196T=JCM 30743T) as the type strain.

  5. Jeotgalibacillus soli sp. nov., a Gram-stain-positive bacterium isolated from soil.

    Science.gov (United States)

    Cunha, Sofia; Tiago, Igor; Paiva, Gabriel; Nobre, Fernanda; da Costa, Milton S; Veríssimo, António

    2012-03-01

    A Gram-staining-positive, motile, rod-shaped, spore-forming bacterium, designated P9(T), was isolated from soil in Portugal. This organism was aerobic and catalase- and oxidase-positive. It had an optimum growth temperature of about 35 °C and an optimum growth pH of about 8.0-8.5, and grew in medium with 0-9% (w/v) NaCl. The cell-wall peptidoglycan was of the A1α type, with L-lysine as the diagnostic diamino acid. The major respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C(15:0) (45.4%), iso-C(15:0) (22.0%) and anteiso-C(17:0) (11.2%). The genomic DNA G+C content was about 39.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain P9(T) was most closely related to Jeotgalibacillus campisalis DSM 18983(T) (96.8%) and Jeotgalibacillus marinus DSM 1297(T) (96.5%). These two recognized species formed a coherent cluster with strain P9(T) that was supported by a bootstrap value of 99%. On the basis of the phylogenetic analysis and physiological and biochemical characteristics, strain P9(T) (=DSM 23228(T)=LMG 25523(T)) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus soli sp. nov. is proposed.

  6. Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated from mangrove sediments.

    Science.gov (United States)

    Vasconcellos, Rafael L F; Santos, Suikinai Nobre; Zucchi, Tiago Domingues; Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Melo, Itamar Soares

    2017-10-01

    Strain CMAA 1215 T , a Gram-reaction-negative, aerobic, catalase positive, polarly flagellated, motile, rod-shaped (0.5-0.8 × 1.3-1.9 µm) bacterium, was isolated from mangrove sediments, Cananéia Island, Brazil. Analysis of the 16S rRNA gene sequences showed that strain CMAA 1215 T forms a distinct phyletic line within the Pseudomonas putida subclade, being closely related to P. plecoglossicida ATCC 700383 T , P. monteilii NBRC 103158 T , and P. taiwanensis BCRC 17751 T of sequence similarity of 98.86, 98.73, and 98.71%, respectively. Genomic comparisons of the strain CMAA 1215 T with its closest phylogenetic type strains using average nucleotide index (ANI) and DNA:DNA relatedness approaches revealed 84.3-85.3% and 56.0-63.0%, respectively. A multilocus sequence analysis (MLSA) performed concatenating 16S rRNA, gyrB and rpoB gene sequences from the novel species was related with Pseudomonas putida subcluster and formed a new phylogenetic lineage. The phenotypic, physiological, biochemical, and genetic characteristics support the assignment of CMAA 1215 T to the genus Pseudomonas, representing a novel species. The name Pseudomonas aestus sp.nov. is proposed, with CMAA 1215 T (=NRRL B-653100 T  = CBMAI 1962 T ) as the type strain.

  7. Pseudomonas kunmingensis sp. nov., an exopolysaccharide-producing bacterium isolated from a phosphate mine.

    Science.gov (United States)

    Xie, Fuhong; Ma, Huan; Quan, Shujing; Liu, Dehai; Chen, Guocan; Chao, Yapeng; Qian, Shijun

    2014-02-01

    A Gram-stain-negative, rod-shaped, exopolysaccharide-producing, strictly aerobic bacterium with a single polar flagellum, designated strain HL22-2(T), was isolated from a phosphate mine situated in a suburb of Kunmming in Yunnan province in south-western China. The taxonomic status of this strain was evaluated by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain HL22-2(T) was related to members of the genus Pseudomonas. 16S rRNA gene sequence similarities between strain HL22-2(T) and Pseudomonas xanthomarina KMM 1447(T), Pseudomonas alcaliphila AL15-21(T) and Pseudomonas stutzeri ATCC 17588(T) were 98.9, 98.10% and 98.06%, respectively. The major cellular fatty acids were C(18 : 1)ω7c, C(16 : 0) and summed feature 3 (C(16 : 1)ω7c and/or C(16 : 1)ω6c). The DNA G+C content was 60.3 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness values, strain HL22-2(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas kunmingensis sp. nov. is proposed. The type strain is HL22-2(T) ( = CGMCC 1.12273(T) = DSM 25974(T)).

  8. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice.

    Science.gov (United States)

    Zhang, De-Chao; Yu, Yong; Xin, Yu-Hua; Liu, Hong-Can; Zhou, Pei-Jin; Zhou, Yu-Guang

    2008-08-01

    A novel psychrotolerant, Gram-negative, aerobic bacterium, designated strain 537T, was isolated from sea-ice samples from the Arctic. Strain 537T was able to grow at 4-26 degrees C, with optimum growth occurring at 20-21 degrees C. Strain 537T had Q-8 as the major respiratory quinone and contained iso-C15:0 2-OH and/or C16:1 omega7c (22.95 %), C15:1 (17.64 %) and C17:1 omega8c (13.74 %) as the predominant cellular fatty acids. The genomic DNA G+C content was 38.9 mol%. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 537T formed a coherent cluster within the genus Colwellia. The highest level of 16S rRNA gene sequence similarity (97.5 %) exhibited by strain 537T was obtained with respect to the type strain of Colwellia aestuarii. On the basis of phenotypic, chemotaxonomic and phylogenetic properties and DNA-DNA relatedness data, strain 537T represents a novel species of the genus Colwellia, for which the name Colwellia polaris sp. nov. is proposed. The type strain is 537T (=CGMCC 1.6132T =JCM 13952T).

  9. [Isolation and identification of Mn oxidizing bacterium Aminobacter sp. H1 and its oxidation mechanism].

    Science.gov (United States)

    Yan, Ping; Jiang, Li-Ying; Chen, Jian-Meng; He, Zhi-Min; Xiao, Shao-Dan; Jiang, Yi-Feng

    2014-04-01

    A bacterium with high manganese oxidizing activity was isolated from a biological manganese removal filter and named as H1. Based on its characteristics and the analysis of 16S rDNA sequence, the strain H1 belonged to the genus Aminobacter sp. and its manganese oxidizing ability had never been reported. In this paper, the microbiologic properties of the strain H1, the manganese oxidation mechanisms and characteristics of biogenic manganese oxides were investigated. The results showed that the maximal tolerant Mn concentration of strain H1 was 50 mmol x L(-1), and Mn(II) could be completely removed by strain H1 when the concentration was lower than 10 mmol x L(-1). Strain H1 could oxidize Mn2+ by both the production of manganese oxidizing activity factor and alkaline metabolites during growth, which were synthesized in the cell and then secreted into extracellular culture medium. During the oxidation process, the intermediate of soluble Mn(III) was detected. SEM showed that the biogenic manganese oxides were amorphous and poorly-crystalline, and it closely combined with bacteria. The components of the biogenic manganese oxides produced by strain H1 were identified as MnCO3, MnOOH, Mn3O4 and MnO2 by XRD, XPS and SEM-EDX.

  10. Production and characterization of cellulolytic activities produced by ...

    African Journals Online (AJOL)

    The indigenous cellulolytic fungus Trichoderma longibrachiatum (GHL) isolated from soil near an Algerian hot spring was used for the production of cellulases by submerged fermentation on Mandels medium with cellulose Avicel (1%) as the sole carbon source. Endoglucanase and filter paper activities of the wild-type ...

  11. Mobilisporobacter senegalensis gen. nov., sp. nov., an anaerobic bacterium isolated from tropical shea cake.

    Science.gov (United States)

    Mbengue, Malick; Thioye, Abdoulaye; Labat, Marc; Casalot, Laurence; Joseph, Manon; Samb, Abdoulaye; Ben Ali Gam, Zouhaier

    2016-03-01

    A Gram-stain positive, endospore-forming, strictly anaerobic bacterium, designated strain Gal1 T , was isolated from shea cake, a waste material from the production of shea butter, originating from Saraya, Senegal. The cells were rod-shaped, slightly curved, and motile with peritrichous flagella. The strain was oxidase-negative and catalase-negative. Growth was observed at temperatures ranging from 15 to 45 °C (optimum 30 °C) and at pH 6.5-9.3 (optimum pH 7.8). The salinity range for growth was 0-3.5 % NaCl (optimum 1 %). Yeast extract was required for growth. Strain Gal1 T fermented various carbohydrates such as mannose, mannitol, arabinose, cellobiose, fructose, glucose, maltose, sucrose, trehalose and lactose and the major end-products were ethanol and acetate. The only major cellular fatty acid was C16 : 0 (19.6 %). The DNA base G+C content of strain Gal1 T was 33.8 mol%. Analysis of the 16S rRNA gene sequence of the isolate indicated that this strain was related to Mobilitalea sibirica DSM 26468 T with 94.27 % similarity, Clostridium populeti ATTC 35295 T with 93.94 % similarity, and Clostridium aminovalericum DSM 1283 T and Anaerosporobacter mobilis DSM 15930 T with 93.63 % similarity. On the basis of phenotypic characteristics, phylogenetic analysis and the results of biochemical and physiological tests, strain Gal1 T was clearly distinguished from closely related genera, and strain Gal1 T can be assigned to a novel species of a new genus for which the name Mobilisporobacter senegalensis gen. nov., sp. nov. is proposed. The type strain is Gal1 T ( = DSM 26537 T  = JCM 18753 T ).

  12. Chryseobacterium formosus sp. nov., a bacterium isolated from an ancient tree trunk.

    Science.gov (United States)

    Akter, Shahina; NGO, Hien T T; Du, Juan; Won, KyungHwa; Singh, Hina; Yin, Chang Shik; Kook, MooChang; Yi, Tae-Hoo

    2015-10-01

    A Gram-reaction-negative, non-motile and rod-shaped bacterium, designated as THG-DN3.6(T), was isolated from an ancient tree trunk from Republic of Korea. On the basis of 16S rRNA gene sequence analysis, strain THG-DN3.6(T) was shown to belong to the genus Chryseobacterium and the highest similarity to Chryseobacterium indoltheticum LMG 4025(T) (97.2%) and the closest phylogenetic relatives were Chryseobacterium scophthalmum (96.8%), Chryseobacterium piscium (96.7%) and Chryseobacterium balustinum KCTC 2903(T) (96.3%). The DNA G + C content of the isolate was 33.2 mol%. The predominant isoprenoid quinone was menaquinone-6. The major fatty acids were iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω7t and/or iso-C15:0 2-OH), iso-C17:1 ω9c and iso-C17:0 3-OH. The major polar lipids of strain THG-DN3.6(T) were phosphatidylethanolamine. The mean DNA-DNA relatedness of strain THG-DN3.6(T) to C. indoltheticum LMG 4025(T) was 52 ± 0.5%. Based on the results of polyphasic characterization, strain THG-DN3.6(T) represented a novel species within the genus Chryseobacterium, for which the name Chryseobacterium formosus sp. nov. is proposed. The type strain is THG-DN3.6(T) (=KCTC 42606 = CCTCC AB 2015118). The NCBI GenBank accession number for the 16S rRNA gene sequence of strain THG-DN3.6(T) is KM035938.

  13. Caldicoprobacter guelmensis sp. nov., a thermophilic, anaerobic, xylanolytic bacterium isolated from a hot spring.

    Science.gov (United States)

    Bouanane-Darenfed, Amel; Ben Hania, Wajdi; Hacene, Hocine; Cayol, Jean-Luc; Ollivier, Bernard; Fardeau, Marie-Laure

    2013-06-01

    A hyperthermophilic anaerobic bacterium, designated D2C22(T), was isolated from the hydrothermal hot spring of Guelma in north-east Algeria. The isolate was a Gram-stain-positive, non-sporulating, non-motile rod, appearing singly or in pairs (0.3-0.4 × 8.0-9.0 µm). Strain D2C22(T) grew anaerobically at 45-85 °C (optimum 65 °C), at pH 5-9 (optimum pH 6.8) and with 0-20 g NaCl l(-1). Strain D2C22(T) used glucose, galactose, lactose, fructose, ribose, xylose, arabinose, maltose, cellobiose, mannose, melibiose, sucrose, xylan and pyruvate (only in the presence of yeast extract or biotrypticase) as electron donors. The end products from glucose fermentation were acetate, lactate, CO2 and H2. Nitrate, nitrite, thiosulfate, elemental sulfur, sulfate and sulfite were not used as electron acceptors. The predominant cellular fatty acids were iso-C15:0 and iso-C17:0. The DNA G+C content was 41.6 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain D2C22(T) was most closely related to Caldicoprobacter oshimai JW/HY-331(T), Caldicoprobacter algeriensis TH7C1(T) and Acetomicrobium faecale DSM 20678(T) (95.5, 95.5 and 95.3% 16S rRNA gene sequence similarity, respectively). Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain D2C22(T) is proposed to be a representative of a novel species of the genus Caldicoprobacter within the order Clostridiales, for which the name Caldicoprobacter guelmensis sp. nov. is proposed. The type strain is D2C22(T) (=DSM 24605(T)=JCM 17646(T)).

  14. Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5.

    Science.gov (United States)

    Yin, Li-Jung; Huang, Po-Shin; Lin, Hsin-Hung

    2010-09-08

    A cellulase-producing bacterium was isolated from soil and identified as Cellulomonas sp. YJ5. Maximal cellulase activity was obtained after 48 h of incubation at 30 degrees C in a medium containing 1.0% carboxymethyl cellulose (CMC), 1.0% algae powder, 1.0% peptone, 0.24% (NH4)2SO4, 0.20% K2HPO4, and 0.03% MgSO(4).7H2O. The cellulase was purified after Sephacryl S-100 chromatography twice with a recovery of 27.9% and purification fold of 17.5. It was, with N-terminal amino acids of AGTKTPVAK, stable at pH 7.5-10.5 and 20-50 degrees C with optimal pH and temperature of 7.0 and 60 degrees C, respectively. Cu2+, Fe2+, Hg2+, Cr3+, and SDS highly inhibited, but cysteine and beta-mercaptoethanol activated, its activity. Substrate specificity indicated it to be an endo-beta-1,4-glucanase.

  15. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    Science.gov (United States)

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism.

  16. Draft Genome Sequence of Bacillus aryabhattai Strain PHB10, a Poly(3-Hydroxybutyrate)-Accumulating Bacterium Isolated from Domestic Sewerage.

    Science.gov (United States)

    Balakrishna Pillai, Aneesh; Jaya Kumar, Arjun; Thulasi, Kavitha; Reghunathan, Dinesh; Prasannakumar, Manoj; Kumarapillai, Harikrishnan

    2017-10-12

    Bacillus aryabhattai PHB10 is a poly(3-hydroxybutyrate) (PHB)-accumulating bacterium isolated from domestic sewerage. Here, we report the 4.19-Mb draft genome sequence, with 4,050 protein-coding genes and a G+C content of 37.5%. This sequence will be helpful in the study of the high-level PHB accumulation mechanism of the strain. Copyright © 2017 Balakrishna Pillai et al.

  17. Complete genome sequence of Agarivorans gilvus WH0801(T), an agarase-producing bacterium isolated from seaweed.

    Science.gov (United States)

    Zhang, Pujuan; Rui, Junpeng; Du, Zongjun; Xue, Changhu; Li, Xiangzhen; Mao, Xiangzhao

    2016-02-10

    Agarivorans gilvus WH0801(T), an agarase-producing bacterium, was isolated from the surface of seaweed. Here, we present the complete genome sequence, which consists of one circular chromosome of 4,416,600 bp with a GC content of 45.9%. This genetic information will provide insight into biotechnological applications of producing agar for food and industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cellulolytic enzyme compositions and uses thereof

    Science.gov (United States)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  19. Bacillus tamaricis sp. nov., an alkaliphilic bacterium isolated from a Tamarix cone soil.

    Science.gov (United States)

    Zhang, Yong-Guang; Zhou, Xing-Kui; Guo, Jian-Wei; Xiao, Min; Wang, Hong-Fei; Wang, Yun; Bobodzhanova, Khursheda; Li, Wen-Jun

    2018-02-01

    A Gram-stain-positive, alkaliphilic bacterium, designated EGI 80668 T , was isolated from a Tamarix cone soil in Xinjiang, north-west China. Cells were facultatively anaerobic, terminal endospore-forming and motile by means of peritrichous flagella. Colonies were yellowish and the cells showed oxidase-negative and catalase-positive reactions. Strain EGI 80668 T grew at pH 8.0-10.0 and with 0-10 % (w/v) NaCl (optimally at pH 9.0 and with 1-2 % NaCl) on marine agar 2216. The predominant menaquinone was MK-7. The major fatty acids were anteiso-C17 : 0 and anteiso-C15 : 0. The cellular polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids and one unknown aminophospholipid. The G+C content of the genomic DNA was 38.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80668 T was affiliated to the genus Bacillus. The highest 16S rRNA gene sequence similarity between strain EGI 80668 T and a member of the genus Bacillus was 96.83 % with Bacillus cellulosilyticus JCM 9156 T . A polyphasic taxonomic study based on morphological, physiological, biochemical and phylogenetic data indicated that strain EGI 80668 T represents a novel species of the genus Bacillus, for which the name Bacillus tamaricis sp. nov. (type strain EGI 80668 T =KCTC 33703 T =CGMCC 1.15917 T ) is proposed.

  20. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae.

    Science.gov (United States)

    Kim, Ji-Young; Yoo, Han-Su; Lee, Dong-Heon; Park, So-Hyun; Kim, Young-Ju; Oh, Duck-Chul

    2016-06-01

    A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were 5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T).

  1. Paenibacillus mobilis sp. nov., a Gram-stain-negative bacterium isolated from soil.

    Science.gov (United States)

    Yang, Dahye; Cha, Seho; Choi, Jiwon; Seo, Taegun

    2018-04-01

    A novel Gram-stain-negative bacterium, designated strain S8 T , was isolated from a soil sample obtained in Gyeonggi Province, Republic of Korea. Cells of strain S8 T were endospore-forming, motile by means of peritrichous flagella, and rod-shaped. S8 T colonies were round, convex, wavy and white. Strain S8 T grew optimally at 37 °C, pH 6-8, and up to 2.0 % (w/v) NaCl. Based on 16S rRNA gene sequence similarity, strain S8 T was affiliated with the genus Paenibacillus in the family Paenibacillaceae and was most closely related to Paenibacillus yonginensis DCY84 T and Paenibacillus physcomitrellae XB T (98.8 and 97.1 % sequence similarity). The DNA G+C content of the novel strain was 53.1±0.3 mol%. Strain S8 T contained diphosphatidylglycerol, phosphatidylglycerol, two phospholipids, four aminophospholipids, an aminolipid and three unidentified lipids. The major fatty acid was anteiso-branched C15 : 0. The quinone was menaquinone MK-7. The peptidoglycan of strain S8 T contained meso-diaminopimelic acid. The DNA-DNA hybridization values of strain S8 T with P. yonginensis KCTC 33428 T and P. physcomitrellae DSM 29851 T were 44 % and 32 %, respectively. Data from the DNA-DNA hybridization, biochemical, phylogenetic and physiological analyses indicate that strain S8 T (=KCTC 33848 T =JCM 31672 T ) represents a novel species of the genus Paenibacillus, for which the name Paenibacillus mobilis sp. nov. is proposed.

  2. Dehalogenimonas formicexedens sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater.

    Science.gov (United States)

    Key, Trent A; Bowman, Kimberly S; Lee, Imchang; Chun, Jongsik; Albuquerque, Luciana; da Costa, Milton S; Rainey, Fred A; Moe, William M

    2017-05-01

    A strictly anaerobic, Gram-stain-negative, non-spore-forming bacterium designated NSZ-14T, isolated from contaminated groundwater in Louisiana (USA), was characterized using a polyphasic approach. Strain NSZ-14T reductively dehalogenated a variety of polychlorinated aliphatic alkanes, producing ethene from 1,2-dichloroethane, propene from 1,2-dichloropropane, a mixture of cis- and trans-1,2-dichloroethene from 1,1,2,2-tetrachloroethane, vinyl chloride from 1,1,2-trichloroethane and allyl chloride (3-chloro-1-propene) from 1,2,3-trichloropropane. Formate or hydrogen could both serve as electron donors. Dechlorination occurred between pH 5.5 and 7.5 and over a temperature range of 20-37 °C. Major cellular fatty acids included C18 : 1ω9c, C14 : 0 and C16 : 0. 16S rRNA gene sequence-based phylogenetic analysis indicated that the strain clusters within the class Dehalococcoidia of the phylum Chloroflexi, most closely related to but distinct from type strains of the species Dehalogenimonas alkenigignens (97.63 % similarity) and Dehalogenimonas lykanthroporepellens (95.05 %). A complete genome sequence determined for strain NSZ-14T revealed a DNA G+C content of 53.96 mol%, which was corroborated by HPLC (54.1±0.2 mol% G+C). Genome-wide comparisons based on average nucleotide identity by orthology and estimated DNA-DNA hybridization values combined with phenotypic and chemotaxonomic traits and phylogenetic analysis indicate that strain NSZ-14T represents a novel species within the genus Dehalogenimonas, for which the name Dehalogenimonas formicexedens sp. nov. is proposed. The type strain is NSZ-14T (=HAMBI 3672T=JCM 19277T=VKM B-3058T). An emended description of Dehalogenimonas alkenigignens is also provided.

  3. Bacillus endozanthoxylicus sp. nov., an endophytic bacterium isolated from Zanthoxylum bungeanum Maxim leaves.

    Science.gov (United States)

    Ma, Li; Xi, Jia-Qin; Cao, Yong-Hong; Wang, Xiao-Yan; Zheng, Shuai-Chao; Yang, Cheng-Gang; Yang, Ling-Ling; Mi, Qi-Li; Li, Xue-Mei; Zhu, Ming-Liang; Mo, Ming-He

    2017-10-01

    A Gram-stain-positive, rod-shaped, motile bacterium, designated as 1404 T , was isolated from leaves of Chinese red pepper (Huajiao) (Zanthoxylum bungeanum Maxim) collected from Gansu, north-west China. Spores were not observed under a range of conditions. Strain 1404 T was observed to grow at 15-45 °C and pH 6.0-10.0 and in presence of 0-5 % (w/v) NaCl concentration. The cell wall of strain 1404 T was found to contain meso-diaminopimelic acid, and the predominant respiratory quinone was identified as MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as well as three unidentified polar lipids. The major fatty acids profile of strain 1404 T consisted of iso-C15 : 0 (25.6 %), anteiso-C15 : 0 (18.4 %) and iso-C14 : 0 (12.1 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1404 T was affiliated to the genus Bacillus and was closely related to Bacillusoryzisoli 1DS3-10 T , Bacillusbenzoevorans DSM 5391 T and Bacilluscirculans DSM 11 T with sequence similarity of 98.3, 98.2 and 96.9 %, respectively. The G+C content of the genomic DNA was determined to be 39.4 mol%. DNA-DNA hybridization values indicated that relatedness between strain 1404 T and the type strains of closely related species of the genus Bacillus was below 41 %. Therefore, on the basis of the data from the polyphasic taxonomic study presented, strain 1404 T represents a novel species of the genus Bacillus, for which the name proposed is Bacillus endozanthoxylicus sp. nov. The type strain is 1404 T (=CCTCC AB 2017021 T =KCTC 33827 T ).

  4. Caldicoprobacter algeriensis sp. nov. a new thermophilic anaerobic, xylanolytic bacterium isolated from an Algerian hot spring.

    Science.gov (United States)

    Bouanane-Darenfed, Amel; Fardeau, Marie-Laure; Grégoire, Patrick; Joseph, Manon; Kebbouche-Gana, Salima; Benayad, Tahar; Hacene, Hocine; Cayol, Jean-Luc; Ollivier, Bernard

    2011-03-01

    A thermophilic anaerobic bacterium (strain TH7C1(T)) was isolated from the hydrothermal hot spring of Guelma in the northeast of Algeria. Strain TH7C1(T) stained Gram-positive, was a non-motile rod appearing singly, in pairs, or as long chains (0.7-1 × 2-6 μm(2)). Spores were never observed. It grew at temperatures between 55 and 75°C (optimum 65°C) and at pH between 6.2 and 8.3 (optimum 6.9). It did not require NaCl for growth, but tolerated it up to 5 g l(-1). Strain TH7C1(T) is an obligatory heterotroph fermenting sugars including glucose, galactose, lactose, raffinose, fructose, ribose, xylose, arabinose, maltose, mannitol, cellobiose, mannose, melibiose, saccharose, but also xylan, and pyruvate. Fermentation of sugars only occurred in the presence of yeast extract (0.1%). The end-products from glucose fermentation were acetate, lactate, ethanol, CO(2), and H(2). Nitrate, nitrite, thiosulfate, elemental sulfur, sulfate, and sulfite were not used as electron acceptors. The G+C content of the genomic DNA was 44.7 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit ribosomal RNA (rRNA) gene sequence indicated that strain TH7C1(T) was affiliated to Firmicutes, order Clostridiales, family Caldicoprobacteraceae, with Caldicoprobacter oshimai (98.5%) being its closest relative. Based on phenotypic, phylogenetic, and genetic characteristics, strain TH7C1(T) is proposed as a novel species of genus Caldicoprobacter, Caldicoprobacter algeriensis, sp. nov. (strain TH7C1(T) = DSM 22661(T) = JCM 16184(T)).

  5. Thermoactinomyces khenchelensis sp. nov., a filamentous bacterium isolated from soil sediment of a terrestrial hot spring.

    Science.gov (United States)

    Mokrane, Salim; Bouras, Noureddine; Meklat, Atika; Lahoum, Abdelhadi; Zitouni, Abdelghani; Verheecke, Carol; Mathieu, Florence; Schumann, Peter; Spröer, Cathrin; Sabaou, Nasserdine; Klenk, Hans-Peter

    2016-02-01

    A novel thermophilic filamentous bacterium, designated strain T36(T), was isolated from soil sediment sample from a hot spring source collected in Khenchela province, Algeria. Strain T36(T) was identified as a member of the genus Thermoactinomyces by a polyphasic approach. Strain T36(T) was observed to form white aerial mycelium and non-coloured to pale yellow substrate mycelium, both producing endospores, sessile or borne by short sporophores. The optimum growth temperature and pH were found to be 37-55 °C and 7.0-9.0, respectively and the optimum NaCl concentration for growth was found to be 0-7 % (w/v). The diagnostic diamino acid in the cell wall peptidoglycan was identified as meso-diaminopimelic acid. The predominant menaquinone of strain T36(T) was identified as MK-7 (H0). The major fatty acids were found to be iso-C15:0 and iso-C17:0. The phospholipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphoglycolipid. The chemotaxonomic properties of strain T36(T) are consistent with those shared by members of the genus Thermoactinomyces. 16S rRNA gene sequence analysis indicated that the sequence similarities between strain T36(T) and Thermoactinomyces species with validly published names were less than 98 %. Based on the combined genotypic and phenotypic evidence, it is proposed that strain T36(T) should be classified as representative of a novel species, for which the name Thermoactinomyces khenchelensis sp. nov. is proposed. The type strain is T36(T) (=DSM 45951(T) = CECT 8579(T)).

  6. Halomonas rifensis sp. nov., an exopolysaccharide-producing, halophilic bacterium isolated from a solar saltern.

    Science.gov (United States)

    Amjres, Hakima; Béjar, Victoria; Quesada, Emilia; Abrini, Jamal; Llamas, Inmaculada

    2011-11-01

    A polyphasic taxonomic study was conducted on strain HK31(T), a moderately halophilic bacterium isolated from a solar saltern in Chefchaouen, Morocco. The strain was a Gram-reaction-negative, oxidase-positive rod, which was motile by means of peritrichous flagella. The strain required NaCl for growth and grew in salt concentrations (mixture of sea salts) of 0.5-20 % (w/v) (optimum 5-7.5 %, w/v), at 25-45 °C (optimum 32 °C) and at pH 5-10 (optimum pH 6-9). Strain HK31(T) did not produce acids from sugars and its metabolism was respiratory, using oxygen as terminal electron acceptor. The strain was positive for the accumulation of poly-β-hydroxyalkanoate granules and formed mucoid colonies due to the excretion of an exopolysaccharide. The DNA G+C content was 61.5 mol%. 16S rRNA gene sequence analysis indicated that it belonged to the genus Halomonas in the class Gammaproteobacteria. The most phylogenetically related species was Halomonas anticariensis, with which strain HK31(T) showed a 16S rRNA gene sequence similarity of 96.48 %. Its major fatty acids were C(18 : 1)ω7c, C(16 : 0), C(19 : 0) cyclo ω8c, C(16 : 1)ω7c/iso-C(15 : 0) 2-OH and C(12 : 0) 3-OH and the predominant respiratory lipoquinone was ubiquinone with nine isoprene units (Q-9). Based on the evidence provided in this study, strain HK31(T) (= CECT 7698(T) = LMG 25695(T)) represents a novel species of the genus Halomonas, for which the name Halomonas rifensis is proposed.

  7. Pseudomonas sagittaria sp. nov., a siderophore-producing bacterium isolated from oil-contaminated soil.

    Science.gov (United States)

    Lin, Shih-Yao; Hameed, Asif; Liu, You-Cheng; Hsu, Yi-Han; Lai, Wei-An; Chen, Wen-Ming; Shen, Fo-Ting; Young, Chiu-Chung

    2013-07-01

    An aerobic, Gram-stain-negative, rod-shaped bacterium with a single polar flagellum, designated CC-OPY-1(T), was isolated from an oil-contaminated site in Taiwan. CC-OPY-1(T) produces siderophores, and can grow at temperatures of 25-37 °C and pH 5.0-9.0 and tolerate Pseudomonas alcaligenes BCRC 11893(T) (97.1 %), Pseudomonas. alcaliphila DSM 17744(T) (97.1 %), Pseudomonas tuomuerensis JCM 14085(T) (97.1 %), Pseudomonas toyotomiensis JCM 15604(T) (96.9 %) and lower sequence similarity to remaining species of the genus Pseudomonas. The phylogenetic trees reconstructed based on gyrB and rpoB gene sequences supported the classification of CC-OPY-1(T) as a novel member of the genus Pseudomonas. The predominant quinone system of strain CC-OPY-1T was ubiquinone (Q-9) and the DNA G+C content was 68.4 ± 0.3 mol%. The major fatty acids were C12 : 0, C16 : 0, C17 : 0 cyclo and summed features 3 and 8 consisting of C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c, respectively. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylcholine (PC) and two unknown phospholipids (PL1-2). Due to distinct phylogenetic, phenotypic and chemotaxonomic features, CC-OPY-1(T) is proposed to represent a novel species within the genus Pseudomonas for which the name Pseudomonas sagittaria sp. nov. is proposed. The type strain is CC-OPY-1(T) ( = BCRC 80399(T) = JCM 18195(T)).

  8. Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces.

    Science.gov (United States)

    Ouwerkerk, Janneke P; Aalvink, Steven; Belzer, Clara; de Vos, Willem M

    2016-11-01

    A Gram-stain-negative, non-motile, strictly anaerobic, oval-shaped, non-spore-forming bacterium (strain PytT) was isolated from reticulated python faeces. Strain PytT was capable of using mucin as sole carbon, energy and nitrogen source. Cells could grow singly, in pairs, and were also found to aggregate. Scanning electron microscopy revealed the presence of filamentous structures connecting individual bacterial cells. Strain PytT could grow on a limited number of single sugars, including N-acetylglucosamine, N-acetylgalactosamine, glucose, lactose and galactose, but only when a plentiful protein source was provided. Phylogenetic analysis based on 16S rRNA gene sequencing showed strain PytT to belong to the Verrucomicrobiae class I, family Akkermansiaceae, genus Akkermansia, with Akkermansia muciniphila MucT as the closest relative (94.4 % sequence similarity). DNA-DNA hybridization revealed low relatedness of 28.3 % with A. muciniphila MucT. The G+C content of DNA from strain PytT was 58.2 mol%. The average nucleotide identity (ANI) of the genome of strain PytT compared to the genome of strain MucT was 79.7 %. Chemotaxonomic data supported the affiliation of strain PytT to the genus Akkermansia. Based on phenotypic, phylogenetic and genetic characteristics, strain PytT represents a novel species of the genus Akkermansia, for which the name Akkermansia glycaniphila sp. nov. is proposed. The type strain is PytT (=DSM 100705T=CIP 110913T).

  9. Evaluation of a new system for developing particulate enzymes based on the surface (S)-layer protein (RsaA) of Caulobacter crescentus: fusion with the beta-1,4-glycanase (Cex) from the cellulolytic bacterium Cellulomonas fimi yields a robust, catalytically active product.

    Science.gov (United States)

    Duncan, Gillian; Tarling, Chris A; Bingle, Wade H; Nomellini, John F; Yamage, Mat; Dorocicz, Irene R; Withers, Stephen G; Smit, John

    2005-11-01

    Immobilized biocatalysts, including particulate enzymes, represent an attractive tool for research and industrial applications because they combine the specificity of native enzymes with the advantage that they can be readily separated from end product and reused. We demonstrated the use of the Caulobacter crescentus surface (S)-layer protein (RsaA) secretion apparatus for the generation of particulate enzymes. Specifically, a candidate protein made previously by fusion of the beta-1,4-glycanase (Cex) from the cellulolytic bacterium Cellulomonas fimi with the C-terminus of RsaA was evaluated. Cex/RsaA cleaved the glycosidic linkage in the artificial substrate p-nitrophenyl-beta-D-cellobioside with a KM similar to that of native Cex (1.1 mM for Cex/RsaA vs 0.60 mM for Cex), indicating that the particulate Cex enzyme was able to bind substrate with wild-type affinity. By contrast, the kcat value was significantly reduced (0.08 s-1 for Cex/RsaA vs 15.8 s-1 for Cex), likely owing to the fact that the RsaA C-terminus induces spontaneous unstructured aggregation of the recombinant protein. Here, we demonstrated that not only can an RsaA fusion protein be cheaply produced and purified to a high yield (76 mg/L of dry wt for Cex/RsaA), but it can also be efficiently recycled. The Caulobacter S-layer secretion system therefore offers an attractive new model system for the production of particulate biocatalysts.

  10. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2007-08-01

    Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular

  11. Klebsiella sp. FIRD 2, a TBT-resistant bacterium isolated from contaminated surface sediment along Strait of Johor Malaysia.

    Science.gov (United States)

    Abubakar, Abdussamad; Mustafa, Muskhazli B; Johari, Wan Lutfi Wan; Zulkifli, Syaizwan Zahmir; Ismail, Ahmad; Mohamat-Yusuff, Ferdaus Binti

    2015-12-15

    A possible tributyltin (TBT)-degrading bacterium isolated from contaminated surface sediment was successfully identified as Klebsiella sp. FIRD 2. It was found to be the best isolate capable of resisting TBT at a concentration of 1000 μg L(-1). This was a concentration above the reported contaminated level at the sampling station, 790 μg L(-1). Further studies revealed that the isolate was Gram negative and resisted TBT concentrations of up to 1500 μg L(-1) in a Minimal Salt Broth without the addition of any carbon source within the first 48 h of incubation. It is expected that additional work could be conducted to check the degradation activity of this new isolate and possibly improve the degradation capacity in order to contribute to finding a safe and sustainable remediation solution of TBT contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica.

    Science.gov (United States)

    Rozahon, Manziram; Ismayil, Nurimangul; Hamood, Buayshem; Erkin, Raziya; Abdurahman, Mehfuzem; Mamtimin, Hormathan; Abdukerim, Muhtar; Lal, Rup; Rahman, Erkin

    2014-09-01

    An endophytic bacterium, designated K-38(T), was isolated from the storage liquid in the stems of Populus euphratica trees at the ancient Ugan River in Xinjiang, PR China. Strain K-38(T) was found to be rod-shaped, Gram-stain-negative, aerobic, non-motile and non-spore-forming. Strain K-38(T) grew at temperatures of 25-37 °C (optimum, 28 °C), at pH 6.0-9.0 (optimum, pH 7.5) and in the presence of 0-3 % (w/v) NaCl with 1 % as the optimum concentration for growth. According to phylogenetic analysis based on 16S rRNA gene sequences, strain K-38(T) was assigned to the genus Rhizobium with highest 16S rRNA gene sequence similarity of 97.2 % to Rhizobium rosettiformans W3(T), followed by Rhizobium nepotum 39/7(T) (96.5 %) and Rhizobium borbori DN316(T) (96.2 %). Phylogenetic analysis of strain K-38(T) based on the protein coding genes recA, atpD and nifH confirmed (similarities were less than 90 %) it to be a representative of a distinctly delineated species of the genus Rhizobium. The DNA G+C content was determined to be 63.5 mol%. DNA-DNA relatedness between K-38(T) and R. rosettiformans W3(T) was 48.4 %, indicating genetic separation of strain K-38(T) from the latter strain. The major components of the cellular fatty acids in strain K-38(T) were revealed to be summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c; 57.2 %), C16 : 0 (13.6 %) and summed feature 2 (comprising C12 : 0 aldehyde, C14 : 0 3-OH/iso-C16 : 1 I and/or unknown ECL 10.928; 11.0 %). Polar lipids of strain K-38(T) include phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, two unidentified aminophospholipids and two unidentified phospholipids. Q-10 was the major quinone in strain K-38(T). Based on phenotypic, chemotaxonomic and phylogenetic properties, strain K-38(T) represents a novel species of the genus Rhizobium, for which the name Rhizobium populi sp. nov. is proposed

  13. Vibrio xiamenensis sp. nov., a cellulase-producing bacterium isolated from mangrove soil.

    Science.gov (United States)

    Gao, Zhao-Ming; Xiao, Jing; Wang, Xing-Na; Ruan, Ling-Wei; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2012-08-01

    A taxonomic study was carried out on a cellulase-producing bacterium, strain G21(T), isolated from mangrove soil in Xiamen, Fujian province, China. Cells were Gram-negative, slightly curved rods, motile with a single polar flagellum. The strain grew at 15-40 °C and in 0.5-10% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain G21(T) belonged to the genus Vibrio and formed a clade with Vibrio furnissii ATCC 350116(T) (97.4% sequence similarity), V. fluvialis LMG 7894(T) (97.1%) and V. ponticus CECT 5869(T) (96.1%). However, multilocus sequence analysis (using rpoA, recA, mreB, gapA, gyrB and pyrH sequences) and DNA-DNA hybridization experiments indicated that the strain was distinct from the closest related Vibrio species. Additionally, strain G21(T) could be differentiated from them phenotypically by the ability to grow in 10% NaCl but not on TCBS plates, its enzyme activity spectrum, citrate utilization, oxidization of various carbon sources, hydrolysis of several substrates and its cellular fatty acid profile. The G+C content of the genomic DNA was 46.0 mol%. The major cellular fatty acids were summed feature 3 (C(16:1)ω7c and/or iso-C(15:0) 2-OH), C(16:0) and C(18:1)ω7c. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol, with trace amounts of diphosphatidylglycerol. The predominant quinones were Q-8 and Q-7. Based on phylogenetic, phenotypic and chemotaxonomic characteristics and DNA-DNA hybridization analysis, it is concluded that strain G21(T) represents a novel species of the genus Vibrio, for which the name Vibrio xiamenensis sp. nov. is proposed. The type strain is G21(T) ( = DSM 22851(T)  = CGMCC 1.10228(T)).

  14. Advenella alkanexedens sp. nov., an alkane-degrading bacterium isolated from biogas slurry samples.

    Science.gov (United States)

    Wang, Huimin; Zhou, Shan; Wang, Yanwei; Kong, Delong; Guo, Xiang; Zhu, Jie; Dong, Weiwei; Ruan, Zhiyong

    2016-02-01

    A novel aerobic bacterium, designated strain LAM0050 T , was isolated from a biogas slurry sample, which had been enriched with diesel oil for 30 days. Cells of strain LAM0050 T were gram-stain-negative, non-motile, non-spore-forming and coccoid-shaped. The optimal temperature and pH for growth were 30-35 °C and 8.5, respectively. The strain did not require NaCl for growth, but tolerated up to 5.3 % (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain LAM0050 T was a member of the genus Advenella , and was most closely related to Advenella faeciporci KCTC 23732 T , Advenella incenata CCUG 45225 T , Advenella kashmirensis DSM 17095 T and Advenella mimigardefordensis DSM 17166 T , with 98.1, 96.6, 96.6 and 96.3 % sequence similarity, respectively. The DNA-DNA hybridization relatedness between strain LAM0050 T and A. faeciporci KCTC 23732 T was 41.7 ± 2.4 %. The genomic DNA G+C content was 51.2 mol%, as determined by the T m method. The major fatty acids of strain LAM0050 T were C 16 : 0 , C 17 : 0 cyclo, summed feature 3 (C 16 : 1 ω7 c and/or C 16 : 1 ω6 c ) and summed feature 8 (C 18 : 1 ω7 c and/or C 18 : 1 ω6 c ). The predominant ubiquinone was Q-8. The main polar lipids were diphosphatidyglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and four unidentified phospholipids. Based on the phenotypic and genotypic properties, strain LAM0050 T is suggested to represent a novel species of the genus Advenella , for which the name Advenella alkanexedens sp. nov., is proposed, the type strain is LAM0050 T ( = ACCC 06485 T  = JCM 30465 T ).

  15. Marinirhabdus citrea sp. nov., a marine bacterium isolated from a seaweed.

    Science.gov (United States)

    Yang, Sung-Hyun; Oh, Ji Hye; Seo, Hyun-Seok; Lee, Jung-Hyun; Kwon, Kae Kyoung

    2018-02-01

    A gram-stain-negative, aerobic, rod-shaped (1.3-1.9×0.3-0.5 µm) and non-motile marine bacterium, designated MEBiC09412 T , was isolated from seaweed collected at Yeonggwang County, South Korea. 16S rRNA gene sequence analysis demonstrated that strain MEBiC09412 T shared high sequence similarity with Marinirhabdus gelatinilytica NH83 T (95.4 %). Growth was observed at 17-38 °C (optimum 30 °C), at pH 4.0-8.5 (optimum pH 7.0) and with 0.5-6.0 % (w/v; optimum 2.5 %) NaCl. The predominant cellular fatty acids were iso-C15 : 0 (27.4 %), iso-C15 : 1 G (9.6 %), anteiso-C15 : 0 (14.6 %), iso-C16 : 0 (6.2 %), iso-C17 : 0 3OH (13.2 %) and summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c; 7.4 %). The DNA G+C content was determined to be 43.1 mol%, while the major respiratory quinone was menaquinone-6. Several phenotypic characteristics such as indole production, the oxidizing patterns of several carbohydrtaes (of glucose, fructose, sucrose, maltose, mannose etc.) and organic acids, and the enzyme activities of α-chymotrypsin and α-glucosidase differentiated strain MEBiC09412 T from M. gelatinilytica NH83 T . On the basis of this polyphasic taxonomic data, strain MEBiC09412 T should be classified as a novel species of the genus Marinirhabduswith the suggested name Marinirhabdus citrea sp. nov. The type strain is MEBiC09412 T (=KCCM 43216 T =JCM 31588 T ).

  16. Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse microcystis aeruginosa.

    Science.gov (United States)

    Yang, Fei; Wei, Hai Yan; Li, Xiao Qin; Li, Yun Hui; Li, Xiao Bo; Yin, Li Hong; Pu, Yue Pu

    2013-02-01

    To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905. The bacteria were identified using the Biolog automated microbial identification system and 16S rDNA sequence analysis. The algae-lysing compounds were isolated and purified by silica gel column chromatography and reverse-phase high performance liquid chromatography. Their structures were confirmed by Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FT-IR) spectroscopy. Algae-lysing activity was observed using microscopy. The algae-lysing bacterium LTH-2 isolated from Lake Taihu was identified as Serratia marcescens. Strain LTH-2 secreted a red pigment identified as prodigiosin (C20H25N3O), which showed strong lytic activity with algal strains M. aeruginosa TH1, TH2, and FACHB 905 in a concentration-dependent manner. The 50% inhibitory concentration (IC50) of prodigiosin with the algal strains was 4.8 (± 0.4)× 10⁻² μg/mL, 8.9 (± 1.1)× 10⁻² μg/mL, and 1.7 (± 0.1)× 10⁻¹ μg/mL in 24 h, respectively. The bacterium LTH-2 and its pigment had strong Microcystis-lysing activity probably related to damage of cell membranes. The bacterium LTH-2 and its red pigment are potentially useful for regulating blooms of harmful M. aeruginosa. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Isolation of an indigenous imidacloprid-degrading bacterium and imidacloprid bioremediation under simulated in situ and ex situ conditions.

    Science.gov (United States)

    Hu, Guiping; Zhao, Yan; Liu, Bo; Song, Fengqing; You, Minsheng

    2013-11-28

    The Bacterial community structure and its complexity of the enrichment culture during the isolation and screening of imidacloprid-degrading strain were studied using denaturating gradient gel electrophoresis analysis. The dominant bacteria in the original tea rhizosphere soil were uncultured bacteria, Rhizobium sp., Sinorhizobium, Ochrobactrum sp., Alcaligenes, Bacillus sp., Bacterium, Klebsiella sp., and Ensifer adhaerens. The bacterial community structure was altered extensively and its complexity reduced during the enrichment process, and four culturable bacteria, Ochrobactrum sp., Rhizobium sp., Geobacillus stearothermophilus, and Alcaligenes faecalis, remained in the final enrichment. Only one indigenous strain, BCL-1, with imidacloprid-degrading potential, was isolated from the sixth enrichment culture. This isolate was a gram-negative rod-shaped bacterium and identified as the genus Ochrobactrum based on its morphological, physiological, and biochemical properties and its 16S rRNA gene sequence. The degradation test showed that approximately 67.67% of the imidacloprid (50 mg/l) was degraded within 48 h by strain BCL-1. The optimum conditions for degradation were a pH of 8 and 30°C. The simulation of imidacloprid bioremediation by strain BCL-1 in soil demonstrated that the best performance in situ (tea soil) resulted in the degradation of 92.44% of the imidacloprid (100 mg/g) within 20 days, which was better than those observed in the ex situ simulations that were 64.66% (cabbage soil), 41.15% (potato soil), and 54.15% (tomato soil).

  18. Noncontiguous finished genome sequence and description of Planococcus massiliensis sp. nov., a moderately halophilic bacterium isolated from the human gut

    Directory of Open Access Journals (Sweden)

    E.H. Seck

    2016-03-01

    Full Text Available We propose the main phenotypic characteristics and the complete genome sequence and annotation of Planococcus massiliensis strain ES2T (= CSUR P1103 = DSM 28915, the type strain of P. massiliensis sp. nov., isolated from a faeces sample collected from a healthy Senegalese man. It is an aerobic, Gram-positive, moderately halophilic, motile and rod-shaped bacterium. The 3 357 017 bp long genome exhibits a G+C content of 46.0% and contains 3357 protein-coding genes and 48 RNA genes.

  19. NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The discovery of a new mode of action by C. thermocellum to convert biomass to biofuels is significant because the bacterium is already recognized as one of the most effective in the biosphere. Researchers found that, in addition to using common cellulase degradation mechanisms attached to cells, C. thermocellum also uses a new category of cell-free scaffolded enzymes. The new discovery will influence the strategies used to improve the cellulolytic activity of biomass degrading microbes going forward. Better understanding of this bacterium could lead to cheaper production of ethanol and drop-in fuels. Also, this discovery demonstrates that nature's biomass conversion behaviors are not fully understood and remain as opportunities for future microbial/enzyme engineering efforts.

  20. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes

    Science.gov (United States)

    Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future. PMID:26070087

  1. Going from Microbial Ecology to Genome Data and Back: Studies on a Haloalkaliphilic Bacterium Isolated from Soap Lake, Washington State

    Directory of Open Access Journals (Sweden)

    Melanie R. Mormile

    2014-11-01

    Full Text Available Soap Lake is a meromictic, alkaline (~pH 9.8 and saline (~14 to 140 g liter-1 lake located in the semiarid area of eastern Washington State. Of note is the length of time it has been meromictic (at least 2000 years and the extremely high sulfide level (~140 mM in its monimolimnion. As expected, the microbial ecology of this lake is greatly influenced by these conditions. A bacterium, Halanaerobium hydrogeniformans, was isolated from the mixolimnion region of this lake. H. hydrogeniformans is a haloalkaliphilic bacterium capable of forming hydrogen from 5- and 6-carbon sugars derived from hemicellulose and cellulose. Due to its ability to produce hydrogen under saline and alkaline conditions, in amounts that rival genetically modified organisms, its genome was sequenced. This sequence data provides an opportunity to explore the unique metabolic capabilities of this organism, including the mechanisms for tolerating the extreme conditions of both high salinity and alkalinity of its environment.

  2. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site.

    Science.gov (United States)

    Sharafi, Hakimeh; Abdoli, Mahya; Hajfarajollah, Hamidreza; Samie, Nima; Alidoust, Leila; Abbasi, Habib; Fooladi, Jamshid; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2014-07-01

    A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.

  3. Partial characterization of xylanase produced by Caldicoprobacter algeriensis, a new thermophilic anaerobic bacterium isolated from an Algerian hot spring.

    Science.gov (United States)

    Bouacem, Khelifa; Bouanane-Darenfed, Amel; Boucherba, Nawel; Joseph, Manon; Gagaoua, Mohammed; Ben Hania, Wajdi; Kecha, Mouloud; Benallaoua, Said; Hacène, Hocine; Ollivier, Bernard; Fardeau, Marie-Laure

    2014-11-01

    To date, xylanases have expanded their use in many processing industries, such as pulp, paper, food, and textile. This study aimed the production and partial characterization of a thermostable xylanase from a novel thermophilic anaerobic bacterium Caldicoprobacter algeriensis strain TH7C1(T) isolated from a northeast hot spring in Algeria. The obtained results showed that C. algeriensis xylanase seems not to be correlated with the biomass growth profile whereas the maximum enzyme production (140.0 U/ml) was recorded in stationary phase (18 h). The temperature and pH for optimal activities were 70 °C and 11.0, respectively. The enzyme was found to be stable at 50, 60, 70, and 80 °C, with a half-life of 10, 9, 8, and 4 h, respectively. Influence of metal ions on enzyme activity revealed that Ca(+2) enhances greatly the relative activity to 151.3 %; whereas Hg(2+) inhibited significantly the enzyme. At the best of our knowledge, this is the first report on the production of xylanase by the thermophilic bacterium C. algeriensis. This thermo- and alkaline-tolerant xylanase could be used in pulp bleaching process.

  4. Gene function analysis in environmental isolates: The nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans

    Science.gov (United States)

    Parro, Víctor; Moreno-Paz, Mercedes

    2003-01-01

    A random genomic library from an environmental isolate of the Gram-negative bacterium Leptospirillum ferrooxidans has been printed on a microarray. Gene expression analysis was carried out with total RNA extracted from L. ferrooxidans cultures in the presence or absence of ammonium as nitrogen source under aerobic conditions. Although practically nothing is known about the genome sequence of this bacterium, this approach allowed us the selection and sequencing of only those clones bearing genes that showed an altered expression pattern. By sequence comparison, we have identified most of the genes of nitrogen fixation regulon in L. ferrooxidans, like the nifHDKENX operon, encoding the structural components of Mo-Fe nitrogenase; nifSU-hesB-hscBA-fdx operon, for Fe-S cluster assembly; the amtB gene (ammonium transporter); modA (molybdenum ABC type transporter); some regulatory genes like ntrC, nifA (the specific activator of nif genes); or two glnB-like genes (encoding the PII regulatory protein). Our results show that shotgun DNA microarrays are very powerful tools to accomplish gene expression studies with environmental bacteria whose genome sequence is still unknown, avoiding the time and effort necessary for whole genome sequencing projects. PMID:12808145

  5. Noncontiguous finished genome sequence and description of Virgibacillus massiliensis sp. nov., a moderately halophilic bacterium isolated from human gut

    Directory of Open Access Journals (Sweden)

    S. Khelaifia

    2015-11-01

    Full Text Available Strain Vm-5T was isolated from the stool specimen of a 10-year-old Amazonian boy. This bacterium is a Gram-positive, strictly aerobic rod, motile by a polar flagellum. Here we describe its phenotypic characteristics and complete genome sequence. The 4 353 177 bp long genome exhibits a G + C content of 36.87% and contains 4394 protein-coding and 125 predicted RNA genes. Phylogenetically and genetically, strain Vm-c is a member of the genus Virgibacillus but is distinct enough to be classified as a new species. We propose the creation of V. massiliensis sp. nov., whose type strain is strain Vm-5T (CSUR P971 = DSM 28587.

  6. Draft Genome Sequences of 17 Isolates of the Plant Pathogenic Bacterium Dickeya

    OpenAIRE

    Pritchard, Leighton; Humphris, Sonia; Saddler, Gerry S.; Elphinstone, John G.; Pirhonen, Minna; Toth, Ian K.

    2013-01-01

    Dickeya (formerly Erwinia chrysanthemi) species cause diseases on a wide range of crops and ornamental plants worldwide. Here we present the draft sequences of 17 Dickeya isolates spanning four Dickeya species, including five isolates that are currently unassigned to a species.

  7. Draft genome sequences of 17 isolates of the plant pathogenic bacterium dickeya.

    Science.gov (United States)

    Pritchard, Leighton; Humphris, Sonia; Saddler, Gerry S; Elphinstone, John G; Pirhonen, Minna; Toth, Ian K

    2013-11-21

    Dickeya (formerly Erwinia chrysanthemi) species cause diseases on a wide range of crops and ornamental plants worldwide. Here we present the draft sequences of 17 Dickeya isolates spanning four Dickeya species, including five isolates that are currently unassigned to a species.

  8. Taylorella asinigenitalis sp. nov., a bacterium isolated from the genital tract of male donkeys (Equus asinus).

    Science.gov (United States)

    Jang, S S; Donahue, J M; Arata, A B; Goris, J; Hansen, L M; Earley, D L; Vandamme, P A; Timoney, P J; Hirsh, D C

    2001-05-01

    Three bacterial isolates that were phenotypically indistinguishable from Taylorella equigenitalis were obtained from the urethral fossae of three male donkeys (Equus asinus), one located in the state of California and the other two in the state of Kentucky, USA. Based on results of pulsed-field gel electrophoresis, the isolate from California differed from the two Kentucky isolates, which were the same. Mares bred artificially (California) or naturally (Kentucky) did not show signs of disease, even though infection with the organism was established in those bred naturally. Mares and, uncharacteristically, all three jacks produced antibodies that reacted in the complement fixation test utilized to identify mares recently infected with T. equigenitalis. Sequence analysis of DNA encoding the 16S rRNA revealed that the gene sequences of these isolates were virtually identical to each other (>99.8% similarity), but different (97.6% similarity) from those of several confirmed isolates of T. equigenitalis. The 16S rDNA sequences of the latter were 100% identical. DNA-DNA hybridization studies revealed a mean hybridization level of 89% between the donkey isolate from California and the donkey isolate from Kentucky. On the other hand, the mean DNA-DNA hybridization level from the donkey isolates with DNA from a strain of T. equigenitalis was 23%. The DNA G+C composition was 37.8 mol% for the two donkey isolates, as well as the strain of T. equigenitalis used in the hybridization studies. These data support our opinion that micro-organisms isolated from the male donkeys are different from T. equigenitalis and it is proposed that they be considered a new species within the genus Taylorella and named Taylorella asinigenitalis sp. nov. The type strain is strain UCD-1T (= ATCC 700933T = LMG 19572T).

  9. Chromobacterium sphagni sp. nov., an insecticidal bacterium isolated from Sphagnum bogs.

    Science.gov (United States)

    Blackburn, Michael B; Farrar, Robert R; Sparks, Michael E; Kuhar, Daniel; Mitchell, Ashaki; Gundersen-Rindal, Dawn E

    2017-09-01

    Sixteen isolates of Gram-reaction-negative, motile, violet-pigmented bacteria were isolated from Sphagnum bogs in West Virginia and Maine, USA. 16S rRNA gene sequences and fatty acid analysis revealed a high degree of relatedness among the isolates, and genome sequencing of two isolates, IIBBL 14B-1T and IIBBL 37-2 (from West Virginia and Maine, respectively), revealed highly similar genomic sequences. The average nucleotide identity (gANI) calculated for these two isolates was found to be in excess of 99 %, but did not exceed 88 % when comparing either isolate with genomic sequences of Chromobacterium violaceum ATCC 12472T, C. haemolyticum DSM 19808T, C. piscinae ND17, C. subtsugae PRAA4-1T, C. vaccinii MWU205T or C. amazonense CBMAI 310T. Collectively, gANI and 16S rRNA gene sequence comparisons suggested that isolates IIBBL 14B-1T and IIBBL 37-2 were most closely related to C. subtsugae, but represented a distinct species. We propose the name Chromobacterium sphagni sp. nov. for this taxon; the type strain is IIBBL 14B-1T (=NRRL B-67130T=JCM 31882T).

  10. Mycobacterium minnesotense sp. nov., a photochromogenic bacterium isolated from sphagnum peat bogs.

    Science.gov (United States)

    Hannigan, Geoffrey D; Krivogorsky, Bogdana; Fordice, Daniel; Welch, Jacqueline B; Dahl, John L

    2013-01-01

    Several intermediate-growing, photochromogenic bacteria were isolated from sphagnum peat bogs in northern Minnesota, USA. Acid-fast staining and 16S rRNA gene sequence analysis placed these environmental isolates in the genus Mycobacterium, and colony morphologies and PCR restriction analysis patterns of the isolates were similar. Partial sequences of hsp65 and dnaJ1 from these isolates showed that Mycobacterium arupense ATCC BAA-1242(T) was the closest mycobacterial relative, and common biochemical characteristics and antibiotic susceptibilities existed between the isolates and M. arupense ATCC BAA-1242(T). However, compared to nonchromogenic M. arupense ATCC BAA-1242(T), the environmental isolates were photochromogenic, had a different mycolic acid profile and had reduced cell-surface hydrophobicity in liquid culture. The data reported here support the conclusion that the isolates are representatives of a novel mycobacterial species, for which the name Mycobacterium minnesotense sp. nov. is proposed. The type strain is DL49(T) (=DSM 45633(T) = JCM 17932(T) = NCCB 100399(T)).

  11. Recombinant host cells and nucleic acid constructs encoding polypeptides having cellulolytic enhancing activity

    Science.gov (United States)

    Schnorr, Kirk; Kramer, Randall

    2017-03-28

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. ‘Arcanobacterium urinimassiliense’ sp. nov., a new bacterium isolated from the urogenital tract

    Directory of Open Access Journals (Sweden)

    K. Diop

    2017-07-01

    Full Text Available Herein we report the main characteristics of ‘Arcanobacterium urinimassiliense’ strain Marseille-P3248T (=CSUR P3248 isolated from a urine sample of a 54-day-old girl with rotavirus gastroenteritis.

  13. Marinilabilia nitratireducens sp. nov., a lipolytic bacterium of the family Marinilabiliaceae isolated from marine solar saltern

    Digital Repository Service at National Institute of Oceanography (India)

    Shalley, S.; PradipKumar; Srinivas, T.N.R.; Suresh, K.; AnilKumar, P.

    17679T) was isolated from a marine solar saltern sample collected from Kakinada, India. 8 Acknowledgements We thank Dr. J. Euzeby for his expert suggestion for the correct species epithet and Latin etymology. We also thank Council of Scientific...

  14. Halomonas indalinina sp.nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Al,eria, southern Spain

    NARCIS (Netherlands)

    Cabrera, A.; Aguilera, M.; Fuentes Enriquez de Salamanca, S.; Incerti, C.; Russell, N.J.; Ramos-Cormenzana, A.; Monteoliva-Sanchez, M.

    2007-01-01

    moderately halophilic bacterium, strain CG2.1T, isolated from a solar saltern at Cabo de Gata, a wildlife reserve located in the province of Almería, southern Spain, was subjected to a polyphasic taxonomic study. This organism was an aerobic, motile, Gram-negative rod that produced orange-pigmented

  15. Draft Genome Sequence of Salinibacillus aidingensis Strain MSP4, an Obligate Halophilic Bacterium Isolated from a Salt Crystallizer of the Rann of Kutch, India

    Science.gov (United States)

    Dey, Rinku; Sherathia, Dharmesh; Dalsania, Trupti; Savsani, Kinjal; Patel, Ilaxi; Thomas, Manesh; Ghorai, Sucheta; Vanpariya, Sejal; Rupapara, Rupal; Acharya, Namrata; Rawal, Priya; Joshi, Pragnesh; Sukhadiya, Bhoomika; Mandaliya, Mona; Saxena, Anil Kumar

    2013-01-01

    We report the 7.42-Mbp draft whole genome sequence of Salinibacillus aidingensis strain MSP4, an obligate halophilic bacterium, isolated from a salt crystallizer of the Rann of Kutch in India. Analysis of the genome of this organism will lead to a better understanding of the genes and metabolic pathways involved in imparting osmotolerance. PMID:23833129

  16. Complete Genome Sequence of Alkaliphilus metalliredigens Strain QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-Contaminated Leachate Ponds.

    Science.gov (United States)

    Hwang, C; Copeland, A; Lucas, S; Lapidus, A; Barry, K; Detter, J C; Glavina Del Rio, T; Hammon, N; Israni, S; Dalin, E; Tice, H; Pitluck, S; Chertkov, O; Brettin, T; Bruce, D; Han, C; Schmutz, J; Larimer, F; Land, M L; Hauser, L; Kyrpides, N; Mikhailova, N; Ye, Q; Zhou, J; Richardson, P; Fields, M W

    2016-11-03

    Alkaliphilus metalliredigens strain QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms. Copyright © 2016 Hwang et al.

  17. Complete genome sequence of the caprolactam-degrading bacterium Pseudomonas mosselii SJ10 isolated from wastewater of a nylon 6 production plant.

    Science.gov (United States)

    Park, Gun-Seok; Chu, Ji-Hun; Hong, Sung-Jun; Kwak, Yunyoung; Khan, Abdur Rahim; Jung, Byung Kwon; Ullah, Ihsan; Shin, Jae-Ho

    2014-12-20

    Pseudomonas mosselii strain SJ10 is a caprolactam-degrading bacterium belonging to the class Gammaproteobacteria, which was isolated from wastewater of the nylon 6 producing Seongseo industrial complex in Daegu, Republic of Korea. Here, we report the complete genome sequence of the strain, providing genetic information for biodegradation of aromatic compounds.

  18. Draft Genome Sequence of the Phosphate-Solubilizing Bacterium Pseudomonas argentinensis Strain SA190 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2016-12-23

    Pseudomonas argentinensis strain SA190 is a plant endophytic-inhabiting bacterium that was isolated from root nodules of the desert plant Indigofera argentea collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of SA190, highlighting several functional genes related to plant growth-promoting activity, environment adaption, and antifungal activity.

  19. Cecembia lonarensis gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae, isolated from a haloalkaline lake and emended descriptions of the genera Indibacter, Nitritalea and Belliella

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, P.; Srinivas, T.N.R.; Madhu, S.; Sravan, R.; Singh, S.; Naqvi, S.W.A.; Mayilraj, S.; Shivaji, S.

    A novel Gram-staining-negative, rod-shaped, non-motile bacterium, designated strain LW9T, was isolated from a water sample collected from Lonar Lake of Buldhana district, Maharashtra, India. Colonies and broth cultures were reddish orange due...

  20. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China).

    Science.gov (United States)

    Poltaraus, Andrey B; Sokolova, Diyana S; Grouzdev, Denis S; Ivanov, Timophey M; Malakho, Sophia G; Korshunova, Alena V; Rozanov, Aleksey S; Tourova, Tatiyana P; Nazina, Tamara N

    2016-06-09

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. Copyright © 2016 Poltaraus et al.

  1. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China)

    OpenAIRE

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Rozanov, Aleksey S.; Tourova, Tatiyana P.; Nazina, Tamara N.

    2016-01-01

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus.

  2. “Nigerium massiliense” gen. nov., sp. nov., a new bacterium isolated from the gut from a patient with acute malnutrition

    Directory of Open Access Journals (Sweden)

    Sory Ibrahima Traore

    2016-09-01

    Full Text Available We propose the main characteristics of a new bacterium named “Nigerium massiliense” strain SIT5 (CSURP1302 that was isolated from the stool of a 2-year-old Nigerian child suffering from kwashiorkor, a form of severe acute malnutrition. Keywords: Culturomics, Taxonomy, Genomics, Taxono-genomics, “Nigerium massiliense”

  3. Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea

    KAUST Repository

    Barbato, Marta

    2015-12-10

    We report here the draft genome sequence of Alcanivorax dieselolei KS-293, a hydrocarbonoclastic bacterium isolated from the Mediterranean Sea, by supplying diesel oil as the sole carbon source. This strain contains multiple putative genes associated with hydrocarbon degradation pathways and that are highly similar to those described in A. dieselolei type strain B5.

  4. Complete Genome Sequence of Bacillus velezensis CBMB205, a Phosphate-Solubilizing Bacterium Isolated from the Rhizoplane of Rice in the Republic of Korea

    OpenAIRE

    Hwangbo, Kyeong; Um, Yurry; Kim, Ki Yoon; Madhaiyan, Munusamy; Sa, Tong Min; Lee, Yi

    2016-01-01

    Bacillus velezensis CBMB205 (= KACC 13105T = NCCB 100236T) was isolated from the rhizoplane of rice (Oryza sativa L. cv. O-dae). According to previous studies, this bacterium has several genes that can promote plant growth, such as the phosphorus-solubilizing protein-coding gene. Here, we present the first complete genome of B.?velezensis CBMB205.

  5. Complete Genome Sequence of Spiroplasma floricola 23-6T (ATCC 29989), a Bacterium Isolated from a Tulip Tree (Liriodendron tulipifera L.).

    Science.gov (United States)

    Tsai, Yi-Ming; Wu, Pei-Shan; Lo, Wen-Sui; Kuo, Chih-Horng

    2018-04-19

    Spiroplasma floricola 23-6 T (ATCC 29989) was isolated from the flower surface of a tulip tree ( Liriodendron tulipifera L.). Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species. Copyright © 2018 Tsai et al.

  6. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    Directory of Open Access Journals (Sweden)

    Lizeth Manuela Avellaneda-Torres

    2014-12-01

    Full Text Available A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP, Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS of ribosomal DNA for fungi. Multivariate statistical analysis (MVA was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  7. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop.

    Science.gov (United States)

    Li, Leilei; Praet, Jessy; Borremans, Wim; Nunes, Olga C; Manaia, Célia M; Cleenwerck, Ilse; Meeus, Ivan; Smagghe, Guy; De Vuyst, Luc; Vandamme, Peter

    2015-01-01

    In the frame of a bumble bee gut microbiota study, acetic acid bacteria (AAB) were isolated using a combination of direct isolation methods and enrichment procedures. MALDI-TOF MS profiling of the isolates and a comparison of these profiles with profiles of established AAB species identified most isolates as Asaia astilbis or as 'Commensalibacter intestini', except for two isolates (R-52486 and LMG 28161(T)) that showed an identical profile. A nearly complete 16S rRNA gene sequence of strain LMG 28161(T) was determined and showed the highest pairwise similarity to Saccharibacter floricola S-877(T) (96.5%), which corresponded with genus level divergence in the family Acetobacteraceae. Isolate LMG 28161(T) was subjected to whole-genome shotgun sequencing; a 16S-23S rRNA internal transcribed spacer (ITS) sequence as well as partial sequences of the housekeeping genes dnaK, groEL and rpoB were extracted for phylogenetic analyses. The obtained data confirmed that this isolate is best classified into a new genus in the family Acetobacteraceae. The DNA G+C content of strain LMG 28161(T) was 54.9 mol%. The fatty acid compositions of isolates R-52486 and LMG 28161(T) were similar to those of established AAB species [with C18:1ω7c (43.1%) as the major component], but the amounts of fatty acids such as C19:0 cyclo ω8c, C14:0 and C14:0 2-OH enabled to differentiate them. The major ubiquinone was Q-10. Both isolates could also be differentiated from the known genera of AAB by means of biochemical characteristics, such as their inability to oxidize ethanol to acetic acid, negligible acid production from melibiose, and notable acid production from d-fructose, sucrose and d-mannitol. In addition, they produced 2-keto-d-gluconate, but not 5-keto-d-gluconate from d-glucose. Therefore, the name Bombella intestini gen nov., sp. nov. is proposed for this new taxon, with LMG 28161(T) ( =DSM 28636(T) =R-52487(T)) as the type strain of the type species. © 2015 IUMS.

  8. Isolation, characterization, and optimization of an aerobic butanol-producing bacterium from Singapore.

    Science.gov (United States)

    Ng, Cheng Ying Chloe; Takahashi, Katsuyuki; Liu, Zhibin

    2016-01-01

    We aimed to isolate aerobic butanol-producing microorganisms from environmental samples as potential platform strains for butanol production. Soil samples collected were subjected to a semi-high-throughput screening strategy. A microorganism capable of producing butanol in high concentrations under aerobic conditions was isolated and identified as Bacillus species by 16S rDNA analysis. The growth and butanol production under both aerobic and anaerobic conditions of the isolated Bacillus sp. 15, together with a different composition of by-products, suggest different metabolic networks from the obligate anaerobes Clostridia. At 1 L scale fermentation with 0.2 L/Min of ariflow, butanol titer reached up to 10.38 g/L in a batch culture. The fermentation process of the isolate also occurred in two phases and the acidic condition is critical for butanol production. The butanol concentration was further improved to 12.3 g/L with minimized by-products using a microaerobic condition. With the above-mentioned distinct features, the isolated Bacillus sp. 15 is a suitable platform strain for further process development and metabolic engineering for butanol production. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  9. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium.

    Science.gov (United States)

    Tomas, Ana F; Karakashev, Dimitar; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 degrees C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to grow without nutrient addition (yeast extract, peptone and vitamins) was also assessed. The maximum ethanol yield achieved was 1.28 mol ethanol/mol xylose consumed (77% of the theoretical yield), at 2 g/l of initial xylose concentration. The isolate was able to grow and produce ethanol as the main fermentation product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process.

  10. Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain.

    Science.gov (United States)

    Rivas, Raúl; Trujillo, Martha E; Mateos, Pedro F; Martínez-Molina, Eustoquio; Velázquez, Encarna

    2004-11-01

    Two xylan-degrading bacterial strains were isolated from a decayed Ulmus nigra tree in Spain. The isolates were Gram-positive, non-motile, aerobic and formed substrate mycelium which fragmented into irregular rods. 16S rRNA gene sequence analysis indicated that the isolates form a separate branch within the genus Agromyces phylogenetic cluster, with Agromyces mediolanus DSM 20152(T) being their closest relative (97.7 and 97.6 % sequence similarity). Catalase, nitrate reduction and urease tests differentiated these strains from A. mediolanus. Cell-wall peptidoglycan composition, major menaquinone, predominant fatty acids and phospholipid pattern were typical of the genus Agromyces. The DNA G+C content determined for the type strain XIL01(T) was 72 mol%. Based on the data presented, a novel species Agromyces ulmi sp. nov. is proposed. The type strain is XIL01(T) (=LMG 21954(T)=DSM 15747(T)).

  11. Morganella psychrotolerans sp. nov., a histamine-producing bacterium isolated from various seafoods

    DEFF Research Database (Denmark)

    Emborg, Jette; Dalgaard, Paw; Ahrens, Peter

    2006-01-01

    Morganella morganii subsp. morganii (strain LMG 7874T) and Morganella morganii subsp. sibonii (strain DSM 14850T), respectively. Analysis of the 16S rRNA gene sequences showed a similarity of 98.6 % between mesophilic and psychrotolerant isolates. However, fragments of seven protein-encoding housekeeping...... genes (atpD, dnaN, gyrB, hdc, infB, rpoB and tuf) all showed less than 90.9 % sequence similarity between the two groups. The psychrotolerant isolates grew at 0-2 {degrees}C and also differed from the mesophilic M. morganii isolates with respect to growth at 37 {degrees}C and in 8.5 % (w/v) Na......Cl and fermentation of D-galactose. The psychrotolerant strains appear to represent a novel species, for which the name Morganella psychrotolerans sp. nov. is proposed. The type strain is U2/3T (=LMG 23374T=DSM 17886T)....

  12. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 °C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to gro...... product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process. © IWA Publishing 2011....

  13. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Science.gov (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  14. Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea.

    Science.gov (United States)

    Heyer, Jürgen; Berger, Ursula; Hardt, Martin; Dunfield, Peter F

    2005-09-01

    A novel genus and species are proposed for two strains of methanotrophic bacteria isolated from hypersaline lakes in the Crimean Peninsula of Ukraine. Strains 10Ki(T) and 4Kr are moderate halophiles that grow optimally at 1-1.5 M (5.8-8.7%, w/v) NaCl and tolerate NaCl concentrations from 0.2 M up to 2.5 M (1.2-15%). This optimum and upper limit are the highest for any methanotrophic bacterium known to date. The strains are Gram-negative, aerobic, non-pigmented, motile, coccoid to spindle-shaped bacteria that grow on methane or methanol only and utilize the ribulose monophosphate pathway for carbon assimilation. They are neutrophilic (growth occurs only in the range pH 6.5-7.5) and mesophilic (optimum growth occurs at 30 degrees C). On the basis of 16S rRNA gene sequence phylogeny, strains 10Ki(T) and 4Kr represent a type I methanotroph within the 'Gammaproteobacteria'. However, the 16S rRNA gene sequence displays <91.5 % identity to any public-domain sequence. The most closely related methanotrophic bacterium is the thermophilic strain HB. The DNA G+C content is 58.7 mol%. The major phospholipid fatty acids are 18:1omega7 (52-61%), 16:0 (22-23%) and 16:1omega7 (14-20%). The dominance of 18:1 over 16:0 and 16:1 fatty acids is unique among known type I methanotrophs. The data suggest that strains 10Ki(T) and 4Kr should be considered as belonging to a novel genus and species of type I methanotrophic bacteria, for which the name Methylohalobius crimeensis gen. nov., sp. nov. is proposed. Strain 10Ki(T) (=DSM 16011(T)=ATCC BAA-967(T)) is the type strain.

  15. Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core.

    Science.gov (United States)

    Auman, Ann J; Breezee, Jennifer L; Gosink, John J; Schumann, Peter; Barnes, Carmen R; Kämpfer, Peter; Staley, James T

    2010-01-01

    A gas-vacuolate bacterium, strain 174(T), was isolated from a sea-ice core collected from Point Barrow, Alaska, USA. Comparative analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to Psychromonas ingrahamii 37(T), with a similarity of >99 %. However, strain 174(T) could be clearly distinguished from closely related species by DNA-DNA hybridization; relatedness values determined by two different methods between strain 174(T) and P. ingrahamii 37(T) were 58.4 and 55.7 % and those between strain 174(T) and Psychromonas antarctica DSM 10704(T) were 46.1 and 33.1 %, which are well below the 70 % level used to define a distinct species. Phenotypic analysis, including cell size (strain 174(T) is the largest member of the genus Psychromonas, with rod-shaped cells, 8-18 microm long), further differentiated strain 174(T) from other members of the genus Psychromonas. Strain 174(T) could be distinguished from its closest relative, P. ingrahamii, by its utilization of D-mannose and D-xylose as sole carbon sources, its ability to ferment myo-inositol and its inability to use fumarate and glycerol as sole carbon sources. In addition, strain 174(T) contained gas vacuoles of two distinct morphologies and grew at temperatures ranging from below 0 to 10 degrees C and its optimal NaCl concentration for growth was 3.5 %. The DNA G+C content was 40 mol%. Whole-cell fatty acid analysis showed that 16 : 1omega7c and 16 : 0 comprised 44.9 and 26.4 % of the total fatty acid content, respectively. The name Psychromonas boydii sp. nov. is proposed for this novel species, with strain 174(T) (=DSM 17665(T) =CCM 7498(T)) as the type strain.

  16. Salinicola tamaricis sp. nov., a heavy-metal-tolerant, endophytic bacterium isolated from the halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Zhao, Guo-Yan; Zhao, Li-Ya; Xia, Zhi-Jie; Zhu, Jin-Lei; Liu, Di; Liu, Chun-Yue; Chen, Xiu-Lan; Zhang, Yu-Zhong; Zhang, Xi-Ying; Dai, Mei-Xue

    2017-06-01

    A Gram-stain-negative, rod-shaped bacterium, strain F01T, was isolated from leaves of Tamarix chinensis Lour. The isolate grew optimally at 30 °C, at pH 7.0 and with 5.0 % (w/v) NaCl, and showed a high tolerance to manganese, lead, nickel, ferrous ions and copper ions. The major fatty acids were C18 : 1ω7c and C16 : 0, and the predominant respiratory quinone was Q-9. Polar lipids were dominated by diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminoglycolipids and phospholipids. The DNA G+C content was 65.8 %. Based on multilocus phylogenetic analysis, strain F01T belonged to the genus Salinicola, with highest 16S rRNA gene sequence similarity to Salinicola peritrichatus CGMCC 1.12381T (97.7 %). The level of DNA-DNA hybridization between strain F01T and closely related Salinicola strains was well below 70 %. According to the phenotypic, genetic and chemotaxonomic data, strain F01T is considered to represent a novel species in the genus Salinicola, for which the name Salinicola tamaricis sp. nov. is proposed. The type strain is F01T (=CCTCC AB 2015304T=KCTC 42855T).

  17. Isolation and polyphasic characterization of a novel hyper catalase producing thermophilic bacterium for the degradation of hydrogen peroxide.

    Science.gov (United States)

    Sooch, Balwinder Singh; Kauldhar, Baljinder Singh; Puri, Munish

    2016-11-01

    A newly isolated microbial strain of thermophilic genus Geobacillus has been described with emphasis on polyphasic characterization and its application for degradation of hydrogen peroxide. The validation of this thermophilic strain of genus Geobacillus designated as BSS-7 has been demonstrated by polyphasic taxonomy approaches through its morphological, biochemical, fatty acid methyl ester profile and 16S rDNA sequencing. This thermophilic species of Geobacillus exhibited growth at broad pH and temperature ranges coupled with production of extraordinarily high quantities of intracellular catalase, the latter of which as yet not been reported in any member of this genus. The isolated thermophilic bacterial culture BSS-7 exhibited resistance against a variety of organic solvents. The immobilized whole cells of the bacterium successfully demonstrated the degradation of hydrogen peroxide (H2O2) in a packed bed reactor. This strain has potential application in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to applications in the textile, paper, food and pharmaceutical industries.

  18. Biosynthesis and characterization of polyhydroxyalkanoates produced by an extreme halophilic bacterium, Halomonas nitroreducens, isolated from hypersaline ponds.

    Science.gov (United States)

    Cervantes-Uc, J M; Catzin, J; Vargas, I; Herrera-Kao, W; Moguel, F; Ramirez, E; Rincón-Arriaga, S; Lizama-Uc, G

    2014-10-01

    Morphological, biochemical and genotypic characterization of a halophilic bacterium isolated from hypersaline ponds located at Las Coloradas (Río Lagartos, Yucatán, Mexico). Characterization of polymer produced by this strain was also performed. Twenty strains were isolated from water samples of salt ponds and selected based on both morphological features and their PHA storage capacity, which were determined by SEM and staining methods with Nile red and Nile blue, respectively; strains were also analysed by the fluorescence imaging technique. Among them, JCCOL25.8 strain showed the highest production of PHA's reason why phenotypic and genotypic characterization was performed; this strain was identified as Halomonas nitroreducens. Polymer produced by this strain was characterized by FTIR, DSC, GPC and EDX spectroscopy. Results indicated that the biosynthesized polymer was polyhydroxybutyrate (PHB) which had a melting peak at 170°C and a crystallinity percentage of about 36%. Based on phenotypic and genotypic aspects, JCCOL25.8 strain was identified as H. nitroreducens and it was capable to accumulate PHB. To our knowledge, there is only one study published on the biosynthesis of PHA's by H. nitroreducens strains, although the characterization of the obtained polymer was not reported. © 2014 The Society for Applied Microbiology.

  19. Selective inhibition of toxic cyanobacteria by β-carboline-containing bacterium Bacillus flexus isolated from Saudi freshwaters.

    Science.gov (United States)

    Alamri, Saad A; Mohamed, Zakaria A

    2013-10-01

    A bacterial strain SSZ01 isolated from a eutrophic lake in Saudi Arabia dominated by cyanobacterial blooms, showed an antialgal activity against cyanobacteria species. Based on the analysis of the 16S rDNA gene sequence, the isolated strain (SSZ01) most likely belonged to the genus Bacillus with a 99% similarity to Bacillus flexus strain EMGA5. The thin layer chromatography (TLC) analysis of the ethyl acetate extract of this bacterium revealed that this strain can produce harmine and norharmane compared to different β-carboline analog standards. Harmine and norharmane were also detected in considerable amounts in bacterial growth medium, indicating a potential excretion of these compounds into the aquatic environment. The crude extract of Bacillus flexus as well as pure materials of harmine and norharmane inhibited the growth of tested species of cyanobacteria. However, the bacterial crude extract has a higher toxicity against tested species of cyanobacteria than harmine and norharmane. In addition, harmine was more toxic to cyanobacteria than norharmane. On the other hand, neither pure compounds of harmine and norharmane nor crude bacterial extract showed any antialgal activity against tested species of green algae. The results of the present study suggest that B. flexus SSZ01 or its crude extract containing harmine and norharmane could be a candidate for the selective control of cyanobacterial blooms without affecting other algal species.

  20. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Stams, A.J.M.; Hedrich, S.; Nancucheo, I.; Johnson, D.B.

    2015-01-01

    Three strains of sulfate-reducing bacteria (M1T, D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and

  1. Efficient isolation of total RNA from antibiotic-producing bacterium Amycolatopsis mediterranei.

    Science.gov (United States)

    Yao, Yufeng; Zhang, Weiwen; Jiao, Ruishen; Zhao, Guoping; Jiang, Weihong

    2002-10-01

    RNA extraction from antibiotic-producing actinomycetes can be a difficult and time-consuming process due to their special peptidoglycans cell wall composition and the short life of RNA. Hence, the rapidity of cellular lysis and complete inhibition of RNase are of particular importance for isolating intact RNA of high quality. The genus of Amycolatopsis mediterranei produces many clinically important antibiotics, such as rifamycin and vancomycin; however, the available methods for bacterial RNA isolation did not work very well with this genus. In this report, we described a new method for RNA isolation using the combination of LiCl, urea and guanidinium thiocyanate to disrupt the cell wall of Amycolatopsis. Compared with earlier published RNA isolation methods, the method gave higher yields of pure and intact RNA. About 1 microg total RNA free of DNA contamination can be obtained from 1 mg wet weight of A. mediterranei. The integrity of the RNA was demonstrated by formaldehyde agarose gel electrophoresis and Northern blot analyses.

  2. Enterococcus bulliens sp. nov., a novel lactic acid bacterium isolated from camel milk.

    Science.gov (United States)

    Kadri, Zaina; Spitaels, Freek; Cnockaert, Margo; Praet, Jessy; El Farricha, Omar; Swings, Jean; Vandamme, Peter

    2015-11-01

    Four lactic acid bacteria isolates obtained from fresh dromedary camel milk produced in Dakhla, a city in southern Morocco, were characterised in order to determine their taxonomic position. The four isolates had highly similar MALDI-TOF MS and RAPD fingerprints and identical 16S rRNA gene sequences. Comparative sequence analysis revealed that the 16S rRNA gene sequence of the four isolates was most similar to that of Enterococcus sulfureus ATCC 49903(T) and Enterococcus italicus DSM 15952(T) (99.33 and 98.59% similarity, respectively). However, sequence analysis of the phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) genes revealed that the taxon represented by strain LMG 28766(T) was well separated from E. sulfureus LMG 13084(T) and E. italicus LMG 22039(T), which was further confirmed by DNA-DNA hybridization values that were clearly below the species demarcation threshold. The novel taxon was easily differentiated from its nearest neighbour species through sequence analysis of protein encoding genes, MALDI-TOF mass spectrometry and multiple biochemical tests, but had a similar percentage G+C content of about 39%. We therefore propose to formally classify these isolates as Enterococcus bulliens sp. nov., with LMG 28766(T) (=CCMM B1177(T)) as the type strain.

  3. Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Nupur; Bhumika, V.; Srinivas, T.N.R.; AnilKumar, P.

    . Nogi, Y., Soda, K. & Oikawa, T. (2005). Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater. Syst Appl Microbiol 28, 310-315. Ryu, S. H., Park, J. H., Moon, J. C., Sung, Y., Lee, S. S. & Jeon, C. O. (2008). Flavobacterium...

  4. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum).

    Science.gov (United States)

    van der Wolf, Jan M; Nijhuis, Els H; Kowalewska, Malgorzata J; Saddler, Gerry S; Parkinson, Neil; Elphinstone, John G; Pritchard, Leighton; Toth, Ian K; Lojkowska, Ewa; Potrykus, Marta; Waleron, Malgorzata; de Vos, Paul; Cleenwerck, Ilse; Pirhonen, Minna; Garlant, Linda; Hélias, Valérie; Pothier, Joël F; Pflüger, Valentin; Duffy, Brion; Tsror, Leah; Manulis, Shula

    2014-03-01

    Pectinolytic bacteria have been recently isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms found in a number of European countries and Israel. These Gram-reaction-negative, motile, rods were identified as belonging to the genus Dickeya, previously the Pectobacterium chrysanthemi complex (Erwinia chrysanthemi), on the basis of production of a PCR product with the pelADE primers, 16S rRNA gene sequence analysis, fatty acid methyl esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-methylglucoside. Differential physiological assays used previously to differentiate between strains of E. chrysanthemi, showed that these isolates belonged to biovar 3. Eight of the isolates, seven from potato and one from hyacinth, were analysed together with 21 reference strains representing all currently recognized taxa within the genus Dickeya. The novel isolates formed a distinct genetic clade in multilocus sequence analysis (MLSA) using concatenated sequences of the intergenic spacer (IGS), as well as dnaX, recA, dnaN, fusA, gapA, purA, rplB, rpoS and gyrA. Characterization by whole-cell MALDI-TOF mass spectrometry, pulsed field gel electrophoresis after digestion of whole-genome DNA with rare-cutting restriction enzymes, average nucleotide identity analysis and DNA-DNA hybridization studies, showed that although related to Dickeya dadantii, these isolates represent a novel species within the genus Dickeya, for which the name Dickeya solani sp. nov. (type strain IPO 2222(T) = LMG25993(T) = NCPPB4479(T)) is proposed.

  5. A heavy metal tolerant novel bacterium, Bacillus malikii sp. nov., isolated from tannery effluent wastewater.

    Science.gov (United States)

    Abbas, Saira; Ahmed, Iftikhar; Kudo, Takuji; Iqbal, Muhammad; Lee, Yong-Jae; Fujiwara, Toru; Ohkuma, Moriya

    2015-12-01

    The taxonomic position of a Gram-stain positive and heavy metal tolerant bacterium, designated strain NCCP-662(T), was investigated by polyphasic characterisation. Cells of strain NCCP-662(T) were observed to be rod to filamentous shaped, motile and strictly aerobic, and to grow at 10-50 °C (optimum 30-37 °C) and at pH range of 6-10 (optimum pH 7-8). The strain was found to be able to tolerate 0-12 % NaCl (w/v) and heavy metals (Cr 1200 ppm, Pb 1800 ppm and Cu 1200 ppm) in tryptic soya agar medium. The phylogenetic analysis based on the 16S rRNA gene sequence of strain NCCP-662(T) showed that it belongs to the genus Bacillus and showed high sequence similarity (98.2 and 98.0 %, respectively) with the type strains of Bacillus niabensis 4T19(T) and Bacillus halosaccharovorans E33(T). The chemotaxonomic data showed that the major quinone is MK-7; the predominant cellular fatty acids are anteiso-C15 :0, iso-C14:0, iso-C16:0 and C16:0 and iso-C15:0; the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol along with several unidentified glycolipids, phospholipids and polar lipids. The DNA G+C content was determined to be 36.9 mol%. These data also support the affiliation of strain NCCP-662(T) with the genus Bacillus. The level of DNA-DNA relatedness between strain NCCP-662(T) and B. niabensis JCM 16399(T) was 20.5 ± 0.5 %. On the basis of physiological and biochemical characteristics, phylogenetic analyses and DNA-DNA hybridization data, strain NCCP-662(T) can be clearly differentiated from the validly named Bacillus species and thus represents a new species, for which the name Bacillus malikii sp. nov. is proposed with the type strain NCCP-662(T) (= LMG 28369(T) = DSM 29005(T) = JCM 30192(T)).

  6. Chitinolytic enzymes from bacterium inhabiting human gastrointestinal tract - critical parameters of protein isolation from anaerobic culture

    Czech Academy of Sciences Publication Activity Database

    Dušková, Jarmila; Tishchenko, Galina; Ponomareva, E.; Šimůnek, Jiří; Koppová, Ingrid; Skálová, Tereza; Štěpánková, Andrea; Hašek, Jindřich; Dohnálek, Jan

    2011-01-01

    Roč. 58, č. 2 (2011), s. 261-263 ISSN 0001-527X R&D Projects: GA ČR GA310/09/1407; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50450515 Keywords : chitinolytic enzymes * anaerobic cultivation * protein isolation Subject RIV: EE - Microbiology, Virology Impact factor: 1.491, year: 2011 http://www.actabp.pl/pdf/2_2011/261.pdf

  7. Genome Sequence ofVerrucomicrobiumsp. Strain GAS474, a Novel Bacterium Isolated from Soil.

    Science.gov (United States)

    Pold, Grace; Conlon, Erin M; Huntemann, Marcel; Pillay, Manoj; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Daum, Chris; Shapiro, Nicole; Kyrpides, Nikos; Woyke, Tanja; DeAngelis, Kristen M

    2018-01-25

    Verrucomicrobium sp. strain GAS474 was isolated from the mineral soil of a temperate deciduous forest in central Massachusetts. Here, we present the complete genome sequence of this phylogenetically novel organism, which consists of a total of 3,763,444 bp on a single scaffold, with a 65.8% GC content and 3,273 predicted open reading frames. Copyright © 2018 Pold et al.

  8. Study of Growth Process and Phenol Biodegradation by a Bacterium Isolated from Wastewater (in vitro

    Directory of Open Access Journals (Sweden)

    Somayye Eskandary

    2011-07-01

    Full Text Available Phenol is a carbonic compound that is dangerous for humans at a concentration of 0.5 ppm in the environment. The best phenol removal from coal tar wastewaters is achieved by bioremediation. In this study, we isolated indigenous bacteria from phenolic wastewater and adapted it to a high concentration of phenol for its removal from wastewater. We also investigated the growth and removal curves of the bacteria in media with 2000 and 4000 ppm of phenol. It was observed that after lag phases of 24 and 48 hours, they grew and removed all of the phenol concentration over 264 and 312 hours. It was also found that this isolate was able to remove 2233 ppm of phenol in natural wastewater over a period of 120 hours. Identification tests showed that it is a gram-negative bactetium possibly belonging to the pseudomonas species. Phenol concentrations in wastewater can be reduced over a shorter period of time by using either this isolate alone or a group of them.

  9. Isolation of probiotics bacterium from coral reef for controlling vibriosis in tiger shrimp (Penaeus monodon larvae

    Directory of Open Access Journals (Sweden)

    Ade Dwi Sasanti

    2013-03-01

    Full Text Available Pathogenic Vibrio, especially luminous Vibrio harveyi, could cause mass mortality in tiger shrimp culture. One of the technique to work against luminous Vibrio is, using probiotic bacteria to inhibit the luminous Vibrio growth. This study was carried out to obtain bacteria isolates from coral reef which potentially inhibit V. harveyi growth. A total of 110 isolates were isolated from Acropora sp, Merulina sp, Hystrix sp., Poecillophora sp, Porites sp and Haliophora sp., and have probiotic activity against V. harveyi in in vitro and in vivo test.Of the total 110 isolates, 54 isolates show the inhibiting zone. Two isolates(8A and 1Cwere not pathogenic and have the most effective activity in inhibiting growth of V. harveyi and significantly reduced larval mortality in in vitro and in vivo test. Treatment using probiotics candidate have significant different survival rate (83.33% compared with positive control (61.67%. The growth rate of lenght of larvae treatment with isolate of 8A (5.25% and 1C (5.06% show the significant different compared with positive control (3.54%. The growth rate of weight of larvae treatment withisolate of 8A (17.51% and 1C (17.61% show significant different compared with negative (15.27% and positive control (14.69%.Key word: coral reef, probiotic, tiger shrimp, vibriosis, V. harveyi. ABSTRAKVibrio patogen, khususnya Vibrio harveyi berpendar, dapat menyebabkan kematian massal pada budidaya udang windu. Salah satu alternatif untuk menghambat Vibrio harveyi berpendar adalah dengan menggunakan bakteri probiotik yang dapat menekan pertumbuhan Vibrio tersebut. Penelitian ini bertujuan untuk mendapatkan isolat bakteri dari terumbu karang yang potensial menghambat pertumbuhan V. harveyi. Total 110 isolat diisolasi dari Acropora sp, Merulina sp., Hystrix sp., Poecillophora sp., Porites sp. dan Haliophora sp, dilakukan penapisan untuk melihat aktivitas kemampuannya melawan V. harveyi MR 5339 RfR dalam uji in vitro dan uji in vivo

  10. Bacillus kiskunsagensis sp. nov., a novel alkaliphilic and moderately halophilic bacterium isolated from soda soil.

    Science.gov (United States)

    Borsodi, Andrea K; Tóth, Erika; Aszalós, Júlia M; Bárány, Ágnes; Schumann, Peter; Spröer, Cathrin; Kovács, Attila L; Márialigeti, Károly; Szili-Kovács, Tibor

    2017-09-01

    An alkaliphilic and moderately halophilic strain characterized by optimal growth at pH 9.0-10.0 and 7 % (w/v) NaCl, and designated B16-24T, was isolated from the rhizosphere soil of the bayonet grass Bolboschoenus maritimus at a soda pond in the Kiskunság National Park, Hungary. Cells of the strain were Gram-staining-positive, non-motile, straight rods, and formed central, ellipsoidal endospores with slightly swollen sporangia. The isolate was facultative anaerobic, catalase positive, oxidase negative, and contained a peptidoglycan of type A1γ based on meso-diaminopimelic acid. Menaquinone-7 (MK-7) was the predominant isoprenoid quinone, and anteiso-C15 : 0 the major cellular fatty acid. The DNA G+C content of strain B16-24T was 36.6 mol%. The 16S rRNA gene-based phylogenetic analysis revealed that the novel isolate had the greatest similarities to the type strains of Bacillus okhensis Kh10-101T (97.8 %), B. akibai 1139T (97.4 %), B. alkalisediminis K1-25T (97.3 %) and B. wakoensis N-1T (97.1 %). The DNA-DNA relatedness of strain B16-24T and the closely related Bacillus species ranged between 24±6 % and 35±3 %. The distinctive phenotypic and genetic results of this study confirmed that strain B16-24T represents a novel species within the genus Bacillus, for which the name Bacillus kiskunsagensis sp. nov. is proposed. The type strain is B16-24T (=DSM 29791T=NCAIM B.02610T).

  11. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere.

    Science.gov (United States)

    Mehnaz, Samina; Weselowski, Brian; Lazarovits, George

    2007-03-01

    A free-living diazotrophic strain, DS2(T), was isolated from corn rhizosphere. Polyphasic taxonomy was performed including morphological characterization, Biolog analysis, and 16S rRNA, cpn60 and nifH gene sequence analyses. 16S rRNA gene sequence analysis indicated that strain DS2(T) was closely related to the genus Azospirillum (96 % similarity). Chemotaxonomic characteristics (DNA G+C content 67.9 mol%; Q-10 quinone system; major fatty acid 18 : 1omega7c) were also similar to those of the genus Azospirillum. In all the analyses, including phenotypic characterization using Biolog analysis and comparison of cellular fatty acids, this isolate was found to be different from the closely related species Azospirillum lipoferum, Azospirillum oryzae and Azospirillum brasilense. On the basis of these results, a novel species is proposed for this nitrogen-fixing strain. The name Azospirillum canadense sp. nov. is suggested with the type strain DS2(T) (=NCCB 100108(T)=LMG 23617(T)).

  12. Microbacterium horti sp. nov., a bacterium isolated from Cucurbita maxima cultivating soil.

    Science.gov (United States)

    Akter, Shahina; Park, Jae Hee; Yin, Chang Shik

    2016-04-01

    A novel bacterial strain THG-SL1(T) was isolated from a soil sample of Cucurbita maxima garden and was characterized by using a polyphasic approach. Cells were Gram-reaction-positive, non-motile and rod-shaped. The strain was aerobic, catalase positive and weakly positive for oxidase. Phylogenetic analysis based on 16S rRNA gene sequence analysis but it shared highest similarity with Microbacterium ginsengisoli KCTC 19189(T) (96.6 %), indicating that strain THG-SL1(T) belongs to the genus Microbacterium. The DNA G + C content of the isolate was 68.9 mol %. The major fatty acids were anteiso-C15: 0 (39.7 %), anteiso-C17: 0 (24.4 %) and iso-C16: 0 (18.5 %). The major polar lipids of strain THG-SL1(T) were phosphatidylglycerol (PG) and an unidentified glycolipid (GL). The predominant respiratory isoprenoid quinones were menaquinone-11 and menaquinone-12. The diamino acid in the cell-wall peptidoglycan was ornithine. Based on the results of polyphasic characterization, strain THG-SL1(T) represented a novel species within the genus Microbacterium, for which the name Microbacterium horti sp. nov. is proposed. The type strain is THG-SL1(T) (=KACC 18286(T)=CCTCC AB 2015117(T)).

  13. Bacillus radicibacter sp. nov., a new bacterium isolated from root nodule of Oxytropis ochrocephala Bunge.

    Science.gov (United States)

    Wei, Xiu Li; Lin, Yan Bing; Xu, Lin; Han, Meng Sha; Dong, Dan Hong; Chen, Wei Min; Wang, Li; Wei, Ge Hong

    2015-10-01

    A Gram-positive, facultative anaerobic, rod-shaped, and endospore-forming strain, designated 53-2(T) was isolated from the root nodule of Oxytropis ochrocephala Bunge growing on Qilian mountain, China. The strain can grow at pH 7.0-8.0, 10-50 °C and tolerate up to 11% NaCl. Optimal growth occurred at pH 7.2 and 37 °C. The result of BLASTn search based on 16S rRNA gene sequence revealed that strain 53-2(T) , being closest related to Bacillus acidicola 105-2(T) , possessed remote similarity (less than 95.64%) to the species within genus Bacillus. The DNA G + C content was 37.8%. Chemotaxonomic data (major quinone is MK-7; major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipid, and aminoglycophospholipid; fatty acids are anteiso-C15: 0 , iso-C15:0 and anteiso-C17: 0 ) supported the affiliation of the isolate to the genus Bacillus. On the basis of physiological, phylogenetic, and biochemical properties, strain 53-2(T) represents a novel species within genus Bacillus, for which the name Bacillus radicibacter is proposed. The type strain is 53-2(T) (=DSM27302(T) =ACCC06115(T) =CCNWQLS5(T) ). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Isolation and identification of chemical constituents from the bacterium Bacillus sp. and their nematicidal activities.

    Science.gov (United States)

    Zeng, Liming; Jin, Hui; Lu, Dengxue; Yang, Xiaoyan; Pan, Le; Cui, Haiyan; He, Xiaofeng; Qiu, Hongdeng; Qin, Bo

    2015-10-01

    A strain SMrs28 was isolated from the rhizosphere soil of a toxic plant Stellera chamaejasme and identified as Bacillus sp. on the basis of morphological and partial 16S rRNA gene sequence analysis. The crude extract of SMrs28 fermentation broth showed strong nematocidal activities in preliminary test. To define the active nematocidal metabolites of SMrs28, a novel compound (1), 4-oxabicyclo[3.2.2]nona-1(7), 5,8-triene, along with five known compounds (2-6), were isolated from the strain by various column chromatographic techniques and characterized on the basis of spectroscopic analysis. Results of the in vitro nematicidal tests showed that the metabolites presented different levels of activity at certain exposure conditions. Compounds (1-3) displayed LC50 values of 904.12, 451.26, 232.98 µg/ml and 1594.0, 366.62, 206.38 µg/ml against Bursaphelenchus xylophilus and Ditylenchus destructor at 72 h, respectively. This is the first report of the nematicidal activity of the compounds as constituents of Bacillus sp.. Our findings help to find potential chemical structures to develop nematicides from microbial source for the management of nematode-infected plant diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Complete genome sequence of a commensal bacterium, Hafnia alvei CBA7124, isolated from human feces.

    Science.gov (United States)

    Song, Hye Seon; Kim, Joon Yong; Kim, Yeon Bee; Jeong, Myeong Seon; Kang, Jisu; Rhee, Jin-Kyu; Kwon, Joseph; Kim, Ju Suk; Choi, Jong-Soon; Choi, Hak-Jong; Nam, Young-Do; Roh, Seong Woon

    2017-01-01

    Members of the genus Hafnia have been isolated from the feces of mammals, birds, reptiles, and fish, as well as from soil, water, sewage, and foods. Hafnia alvei is an opportunistic pathogen that has been implicated in intestinal and extraintestinal infections in humans. However, its pathogenicity is still unclear. In this study, we isolated H. alvei from human feces and performed sequencing as well as comparative genomic analysis to better understand its pathogenicity. The genome of H. alvei CBA7124 comprised a single circular chromosome with 4,585,298 bp and a GC content of 48.8%. The genome contained 25 rRNA genes (9 5S rRNA genes, 8 16S rRNA genes, and 8 23S rRNA genes), 88 tRNA genes, and 4043 protein-coding genes. Using comparative genomic analysis, the genome of this strain was found to have 72 strain-specific singletons. The genome also contained genes for antibiotic and antimicrobial resistance, as well as toxin-antitoxin systems. We revealed the complete genome sequence of the opportunistic gut pathogen, H. alvei CBA7124. We also performed comparative genomic analysis of the sequences in the genome of H. alvei CBA7124, and found that it contained strain-specific singletons, antibiotic resistance genes, and toxin-antitoxin systems. These results could improve our understanding of the pathogenicity and the mechanism behind the antibiotic resistance of H. alvei strains.

  16. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits.

    Science.gov (United States)

    Chen, Yi-Sheng; Wang, Li-Ting; Liao, Yu-Jou; Lan, Yi-Shan; Chang, Chi-Huan; Chang, Yu-Chung; Wu, Hui-Chung; Lo, Huei-Yin; Otoguro, Misa; Yanagida, Fujitoshi

    2017-12-01

    Two Gram-stain-positive, catalase-negative, rod-shaped, bacterial strains (313 T and 311) were isolated from banana fruits in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both strains corresponded to the type strain of Lactobacillus nantensis (99.19 %), followed by Lactobacillus crustorum (98.99 %), Lactobacillus heilongjiangensis (98.59 %) and Lactobacillus farciminis (98.52 %). Phylogenetic analysis based on the sequences of two housekeeping genes, pheS and rpoA, revealed that these two strains were well separated from the Lactobacillus reference strains. DNA-DNA relatedness values revealed genotype separation of the two strains from the above four species. The DNA G+C content of strain 313 T was 35.5 mol%. The strains were homofermentative and mainly produced l-lactic acid from glucose. The major cellular fatty acids of strain 313 T were 18 : 1ω6c and/or 18 : 1ω7c, 16 : 0, and 19 : 1ω6c and/or 19 : 0 cyclo ω10c. Based on their physiological and genotypic characteristics, the isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillusmusae sp. nov. is proposed. The type strain is 313 T =NBRC 112868 T =BCRC 81020 T ).

  17. Description of Alicyclobacillus montanus sp. nov., a mixotrophic bacterium isolated from acidic hot springs.

    Science.gov (United States)

    López, G; Díaz-Cárdenas, C; David Alzate, J; Gonzalez, L N; Shapiro, N; Woyke, T; Kyrpides, N C; Restrepo, S; Baena, S

    2018-03-20

    Three morphologically similar thermo-acidophilic strains, USBA-GBX-501, USBA-GBX-502 and USBA-GBX-503 T , were isolated from acidic thermal springs at the National Natural Park Los Nevados (Colombia). All isolates were spore-forming, Gram-stain-positive and motile, growing aerobically at 25-55 °C (optimum ~45 °C) and at pH 1.5-4.5 (optimum pH ~3.0). Phylogenetic analysis of the 16S rRNA gene sequences of these isolates showed an almost identical sequence (99.0 % similarity) and they formed a robust cluster with the closest relative Alicyclobacillus tolerans DSM 16297 T with a sequence similarity of 99.0 %. Average similarity to other species of the genus Alicyclobacillus was 93.0 % and average similarity to species of the genus Effusibacillus was 90 %. In addition, the level of DNA-DNA hybridization between strain USBA-GBX-503 T and Alicyclobacillus tolerans DSM 16297 T was 31.7 %. The genomic DNA G+C content of strain USBA-GBX-503 T was 44.6 mol%. The only menaquinone was MK-7 (100.0 %). No ω-alicyclic fatty acids were detected in strain USBA-GBX-503 T , and the major cellular fatty acids were C18 : 1ω7c, anteiso-C17 : 0 and iso-C17 : 0. Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA-DNA relatedness values, along with low levels of identity at the whole genome level (ANIb and ANIm values of <67.0 and <91.0 %, respectively), it can be concluded that strain USBA-GBX-503 T represents a novel species of the genus Alicyclobacillus, for which the name Alicyclobacillus montanus sp. nov. is proposed. The type strain is USBA-GBX-503 T (=CMPUJ UGB U503 T =CBMAI1927 T ).

  18. Pseudomonas yamanorum sp. nov., a psychrotolerant bacterium isolated from a subantarctic environment.

    Science.gov (United States)

    Arnau, Víctor Gonzalo; Sánchez, Leandro Arturo; Delgado, Osvaldo Daniel

    2015-02-01

    A psychrotolerant strain, 8H1(T), was isolated from soil samples collected in Isla de los Estados, Ushuaia, Argentina. Cells were Gram-negative, aerobic, straight rods, occurring singly or in pairs, non-spore-forming and motile by means of two polar flagella. The isolate was able to grow in the range 4-35 °C, with optimum growth at 28 °C. The predominant cellular fatty acids were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c). The polar lipid pattern of strain 8H1(T) comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. Ubiquinone 9 (Q-9) was the predominant lipoquinone. The DNA G+C content was 59.8 mol%. 16S rRNA gene sequence-based phylogeny suggested the affiliation of strain 8H1(T) to the 'Pseudomonas fluorescens group', displaying ≥98.5 % sequence similarity to 29 type strains. A multilocus sequence analysis (MLSA) study performed by concatenating 16S rRNA, gyrB, rpoD and rpoB gene sequences showed that isolate 8H1(T) could be discriminated from closely related species of the genus Pseudomonas and placed in the 'Pseudomonas gessardii subgroup', including the species with the highest MLSA sequence similarities: Pseudomonas brenneri (96.2 %), P. gessardii (96.1 %), P. proteolytica (96.0 %), P. meridiana (96.0 %) and P. mucidolens (95.4 %). DNA-DNA hybridization analysis between 8H1(T) and the type strains of these closely related species revealed relatedness values of 27.0, 8.8, 41.2, 39.7 and 46.1 %, respectively. These results, together with differences in several phenotypic features, support the classification of a novel species, for which the name Pseudomonas yamanorum sp. nov. is proposed. The type strain is 8H1(T) ( = DSM 26522(T) = CCUG 63249(T) = LMG 27247(T)). © 2015 IUMS.

  19. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant.

    Science.gov (United States)

    Abbasi, Habib; Hamedi, Mir Manochehr; Lotfabad, Tayebe Bagheri; Zahiri, Hossein Shahbani; Sharafi, Hakimeh; Masoomi, Fatemeh; Moosavi-Movahedi, Ali Akbar; Ortiz, Antonio; Amanlou, Massoud; Noghabi, Kambiz Akbari

    2012-02-01

    An extensive investigation was conducted to isolate indigenous bacterial strains with outstanding performance for biosurfactant production from different types of spoiled fruits, food-related products and food processing industries. An isolate was selected from 800 by the highest biosurfactant yield in soybean oil medium and it was identified by 16S rRNA and the two most relevant hypervariable regions of this gene; V3 and V6 as Pseudomonas aeruginosa MA01. The isolate was able to produce 12 g/l of a glycolipid-type biosurfactant and generally less efficient to emulsify vegetable oils compared to hydrocarbons and could emulsify corn and coconut oils more than 50%. However, emulsification index (E(24)) of different hydrocarbons including hexane, toluene, xylene, brake oil, kerosene and hexadecane was between 55.8% and 100%. The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mNm(-1) with critical micelle concentration (CMC) value of 10.1mg/l. Among all carbon substrates examined, vegetable oils were the most effective on biosurfactant production. Two glycolipid fractions were purified from the biosurfactant crude extracts, and FTIR and ES-MS were used to determine the structure of these compounds. The analysis indicated the presence of three major monorhamnolipid species: R(1)C(10)C(10), R(1)C(10)C(12:1), and R(1)C(10)C(12); as well as another three major dirhamnolipid species: R(2)C(10)C(10), R(2)C(10)C(12:1), and R(2)C(10)C(12). The strain sweep experiment for measuring the linear viscoelastic of biosurfactant showed that typical behavior characteristics of a weak viscoelastic gel, with storage modulus greater than loss modulus at all frequencies examined, both showing some frequency dependence. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Bacillus catenulatus sp. nov., an alkalitolerant bacterium isolated from a soda lake.

    Science.gov (United States)

    Sultanpuram, Vishnuvardhan Reddy; Mothe, Thirumala; Chintalapati, Sasikala; Chintalapati, Venkata Ramana

    2017-12-01

    Two novel (18C T and 6C) Gram-stain-positive, rod shaped, motile and endospore-forming bacterial strains were isolated from Lonar soda lake, India. Based on 16S rRNA gene sequence analysis, strains 18C T and 6C were identified as belonging to the class Firmibacteria, and were most closely related to Bacillus cohnii KCTC 3572 T (99.3 and 99.9%, respectively), Bacillus zhanjiangensis KCTC 13713 T (97.4 and 98.0%, respectively), Bacillus halmapalus LMG 17950 T (97.0 and 97.6%, respectively) and other members in the genus Bacillus (Bacillus, for which the name Bacillus catenulatus sp. nov. is proposed. The type strain is 18C T (=KCTC 33781 T  = CGMCC 1.15475 T ).

  1. Bacillus alcaliphilum sp. nov., a bacterium isolated from a soda lake.

    Science.gov (United States)

    Sultanpuram, Vishnuvardhan Reddy; Mothe, Thirumala; Chintalapati, Sasikala; Chintalapati, Venkata Ramana

    2017-11-01

    Two novel (14B T and 7B) Gram-stain-positive, rod-shaped, motile and endospore-forming bacterial strains were isolated from Lonar soda lake, India. Based on 16S rRNA gene sequence analysis, the strains 14B T and 7B were identified as belonging to the class Firmibacteria and were most closely related to Bacillus halodurans LMG 7121 T (99.7 and 99.8%, respectively), Bacillus okuhidensis LMG 22468 T (99.1 and 99.2%, respectively) and other members in the genus Bacillus (Bacillus, for which the name Bacillus alcaliphilum sp. nov. is proposed. The type strain is 14B T (=KCTC 33777 T  = CGMCC 1.15474 T ).

  2. Lentibacillus kimchii sp. nov., an extremely halophilic bacterium isolated from kimchi, a Korean fermented vegetable.

    Science.gov (United States)

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Lee, Jong Hee; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Roh, Seong Woon; Choi, Hak-Jong

    2016-06-01

    A Gram-positive, aerobic, non-motile and extremely halophilic bacterial strain, designated K9(T), was isolated from kimchi, a Korean fermented food. The strain was observed as endospore-forming rod-shaped cells showing oxidase and catalase activity. It was found to grow at 10.0-30.0 % (w/v) NaCl (optimum, 15.0-20.0 %), pH 7.0-8.0 (optimum, pH 7.5) and 15-40 °C (optimum, 30 °C). The polar lipids of strain K9(T) were identified as phosphatidylglycerol, three unidentified phospholipids and an unidentified glycolipid. The isoprenoid quinone was identified as menaquinone-7. The major cellular fatty acids (>20 % of the total) were found to be anteisio-C15:0 and anteisio-C17:0. The cell wall peptidoglycan composition was determined to contain meso-diaminopimelic acid. The G + C content of genomic DNA was determined to be 48.2 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolated strain is closely related to Lentibacillus salinarum AHS-1(T) (96.7 % sequence similarity). Based on its phenotypic, chemotaxonomic and phylogenetic data, strain K9(T) is considered to represent a novel species of the genus Lentibacillus, for which the name Lentibacillus kimchii sp. nov., is proposed. The type strain is K9(T) (=KACC 18490(T) = JCM 30234(T)).

  3. Isolation and characterization of a novel gamma-hexachlorocyclohexane-degrading bacterium.

    Science.gov (United States)

    Thomas, J C; Berger, F; Jacquier, M; Bernillon, D; Baud-Grasset, F; Truffaut, N; Normand, P; Vogel, T M; Simonet, P

    1996-10-01

    The natural biotic capacity of soils to degrade gamma-hexachlorocyclohexane (gamma-HCH, lindane) was estimated using an enrichment technique based on the ability of soil bacteria to develop on synthetic media and degrade the xenobiotic compound, used as the sole source of carbon and energy. Bacterial inocula from relatively highly contaminated soils (from wood treatment factories) were found to promote efficiently the degradation of gamma-HCH, which subsequently permitted isolation of a competent gamma-HCH-degrading microorganism. The decrease of gamma-HCH concurrently with the release of chloride ions and the production of CO2 demonstrated the complete mineralization of gamma-HCH mediated by the isolate. This was confirmed by gas chromatography-mass spectrometry analyses showing that degradation subproducts of gamma-HCH included an unidentified tetrachlorinated compound and subsequently 1,2,4-trichlorobenzene and 2,5-dichlorophenol. The two linA- and linB-like genes coding, respectively, for a gamma-HCH dehydrochlorinase and a dehalogenase were characterized by using a PCR strategy based on sequence homologies with previously published sequences from Sphingomonas paucimobilis UT26. Nucleotide sequence analysis of the linA-like region revealed the presence of a 472-bp open reading frame exhibiting high homology with the linA gene from S. paucimobilis, while a preliminary study also indicated strong homology among the two linB genes. All enzymes involved in the gamma-HCH degradative pathway appear to be extracellular and encoded by genes located on the chromosome, although numerous cryptic plasmids have been detected.

  4. Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root.

    Science.gov (United States)

    Gao, Jun-Lian; Sun, Pengbo; Wang, Xu-Ming; Lv, Fan-Yang; Mao, Xiao-Jie; Sun, Jian-Guang

    2017-08-01

    A novel Gram-stain-negative, aerobic, rod-shaped strain designated 166T was isolated from surface-sterilized root tissue of maize planted in the Fangshan District of Beijing, PR China. The 16S rRNA gene sequence analysis indicated that strain 166T belongs to the genus Rhizobium and is closely related to Rhizobium cellulosilyticum ALA10B2T and Rhizobium yantingense H66T with sequence similarities of 98.8 and 98.3 %, respectively. According to atpD and recA sequence analysis, the highest sequence similarity between strain 166T and R. cellulosilyticum ALA10B2T is 93.8 and 84.7 %, respectively. However, the new isolate exhibited relatively low levels of DNA-DNA relatedness with respect to R. cellulosilyticum DSM 18291T (20.8±2.3 %) and Rhizobium yantingense CCTCC AB 2014007T (47.2±1.4 %). The DNA G+C content of strain 166T was 59.8 mol%. The main polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, an unidentified aminophospholipid and an unidentified aminolipid. The major fatty acids of strain 166T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The results of the physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 166T from the type strains of closely related species, R. cellulosilyticum DSM 18291T and R. yantingense CCTCC AB 2014007T. Strain 166T represents a novel species within the genus Rhizobium, for which the name Rhizobium wenxiniae sp. nov. is proposed, with the type strain 166T (=CGMCC 1.15279T=DSM 100734T).

  5. Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond.

    Science.gov (United States)

    Albuquerque, Luciana; Tiago, Igor; Taborda, Marco; Nobre, M Fernanda; Veríssimo, António; da Costa, Milton S

    2008-01-01

    A low-G+C, Gram-positive isolate, designated strain CVS-8(T), was isolated from a sea salt evaporation pond on the Island of Sal in the Cape Verde Archipelago. This organism was found to be a catalase- and oxidase-positive, non-motile, spore-forming, aerobic, curved rod-shaped organism with an optimum growth temperature of about 35-37 degrees C and an optimum pH between 7.5 and 8.0. Optimal growth occurred in media containing 4-6% (w/v) NaCl and no growth occurred in medium without NaCl. The cell-wall peptidoglycan was of the A1gamma type with meso-diaminopimelic acid, the major respiratory quinone was MK-7, the major fatty acids were iso-15:0, 16:0, anteiso-15:0 and iso-16:0 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminoglycophospholipid. The G+C content of the DNA was 37.9 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain CVS-8(T) represented a novel species of the genus Bacillus, the highest levels of sequence similarity (mean pairwise similarity values of approximately 97.5 %) being found with respect to the type strains of Bacillus shackletonii and Bacillus acidicola. On the basis of the phylogenetic, physiological and biochemical data, strain CVS-8(T) represents a novel species of the genus Bacillus, for which the name Bacillus isabeliae sp. nov. is proposed. The type strain is CVS-8(T) (=LMG 22838(T)=CIP 108578(T)).

  6. Identification and biological activity of potential probiotic bacterium isolated from the stomach mucus of breast-fed lamb

    Directory of Open Access Journals (Sweden)

    H. Kiňová Sepov��

    2011-09-01

    Full Text Available The lactic acid bacterium E isolated from the stomach mucus of breast-fed lamb was identified by sequencing of 16S rDNA fragment and species-specific PCR as Lactobacillus reuteri. Its potential antimicrobial activity and ability to modulate immune system in vitro and in vivo was determined. The growth inhibition of potential pathogens decreased from Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica ser. Minnesota to Escherichia coli. The lowest inhibition activity was observed in the case of Candida albicans. The ability of L. reuteri E to modulate biological activities of human and mouse mononuclear cells was estimated in vitro and in vivo, respectively. The production of IL-1β by monocytes in vitro was significantly induced by L. reuteri E (relative activity 2.47. The ability to modulate biological activities of mononuclear cells by living L. reuteri E cells in vitro in comparison to disintegrated L. reuteri E cells in vivo differed. For example lysozyme activity in vitro was inhibited while in vivo was stimulated (relative activities 0.30 and 1.83, respectively. The peroxidase activity in vitro was stimulated while in vivo was inhibited (relative activities 1.53 and 0.17, respectively. Obtained results indicate that L. reuteri E is potential candidate to be used in probiotic preparations for animals and/or human.

  7. Humitalea rosea gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium of the family Acetobacteraceae isolated from soil.

    Science.gov (United States)

    Margesin, Rosa; Zhang, De-Chao

    2013-04-01

    A Gram-staining-negative, pale-pink-pigmented, non-motile, obligately aerobic and rod-shaped bacterium, designated strain W37(T), was isolated from soil and subjected to a taxonomic investigation using a polyphasic approach. The strain grew at 1-30 °C, oxidized thiosulfate and accumulated polyhydroxyalkanoates. Photosynthetic pigments were represented by bacteriochlorophyll a and carotenoids. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain W37(T) was most closely related to members of the genera Roseococcus and Rubritepida (with sequence similarities of Acetobacteraceae. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, three unidentified aminolipids and one other unidentified lipid. The predominant cellular fatty acids were C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The DNA G+C content of strain W37(T) was 68.2 mol%. On the basis of phenotypic characteristics and phylogenetic analysis, strain W37(T) represents a novel species of a new genus in the family Acetobacteraceae, for which the name Humitalea rosea gen. nov., sp. nov. is proposed. The type strain of the type species is W37(T) ( = CIP 110261(T) = LMG 26243(T)).

  8. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.

    Science.gov (United States)

    Yagi, Hisashi; Fujise, Asako; Itabashi, Narumi; Ohshiro, Takashi

    2016-12-01

    The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.

  9. Spongiimicrobium salis gen. nov., sp. nov., a bacterium of the family Flavobacteriaceae isolated from a marine sponge.

    Science.gov (United States)

    Yoon, Jaewoo; Adachi, Kyoko; Kasai, Hiroaki

    2016-09-01

    A Gram-stain-negative, strictly aerobic, pale-yellow pigmented, rod-shaped, chemoheterotrophic bacterium, designated A6F-11(T), was isolated from a marine sponge collected in Japan. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the novel marine strain was affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and that it shared the highest (92.9 %) sequence similarity with Arenibacter palladensis LMG 21972(T). The strain could be differentiated phenotypically from related members of the family Flavobacteriaceae. The major fatty acids of strain A6F-11(T) were iso-C15:1 G, iso-C15:0, C16:1 ω6c and/or C16:1 ω7c and iso-C17:0 3-OH. The polar lipid profile consisted of phosphatidylglycerol, two unidentified aminolipids and two unidentified lipids. The DNA G+C content was 34.7 mol%, and the major respiratory quinone was menaquinone 6 (MK-6). From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel taxon in the family Flavobacteriaceae, for which the name Spongiimicrobium salis gen. nov., sp. nov. is proposed. The type strain of S. salis gen. nov., sp. nov. is A6F-11(T) (= KCTC 42753(T) = NBRC 111401(T)).

  10. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    Science.gov (United States)

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  11. Chitinilyticum aquatile gen. nov., sp. nov., a chitinolytic bacterium isolated from a freshwater pond used for Pacific white shrimp culture.

    Science.gov (United States)

    Chang, Shu-Chen; Chen, Wen-Ming; Wang, Jih-Terng; Wu, Ming-Chang

    2007-12-01

    Strain c14(T), originally isolated from surface water of a freshwater pond located in Pingtung (southern Taiwan) used for culture of Pacific white shrimp (Litopenaeus vannamei), was subjected to a polyphasic taxonomic approach. The strain exhibited strong chitinolytic activity and was able to grow under aerobic and anaerobic conditions by utilizing chitin exclusively as the carbon, nitrogen and energy source. Phylogenetic analysis of the 16S rRNA gene sequence revealed a clear affiliation of the proposed bacterium to the Betaproteobacteria, most closely related to Chitinibacter tainanensis S1(T), Deefgea rivuli WB 3.4-79(T) and Silvimonas terrae KM-45(T), with 94.6, 93.6 and 92.9 % 16S rRNA gene sequence similarity, respectively. The predominant fatty acids detected in cells of strain c14(T) were C(16 : 0), C(18 : 1)omega7c and summed feature 3 (C(16 : 1)omega7c and/or C(15 : 0) iso 2-OH). The G+C content of the genomic DNA was 69.5 (+/-1.0) mol%. Biochemical, physiological, chemotaxonomic and phylogenetic analyses showed that strain c14(T) could not be assigned to any known genus of the Betaproteobacteria. Therefore, strain c14(T) is classified within a novel genus and species, for which the name Chitinilyticum aquatile gen. nov., sp. nov. is proposed. The type strain of Chitinilyticum aquatile is c14(T) (=LMG 23346(T) =BCRC 17533(T)).

  12. Screening, identification and culture optimization of a newly isolated aromatic nitrilase-producing bacterium--Pseudomonas putida CGMCC3830.

    Science.gov (United States)

    Zhu, Xiaoyan; Gong, Jinsong; Li, Heng; Lu, Zhenming; Zhou, Zhemin; Shi, Jinsong; Xu, Zhenghong

    2014-03-01

    Microbial nitrilases have attracted increasing attention in nitrile hydrolysis for carboxylic acid production in recent years. A bacterium with nitrilase activity was isolated and identified as Pseudomonas putida CGMCC3830 based on its morphology, physiological and biochemical characteristics, as well as 16S rRNA gene sequence. The nitrilase production was optimized by varying culture conditions using the one-factor-at-a-time method and response surface methodology. Glycerol 13.54 g/L, tryptone 11.59 g/L, yeast extract 5.21 g/L, KH2PO4 1 g/L, NaCl 1 g/L, urea 1 g/L, initial pH 6.0 and culture temperature 30 degrees C were proved to be the optimal culture conditions. It resulted in the maximal nitrilase production of 36.12 U/mL from 2.02 U/mL. Investigations on substrate specificity demonstrate P. putida nitrilase preferentially hydrolyze aromatic nitriles. When applied in nicotinic acid synthesis, 2 mg/mL P. putida cells completely hydrolyzed 20.8 g/L 3-cyanopyridine into nicotinic acid in 90 min. The results indicated P. putida CGMCC3830 displayed potential for industrial production of nicotinic acid.

  13. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds.

    Science.gov (United States)

    Utkin, I; Woese, C; Wiegel, J

    1994-10-01

    An organism that is able to reductively ortho-dechlorinate 2,4-dichlorophenol and 3-chloro-4-hydroxyphenylacetate (3-Cl-4-OHPA) was isolated from a methanogenic lake sediment. This organism, an anaerobic, motile, Gram-type-positive, rod-shaped bacterium, grew in the presence of 0.1% yeast extract when pyruvate, lactate, formate, or hydrogen was used as the electron donor for reductive dehalogenation of 3-Cl-4-OHPA. Sulfite, thiosulfate, and sulfur were reduced to sulfide, nitrate was reduced to nitrite, and fumarate was reduced to succinate. Dissimilatory reduction of sulfate could not be demonstrated, and no adenylylsulfate reductase was detected with an immunoassay. The organism fermented two pyruvate molecules to one lactate molecule, one acetate molecule, and one carbon dioxide molecule. The pH and temperature optima for both growth and dechlorination of 3-Cl-4-OHPA were 7.5 and 38 degrees C, respectively. The doubling time under these conditions was approximately 3.5 h. On the basis of the results of a 16S rRNA analysis and the inability of the organism to use sulfate as an electron acceptor, strain JW/IU-DC1 is described as the type strain of the new taxon Desulfitobacterium dehalogenans gen. nov., sp. nov.

  14. Photobacterium galatheae sp. nov., a bioactive bacterium isolated from a mussel in the Solomon Sea

    DEFF Research Database (Denmark)

    Machado, Henrique; Giubergia, Sonia; Mateiu, Ramona Valentina

    2015-01-01

    A novel, Gram-negative marine bacterium, S2753T, was isolated from a mussel of the Solomon Sea, Solomon Islands. Analysis of the 16S rRNA gene sequence and whole genome sequence data placed strain S2753T in the genus Photobacterium with the closest relative being Photobacterium halotolerans DSM...... 18316T (97.7 % 16S rRNA gene similarity). Strain S2753T was able to grow from 15 to 40 °C and in NaCl concentrations of 0.5 to 9 % (w/v). The predominant fatty acids were 16 : 1ω7c/16 : 1ω6c (27.9 %), 16 : 0 (22.1 %) and 18 : 1ω7c/8 : 1ω6c (21.4 %). The genomic DNA G+C mol content was 49.5 mol%. Based...... is genomically distinct enough to be considered a novel species. The name Photobacterium galatheae is proposed and the type-strain is S2753T( = LMG 28894T = DSM 100496T)....

  15. Thermostable hemicellulases of a bacterium, Geobacillus sp. DC3, isolated from the former Homestake gold mine in Lead, South Dakota.

    Science.gov (United States)

    Bergdale, Terran E; Hughes, Stephen R; Bang, Sookie S

    2014-04-01

    A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulases including β-xylosidase (0.209 U/mg) and arabinofuranosidase (0.230 U/mg), after the bacterium was grown in xylan for 24 h. Partially purified DC3 endoxylanase exhibited a molecular mass of approximately 43 kDa according to zymography with an optimal pH of 7 and optimal temperature of 70 °C. The kinetic constants, K m and V max, were 13.8 mg/mL and 77.5 μmol xylose/min·mg xylan, respectively. The endoxylanase was highly stable and maintained 70 % of its original activity after 16 h incubation at 70 °C. The thermostable properties and presence of three different hemicellulases of Geobacillus sp. DC3 strain support its potential application for industrial hydrolysis of renewable biomass such as lignocelluloses.

  16. Cloning and biochemical characterization of a novel κ-carrageenase from newly isolated marine bacterium Pedobacter hainanensis NJ-02.

    Science.gov (United States)

    Zhu, Benwei; Ni, Fang; Ning, Limin; Yao, Zhong; Du, Yuguang

    2018-03-01

    Enzymatic preparation of carrageenan oligosaccharides has drawn increasing attention due to its advantages of mild reaction conditions and excellent product-specificity. A novel gene (CgkA) encoding a new κ-carrageenase was cloned, heterogeneously expressed and characterized from a newly isolated marine bacterium Pedobacter hainanensis NJ-02. It consisted of 1539bp and encoded 512 amino acid residues with a molecular weight of 57.12kDa. Multiple alignment analysis indicated that CgkA belongs to glycoside hydrolase (GH) family 16 and was most homologous to κ-carrageenase of Zobellia sp. M-2 with identity of 50%. The recombinant enzyme showed maximal activity of 3659.72U/mg at 40°C and pH 7.0. Additionally, it could retain more than 80% of its maximal activity after being incubated at pH of 5.0-9.0 below 40°C.K + and Na + with a wide range of concentration can activate the enzyme, while other divalent ions such as Cu 2+ , Zn 2+ showed inhibitory effect on the enzyme. The ESI-MS analysis of hydrolysates indicated that the enzyme can endolytically depolymerize the carrageenan into tetrasaccharides and hexasaccharides. The results suggest that it is an endo-type carrageenase and could be a valuable enzyme tool to produce carrageenan oligosaccharides with higher Dps. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa.

    Science.gov (United States)

    Khalifa, Ashraf Y Z; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A; Saleh, Farag A

    2016-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future.

  18. Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium.

    Science.gov (United States)

    Song, Mengke; Yang, Ying; Jiang, Longfei; Hong, Qing; Zhang, Dayi; Shen, Zhenguo; Yin, Hua; Luo, Chunling

    2017-01-01

    A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, ahdA1b-1 encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDɑ) and xyLE encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of xylE and ahdA1b-1 genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHDɑ and C23O genes during PHE degradation. Applying Sphingomonas PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with ryegrass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization of a novel melamine-degrading bacterium isolated from a melamine-manufacturing factory in China.

    Science.gov (United States)

    Wang, Han; Geng, Chunnu; Li, Jiangwei; Hu, Anyi; Yu, Chang-Ping

    2014-04-01

    Melamine (2,4,6-triamino-1,3,5-triazine, C3H6N6), belonging to the s-triazine family, is an anthropogenic and versatile raw material for a large number of consumer products and its extensive use has resulted in the contamination of melamine in the environment. A novel melamine-degrading bacterium strain CY1 was isolated from a melamine-manufacturing factory in China. The strain is phylogenetically different from the known melamine-degrading bacteria. Approximately, 94 % melamine (initial melamine concentration 4.0 mM, initial cell OD 0.05) was degraded in 10 days without the addition of additional carbon source. High-performance liquid chromatography showed the production of degradation intermediates including ammeline, ammelide, cyanuric acid, biuret, and urea. Kinetic simulation analysis indicated that transformation of urea into ammonia was the rate-limiting step for the degradation process. The melamine-cyanurate complex was formed due to self-assembly of melamine and cyanuric acid during the degradation. The tracking experiment using CY1 cells and (13)C3-melamine showed that the CY1 could mineralize s-triazine ring carbon to CO2. The strain CY1 could also catalyze partial transformation of cyromazine, a cyclopropyl derivative of melamine, to 6-(cyclopropylamino)-[1,3,5]triazine-2,4-diol.

  20. Draft Genome Sequence of Falsirhodobacter sp. Strain alg1, an Alginate-Degrading Bacterium Isolated from Fermented Brown Algae.

    Science.gov (United States)

    Mori, Tetsushi; Takahashi, Mami; Tanaka, Reiji; Shibata, Toshiyuki; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2014-08-21

    Falsirhodobacter sp. alg1 is an alginate-degrading bacterium, the second species from the nonphototrophic bacterial genus Falsirhodobacter. We report the first draft genome of a bacterium from this genus and point out possible important features related to alginate assimilation and its evolutionary aspects. Copyright © 2014 Mori et al.

  1. Virgibacillus albus sp. nov., a novel moderately halophilic bacterium isolated from Lop Nur salt lake in Xinjiang province, China.

    Science.gov (United States)

    Zhang, Yun-Jiao; Zhou, Yu; Ja, Man; Shi, Rong; Chun-Yu, Wei-Xun; Yang, Ling-Ling; Tang, Shu-Kun; Li, Wen-Jun

    2012-11-01

    A Gram-positive, moderately halophilic, strictly aerobic bacterium, designated YIM 93624(T), was isolated from a salt lake in Xinjiang province of China and subjected to a polyphasic taxonomic study. Strain YIM 93624(T) grew at 15-45 °C (optimum 25-30 °C), 1-17% (w/v) NaCl (optimum 5-10 %, w/v) and pH 4.0-9.0 (optimum pH 7.0). The predominant menaquinone was found to be MK-7. The major fatty acids were anteiso-C(15:0) and C(16:0). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, a glycolipid and two unidentified phospholipids. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The G+C content of the genomic DNA was 37.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 93624(T) was a member of the genus Virgibacillus and exhibited the highest similarity of 97.0 % to Virgibacillus koreensis KCTC 3823(T). However, the level of DNA-DNA relatedness between strain YIM 93624(T) and V. koreensis KCTC 3823(T) was 32.5 %. On the basis of phylogenetic, physiological and chemotaxonomic analysis data, the isolate is concluded to represent a novel species of the genus Virgibacillus, for which the name Virgibacillus albus sp. nov., is proposed, with type strain of YIM 93624(T) (=DSM 23711(T) = JCM 17364(T)).

  2. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kundi; Li, Fuli [Chinese Academy of Sciences, Qingdao (China). Qingdao Inst. of Bioenergy and Bioprocess Technology

    2011-05-15

    A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240{sup T} (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L{sup -1}, which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L{sup -1} h{sup -1}, respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal. (orig.)

  3. Tailoring nutritional and process variables for hyperproduction of catalase from a novel isolated bacterium Geobacillus sp. BSS-7.

    Science.gov (United States)

    Kauldhar, Baljinder Singh; Sooch, Balwinder Singh

    2016-01-14

    Catalase (EC 1.11.1.6) is one of the important industrial enzyme employed in diagnostic and analytical methods in the form of biomarkers and biosensors in addition to their enormous applications in textile, paper, food and pharmaceutical sectors. The present study demonstrates the utility of a newly isolated and adapted strain of genus Geobacillus possessing unique combination of several industrially important extremophilic properties for the hyper production of catalase. The bacterium can grow over a wide range of pH (3-12) and temperature (10-90 °C) with extraordinary capability to produce catalase. A novel extremophilic strain belonging to genus Geobacillus was exploited for the production of catalase by tailoring its nutritional requirements and process variables. One variable at a time traditional approach followed by computational designing was applied to customize the fermentation process. A simple fermentation media containing only three components namely sucrose (0.55 %, w/v), yeast extract (1.0 %, w/v) and BaCl2 (0.08 %, w/v) was designed for the hyperproduction of catalase. A controlled and optimum air supply caused a tremendous increase in the enzyme production on moving the bioprocess from the flask to bioreactor level. The present paper reports high quantum of catalase production (105,000 IU/mg of cells) in a short fermentation time of 12 h. To the best of our knowledge, there is no report in the literature that matches the performance of the developed protocol for the catalase production. This is the first serious study covering intracellular catalase production from thermophilic genus Geobacillus. An increase in intracellular catalase production by 214.72 % was achieved in the optimized medium when transferred from the shake flask to the fermenter level. The extraordinary high production of catalase from Geobacillus sp. BSS-7 makes the isolated strain a prospective candidate for bulk catalase production on an industrial scale.

  4. Mycobacterium aquiterrae sp. nov., a rapidly growing bacterium isolated from groundwater.

    Science.gov (United States)

    Lee, Jae-Chan; Whang, Kyung-Sook

    2017-10-01

    A strain representing a rapidly growing, Gram-stain-positive, aerobic, rod-shaped, non-motile, non-sporulating and non-pigmented species of the genus Mycobacterium, designated strain S-I-6 T , was isolated from groundwater at Daejeon in Korea. The strain grew at temperatures between 10 and 37 °C (optimal growth at 25 °C), between pH 4.0 and 9.0 (optimal growth at pH 7.0) and at salinities of 0-5 % (w/v) NaCl, growing optimally with 2 % (w/v) NaCl. Phylogenetic analyses based on multilocus sequence analysis of the 16S rRNAgene, hsp65, rpoB and the 16S-23S internal transcribed spacer indicated that strain S-I-6 T belonged to the rapidly growing mycobacteria, being most closely related to Mycobacterium sphagni. On the basis of polyphasic taxonomic analysis, the bacterial strain was distinguished from its phylogenetic neighbours by chemotaxonomic properties and other biochemical characteristics. DNA-DNA relatedness among strain S-I-6 T and the closest phylogenetic neighbour strongly support the proposal that this strain represents a novel species within the genus Mycobacterium, for which the name Mycobacterium aquiterrae sp. nov. is proposed. The type strain is S-I-6 T (=KACC 17600 T =NBRC 109805 T =NCAIM B 02535 T ).

  5. Isolation and characterization of a novel bacterium, Sphingomonas bisphenolicum strain AO1, that degrades bisphenol A.

    Science.gov (United States)

    Oshiman, Ko-ichi; Tsutsumi, Yuji; Nishida, Tomoaki; Matsumura, Yoshinobu

    2007-04-01

    Bisphenol A (2,2-bis(4-hydroxyphenyl) propane, BPA), which is used as a synthetic resin material or a plasticizer, is a pollutant that possesses endocrine-disrupting activity. Bioremediation of BPA is used to decrease its polluting effects, and here we report a novel bacterial strain AO1, which is able to degrade BPA. This strain was isolated using enrichment cultivation from a soil sample from a vegetable-growing field; the sample was one of 500 soil samples collected across Japan. Strain AO1 degraded 100 mg/l BPA to an undetectable level within 6 h in MYPG medium (containing malt extract, yeast extract, peptone, and glucose) and within 48 h in minimum medium containing 1% glucose at 30 degrees C. Strain AO1 can utilize BPA as a sole source of carbon and as an energy source under aerobic conditions. The estrogenic activity of BPA in MYPG medium was ultimately reduced by strain AO1, although the activity initially increased. Taxonomical analysis showed that strain AO1 is closely related to Sphingomonas chlorophenolicum and S. herbicidovorans, neither of which have a capacity for BPA degradation. DNA-DNA hybridization showed that strain AO1 is a novel species of the Sphingomonas genus, and we designated AO1 as S. bisphenolicum.

  6. Characterization of a cold-active bacterium isolated from the South Pole “Ice Tunnel”

    Energy Technology Data Exchange (ETDEWEB)

    Madigan, Michael T.; Kempher, Megan L.; Bender, Kelly S.; Sullivan, Paul; Matthew Sattley, W.; Dohnalkova, Alice C.; Joye, Samantha B.

    2017-07-05

    Abstract Extremely cold microbial habitats on Earth (those below -30 °C) are rare and have not been surveyed for microbes as extensively as environments in the 0 to -20 °C range. Using cryoprotected growth media incubated at -5 °C, we enriched a cold-active Pseudomonas species from -50 °C ice collected from a utility tunnel for wastewater pipes under Amundsen–Scott South Pole Station, Antarctica. The isolate, strain UC-1, is related to other cold-active Pseudomonas species, most notably P. psychrophila, and grew at -5 °C to +34–37 °C; growth of UC-1 at +3 °C was significantly faster than at +34 °C. Strain UC-1 synthesized a surface exopolymer and high levels of unsaturated fatty acids under cold growth conditions. A 16S rRNA gene diversity screen of the ice sample that yielded strain UC-1 revealed over 1200 operational taxonomic units (OTUs) distributed across eight major classes of Bacteria. Many of the OTUs were Clostridia and Bacteriodia and some of these were probably of wastewater origin. However, a significant fraction of the OTUs were Proteobacteria and Actinobacteria of likely environmental origin. Our results shed light on the lower temperature limits to life and the possible existence of functional microbial communities in ultra-cold environments.

  7. Bacillus beringensis sp. nov., a psychrotolerant bacterium isolated from the Bering Sea.

    Science.gov (United States)

    Yu, Yong; Li, Hui-Rong; Zeng, Yin-Xin; Chen, Bo

    2011-03-01

    Psychrotolerant Bacillus-like strains BR035(T) and BR011 were isolated from seawater of the Bering Sea and were characterized by means of a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that these strains were related to the members of the genus Bacillus and had the highest 16S rRNA gene sequence similarity with Bacillus korlensis ZLC-26(T). DNA-DNA hybridization experiments confirmed that strains BR035(T) and BR011 belonged to the same species and were distinct from their closest relatives. The cells were Gram-positive, rods, motile, spore-forming and psychrotolerant. The temperature range for growth was 4-42°C. The main respiratory quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminolipid and two unknown phospholipids. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C14:0 and C16:1ω7c alcohol. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The genomic DNA G + C content was 37.6-37.8 mol%. On the basis of the phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, a novel species Bacillus beringensis is proposed and the type strain is BR035(T) (=CGMCC 1.9126(T)=DSM 22571(T)).

  8. Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman.

    Science.gov (United States)

    Gul-Guven, Reyhan; Guven, Kemal; Poli, Annarita; Nicolaus, Barbara

    2008-12-01

    A new thermophilic spore-forming strain KG8(T) was isolated from the mud of Taslidere hot spring in Batman. Strain KG8(T) was aerobe, Gram-positive, rod-shaped, motile, occurring in pairs or filamentous. Growth was observed from 35-65 degrees C (optimum 55 degrees C) and at pH 5.5-9.5 (optimum pH 7.5). It was capable of utilizing starch, growth was observed until 3% NaCl (w/v) and it was positive for nitrate reduction. On the basis of 16S rRNA gene sequence similarity, strain KG8(T) was shown to be related most closely to Anoxybacillus species. Chemotaxonomic data (major isoprenoid quinone-menaquinone-7; major fatty acid-iso-C15:0 and iso-C17:0) supported the affiliation of strain KG8(T) to the genus Anoxybacillus. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain KG8(T). Based on these results we propose assigning a novel subspecies of Anoxybacillus kamchatkensis, to be named Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov. with the type strain KG8(T) (DSM 18475(T)=CIP 109280(T)).

  9. Caldovatus sediminis gen. nov., sp. nov., a moderately thermophilic bacterium isolated from a hot spring.

    Science.gov (United States)

    Habib, Neeli; Khan, Inam Ullah; Hussain, Firasat; Zhou, En-Min; Xiao, Min; Ahmed, Iftikhar; Zhi, Xiao-Yang; Li, Wen-Jun

    2017-11-01

    A Gram-stain-negative, ovoid-shaped, aerobic, non-motile, catalase- and oxidase-positive, and moderately thermophilic bacterial strain, designated strain YIM 72346 T , was isolated from a sediment sample collected from a hot spring in Tengchong county, Yunnan province, south-west China. Growth occurred at 37-50 °C (optimum, 45 °C), at pH 6.0-9.0 (optimum, pH 6.5-7.0) and in the presence of 0.5-1.0 % (w/v) NaCl (optimum, 0.5 %). The major cellular fatty acids were C18 : 1ω7c, C16 : 0, C19 : 0cyclo ω8c,and C18 : 1 2-OH. The genomic DNA G+C content was determined to be 69.8 mol%. The predominant ubiquinone was Q-10. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified aminolipid and two unidentified phospholipids. Bacteriochlorophyll α and carotenoic acids were not detected. Strain YIM 72346 T was not observed for the accumulation of poly-β-hydroxybutyrate. The strain shared highest 16S rRNA gene sequence identities with Crenalkalicoccus roseus YIM 78023 T (93.3 %) and Craurococcus roseus NS130 T (92.7 %), but formed a distinct lineage within the family Acetobacteraceae in the phylogenetic trees. On the basis of genotypic, phenotypic, chemotaxonomic and phylogenetic analyses, strain YIM 72346 T is considered to represent a novel genus and species of the family Acetobacteraceae, for which the name Caldovatus sediminis gen. nov., sp. nov. is proposed. The type strain of Caldovatus sediminis is YIM 72346 T (=KCTC 52714 T =CGMCC 1.16330 T ).

  10. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays.

    Science.gov (United States)

    Mehnaz, Samina; Weselowski, Brian; Lazarovits, George

    2007-12-01

    Two free-living nitrogen-fixing bacterial strains, N6 and N7(T), were isolated from corn rhizosphere. A polyphasic taxonomic approach, including morphological characterization, Biolog analysis, DNA-DNA hybridization, and 16S rRNA, cpn60 and nifH gene sequence analysis, was taken to analyse the two strains. 16S rRNA gene sequence analysis indicated that strains N6 and N7(T) both belonged to the genus Azospirillum and were closely related to Azospirillum oryzae (98.7 and 98.8 % similarity, respectively) and Azospirillum lipoferum (97.5 and 97.6 % similarity, respectively). DNA-DNA hybridization of strains N6 and N7(T) showed reassociation values of 48 and 37 %, respectively, with A. oryzae and 43 % with A. lipoferum. Sequences of the nifH and cpn60 genes of both strains showed 99 and approximately 95 % similarity, respectively, with those of A. oryzae. Chemotaxonomic characteristics (Q-10 as quinone system, 18 : 1omega7c as major fatty acid) and G+C content of the DNA (67.6 mol%) were also similar to those of members of the genus Azospirillum. Gene sequences and Biolog and fatty acid analysis showed that strains N6 and N7(T) differed from the closely related species A. lipoferum and A. oryzae. On the basis of these results, it is proposed that these nitrogen-fixing strains represent a novel species. The name Azospirillum zeae sp. nov. is suggested, with N7(T) (=NCCB 100147(T)=LMG 23989(T)) as the type strain.

  11. Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring.

    Science.gov (United States)

    Lavrinenko, Ksenia; Chernousova, Elena; Gridneva, Elena; Dubinina, Galina; Akimov, Vladimir; Kuever, Jan; Lysenko, Anatoly; Grabovich, Margarita

    2010-12-01

    A novel nitrogen-fixing strain, designated BV-S(T), was isolated from a sulfur bacterial mat collected from a sulfide spring of the Stavropol Krai, North Caucasus, Russia. Strain BV-S(T) grew optimally at pH 7.5 and 37°C. According to the results of phylogenetic analysis, strain BV-S(T) belonged to the genus Azospirillum within the family Rhodospirillaceae of the class Alphaproteobacteria. Within the genus Azospirillum, strain BV-S(T) was most closely related to Azospirillum doebereinerae GSF71(T), A. picis IMMIB TAR-3(T) and A. lipoferum ATCC 29707(T) (97.7, 97.7 and 97.4 % 16S rRNA gene sequence similarity, respectively). DNA-DNA relatedness between strain BV-S(T) and A. doebereinerae DSM 13131(T), A. picis DSM 19922(T) and A. lipoferum ATCC 29707(T) was 38, 55 and 42 %, respectively. Similarities between nifH sequences of strain BV-S(T) and members of the genus Azospirillum ranged from 94.5 to 96.8 %. Chemotaxonomic characteristics (quinone Q-10, major fatty acid C(18 : 1)ω7c and G+C content 67 mol%) were similar to those of members of the genus Azospirillum. In contrast to known Azospirillum species, strain BV-S(T) was capable of mixotrophic growth under microaerobic conditions with simultaneous utilization of organic substrates and thiosulfate as electron donors for energy conservation. Oxidation of sulfide was accompanied by deposits of sulfur globules within the cells. Based on these observations, strain BV-S(T) is considered as a representative of a novel species of the genus Azospirillum, for which the name Azospirillum thiophilum sp. nov. is proposed. The type strain is BV-S(T) (=DSM 21654(T) =VKM B-2513(T)).

  12. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater.

    Science.gov (United States)

    Bowman, Kimberly S; Nobre, M Fernanda; da Costa, Milton S; Rainey, Fred A; Moe, William M

    2013-04-01

    Two strictly anaerobic bacterial strains, designated IP3-3(T) and SBP-1, were isolated from groundwater contaminated by chlorinated alkanes and alkenes at a Superfund Site located near Baton Rouge, Louisiana (USA). Both strains reductively dehalogenate a variety of polychlorinated aliphatic alkanes, including 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane and 1,2,3-trichloropropane, when provided with hydrogen as the electron donor. To clarify their taxonomic position, strains IP3-3(T) and SBP-1 were characterized using a polyphasic approach. Both IP3-3(T) and SBP-1 are mesophilic, non-spore-forming, non-motile and Gram-stain-negative. Cells of both strains are irregular cocci with diameters of 0.4-1.1 µm. Both are resistant to ampicillin and vancomycin. The genomic DNA G+C contents of strains IP3-3(T) and SBP-1 are 55.5±0.4 and 56.2±0.2 mol% (HPLC), respectively. Major cellular fatty acids include C18 : 1ω9c, C16 : 0, C14 : 0 and C16 : 1ω9c. 16S rRNA gene sequence based phylogenetic analyses indicated that the strains cluster within the phylum Chloroflexi most closely related to but distinct from the species Dehalogenimonas lykanthroporepellens (96.2 % pairwise similarity) and Dehalococcoides mccartyi (90.6 % pairwise similarity). Physiological and chemotaxonomic traits as well as phylogenetic analysis support the conclusion that these strains represent a novel species within the genus Dehalogenimonas for which the name Dehalogenimonas alkenigignens sp. nov. is proposed. The type strain is IP3-3(T) ( = JCM 17062(T) = NRRL B-59545(T)).

  13. Rhizobium smilacinae sp. nov., an endophytic bacterium isolated from the leaf of Smilacina japonica.

    Science.gov (United States)

    Zhang, Lei; Shi, Xu; Si, Meiru; Li, Changfu; Zhu, Lingfang; Zhao, Liang; Shen, Xihui; Wang, Yao

    2014-10-01

    During a study of endophytic bacteria from traditional Chinese medicinal plants, a bacterial strain, designated PTYR-5(T), was isolated from the leaf of Smilacina japonica A. Gray collected from Taibai Mountain in Shaanxi Province, north-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain PTYR-5(T) is a member of the genus Rhizobium, exhibiting the highest sequence similarities to R. cellulosilyticum LMG 23642(T) (97.2%), R. huautlense LMG 18254(T) (97.2%) and R. alkalisoli CCBAU 01393(T) (97.1%). The levels of 16S rRNA gene sequence similarity with respect to other Rhizobium species with validly published names were less than 97.0%. Phylogenies of the housekeeping genes atpD, recA and glnII confirmed its distinct position, showing low similarity with respect to those of recognized Rhizobium species (no more than 94.1, 90.0 and 88.0% similarity, respectively). The DNA-DNA relatedness values of strain PTYR-5(T) with R. cellulosilyticum LMG 23642(T), R. huautlense LMG 18254(T) and R. alkalisoli CCBAU 01393(T) were 33.6, 21.4 and 29.5 %, respectively. Based on phenotypic, phylogenetic and genotypic data, strain PTYR-5(T) is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium smilacinae sp. nov. is proposed. The type strain is PTYR-5(T) (=CCTCC AB 2013016(T)=KCTC 32300(T)=LMG 27604(T)).

  14. Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris.

    Science.gov (United States)

    Mnasri, Bacem; Liu, Tian Yan; Saidi, Sabrine; Chen, Wen Feng; Chen, Wen Xin; Zhang, Xiao Xia; Mhamdi, Ridha

    2014-05-01

    Three microbial strains isolated from common beans, 23C2T (Tunisia), Gr42 (Spain) and IE4868 (Mexico), which have been identified previously as representing a genomic group closely related to Rhizobium gallicum, are further studied here. Their 16S rRNA genes showed 98.5-99% similarity with Rhizobium loessense CCBAU 7190BT, R. gallicum R602spT, Rhizobium mongolense USDA 1844T and Rhizobium yanglingense CCBAU 71623T. Phylogenetic analysis based on recA, atpD, dnaK and thrC sequences showed that the novel strains were closely related and could be distinguished from the four type strains of the closely related species. Strains 23C2T, Gr42 and IE4868 could be also differentiated from their closest phylogenetic neighbours by their phenotypic and physiological properties and their fatty acid contents. All three strains harboured symbiotic genes specific to biovar gallicum. Levels of DNA-DNA relatedness between strain 23C2T and the type strains of R. loessense, R. mongolense, R. gallicum and R. yanglingense ranged from 58.1 to 61.5%. The DNA G+C content of the genomic DNA of strain 23C2T was 59.52%. On the basis of these data, strains 23C2T, Gr42 and IE4868 were considered to represent a novel species of the genus Rhizobium for which the name Rhizobium azibense is proposed. Strain 23C2T (=CCBAU 101087T=HAMBI3541T) was designated as the type strain.

  15. Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand.

    Science.gov (United States)

    Ramana, Ch V; Parag, B; Girija, K R; Ram, B Raghu; Ramana, V Venkata; Sasikala, Ch

    2013-02-01

    Two strains (JC85(T) and JC108) of Gram-stain-negative, motile bacteria were isolated from endolithic beach sand samples on an oligotrophic medium. Based on the 16S rRNA gene sequence analysis, both strains were identified as belonging to the genus Rhizobium. Strain JC108 had 16S rRNA gene sequence similarity of 100 % with Rhizobium pusense NRCPB10(T) and formed a cluster with this strain. Strain JC85(T) had 96.9 % 16S rRNA gene sequence similarity and was 18 % related (based on DNA-DNA hybridization) to Rhizobium borbori DN316(T). With other strains of the genus Rhizobium, the 16S rRNA gene sequence similarity was less than 96.3 %. Strain JC85(T) could tolerate up to 3 % salinity, fix N(2), was resistant to ampicillin (10 µg) and was positive for catalase and oxidase. The major fatty acid was C(18 : 1)ω7c (69 %) with minor amounts of C(19 : 0) cyclo ω8c (8.9 %), C(16 : 0) (6.9 %), C(12 : 0) (5.7 %) and C(19 : 1)ω7c/C(19 : 1)ω6c (2.2 %). Polar lipids of strain JC85(T) include two unidentified aminophospholipids (APL1,2), two unidentified phospholipids (PL1,2), phosphatidylcholine and four unidentified lipids (L1-4). Q-10 is the major quinone of strain JC85(T). Based on polyphasic taxonomic analysis, strain JC85(T) represents a novel species for which, the name Rhizobium subbaraonis JC85(T) is proposed. The type strain is JC85(T) ( = DSM 24765(T) = KCTC 23614(T)).

  16. Celeribacter persicus sp. nov., a polycyclic-aromatic-hydrocarbon-degrading bacterium isolated from mangrove soil.

    Science.gov (United States)

    Jami, Mansooreh; Lai, Qiliang; Ghanbari, Mahdi; Moghadam, Mohsen Shahriari; Kneifel, Wolfgang; Domig, Konrad J

    2016-04-01

    A Gram-stain-negative, mesophilic bacterial strain, designated SBU1T, which degrades polycyclic aromatic hydrocarbons was isolated from the sediments of the mangrove forests of Nayband Bay in the Iranian Persian Gulf during a bioremediation experiment. The 16S rRNA gene sequence of strain SBU1T exhibited highest similarities with Celeribacter indicus P73T (98.52%) and Celeribacter neptunius H 14T (97.05%). Phylogenetic analysis, based on 16S rRNA gene sequences, demonstrated that strain SBU1T fell within a cluster consisting of the type strains of species of the genus Celeribacter and formed a stable clade with C. indicus P73T in trees generated with three algorithms. The fatty acid profile of strain SBU1T consisted of the major fatty acids C18:1ω7c/ω6c and C18:1ω7c 11-methyl. The major compounds in the polar lipid profile were one phosphatidylglycerol and four unidentified phospholipids. The quinone system exclusively comprised ubiquinone (Q-10). The DNA G+C content was 60.4 mol%. A combination of phylogenetic analysis, DNA-DNA hybridization estimation, average nucleotide identity results and differential phenotypic and chemotaxonomic characteristics demonstrated that strain SBU1T could be distinguished from its close relatives. Therefore, strain SBU1T is considered to represent a novel species of the genus Celeribacter for which the name Celeribacter persicus sp. nov. is proposed. The type strain is SBU1T (=MCCC 1A00672T=DSM 100434T).

  17. Ornithinibacillus salinisoli sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    Science.gov (United States)

    Gan, Longzhan; Zhang, Heming; Long, Xiufeng; Tian, Jiewei; Wang, Zhikuan; Zhang, Yuqin; Dai, Yumei; Tian, Yongqiang

    2018-03-01

    A taxonomic study was performed on strain LCB256 T , which was isolated from a saline-alkali soil sample taken from northwestern China. Cells of strain LCB256 T were Gram-stain-positive, aerobic, rod-shaped and grew at 3-17 % (w/v) NaCl (optimum 10-15 %), 10-52 °C (optimum 25-30 °C) and pH 7.0-9.0 (optimum 8.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LCB256 T was most closely related to the two genera of Ornithinibacillus and Oceanobacillus, showing highest sequence similarity to Oceanobacillus limi KCTC 13823 T (97.8 %) and Ornithinibacillus bavariensis WSBC 24001 T (97.2 %). The peptidoglycan amino acid type was found to be A4β and the major respiratory quinone was determined to be MK-7. The polar lipid profile of strain LCB256 T contained diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and two unidentified aminolipids. The dominant cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The G+C content of genomic DNA was 39.3 mol%. DNA-DNA relatedness values between strain LCB256 T and Ornithinibacillus halophilus KCTC 13822 T and Oceanobacillus limi KCTC 13823 T were 46.2 and 34.8 %, respectively. Based on this polyphasic taxonomic study, a novel species of the genus Ornithinibacillus, Ornithinibacillussalinisoli sp. nov. is proposed. The type strain is LCB256 T (=CGMCC 1.15809 T =KCTC 33862 T ).

  18. Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost.

    Science.gov (United States)

    Yoon, Min-Ho; Ten, Leonid N; Im, Wan-Taek; Lee, Sung-Taik

    2008-08-01

    A bacterial strain, designated X.bu-b T, with chitin-, xylan-, cellulose- and starch-degrading activities, was isolated from compost at a cattle farm near Daejeon, Republic of Korea. The strain comprised Gram-positive, aerobic or facultatively anaerobic, non-motile, rod-shaped bacteria. On the basis of an analysis of 16S rRNA gene sequences, the phylogenetic position of X.bu-b T was within the genus Cellulomonas, and the strain exhibited relatively high sequence similarities with respect to Cellulomonas biazotea DSM 20112T (98.1 %), C. cellasea DSM 20118T (98.1 %), C. fimi DSM 20113T (98.0 %), C. terrae DB5T (97.9 %), C. humilata ATCC 25174T (97.7 %), C. xylanilytica XIL11 T (97.5 %), C. uda DSM 20107T (97.4 %), C. gelida DSM 20111 T (97.3 %), C. iranensis OT (97.3 %) and C. flavigena DSM 20109T (97.0 %). The phylogenetic distance from other Cellulomonas species with validly published names was greater than 3 % (i.e. less than 97.0 % sequence similarity). Chemotaxonomic data also supported the classification of strain X.bu-b T within the genus Cellulomonas: L-ornithine was the cell-wall diamino acid, anteiso-C15:0 and anteiso-C17:0 were the major fatty acids, rhamnose, galactose, xylose and ribose were the cell-wall sugars, MK-9(H4) was the predominant menaquinone and diphosphatidylglycerol and phosphatidylglycerol were present in the polar lipids. The G+C content of the genomic DNA was 73.6 mol%. DNA-DNA hybridization experiments showed that the values for DNA-DNA relatedness between strain X.bu-b T and the phylogenetically closest neighbours were below 23 %. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain X.bu-b T represents a novel species of the genus Cellulomonas, for which the name Cellulomonas chitinilytica sp. nov. is proposed. The type strain is X.bu-b T (=KCTC 19133T =DSM 17922T).

  19. Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell.

    Science.gov (United States)

    Zhou, Shungui; Han, Luchao; Wang, Yueqiang; Yang, Guiqin; Zhuang, Li; Hu, Pei

    2013-07-01

    A Gram-negative, facultative anaerobic, motile, spiral, straight-to-slightly curved rod-shaped and nitrogen-fixing strain, designated SgZ-5(T), was isolated from a microbial fuel cell (MFC) and was characterized by means of a polyphasic approach. Growth occurred with 0-1 % (w/v) NaCl (optimum 1 %) and at pH 5.5-8.5 (optimum pH 7.2) and at 25-37 °C (optimum 30 °C) in nutrient broth (NB). The strain had the ability to grow under anaerobic conditions via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS). Chemotaxonomic characteristics (main ubiquinone Q-10, major fatty acid C18 : 1ω7c/C18 : 1ω6c and DNA G+C content 67.7 mol%) were similar to those of members of the genus Azospirillum. According to the results of phylogenetic analyses, strain SgZ-5(T) belonged to the genus Azospirillum within the family Rhodospirillaceae of the class Alphaproteobacteria, and was related most closely to the type strains of Azospirillum lipoferum, Azospirillum thiophilum and Azospirillum oryzae (98.0, 97.6 and 97.1 % 16S rRNA gene sequence similarity, respectively). DNA-DNA pairing studies showed that the unidentified organism displayed reassociation values of 36.7 ± 3.7, 24.1 ± 2.2 and 22.3 ± 2.4 % to the type strains of A. lipoferum, A. thiophilum and A. oryzae, respectively. Similarities between nifH gene sequences of strain SgZ-5(T) and members of the genus Azospirillum ranged from 94.0 to 97.0 %. A combination of phenotypic, chemotaxonomic, phylogenetic and genotypic data clearly indicated that strain SgZ-5(T) represents a novel species, for which the name Azospirillum humicireducens sp. nov. is proposed. The type strain is SgZ-5(T) ( = CCTCC AB 2012021(T) = KACC 16605(T)).

  20. Physiological and genomic features of a novel violacein-producing bacterium isolated from surface seawater.

    Directory of Open Access Journals (Sweden)

    Yue-Hong Wu

    Full Text Available Strains JW1T and JW3, isolated from surface seawater of the Arabian Sea, were subjected to polyphasic taxonomic analysis. Cells of both strains were Gram-stain-negative, aerobic, and rod-shaped. They formed violet pigment and produced violacein. On the basis of 16S rRNA gene sequence analysis, strains JW1T and JW3 showed high 16S rRNA gene sequence similarity with Pseudoalteromonas byunsanensis JCM12483T (98.2%, P. shioyasakiensis SE3T (97.8%, P. arabiensis JCM 17292T (97.3%, and P. gelatinilytica NH153T (97.1%. The 16S rRNA gene sequence similarity between JW1T and JW3 was 100%. Phylogenetic analyses revealed that both strains fell within the cluster of the genus Pseudoalteromonas and represented an independent lineage. The average nucleotide identity and in silico DNA-DNA hybridization values between JW1T and type strains of the closely related Pseudoalteromonas species were 70.9-83.3% and 20.0-26.4%, respectively. The sole respiratory quinone in both strains is ubiquinone 8 (Q-8. The principal fatty acids are summed feature 3 (C16:1ω7c and/or iso-C15:0 2OH, C18:1ω7c, and C16:0. The major polar lipids are phosphatidylethanolamine, phosphatidylglycerol, one unidentified glycolipid, one unidentified aminolipid, and one unidentified phospholipid. The DNA G+C content was 43.3 mol%. Differential phylogenetic distinctiveness, chemotaxonomic differences, and phenotypic properties indicated that strains JW1T and JW3 could be differentiated from the Pseudoalteromonas species with validly published names. Therefore, it is proposed that strains JW1T and JW3 represent a novel species of the genus Pseudoalteromonas, for which the name Pseudoalteromonas amylolytica sp. nov. (type strain, JW1T = CGMCC 1.15681T = KCTC 52406T = MCCC 1K02162T is proposed.

  1. Rhizobium marinum sp. nov., a malachite-green-tolerant bacterium isolated from seawater.

    Science.gov (United States)

    Liu, Yang; Wang, Run-Ping; Ren, Chong; Lai, Qi-Liang; Zeng, Run-Ying

    2015-12-01

    A motile, Gram-stain-negative, non-pigmented bacterial strain, designated MGL06T, was isolated from seawater of the South China Sea on selection medium containing 0.1 % (w/v) malachite green. Strain MGL06T showed highest 16S rRNA gene sequence similarity to Rhizobium vignae CCBAU 05176T (97.2 %), and shared 93.2-96.9 % with the type strains of other recognized Rhizobium species. Phylogenetic analyses based on 16S rRNA and housekeeping gene sequences showed that strain MGL06T belonged to the genus Rhizobium. Mean levels of DNA-DNA relatedness between strain MGL06T and R. vignae CCBAU 05176T, Rhizobium huautlense S02T and Rhizobium alkalisoli CCBAU 01393T were 20 ± 3, 18 ± 2 and 14 ± 3 %, respectively, indicating that strain MGL06T was distinct from them genetically. Strain MGL06T did not form nodules on three different legumes, and the nodD and nifH genes were also not detected by PCR or based on the draft genome sequence. Strain MGL06T contained Q-10 as the predominant ubiquinone. The major fatty acid was C18 : 1ω7c/C18 : 1ω6c with minor amounts of C19 : 0 cyclo ω8c, C16 : 0 and C18 : 1ω7c 11-methyl. Polar lipids of strain MGL06T included unknown glycolipids, phosphatidylcholine, aminolipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unknown polar lipid and aminophospholipid. Based on its phenotypic and genotypic data, strain MGL06T represents a novel species of the genus Rhizobium, for which the name Rhizobium marinum sp. nov. is proposed. The type strain is MGL06T ( = MCCC 1A00836T = JCM 30155T).

  2. Planococcus salinus sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    Science.gov (United States)

    Gan, Longzhan; Zhang, Heming; Tian, Jiewei; Li, Xiaoguang; Long, Xiufeng; Zhang, Yuqin; Dai, Yumei; Tian, Yongqiang

    2018-02-01

    A novel aerobic, Gram-stain-positive, motile, moderately halophilic and coccoid bacterial strain, designated LCB217 T , was isolated from a saline-alkali soil in north-western China and identified using a polyphasic taxonomic approach. Growth occurred with 3-15 % (w/v) NaCl (optimum 3-5 %), at 10-45 °C (optimum 30 °C) and at pH 7.0-9.0 (optimum pH 9.0). Strain LCB217 T contained MK-7 and MK-8 as the predominant menaquinones and anteiso-C15 : 0, iso-C14 : 0 and iso-C16 : 0 as the major fatty acids. The polar lipids from strain LCB217 T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified phospholipid, one unidentified aminophospholipid and one unidentified lipid. The peptidoglycan type was A4α (l-Lys-d-Glu). Phylogenetic analysis of the 16S rRNA gene sequence showed that strain LCB217 T belonged to the genus Planococcus and was closely related to the type strains Planococcus plakortidis AS/ASP6 (II) T (98.2 % similarity), Planococcus maitriensis S1 T (97.7 %) and Planococcus salinarum ISL-16 T (97.2 %). The G+C content of the genomic DNA was 49.4 mol%. DNA-DNA relatedness values between strain LCB217 T andPlanococcusplakortidis AS/ASP6 (II) T , Planococcusmaitriensis S1 T andPlanococcussalinarum ISL-16 T were 29.5, 38.1 and 39.5 %, respectively. On the basis of the phenotypic, phylogenetic and genomic data, strain LCB217 T represents a novel species of the genus Planococcus, for which the name Planococcus salinus sp. nov. is proposed. The type strain is LCB217 T (=CGMCC 1.15685 T =KCTC 33861 T ).

  3. Complete Genome Sequence of Bacillus velezensis CBMB205, a Phosphate-Solubilizing Bacterium Isolated from the Rhizoplane of Rice in the Republic of Korea.

    Science.gov (United States)

    Hwangbo, Kyeong; Um, Yurry; Kim, Ki Yoon; Madhaiyan, Munusamy; Sa, Tong Min; Lee, Yi

    2016-07-14

    Bacillus velezensis CBMB205 (= KACC 13105(T) = NCCB 100236(T)) was isolated from the rhizoplane of rice (Oryza sativa L. cv. O-dae). According to previous studies, this bacterium has several genes that can promote plant growth, such as the phosphorus-solubilizing protein-coding gene. Here, we present the first complete genome of B. velezensis CBMB205. Copyright © 2016 Hwangbo et al.

  4. Characterization of Desulfovibrio salinus sp. nov., a slightly halophilic sulfate-reducing bacterium isolated from a saline lake in Tunisia.

    Science.gov (United States)

    Ben Ali Gam, Zouhaier; Thioye, Abdoulaye; Cayol, Jean-Luc; Joseph, Manon; Fauque, Guy; Labat, Marc

    2018-03-01

    A novel slightly halophilic sulfate-reducing bacterium, designated strain P1BSR T , was isolated from water of a saline lake in Tunisia. Strain P1BSR T had motile (single polar flagellum), Gram-negative, rod-shaped, non-spore-forming cells, occurring singly or in pairs. Strain P1BSR T grew at temperatures between 15 and 45 °C (optimum 40 °C), and in a pH range between 6 and 8.5 (optimum pH 6.7). The strain required NaCl for growth (1 % w/v), and tolerated high NaCl concentration (up to 12 % w/v) with an optimum of 3 % (w/v). Sulfate, thiosulfate and sulfite served as terminal electron acceptors, but not elemental sulfur, fumarate, nitrate and nitrite. Strain P1BSR T utilized lactate, pyruvate, formate, d-fructose and glycerol as carbon and energy sources. The main cellular fatty acid was C16 : 0 (50.8 %). The genomic DNA G+C content was 47.7 mol%. Phylogenetic analysis of 16S rRNA gene sequence similarity indicated that strain P1BSR T was affiliated to the genus Desulfovibrio, with the type strains Desulfovibrio salexigens (96.51 %), Desulfovibrio zosterae (95.68 %), Desulfovibrio hydrothermalis (94.81 %) and Desulfovibrio ferrireducens (94.73 %) as its closest phylogenetic relatives. On the basis of genotypic, phenotypic and phylogenetic characteristics, it is proposed to assign strain P1BSR T to a novel species of the genus Desulfovibrio, Desulfovibrio salinus sp. nov. The type strain is P1BSR T (=DSM 101510 T =JCM 31065 T ).

  5. Genetic and Biochemical Characterization of 2-Chloro-5-Nitrophenol Degradation in a Newly Isolated Bacterium,Cupriavidussp. Strain CNP-8.

    Science.gov (United States)

    Min, Jun; Chen, Weiwei; Wang, Jinpei; Hu, Xiaoke

    2017-01-01

    Compound 2-chloro-5-nitrophenol (2C5NP) is a typical chlorinated nitroaromatic pollutant. To date, the bacteria with the ability to degrade 2C5NP are rare, and the molecular mechanism of 2C5NP degradation remains unknown. In this study, Cupriavidus sp. strain CNP-8 utilizing 2-chloro-5-nitrophenol (2C5NP) and meta -nitrophenol (MNP) via partial reductive pathways was isolated from pesticide-contaminated soil. Biodegradation kinetic analysis indicated that 2C5NP degradation by this strain was concentration dependent, with a maximum specific degradation rate of 21.2 ± 2.3 μM h -1 . Transcriptional analysis showed that the mnp genes are up-regulated in both 2C5NP- and MNP-induced strain CNP-8. Two Mnp proteins were purified to homogeneity by Ni-NTA affinity chromatography. In addition to catalyzing the reduction of MNP, MnpA, a NADPH-dependent nitroreductase, also catalyzes the partial reduction of 2C5NP to 2-chloro-5-hydroxylaminophenol via 2-chloro-5-nitrosophenol, which was firstly identified as an intermediate of 2C5NP catabolism. MnpC, an aminohydroquinone dioxygenase, is likely responsible for the ring-cleavage reaction of 2C5NP degradation. Gene knockout and complementation indicated that mnpA is necessary for both 2C5NP and MNP catabolism. To our knowledge, strain CNP-8 is the second 2C5NP-utilizing bacterium, and this is the first report of the molecular mechanism of microbial 2C5NP degradation.

  6. Vibrio oceanisediminis sp. nov., a nitrogen-fixing bacterium isolated from an artificial oil-spill marine sediment.

    Science.gov (United States)

    Kang, Sang Rim; Srinivasan, Sathiyaraj; Lee, Sang-Seob

    2015-10-01

    A Gram-staining-negative, halophilic, facultatively anaerobic, motile, rod-shaped and nitrogen-fixing bacterium, designated strain S37T, was isolated from an artificial oil-spill sediment sample from the coast of Taean, South Korea. Cells grew at 10-37 °C and pH 5.0-9.0, with optimal growth at 28 °C and pH 6.0-8.0. Growth was observed with 1-9 % (w/v) NaCl in marine broth, with optimal growth with 3-5 % NaCl, but no growth was observed in the absence of NaCl. According to the results of 16S rRNA gene sequence analysis, strain S37T represents a member of the genus Vibrio of the class Gammaproteobacteria and forms a clade with Vibrio plantisponsor MSSRF60T (97.38 %), Vibrio diazotrophicus ATCC 33466T (97.31 %), Vibrio aestuarianus ATCC 35048T (97.07 %) Vibrio areninigrae J74T (96.76 %) and Vibrio hispanicus LMG 13240T (96.76 %). The major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The DNA G+C content was 41.9 %. The DNA-DNA hybridization analysis results showed a 30.2 % association value with the closely related type strain V. plantisponsor DSM 21026T. On the basis of phenotypic and chemotaxonomic characteristics, strain S37T represents a novel species of the genus Vibrio, for which the name Vibrio oceanisediminis sp. nov., is proposed with the type strain S37T ( = KEMB 2255-005T = JCM 30409T).

  7. Genetic and Biochemical Characterization of 2-Chloro-5-Nitrophenol Degradation in a Newly Isolated Bacterium, Cupriavidus sp. Strain CNP-8

    Directory of Open Access Journals (Sweden)

    Jun Min

    2017-09-01

    Full Text Available Compound 2-chloro-5-nitrophenol (2C5NP is a typical chlorinated nitroaromatic pollutant. To date, the bacteria with the ability to degrade 2C5NP are rare, and the molecular mechanism of 2C5NP degradation remains unknown. In this study, Cupriavidus sp. strain CNP-8 utilizing 2-chloro-5-nitrophenol (2C5NP and meta-nitrophenol (MNP via partial reductive pathways was isolated from pesticide-contaminated soil. Biodegradation kinetic analysis indicated that 2C5NP degradation by this strain was concentration dependent, with a maximum specific degradation rate of 21.2 ± 2.3 μM h−1. Transcriptional analysis showed that the mnp genes are up-regulated in both 2C5NP- and MNP-induced strain CNP-8. Two Mnp proteins were purified to homogeneity by Ni-NTA affinity chromatography. In addition to catalyzing the reduction of MNP, MnpA, a NADPH-dependent nitroreductase, also catalyzes the partial reduction of 2C5NP to 2-chloro-5-hydroxylaminophenol via 2-chloro-5-nitrosophenol, which was firstly identified as an intermediate of 2C5NP catabolism. MnpC, an aminohydroquinone dioxygenase, is likely responsible for the ring-cleavage reaction of 2C5NP degradation. Gene knockout and complementation indicated that mnpA is necessary for both 2C5NP and MNP catabolism. To our knowledge, strain CNP-8 is the second 2C5NP-utilizing bacterium, and this is the first report of the molecular mechanism of microbial 2C5NP degradation.

  8. EXTRACELLULAR CELLULOLYTIC COMPLEXES PRODUCTION BY MICROSCOPIC FUNGI

    Directory of Open Access Journals (Sweden)

    S. O. Syrchin

    2015-10-01

    Full Text Available The aim of this work was to screen and to study the effect of inducers on the synthesis of the cellulolytic enzyme complexes by microscopic fungi. Cellulolytic and xylanolytic activities were determined by reducing sugar with DNS reagent, and β-glucosidase activity by pNPG hydrolysis. The enzyme preparations were obtained by ammonium sulphate precipitation. Among 32 studied strains of microscopic fungi 14 produced cellulo- and xylanolytic enzyme complexes. Fusarium sp. 5 and Fennellia sp. 2806 demonstrated the highest levels of all studied enzyme activities. Enzyme preparations with high endo-, exoglucanase, xylanase and β-glucosidase activities were obtained from these strains. Fusarium sp. 5 and Fennellia sp. 2806 were active producers of cellulase enzyme complexes during growth on natural substrates. It was shown that inductors of cellulolytic enzymes in Fusarium sp. 5 and Fennellia sp. 2806 differed from the ones in Trichoderma reesei.

  9. Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard

    DEFF Research Database (Denmark)

    Vandieken, Verona; Knoblauch, Christian; Jørgensen, Bo Barker

    2006-01-01

    Strain 15T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate...... growth occurred at 44 degrees C. Therefore, strain 15T apparently cannot grow at in situ temperatures of Arctic sediments from where it was isolated, and it was proposed that it was present in the sediment in the form of spores. The DNA G+C content was 48.9 mol%. Strain 15T was most closely related...

  10. Desulfotomaculum arcticum sp nov., a novel spore-formin, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard

    DEFF Research Database (Denmark)

    Vandieken, V.; Knoblauch, C.; Jørgensen, BB

    2006-01-01

    Strain 15 T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate...... and optimal growth occurred at 44 degrees C. Therefore, strain 15 T apparently cannot grow at in situ temperatures of Arctic sediments from where it was isolated, and it was proposed that it was present in the sediment in the form of spores. The DNA G+C content was 48(.)9 mol%. Strain 15 T was most closely...

  11. Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium.

    Science.gov (United States)

    Hoshino, Shotaro; Wong, Chin Piow; Ozeki, Masahiro; Zhang, Huiping; Hayashi, Fumiaki; Awakawa, Takayoshi; Asamizu, Shumpei; Onaka, Hiroyasu; Abe, Ikuro

    2018-03-14

    New polycyclic tetramate macrolactams, Umezawamides A (1) and B (2) were isolated from a combined-culture of Umezawaea sp. RD066910 and mycolic-acid containing bacterium Tsukamurella pulmonis TP-B0596. Their planar structures and partial stereochemistries were determined based on the spectroscopic analysis, MMFF conformational search, and ECD calculations. Umezawamides are the first secondary metabolites isolated from the genus Umezawaea and they exhibited cytotoxicities to P388 murine leukemia cells. Furthermore, umezawamide A (1) showed growth inhibitory activity against Candida albicans.

  12. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment

    DEFF Research Database (Denmark)

    Finster, Kai; Liesack, Werner; Thamdrup, Bo

    1998-01-01

    A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth...... was observed exclusively in the presence of a hydrogen sulfide scavenger, e.g., ferrihydrite. In the absence of a scavenger, sulfide and sulfate production were observed but no growth occurred. Strain SB164P1 grew also by disproportionation of thiosulfate and sulfite. With thiosulfate, the growth efficiency...... was higher in ferrihydrite-supplemented media than in media without ferrihydrite. Growth coupled to sulfate reduction was not observed. However, a slight sulfide production occurred in cultures incubated with formate and sulfate. Strain SB164P1 is the first bacterium described that grows...

  13. An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater.

    Science.gov (United States)

    Mohapatra, Balaram; Sarkar, Angana; Joshi, Swati; Chatterjee, Atrayee; Kazy, Sufia Khannam; Maiti, Mrinal Kumar; Satyanarayana, Tulasi; Sar, Pinaki

    2017-03-01

    A novel arsenic (As)-resistant, arsenate-respiring, alkane-metabolizing bacterium KAs 5-22 T , isolated from As-rich groundwater of West Bengal was characterized by physiological and genomic properties. Cells of strain KAs 5-22 T were Gram-stain-negative, rod-shaped, motile, and facultative anaerobic. Growth occurred at optimum of pH 6.0-7.0, temperature 30 °C. 16S rRNA gene affiliated the strain KAs 5-22 T to the genus Rhizobium showing maximum similarity (98.4 %) with the type strain of Rhizobium naphthalenivorans TSY03b T followed by (98.0 % similarity) Rhizobium selenitireducens B1 T . The genomic G + C content was 59.4 mol%, and DNA-DNA relatedness with its closest phylogenetic neighbors was 50.2 %. Chemotaxonomy indicated UQ-10 as the major quinone; phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as major polar lipids; C 16:0 , C 17:0 , 2-OH C 10:0 , 3-OH C 16:0 , and unresolved C 18:1 ɷ7C/ɷ9C as predominant fatty acids. The cells were found to reduce O 2 , As 5+ , NO 3 - , SO 4 2- and Fe 3+ as alternate electron acceptors. The strain's ability to metabolize dodecane or other alkanes as sole carbon source using As 5+ as terminal electron acceptor was supported by the presence of genes encoding benzyl succinate synthase (bssA like) and molybdopterin-binding site (mopB) of As 5+ respiratory reductase (arrA). Differential phenotypic, chemotaxonomic, genotypic as well as physiological properties revealed that the strain KAs 5-22 T is separated from its nearest recognized Rhizobium species. On the basis of the data presented, strain KAs 5-22 T is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium arsenicireducens sp. nov. is proposed as type strain (=LMG 28795 T =MTCC 12115 T ).

  14. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator.

    Science.gov (United States)

    Grison, Claire M; Jackson, Stephen; Merlot, Sylvain; Dobson, Alan; Grison, Claude

    2015-05-01

    A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512(T)) was isolated from 56 host seedlings of the hyperaccumulating Anthyllis vulneraria legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512(T) was shown to belong to the genus Rhizobium and to be most closely related to Rhizobium endophyticum CCGE 2052(T) (98.4%), Rhizobium tibeticum CCBAU 85039(T) (98.1%), Rhizobium grahamii CCGE 502(T) (98.0%) and Rhizobium mesoamericanum CCGE 501(T) (98.0%). The phylogenetic relationships of ChimEc512(T) were confirmed by sequencing and analyses of recA and atpD genes. DNA-DNA relatedness values of strain ChimEc512(T) with R. endophyticum CCGE 2052(T), R. tibeticum CCBAU 85039(T), R. mesoamericanum CCGE 52(T), Rhizobium grahamii CCGE 502(T), Rhizobium etli CCBAU 85039(T) and Rhizobium radiobacter KL09-16-8-2(T) were 27, 22, 16, 18, 19 and 11%, respectively. The DNA G+C content of strain ChimEc512(T) was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7c, characteristic of the genus Rhizobium . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512(T) was able to nodulate A. vulneraria, the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA-DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512(T) from species of the genus Rhizobium with validly published names. Strain ChimEc512(T), therefore, represents a novel species, for which the name Rhizobium metallidurans sp. nov. is proposed, with the type strain

  15. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes...

  16. Optimal culture conditions and characterization of cellulolytic ...

    African Journals Online (AJOL)

    Lactose and urea were best carbon and nitrogen sources respectively in the growth medium boosting the bacterial proliferation. It can be concluded that these microorganisms if properly cultivated can be used to reduce cassava waste littering in the environment. Key Words: Cassava, cellulolytic, carboxy-methyl cellulose, ...

  17. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass.

    Science.gov (United States)

    Meng, F; Ma, L; Ji, S; Yang, W; Cao, B

    2014-09-01

    Bioconversion of biomass, particularly crop wastes, into biofuels is being developed as an alternative approach in meeting the high energy demand. In this study, a thermophilic bacterial strain BY-3 that exhibits cellulolytic potential was isolated from faecal samples of Tibetan pigs; this strain was identified as Bacillus subtilis. The strain can produce cellulase when grown on various substrates, including carboxymethyl cellulose, rice straw, corn stover, soluble starch and wheat bran. The maximum cellulase activity of the strain was up to 4·323 ± 0·065 U ml(-1) when cultivated in the medium containing corn stover (30 g l(-1) ) for 24 h. The results demonstrated that corn stover is the most suitable substrate for cellulase production by the strain BY-3. The crude cellulase of strain BY-3 was most active at pH 5·5 and 60°C, and the enzyme in acetate buffer (50 mmol l(-1) ) demonstrated a good stability at 60°C for at least 1 h. The crude cellulase exhibited a strong antibacterial activity against Staphylococcus aureus. The strain can be used in cost-efficient cellulase production for bioconversion of agricultural residual biomass into biofuels. The increased consumption of fossil fuels has caused serious energy crisis and environmental problem. Thus, an alternative energy source is necessary. Bioconversion of biomass, particularly agricultural residuals, into value-added bioproducts, such as biofuels and chemical solvents, has received considerable attention. In this study, the newly isolated thermophilic Bacillus subtilis strain BY-3 produces cellulase efficiently with the use of untreated corn stover as a sole carbon source. This strain possesses the thermostable cellulase that is active with diverse crop wastes with a broad pH range and is a highly promising candidate for agricultural waste management. © 2014 The Society for Applied Microbiology.

  18. Bioprospecting of Thermostable Cellulolytic Enzymes through Modeling and Virtual Screening Method

    Directory of Open Access Journals (Sweden)

    R. Navanietha Krishnaraj

    2017-04-01

    Full Text Available Cellulolytic enzymes are promising candidates for the use of cellulose in any bioprocess operations and for the disposal of the cellulosic wastes in an environmentally benign manner. Cellulases from thermophiles have the advantage of hydrolyzing cellulose at wider range of operating conditions unlike the normal enzymes. Herein we report the modeled structures of cellulolytic enzymes (endoglucanase, cellobiohydrolase and ß-glucosidase from a thermophilic bacterium,Clostridium thermocellumand their validation using Root Mean Square Deviation (RMSD and Ramachandran plot analyses. Further, the molecular interactions of the modeled enzyme with cellulose were analyzed using molecular docking technique. The results of molecular docking showed that the endoglucanase, cellobiohydrolase and ß-glucosidase had the binding affinities of -10.7, -9.0 and -10.8 kcal/mol, respectively. A correlation between the binding affinity of the endoglucanase with cellulose and the enzyme activity was also demonstrated. The results showed that the binding affinities of cellulases with cellulose could be used as a tool to assess the hydrolytic activity of cellulases. The results obtained could be used in virtual screening of cellulolytic enzymes based on the molecular interactions with the substrate, and aid in developing systems biology models of thermophiles for industrial biotechnology applications.

  19. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk

    OpenAIRE

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Fran?oise; Loux, Valentin; Vidal, Marie; Passot, St?phanie; B?al, Catherine; Layec, S?verine; Fonseca, Fernanda

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes.

  20. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus)

    Science.gov (United States)

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  1. Vertical zonation and seed germination indices of chromium resistant cellulolytic and nitrogen fixing bacteria from a chronically metal exposed land area

    International Nuclear Information System (INIS)

    Aslam, S.; Qazi, J.I.

    2014-01-01

    Twenty eight cellulolytic and 25 nitrogen fixing bacteria were isolated from 20, 40 and 60 cm depths of the chromium contaminated land area. The cellulolytic as well as nitrogen fixing microbial communities in soil profiles were dominated by genus Bacillus. More diverse nitrogen fixing bacterial isolates belonging to different genera Paenibacillus, Corynebacterium and Pseudomonas were observed as compared to cellulolytic bacterial community. Majority of the cellulolytic bacteria were found inhabitants of 20 cm soil layer while 40 cm depth was the preferred zone for the nitrogen fixing bacteria. Screening of the bacterial isolates for chromium resistance showed that isolates designated as ASK15 and ASK16 were able to resist up to 1800 mg/l of chromium while the nitrogen fixing isolates which offered a maximum resistant level up to 1650 mg/l of chromium were ASNt10 and ASNS13. Nitrogen fixing isolates enhanced seed germination by 33% and expressed efficient nitrogenase activity up to 0.80 (C/sub 2/H/sub 2/ nmol/ml/hr). Growth promoting assay proved ASNt10 a potential isolate which produced 90 meu g/ml of indoleacetic acid (IAA). Though cellulolytic isolates did not affect seed germination, a significant influence on root length similar to that of ASNt10 and ASNS13 with nearly 5-fold increase in comparison with uninoculated control was observed. The isolates ASK15, ASK16 were identified as Bacillus cereus while ASNt10 and ASNS13 as Paenibacillus barcinonensis and Bacillus megaterium, respectively. (author)

  2. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment

    OpenAIRE

    Luo, Liang; Zhao, Zhigang; Huang, Xiaoli; Du, Xue; Wang, Chang’an; Li, Jinnan; Wang, Liansheng; Xu, Qiyou

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20?g?L?1 of glucose and 0.5?g?L?1 of beef extract at 30?C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical...

  3. Complete genome sequence of Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya.

    Science.gov (United States)

    Kumar, Rakshak; Singh, Dharam; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Kumar, Sanjay

    2016-02-20

    Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium which exhibited tolerance to cold and UV radiations was isolated from the glacial stream of East Rathong glacier in Sikkim Himalaya. Here we report the 4.3Mb complete genome assembly that has provided the basis for potential role of pigments as a survival strategy to combat stressed environment of cold and high UV-radiation and additionally the ability to produce cold active industrial enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng.

    Science.gov (United States)

    Fu, Y; Yin, Z-H; Yin, C-Y

    2017-06-01

    To isolate a novel endophytic bacterium from Panax ginseng that could have excellent properties in converting ginsenoside Rb1 to ginsenoside Rg3. Based on a 16S rDNA gene sequence, the strain named GE 17-7 was identified as Burkholderia sp. This strain has shown the highest activity in converting ginsenoside Rb1 to 20(S)-ginsenoside Rg3. During the biotransformation of ginsenoside Rb1, the final metabolite was identified by nuclear magnetic resonance analysis and the transformation pathway of ginsenoside Rb1 was also identified by thin-layer chromatography and high performance liquid chromatography analysis in this study. We have successfully isolated a β-glucosidase-producing endophytic bacterium GE 17-7 from P. ginseng. Ginsenoside Rg3 was produced by strain GE 17-7 from ginsenoside Rb1 via ginsenoside Rd. This is the first report of the conversion of major ginsenoside Rb1 into minor ginsenoside Rg3 by fermentation with Burkholderia sp. endophytic bacteria in P. ginseng. These results suggest a new preparation method for ginsenoside Rg3 using strain GE 17-7 in the pharmaceutical industry. © 2017 The Society for Applied Microbiology.

  5. Pseudomonas sp. ZXY-1, a newly isolated and highly efficient atrazine-degrading bacterium, and optimization of biodegradation using response surface methodology.

    Science.gov (United States)

    Zhao, Xinyue; Wang, Li; Ma, Fang; Bai, Shunwen; Yang, Jixian; Qi, Shanshan

    2017-04-01

    Atrazine, a widely used herbicide, is increasing the agricultural production effectively, while also causing great environmental concern. Efficient atrazine-degrading bacterium is necessary to removal atrazine rapidly to keep a safe environment. In the present study, a new atrazine-degrading strain ZXY-1, identified as Pseudomonas, was isolated. This new isolated strain has a strong ability to biodegrade atrazine with a high efficiency of 9.09mg/L/hr. Temperature, pH, inoculum size and initial atrazine concentration were examined to further optimize the degradation of atrazine, and the synthetic effect of these factors were investigated by the response surface methodology. With a high quadratic polynomial mathematical model (R 2 =0.9821) being obtained, the highest biodegradation efficiency of 19.03mg/L/hr was reached compared to previous reports under the optimal conditions (30.71°C, pH7.14, 4.23% (V/V) inoculum size and 157.1mg/L initial atrazine concentration). Overall, this study provided an efficient bacterium and approach that could be potentially useful for the bioremediation of wastewater containing atrazine. Copyright © 2016. Published by Elsevier B.V.

  6. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Pan, Xuejun; Saddler, Jack N

    2009-09-09

    Enzymatic hydrolysis of lignocellulosic materials is significantly affected by cellulase adsorption onto the lignocellulosic substrates and lignin. The presence of lignin plays an important role in lignocellulosic hydrolysis and enzyme recycling. Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their adsorption onto cellulolytic enzyme lignin (CEL) from steam-exploded Lodgepole pine (SELP) and ethanol (organosolv)-pretreated Lodgepole pine (EPLP). The adsorption affinity of cellulase (Celluclast) onto isolated lignin (CEL-EPLP and CEL-SELP) was slightly higher than that from corresponding EPLP and SELP substrates on the basis of the Langmuir constants. Effects of temperature, ionic strength, and surfactant on cellulase adsorption onto isolated lignin were also explored in this study. Thermodynamic analysis of enzyme adsorption onto isolated lignin (Gibbs free energy change DeltaG(0) approximately -30 kJ/mol) indicated this adsorption was a spontaneous process. The addition of surfactant (0.2% w/v) could reduce the adsorption of cellulase onto CEL-SELP by 60%. Two types of adsorption isotherm were compared for cellulase adsorption onto isolated lignin. A Langmuir adsorption isotherm showed better fit for the experimental data than a Freundlich adsorption isotherm.

  7. Tepidibacillus infernus sp. nov., a moderately thermophilic, selenate- and arsenate-respiring hydrolytic bacterium isolated from a gold mine, and emended description of the genus Tepidibacillus.

    Science.gov (United States)

    Podosokorskaya, Olga A; Merkel, Alexander Y; Gavrilov, Sergey N; Fedoseev, Igor; Heerden, Esta van; Cason, Errol D; Novikov, Andrey A; Kolganova, Tatyana V; Korzhenkov, Aleksei A; Bonch-Osmolovskaya, Elizaveta A; Kublanov, Ilya V

    2016-08-01

    A novel aerotolerant anaerobic, moderately thermophilic, organotrophic bacterium, strain MBL-TLPT, was isolated from a sample of microbial mat, developed under the flow of subsurface water in TauTona gold mine, South Africa. Cells of the new isolate were flagellated, spore-forming rods, 0.25-0.5 µm in width and 3-15 µm in length. Strain MBL-TLPT grew in the temperature range from 25 to 58 °C, pH range from 5.6 to 8.8 and at NaCl concentration from 0 to 85 g l-1. The isolate was able to ferment yeast extract and mono-, oligo- and polysaccharides, including starch and xanthan gum. The G+C content of the DNA was 35 mol%. Phylogenetic analysis of 16S rRNA gene sequences of strain MBL-TLPT and relatives showed its affiliation to the genus Tepidibacillus. Tepidibacillus fermentans STGHT was its closest relative (97.1 % identity of 16S rRNA gene sequences). Based on phylogenetic analysis and the physiological properties of the novel isolate, we propose a novel species, Tepidibacillus infernus sp. nov., with MBL-TLPT(=DSM 28123T=VKM В-2949T) as the type strain.

  8. Biochanin A improves fiber fermentation by cellulolytic bacteria

    Science.gov (United States)

    The objective was to determine the effect of the isoflavone biochanin A (BCA) on rumen cellulolytic bacteria and consequent fermentative activity. When bovine microbial rumen cell suspensions (n = 3) were incubated (24 h, 39 °C) with ground hay, cellulolytic bacteria proliferated, short chain fatty...

  9. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    DEFF Research Database (Denmark)

    Zheng, Shixue; Su, Jing; Wang, Liang

    2014-01-01

    ) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain......Background: Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium...... that is less toxic. Results: A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS...

  10. FERMENTATION OF INULIN BY CLOSTRIDIUM-THERMOSUCCINOGENES SP-NOV, A THERMOPHILIC ANAEROBIC BACTERIUM ISOLATED FROM VARIOUS HABITATS

    NARCIS (Netherlands)

    DRENT, WJ; LAHPOR, GA; WIEGANT, WM; GOTTSCHAL, JC

    Four closely related strains of thermophilic bacteria were isolated via enrichment in batch and continuous culture with inulin as the sole source of carbon and energy by using inoculations from various sources. These new strains were isolated from beet pulp from a sugar refinery, soil around a

  11. Reuse of red seaweed waste by a novel bacterium, Bacillus sp. SYR4 isolated from a sandbar.

    Science.gov (United States)

    Kang, Soyeon; Kim, Joong Kyun

    2015-01-01

    A potent bacterial strain was isolated from a sandbar and identified as Bacillus sp. SYR4 for the reuse of red seaweed waste. The isolate possessed both agarase and carrageenase activities. The optimal pH and temperature for the degradation of both agar and carrageenan by the isolate were found to be pH 7.5 and 30 °C, respectively. The effects of cations on cell growth and degradation ability of the isolate were significant in comparison with controls. The isolate produced 0.27 and 0.29 g l(-1) of reducing sugars from 1 g l(-1) of agar and carrageenan, respectively. When the isolate was cultivated in red seaweed powder medium for 10 days, the yield of reducing sugars was 24 %. As a result, the eco-friendly reuse of red seaweed waste by this isolate appears to be feasible for the production of reducing sugars and could be a valuable resource. To the best of our knowledge, this is the first study to directly demonstrate the ability of Bacillus sp. SYR4 to degrade both agar and carrageenan.

  12. Isolation, Free-Living Capacities, and Genome Structure of “Candidatus Glomeribacter gigasporarum,” the Endocellular Bacterium of the Mycorrhizal Fungus Gigaspora margarita

    Science.gov (United States)

    Jargeat, P.; Cosseau, C.; Ola'h, B.; Jauneau, A.; Bonfante, P.; Batut, J.; Bécard, G.

    2004-01-01

    “Candidatus Glomeribacter gigasporarum” is an endocellular β-proteobacterium present in the arbuscular mycorrhizal (AM) fungus Gigaspora margarita. We established a protocol to isolate “Ca. Glomeribacter gigasporarum” from its host which allowed us to carry out morphological, physiological, and genomic investigations on purified bacteria. They are rod shaped, with a cell wall typical of gram-negative bacteria and a cytoplasm rich in ribosomes, and they present no flagella or pili. Isolated bacteria could not be grown in any of the 19 culture media tested, but they could be kept alive for up to 4 weeks. PCR-based investigations of purified DNA from isolated bacteria did not confirm the presence of all genes previously assigned to “Ca. Glomeribacter gigasporarum.” In particular, the presence of nif genes could not be detected. Pulsed-field gel electrophoresis analyses allowed us to estimate the genome size of “Ca. Glomeribacter gigasporarum” to approximately 1.4 Mb with a ca. 750-kb chromosome and a 600- to 650-kb plasmid. This is the smallest genome known for a β-proteobacterium. Such small genome sizes are typically found in endocellular bacteria living permanently in their host. Altogether, our data suggest that “Ca. Glomeribacter gigasporarum” is an ancient obligate endocellular bacterium of the AM fungus G. margarita. PMID:15466041

  13. Isolation, free-living capacities, and genome structure of "Candidatus Glomeribacter gigasporarum," the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita.

    Science.gov (United States)

    Jargeat, P; Cosseau, C; Ola'h, B; Jauneau, A; Bonfante, P; Batut, J; Bécard, G

    2004-10-01

    "Candidatus Glomeribacter gigasporarum" is an endocellular beta-proteobacterium present in the arbuscular mycorrhizal (AM) fungus Gigaspora margarita. We established a protocol to isolate "Ca. Glomeribacter gigasporarum" from its host which allowed us to carry out morphological, physiological, and genomic investigations on purified bacteria. They are rod shaped, with a cell wall typical of gram-negative bacteria and a cytoplasm rich in ribosomes, and they present no flagella or pili. Isolated bacteria could not be grown in any of the 19 culture media tested, but they could be kept alive for up to 4 weeks. PCR-based investigations of purified DNA from isolated bacteria did not confirm the presence of all genes previously assigned to "Ca. Glomeribacter gigasporarum." In particular, the presence of nif genes could not be detected. Pulsed-field gel electrophoresis analyses allowed us to estimate the genome size of "Ca. Glomeribacter gigasporarum" to approximately 1.4 Mb with a ca. 750-kb chromosome and a 600- to 650-kb plasmid. This is the smallest genome known for a beta-proteobacterium. Such small genome sizes are typically found in endocellular bacteria living permanently in their host. Altogether, our data suggest that "Ca. Glomeribacter gigasporarum" is an ancient obligate endocellular bacterium of the AM fungus G. margarita.

  14. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5.

    Science.gov (United States)

    Qiao, N; Shao, Z

    2010-04-01

    Our goal was to identify a novel biosurfactant produced by a marine oil-degrading bacterium. Biosurfactants were produced by Alcanivorax dieselolei strain B-5(T) growing with diesel oil as the sole carbon and energy source. Culture supernatant was first extracted with chloroform/methanol (1:1, v/v), then further purified step by step with a normal phase silica gel column, a Sephadex LH20 gel column and a preparative thin layer plate. The main component was determined to be a lipopeptide; it was chemically characterized with nuclear magnetic resonance, liquid chromatography-quadrupole ion-trap mass spectrometry, amino acid analysis and GC-MS and was found to be a mixture of proline lipids. The monomers of the proline lipids were composed of a proline residue and a fatty acid (C(14:0), C(16:0) or C(18:0)). The critical micelle concentration of the mixed proline lipids was determined to be 40 mg l(-1). Moreover, activity variations in ranges of pH, temperature and salinity were also detected and showed reasonable stability. Alcanivorax dieselolei B-5 produced a novel linear lipoamino biosurfactant, characterized as a proline lipid. A proline lipid was characterized for the first time as a bacterial biosurfactant. This product has potential in both environmental and industrial applications.

  15. Isolation of a lactic acid bacterium and yeast consortium from a fermented material of Ulva spp. (Chlorophyta).

    Science.gov (United States)

    Uchida, M; Murata, M

    2004-01-01

    Microbiota in a fermented culture of Ulva spp. was examined with the objective to characterize the type of fermentation and to obtain starter microbes for performing seaweed fermentation. Fermented Ulva spp. cultures which were obtained and transferred in a laboratory were examined for their microbiota. With phenotypic characterization and phylogenetic analysis based on rRNA gene nucleotide sequences, the predominant micro-organisms were identified as Lactobacillus brevis, Debaryomyces hanseni var. hansenii, and a Candida zeylanoides-related specimen, suggesting that the observed fermentation can be categorized to lactic acid and ethanol fermentation. Inoculating the individually cultured cell suspensions of the three kinds of micro-organisms with cellulase induced the fermentation in various kinds of seaweed. A microbial consortium composed of a lactic acid bacterium, L. brevis, and yeasts, D. hansenii and a C. zeylanoides-related specimen, were predominant in a fermented culture of Ulva spp. Lactic acid and ethanol fermentation could be induced in various kinds of seaweed by adding this microbial consortium along with cellulase. This is the first report of lactic acid and ethanol fermentation in seaweed, which is expected to provide a new material for food and dietary applications.

  16. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    International Nuclear Information System (INIS)

    Imam, S.H.; Greene, R.V.; Griffin, H.L.

    1990-01-01

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. 35 S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene hlycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction

  17. Draft genome sequence of Paenisporosarcina sp. strain TG-14, a psychrophilic bacterium isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Koh, Hye Yeon; Lee, Sung Gu; Lee, Jun Hyuck; Doyle, Shawn; Christner, Brent C; Kim, Hak Jun

    2012-12-01

    The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. Here we report the draft genome sequence of this strain, which may provide useful information on the cold adaptation mechanism in extremely variable environments.

  18. Aeromonas veronii, a tributyltin (TBT)-degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal.

    Science.gov (United States)

    Cruz, Andreia; Caetano, Tânia; Suzuki, Satoru; Mendo, Sónia

    2007-12-01

    Organotin compounds are used in a variety of industrial processes therefore their subsequent discharge into the environment is widespread. Bacteria play an important role in biogeochemical transformations acting as natural decontamination agents. Therefore, screening for tributyltin (TBT)-resistant and -degrading bacteria is relevant for the selection of isolates with decontamination ability of these polluted areas. With this purpose, 50 strains were isolated from sediment and water from Ria de Aveiro and their tolerance to TBT, up to 3mM, was evaluated. Generally, occurrence of highly TBT-resistant bacteria was observed, and Gram negative bacteria exhibited more tolerance to TBT than Gram positive bacteria. A memory response was observed when bacteria were progressively exposed to increasingly higher TBT concentrations. One isolate, Aeromonas veronii Av27, highly resistant to TBT (3mM) uses this compound as carbon source and degrades it to less toxic compounds.

  19. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001.

    Science.gov (United States)

    Yusuf, Ibrahim; Ahmad, Siti Aqlima; Phang, Lai Yee; Syed, Mohd Arif; Shamaan, Nor Aripin; Abdul Khalil, Khalilah; Dahalan, Farrah Aini; Shukor, Mohd Yunus

    2016-12-01

    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes. Copyright © 2016. Published by

  20. Salirhabdus euzebyi gen. nov., sp. nov., a Gram-positive, halotolerant bacterium isolated from a sea salt evaporation pond.

    Science.gov (United States)

    Albuquerque, Luciana; Tiago, Igor; Rainey, Fred A; Taborda, Marco; Nobre, M Fernanda; Veríssimo, António; da Costa, Milton S

    2007-07-01

    A low-G+C, Gram-positive bacterium, designated CVS-14(T), was recovered from a sea salt evaporation pond on the island of Sal in the Cape Verde Archipelago. This organism was catalase- and oxidase-positive. Cells were motile, spore-forming aerobic rods, with an optimum growth temperature of about 35-40 degrees C and optimum pH between 7.0 and 8.5. Optimal growth occurred in media containing 4-6 % (w/v) NaCl, although the organism was able to grow in medium without added NaCl and in medium containing 16 % NaCl. The cell-wall peptidoglycan was of A1 gamma type and the major respiratory quinone was menaquinone 7 (MK-7). Major fatty acids were iso-15 : 0, anteiso-15 : 0, iso-17 : 0 and anteiso-17 : 0. The DNA G+C content was 37.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain CVS-14(T) formed a distinct new branch within the radiation of the moderately halophilic bacilli group, forming a separate lineage from species of the genera Salinibacillus, Paucisalibacillus, Oceanobacillus, Lentibacillus and Virgibacillus. Strain CVS-14(T) showed 16S rRNA gene pairwise similarity values of approximately 95 % with species of the genus Salinibacillus. On the basis of morphological, physiological, chemotaxonomic and phylogenetic characteristics, strain CVS-14(T) is considered to represent a novel species in a new genus, for which the name Salirhabdus euzebyi gen. nov., sp. nov. is proposed. The type strain is CVS-14(T) (=LMG 22839(T)=CIP 108577(T)).

  1. Sporosalibacterium tautonense sp. nov., a thermotolerant, halophilic, hydrolytic bacterium isolated from a gold mine, and emended description of the genus Sporosalibacterium.

    Science.gov (United States)

    Podosokorskaya, Olga A; Merkel, Alexander Y; Heerden, Esta van; Cason, Errol D; Kopitsyn, Dmitry S; Vasilieva, Maria; Bonch-Osmolovskaya, Elizaveta A; Kublanov, Ilya V

    2017-05-01

    A novel strictly anaerobic, thermotolerant, moderately halophilic, organotrophic bacterium, strain MRo-4T, was isolated from a sample of a microbial mat, developed under the flow of subsurface water in TauTona gold mine, South Africa. Cells of the novel isolate stained Gram-positive and were motile, spore-forming rods, 0.2-0.3 µm in width and 5-20 µm in length. Strain MRo-4T grew at 25-50 °C, at pH 7.0-8.8 and at an NaCl concentration of 5-100 g l-1. The isolate was able to ferment yeast extract, peptone and mono-, oligo- and polysaccharides, including cellulose and chitin. Elemental sulfur, thiosulfate, sulfate, sulfite, nitrate, nitrite, fumarate and arsenate were not reduced. The major fatty acids were iso-C15 : 0, iso-C15 : 0 dimethyl acetyl and anteiso-C15 : 0. The G+C content of the DNA was 32.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences of strain MRo-4T and its nearest relatives showed its affiliation to the genus Sporosalibacterium. Sporosalibacteriumfaouarense SOL3f37T, the only valid published representative of the genus, appeared to be its closest relative (96.8 % 16S rRNA gene sequence similarity). However, strains MRo-4T and S. faouarense SOL3f37T differed in temperature, pH and salinity ranges for growth, requirement for yeast extract and substrate profiles. Based on the phylogenetic analysis and physiological properties of the novel isolate, we propose a novel species, Sporosalibacterium tautonense sp. nov. The type strain is MRo-4T (=DSM 28179T=VKM B-2948T).

  2. Use of Cellulolytic Marine Bacteria for Enzymatic Pretreatment in Microalgal Biogas Production

    Science.gov (United States)

    Muñoz, Camilo; Hidalgo, Catalina; Zapata, Manuel; Jeison, David; Riquelme, Carlos

    2014-01-01

    In this study, we designed and evaluated a microalgal pretreatment method using cellulolytic bacteria that naturally degrades microalgae in their native habitat. Bacterial strains were isolated from each of two mollusk species in a medium containing 1% carboxymethyl cellulose agar. We selected nine bacterial strains that had endoglucanase activity: five strains from Mytilus chilensis, a Chilean mussel, and four strains from Mesodesma donacium, a clam found in the Southern Pacific. These strains were identified phylogenetically as belonging to the genera Aeromonas, Pseudomonas, Chryseobacterium, and Raoultella. The cellulase-producing capacities of these strains were characterized, and the degradation of cell walls in Botryococcus braunii and Nannochloropsis gaditana was tested with “whole-cell” cellulolytic experiments. Aeromonas bivalvium MA2, Raoultella ornithinolytica MA5, and Aeromonas salmonicida MC25 degraded B. braunii, and R. ornithinolytica MC3 and MA5 degraded N. gaditana. In addition, N. gaditana was pretreated with R. ornithinolytica strains MC3 and MA5 and was then subjected to an anaerobic digestion process, which increased the yield of methane by 140.32% and 158.68%, respectively, over that from nonpretreated microalgae. Therefore, a “whole-cell” cellulolytic pretreatment can increase the performance and efficiency of biogas production. PMID:24795376

  3. Evaluation in Cellulolytic Activity of Stenotrophomonas sp. in Cellulose Nitrogen Free Mineral Medium

    International Nuclear Information System (INIS)

    Honey Thet Paing Htway; San San Yu; Zaw Ko Latt

    2011-12-01

    Three bacterial strains were isolated from rice rhizospheric soil and their nitrogen fixing activity was determined in nitrogen free mineral medium and broth with glucose and cellulose as carbon sources and they produced ammonium concentration (above 3ppm) in G-NFFMM and (2-3ppm) in C-NFMM. Moreover, their cellulolytic activity was determined by DNS mothod and strain H3 having the cellulolytic activity was selected. Then, cellulose, carboxymethyl cellulose, baggasse, pea haulm, corn stem, rice straw were used as substrates and determined its reducing sugar concentration. After detection of the cellulolytic activity, the bacteria produced the highest concentration of reducing sugar on cellulose substrate at 12 day incubation period with the reducing sugar amount of 0.12mg/ml and 0.298mg/ml on CMC substrates. In the study of argicultral wastes as substrates, the selected strain, H3, produced in the reducing sugar concentration with 0.12, 0.116,0.103 and 0.098mg/ml respectively. The selected strain was identified by biochemical characterists and 16s ribosomal DNA analysis and it was Stenotrophomonas sp.

  4. Savagea faecisuis gen. nov., sp. nov., a tylosin- and tetracycline-resistant bacterium isolated from a swine-manure storage pit.

    Science.gov (United States)

    Whitehead, Terence R; Johnson, Crystal N; Patel, Nisha B; Cotta, Michael A; Moore, Edward R B; Lawson, Paul A

    2015-07-01

    A polyphasic taxonomic study using morphological, biochemical, chemotaxonomic and molecular methods was performed on three strains of a Gram-stain positive, non-sporeforming, motile aerobic rod-shaped bacterium resistant to tylosin and tetracycline isolated from a swine-manure storage pit. On the basis of 16S rRNA gene sequence analyses, it was confirmed that these isolates are highly related to each other and form a hitherto unknown lineage within the Planococcaceae. In particular, pairwise analysis of the 16S rRNA gene sequence demonstrated that the novel organism is closely related to members of the genus Sporosarcina (92.8-94.5 %), Pyschrobacillus (93.5-93.9 %) and Paenisporosarcina (93.3-94.5 %). The predominant fatty acids were found to consist of iso-C15:0 and iso-C17:1 ω10c and the G+C mol% was determined to be 41.8. Based on biochemical, chemotaxonomic, and phylogenetic evidence, it is proposed that these novel strains be classified as a novel genus and species, Savagea faecisuis gen nov., sp. nov. The type strain is Con12(T) (=CCUG 63563(T) = NRRL B-59945(T) = NBRC 109956(T)).

  5. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source

    International Nuclear Information System (INIS)

    Azabou, Samia; Mechichi, Tahar; Patel, Bharat K.C.; Sayadi, Sami

    2007-01-01

    A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1-20 g/L phosphogypsum to sulfide with reduction of sulfate contained in 2 g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125 ppm Zn and 100 ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC 50 values, was Cu, Te > Cd > Fe, Co, Mn > F, Se > Ni, Al, Li > Zn

  6. Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column.

    Science.gov (United States)

    Ommedal, Hege; Torsvik, Terje

    2007-12-01

    A Gram-negative, sulphate-reducing bacterium (strain H3(T)) was isolated from an oil-reservoir model column. The new isolate was able to oxidize toluene coupled to hydrogen sulphide production. For growth, the optimum salt concentration was 1.5 % (w/v), the optimum pH was 7.2 and the optimum temperature was 34 degrees C. The cells were straight to slightly curved rods, 0.6-1.0 microm in diameter and 1.4-2.5 microm in length. The predominant fatty acids were C(16 : 0), C(16 : 1)omega7c and C(17 : 0) cyclo, and the cells also contained dimethylacetals. Cloning and sequencing of a 1505 bp long fragment of the 16S rRNA gene showed that strain H3(T) is a member of the Deltaproteobacteria and is related closely to Desulfotignum balticum DSM 7044(T). The G+C content of the DNA was 52.0 mol% and the DNA-DNA similarity to D. balticum DSM 7044(T) was 56.1 %. Based on differences in DNA sequence and the unique property of toluene degradation, it is proposed that strain H3(T) should be designated a member of a novel species within the genus Desulfotignum, for which the name Desulfotignum toluenicum sp. nov. is proposed. The type strain is H3(T) (=DSM 18732(T)=ATCC BAA-1460(T)).

  7. Genome Sequence of Aeribacillus pallidus Strain GS3372, an Endospore-Forming Bacterium Isolated in a Deep Geothermal Reservoir

    OpenAIRE

    Sevasti Filippidou; Marion Jaussi; Thomas Junier; Tina Wunderlin; Nicole Jeanneret; Simona Regenspurg; Po-E Li; Chien-Chi Lo; Shannon Johnson; Kim McMurry; Cheryl D. Gleasner; Momchilo Vuyisich; Patrick S. Chain; Pilar Junier

    2015-01-01

    The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera.

  8. Genome Sequence of Aeribacillus pallidus Strain GS3372, an Endospore-Forming Bacterium Isolated in a Deep Geothermal Reservoir.

    Science.gov (United States)

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Regenspurg, Simona; Li, Po-E; Lo, Chien-Chi; Johnson, Shannon; McMurry, Kim; Gleasner, Cheryl D; Vuyisich, Momchilo; Chain, Patrick S; Junier, Pilar

    2015-08-27

    The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera. Copyright © 2015 Filippidou et al.

  9. Vibrio plantisponsor sp. nov., a diazotrophic bacterium isolated from a mangrove associated wild rice (Porteresia coarctata Tateoka)

    Digital Repository Service at National Institute of Oceanography (India)

    Rameshkumar, N.; Gomez-Gil, B.; Sproer, C.; Lang, E.; Kumar, N.D.; Krishnamurthi, S.; Nair, S.; Roque, A.

    similarity (Fig. 3), which indicates that these two isolates doesn’t belong to any strains of Diazotrophicus clade and further supporting the results of DNA-DNA relatedness. As it is has been previously shown that rep-PCR similarities around 65 % represent...

  10. Optimization of culturing conditions for isolated Arthrobacter sp. ZXY-2, an effective atrazine-degrading and salt-adaptive bacterium

    NARCIS (Netherlands)

    Zhao, X.; Wang, Li; Du, Linna; Yang, Jixian; Dong, Jing; Ma, Fang

    2017-01-01

    The increasing salinity in aquatic environments has had a negative impact on the biodegradation of atrazine, an extensively used herbicide which has been proven to pollute soil and water ecosystems. In the present study, a novel atrazine-degrading strain (ZXY-2) was isolated from industrial

  11. Genome Sequence of Vibrio campbellii Strain UMTGB204, a Marine Bacterium Isolated from a Green Barrel Tunicate

    Science.gov (United States)

    Gan, Huan You; Noor, Mohd Ezhar Mohd; Saari, Nur Azna; Musa, Najiah; Mustapha, Baharim; Usup, Gires

    2015-01-01

    Vibrio campbellii strain UMTGB204 was isolated from a green barrel tunicate. The genome of this strain comprises 5,652,224 bp with 5,014 open reading frames, 9 rRNAs, and 116 tRNAs. It contains genes related to virulence and environmental tolerance. Gene clusters for the biosynthesis of nonribosomal peptides and bacteriocin were also identified. PMID:25814609

  12. Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven

    Directory of Open Access Journals (Sweden)

    Maximiliano J. Amenábar

    2012-02-01

    Full Text Available Glutamate dehydrogenase from axenic bacterial cultures of anew microorganism, called GWE1, isolated from the interior ofa sterilization drying oven, was purified by anion-exchange andmolecular-exclusion liquid chromatography. The apparent molecularmass of the native enzyme was 250.5 kDa and wasshown to be an hexamer with similar subunits of molecularmass 40.5 kDa. For glutamate oxidation, the enzyme showedan optimal pH and temperature of 8.0 and 70oC, respectively.In contrast to other glutamate dehydrogenases isolated frombacteria, the enzyme isolated in this study can use both NAD+and NADP+ as electron acceptors, displaying more affinity forNADP+ than for NAD+. No activity was detected with NADHor NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionallythermostable, maintaining more than 70% of activityafter incubating at 100oC for more than five hours suggestingbeing one of the most thermoestable enzymes reported inthe family of dehydrogenases. [BMB reports 2012; 45(2: 91-95

  13. An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand.

    Science.gov (United States)

    Saimmai, Atipan; Onlamool, Theerawat; Sobhon, Vorasan; Maneerat, Suppasil

    2013-01-01

    Biosurfactant-producing bacteria, isolate CT2, was isolated from mangrove sediment in the south of Thailand. The sequence of the 16S rRNA gene from isolate CT2 showed 100 % similarity with Selenomonas ruminantium. The highest biosurfactant production (5.02 g/l) was obtained when the cells were grown on minimal salt medium containing 15 g/l molasses and 1 g/l commercial monosodium glutamate supplemented with 1 g/l NaCl, 0.1 g/l leucine, 5 % (v/v) inoculum size at 30 °C and 150 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small CMC value (8 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test, FT-IR, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.

  14. Galliscardovia ingluviei gen. nov., sp. nov., a thermophilic bacterium of the family Bifidobacteriaceae isolated from the crop of a laying hen (Gallus gallus f. domestica).

    Science.gov (United States)

    Pechar, R; Killer, J; Švejstil, R; Salmonová, H; Geigerová, M; Bunešová, V; Rada, V; Benada, O

    2017-07-01

    Bacteria with potential probiotic applications are not yet sufficiently explored, even for animals with economic importance. Therefore, we decided to isolate and identify representatives of the family Bifidobacteriaceae, which inhabit the crop of laying hens. During the study, a fructose-6-phosphate phosphoketolase-positive strain, RP51T, with a regular/slightly irregular and sometimes an S-shaped slightly curved rod-like shape, was isolated from the crop of a 13 -month-old Hisex Brown hybrid laying hen. The best growth of the Gram-stain-positive bacterium, which was isolated using Bifidobacterium-selective mTPY agar, was found out to be under strictly anaerobic conditions, however an ability to grow under microaerophilic and aerobic conditions was also observed. Sequencing of the almost complete 16S rRNA gene (1444 bp) showed Alloscardovia omnicolens CCUG 31649T and Bombiscardovia coagulans BLAPIII/AGVT to be the most closely related species with similarities of 93.4 and 93.1 %, respectively. Lower sequence similarities were determined with other scardovial genera and other representatives of the genus Bifidobacterium. Taxonomic relationships with A. omnicolens and other members of the family Bifidobacteriaceaewere also demonstrated, based on the sequences of dnaK, fusA, hsp60 and rplB gene fragments. Low sequence similarities of phylogenetic markers to related scardovial genera and bifidobacteria along with unique features of the bacterial strain investigated within the family Bifidobacteriaceae(including the lowest DNA G+C value (44.3 mol%), a unique spectrum of cellular fatty acids and polar lipids, cellular morphology, the wide temperature range for growth (15-49 °C) and habitat) clearly indicate that strain RP51T is a representative of a novel genus within the family Bifidobacteriaceae for which the name Galliscardovia ingluviei gen. nov., sp. nov. (RP51T=DSM 100235T=LMG 28778T=CCM 8606T) is proposed.

  15. Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1.

    Science.gov (United States)

    Mohebali, Ghasemali; Kaytash, Ashk; Etemadi, Narges

    2012-10-01

    Water-oil emulsions occur throughout oil production, transportation, and processing. The breaking of the water/oil emulsion improves oil quality and as a consequence chemically synthesized de-emulsifiers are commonly used in the petroleum industries. Microbial de-emulsifiers represent potential alternatives to the chemicals and may become important products for petroleum industries. The main goal of this work was isolation, identification, and characterization of an efficient de-emulsifying bacterium. Following a multi-step enrichment programme a de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1was isolated from the oil-polluted sandy bank of Siri Island, Iran. The presence of an oil phase in growth medium was found to be unnecessary for production of the de-emulsifier. The de-emulsifying activity of both the whole culture and the cells of this strain was examined using a model multiple water-crude oil (w/o/w) emulsion. This w/o/w emulsion was used for the first time in microbial de-emulsification research. Whole cells of strain RIPI5-1 exhibited high de-emulsifying activity during the late-exponential growth and stationary phases; de-emulsifying activity of the whole culture was highest during the early-exponential growth phase. The time course of de-emulsification by whole culture and whole cells of strain RIPI5-1 was investigated; the initial rate (DeI(1)) of breaking of the multiple water-crude oil emulsion by whole culture and whole cells was calculated as 11% and 54%, respectively. However, overall de-emulsification (DeI(8.5)) for whole culture and whole cells was calculated as 63% and 72%, respectively. A clear correlation was observed between cell surface hydrophobicity and the de-emulsifying activity of whole cells. With the water/kerosene emulsion, emulsion half-life (t(1/2)) was found to be oilfield emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source.

    Science.gov (United States)

    Nakajima-Kambe, T; Onuma, F; Kimpara, N; Nakahara, T

    1995-06-01

    Various soil samples were screened for the presence of microorganisms which have the ability to degrade polyurethane compounds. Two strains with good polyurethane degrading activity were isolated. The more active strain was tentatively identified as Comamonas acidovorans. This strain could utilize polyester-type polyurethanes but not the polyether-type polyurethanes as sole carbon and nitrogen sources. Adipic acid and diethylene glycol were probably the main degradation products when polyurethane was supplied as a sole carbon and nitrogen source. When ammonium nitrate was used as nitrogen source, only diethylene glycol was detected after growth on polyurethane.

  17. Isolation of a diphenylamine-degrading bacterium and characterization of its metabolic capacities, bioremediation and bioaugmentation potential.

    Science.gov (United States)

    Perruchon, Chiara; Batianis, Christos; Zouborlis, Stelios; Papadopoulou, Evangelia S; Ntougias, Spyridon; Vasileiadis, Sotirios; Karpouzas, Dimitrios G

    2015-12-01

    The antioxidant diphenylamine (DPA) is used in fruit-packaging plants for the control of the physiological disorder apple scald. Its use results in the production of DPA-contaminated wastewater which should be treated before finally discharged. Biological treatment systems using tailored-made microbial inocula with specific catabolic activities comprise an appealing and sustainable solution. This study aimed to isolate DPA-degrading bacteria, identify the metabolic pathway of DPA and evaluate their potential for future implementation in bioremediation and biodepuration applications. A Pseudomonas putida strain named DPA1 able to rapidly degrade and utilize DPA as the sole C and N source was enriched from a DPA-contaminated soil. The isolated strain degraded spillage-level concentrations of DPA in liquid culture (2000 mg L(-1)) and in contaminated soil (1000 mg kg(-1)) and metabolized DPA via the transient formation of aniline and catechol. Further evidence for the bioremediation and biodepuration potential of the P. putida strain DPA1 was provided by its capacity to degrade the post-harvest fungicide ortho-phenylphenol (OPP), concurrently used by the fruit-packaging plants, although at slower rates and DPA in a wide range of pH (4.5-9) and temperatures (15-37 °C). These findings revealed the high potential of the P. putida strain DPA1 for use in future soil bioremediation strategies and/or as start-up inocula in wastewater biodepuration systems.

  18. Arsenicicoccus dermatophilus sp. nov., a hypha-forming bacterium isolated from the skin of greater flamingos (Phoenicopterus roseus) with pododermatitis.

    Science.gov (United States)

    Gobeli, Stefanie; Thomann, Andreas; Wyss, Fabia; Kuehni-Boghenbor, Kathrin; Brodard, Isabelle; Perreten, Vincent

    2013-11-01

    Dermatophilus-like bacteria were observed in histological examinations of samples of diseased foot skin from greater flamingos (Phoenicopterus roseus) living in zoological gardens in Switzerland. When grown on TSA-SB containing polymyxin B, the bacteria isolated from these skin samples formed hyphae, as is typical for Dermatophilus congolensis, but these bacteria were non-haemolytic. The closest relatives based on 16S rRNA gene sequences were the two members of the genus Arsenicicoccus, Arsenicicoccus bolidensis and Arsenicicoccus piscis. A representative of the isolated strains shared 34.3 % DNA-DNA relatedness with the type strain of A. bolidensis, 32.3 % with the type strain of A. piscis and 34.5 % with the type strain of D. congolensis, demonstrating that these strains do not belong to any of these species. The phenotypic characteristics differed from those of members of the genus Arsenicicoccus as well as from those of D. congolensis. The G+C content of strain KM 894/11(T) was 71.6 mol%. The most abundant fatty acids were iso-C15 : 0, summed feature 3 (including C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω9c. MK-8(H4) was the predominant menaquinone. Cell-wall structure analysis revealed that the peptidoglycan type was A3γ ll-Dpm-Gly (type A41.1). Based on genotypic and chemotaxonomic characteristics, the isolated strains represent a novel species within the genus Arsenicicoccus, for which the name Arsenicicoccus dermatophilus sp. nov. is proposed. The type strain is KM 894/11(T) ( = DSM 25571(T) = CCUG 62181(T) = CCOS 690(T)), and strain KM 1/12 ( = DSM 25572 = CCUG 62182 = CCOS 691) is a reference strain.

  19. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils.

    Science.gov (United States)

    Dou, Guiming; Liu, Hongcan; He, Wei; Ma, Yuchao

    2016-01-01

    Two alkaliphilic and halotolerant Gram-stain positive, rod-shaped and endospore-forming bacteria, designated strains 12-3(T) and 12-4, were isolated from saline and alkaline soils collected in Lindian county, Heilongjiang province, China. Both strains were observed to grow well at a wide range of temperature and pH values, 10-45 °C and pH 8-12, with optimal growth at 37 °C and pH 9.0, respectively. Growth of the two strains was found to occur at total salt concentrations of 0-12 % (w/v), with an optimum at 4 % (w/v). The G+C contents of the genomic DNA of strains 12-3(T) and 12-4 were determined to be 42.7 and 42.4 mol%, respectively, and the major cellular fatty acids were identified as anteiso-C15:0 and anteiso-C17:0. In isolate 12-3(T), meso-diaminopimelic acid was found to be the diagnostic diamino acid of the cell wall peptidoglycan; diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were identified as the major cellular polar lipids; and menaquinone-7 was identified as the predominant isoprenoid quinone. Strains 12-3(T) and 12-4 share very close 16S rRNA gene sequence similarity (99.74 %) and their DNA-DNA relatedness was 95.3 ± 0.63 %, meaning that the two strains can be considered to belong to the same species. 16S rRNA gene sequence-based phylogenetic analysis revealed strains 12-3(T) and 12-4 exhibit high similarities to Bacillus pseudofirmus DSM 8715(T) (98.7 %), Bacillus marmarensis DSM 21297(T) (97.2 %) and Bacillus nanhaiisediminis CGMCC 1.10116(T) (97.1 and 97.0 %, respectively). DNA-DNA hybridization values between isolate 12-3(T) and the type strains of closely related Bacillus species were below 30 %. On the basis of the polyphasic evidence presented, strains 12-3(T) and 12-4 are considered to represent a novel species of the genus Bacillus, for which the name Bacillus lindianensis sp. nov. is proposed. The type strain is 12-3(T) (DSM 26864(T) = CGMCC 1.12717(T)).

  20. Biomineralization by a Newly-Isolated Stalk-Forming Fe-oxidizing Bacterium: Towards Interpretation of Putative Fe Microfossils

    Science.gov (United States)

    Krepski, S. T.; Chan, C. S.

    2010-12-01

    Diverse aerobic, lithotrophic Fe-oxidizing bacteria (FeOB) produce distinctive extracellular Fe-rich filaments, which resemble putative Fe microfossils dating from recent to 1.7 Ga (Slack et al., 2007, EPSL: 243). The filament morphology, texture, and composition are promising biosignatures for these FeOB; however, somewhat similar morphologies have been shown to result from chemical precipitates. In order to accurately identify and interpret such biosignatures, morphology must described in detail and be linked to physiological function and growth conditions in extant organisms. Towards this goal, we aimed to isolate a novel, stalk-forming microaerophilic FeOB, since there exist few isolates. We successfully obtained a pure strain (named R-1) from a circumneutral, freshwater Fe seep in Christiana Creek, Newark, DE. This strain produces a twisted stalk, similar to Gallionella and Mariprofundus in morphology and in mineralogy. Our work shows that R-1 is a neutrophilic obligate FeOB, unable to oxidize other organic or inorganic substrates. It is a Beta-Proteobacterium in the Gallionellaceae family but is phylogenetically distinct from previously isolated Gallionella sp. and Sideroxydans sp. The closest cultured relative is S. lithotrophicus (97% similar) and the closest environmental clone is 98% similar. We have begun growing R-1 and the marine stalk-forming FeOB Mariprofundus ferrooxydans in microslide cultures, which allow direct microscope observation without disturbing growth. We are monitoring oxygen concentration gradients and FeOB response to oxygen levels. In order to link morphology to biological function and growth conditions, we will observe stalk formation under various conditions and document various morphological and textural parameter (e.g. branching and orientation) to establish criteria for biogenicity. No organisms are known to make stalks under anaerobic conditions, so if these structures are detected in the rock record, they could be used as

  1. Prospecting for cellulolytic activity in insect digestive fluids.

    Science.gov (United States)

    Oppert, Cris; Klingeman, William E; Willis, Jonathan D; Oppert, Brenda; Jurat-Fuentes, Juan L

    2010-02-01

    Efficient cellulolytic enzymes are needed to degrade recalcitrant plant biomass during ethanol purification and make lignocellulosic biofuels a cost-effective alternative to fossil fuels. Despite the large number of insect species that feed on lignocellulosic material, limited availability of quantitative studies comparing cellulase activity among insect taxa constrains identification of candidate species for more targeted identification of effective cellulolytic systems. We describe quantitative determinations of the cellulolytic activity in gut or head-derived fluids from 68 phytophagous or xylophagous insect species belonging to eight different taxonomic orders. Enzymatic activity was determined for two different substrates, carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC), approximating endo-beta-1,4-glucanase and complete cellulolytic activity, respectively. Highest CMC gut fluid activities were found in Dictyoptera, Coleoptera, Isoptera, and Orthoptera, while highest MCC gut fluid activities were found in Coleoptera, Hymenoptera, Lepidoptera, and Orthoptera. In most cases, gut fluid activities were greater with CMC compared to MCC substrate, except in Diptera, Hymenoptera, and Lepidoptera. In contrast, cellulolytic activity levels in most head fluids were greater on the MCC substrate. Our data suggests that a phylogenetic relationship may exist for the origin of cellulolytic enzymes in insects, and that cellulase activity levels correlate with taxonomic classification, probably reflecting differences in plant host or feeding strategies.

  2. Assessment of Bioflocculant Production by Bacillus sp. Gilbert, a Marine Bacterium Isolated from the Bottom Sediment of Algoa Bay

    Directory of Open Access Journals (Sweden)

    Okoh I. Anthony

    2011-07-01

    Full Text Available The bioflocculant-producing potentials of a marine bacteria isolated from the bottom sediment of Algoa Bay was investigated using standard methods. The 16S rDNA sequence analysis revealed 98% similarity to that of Bacillus sp. HXG-C1 and the nucleotide sequence was deposited in GenBank as Bacillus sp. Gilbert with accession number HQ537128. Bioflocculant was optimally produced when sucrose (72% flocculating activity and ammonium chloride (91% flocculating activity were used as sole sources of carbon and nitrogen, respectively; an initial pH 6.2 of the production medium; and Mg2+ as cation. Chemical analysis of the purified bioflocculant revealed the compound to be a polysaccharide.

  3. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extreme thermophilic, high ethanol-yielding bacterium isolated from household waste

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    of approximately 0.5 µm. Optimal growth occurred at 70 °C and pH(25°C) 7, with a maximum growth rate of 0.1 h-1. DNA G+C content was 34.2 mol %. Strain DTU01(T) could ferment arabinose, cellobiose, fructose, galactose, glucose, inulin, lactose, mannose, melibiose, pectin, starch, sucrose, xylan, yeast extract...... and xylose, but not cellulose, Avicel®, mannitol, inositol, glycerol, acetate, lactate, ethanol, butanol or peptone. Ethanol was the major fermentation product and a maximum yield of 1.39 mol of ethanol per mol xylose was achieved when sulphite was added to the cultivation medium. Thiosulphite......, the physiological and phylogenetic differences (DNA G+C content, substrate utilization, electron acceptors, phylogenetic distance, isolation site) allow for the proposal of strain DTU01(T) as a new species within the genus Thermoanaerobacter, for which the name Thermoanaerobacter pentosaceus sp. nov. is proposed...

  4. Isolation and characterization of phenol degrading bacterium strain Bacillus thuringiensis J20 from olive waste in Palestine.

    Science.gov (United States)

    Ereqat, Suheir I; Abdelkader, Ahmad A; Nasereddin, Abedelmajeed F; Al-Jawabreh, Amer O; Zaid, Taher M; Letnik, Ilya; Abdeen, Ziad A

    2018-01-02

    This study aimed at isolation of phenol degrading bacteria from olive mill wastes in Palestine. The efficiency of phenol removal and factors affecting phenol degradation were investigated. A bacterial strain (J20) was isolated from solid olive mill waste and identified as Bacillus thuringiensis based on standard morphological, biochemical characteristics and 16SrRNA sequence analysis. The strain was able to grow in a phenol concentration of 700 mg/L as the sole carbon and energy source. The culture conditions showed a significant impact on the ability of these cells to remove phenol. This strain exhibited optimum phenol degradation performance at pH 6.57 and 30 °C . Under the optimized conditions, this strain could degrade 88.6% of phenol (700 mg/L) within 96 h when the initial cell density was OD 600 0.2. However, the degradation efficiency could be improved from about 88% to nearly 99% by increasing the cell density. Immobilization of J20 was carried out using 4% sodium alginate. Phenol degradation efficiency of the immobilized cells of J20 was higher than that of the free cells, 100% versus 88.6% of 700 mg/L of phenol in 120 h, indicating the improved tolerance of the immobilized cells toward phenol toxicity. The J20 was used in detoxifying crude OMWW, phenolic compounds levels were reduced by 61% compared to untreated OMWW after five days of treatment. Hence, B. thuringiensis-J20 can be effectively used for bioremediation of phenol-contaminated sites in Palestine. These findings may lead to new biotechnological applications for the degradation of phenol, related to olive oil production.

  5. Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01.

    Science.gov (United States)

    Ng, I-Son; Chen, Tingting; Lin, Rong; Zhang, Xia; Ni, Chao; Sun, Dongzhe

    2014-03-01

    Shewanella xiamenensis BC01 (SXM) was isolated from sediment collected off Xiamen, China and was identified based on the phylogenetic tree of 16S rRNA sequences and the gyrB gene. This strain showed high activity in the decolorization of textile azo dyes, especially methyl orange, reactive red 198, and recalcitrant dye Congo red, decolorizing at rates of 96.2, 93.0, and 87.5%, respectively. SXM had the best performance for the specific decolorization rate (SDR) of azo dyes compared to Proteus hauseri ZMd44 and Aeromonas hydrophila NIU01 strains and had an SDR similar to Shewanella oneidensis MR-1 in Congo red decolorization. Luria-Bertani medium was the optimal culture medium for SXM, as it reached a density of 4.69 g-DCW L(-1) at 16 h. A mediator (manganese) significantly enhanced the biodegradation and flocculation of Congo red. Further analysis with UV-VIS, Fourier Transform Infrared spectroscopy, and Gas chromatography-mass spectrometry demonstrated that Congo red was cleaved at the azo bond, producing 4,4'-diamino-1,1'-biphenyl and 1,2'-diamino naphthalene 4-sulfonic acid. Finally, SEM results revealed that nanowires exist between the bacteria, indicating that SXM degradation of the azo dyes was coupled with electron transfer through the nanowires. The purpose of this work is to explore the utilization of a novel, dissimilatory manganese-reducing bacterium in the treatment of wastewater containing azo dyes.

  6. Insights into the extremotolerance of Acinetobacter radioresistens 50v1, a gram-negative bacterium isolated from the Mars Odyssey spacecraft.

    Science.gov (United States)

    McCoy, K B; Derecho, I; Wong, T; Tran, H M; Huynh, T D; La Duc, M T; Venkateswaran, K; Mogul, R

    2012-09-01

    The microbiology of the spacecraft assembly process is of paramount importance to planetary exploration, as the biological contamination that can result from remote-enabled spacecraft carries the potential to impact both life-detection experiments and extraterrestrial evolution. Accordingly, insights into the mechanisms and range of extremotolerance of Acinetobacter radioresistens 50v1, a Gram-negative bacterium isolated from the surface of the preflight Mars Odyssey orbiter, were gained by using a combination of microbiological, enzymatic, and proteomic methods. In summary, A. radioresistens 50v1 displayed a remarkable range of survival against hydrogen peroxide and the sequential exposures of desiccation, vapor and plasma phase hydrogen peroxide, and ultraviolet irradiation. The survival is among the highest reported for non-spore-forming and Gram-negative bacteria and is based upon contributions from the enzyme-based degradation of H(2)O(2) (catalase and alkyl hydroperoxide reductase), energy management (ATP synthase and alcohol dehydrogenase), and modulation of the membrane composition. Together, the biochemical and survival features of A. radioresistens 50v1 support a potential persistence on Mars (given an unintended or planned surface landing of the Mars Odyssey orbiter), which in turn may compromise the scientific integrity of future life-detection missions.

  7. Sediminibacillus massiliensis sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a stool sample of a young Senegalese man.

    Science.gov (United States)

    Senghor, Bruno; Bassène, Hubert; Khelaifia, Saber; Robert, Catherine; Fournier, Pierre-Edouard; Ruimy, Raymond; Sokhna, Cheikh; Raoult, Didier; Lagier, Jean-Christophe

    2018-02-07

    A Gram-positive, moderately halophilic bacterium, referred to as strain Marseille-P3518 T , was isolated from a stool sample with 2% NaCl concentration from a healthy 15-year-old male living in Dielmo, a village in Senegal. Cells are aerobic, rod-shaped and motile and display endospore formation. Strain Marseille-P3518 T can grow in a medium with 0-20% (w/v) sodium chloride (optimally at 5-7.5% w/v). The major fatty acids were 12-methyl-tetradecanoic acid (45.8%), 13-methyl-tetradecanoic acid (26.9%) and 12-methyl-tridecanoic acid (12.8%). The genome is 4,347,479 bp long with 42.1% G+C content. It contains 4282 protein-coding and 107 RNA genes. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain Marseille-P3518 T is a member of the Bacillaceae family and is closely related to Sediminibacillus albus (97.4% gene sequence similarity). Strain Marseille-P3518 T was clearly differentiated from its phylogenetic neighbors on the basis of phenotypic and genotypic features. Strain Marseille-P3518 T is, therefore, considered to be a novel representative of the genus Sediminibacillus, for which the name Sediminibacillus massiliensis sp. nov. is proposed, and the type strain is Marseille-P3518 T (CSUR P3518T, DSM69894).

  8. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Liang Luo

    2016-01-01

    Full Text Available A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L−1 of glucose and 0.5 g L−1 of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD, total ammonia nitrogen (TAN, and suspended solids (SS in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV increased from 4.93 to 25.97 mL L−1. The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology.

  9. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment.

    Science.gov (United States)

    Luo, Liang; Zhao, Zhigang; Huang, Xiaoli; Du, Xue; Wang, Chang'an; Li, Jinnan; Wang, Liansheng; Xu, Qiyou

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L -1 of glucose and 0.5 g L -1 of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD), total ammonia nitrogen (TAN), and suspended solids (SS) in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV) increased from 4.93 to 25.97 mL L -1 . The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology.

  10. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism.

    Science.gov (United States)

    Tan, Shuo; Hu, Xiaoli; Yin, Pinghe; Zhao, Ling

    2016-05-01

    Algicidal bacteria have been turned out to be available for inhibiting Phaeocystis globosa which frequently caused harmful algal blooms and threatened to economic development and ecological balance. A marine bacterium Bacillus sp. Ts-12 exhibited significant algicidal activity against P. globosa by indirect attack. In present study, an algicidal compound was isolated by silica gel column, Sephadex G-15 column and HPLC, further identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, cyclo-(Pro-Gly), by GC-MS and (1)H-NMR. Cyclo-(Pro-Gly) significantly increased the level of reactive oxygen species (ROS) within P. globosa cells, further activating the enzymatic and non-enzymatic antioxidant systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and ascorbic acid (AsA). The increase in methane dicarboxylic aldehyde (MDA) content showed that the surplus ROS induced lipid peroxidation on membrane system. Transmission electron microscope (TEM) and flow cytometry (FCM) analysis revealed that cyclo-(Pro-Gly) caused reduction of Chl-a content, destruction of cell membrane integrity, chloroplasts and nuclear structure. Real-time PCR assay showed that the transcriptions of photosynthesis related genes (psbA, psbD, rbcL) were significantly inhibited. This study indicated that cyclo-(Pro-Gly) from marine Bacillus sp. Ts-12 exerted photosynthetic inhibition and oxidative stress to P. globosa and eventually led to the algal cells lysis. This algicidal compound might be potential bio-agent for controlling P. globosa red tide.

  11. Isolation of Bioactive Phenazine-1-Carboxamide from the Soil Bacterium Pantoea agglomerans and Study of Its Anticancer Potency on Different Cancer Cell Lines.

    Science.gov (United States)

    Ali, Hayssam M; El-Shikh, Mohamed S; Salem, Mohamed Z M; M, Muzaheed

    2016-09-01

    The study was designed to investigate the anticancer effect of phenazine-1-carboxamide (PCN) isolated from the bacterium Pantoea agglomerans naturally present in soil. PCN showed cytotoxicity in a dose-dependent manner, and inhibitory concentrations on the cancer cell lines A549, HeLa, and SW480 were between 32 and 40 μM. Significantly increased concentrations of lactate dehydrogenase were found with increasing concentrations of PCN, which resulted in increased destruction of the cancer cell membrane. A significantly increased p53 level was accompanied by the increased production of cytochrome c protein in all cancer cell lines studied. This condition in cells leads to the overexpression of caspase 3 and Bcl-2 family proteins. Upregulation and downregulation of proapoptotic and antiproapoptotic proteins were analyzed for their messenger RNA and protein expression. The activation of caspases and their cleavage compounds paves the way for the complete apoptosis process in cancer cells. We conclude that P. agglomerans-derived PCN acts as an effective anticancer drug or compound.

  12. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment

    Science.gov (United States)

    Luo, Liang; Huang, Xiaoli; Du, Xue; Wang, Chang'an; Li, Jinnan; Wang, Liansheng

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L−1 of glucose and 0.5 g L−1 of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD), total ammonia nitrogen (TAN), and suspended solids (SS) in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV) increased from 4.93 to 25.97 mL L−1. The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology. PMID:27840823

  13. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E. [IRD, Institut de Recherche pour le Developement, Universites de Provence et de la Mediterranee, ESIL Case 925, 163 Avenue de Luminy, F-13288 Marseille, Cedex 09 (France); Bethencourt, M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain)]. E-mail: manuel.bethencourt@uca.es; Botana, F.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Cano, M.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Sanchez-Amaya, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Corzo, A. [Departamento de Biologia, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Garcia de Lomas, J. [Departamento de Biologia, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Fardeau, M.L. [IRD, Institut de Recherche pour le Developement, Universites de Provence et de la Mediterranee, ESIL Case 925, 163 Avenue de Luminy, F-13288 Marseille, Cedex 09 (France); Ollivier, B. [IRD, Institut de Recherche pour le Developement, Universites de Provence et de la Mediterranee, ESIL Case 925, 163 Avenue de Luminy, F-13288 Marseille, Cedex 09 (France)

    2006-09-15

    The hydrogenotrophic sulfate-reducing bacterium (SRB) Desulfovibrio capillatus (DSM14982{sup T}) was isolated from an oil field separator with serious corrosion problems; this is the study of its role in the corrosion of carbon steels under anaerobic conditions. Immersion tests with two steel alloys, St-35.8 (typical carbon steel employed in European naval industry), and API-5XL52 (weathering alloy steel employed in Mexican oil industries) were performed. Total exposure was 45 days and different concentrations of thiosulfate as electron acceptor for bacterial growth were employed. The samples immersed in media with SRB undergo fast activation and numerous active sites form on the surface. Microscopic observations were made by environmental scanning electron microscopy (ESEM). Weight loss and electrochemical testing included open circuit potential (E {sub corr}), polarization resistance (R {sub p}), electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) were measured with and without bacteria in the culture medium in order to determine corrosion rates and mechanisms. All electrochemical techniques have shown that after the end of the exponential phase the corrosion activity notably increased due to the high concentration of bacterial metabolites. Finally, the corrosion behavior of API-5XL52 was worse than St-35.8.

  14. Characterization of Fe (III)-reducing enrichment culture and isolation of Fe (III)-reducing bacterium Enterobacter sp. L6 from marine sediment.

    Science.gov (United States)

    Liu, Hongyan; Wang, Hongyu

    2016-07-01

    To enrich the Fe (III)-reducing bacteria, sludge from marine sediment was inoculated into the medium using Fe (OH)3 as the sole electron acceptor. Efficiency of Fe (III) reduction and composition of Fe (III)-reducing enrichment culture were analyzed. The results indicated that the Fe (III)-reducing enrichment culture with the dominant bacteria relating to Clostridium and Enterobacter sp. had high Fe (III) reduction of (2.73 ± 0.13) mmol/L-Fe (II). A new Fe (III)-reducing bacterium was isolated from the Fe (III)-reducing enrichment culture and identified as Enterobacter sp. L6 by 16S rRNA gene sequence analysis. The Fe (III)-reducing ability of strain L6 under different culture conditions was investigated. The results indicated that strain L6 had high Fe (III)-reducing activity using glucose and pyruvate as carbon sources. Strain L6 could reduce Fe (III) at the range of NaCl concentrations tested and had the highest Fe (III) reduction of (4.63 ± 0.27) mmol/L Fe (II) at the NaCl concentration of 4 g/L. This strain L6 could reduce Fe (III) with unique properties in adaptability to salt variation, which indicated that it can be used as a model organism to study Fe (III)-reducing activity isolated from marine environment. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Isolation of genes coding for chitin-degrading enzymes in the novel chitinolytic bacterium, Chitiniphilus shinanonensis, and characterization of a gene coding for a family 19 chitinase.

    Science.gov (United States)

    Huang, Lanxiang; Garbulewska, Ewelina; Sato, Kazuaki; Kato, Yuichi; Nogawa, Masahiro; Taguchi, Goro; Shimosaka, Makoto

    2012-03-01

    Chitiniphilus shinanonensis type strain SAY3(T) is a strongly chitinolytic bacterium, originally isolated from the moat water in Ueda, Japan. To elucidate the chitinolytic activity of this strain, 15 genes (chiA-chiO) coding for putative chitin-degrading enzymes were isolated from a genomic library. Sequence analysis revealed the genes comprised 12 family 18 chitinases, a family 19 chitinase, a family 20 β-N-acetylglucosaminidase, and a polypeptide with a chitin-binding domain but devoid of a catalytic domain. Two operons were detected among the sequences: chiCDEFG and chiLM. The gene coding for the polypeptide (chiN) showed sequence similarity to family 19 chitinases and was successfully expressed in Escherichia coli. ChiN demonstrated a multi-domain structure, composed of the N-terminal, two chitin-binding domains connected by a Pro- and Thr-rich linker, and a family 19 catalytic domain located at the C-terminus. The recombinant protein rChiN catalyzed an endo-type cleavage of N-acetyl-d-glucosamine oligomers, and also degraded insoluble chitin and soluble chitosan (degree of deacetylation of 80%). rChiN exhibited an inhibitory effect on hyphal growth of the fungus Trichoderma reesei. The chitin-binding domains of ChiN likely play an important role in the degradation of insoluble chitin, and are responsible for a growth inhibitory effect on fungi. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene.

    Science.gov (United States)

    Han, Xuerong; Satoh, Yasuharu; Kuriki, Yumi; Seino, Teruyuki; Fujita, Shinji; Suda, Takanori; Kobayashi, Takanori; Tajima, Kenji

    2014-11-01

    We successfully isolated one microorganism (UMI-21) from Ulva, a green algae that contains starch. The strain UMI-21 can produce polyhydroxyalkanoate (PHA) from starch, maltotriose, or maltose as a sole carbon source. Taxonomic studies and 16S rDNA sequence analysis revealed that strain UMI-21 was phylogenetically related to species of the genus Massilia. The PHA content under the cultivation condition using a 10-L jar fermentor was 45.5% (w/w). This value was higher than that obtained after cultivation in a flask, suggesting the possibility of large-scale PHA production by UMI-21 from starch. A major issue for the industrial production of microbial PHAs is the very high production cost. Starch is a relatively inexpensive substrate that is also found in abundant seaweeds such as Ulva. Therefore, the strain isolated in this study may be very useful for producing PHA from seaweeds containing polysaccharides such as starch. In addition, a 3.7-kbp DNA fragment containing the whole PHA synthase gene (phaC) was obtained from the strain UMI-21. The results of open reading frame (ORF) analysis suggested that the DNA fragment contained two ORFs, which were composed of 1740 (phaC) and 564 bp (phaR). The deduced amino acid sequence of PhaC from strain UMI-21 shared high similarity with PhaC from Ralstonia eutropha, which is a representative PHA-producing bacterium with a class I PHA synthase. This is the first report for the cloning of the PHA synthase gene from Massilia species. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Methylomusa anaerophila gen. nov., sp. nov., an anaerobic methanol-utilizing bacterium isolated from a microbial fuel cell.

    Science.gov (United States)

    Amano, Nanako; Yamamuro, Ayaka; Miyahara, Morio; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2018-04-01

    Abacterial strain, designated MMFC1 T , was isolated from a methanol-fed microbial fuel cell that had been inoculated with sludge obtained from a wastewater-treatmentfacility in a chemical plant. The strain grows by fermenting methanol to produce acetate under anaerobic conditions, while homoacetogenic growth is not observed. MMFC1 T also grows on pyruvate and lactate but not on sugars and other organic acids. Cells are curved rods and motile, have peritrichous flagella, and form endospores. The genome sequence of strain MMFC1 T supports the physiological data. Phylogenetic analysis based on the 16S rRNA gene sequence shows that strain MMFC1 T is affiliated with the family Sporomusaceae, while the closest relative is Sporomusa ovata with nucleotide-sequencesimilarity of 93.5 %. Major fatty acids are iso-C13 : 0 3-OH, C16 : 1ω9 and iso-C17 : 0. On the basis of its physiological, genomic and phylogenetic features, a novel genus and species are proposed to accommodate strain MMFC1 T , with the name Methylomusa anaerophila gen. nov., sp. nov. The type strain of Methylomusa anaerophila is MMFC1 T (=JCM 31821 T = KCTC 15592 T ).

  18. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring

    Directory of Open Access Journals (Sweden)

    Geng Wu

    2017-07-01

    Full Text Available Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4 formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  19. Isolation and Characterization of Novel Denitrifying Bacterium sp. SG-01 Strain from Wood Chips Composted with Swine Manure

    Directory of Open Access Journals (Sweden)

    Seung-Hak Yang

    2013-11-01

    Full Text Available Nitrate contamination in ground and surface water is an increasingly serious environmental problem and only a few bacterial strains have been identified that have the ability to remove nitrogen pollutants from wastewater under thermophilic conditions. We therefore isolated thermophilic facultative bacterial strains from wood chips that had been composted with swine manure under aerated high temperature conditions so as to identify strains with denitrifying ability. Nine different colonies were screened and 3 long rod-shaped bacterial strains designated as SG-01, SG-02, and SG-03 were selected. The strain SG-01 could be differentiated from SG-02 and SG-03 on the basis of the method that it used for sugar utilization. The 16S rRNA genes of this strain also had high sequence similarity with Geobacillus thermodenitrificans 465T (99.6%. The optimal growth temperatures (55°C, pH values (pH 7.0, and NaCl concentrations (1% required for the growth of strain SG-01 were established. This strain reduced 1.18 mM nitrate and 1.45 mM nitrite in LB broth after 48 h of incubation. These results suggest that the G. thermodenitrificans SG-01 strain may be useful in the removal of nitrates and nitrites from wastewater generated as a result of livestock farming.

  20. Complete genome of Phenylobacterium zucineum – a novel facultative intracellular bacterium isolated from human erythroleukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Sun Jie

    2008-08-01

    Full Text Available Abstract Background Phenylobacterium zucineum is a recently identified facultative intracellular species isolated from the human leukemia cell line K562. Unlike the known intracellular pathogens, P. zucineum maintains a stable association with its host cell without affecting the growth and morphology of the latter. Results Here, we report the whole genome sequence of the type strain HLK1T. The genome consists of a circular chromosome (3,996,255 bp and a circular plasmid (382,976 bp. It encodes 3,861 putative proteins, 42 tRNAs, and a 16S-23S-5S rRNA operon. Comparative genomic analysis revealed that it is phylogenetically closest to Caulobacter crescentus, a model species for cell cycle research. Notably, P. zucineum has a gene that is strikingly similar, both structurally and functionally, to the cell cycle master regulator CtrA of C. crescentus, and most of the genes directly regulated by CtrA in the latter have orthologs in the former. Conclusion This work presents the first complete bacterial genome in the genus Phenylobacterium. Comparative genomic analysis indicated that the CtrA regulon is well conserved between C. crescentus and P. zucineum.

  1. Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sesame (Sesamum indicum L.).

    Science.gov (United States)

    Anandham, Rangasamy; Indiragandhi, Pandiyan; Kwon, Soon Wo; Sa, Tong Min; Jeon, Che Ok; Kim, Yong Ki; Jee, Hyeong Jin

    2010-01-01

    A facultatively chemolithoautotrophic, thiosulfate-oxidizing, Gram-negative, aerobic, motile, rod-shaped bacterial strain, designated ATSB16(T), was isolated from rhizosphere soils of sesame (Sesamum indicum L.). 16S rRNA gene sequence analysis demonstrated that this strain was closely related to Pandoraea pnomenusa LMG 18087(T) (96.7 % similarity), P. pulmonicola LMG 18016(T) (96.5 %), P. apista LMG 16407(T) (96.2 %), P. norimbergensis LMG 18379(T) (96.1 %) and P. sputorum LMG 18819(T) (96.0 %). Strain ATSB16(T) shared 96.0-96.4 % sequence similarity with four unnamed genomospecies of Pandoraea. The major cellular fatty acids of the strain ATSB16(T) were C(17 : 0) cyclo (33.0 %) and C(16 : 0) (30.6 %). Q-8 was the predominant respiratory quinone. The major polar lipids were phosphatidylmethylethanolamine, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified aminophospholipids. Hydroxyputrescine and putrescine were the predominant polyamines. The genomic DNA G+C content of the strain was 64.0 mol%. On the basis of the results obtained from this study, strain ATSB16(T) represents a novel species of the genus Pandoraea, for which the name Pandoraea thiooxydans sp. nov. is proposed. The type strain is ATSB16(T) (=KACC 12757(T) =LMG 24779(T)).

  2. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design.

    Science.gov (United States)

    Choińska-Pulit, Anna; Sobolczyk-Bednarek, Justyna; Łaba, Wojciech

    2018-03-01

    Due to the progressive development of industrial and technological activities, heavy metal contamination is increasing each year and it poses a serious health and environmental risk. Microorganisms are capable of removing heavy metals from a contaminated environment. In this work, 51 microbial strains were isolated from heavy metal contaminated water and soil. The JAW1 strain, identified as Pseudomonas azotoformans, was selected and applied in bioremediation of the specific mixture of metals (Cd, Cu, and Pb) in an aqueous medium. The Box-Behnken design was used to optimize the biosorption process, with three factors: pH, initial metal concentration, concentration of the biosorbent. For the strain P. azotoformans JAW1, the optimal conditions were pH = 6.0, 25mg/L of each metal and 2g/L, following removal levels were achieved: Cd 44,67%; Cu 63,32%; Pb 78,23%. The possible interactions of cell-metal ions were evaluated using FT-IR analysis. The study indicated the presence of groups, which may be responsible for bonding of metal ions. The studies conducted on bioremediation mechanisms indicated that metal accumulation could occur on the cell surface (biosorption) where the amount of adsorbed metals reached: Cd 98,57%, Cu 69,76%, Pb 88,58%. P. azotoformans JAW1 exhibited a potential for application in the bioremediation of mining wastewater with complex metal contaminations. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Screening and characterizing a denitrifying phosphorus-accumulating bacterium isolated from a circular plug-flow reactor.

    Science.gov (United States)

    Xie, En; Ding, Aizhong; Zheng, Lei; Dou, Junfeng; Anderson, Bruce; Huang, Xiaolong; Jing, Ruoting

    2016-11-01

    Denitrifying phosphorus-accumulating organisms (DNPAO) are viewed as one of the most effective means to solve the removal contradiction of nitrogen and phosphorus in wastewater treatment. In this study, we isolated a DNPAO (C-17, accession number: KU745702) from activated sludge in a patented circular plug-flow reactor, physiologically to Pseudomonas sp. based on 16S rRNA sequence and phenotypic characteristics. The results of denitrifying phosphorus-accumulating experiment showed that Pseudomonas C-17 has high removal efficiencies for [Formula: see text] and NO3-N, 75% and 87%, respectively. The ratio of phosphorus release was 25.0 mg [Formula: see text] (with anabolism) and 26.8 mg [Formula: see text] (without anabolism), respectively. Our results indicated that Pseudomonas C-17 had strong capacity of phosphorus release, and its uptake is often imprecisely evaluated by ignoring the part of metabolic consumption. Pseudomonas C-17 is capable of utilizing oxygen, nitrate and nitrite as electron acceptors under experimental conditions.

  4. A low cost fermentation medium for potential fibrinolytic enzyme production by a newly isolated marine bacterium, Shewanella sp. IND20

    Directory of Open Access Journals (Sweden)

    P. Vijayaraghavan

    2015-09-01

    Full Text Available Agro-residues were used as the substrate for the production of fibrinolytic enzyme in solid state fermentation. In this study, two-level full factorial design (25 and response surface methodology were applied to optimize a fermentation medium for the production of fibrinolytic enzyme from the marine isolate Shewanella sp. IND20. The 25 factorial design demonstrated that the physical factors (pH and moisture and nutrient factors (trehalose, casein, and sodium dihydrogen phosphate had significant effect on fibrinolytic enzyme production. Central composite design was employed to search for the optimal concentration of the three factors, namely moisture, pH, and trehalose, and the experimental results were fitted with a second-order polynomial model at 99% level (p < 0.0001. The optimized medium showed 2751 U/mL of fibrinolytic activity, which was 2.5-fold higher than unoptimized medium. The molecular weight of fibrinolytic enzyme was found to be 55.5 kDa. The optimum pH and temperature were 8.0 and 50 °C, respectively.

  5. Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia).

    Science.gov (United States)

    Bes, Méline; Merrouch, Mériem; Joseph, Manon; Quéméneur, Marianne; Payri, Claude; Pelletier, Bernard; Ollivier, Bernard; Fardeau, Marie-Laure; Erauso, Gaël; Postec, Anne

    2015-08-01

    A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 × 3.0-5.0 μm) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 °C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 g l- 1 NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Yeast extract, peptone, tryptone, Casamino acids, crotonate, pyruvate, galactose, maltose, sucrose, ribose, trehalose and glucose were used as carbon sources. Glucose fermentation led to acetate, H2 and CO2 formation. Arginine, serine, histidine, lysine, methionine and cysteine improved growth, but the Stickland reaction was negative for the combinations of amino acids tested. The major metabolic products from yeast extract fermentation were H2, CO2, acetate, butyrate, isobutyrate, isovalerate and propionate. The predominant cellular fatty acids were C16  :  0, C16  :  1cis9, C14  :  0 and C16  :  1cis7 (>5 % of total fatty acids). The G+C content of the genomic DNA was 32.9 mol%. Phylogenetic analysis revealed that strain ST07-YET was most closely related to Clostridium sticklandii DSM 519T and Acetoanaerobium noterae NOT-3T (96.7 % and 96.8 % 16S rRNA gene sequence similarity, respectively). On the basis of phylogenetic, chemotaxonomic and physiological properties, strain ST07-YET is proposed to represent a novel species of the genus Acetoanaerobium (order Clostridiales, phylum Firmicutes) with the name Acetoanaerobium pronyense sp. nov. The type strain is ST07-YET ( = DSM 27512T = JCM 19400T).

  6. Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos.

    Science.gov (United States)

    Gu, Tao; Sun, Li Na; Zhang, Jun; Sui, Xin Hua; Li, Shun Peng

    2014-06-01

    A Gram-stain-negative, non-motile, pale yellow, rod-shaped bacterial strain, YW14(T), was isolated from soil and its taxonomic position was investigated by a polyphasic study. Strain YW14(T) did not form nodules on three different legumes, and the nodD and nifH genes were not detected by PCR. Strain YW14(T) contained Q-10 as the predominant ubiquinone. The major cellular fatty acid was C(18 : 1)ω7c. Phylogenetic analyses based on 16S rRNA gene sequences and seven housekeeping gene sequences (recA, atpD, glnII, gyrB, rpoB, dnaK and thrC) showed that strain YW14(T) belonged to the genus Rhizobium. Strain YW14(T) showed 16S rRNA gene sequence similarity of 93.4-97.3% to the type strains of recognized species of the genus Rhizobium. DNA-DNA relatedness between strain YW14(T) and the type strains of Rhizobium sullae IS123(T) and Rhizobium yanglingense CCBAU 71623(T) was 19.6-25.7%, indicating that strain YW14(T) was distinct from them genetically. Strain YW14(T) could also be differentiated from these phylogenetically related species of the genus Rhizobium by various phenotypic properties. On the basis of phenotypic properties, phylogenetic distinctiveness and genetic data, strain YW14(T) is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium flavum sp. nov. is proposed. The type strain is YW14(T) ( = KACC 17222(T) = CCTCC AB2013042(T)). © 2014 IUMS.

  7. Isolation and characterization of an agaro-oligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals.

    Science.gov (United States)

    Li, Miaomiao; Li, Guangsheng; Zhu, Liying; Yin, Yeshi; Zhao, Xiaoliang; Xiang, Charlie; Yu, Guangli; Wang, Xin

    2014-01-01

    Agarose (AP) from red algae has a long history as food ingredients in East Asia. Agaro-oligosaccharides (AO) derived from AP have shown potential prebiotic effects. However, the human gut microbes responsible for the degradation of AO and AP have not yet been fully investigated. Here, we reported that AO and AP can be degraded and utilized at various rates by fecal microbiota obtained from different individuals. Bacteroides uniformis L8 isolated from human feces showed a pronounced ability to degrade AO and generate D-galactose as its final end product. PCR-DGGE analysis showed B. uniformis to be common in the fecal samples, but only B. uniformis L8 had the ability to degrade AO. A synergistic strain, here classified as Escherichia coli B2, was also identified because it could utilize the D-galactose as the growth substrate. The cross-feeding interaction between B. uniformis L8 and E. coli B2 led to exhaustion of the AO supply. Bifidobacterium infantis and Bifidobacterium adolescentis can utilize one of the intermediates of AO hydrolysis, agarotriose. Growth curves indicated that AO was the substrate that most favorably sustained the growth of B. uniformis L8. In contrast, κ-carrageenan oligosaccharides (KCO), guluronic acid oligosaccharides (GO), and mannuronic acid oligosaccharides (MO) were found to be unusable to B. uniformis L8. Current results indicate that B. uniformis L8 is a special degrader of AO in the gut microbiota. Because B. uniformis can mitigate high-fat-diet-induced metabolic disorders, further study is required to determine the potential applications of AO.

  8. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  9. Cupriavidus malaysiensis sp. nov., a novel poly(3-hydroxybutyrate-co-4-hydroxybutyrate) accumulating bacterium isolated from the Malaysian environment.

    Science.gov (United States)

    Ramachandran, Hema; Shafie, Nur Asilla Hani; Sudesh, Kumar; Azizan, Mohamad Noor; Majid, Mohamad Isa Abdul; Amirul, Al-Ashraf Abdullah

    2018-03-01

    Bacterial classification on the basis of a polyphasic approach was conducted on three poly(3 hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] accumulating bacterial strains that were isolated from samples collected from Malaysian environments; Kulim Lake, Sg. Pinang river and Sg. Manik paddy field. The Gram-negative, rod-shaped, motile, non-sporulating and non-fermenting bacteria were shown to belong to the genus Cupriavidus of the Betaproteobacteria on the basis of their 16S rRNA gene sequence analyses. The sequence similarity value with their near phylogenetic neighbour, Cupriavidus pauculus LMG3413 T , was 98.5%. However, the DNA-DNA hybridization values (8-58%) and ribotyping analysis both enabled these strains to be differentiated from related Cupriavidus species with validly published names. The RiboPrint patterns of the three strains also revealed that the strains were genetically related even though they displayed a clonal diversity. The major cellular fatty acids detected in these strains included C15:0 ISO 2OH/C16:1 ω7c, hexadecanoic (16:0) and cis-11-octadecenoic (C18:1 ω7c). Their G+C contents ranged from 68.0  to 68.6 mol%, and their major isoprenoid quinone was Ubiquinone Q-8. Of these three strains, only strain USMAHM13 (= DSM 25816 = KCTC 32390) was discovered to exhibit yellow pigmentation that is characteristic of the carotenoid family. Their assembled genomes also showed that the three strains were not identical in terms of their genome sizes that were 7.82, 7.95 and 8.70 Mb for strains USMAHM13, USMAA1020 and USMAA2-4, respectively, which are slightly larger than that of Cupriavidus necator H16 (7.42 Mb). The average nucleotide identity (ANI) results indicated that the strains were genetically related and the genome pairs belong to the same species. On the basis of the results obtained in this study, the three strains are considered to represent a novel species for which the name Cupriavidus malaysiensis sp. nov. is proposed. The

  10. Agrobacterium salinitolerans sp. nov., a saline-alkaline-tolerant bacterium isolated from root nodule of Sesbania cannabina.

    Science.gov (United States)

    Yan, Jun; Li, Yan; Yan, Hui; Chen, Wen Feng; Zhang, Xiaoxia; Wang, En Tao; Han, Xiao Zeng; Xie, Zhi Hong

    2017-06-01

    Two Gram-staining-negative, aerobic bacteria (YIC 5082T and YIC4104) isolated from root nodules of Sesbania cannabina grown in a high-salt and alkaline environment were identified as a group in the genus Agrobacterium because they shared 100 and 99.7 % sequence similarities of 16S rRNA and recA+atpD genes, respectively. These two strains showed 99.2/100 % and 93.9/95.4 % 16S rRNA and recA+atpD gene sequence similarities to Agrobacterium radiobacter LMG140T and Agrobacterium. pusense NRCPB10T, respectively. The average nucleotide identities (ANI) of genome sequences were 89.95 % or lower between YIC 5082T and the species of the genus Agrobacterium examined. Moreover, these two test strains formed a unique nifH lineage deeply separated from other rhizobia. Although the nodC gene was not detected in YIC 5082T and YIC4104, they could form effective root nodules on S. cannabina plants. The main cellular fatty acids in YIC 5082T were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C19 : 0cyclo ω8c, summed feature 2 (C12 : 0 aldehyde/unknown equivalent chain length 10.9525) and C16 : 0. The DNA G+C content of YIC 5082T was 59.3 mol%. The failure to utilize d-sorbitol as a carbon source distinguished YIC 5082T from the type strains of related species. YIC 5082T could grow in presence of 5.0 % (w/v) NaCl and at a pH of up to 10.0. Based on results regarding the genetic and phenotypic properties of YIC 5082T and YIC4104 the name Agrobacterium salinitolerans sp. nov. is proposed and YIC 5082T (=HAMBI 3646T=LMG 29287T) is designed as the type strain.

  11. Genome Sequence and Mutational Analysis of Plant-Growth-Promoting Bacterium Agrobacterium tumefaciens CCNWGS0286 Isolated from a Zinc-Lead Mine Tailing

    Science.gov (United States)

    Hao, Xiuli; Xie, Pin; Johnstone, Laurel; Miller, Susan J.

    2012-01-01

    The plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286, isolated from the nodules of Robinia pseudoacacia growing in zinc-lead mine tailings, both displayed high metal resistance and enhanced the growth of Robinia plants in a metal-contaminated environment. Our goal was to determine whether bacterial metal resistance or the capacity to produce phytohormones had a larger impact on the growth of host plants under zinc stress. Eight zinc-sensitive mutants and one zinc-sensitive mutant with reduced indole-3-acetic acid (IAA) production were obtained by transposon mutagenesis. Analysis of the genome sequence and of transcription via reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that ZntA-4200 and the transcriptional regulator ZntR1 played important roles in the zinc homeostasis of A. tumefaciens CCNWGS0286. In addition, interruption of a putative oligoketide cyclase/lipid transport protein reduced IAA synthesis and also showed reduced zinc and cadmium resistance but had no influence on copper resistance. In greenhouse studies, R. pseudoacacia inoculated with A. tumefaciens CCNWGS0286 displayed a significant increase in biomass production over that without inoculation, even in a zinc-contaminated environment. Interestingly, the differences in plant biomass improvement among A. tumefaciens CCNWGS0286, A. tumefaciens C58, and zinc-sensitive mutants 12-2 (zntA::Tn5) and 15-6 (low IAA production) revealed that phytohormones, rather than genes encoding zinc resistance determinants, were the dominant factor in enhancing plant growth in contaminated soil. PMID:22636006

  12. Vibrio panuliri sp. nov., a marine bacterium isolated from spiny lobster, Panulirus penicillatus and transfer of Vibrio ponticus from Scophthalmi clade to the newly proposed Ponticus clade.

    Science.gov (United States)

    Kumari, Prabla; Poddar, Abhijit; Schumann, Peter; Das, Subrata K

    2014-12-01

    A novel marine bacterium, strain LBS2(T) was isolated from eggs carried on pleopods of the spiny lobster collected from Andaman Sea. Heterotrophic growth occurred at 1-7% NaCl. 16S rRNA gene sequence similarity revealed the strain LBS2(T) belonged to the genus Vibrio and showed above 97% similarity with eight type strains of the genus Vibrio. Multilocus analysis based on ftsZ, gapA, gyrB, mreB, pyrH recA, rpoA, and topA revealed LBS2(T) formed a separate cluster with Vibrio ponticus DSM 16217(T) with 89.8% multilocus gene sequence similarity. However, strain LBS2(T) is distantly related with other members of the Scophthalmi clade in terms of 16S rRNA signatures, phenotypic variations and multilocus gene sequence similarity, for which we propose LBS2(T) belongs to a new clade i.e. Ponticus clade with V. ponticus DSM 16217(T) as the representative type strain of the clade. DNA-DNA homologies between strain LBS2(T) and closely related strains were well below 70%. DNA G + C content was 45.3 mol%. On the basis of our polyphasic study, strain LBS2(T) represents a novel species of the genus Vibrio, for which the name Vibrio panuliri sp. nov. is proposed. The type strain is LBS2(T) (= JCM 19500(T) = DSM 27724(T) = LMG 27902(T)). Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Vibrio algivorus sp. nov., an alginate- and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail.

    Science.gov (United States)

    Doi, Hidetaka; Chinen, Akito; Fukuda, Hiroo; Usuda, Yoshihiro

    2016-08-01

    An agarose- and alginate-assimilating, Gram-reaction-negative, non-motile, rod-shaped bacterium, designated strain SA2T, was isolated from the gut of a turban shell sea snail (Turbo cornutus) collected near Noto Peninsula, Ishikawa Prefecture, Japan. The 16S rRNA gene sequence of strain SA2T was 99.59 % identical to that of Vibrio rumoiensis DSM 19141T and 98.19 % identical to that of Vibrio litoralis DSM 17657T. This suggested that strain SA2T could be a subspecies of V. rumoiensis or V. litoralis. However, DNA-DNA hybridization results showed only 37.5 % relatedness to DSM 19141T and 44.7 % relatedness to DSM 17657T, which was far lower than the 70 % widely accepted to define common species. Strain SA2T could assimilate agarose as a sole carbon source, whereas strains DSM 19141T and DSM 17657T could not assimilate it at all. Furthermore, results using API 20NE and API ZYM kits indicated that their enzymic and physiological phenotypes were also different. These results suggested that strain SA2T represented a novel species within the genus Vibrio. The major isoprenoid quinone in SA2T was Q-8, and its major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major fatty acids were summed feature 3, (comprising C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0, and summed feature 8 (comprising C18 : 1ω6c and/or C18 : 1ω7c). The DNA G+C content of SA2T was 40.7 mol%. The name proposed for this novel species of the genus Vibrio is Vibrio algivorus sp. nov., with the type strain designated SA2T (=DSM 29824T=NBRC 111146T).

  14. Cecembia lonarensis gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae, isolated from a haloalkaline lake and emended descriptions of the genera Indibacter, Nitritalea and Belliella.

    Science.gov (United States)

    Anil Kumar, P; Srinivas, T N R; Madhu, S; Sravan, R; Singh, Shashi; Naqvi, S W A; Mayilraj, S; Shivaji, S

    2012-09-01

    A novel Gram-staining-negative, rod-shaped, non-motile bacterium, designated strain LW9(T), was isolated from a water sample collected from Lonar Lake of Buldhana district, Maharashtra, India. Colonies and broth cultures were reddish orange due to the presence of carotenoid pigments. Strain LW9(T) was positive for catalase, ornithine decarboxylase and lysine decarboxylase activities and negative for gelatinase, oxidase, urease and lipase activities. The predominant fatty acids were iso-C(15 : 0) (31.3 %), iso-C(16 : 0) (9.3 %), anteiso-C(15 : 0) (7.3 %), iso-C(16 : 1) H (6.1 %), summed feature 3 (comprising C(16 : 1)ω7c/C(16 : 1)ω6c; 5.9 %), iso-C(17 : 1)ω9c (5.4 %) and iso-C(17 : 0) 3-OH (5.0 %). Strain LW9(T) contained MK-7 as the major respiratory quinone. The polar lipids consisted of phosphatidylethanolamine, two unidentified aminolipids and seven unidentified lipids. The DNA G+C content of strain LW9(T) was 40.5 mol%. 16S rRNA gene sequence analysis indicated that the type strains of Indibacter alkaliphilus and Aquiflexum balticum, two members of the family Cyclobacteriaceae (phylum 'Bacteroidetes') were the most closely related strains with sequence similarities of 93.0 and 94.0 %, respectively. Other members of the family Cyclobacteriaceae showed sequence similarities <93.0 %. Based on these phenotypic characteristics and on phylogenetic inference, strain LW9(T) is proposed as the representative of novel species in a new genus, Cecembia lonarensis gen. nov., sp. nov. The type strain of the type species, Cecembia lonarensis, is LW9(T) (= CCUG 58316(T) = KCTC 22772(T)). Emended descriptions of the genera Indibacter, Nitritalea and Belliella are also proposed.

  15. De novo synthesis of fatty acids is regulated by FapR protein in Exiguobacterium antarcticum B7, a psychrotrophic bacterium isolated from Antarctica.

    Science.gov (United States)

    Baraúna, Rafael A; das Graças, Diego A; Nunes, Catarina I P; Schneider, Maria P C; Silva, Artur; Carepo, Marta S P

    2016-09-20

    FapR protein from the psychrotrophic species Exiguobacterium antarcticum B7 was expressed and purified, and subsequently evaluated for its capacity to bind to the promoter regions of the fabH1-fabF and fapR-plsX-fabD-fabG operons, using electrophoretic mobility shift assay. The genes that compose these operons encode for enzymes involved in the de novo synthesis of fatty acids molecules. In Bacillus subtilis, FapR regulates the expression of these operons, and consequently has influence in the synthesis of long or short-chain fatty acids. To analyze the bacterial cold adaptation, this is an important metabolic pathway because psychrotrophic microrganisms tend to synthesize short and branched-chain unsaturated fatty acids at cold to maintain cell membrane fluidity. In this work, it was observed that recombinant protein was able to bind to the promoter of the fully amplified fabH1-fabF and fapR-plsX-fabD-fabG operons. However, FapR was unable to bind to the promoter of fapR-plsX-fabD-fabG operon when synthesized only up to the protein-binding palindrome 5'-TTAGTACCAGATACTAA-3', thus showing the importance of the entire promoter sequence for the correct protein-DNA interaction. Through this observation, we demonstrate that the FapR protein possibly regulates the same operons as described for other species, which emphasizes its importance to cold adaptation process of E. antarcticum B7, a psychrotrophic bacterium isolated at Antarctica.

  16. Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes.

    Science.gov (United States)

    Hamdi, Olfa; Ben Hania, Wajdi; Postec, Anne; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia; Ollivier, Bernard; Fardeau, Marie-Laure

    2015-02-01

    A new Gram-staining-positive, non-sporulating, mesophilic, amino acid-degrading anaerobic bacterium, designated strain OTA 102(T), was isolated from an anaerobic sequencing batch reactor treating wastewater from cooking tuna. The cells were curved rods (0.6-2.5×0.5 µm) and occurred singly or in pairs. The strain was motile by means of one lateral flagellum. Strain OTA 102(T) grew at temperatures between 30 and 45 °C (optimum 40 °C), between pH 6.0 and 8.4 (optimum pH 7.2) and NaCl concentrations between 1 and 5 % (optimum 2 %, w/v). Strain OTA 102(T) required yeast extract for growth. Serine, threonine, glycine, cysteine, citrate, fumarate, α-ketoglutarate and pyruvate were fermented. When co-cultured with Methanobacterium formicicum as the hydrogen scavenger, strain OTA 102(T) oxidized alanine, valine, leucine, isoleucine, aspartate, tyrosine, methionine, histidine and asparagine. The genomic DNA G+C content of strain OTA 102(T) was 41.7 mol%. The main fatty acid was iso-C15 : 0. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain OTA 102(T) was related to Aminobacterium colombiense and Aminobacterium mobile (95.5 and 95.2 % similarity, respectively), of the phylum Synergistetes. On the basis of phylogenetic, genetic and physiological characteristics, strain OTA 102(T) is proposed to represent a novel species of the genus Aminobacterium, Aminobacterium thunnarium sp. nov. The type strain is OTA 102(T) ( = DSM 27500(T) = JCM 19320(T)). © 2015 IUMS.

  17. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination.

    Science.gov (United States)

    Prakash, Om; Gihring, Thomas M; Dalton, Dava D; Chin, Kuk-Jeong; Green, Stefan J; Akob, Denise M; Wanger, Greg; Kostka, Joel E

    2010-03-01

    An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32(T), was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92-98 % 16S rRNA gene and 75-81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4(T), according to 16S rRNA gene sequence similarity, strain FRC-32(T) showed a DNA-DNA relatedness value of 21 %. Cells of strain FRC-32(T) were Gram-negative, non-spore-forming, curved rods, 1.0-1.5 microm long and 0.3-0.5 microm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 degrees C and pH 6.7-7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32(T) conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32(T) was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with

  18. Expression and partial characterization of an ice binding protein from a bacterium isolated at a depth of 3,519 meters in the Vostok ice core, Antarctica

    Directory of Open Access Journals (Sweden)

    Amanda Marie Achberger

    2011-12-01

    Full Text Available Cryopreservation of microorganisms in ancient glacial ice is possible if lethal levels of macromolecular damage are not incurred and cellular integrity is not compromised via intracellular ice formation or recrystallization. Previously, a bacterium (isolate 3519-10 recovered from a depth of 3,519 meters below the surface in the Vostok ice core was shown to secrete an IBP that inhibits the recrystallization of ice. To explore the advantage that IBPs confer to ice-entrapped cells, experiments were designed to examine the expression of 3519-10’s IBP gene and protein at different temperatures, assess the effect of the IBP on bacterial viability in ice, and determine how the IBP influences the physical structure of the ice. Total RNA isolated from cultures grown between 4 to 25⁰C and analyzed by reverse transcription-PCR indicated constitutive expression of the IBP gene. SDS-PAGE analysis of 3519-10’s extracellular proteins also revealed a polypeptide of the predicted size of the 54 kDa IBP at all temperatures tested. In the presence of 100 µg mL-1 of extracellular protein from 3519-10, the survival of Escherichia coli was increased by greater than 34-fold after freeze-thaw cycling. Microscopic analysis of ice formed in the presence of the IBP indicated that per mm2 field of view, there were ~5 times as many crystals as in ice formed in the presence of washed 3519-10 cells and non-IBP producing bacteria, and ~10 times as many crystals as in filtered deionized water. Presumably, the effect that the IBP has on bacterial viability and ice crystal structure is due to its activity as an inhibitor of ice recrystallization. A myriad of molecular adaptations are likely to play a role in bacterial persistence under frozen conditions, but the ability of 3519-10’s IBP to control ice crystal structure, and thus the liquid vein network within the ice, may provide one explanation for its successful survival deep within the Antarctic ice sheet for

  19. Reclassification of Bacillus saliphilus as Alkalicoccus saliphilus gen. nov., comb. nov., and description of Alkalicoccus halolimnae sp. nov., a moderately halophilic bacterium isolated from a salt lake.

    Science.gov (United States)

    Zhao, Baisuo; Lu, Weidong; Zhang, Shanshan; Liu, Kang; Yan, Yanchun; Li, Jun

    2017-05-01

    A Gram-stain-positive, cocci-shaped, non-spore-forming and moderately halophilic bacterium, designed BZ-SZ-XJ29T, was isolated from a salt lake of China. On the basis of 16S rRNA gene sequence similarity, the closest phylogenetic relatives were Bacillus saliphilus 6AGT (97.3 % 16S rRNA gene sequence similarity) and five other species of the genus Bacillus(95.4-96.3 %). However, strain BZ-SZ-XJ29T shared only 89.5 % 16S rRNA gene sequence similarity with Bacillus subtilis subsp. subtilis DSM 10T, indicating that this isolate might not be a member of the genus Bacillus. The genomic DNA G+C content was 40.0 mol% (Tm). The DNA-DNA relatedness value with B. saliphilus 6AGT was 45±2 %. Strain BZ-SZ-XJ29T formed yellow pigment and grew in the presence of 0.74-4.15 M Na+ [optimum 1.42-2.10 M Na+], at pH 6.0-10.5 (optimum pH 7.5), and at 5-41 °C (optimum 33 °C). The predominant (>10 %) fatty acids were anteiso-C15 : 0 and anteiso-C15 : 0. The dominant polar lipids consisted of diphosphatidylglycerol and the respiratory quinone was menaquinone-7 (MK-7). The peptidoglycan type of the cell wall was A1γ, based on meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of the combined phylogenetic data, phenotypic features and chemotaxonomic properties, it is proposed that B. saliphilus and strain BZ-SZ-XJ29T should be assigned to a single novel genus as two separate species. Bacillus. saliphilus is reclassified in a new genus, Alkalicoccus gen. nov., as Alkalicoccus saliphilus comb. nov., and is the type species of the new genus; the type strain of the type species is 6AGT (=DSM 15402T=ATCC BAA-957T). Strain BZ-SZ-XJ29T (=DSM 29191T=JCM 30193T=CGMCC 1.12936T) is placed in the genus Alkalicoccus as a novel species, Alkalicoccus halolimnae sp. nov.

  20. In vitro Cellulose Rich Organic Material Degradation by Cellulolytic Streptomyces albospinus (MTCC 8768

    Directory of Open Access Journals (Sweden)

    Pinky Prasad

    2012-09-01

    Full Text Available Aims: Cellulosic biomass is the only foreseeable sustainable source of fuels and is also one of the dominating waste materials in nature resulting from human activities. Keeping in view the environmental problems like disposal of large volumes of cellulosic wastes and shortage of fossil fuel in the world, the main aim of the present investigation was to characterize and study the cellulolytic activity of Streptomyces albospinus (MTCC 8768, isolated from municipal wastes, on natural cellulosic substrates viz. straw powder, wood powder and finely grated vegetable peels.Methodology and Result: Stanier’s Basal broth with 100 mg of each of the substrates was inoculated separately with S. albospinus (MTCC No. 8768 and incubated at 37 °C for 8 days. The cellulosic substrates were re-weighed at an interval of 2 days and the difference between the initial weight and the final weight gave the amount of substratesdegraded by the isolate. It was observed that maximum degradation was observed in the grated vegetable peels (64 mg followed by straw powder (38 mg and wood powder (28 mg over a period of 8 days.Conclusion, significance and impact of study: By the selection of efficient cellulolytic microorganisms and cost-effective operational techniques, the production of useful end products from the biodegradation of the low cost enormous stock of cellulose in nature can be very beneficial.

  1. Characterization of bacterium isolated from the sediment at coastal area of Omura Bay in Japan and several biological activities of pigment produced by this isolate.

    Science.gov (United States)

    Nakashima, Takuji; Kurachi, Maki; Kato, Yoko; Yamaguchi, Kenichi; Oda, Tatsuya

    2005-01-01

    Recently we discovered a bacterial strain (MS-02-063) that produces large amounts of red pigment from coastal area of Nagasaki Prefecture, Japan. Comparative 16S rDNA gene sequencing analysis revealed that strain MS-02-063 was phylogenetically closely related to gamma-proteobacterium Hahella sp. MBIC 3957 that produces prodigiosin. However, some physiological and biochemical differences between strain MS-02-063 and Hahella sp. MBIC 3957 were observed. The red pigment (RP-063) produced by this isolate was highly purified from the culture supernatant. It was speculated that RP-063 might be prodigiosin-like pigment in physical properties and biological activities such as antibacterial and cytotoxic activity. Antibacterial activity of RP-063 was examined by an agar dilution method. The results indicated that RP-063 showed antibacterial activity for specific for pathogenic gram-positive bacteria such as Staphylococcus aureus. The potency of antibacterial activity against S. aureus was nearly equal to those of tetracycline. Moreover, RP-063 showed inhibition of the superoxide generation by 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated mouse macrophage RAW 264.7 cell line. Prodigiosin members have a wide variety of biological properties, including anticancer and antimalarial, etc. Especially, potent immunosuppressive properties have been reported for prodigiosin members with the mechanism of action different from that of the other well known immunosuppressors in atopic dermatitis therapy such as cyclosporin A, FK506 and rapamycin. It is suggested that RP-063 may be able to arrest the inflammation caused by superantigens secreted from S. aureus, which colonized skin on atopic dermatitis as well as suppression of activated lymphocyte proliferation and superoxide generation from leucocytes.

  2. Isolation and characterization of efficient cellulolytic fungi from ...

    African Journals Online (AJOL)

    user

    potentially sustainable approach to develop novel bioprocesses and products. Microbial cellulases have become the focal biocatalysts due to their complex nature and wide spread industrial applications (Kuhad et al.,. 2011). The search for efficient microorganisms which can produce all the three types of cellulases that can ...

  3. Cellulolytic activities of wild type fungi isolated from decayed wood ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Plating was done in duplicates. The culture plates were swirled, allowed to solidify and incubated at ambient room temperature (28±20C) for 5 days. ... The absorbance was read at 750nm. Protein concentrations were obtained from a standard curve. Results and Discussion. The mean fungal counts ranged from 0.9 ×106 ...

  4. Cellulolytic activities of wild type fungi isolated from decayed wood ...

    African Journals Online (AJOL)

    Abstract. The mycological profile of decayed wood cuttings sourced from a saw mill located at Uwasota Road, Benin City was investigated using serial dilution and pour plate techniques. The mean fungal counts ranged from 0.9 ×106 cfu/g to 2.7 ×106 cfu/g respectively. Four fungal species were identified; Aspergillus niger, ...

  5. Isolation and Screening of Highly Cellulolytic Filamentous Fungi ...

    African Journals Online (AJOL)

    A large number of microorganisms are capable of degrading cellulose, only a few of these microorganisms produce significant quantities of enzymes capable of completely hydrolysing cellulose. Fungi are the main cellulase-producing microorganisms. In this purposed study, seventeen fungal species belonging to three ...

  6. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian

    2004-01-01

    genus Penicillium and compared with that of T. reesei. Either Solka-Floc cellulose or oat spelt xylan was used as carbon source in shake flask cultivations. All the fungi investigated showed coinduction of cellulolytic and xylanolytic enzymes during growth on cellulose as well as on xylan. The highest...... filter paper activity was measured after cultivation of Penicillium brasilianum IBT 20888 on cellulose....

  7. Biosynthesis of cellulolytic enzymes by Tricothecium roseum with ...

    African Journals Online (AJOL)

    Among various soluble carbon and complex nitrogen sources tested in this study, carboxymethylcellulose and peptone supported maximum production of both cellulolytic enzymes. Under all suitable growth conditions, the enzyme biosynthesis was remarkably increased when the inducer citric acid was added to the PDYE ...

  8. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian

    2004-01-01

    genus Penicillium and compared with that of T. reesei. Either Solka-Floc cellulose or oat spelt xylan was used as carbon source in shake flask cultivations. All the fungi investigated showed coinduction of cellulolytic and xylanolytic enzymes during growth on cellulose as well as on xylan. The highest...

  9. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    2017-06-14

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  10. An innovative approach for hyperproduction of cellulolytic and ...

    African Journals Online (AJOL)

    The present work describes the production of cellulolytic enzymes and hemicellulolytic enzyme (xylanase) along with total extracellular protein by Aspergillus niger and Trichoderma viride using submerged fermentation. Among seven different kinds of experiments, secretion rate of protein and enzymes was investigated by ...

  11. Draft Genome Sequence of Bacillus amyloliquefaciens EBL11, a New Strain of Plant Growth-Promoting Bacterium Isolated from Rice Rhizosphere

    Science.gov (United States)

    Wang, Yinghuan; Greenfield, Paul; Jin, Decai

    2014-01-01

    Bacillus amyloliquefaciens strain EBL11 is a bacterium that can promote plant growth by inhibiting the growth of fungi on plant surfaces and providing nutrients as a nonchemical biofertilizer. The estimated genome of this strain is 4.05 Mb in size and harbors 3,683 coding genes (CDSs). PMID:25059875

  12. Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mbodi, alkaline fermented leaves of cassava from the Republic of the Congo

    DEFF Research Database (Denmark)

    Ouoba, Labia Irène I.; Mbozo, Alain B. Vouidibio; Thorsen, Line

    2015-01-01

    Investigation of the microbial diversity of Ntoba Mbodi, an African food made from the alkaline fermentation of cassava leaves, revealed the presence of a Gram-positive, catalase-positive, aerobic, motile and rod-shaped endospore-forming bacterium (NM73) with unusual phenotypic and genotypic...

  13. Diarrhea-associated pathogens, lactobacilli and cellulolytic bacteria in equine feces: responses to antibiotic challenge.

    Science.gov (United States)

    Harlow, Brittany E; Lawrence, Laurie M; Flythe, Michael D

    2013-09-27

    Antibiotics are important to equine medicine, but antibiotic-associated diarrhea (AAD) can lead to poor performance and even mortality. AAD is attributed to disruption of the hindgut microbiota, which permits proliferation of pathogenic microbes. The goal of this study was to evaluate the effects of common antibiotics on cellulolytic bacteria, lactobacilli, and AAD-associated pathogens in the feces of healthy horses. Fifteen horses were assigned to three treatment groups (blocked by age and sex): control (no antibiotics), trimethoprim-sulfadiazine (PO), or ceftiofur (IM). Fecal samples (n=8 per horse) were taken during dietary adaptation (3 weeks), antibiotic challenge (1 week), and withdrawal (1 week). Bacteria were enumerated by serial dilution and viable count. Cellulolytic bacteria decreased by >99% during administration of either antibiotic (Pantibiotic challenge period (PAntibiotic challenged horses also shed more salmonella than control horses (PAntibiotics had no effect on the number of Clostridium perfringens isolates. There was no detectable Clostridium difficile during adaptation or in any control horse. C. difficile increased (Pantibiotics, and were still detectable 1 week after withdrawal. These results indicate that antibiotics can disrupt the normal gastrointestinal microbiota and allow proliferation of Salmonella spp. and C. difficile. Published by Elsevier B.V.

  14. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.

    Science.gov (United States)

    Okeke, Benedict C; Hall, Rosine W; Nanjundaswamy, Ananda; Thomson, M Sue; Deravi, Yasaman; Sawyer, Leah; Prescott, Andrew

    2015-06-01

    Plant biomass is an abundant renewable natural resource that can be transformed into chemical feedstocks. Enzymes used in saccharification of lignocellulosic biomass are a major part of biofuel production costs. A cocktail of cellulolytic and xylanolytic enzymes are required for optimal saccharification of biomass. Accordingly, thirty-two fungal pure cultures were obtained from surface soil-biomass mixtures collected from Black Belt sites in Alabama by culturing on lignocellulosic biomass medium. The fungal strains were screened for the coproduction of cellulolytic and xylanolytic enzymes. Strains that displayed promising levels of cellulolytic and xylanolytic enzymes were characterized by molecular analysis of DNA sequences from the large subunit and internal transcribed spacer (ITS) of their ribosomal RNA gene. Nucleotide sequence analysis revealed that two most promising isolates FS22A and FS5A were most similar to Penicillium janthinellum and Trichoderma virens. Production dynamics of cellulolytic and xylanolytic enzymes from these two strains were explored in submerged fermentation. Volumetric productivity after 120 h incubation was 121.08 units/L/h and 348 units/L/h for the filter paper cellulase and xylanase of strain FS22A, and 90.83 units/L/h and 359 units/L/h, respectively for strain FS5A. Assays with 10 times dilution of enzymes revealed that the activities were much higher than that observed in the crude culture supernatant. Additionally, both FS22A and FS5A also produced amylase in lignocellulose medium. The enzyme profiles of these strains and their activities suggest potential applications in cost effective biomass conversion and biodegradation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Complete Genome Sequence of Paenibacillus polymyxa CR1, a Plant Growth-Promoting Bacterium Isolated from the Corn Rhizosphere Exhibiting Potential for Biocontrol, Biomass Degradation, and Biofuel Production.

    Science.gov (United States)

    Eastman, Alexander W; Weselowski, Brian; Nathoo, Naeem; Yuan, Ze-Chun

    2014-01-23

    Here we report the complete genome sequence of the bacterium Paenibacillus polymyxa CR1 (accession no. CP006941), which consists of one circular chromosome of 6,024,666 bp with 5,283 coding sequences (CDS), 87 tRNAs, and 12 rRNA operons. Data presented will allow for further insights into the mechanisms underpinning agriculturally and industrially relevant processes.

  16. Genome sequence of the photoarsenotrophic bacterium Ectothiorhodospira sp. strain BSL-9, isolated from a hypersaline alkaline arsenic-rich extreme environment

    Science.gov (United States)

    Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Boren, Alison; Miller, Laurence; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W

    2016-01-01

    The full genome sequence of Ectothiorhodospira sp. strain BSL-9 is reported here. This purple sulfur bacterium encodes an arxA-type arsenite oxidase within the arxB2AB1CD gene island and is capable of carrying out “photoarsenotrophy” anoxygenic photosynthetic arsenite oxidation. Its genome is composed of 3.5 Mb and has approximately 63% G+C content.

  17. The Cellulolytic Activity And Volatile Fatty Acid Product Of Rumen Bacteria Of Buffalo And Cattle On Rice Straw, Elephant Grass, and Sesbania Leaves Substrates

    Directory of Open Access Journals (Sweden)

    Caribu Hadi Prayitno

    1999-01-01

    Full Text Available Experiment on The Cellulolytic Activity and Volatile Fatty Acid Product of Rumen Bacteria of Buffalo and Cattle on Rice Straw, Elephant Grass, and Sesbania Leaves Substrates had been conducted at Feedstuff Laboratory of Animal Science Soedirman University. The basic design  that was used in this experiment was Completely Randomized Design (CRD with factorial pattern of 6 x 3, three replications. The bacteria isolate as the factors were cellulolytic rumen bacteria isolate of buffalo (A1, A2, and A3 and cattle (A4, A5 and A6 while the substrates (second factor  were NDF rice straw (S1, elephant grass (S2, and sesbania leaves (S3 Cell walls. The result of this experiment showed that the interaction between bacteria isolate and substrate  type were significant on pH, NDF digestibility, cellulase activity, pH was  6.28 until 6.43.  The NDF digestibility range was 12.27 until 55.61 percent. The lowers of cellulase activity was 5.11 IU/ml and the higher was 24.47 IU/ml. The range of acetic acid yield was 63.37 to 307.467 mg/100 ml. Range of  propionic production was 15.17 to 352.20 mg/ 100 ml. The production of butiric acid was 8.77 to 40.87 mg/ 100 ml. The cellulase activity  of cellulolytic rumen bacteria of buffalo was higher than cattle, and also their effect on NDF digestibility of rice straw, elephant grass, and sesbania leaves cell walls. The A3 of cellulolytic rumen bacteria isolate of  buffalo changed cell walls substrat to volatile fatty  acid was more effective than cattle, especially on cell elephant grass. Propionic and butiric  acid that was produced by cellulolytic rumen bacteria isolate of buffalo more higher than cattle (Animal Production 1 (1 : 1-9 (1999 Key Words: Cellulolytic, VFA, Rumen Bacteria, Buffalo, Cattle.

  18. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae.

    Science.gov (United States)

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi

    2012-11-01

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae.

  19. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi [Tottori Univ. (Japan). Dept. of Chemistry and Biotechnology

    2012-11-15

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae. (orig.)

  20. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    Full Text Available Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs, carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.

  1. Characterization and Identification of Cellulolytic Bacteria from gut of Worker Macrotermes gilvus

    OpenAIRE

    Andri Ferbiyanto; Iman Rusmana; Rika Raffiudin

    2015-01-01

    As a social insect, termite colony consists of three castes, i.e. reproductive, soldier, and worker castes. In their role of cellulose digestion, the worker termites use two sources of cellulolytic enzyme that include cellulases produced by the termite and the gut symbions. Macrotermes gilvus classified in mound builder termite, mostly depend on cellulolytic bacteria for cellulose digestion. This study aims to characterize cellulolytic bacteria of termite gut symbionts of worker M. gilvus and...

  2. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  3. Characterization of Cellulolytic Bacterial Cultures Grown in Different Substrates

    Directory of Open Access Journals (Sweden)

    Mohamed Idris Alshelmani

    2013-01-01

    Full Text Available Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ and the American Type Culture Collection (ATCC. The objectives of this study were to characterize the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF of palm kernel cake (PKC. The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30∘C and agitated at 200 rpm. Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC. The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w on different PKC concentration-to-moisture ratios: 1 : 0.2, 1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067 DSMZ, Bacillus megaterium 9885 ATCC, Paenibacillus curdlanolyticus 10248 DSMZ, and Paenibacillus polymyxa 842 ATCC produced higher enzyme activities as compared to other bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.

  4. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  5. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    Science.gov (United States)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  6. Cellulolytic potential of thermophilic species from four fungal orders

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Lene

    2013-01-01

    Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi....... Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45 ºC. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we...

  7. Whole-Genome Sequence of Pseudomonas putida Strain UASWS0946, a Highly Ammonia-Tolerant Nitrifying Bacterium Isolated from Sewage Sludge Aerobic Granules

    OpenAIRE

    Crovadore, Julien; Calmin, Gautier; Cochard, Bastien; Chablais, Romain; Grizard, Damien; Berthon, Jean-Yves; Lefort, François

    2015-01-01

    We report here the genome of Pseudomonas putida strain UASWS0946, a highly ammonia-tolerant nitrifying strain isolated from sewage sludge aerobic granules, which displays adequate genetic equipment for soil depollution, sludge treatment, and biological fertilization in agriculture.

  8. [Thiobacillus sajanensis sp. nov., a new obligately autotrophic sulfur-oxidizing bacterium isolated from Khoito-Gol hydrogen-sulfide springs, Buryatia].

    Science.gov (United States)

    Dul'tseva, N M; Turova, T P; Spiridonova, E M; Kolganova, T V; Osipov, G A; Gorlenko, V M

    2006-01-01

    Four strains of rod-shaped gram-negative sulfur-oxidizing bacteria were isolated from Khoito-Gol hydrogen-sulfide springs in the eastern Sayan Mountains (Buryatia). The cells of the new isolates were motile by means of a single polar flagellum. The strains were obligately chemolithoautotrophic aerobes that oxidized thiosulfate (with the production of sulfur and sulfates) and hydrogen sulfide. They grew in a pH range of 6.8-9.5, with an optimum at pH 9.3 and in a temperature range of 5-39 degrees C, with an optimum at 28-32 degrees C. The cells contained ubiquinone Q-8. The DNA G+C content of the new strains was 62.3-64.2 mol %. According to the results of analysis of their 16S rRNA genes, the isolates belong to the genus Thiobacillus within the subclass Betaproteobacteria. However, the similarity level of nucleotide sequences of the 16S rRNA genes was insufficient to assign the isolates to known species of this genus. The affiliation to the genus Thiobacillus was confirmed by DNA-DNA hybridization of the isolates with the type strain of the type species of the genus Thiobacillus, T. thioparus DSM 505T (= ATCC 8158T). Despite the phenotypic similarity, the hybridization level was as low as 21-29%. In addition, considerable differences were revealed in the structure of the genes encoding RuBPC, the key enzyme of autotrophic CO2 assimilation, between the known Thiobacillus species and the new isolates. Based on molecular-biological features and certain phenotypic distinctions, the new isolates were assigned to a new Thiobacillus species, T. sajanensis sp. nov., with the type strain 4HGT (= VKM B-2365T).

  9. Whole-Genome Sequence of Pseudomonas putida Strain UASWS0946, a Highly Ammonia-Tolerant Nitrifying Bacterium Isolated from Sewage Sludge Aerobic Granules.

    Science.gov (United States)

    Crovadore, Julien; Calmin, Gautier; Cochard, Bastien; Chablais, Romain; Grizard, Damien; Berthon, Jean-Yves; Lefort, François

    2015-10-08

    We report here the genome of Pseudomonas putida strain UASWS0946, a highly ammonia-tolerant nitrifying strain isolated from sewage sludge aerobic granules, which displays adequate genetic equipment for soil depollution, sludge treatment, and biological fertilization in agriculture. Copyright © 2015 Crovadore et al.

  10. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation.

    Science.gov (United States)

    Nie, Yong; Liang, Jieliang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei

    2011-10-01

    Two alkane hydroxylase-rubredoxin fusion gene homologs (alkW1 and alkW2) were cloned from a Dietzia strain, designated DQ12-45-1b, which can grow on crude oil and n-alkanes ranging in length from 6 to 40 carbon atoms as sole carbon sources. Both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase (AlkB) conserved domain and a rubredoxin (Rd) conserved domain which are fused together. Phylogenetic analysis showed that these two AlkB-fused Rd domains formed a novel third cluster with all the Rds from the alkane hydroxylase-rubredoxin fusion gene clusters in Gram-positive bacteria and that this third cluster was distant from the known AlkG1- and AlkG2-type Rds. Expression of the alkW1 gene in DQ12-45-1b was induced when cells were grown on C(8) to C(32) n-alkanes as sole carbon sources, but expression of the alkW2 gene was not detected. Functional heterologous expression in an alkB deletion mutant of Pseudomonas fluorescens KOB2Δ1 suggested the alkW1 could restore the growth of KOB2Δ1 on C(14) and C(16) n-alkanes and induce faster growth on C(18) to C(32) n-alkanes than alkW1ΔRd, the Rd domain deletion mutant gene of alkW1, which also caused faster growth than KOB2Δ1 itself. In addition, the artificial fusion of AlkB from the Gram-negative P. fluorescens CHA0 and the Rds from both Gram-negative P. fluorescens CHA0 and Gram-positive Dietzia sp. DQ12-45-1b significantly increased the degradation of C(32) alkane compared to that seen with AlkB itself. In conclusion, the alkW1 gene cloned from Dietzia species encoded an alkane hydroxylase which increased growth on and degradation of n-alkanes up to C(32) in length, with its fused rubredoxin domain being necessary to maintain the functions. In addition, the fusion of alkane hydroxylase and rubredoxin genes from both Gram-positive and -negative bacteria can increase the degradation of long-chain n-alkanes (such as C(32)) in the Gram-negative bacterium.

  11. Defluviitalea raffinosedens sp. nov., a thermophilic, anaerobic, saccharolytic bacterium isolated from an anaerobic batch digester treating animal manure and rice straw.

    Science.gov (United States)

    Ma, Shichun; Huang, Yan; Wang, Cong; Fan, Hui; Dai, Lirong; Zhou, Zheng; Liu, Xing; Deng, Yu

    2017-05-01

    A thermophilic, anaerobic, fermentative bacterium, strain A6T, was obtained from an anaerobic batch digester treating animal manure and rice straw. Cells were Gram-stain-positive, slightly curved rods with a size of 0.6-1×2.5-8.2 µm, non-motile and produced terminal spores. The temperature, pH and NaCl concentration ranges for growth were 40-60 °C, 6.5-8.0 and 0-15.0 g l-1, with optimum growth noted at 50-55 °C, pH 7.5 and in the absence of NaCl, respectively. Yeast extract was required for growth. d-Glucose, maltose, d-xylose, d-galactose, d-fructose, d-ribose, lactose, raffinose, sucrose, d-arabinose, cellobiose, d-mannose and yeast extract were used as carbon and energy sources. The fermentation products from glucose were ethanol, lactate, acetate, propionate, butyrate, valerate, iso-butyrate, iso-valerate, H2 and CO2. The G+C content of the genomic DNA was 36.6 mol%. The predominant fatty acids were C16 : 0, iso-C17 : 1, C14 : 0, C16 : 1ω7c, C16 : 0 N-alcohol and C13 : 0 3-OH. Respiratory quinones were not detected. The polar lipid profile comprised phosphoglycolipids, phospholipids, glycolipids, a diphosphatidylglycerol, a phosphatidylglycerol and an unidentified lipid. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the strain was closely related to Defluviitalea saccharophila DSM 22681T with a similarity of 96.0 %. Based on the morphological, physiological and taxonomic characterization, strain A6T is considered to represent a novel species of the genus Defluviitalea, for which the name Defluviitalea raffinosedens sp. nov. is proposed. The type strain is A6T (=DSM 28090T=ACCC 19951T).

  12. Biodegradation of endosulfan by a soil bacterium.

    Science.gov (United States)

    Shivaramaiah, H M; Kennedy, I R

    2006-01-01

    A bacterium capable of metabolizing endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine3-oxide) was isolated from cotton-growing soil and effectively shown to degrade endosulfan into endosulfan sulfate. The bacterium degraded 50% of the compound within 3 days of incubation. Endosulfan sulfate was the only terminal product and no other metabolites were formed during the incubation. Endosulfan and its metabolites were analyzed by gas chromatography. The metabolites formed indicated that the organism follows an oxidative pathway for metabolism of this pesticide. Therefore, the present study, microbial degradation of endosulfan by a soil bacterium, may provide a basis for the development of bioremediation strategies to remediate the pollutants in the environment.

  13. Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine

    Directory of Open Access Journals (Sweden)

    Benjaphorn Prapagdee

    2009-12-01

    Full Text Available Cadmium (Cd is a major environmental hazard, which usually is detected in its ionic form of Cd2+. It also causes adverse toxic effects on human health and other living organisms. Cd-resistant bacteria were isolated from Cd-contaminated soils. One isolate, TAK1, was highly resistance level to Cd toxicity. TAK1 was isolated from soil contaminated with a high Cd concentration (204.1 mg.kg-1. The result of 16S rDNA sequence analysis found that the TAK1 showed the similarity to Ralstonia sp. Physiological adaptive and cross-protective responses to Cd and Zn killing were investigated in Ralstonia sp.TAK1. Exposure to a low concentration of Cd induced adaptive resistance to higher concentrations of Cd. In addition, pretreatment of Ralstonia sp.TAK1 with an inducing concentration of Cd conferred cross-protective response against subsequent exposure to the lethal concentrations of Zn. The induced adaptive and cross-protective response Ralstonia sp.TAK1 required newly synthesized protein(s. Cd-induced adaptive and cross-protective responses against Cd and Zn toxicity are the important mechanisms used by Ralstonia sp.TAK1 to survive in the heavy metal contaminated environments. These findings might lead to the use of Ralstonia sp.TAK1 for microbial based remediation in Cd and Zn-contaminated soils.

  14. Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions

    Science.gov (United States)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon

    2014-09-30

    The present invention relates to compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and an organic compound comprising a carboxylic acid moiety, a lactone moiety, a phenolic moiety, a flavonoid moiety, or a combination thereof, wherein the combination of the GH61 polypeptide having cellulolytic enhancing activity and the organic compound enhances hydrolysis of a cellulosic material by a cellulolytic enzyme compared to the GH61 polypeptide alone or the organic compound alone. The present invention also relates to methods of using the compositions.

  15. High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria.

    Science.gov (United States)

    Benslama, Ouided; Boulahrouf, Abderrahmane

    2016-06-01

    Enterobacter sp. strain Bisph2 was isolated from a sandy soil from Biskra, Algeria and exhibits glyphosate-degrading activity. Multilocus sequence analysis of the 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes demonstrated that Bisph2 might be a member of a new species of the genus Enterobacter. Genomic sequencing of Bisph2 was used to better clarify the relationships among Enterobacter species. Annotation and analysis of the genome sequence showed that the 5.535.656 bp genome of Enterobacter sp. Bisph2 consists in one chromosome and no detectable plasmid, has a 53.19% GC content and 78% of genes were assigned a putative function. The genome contains four prophages of which 3 regions are intact and no CRISPER was detected. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JXAF00000000.

  16. High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria

    Directory of Open Access Journals (Sweden)

    Ouided Benslama

    2016-06-01

    Full Text Available Enterobacter sp. strain Bisph2 was isolated from a sandy soil from Biskra, Algeria and exhibits glyphosate-degrading activity. Multilocus sequence analysis of the 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes demonstrated that Bisph2 might be a member of a new species of the genus Enterobacter. Genomic sequencing of Bisph2 was used to better clarify the relationships among Enterobacter species. Annotation and analysis of the genome sequence showed that the 5.535.656 bp genome of Enterobacter sp. Bisph2 consists in one chromosome and no detectable plasmid, has a 53.19% GC content and 78% of genes were assigned a putative function. The genome contains four prophages of which 3 regions are intact and no CRISPER was detected. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JXAF00000000.

  17. Isolation and Complete Genome Sequence of Algibacter alginolytica sp. nov., a Novel Seaweed-Degrading Bacteroidetes Bacterium with Diverse Putative Polysaccharide Utilization Loci.

    Science.gov (United States)

    Sun, Cong; Fu, Ge-Yi; Zhang, Chong-Ya; Hu, Jing; Xu, Lin; Wang, Rui-Jun; Su, Yue; Han, Shuai-Bo; Yu, Xiao-Yun; Cheng, Hong; Zhang, Xin-Qi; Huo, Ying-Yi; Xu, Xue-Wei; Wu, Min

    2016-05-15

    The members of the phylum Bacteroidetes are recognized as some of the most important specialists for the degradation of polysaccharides. However, in contrast to research on Bacteroidetes in the human gut, research on polysaccharide degradation by marine Bacteroidetes is still rare. The genus Algibacter belongs to the Flavobacteriaceae family of the Bacteroidetes, and most species in this genus are isolated from or near the habitat of algae, indicating a preference for the complex polysaccharides of algae. In this work, a novel brown-seaweed-degrading strain designated HZ22 was isolated from the surface of a brown seaweed (Laminaria japonica). On the basis of its physiological, chemotaxonomic, and genotypic characteristics, it is proposed that strain HZ22 represents a novel species in the genus Algibacter with the proposed name Algibacter alginolytica sp. nov. The genome of strain HZ22, the type strain of this species, harbors 3,371 coding sequences (CDSs) and 255 carbohydrate-active enzymes (CAZymes), including 104 glycoside hydrolases (GHs) and 18 polysaccharide lyases (PLs); this appears to be the highest proportion of CAZymes (∼7.5%) among the reported strains in the class Flavobacteria Seventeen polysaccharide utilization loci (PUL) are predicted to be specific for marine polysaccharides, especially algal polysaccharides from red, green, and brown seaweeds. In particular, PUL N is predicted to be specific for alginate. Taking these findings together with the results of assays of crude alginate lyases, we prove that strain HZ22(T) can completely degrade alginate. This work reveals that strain HZ22(T) has good potential for the degradation of algal polysaccharides and that the structure and related mechanism of PUL in strain HZ22(T) are worth further research. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Aquiflexum balticum gen. nov., sp. nov., a novel marine bacterium of the Cytophaga-Flavobacterium-Bacteroides group isolated from surface water of the central Baltic Sea.

    Science.gov (United States)

    Brettar, Ingrid; Christen, Richard; Höfle, Manfred G

    2004-11-01

    A bacterial isolate from the Baltic Sea, BA160(T), was characterized for its physiological and biochemical features, fatty acid profile, G+C content and phylogenetic position based on 16S rRNA gene sequences. The strain was isolated from the surface water of the central Baltic Sea during the decay of a plankton bloom. Phylogenetic analyses of the 16S rRNA gene sequence revealed a clear affiliation with the family 'Flexibacteraceae', and showed the closest phylogenetic relationship with the species Belliella baltica and Cyclobacterium marinum. The G+C content of the DNA was 38.4 mol%. The strain was red-coloured due to carotenoids, Gram-negative, rod-shaped, and catalase- and oxidase-positive. Growth was observed at salinities from 0 to 6 %, with an optimum around 1.5 %. Temperature for growth ranged from 4 to 40 degrees C, with an optimum around 30 degrees C. The fatty acids were dominated by branched-chain fatty acids (>87 %), with a high abundance of iso-C(15 : 0) (23 %) and anteiso-C(15 : 0) (19 %). According to its morphology, physiology, fatty acid composition, G+C content and 16S rRNA gene sequence, strain BA160(T) is considered to represent a new genus of the family 'Flexibacteraceae'. Due to its aquatic origin, the name Aquiflexum balticum gen. nov, sp. nov. is suggested for the type species (type strain, BA160(T)=DSM 16537(T)=LMG 22565(T)=CIP 108445(T)) of the new genus.

  19. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, Matt; Wogulis, Mark

    2017-11-14

    The present invention relates to polypeptide having cellulolytic enhancing activity variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  20. Expression and chromatin structures of cellulolytic enzyme gene regulated by heterochromatin protein 1

    OpenAIRE

    Zhang, Xiujun; Qu, Yinbo; Qin, Yuqi

    2016-01-01

    Background Heterochromatin protein 1 (HP1, homologue HepA in Penicillium oxalicum) binding is associated with a highly compact chromatin state accompanied by gene silencing or repression. HP1 loss leads to the derepression of gene expression. We investigated HepA roles in regulating cellulolytic enzyme gene expression, as an increasingly number of studies have suggested that cellulolytic enzyme gene expression is not only regulated by transcription factors, but is also affected by the chromat...

  1. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant Bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov.

    Science.gov (United States)

    Shelobolina, Evgenya S; Sullivan, Sara A; O'Neill, Kathleen R; Nevin, Kelly P; Lovley, Derek R

    2004-05-01

    A facultatively anaerobic, acid-resistant bacterium, designated strain FRCl, was isolated from a low-pH, nitrate- and U(VI)-contaminated subsurface sediment at site FW-024 at the Natural and Accelerated Bioremediation Research Field Research Center in Oak Ridge, Tenn. Strain FRCl was enriched at pH 4.5 in minimal medium with nitrate as the electron acceptor, hydrogen as the electron donor, and acetate as the carbon source. Clones with 16S ribosomal DNA (rDNA) sequences identical to the sequence of strain FRCl were also detected in a U(VI)-reducing enrichment culture derived from the same sediment. Cells of strain FRCl were gram-negative motile regular rods 2.0 to 3.4 micro m long and 0.7 to 0.9 microm in diameter. Strain FRCl was positive for indole production, by the methyl red test, and for ornithine decarboxylase; it was negative by the Voges-Proskauer test (for acetylmethylcarbinol production), for urea hydrolysis, for arginine dihydrolase, for lysine decarboxylase, for phenylalanine deaminase, for H(2)S production, and for gelatin hydrolysis. Strain FRCl was capable of using O(2), NO(3)(-), S(2)O(3)(2-), fumarate, and malate as terminal electron acceptors and of reducing U(VI) in the cell suspension. Analysis of the 16S rDNA sequence of the isolate indicated that this strain was 96.4% similar to Salmonella bongori and 96.3% similar to Enterobacter cloacae. Physiological and phylogenetic analyses suggested that strain FRCl belongs to the genus Salmonella and represents a new species, Salmonella subterranea sp. nov.

  2. pGIAK1, a heavy metal resistant plasmid from an obligate alkaliphilic and halotolerant bacterium isolated from the Antarctic Concordia station confined environment.

    Directory of Open Access Journals (Sweden)

    Suxia Guo

    Full Text Available pGIAK1 is a 38-kb plasmid originating from the obligate alkaliphilic and halotolerant Bacillaceae strain JMAK1. The strain was originally isolated from the confined environments of the Antarctic Concordia station. Analysis of the pGIAK1 38,362-bp sequence revealed that, in addition to its replication region, this plasmid contains the genetic determinants for cadmium and arsenic resistances, putative methyltransferase, tyrosine recombinase, spore coat protein and potassium transport protein, as well as several hypothetical proteins. Cloning the pGIAK1 cad operon in Bacillus cereus H3081.97 and its ars operon in Bacillus subtilis 1A280 conferred to these hosts cadmium and arsenic resistances, respectively, therefore confirming their bona fide activities. The pGIAK1 replicon region was also shown to be functional in Bacillus thuringiensis, Bacillus subtilis and Staphylococcus aureus, but was only stably maintained in B. subtilis. Finally, using an Escherichia coli - B. thuringiensis shuttle BAC vector, pGIAK1 was shown to display conjugative properties since it was able to transfer the BAC plasmid among B. thuringiensis strains.

  3. Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir.

    Science.gov (United States)

    Huang, Tinglin; Guo, Lin; Zhang, Haihan; Su, Junfeng; Wen, Gang; Zhang, Kai

    2015-11-01

    An aerobic denitrifier, identified as Pseudomonas stutzeri strain ZF31, was isolated from the Zhoucun drinking-water reservoir. Strain ZF31 removed 97% of nitrate nitrogen after 16h, without nitrite accumulation. Sequence amplification indicated the presence of the denitrification genes napA, nirS, norB, and nosZ. Nitrogen balance analysis revealed that approximately 75% of the initial nitrogen was removed as gas products. Response surface methodology (RSM) experiments showed that maximum removal of total nitrogen (TN) occurred at pH 8.23, a C/N ratio of 6.68, temperature of 27.72°C, and with shaking at 54.15rpm. The TN removal rate at low C/N ratio (i.e., 3) and low temperature (i.e., 10°C) was 73.30% and 60.08%, respectively. These results suggest that strain ZF31 has potential applications for the bioremediation of slightly polluted drinking-water reservoirs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8.

    Science.gov (United States)

    Arabacı, Nihan; Arıkan, Burhan

    2018-03-21

    A cold-active alkaline amylase producer Bacillus subtilis N8 was isolated from soil samples. Amylase synthesis optimally occurred at 15°C and pH 10.0 on agar plates containing starch. The molecular weight of the enzyme was found to be 205 kDa by performing SDS-PAGE. While the enzyme exhibited the highest activity at 25°C and pH 8.0, it was highly stable in alkaline media (pH 8.0-12.0) and retained 96% of its original activity at low temperatures (10-40°C) for 24 h. While the amylase activity increased in the presence of β-mercaptoethanol (103%); Ba 2+ , Ca 2+ , Na + , Zn 2+ , Mn 2+ , H 2 O 2 and TritonX-100 slightly inhibited the activity. The enzyme showed resistance to some denaturants: such as SDS, EDTA, and urea (52, 65 and 42%, respectively). N8 α -amylase displayed the maximum remaining activity of 56% with 3% NaCl. The major final products of starch were glucose, maltose, and maltose-derived oligosaccharides. This novel cold-active α -amylase has the potential to be used in the industries of detergent and food, bioremediation process and production of prebiotics.

  5. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain.

    Science.gov (United States)

    Ruiz-García, Cristina; Béjar, Victoria; Martínez-Checa, Fernando; Llamas, Inmaculada; Quesada, Emilia

    2005-01-01

    Two Gram-positive, endospore-forming bacterial strains, CR-502T and CR-14b, which produce surfactant molecules are described. Phenotypic tests and phylogenetic analyses showed these strains to be members of the genus Bacillus and related to the species Bacillus atrophaeus, Bacillus mojavensis, Bacillus subtilis, Bacillus vallismortis and Bacillus amyloliquefaciens, although they differ from these species in a number of phenotypic characteristics. DNA-DNA hybridization confirmed that they show less than 20 % hybridization with the above-mentioned species and therefore represent a novel species of Bacillus. The DNA G+C content is 46.4 mol% in strain CR-502T and 46.1 mol% in strain CR-14b. The main fatty acids in strain CR-502T are 15 : 0 anteiso (32.70 %), 15 : 0 iso (29.86 %) and 16 : 0 (13.41 %). The main quinone in strain CR-502T is MK-7 (96.6 %). In the light of the polyphasic evidence gathered in this study, it is proposed that these strains be classified as a novel species of the genus Bacillus, with the name Bacillus velezensis sp. nov. The type strain (CR-502T=CECT 5686T=LMG 22478T) was isolated from a brackish water sample taken from the river Vélez at Torredelmar in Málaga, southern Spain.

  6. PRODUCTION AND CHARACTERIZATION OF AN ALKALOTHERMOSTABLE, ORGANIC SOLVENT TOLERANT AND SURFACTANT TOLERANT ESTERASE PRODUCED BY A THERMOPHILIC BACTERIUM GEOBACILLUS SP. AGP-04, ISOLATED FROM BAKRESHWAR HOT SPRING, INDIA

    Directory of Open Access Journals (Sweden)

    Amit Ghati

    2013-10-01

    Full Text Available A thermophilic bacteria, Geobacillus sp. AGP-04, isolated from Surya Kund hot spring, Bakreshwar, West Bengal, India was studied in terms of capability of tributyrin hydrolysis and characterization of its thermostable esterase activity using p-nitrophenyl butyrate (PNPB as substrate. The extracellular crude preparation was characterized in terms of pH and temperature optima and stability, organic solvent tolerance capacity and stability, substrate specificity, surfactant tolerance capacity, kinetic parameters and activation/inhibition behavior towards some metal ions and chemicals. Tributyrin agar assay exhibited that Geobacillus sp. AGP-04 secretes an extracellular esterase. The Vmax and Km values of the esterase were found to be 5099 U/Land 103.5µM, respectively in the presence of PNPB as substrate. The optimum temperature and pH, for Geobacillus sp. AGP-04 esterase was 60oC and 8.0, respectively. Although the enzyme activity was not significantly altered by incubating crude extract solution at 20-70oC for 1 hour, the enzyme activity was fully lost at 90oC for same incubation period. The pH stability profile showed that original crude esterase activity is stable at a broad range (pH 5.0-10.0. Moreover, the enzyme was highly organic solvent and surfactant tolerant. The effect of some chemical on crude esterase activity indicated that Geobacillus sp. AGP-04 produce an esterase which contains a serine residue in active site and for its activity -SH groups are essential. Besides, enzyme production was highly induced if fermentation medium contain polysaccharides and oil as carbon source.

  7. Potency of fibrolytic bacteria isolated from Indonesian sheep's colon ...

    African Journals Online (AJOL)

    Three fibrolytic bacteria were isolated from sheep's colon using cellulose (b), xylan (c) and lignin (d) as selective substrates. The potency of fibrolytic was identified by Subbarao methods. These isolates were then used both in pure and mixed culture with cattle cellulolytic bacteria (a) from the previous research. The isolates ...

  8. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    Directory of Open Access Journals (Sweden)

    Eu Jin Chung

    2015-06-01

    Full Text Available Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208 and Burkholderia glumae (KACC 44022, respectively, were also suppressed effectively by drenching a bacterial suspension (10⁷ cfu/ml of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%, Bacillus methylotrophicus KACC 13105T (99.65%, Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%, and Bacillus tequilensis KACC 15944T (99.45%. The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the

  9. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  10. Characterization of Halanaerocella petrolearia gen. nov., sp. nov., a new anaerobic moderately halophilic fermentative bacterium isolated from a deep subsurface hypersaline oil reservoir : New taxa: Firmicutes (Class Clostridia, Order Halanaerobiales, Halobacteroidaceae, Halobacteroides).

    Science.gov (United States)

    Gales, G; Chehider, N; Joulian, C; Battaglia-Brunet, F; Cayol, J-L; Postec, A; Borgomano, J; Neria-Gonzalez, I; Lomans, B P; Ollivier, B; Alazard, D

    2011-09-01

    An anaerobic, halophilic, and fermentative bacterium, strain S200(T), was isolated from a core sample of a deep hypersaline oil reservoir. Cells were rod-shaped, non-motile, and stained Gram-positive. It grew at NaCl concentrations ranging from 6 to 26% (w/v), with optimal growth at 15% (w/v) NaCl, and at temperatures between 25 and 47°C with an optimum at 40-45°C. The optimum pH was 7.3 (range 6.2-8.8; no growth at pH 5.8 and pH 9). The doubling time in optimized growth conditions was 3.5 h. Strain S200(T) used exclusively carbohydrates as carbon and energy sources. The end products of glucose degradation were lactate, formate, ethanol, acetate, H(2), and CO(2). The predominant cellular fatty acids were non-branched fatty acids C(16:1), C(16:0), and C(14:0). The G + C mole% of the DNA was 32.7%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain S200(T) formed a distinct lineage within the family Halobacteroidaceae, order Halanaerobiales, and was most closely related to Halanaerobaculum tunisiense DSM 19997(T) and Halobacteroides halobius DSM 5150(T), with sequence similarity of 92.3 and 91.9%, respectively. On the basis of its physiological and genotypic properties, strain S200(T) is proposed to be assigned to a novel species of a novel genus, for which the name Halanaerocella petrolearia is proposed. The type strain of Halanaerocella petrolearia is strain S200(T) (=DSM 22693(T) = JCM 16358(T)).

  11. Characterization of cellulolytic activity from digestive fluids of Dissosteira carolina (Orthoptera: Acrididae).

    Science.gov (United States)

    Willis, Jonathan D; Klingeman, William E; Oppert, Cris; Oppert, Brenda; Jurat-Fuentes, Juan L

    2010-11-01

    Previous screening of head-derived and gut fluid extracts of Carolina grasshoppers, Dissosteira carolina (L.) revealed relatively high activity against cellulase substrates when compared to other insect groups. In this work we report on the characterization and identification of enzymes involved in cellulolytic activity in digestive fluids of D. carolina. In zymograms using carboxymethylcellulose (CMC) as substrate, we detected four distinct cellulolytic protein bands in D. carolina gut fluids, common to all developmental stages. These cellulolytic enzymes were localized to foregut and midgut regions of the D. carolina digestive tract. Cellulases were purified from D. carolina head and gut fluid extracts by liquid chromatography to obtain N-terminal amino acid sequence tags. Database searches with sequence tags from head fluids indicated high similarity with invertebrate, bacterial and plant beta1,4-endoglucanases, while no homologues were identified for the gut-derived protein. Our data demonstrate the presence of cellulolytic activity in the digestive system of D. carolina and suggest that cellulases of endogenous origin are present in this organism. Considering that this grasshopper species is a pest of grasses, including switchgrass that has been suggested bioethanol feedstock, characterization of insect cellulolytic systems may aid in developing applications for plant biomass biodegradation for biofuel production. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Dietary Corn Bran Fermented by Bacillus subtilis MA139 Decreased Gut Cellulolytic Bacteria and Microbiota Diversity in Finishing Pigs

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2017-12-01

    Full Text Available Solid-state fermentation of feedstuffs by Bacillus subtilis MA139 can reduce insoluble dietary fiber content in vitro and improve growth performance in pigs. This study was conducted to investigate the effects of dietary corn bran (CB fermented by B. subtilis on growth performance and gut microbiota composition in finishing pigs. A total of 60 finishing pigs were allocated to 3 dietary treatments consisting of a control (CON diet, a 10% CB diet, and a 10% fermented CB (FCB diet in a 21 d feeding trial. Growth performance and nutrient digestibility were evaluated. Fecal samples were determined for bacterial community diversity by 16S rRNA gene amplicon sequencing. The dietary CB and FCB did not affect growth performance of finishing pigs. The digestibility of organic matter was decreased in both CB and FCB treatments compared with CON group (P < 0.05. The α-diversity for bacterial community analysis of Chao 1 in FCB treatment was lower than CON treatment (P < 0.05. The Fibrobacteres phylum belongs to cellulolytic bacteria was isolated, and their relative abundance in CB group showed no difference between CON and FCB treatments. The abundance of Lachnospiraceae_NK4A136_group in CB treatment was higher than CON and FCB groups (P < 0.05, whereas the population of norank_f_Prevotellaceae was higher in FCB group compared to CON and CB groups (P < 0.05. In conclusion, dietary FCB decreased the abundance of bacterial communities, particularly the population of bacteria related to cellulolytic degradation.

  13. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  14. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Directory of Open Access Journals (Sweden)

    Chang Jui-Jen

    2012-07-01

    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  15. Technique for preparation of anaerobic microbes: Rodshaped cellulolytic bacteria

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2001-10-01

    Full Text Available Preparation of anaerobic-rod cellulolytic bacteria with coating technique has been conducted. Steps of the processes involved were cultivation, coating, evaporation, and drying. Coating agent used was Gum Arabic, and drying techniquesconducted were freeze drying and sun drying. pH of culture media was firstly optimized to obtain the maximal population ofbacteria. Both coated and uncoated preparates were subjected to drying. Morphological and Gram type identifications showed that uncoated preparate dried with freeze drying is not contaminated (ie. all bacteria are rod shape with Gram-negative type while the one dried with sun drying is not morphologically pure (ie. containing of both rod and coccus shapes with Gram negative and positive. The coated preparates dried by both freeze and sun drying, were not contaminated (ie. all are rods with Gram-negative. The coating and drying processes decreased viability of preparates significantly. However, the decreasing of viability of coated preparate are lower than uncoated preparate (ie. 89 vs. 97%. Total count of bacteria in sun-drying coated preparate are higher (P<0.05 than the uncoated preparate (ie. 3.38 x 1010 vs. 1.97 x 1010 colony/g DM. Activity of sun-drying coated preparate to digest elephant grass and rice straw was higher (P<0.01 than the sun-drying uncoated preparate with the in vitro DMD values were 42.7 vs. 35.5% for elephant grass substrate and 29.3 vs. 24.6% for rice straw substrate. Therefore, it is concluded that coating technique has a positive effects on the preparation of rumen bacteria.

  16. Aerobic and anaerobic cellulose utilization by Paenibacillus sp. CAA11 and enhancement of its cellulolytic ability by expressing a heterologous endoglucanase.

    Science.gov (United States)

    Kim, Eun Sook; Kim, Byeong-Soo; Kim, Ki-Yeon; Woo, Han-Min; Lee, Sun-Mi; Um, Youngsoon

    2018-02-20

    For cost-effective lignocellulosic biofuel/chemical production, consolidated bioprocessing (CBP)-enabling microorganisms utilizing cellulose as well as producing biofuel/chemical are required. A novel strain Paenibacillus sp. CAA11 isolated from sediment was found to be not only as a cellulose degrader under both aerobic and strict anaerobic conditions but also as a producer of cellulosic biofuel/chemicals. Paenibacillus sp. CAA11 secreted cellulolytic enzymes by its own secretion system and produced ethanol as well as short-chain organic acids (formic acid, acetic acid, lactic acid) from cellulose. Cellulolytic activity of the strain was significantly enhanced by expressing a heterologous endoglucanase 168Cel5 from Bacillus subtilis under both aerobic and anaerobic conditions. The strain harboring the 168cel5 gene revealed 2-fold bigger halo zone on Congo-red plate and 1.75-fold more aerobic cellulose utilization in liquid medium compared with the negative control. Notably, under anaerobic conditions, the recombinant strain expressing 168Cel5 consumed 1.83-fold more cellulose (5.10 g/L) and produced 5-fold more ethanol (0.65 g/L) along with 5-fold more total acids (1.6 g/L) compared with the control, resulting 2.73-fold higher yields. This result demonstrates the potential of Paenibacillus sp. CAA11 as a suitable aerobic and anaerobic CBP-enabling microbe with cellulolytic production of ethanol and short-chain organic acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Molecular orbital theory on cellulolytic reactivity between pNP-cellooligosccharides and beta-glucosidase from Cellulomonas uda CS1-1.

    Science.gov (United States)

    Yoon, Min-Ho; Nam, Yun-Kyu; Choi, Woo-Young; Sung, Nack-Do

    2007-11-01

    A beta-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters (Km and Vmax) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified beta-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion (H3O+), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion (SH+) protonated to the S molecule and the HOMO energy of the H2O2 molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via SN1 and SN2 reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that Km has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.

  18. Screening and characterization of indigenous cellulolytic and xylanolytic bacteria

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Pauline Liew Woan Ying; Mat Rasol Awang

    2004-01-01

    Ninety-six bacterial isolates were isolated from the soil samples collected from MADA Rice Experimental Plot, Kedah. Many of the isolates were Gram-positive bacteria suggesting this type of bacteria makes up the majority of the culturable populations residing in the plots investigated. These isolates were studied for their abilities to hydrolyse carboxymethyl cellulose (CMC) and xylan. Ability to hydrolyse CMC was observed in 61.5% of the isolates. Whilst 62.5% of the isolates exhibiting the ability to hydrolyse xylan. Active isolates were further confirmed by the presence of the respective gene(s) via molecular approaches. These isolates were later screened by restriction fragment length polymorphism (RFLP), and sequencing of representative 16S rDNAs. Majority of identified isolates were members of common soil microbe such as members of the genera Bacillus. (Author)

  19. Sample handling factors affecting the enumeration of lactobacilli and cellulolytic bacteria in equine feces

    Science.gov (United States)

    The objectives were to compare media types and evaluate the effects of fecal storage time and temperature on the enumeration of cellulolytic bacteria and lactobacilli from horses. Fecal samples were collected from horses (n = 3) and transported to the lab (CO2, 37 ºC, 0.5 h). The samples were assign...

  20. Screening and characterization of petroleum-degrading bacterium ...

    African Journals Online (AJOL)

    Petroleum-degrading bacterium JY6 was isolated from petroleum-contaminated soils in DaQing oil field. It was identified as Bacillus cereus based on its morphological, physiological and biochemical characteristics, and analysis of its 16SrRNA gene. Biodegradation function of petroleum and oil degradation rates were ...

  1. Production of cellulase by a novel cellulolytic Bacillus sp

    African Journals Online (AJOL)

    squ

    2016-10-26

    Oct 26, 2016 ... Eight cellulose degrading bacteria were isolated from compost and were identified as Bacillus licheniformis by 16S rRNA sequencing. Among the eight isolates, Bacillus licheniformis B4, B7 and B8 showed the highest cellulase activity. B. licheniformis B4 and B8 showed the maximum cellulase.

  2. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    OpenAIRE

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), pro...

  3. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus.

    Science.gov (United States)

    Shida, Yosuke; Furukawa, Takanori; Ogasawara, Wataru

    2016-09-01

    The filamentous fungus Trichoderma reesei is a potent cellulase producer and the best-studied cellulolytic fungus. A lot of investigations not only on glycoside hydrolases produced by T. reesei, but also on the machinery controlling gene expression of these enzyme have made this fungus a model organism for cellulolytic fungi. We have investigated the T. reesei strain including mutants developed in Japan in detail to understand the molecular mechanisms that control the cellulase gene expression, the biochemical and morphological aspects that could favor this phenotype, and have attempted to generate novel strains that may be appropriate for industrial use. Subsequently, we developed recombinant strains by combination of these insights and the heterologous-efficient saccharifing enzymes. Resulting enzyme preparations were highly effective for saccharification of various biomass. In this review, we present some of the salient findings from the recent biochemical, morphological, and molecular analyses of this remarkable cellulase hyper-producing fungus.

  4. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jesse; Gieler, Brandon; Heisler, Devon; Palisoc, Maryknoll; Williams, Amanda; Dohnalkova, Alice; Ming, Hong; Yu, Tian T.; Dodsworth, Jeremy A.; Li, Wen J.; Hedlund, Brian P.

    2013-08-15

    Several closely-related, thermophilic, and cellulolytic bacterial strains, designated JKG1T, JKG2, JKG3, JKG4, and JKG5, were isolated from a cellulolytic enrichment (corn stover) incubated in the water column of Great Boiling Spring, NV. Strain JKG1T had cells of a diameter of 0.7 - 0.9 μm and length of ~2.0 μm that formed non-branched multicellular filaments reaching >300 μm. Spores were not formed and dense liquid cultures were red. The temperature range for growth was 45-65 °C, with an optimum of 55 °C. The pH range for growth was 5.6-9.0, with an optimum of 7.5. JKG1T grew as an aerobic heterotroph, utilizing glucose, sucrose, xylose, arabinose, cellobiose, carboxymethylcellulose, filter paper, microcrystalline cellulose, xylan, starch, casamino acids, tryptone, peptone, yeast extract, acetate, citrate, lactate, pyruvate, and glycerol as sole carbon sources, and was not observed to photosynthesize. The cells stained Gram-negative. Phylogenetic analysis using 16S rRNA gene sequences placed the new isolates in the class Chloroflexia, but distant from other cultivated members, with the highest sequence identity of 82.5% to Roseiflexus castenholzii. The major quinone was menaquinone-9; no ubiquinones were detected. The major cellular fatty acids (>5%) were C18:0, anteiso-C17:0, iso-C18:0, and iso-C17:0. C16:0, iso-C16:0, and C17:0. The peptidoglycan amino acids were alanine, ornithine, glutamic acid, serine, and asparagine. Whole-cell sugars included mannose, rhamnose, glucose, galactose, ribose, arabinose, and xylose. Morphological, phylogenetic, and chemotaxonomic results suggest that JKG1T is representative of a new lineage within the class Chloroflexia, which we propose to designate Kallotenue papyrolyticum gen. nov., sp. nov., Kallotenuaceae fam. nov., Kallotenuales ord. nov.

  5. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  6. Cellulolytic potential under environmental changes in microbial communities from grassland litter

    Directory of Open Access Journals (Sweden)

    Renaud eBerlemont

    2014-11-01

    Full Text Available In many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of two years to place environmental change responses into the context of natural variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and constituted ~18.2% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.

  7. Phenotypic, Genotypic, and Antimicrobial Characteristics of Streptococcus halichoeri Isolates from Humans, Proposal To Rename Streptococcus halichoeri as Streptococcus halichoeri subsp. halichoeri, and Description of Streptococcus halichoeri subsp. hominis subsp. nov., a Bacterium Associated with Human Clinical Infections.

    Science.gov (United States)

    Shewmaker, P L; Whitney, A M; Humrighouse, B W

    2016-03-01

    Phenotypic, genotypic, and antimicrobial characteristics of six phenotypically distinct human clinical isolates that most closely resembled the type strain of Streptococcus halichoeri isolated from a seal are presented. Sequencing of the 16S rRNA, rpoB, sodA, and recN genes; comparative whole-genome analysis; conventional biochemical and Rapid ID 32 Strep identification methods; and antimicrobial susceptibility testing were performed on the human isolates, the type strain of S. halichoeri, and type strains of closely related species. The six human clinical isolates were biochemically indistinguishable from each other and showed 100% 16S rRNA, rpoB, sodA, and recN gene sequence similarity. Comparative 16S rRNA gene sequencing analysis revealed 98.6% similarity to S. halichoeri CCUG 48324(T), 97.9% similarity to S. canis ATCC 43496(T), and 97.8% similarity to S. ictaluri ATCC BAA-1300(T). A 3,530-bp fragment of the rpoB gene was 98.8% similar to the S. halichoeri type strain, 84.6% to the S. canis type strain, and 83.8% to the S. ictaluri type strain. The S. halichoeri type strain and the human clinical isolates were susceptible to the antimicrobials tested based on CLSI guidelines for Streptococcus species viridans group with the exception of tetracycline and erythromycin. The human isolates were phenotypically distinct from the type strain isolated from a seal; comparative whole-genome sequence analysis confirmed that the human isolates were S. halichoeri. On the basis of these results, a novel subspecies, Streptococcus halichoeri subsp. hominis, is proposed for the human isolates and Streptococcus halichoeri subsp. halichoeri is proposed for the gray seal isolates. The type strain of the novel subspecies is SS1844(T) = CCUG 67100(T) = LMG 28801(T). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Characterization of dominant and cellulolytic bacterial communities along the gut of silver carp Hypophthalmichthys molitrix during cyanobacterial blooms

    Science.gov (United States)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2017-05-01

    Silver carp is one of the most important planktivorous fish in Chinese aquaculture and plays a significant role controlling cyanobacterial blooms. A balanced gut microbiota is crucial for growth and health of the host because of its important roles in immune defense, digestion of complex carbohydrates, and production of enterocytes. In our study, the dominant bacterial and cellulolytic bacterial ( Clostridium I, Clostridium III, Clostridium XIVab, and Fibrobacter) communities in the contents and mucus of the silver carp gut (foregut, midgut, and hindgut) were analyzed by denaturing gradient gel electrophoresis and quantitative polymerase chain reaction (qPCR) analyses. The results revealed that the dominant and cellulolytic bacterial communities were significantly different among gut regions as well as in contents and mucus. Bacterial diversity and richness in contents and mucus increased along the gut and were higher in contents than those in local mucus. A sequence analysis of gut samples exhibited the conservative phylotypes of Proteobacteria, Actinobacteria, and Firmicutes. The gut of silver carp harbored an abundance of cellulolytic bacteria, particularly Clostridium XIV ab. The foregut segment had the highest proportions of the four cellulolytic bacteria, followed by the midgut and hindgut. However, the proportions of cellulolytic species in the silver carp gut was much lower than those in the terrestrial vertebrate gastrointestinal tract. We conclude that gut bacteria could help silver carp obtain energy from cyanobacteria, which may be why silver carp can maintain high growth rates during cyanobacterial blooms.

  9. Draft Genome Sequence of Blood Disease Bacterium A2 HR-MARDI, a Pathogen Causing Banana Bacterial Wilt.

    Science.gov (United States)

    Badrun, Rafidah; Abu Bakar, Norliza; Laboh, Rozeita; Redzuan, Rohaiza; Bala Jaganath, Indu

    2017-06-01

    Blood disease bacterium A2 HR-MARDI was isolated from banana plants infected with banana blood disease and which were planted in Kuala Kangsar, Malaysia. Here, we report a draft genome sequence of blood disease bacterium A2 HR-MARDI, which could provide important information on the virulence mechanism of this pathogen. Copyright © 2017 Badrun et al.

  10. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  11. Genome Sequence of the Milbemycin-Producing Bacterium Streptomyces bingchenggensis▿

    OpenAIRE

    Wang, Xiang-Jing; Yan, Yi-Jun; Zhang, Bo; An, Jing; Wang, Ji-Jia; Tian, Jun; Jiang, Ling; Chen, Yi-Hua; Huang, Sheng-Xiong; Yin, Min; Zhang, Ji; Gao, Ai-Li; Liu, Chong-Xi; Zhu, Zhao-Xiang; Xiang, Wen-Sheng

    2010-01-01

    Streptomyces bingchenggensis is a soil-dwelling bacterium producing the commercially important anthelmintic macrolide milbemycins. Besides milbemycins, the insecticidal polyether antibiotic nanchangmycin and some other antibiotics have also been isolated from this strain. Here we report the complete genome sequence of S. bingchenggensis. The availability of the genome sequence of S. bingchenggensis should enable us to understand the biosynthesis of these structurally intricate antibiotics bet...

  12. Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile.

    Science.gov (United States)

    Zambare, Vasudeo P; Bhalla, Aditya; Muthukumarappan, Kasiviswanath; Sani, Rajesh K; Christopher, Lew P

    2011-09-01

    A recently discovered thermophilic isolate, Geobacillus sp. R7, was shown to produce a thermostable cellulase with a high hydrolytic potential when grown on extrusion-pretreated agricultural residues such corn stover and prairie cord grass. At 70°C and 15-20% solids, the thermostable cellulase was able to partially liquefy solid biomass only after 36 h of hydrolysis time. The hydrolytic capabilities of Geobacillus sp. R7 cellulase were comparable to those of a commercial cellulase. Fermentation of the enzymatic hydrolyzates with Saccharomyces cerevisiae ATCC 24860 produced ethanol yields of 0.45-0.50 g ethanol/g glucose with more than 99% glucose utilization. It was further demonstrated that Geobacillus sp. R7 can ferment the lignocellulosic substrates to ethanol in a single step that could facilitate the development of a consolidated bioprocessing as an alternative approach for bioethanol production with outstanding potential for cost reductions.

  13. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...... milk products, is born with two complete non-replicating chromosomes. L. lactis therefore remain diploid throughout its entire life cycle....

  14. Determination of the chemical structure of the capsular polysaccharide of strain B33, a fast-growing soya bean-nodulating bacterium isolated from an arid region of China.

    Science.gov (United States)

    Rodríguez-Carvajal, M A; Tejero-Mateo, P; Espartero, J L; Ruiz-Sainz, J E; Buendía-Clavería, A M; Ollero, F J; Yang, S S; Gil-Serrano, A M

    2001-01-01

    We have determined the structure of a polysaccharide from strain B33, a fast-growing bacterium that forms nitrogen-fixing nodules with Asiatic and American soya bean cultivars. On the basis of monosaccharide analysis, methylation analysis, one-dimensional 1H- and 13C-NMR and two-dimensional NMR experiments, the structure was shown to consist of a polymer having the repeating unit -->6)-4-O-methyl-alpha-D-Glcp-(1-->4)-3-O-methyl-beta-D-GlcpA-(1--> (where GlcpA is glucopyranuronic acid and Glcp is glucopyranose). Strain B33 produces a K-antigen polysaccharide repeating unit that does not have the structural motif sugar-Kdx [where Kdx is 3-deoxy-D-manno-2-octulosonic acid (Kdo) or a Kdo-related acid] proposed for different Sinorhizobium fredii strains, all of them being effective with Asiatic soya bean cultivars but unable to form nitrogen-fixing nodules with American soya bean cultivars. Instead, it resembles the K-antigen of S. fredii strain HH303 (rhamnose, galacturonic acid)n, which is also effective with both groups of soya bean cultivars. Only the capsular polysaccharide from strains B33 and HH303 have monosaccharide components that are also present in the surface polysaccharide of Bradyrhizobium elkanii strains, which consists of a 4-O-methyl-D-glucurono-L-rhamnan. PMID:11439101

  15. Whole-Genome Sequence Analysis of Bombella intestini LMG 28161T, a Novel Acetic Acid Bacterium Isolated from the Crop of a Red-Tailed Bumble Bee, Bombus lapidarius.

    Directory of Open Access Journals (Sweden)

    Leilei Li

    Full Text Available The whole-genome sequence of Bombella intestini LMG 28161T, an endosymbiotic acetic acid bacterium (AAB occurring in bumble bees, was determined to investigate the molecular mechanisms underlying its metabolic capabilities. The draft genome sequence of B. intestini LMG 28161T was 2.02 Mb. Metabolic carbohydrate pathways were in agreement with the metabolite analyses of fermentation experiments and revealed its oxidative capacity towards sucrose, D-glucose, D-fructose and D-mannitol, but not ethanol and glycerol. The results of the fermentation experiments also demonstrated that the lack of effective aeration in small-scale carbohydrate consumption experiments may be responsible for the lack of reproducibility of such results in taxonomic studies of AAB. Finally, compared to the genome sequences of its nearest phylogenetic neighbor and of three other insect associated AAB strains, the B. intestini LMG 28161T genome lost 69 orthologs and included 89 unique genes. Although many of the latter were hypothetical they also included several type IV secretion system proteins, amino acid transporter/permeases and membrane proteins which might play a role in the interaction with the bumble bee host.

  16. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  17. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness....... From the preliminary results obtained, it is proposed that the cellulolytic activity can be used as an enzymatic approach to study the microbial turnover of organic matter in soils and as indicator of seedling blight of barley caused by F. culmorum. (C) 2002 Elsevier Science B.V. All rights reserved....

  18. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  19. Intestinimonas butyriciproducens gen. nov., sp. nov., a novel butyrate-producing bacterium from the mouse intestine

    NARCIS (Netherlands)

    Kläring, K.; Hanske, L.; Bui, T.P.N.; Charrier, C.; Blaut, M.; Haller, D.; Plugge, C.M.; Clavel, T.

    2013-01-01

    Whilst creating a bacterial collection of strains from the mouse intestine, we isolated a Gram-negative, spore-forming, non-motile and strictly anaerobic rod-shaped bacterium from the caecal content of a TNFdeltaARE mouse. The isolate, referred to as strain SRB-521-5-IT, was originally cultured on a

  20. Isolation of Paenibacillus sp. and Variovorax sp. strains from decaying woods and characterization of their potential for cellulose deconstruction.

    Science.gov (United States)

    Ghio, Silvina; Lorenzo, Gonzalo Sabarís Di; Lia, Verónica; Talia, Paola; Cataldi, Angel; Grasso, Daniel; Campos, Eleonora

    2012-01-01

    Prospection of cellulose-degrading bacteria in natural environments allows the identification of novel cellulases and hemicellulases that could be useful in second-generation bioethanol production. In this work, cellulolytic bacteria were isolated from decaying native forest soils by enrichment on cellulose as sole carbon source. There was a predominance of Gram positive isolates that belonged to the phyla Proteobacteria and Firmicutes. Many primary isolates with cellulolytic activity were not pure cultures. From these consortia, isolation of pure constituents was attempted in order to test the hypothesis whether microbial consortia are needed for full degradation of complex substrates. Two isolates, CB1-2-A-5 and VG-4-A-2, were obtained as the pure constituents of CB1-2 and VG-4 consortia, respectively. Based on 16S RNA sequence, they could be classified as Variovorax paradoxus and Paenibacillus alvei. Noteworthy, only VG-4 consortium showed measurable xylan degrading capacity and signs of filter paper degradation. However, no xylan or filter paper degrading capacities were observed for the pure cultures isolated from it, suggesting that other members of this consortium were necessary for these hydrolyzing activities. Our results indicated that Paenibacillus sp. and Variovorax sp. as well as VG-4 consortium, might be a useful source of hydrolytic enzymes. Moreover, although Variovorax sp. had been previously identified in metagenomic studies of cellulolytic communities, this is the first report on the isolation and characterization of this microorganism as a cellulolytic genus.

  1. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  2. Endogenous cellulolytic enzyme systems in the longhorn beetle Mesosa myops (Insecta: Coleoptera) studied by transcriptomic analysis.

    Science.gov (United States)

    Liu, Jie; Song, Keqing; Teng, Huajing; Zhang, Bin; Li, Wenzhu; Xue, Huaijun; Yang, Xingke

    2015-09-01

    The Cerambycidae (longhorn beetle) is a large family of Coleoptera with xylophagous feeding habits. Cellulose digestion plays an important role in these wood-feeding insects. In this study, transcriptomic technology was used to obtain one glycoside hydrolase family 45 (GH45) cellulase and seven GH5 cellulases from Mesosa myops, a typical longhorn beetle. Analyses of expression dynamics and evolutionary relationships provided a complete description of the cellulolytic system. The expression dynamics related to individual development indicated that endogenous GH45 and GH5 cellulases dominate cellulose digestion in M. myops. Evolutionary analyses suggested that GH45 cellulase gene is a general gene in the Coleoptera Suborder Polyphaga. Evolutionary analyses also indicated that the GH5 cellulase group in Lamiinae longhorn beetles is closely associated with wood feeding. This study demonstrated that there is a complex endogenous cellulolytic system in M. myops that is dominated by cellulases belonging to two glycoside hydrolase families. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  3. Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b.

    Science.gov (United States)

    Su, Pin; Feng, Tuizi; Zhou, Xuguo; Zhang, Songbai; Zhang, Yu; Cheng, Ju'e; Luo, Yuanhua; Peng, Jing; Zhang, Zhuo; Lu, Xiangyang; Zhang, Deyong; Liu, Yong

    2015-11-04

    Rhodopseudomonas palustris strain JSC-3b isolated from a water canal adjacent to a vegetable field produces a protein that was purified by bioactivity-guided fractionation based on ammonium sulfate precipitation, ion-exchange absorption and size exclusion. The protein was further identified as an endoribonuclease L-PSP (Liver-Perchloric acid-soluble protein) by shotgun mass spectrometry analysis and gene identification, and it is member of YER057c/YjgF/UK114 protein family. Herein, this protein is designated Rhp-PSP. Rhp-PSP exhibited significant inhibitory activities against tobacco mosaic virus (TMV) in vivo and in vitro. To our knowledge, this represents the first report on the antiviral activity of a protein of the YER057c/YjgF/UK114 family and also the first antiviral protein isolated from R. palustris. Our research provides insight into the potential of photosynthetic bacterial resources in biological control of plant virus diseases and sustainable agriculture.

  4. Screening Cellulose Activity of Yeast Isolated from Soil, Sediment and Water River from Taman Nasional Gunung Halimun, West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Mangunwardoyo, W.

    2011-01-01

    Full Text Available A total of 245 yeast isolates from Gunung Halimun National Park (GHNP were screened for cellulolytic activity using 0.2% cellulose-azure. The results showed that 16 isolates have cellulolytic activity using cellulose-azure assay. These isolates were further screened for carboxymethyl cellulase (CMCase, avicelase and cellobiase using specific substrates (carboxymethyl cellulosa, avicel and cellobiose with Teather and Wood method. The results showed that 7 isolates have CMCase; 6 isolates have cellobiase; 2 isolates have CMCase and cellobiase; and 1 isolate has CMCase and avicelase and cellobiase activities. Isolate S 4121 has the highest CMCase activity and identified as Trichosporon sporotrichoides (van Oorschot van Oorschot and de Hoog UICC Y-286.

  5. Effect of storage time and temperature of equine feces on the subsequent enumeration of lactobacilli and cellulolytic bacteria

    Science.gov (United States)

    Cellulolytic bacteria and lactobacilli are beneficial microbes in the equine hindgut. There are several existing methodologies for the enumeration of these bacteria, which vary based on selective and differential media and sample handling procedures including storage time and temperature. The object...

  6. A new insight to adsorption and accumulation of high lead concentration by exopolymer and whole cells of lead-resistant bacterium Acinetobacter junii L. Pb1 isolated from coal mine dump.

    Science.gov (United States)

    Kushwaha, Anamika; Rani, Radha; Kumar, Sanjay; Thomas, Tarence; David, Arun Alfred; Ahmed, Meraz

    2017-04-01

    A lead-resistant bacterial strain was isolated from coal mine dump and identified as Acinetobacter junii Pb1 on basis of 16S rRNA (ribosomal ribonucleic acid) gene sequencing. The minimum inhibitory concentration of lead for the strain was 16,000 mg l -1 and it showed antibiotic and multi metal resistance. In aqueous culture, at an initial lead (Pb(II)) concentration of 100 and 500 mg l -1 , lead adsorption and accumulation by the isolate was 100 and 60%, at pH 7 at 30 °C after 48 and 120 h, respectively. The two fractions of exopolysaccharide (EPS), loosely associated EPS (laEPS) and bound EPS (bEPS), and whole cells (devoid of EPS) showed high binding affinity towards Pb(II). The binding affinity of laEPS towards Pb(II) (1071 mg Pb g -1 ) was three times higher than that of bEPS (321.5 mg Pb g -1 ) and 6.5 times higher than that of whole cells (165 mg Pb g -1 ). The binding affinity of EPS and whole cells with Pb(II), reported in the current study, is considerably higher as compared to that reported in the literature, till date. SEM analysis, showed an increase in thickness of cells on exposure to Pb(II) and TEM analysis, revealed its accumulation (interior of cell) and its adsorption (with the external cell surface). The isolate was also found to be positive for indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production which helps in promoting plant growth. Thus, this study provides a new understanding towards Pb(II) uptake by A. junii Pb1, highlighting its potential on the restoration of Pb(II) contaminated repositories.

  7. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung Chung [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Huang, Chi-Yu.; Fu, Tzu-Ning [Department of Environmental Engineering and Science, Tunghai University, Taichung 407 (China); Chen, Chun-Yen; Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-08-15

    Hydrogen gas was produced via dark fermentation from natural cellulosic materials and {alpha}-cellulose via a two-step process, in which the cellulosic substrates were first hydrolyzed by an isolated cellulolytic bacterium Clostridium strain TCW1, and the resulting hydrolysates were then used as substrate for fermentative H{sub 2} production. The TCW1 strain was able to hydrolyze all the cellulosic materials examined to produce reducing sugars (RS), attaining the best reducing sugar production yield of 0.65 g reducing sugar/g substrate from hydrolysis of {alpha}-cellulose. The hydrolysates of those cellulosic materials were successfully converted to H{sub 2} via dark fermentation using seven H{sub 2}-producing bacterial isolates. The bioH{sub 2} production performance was highly dependent on the type of cellulosic feedstock used, the initial reducing sugar concentration (C{sub RS,o}) (ranging from 0.7 to 4.5 mg/l), as well as the composition of sugar and soluble metabolites present in the cellulosic hydrolysates. It was found that Clostridium butyricum CGS5 displayed the highest H{sub 2}-producing efficiency with a cumulative H{sub 2} production of 270 ml/l from {alpha}-cellulose hydrolysate (C{sub RS,o} = 4.52 mg/l) and a H{sub 2} yield of 7.40 mmol/g RS (or 6.66 mmol/g substrate) from napier grass hydrolysate (C{sub RS,o} = 1.22 g/l). (author)

  8. Agathobaculum butyriciproducens gen. nov.  sp. nov., a strict anaerobic, butyrate-producing gut bacterium isolated from human faeces and reclassification of Eubacterium desmolans as Agathobaculum desmolans comb. nov.

    Science.gov (United States)

    Ahn, Sharon; Jin, Tae-Eun; Chang, Dong-Ho; Rhee, Moon-Soo; Kim, Hyun Ju; Lee, Sang Jun; Park, Doo-Sang; Kim, Byoung-Chan

    2016-09-01

    A novel bacterial strain, SR79T, was isolated from a Korean faecal sample and characterized using a polyphasic approach. SR79T was found to be a strictly anaerobic, Gram-stain-positive, non-spore-forming, non-motile, catalase- and oxidase-negative short rod with no flagella. SR79T grew optimally at 37 °C in the presence of 0.5 % (w/v) NaCl at pH 7. The NaCl range for growth was 0-1 % (w/v). The isolate produced butyric acid (>18  mM) as a major end product. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the most closely related type strains were Eubacteriumdesmolans ATCC 43058T and Butyricicoccus pullicaecorum 25-3T (96.4 and 96.0 % similarity, respectively). The DNA G+C content was determined to be 52.9 mol%. The major cellular fatty acids (>10 %) were C16 : 0, C18 : 1cis-9, C19 : 1 cyc 9,10 and C14 : 0. Meso-diaminopimelic acid was present in the cell wall peptidoglycan and the cell wall hydrolysates contained ribose, glucose and galactose. The 16S rRNA gene sequence similarity, phylogenetic analysis, chemotaxonomic and phenotypic characteristics allowed differentiation of SR79T, which represents a novel species of a new genus within the family Ruminococcaceae, for which the name Agathobaculum butyriciproducens gen. nov. sp. nov. is proposed. The type strain is SR79T (=KCTC 15532T=DSM 100391T). Based on the results of this study, it is also proposed to transfer Eubacteriumdesmolans to this new genus, as Agathobaculum desmolans comb. nov. The type strain of Agathobaculum desmolans is ATCC 43058T (=CCUG 27818T).

  9. Quantifying Synergy, Thermostability, and Targeting of Cellulolytic Enzymes and Cellulosomes with Polymerization-Based Amplification.

    Science.gov (United States)

    Malinowska, Klara H; Rind, Thomas; Verdorfer, Tobias; Gaub, Hermann E; Nash, Michael A

    2015-07-21

    We present a polymerization-based assay for determining the potency of cellulolytic enzyme formulations on pretreated biomass substrates. Our system relies on monitoring the autofluorescence of cellulose and measuring the attenuation of this fluorescent signal as a hydrogel consisting of poly(ethylene glycol) (PEG) polymerizes on top of the cellulose in response to glucose produced during saccharification. The one-pot method we present is label-free, rapid, highly sensitive, and requires only a single pipetting step. Using model enzyme formulations derived from Trichoderma reesei, Trichoderma longibrachiatum, Talaromyces emersonii and recombinant bacterial minicellulosomes from Clostridium thermocellum, we demonstrate the ability to differentiate enzyme performance based on differences in thermostability, cellulose-binding domain targeting, and endo/exoglucanase synergy. On the basis of its ease of use, we expect this cellulase assay platform to be applicable to enzyme screening for improved bioconversion of lignocellulosic biomass.

  10. Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass.

    Science.gov (United States)

    Gasparotto, Juliana Machado; Werle, Leandro Bernardi; Foletto, Edson L; Kuhn, Raquel C; Jahn, Sergio Luiz; Mazutti, Marcio A

    2015-01-01

    In this study, the optimal conditions for production of cellulolytic enzymes by Trichoderma reesei NRRL-6156 using the solid-state fermentation were assessed in conical flasks and validated in a packed-bed bioreactor. Afterwards, the crude enzymatic extract obtained in the optimized condition was used for hydrolysis of sugarcane bagasse in water and ultrasound baths. The enzyme activities determined in this work were filter paper, exocellulase, endocellulase, and xylanase. The optimized condition for production was moisture content 68.6 wt% and soybean bran concentration 0.9 wt%. The crude enzymatic extract was applied for hydrolysis of sugarcane bagasse, being obtained 224.0 and 229 g kg(-1) at temperature of 43.4 °C and concentration of enzymatic extract of 18.6 % in water and ultrasound baths, respectively. The yields obtained are comparable to commercial enzymes.

  11. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw.

    Science.gov (United States)

    Ozbayram, E Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan

    2017-08-01

    The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL N CH 4 g VS -1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes.

    Science.gov (United States)

    Zhou, Xuguo; Smith, Joseph A; Oi, Faith M; Koehler, Philip G; Bennett, Gary W; Scharf, Michael E

    2007-06-15

    Termites have developed cellulose digestion capabilities that allow them to obtain energy and nutrition from nutritionally poor food sources, such as lignocellulosic plant material and residues derived from it (e.g., wood and humus). Lower termites, which are equipped with both endogenous (i.e., of termite origin) and symbiotic cellulases, feed primarily on wood and wood-related materials. This study investigated cellulase gene diversity, structure, and activity in the lower termite, Reticulitermes flavipes (Kollar). We initially used a metagenomics approach to identify four genes encoding one endogenous and three symbiotic cellulases, which we refer to as Cell-1, -2, -3 and -4. These four genes encode proteins that share significant sequence similarity with known endoglucanases, exoglucanases and xylanases. Phylogenetic analyses further supported these inferred relationships by showing that each of the four cellulase proteins clusters tightly with respective termite, protozoan or fungal cellulases. Gene structure studies revealed that Cell-1, -3 and -4 are intron-free, while Cell-2 contains the first intron sequence to be identified from a termite symbiont cellulase. Quantitative real-time PCR (qRT-PCR) revealed that the endogenous Cell-1 gene is expressed exclusively in the salivary gland/foregut, whereas symbiotic Cell-2, -3, and -4 are highly expressed in the hindgut (where cellulolytic protists are harbored). Cellulase activity assays mapped the distribution pattern of endoglucanase, exoglucanase and xylanase activity throughout the R. flavipes digestive tract. Cellulase gene expression correlated well with the specific types of cellulolytic activities observed in each gut region (foregut+salivary gland, midgut and hindgut). These results suggest the presence of a single unified cellulose digestion system, whereby endogenous and symbiotic cellulases work sequentially and collaboratively across the entire digestive tract of R. flavipes.

  13. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium.

    Science.gov (United States)

    Iakiviak, Michael; Devendran, Saravanan; Skorupski, Anna; Moon, Young Hwan; Mackie, Roderick I; Cann, Isaac

    2016-07-21

    Ruminococcus albus 8 is a specialist plant cell wall degrading ruminal bacterium capable of utilizing hemicellulose and cellulose. Cellulose degradation requires a suite of enzymes including endoglucanases, exoglucanases, and β-glucosidases. The enzymes employed by R. albus 8 in degrading cellulose are yet to be completely elucidated. Through bioinformatic analysis of a draft genome sequence of R. albus 8, seventeen putatively cellulolytic genes were identified. The genes were heterologously expressed in E. coli, and purified to near homogeneity. On biochemical analysis with cellulosic substrates, seven of the gene products (Ra0185, Ra0259, Ra0325, Ra0903, Ra1831, Ra2461, and Ra2535) were identified as endoglucanases, releasing predominantly cellobiose and cellotriose. Each of the R. albus 8 endoglucanases, except for Ra0259 and Ra0325, bound to the model crystalline cellulose Avicel, confirming functional carbohydrate binding modules (CBMs). The polypeptides for Ra1831 and Ra2535 were found to contain distantly related homologs of CBM65. Mutational analysis of residues within the CBM65 of Ra1831 identified key residues required for binding. Phylogenetic analysis of the endoglucanases revealed three distinct subfamilies of glycoside hydrolase family 5 (GH5). Our results demonstrate that this fibrolytic bacterium uses diverse GH5 catalytic domains appended with different CBMs, including novel forms of CBM65, to degrade cellulose.

  14. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis.

    Science.gov (United States)

    Hadad, D; Geresh, S; Sivan, A

    2005-01-01

    To select a polyethylene-degrading micro-organism and to study the factors affecting its biodegrading activity. A thermophilic bacterium Brevibaccillus borstelensis strain 707 (isolated from soil) utilized branched low-density polyethylene as the sole carbon source and degraded it. Incubation of polyethylene with B. borstelensis (30 days, 50 degrees C) reduced its gravimetric and molecular weights by 11 and 30% respectively. Brevibaccillus borstelensis also degraded polyethylene in the presence of mannitol. Biodegradation of u.v. photo-oxidized polyethylene increased with increasing irradiation time. Fourier Transform Infra-Red (FTIR) analysis of photo-oxidized polyethylene revealed a reduction in carbonyl groups after incubation with the bacteria. This study demonstrates that polyethylene--considered to be inert--can be biodegraded if the right microbial strain is isolated. Enrichment culture methods were effective for isolating a thermophilic bacterium capable of utilizing polyethylene as the sole carbon and energy source. Maximal biodegradation was obtained in combination with photo-oxidation, which showed that carbonyl residues formed by photo-oxidation play a role in biodegradation. Brevibaccillus borstelensis also degraded the CH2 backbone of nonirradiated polyethylene. Biodegradation of polyethylene by a single bacterial strain contributes to our understanding of the process and the factors affecting polyethylene biodegradation.

  15. Liver abscess associated with an oral flora bacterium Streptococcus anginosus

    Directory of Open Access Journals (Sweden)

    Hava Yılmaz

    2012-03-01

    Full Text Available Viridans group Streptococcus, a bacterium of the oral flora has a low-virulence and rarely causes liver abscess. A 40-yearoldmale patient was admitted to the hospital complaining of high fever and malaise. A physical examination revealedpoor oral hygiene; there were caries on many teeth, and he had hepatomegaly. A hepatic abscess was identified inhis abdominal tomography. Streptococcus anginosus was isolated from the drainage material, and the bile ducts werenormal in his MRI cholangiography. An immunocompetent case of liver abscess caused by Streptococcus anginosusoriginated most probably from oral flora is presented here. J Microbiol Infect Dis 2012; 2(1:33-35

  16. Effects of gamma-rays on an indigenous Bacillus isolate

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Liew Pauline Woan Ying; Ahmad Zainuri Mohd Dzomir; Siti Khadijah Abu Hadin; Nabilahuda Mohd Tumirin

    2010-01-01

    A preliminary study was carried out with the aim to obtain strong cellulolytic bacteria by ionizing radiation using a 60 Co source. An indigenous cellulolytic Bacillus sp. NMBCC 10023 originally isolated from soil origin was used in the study. The harvested bacterial pellets from overnight growth cultures were exposed to gamma-irradiation with doses ranging from 1 kGy to 40 kGy. The numbers of surviving bacteria on agar plate decreased as the gamma irradiation dose increased. No isolates were recovered after exposure to doses greater than 10 kGy. Based on the cell count using plate count method, the 90 % lethal dose (LD90) of gamma radiation of Bacillus sp. NMBCC 10023 was between 2-4 kGy. (author)

  17. Cloning of novel cellulases from cellulolytic fungi: heterologous expression of a family 5 glycoside hydrolase from Trametes versicolor in Pichia pastoris.

    Science.gov (United States)

    Salinas, Alejandro; Vega, Marcela; Lienqueo, María Elena; Garcia, Alejandro; Carmona, Rene; Salazar, Oriana

    2011-12-10

    Total cDNA isolated from cellulolytic fungi cultured in cellulose was examined for the presence of sequences encoding for endoglucanases. Novel sequences encoding for glycoside hydrolases (GHs) were identified in Fusarium oxysporum, Ganoderma applanatum and Trametes versicolor. The cDNA encoding for partial sequences of GH family 61 cellulases from F. oxysporum and G. applanatum shares 58 and 68% identity with endoglucanases from Glomerella graminicola and Laccaria bicolor, respectively. A new GH family 5 endoglucanase from T. versicolor was also identified. The cDNA encoding for the mature protein was completely sequenced. This enzyme shares 96% identity with Trametes hirsuta endoglucanase and 22% with Trichoderma reesei endoglucanase II (EGII). The enzyme, named TvEG, has N-terminal family 1 carbohydrate binding module (CBM1). The full length cDNA was cloned into the pPICZαB vector and expressed as an active, extracellular enzyme in the methylotrophic yeast Pichia pastoris. Preliminary studies suggest that T. versicolor could be useful for lignocellulose degradation. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaeophyceae).

    Science.gov (United States)

    Wang, You; Tang, Xue-Xi; Yang, Zhen; Yu, Zhi-Ming

    2006-01-01

    We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1) The blades of L. japonica exhibited symptoms of lesion, bleaching and deterioration when infected by the bacterium, and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L. japonica.

  19. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  20. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna

    2017-03-03

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  1. Draft Genome Sequence of the Moderately Halophilic Bacterium Marinobacter lipolyticus Strain SM19

    Science.gov (United States)

    Papke, R. Thane; de la Haba, Rafael R.; Infante-Domínguez, Carmen; Pérez, Dolores; Sánchez-Porro, Cristina; Lapierre, Pascal

    2013-01-01

    Marinobacter lipolyticus strain SM19, isolated from saline soil in Spain, is a moderately halophilic bacterium belonging to the class Gammaproteobacteria. Here, we report the draft genome sequence of this strain, which consists of a 4.0-Mb chromosome and which is able to produce the halophilic enzyme lipase LipBL. PMID:23814106

  2. Draft Genome Sequence of the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Strain CP76.

    Science.gov (United States)

    de la Haba, Rafael R; Sánchez-Porro, Cristina; León, María José; Papke, R Thane; Ventosa, Antonio

    2013-05-23

    Pseudoalteromonas ruthenica strain CP76, isolated from a saltern in Spain, is a moderately halophilic bacterium belonging to the Gammaproteobacteria. Here we report the draft genome sequence, which consists of a 4.0-Mb chromosome, of this strain, which is able to produce the extracellular enzyme haloprotease CPI.

  3. Draft Genome Sequence of Advenella kashmirensis Strain W13003, a Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

    Science.gov (United States)

    Jin, Decai; Zhou, Lisha; Wu, Liang; An, Wei; Zhao, Lin

    2014-01-01

    Advenella kashmirensis strain W13003 is a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated marine sediments. Here, we report the 4.8-Mb draft genome sequence of this strain, which will provide insights into the diversity of A. kashmirensis and the mechanism of PAH degradation in the marine environment. PMID:24482505

  4. The Genome Sequences of Cellulomonas fimi and ?Cellvibrio gilvus? Reveal the Cellulolytic Strategies of Two Facultative Anaerobes, Transfer of ?Cellvibrio gilvus? to the Genus Cellulomonas, and Proposal of Cellulomonas gilvus sp. nov

    OpenAIRE

    Christopherson, Melissa R.; Suen, Garret; Bramhacharya, Shanti; Jewell, Kelsea A.; Aylward, Frank O.; Mead, David; Brumm, Phillip J.

    2013-01-01

    Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484(T). For comparative purposes, we also sequenced the genome of the aerobic cellulolytic "Cellvibrio gilvus" ATCC 13127(T). An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that "Cellvibrio gilvus" belongs to the ...

  5. Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was β-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in th...

  6. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa)

    OpenAIRE

    Campos,FF.; Garcia,JE.; Luna-Finkler,CL.; Davolos,CC.; Lemos,MVF.; Pérez,CD.

    2015-01-01

    Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas.

  7. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa).

    Science.gov (United States)

    Campos, F F; Garcia, J E; Luna-Finkler, C L; Davolos, C C; Lemos, M V F; Pérez, C D

    2015-05-01

    Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas.

  8. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa

    Directory of Open Access Journals (Sweden)

    FF. Campos

    Full Text Available Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas.

  9. Prospection and Evaluation of (Hemi) Cellulolytic Enzymes Using Untreated and Pretreated Biomasses in Two Argentinean Native Termites.

    Science.gov (United States)

    Ben Guerrero, Emiliano; Arneodo, Joel; Bombarda Campanha, Raquel; Abrão de Oliveira, Patrícia; Veneziano Labate, Mônica T; Regiani Cataldi, Thaís; Campos, Eleonora; Cataldi, Angel; Labate, Carlos A; Martins Rodrigues, Clenilson; Talia, Paola

    2015-01-01

    Saccharum officinarum bagasse (common name: sugarcane bagasse) and Pennisetum purpureum (also known as Napier grass) are among the most promising feedstocks for bioethanol production in Argentina and Brazil. In this study, both biomasses were assessed before and after acid pretreatment and following hydrolysis with Nasutitermes aquilinus and Cortaritermes fulviceps termite gut digestome. The chemical composition analysis of the biomasses after diluted acid pretreatment showed that the hemicellulose fraction was partially removed. The (hemi) cellulolytic activities were evaluated in bacterial culture supernatants of termite gut homogenates grown in treated and untreated biomasses. In all cases, we detected significantly higher endoglucanase and xylanase activities using pretreated biomasses compared to untreated biomasses, carboxymethylcellulose and xylan. Several protein bands with (hemi) cellulolytic activity were detected in zymograms and two-dimensional gel electrophoresis. Some proteins of these bands or spots were identified as xylanolytic peptides by mass spectrometry. Finally, the diversity of cultured cellulolytic bacterial endosymbionts associated to both Argentinean native termite species was analyzed. This study describes, for the first time, bacterial endosymbionts and endogenous (hemi) cellulases of two Argentinean native termites as well as their potential application in degradation of lignocellulosic biomass for bioethanol production.

  10. Prospection and Evaluation of (Hemi Cellulolytic Enzymes Using Untreated and Pretreated Biomasses in Two Argentinean Native Termites.

    Directory of Open Access Journals (Sweden)

    Emiliano Ben Guerrero

    Full Text Available Saccharum officinarum bagasse (common name: sugarcane bagasse and Pennisetum purpureum (also known as Napier grass are among the most promising feedstocks for bioethanol production in Argentina and Brazil. In this study, both biomasses were assessed before and after acid pretreatment and following hydrolysis with Nasutitermes aquilinus and Cortaritermes fulviceps termite gut digestome. The chemical composition analysis of the biomasses after diluted acid pretreatment showed that the hemicellulose fraction was partially removed. The (hemi cellulolytic activities were evaluated in bacterial culture supernatants of termite gut homogenates grown in treated and untreated biomasses. In all cases, we detected significantly higher endoglucanase and xylanase activities using pretreated biomasses compared to untreated biomasses, carboxymethylcellulose and xylan. Several protein bands with (hemi cellulolytic activity were detected in zymograms and two-dimensional gel electrophoresis. Some proteins of these bands or spots were identified as xylanolytic peptides by mass spectrometry. Finally, the diversity of cultured cellulolytic bacterial endosymbionts associated to both Argentinean native termite species was analyzed. This study describes, for the first time, bacterial endosymbionts and endogenous (hemi cellulases of two Argentinean native termites as well as their potential application in degradation of lignocellulosic biomass for bioethanol production.

  11. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  12. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    Science.gov (United States)

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  14. Antitrypanosomal Alkaloids from the Marine Bacterium Bacillus pumilus

    Directory of Open Access Journals (Sweden)

    Sergio Martínez-Luis

    2012-09-01

    Full Text Available Fractionation of the ethyl acetate extract of the marine bacterium Bacillus pumilus isolated from the black coral Antipathes sp. led to the isolation of five compounds: cyclo-(L-Leu-L-Pro (1, 3-hydroxyacetylindole (2, N-acetyl-b-oxotryptamine (3, cyclo-(L-Phe-L-Pro (4, and 3-formylindole (5. The structures of compounds 1−5 were established by spectroscopic analyses, including HRESITOF-MS and NMR (1H, 13C, HSQC, HMBC and COSY. Compounds 2, 3 and 5 caused the inhibition on the growth of Trypanosoma cruzi (T. cruzi, with IC50 values of 20.6, 19.4 and 26.9 μM, respectively, with moderate cytotoxicity against Vero cells. Compounds 1−5 were found to be inactive when tested against Plasmodium falciparum and Leishmania donovani, therefore showing selectivity against T. cruzi parasites.

  15. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist

    Science.gov (United States)

    Fibrobacter succinogenes S85 is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of two known species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particu...

  16. Description of a bacterium associated with redmouth disease of rainbow trout (Salmo gairdneri)

    Science.gov (United States)

    Ross, A.J.; Rucker, R.R.; Ewing, W.H.

    1966-01-01

    A description was given of a gram-negative, peritrichously flagellated, fermentative bacterium that was isolated on numerous occasions from kidney tissues of rainbow trout (Salmo gairdneri) afflicted with redmouth disease. Although the bacteria apparently were members of the family Enterobacteriaceae, it was impossible to determine their taxonomic position within the family with certainty. Hence it was recommended that their taxonomic position remain sub judice for the present. As a temporary designation RM bacterium was used. Redmouth disease was transmitted from infected to normal fish through the medium of water.

  17. Isolation and characterization of a new keratinolytic bacterium that ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... Each point represents the mean of three independent experiments. Table 1. The effect of chemical reagents on the keratinase activity of B. licheniformis K-19. Substance group. Compound. Concentration. Relative activity. (%). Control. Detergents. Solvents. Reducing agent. Inhibitors. Triton X-100. SDS.

  18. Antagonistic bioactivity of an endophytic bacterium isolated from ...

    African Journals Online (AJOL)

    one bacterial phytopathogen; it especially strongly inhibited Alternaria alternata, Sclerotinia sclerotiorum, Verticillium dahliae, Botrytis cinerea and Botrytis fabae. Identification of this strain based on morphology, physiological and chemical characteristics and 16S rRNA gene sequence analysis demonstrated that it belonged ...

  19. Biodegradation of 2 - methoxyethanol by a new bacterium isolate ...

    African Journals Online (AJOL)

    Michael Horsfall

    methoxyethanol for the total oxidation metabolism. (Table 2). These findings therefore support the proposed degradative metabolic pathways of 2- methoxyethanol under aerobic conditions by. Pseudomonas sp. Stain VB, which therefore accounts for its conversion to intermediary metabolites. Table 2: Oxygen consumption ...

  20. Identification and phylogenetic analysis of a bacterium isolated from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... habitat, the effect of human urbanization and industriali- ... some approaches of physiology and biochemistry, as well .... Bergey's Manual of Determinative Bacteriology (9th. Edition) (Bergey et al., 1994). For example phenylanine ammonia-lyase test, oxidase, methyl red, gelatin liquidiz- ed and H2S test.

  1. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.

    Science.gov (United States)

    Wang, Mingyu; Li, Zhonghai; Fang, Xu; Wang, Lushan; Qu, Yinbo

    2012-01-01

    Second-generation bioethanol made from lignocellulosic biomass is considered one of the most promising biofuels. However, the enzymatic hydrolysis of the cellulose component to liberate glucose for ethanol fermentation is one of the major barriers for the process to be economically competitive because of the recalcitrance of feedstock. In this chapter, the progress on the understanding of the mechanisms of lignocellulose degradation, as well as the identification and optimization of fungal cellulases, cellulolytic strains, and cellulase production is reviewed. The physiologic functions and enzymatic mechanisms of two groups of enzymes involved in lignocellulose degradation, cellulases and hemicellulases, are discussed, and the synergism of the cellulase components during lignocellulose degradation is addressed. Furthermore, the methods for screening filamentous fungal strains capable of degrading lignocellulose are evaluated and the production of cellulases by these fungal strains is discussed. Aside from traditional mutagenesis for improving the secretion level and enzymatic activities of cellulases from filamentous fungal species, genetic engineering of strains and protein engineering on cellulase molecules are also highlighted.

  2. Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride.

    Science.gov (United States)

    Mutschlechner, Mira; Illmer, Paul; Wagner, Andreas Otto

    2015-09-01

    With regard to renewable sources of energy, bioconversion of lignocellulosic biomass has long been recognized as a desirable endeavor. However, the highly heterogeneous structure of lignocellulose restricts the exploitation of its promising potential in biogas plants. Hence, effective pre-treatment methods are decisive prerequisites to overcome these challenges in order to improve the utilization ratio of (ligno) cellulosic substrates during fermentation. In the present study, the application of Trichoderma viride in an aerobic upstream process prior to anaerobic digestion led up to a threefold increase in the yield of methane and total gas in a lab-scale investigation. Due to its highly efficient cellulolytic activities, T. viride seemed to be responsible for an improved nutrient availability that positively influenced the anaerobic microbiocenosis. Aerobic pre-treatment of organic matter with T. viride is therefore a promising solution to achieve higher methane yields and degradation performances without any additional energy demand, nor undesired by-product inhibition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biosynthesis of cellulolytic enzymes by Aspergillus niger A. n. 33 and its selectants

    Energy Technology Data Exchange (ETDEWEB)

    Czajkowska, D.; Hornecka, D.; Ilnicka-Olejniczak, O.

    1988-01-01

    The aim of the investigations was to obtain - from the parent strain Aspergillus niger A.n. 33 - selectants with an increased ability of cellulolytic enzymes biosynthesis. Own selection methods allowed to receive two selectants A.n. 33/2 and A.n. 33/20 characterized by enhanced activities of saccharifying cellulase (respectively 0.11 and 0.14 FPU/cm/sup 3/), endo-beta-1,4-glucanase (15.4 and 21.8 U/cm/sup 3/) and cellobiase (0.6 and 1.4 IU/cm/sup 3/) as compared with the parent strain (FPA - 0.09 IU, CMC - 8.2 U and CB - 0.1 IU/cm/sup 3/). Moreover, the selectants differed in shape and size of conidial heads, in shape and colour of conidia, as well as in structure and shape of hyphase. Enzyme preparations obtained after ultrafiltration of liquid cultures were characterized by following activities: FPA-4-16 IU, CMC-900-1800 U, CB-60-120 IU and xylanase-250-280 IU/cm/sup 3/.

  4. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels.

    Science.gov (United States)

    Yarbrough, John M; Zhang, Ruoran; Mittal, Ashutosh; Vander Wall, Todd; Bomble, Yannick J; Decker, Stephen R; Himmel, Michael E; Ciesielski, Peter N

    2017-03-28

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical "free enzyme" system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.

  5. Proposal of a utilization of a luminous bacterium in the teaching and learning of radiation safety

    International Nuclear Information System (INIS)

    Hanafusa, Tadashi; Nagamatsu, Tomohiro; Kinno, Ikuo; Ono, Toshiro; Sakoda, Akihiro

    2011-01-01

    We isolated the luminous bacterium Vibrio phosphoreum H1 as a tool for education in radiation safety. It emits strong and steady luminescence. It is nonpathogenic, cannot be grown under normal low-salt conditions, and can be handled without any special equipment or reagents. We can cultivate it on a desk at room temperature, and can use a home-made broth containing a high salt concentration. Heat treatment at 37°C kills the bacterium, leading to its loss of luminescence. Although X-ray irradiation clearly kills it as the exposure dose increases, luminescence remains intact for some time, suggesting a delayed appearance of the biological effect of radiation exposure. We showed that the luminous bacterium Vibrio phosphoreum H1 can be used as a tool for teaching and learning about the effects of radiation. We proposed a practical plan that can be employed at high schools as well as universities. (author)

  6. Development of a cellulolytic Saccharomyces cerevisiae strain with enhanced cellobiohydrolase activity.

    Science.gov (United States)

    Hong, Jiefang; Yang, Huajun; Zhang, Kun; Liu, Cheng; Zou, Shaolan; Zhang, Minhua

    2014-11-01

    Consolidated bioprocessing (CBP) is a promising technology for lignocellulosic ethanol production, and the key is the engineering of a microorganism that can efficiently utilize cellulose. Development of Saccharomyces cerevisiae for CBP requires high level expression of cellulases, particularly cellobiohydrolases (CBH). In this study, to construct a CBP-enabling yeast with enhanced CBH activity, three cassettes containing constitutively expressed CBH-encoding genes (cbh1 from Aspergillus aculeatus, cbh1 and cbh2 from Trichoderma reesei) were constructed. T. reesei eg2, A. aculeatus bgl1, and the three CBH-encoding genes were then sequentially integrated into the S. cerevisiae W303-1A chromosome via δ-sequence-mediated integration. The resultant strains W1, W2, and W3, expressing uni-, bi-, and trifunctional cellulases, respectively, exhibited corresponding cellulase activities. Furthermore, both the activities and glucose producing activity ascended. The growth test on cellulose containing plates indicated that CBH was a necessary component for successful utilization of crystalline cellulose. The three recombinant strains and the control strains W303-1A and AADY were evaluated in acid- and alkali-pretreated corncob containing media with 5 FPU exogenous cellulase/g biomass loading. The highest ethanol titer (g/l) within 7 days was 5.92 ± 0.51, 18.60 ± 0.81, 28.20 ± 0.84, 1.40 ± 0.12, and 2.12 ± 0.35, respectively. Compared with the control strains, W3 efficiently fermented pretreated corncob to ethanol. To our knowledge, this is the first study aimed at creating cellulolytic yeast with enhanced CBH activity by integrating three types of CBH-encoding gene with a strong constitutive promoter Ptpi.

  7. Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variableacross five ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carolyn F [Los Alamos National Laboratory (LANL); Zak, Donald R [University of Michigan; Hungate, Bruce [Northern Arizona University; Jackson, Robert B [Duke University; Vilgalys, Rytas [Duke University; Evans, R David [Duke University; Schadt, Christopher Warren [ORNL; Megonigal, J. Patrick [Smithsonian; Kuske, Cheryl R [Los Alamos National Laboratory (LANL)

    2011-01-01

    Elevated atmospheric CO(2) generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO(2) . To investigate the impacts of ecosystem type and elevated atmospheric CO(2) on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO(2) . The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P-values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114-member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO(2) exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO(2) (550 mol mol(-1) ) than under ambient CO(2) (360 mol mol(-1) CO(2) ). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU-specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long-term exposure to elevated atmospheric CO(2) .

  8. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  9. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  10. Characterization of cellulases of fungal endophytes isolated from Espeletia spp.

    Science.gov (United States)

    Cabezas, Luisa; Calderon, Carolina; Medina, Luis Miguel; Bahamon, Isabela; Cardenas, Martha; Bernal, Adriana Jimena; Gonzalez, Andrés; Restrepo, Silvia

    2012-12-01

    Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production.

  11. Mitigation of membrane biofouling by a quorum quenching bacterium for membrane bioreactors.

    Science.gov (United States)

    Ham, So-Young; Kim, Han-Shin; Cha, Eunji; Park, Jeong-Hoon; Park, Hee-Deung

    2018-06-01

    In this study, a quorum-quenching (QQ) bacterium named HEMM-1 was isolated at a membrane bioreactor (MBR) plant. HEMM-1 has diplococcal morphology and 99% sequence identity to Enterococcus species. The HEMM-1 cell-free supernatant (CFS) showed higher QQ activities than the CFS of other QQ bacteria, mostly by degrading N-acyl homoserine lactones (AHLs) with short acyl chains. Instrumental analyses revealed that HEMM-1 CFS degraded AHLs via lactonase activity. Under static, flow, and shear conditions, the HEMM-1 CFS was effective in reducing bacterial and activated-sludge biofilms formed on membrane surfaces. In conclusion, the HEMM-1 isolate is a QQ bacterium applicable to the control of biofouling in MBRs via inhibition of biofilm formation on membrane surfaces. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Extracellular cellulolytic enzyme system of Aspergillus japonicus. Pt. 3. Isolation, purification and characterization of multiple forms of endoglucanase

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, R.K.; Dube, Syamalima; Dube, D.K.

    1988-02-01

    The crude culture filtrate of Aspergillus japonicus exhibits marked cellulose and xylan degrading activities. Affinity chromatography of the crude enzyme preparation on concanavalin A (Con A)-Sepharose 4B resolves it into three fractions. The eluted fraction A contains CMCase (CM Case I) and xylanase activities; fraction B shows only CMCase activity (CMCase II); and fraction C exhibits CMCase (CMCase III) and xylanase activities. On further purification by gel filtration, only fraction B imparts a homogeneous preparation that gives a single band on polyacrylamide gel electrophoresis at pH 8.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of this homogeneous form shows the molecular weight about 57 000 daltons. The first two forms have the least activity toward tamarind kernel polysaccharide (TKP) but the last form, endoglucanase III, is highly reactive to it.

  13. Working draft genome sequence of the mesophilic acetate oxidizing bacterium Syntrophaceticus schinkii strain Sp3

    OpenAIRE

    Manzoor, Shahid; M?ller, Bettina; Niazi, Adnan; Schn?rer, Anna; Bongcam-Rudloff, Erik

    2015-01-01

    Syntrophaceticus schinkii strain Sp3 is a mesophilic syntrophic acetate oxidizing bacterium, belonging to the Clostridia class within the phylum Firmicutes, originally isolated from a mesophilic methanogenic digester. It has been shown to oxidize acetate in co-cultivation with hydrogenotrophic methanogens forming methane. The draft genome shows a total size of 3,196,921?bp, encoding 3,688 open reading frames, which includes 3,445 predicted protein-encoding genes and 55 RNA genes. Here, we are...

  14. Isolation and characterization of Pseudomonas putida WLY for ...

    African Journals Online (AJOL)

    Using the BMM medium containing 100 mg/L of reactive brilliant red X-3B, a decolorizing bacterium with higher decolorization activity was isolated and it showed a decolorization zone of 10 mm; this decolorizing bacterium was identified as Pseudomonas putida WLY based on physiological and biochemical characteristics ...

  15. Utilization of mixed cellulolytic microbes from termite extract, elephant faecal solution and buffalo ruminal fluid to increase in vitro digestibility of King Grass

    Directory of Open Access Journals (Sweden)

    Agung Prabowo

    2007-06-01

    Full Text Available Cellulose is a compound of plant cell walls which is difficult to be degraded because it composed of glucose monomers linked by β-(1.4-bound. It will be hydrolysed by cellulase enzyme secreted by cellulolytic microbes. The effective digestion of cellulose needs high activity of cellulase enzyme. This research aims to increase in vitro king grass digestibility utilizing mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid. Twelve syringes contained gas test media were randomly divided into four treatments based on sources of microbe (SM, namely: S (SM: cattle ruminal fluid [S], RGK (SM: mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid [RGK], with composition 1 : 1 : 1, S-RGK (SM: S + RGK, with composition 1:1, and TM (without given treatment microbe. Digestibility was measured using gas test method. Average of gas production treatment of S-RGK (70.2 + 0.6 ml was higher and significantly different (P<0.01 compared to treatment of S (60.3 + 0.8 ml, RGK (40.8 + 2.3 ml, and TM (13.3 + 2.0 ml. Utilization of mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid (RGK that combined with microbes of cattle ruminal fluid (S could increase in vitro digestibility of king grass.

  16. Isolation of Bartonella capreoli from elk

    Science.gov (United States)

    Bai, Y.; Cross, P.C.; Malania, L.; Kosoy, M.

    2011-01-01

    The aim of the present study was to investigate the presence of Bartonella infections in elk populations. We report the isolation of four Bartonella strains from 55 elk blood samples. Sequencing analysis demonstrated that all four strains belong to Bartonella capreoli, a bacterium that was originally described in the wild roe deer of Europe. Our finding first time demonstrated that B. capreoli has a wide geographic range, and that elk may be another host for this bacterium. Further investigations are needed to determine the impact of this bacterium on wildlife.

  17. Cadmium and zinc interactions with a Gram-positive soil bacterium : from variable charging behavior of the cell wall to bioavailability of heavy metals in soils

    NARCIS (Netherlands)

    Plette, A.C.C.

    1996-01-01


    A detailed study is presented on the cadmium and zinc sorption to both isolated cell walls and intact, living cells of the Gram-positive soil bacterium Rhodococcus erythropolis A177. Acid/base titrations were performed on isolated cell wall material to characterize

  18. Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium.

    Science.gov (United States)

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2002-10-01

    Water treatment technologies are needed that can remove perchlorate from drinking water without introducing organic chemicals that stimulate bacterial growth in water distribution systems. Hydrogen is an ideal energy source for bacterial degradation of perchlorate as it leaves no organic residue and is sparingly soluble. We describe here the isolation of a perchlorate-respiring, hydrogen-oxidizing bacterium (Dechloromonas sp. strain HZ) that grows with carbon dioxide as sole carbon source. Strain HZ is a Gram-negative, rod-shaped facultative anaerobe that was isolated from a gas-phase anaerobic packed-bed biofilm reactor treating perchlorate-contaminated groundwater. The ability of strain HZ to grow autotrophically with carbon dioxide as the sole carbon source was confirmed by demonstrating that biomass carbon (100.9%) was derived from CO2. Chemolithotrophic growth with hydrogen was coupled with complete reduction of perchlorate (10 mM) to chloride with a maximum doubling time of 8.9 h. Strain HZ also grew using acetate as the electron donor and chlorate, nitrate, or oxygen (but not sulphate) as an electron acceptor. Phylogenetic analysis of the 16S rRNA sequence placed strain HZ in the genus Dechloromonas within the beta subgroup of the Proteobacteria. The study of this and other novel perchlorate-reducing bacteria may lead to new, safe technologies for removing perchlorate and other chemical pollutants from drinking water.

  19. Identification and molecular modeling of a family 5 endocellulase from Thermus caldophilus GK24, a cellulolytic strain of Thermus thermophilus

    Directory of Open Access Journals (Sweden)

    Dae-Sil Lee

    2006-12-01

    Full Text Available The genome of T. caldophilus GK24 was recently sequenced and annotated as 14contigs, equivalent to 2.3 mega basepairs (Mbp of DNA. In the current study, we identifieda unique 13.7 kbp DNA sequence, which included the endocellulase gene of T. caldophilusGK24, which did not appear to be present in the complete genomic sequence of the closelyrelated species T. thermophilus HB27 and HB8. Congo-red staining revealed a uniquephenotype of cellulose degradation by strain GK24 that was distinct from other closelyrelated Thermus strains. The results showed that strain GK24 is an aerobic, thermophilic,cellulolytic eubacterium which belongs to the group T. thermophilus. In order to understandthe mechanism of production of cellobiose in T. caldophilus GK24, a three-dimensionalmodel of the endocellulase, TcCel5A, was generated based on known crystal structures.Using this model, we carried out a flexible cellotetraose docking study.

  20. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    growth, i.e. by factors common to both systems but not differences in organic matter input. Pronounced and constant increases in beta-glucosidase activity (40%) and endocellulase activity (30%) in high-OM were detected across all sampling periods. The increases in microbial biomass C concentration......Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high......-OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial...

  1. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high......-OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial...... growth, i.e. by factors common to both systems but not differences in organic matter input. Pronounced and constant increases in beta-glucosidase activity (40%) and endocellulase activity (30%) in high-OM were detected across all sampling periods. The increases in microbial biomass C concentration...

  2. Special submers screening of cellulolytic fungi and selection of Penicillium wild strains for cellulase production with high substrate concentration

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, G.; Hirte, W.F.

    1989-01-01

    Based on long experience with cellulolytic fungi a special submers screening was applied to select a new strain suitable for cellulase production in media with 3% or more of cellulose substrate concentration. The screening consisted of 2 steps with shake flasks experiments and one step with fermentor cultivation. Additionally the application value of this Penicillium-cellulase and acute toxicology of culture filtrate were investigated. The selected fungus Penicillium janthinellum BIOURGE ZIMET 73433 synthesized a complete cellulase system with especially high endoglucanase and cellobioase activities as well as several carbohydrate splitting 'side'-activities, e.g. xylanases, pectinases, amylases. Cellulase activities and productivities with respect to the filter paper saccharification method equal those of Trichoderma reesei-mutant QM 9414 under comparable conditions. (orig.).

  3. Structural insights into cellulolytic and chitinolytic enzymes revealing crucial residues of insect β-N-acetyl-D-hexosaminidase.

    Directory of Open Access Journals (Sweden)

    Tian Liu

    Full Text Available The chemical similarity of cellulose and chitin supports the idea that their corresponding hydrolytic enzymes would bind β-1,4-linked glucose residues in a similar manner. A structural and mutational analysis was performed for the plant cellulolytic enzyme BGlu1 from Oryza sativa and the insect chitinolytic enzyme OfHex1 from Ostrinia furnacalis. Although BGlu1 shows little amino-acid sequence or topological similarity with OfHex1, three residues (Trp(490, Glu(328, Val(327 in OfHex1, and Trp(358, Tyr(131 and Ile(179 in BGlu1 were identified as being conserved in the +1 sugar binding site. OfHex1 Glu(328 together with Trp(490 was confirmed to be necessary for substrate binding. The mutant E328A exhibited a 8-fold increment in K(m for (GlcNAc(2 and a 42-fold increment in K(i for TMG-chitotriomycin. A crystal structure of E328A in complex with TMG-chitotriomycin was resolved at 2.5 Å, revealing the obvious conformational changes of the catalytic residues (Glu(368 and Asp(367 and the absence of the hydrogen bond between E328A and the C3-OH of the +1 sugar. V327G exhibited the same activity as the wild-type, but acquired the ability to efficiently hydrolyse β-1,2-linked GlcNAc in contrast to the wild-type. Thus, Glu(328 and Val(327 were identified as important for substrate-binding and as glycosidic-bond determinants. A structure-based sequence alignment confirmed the spatial conservation of these three residues in most plant cellulolytic, insect and bacterial chitinolytic enzymes.

  4. Structural insights into cellulolytic and chitinolytic enzymes revealing crucial residues of insect β-N-acetyl-D-hexosaminidase.

    Science.gov (United States)

    Liu, Tian; Zhou, Yong; Chen, Lei; Chen, Wei; Liu, Lin; Shen, Xu; Zhang, Wenqing; Zhang, Jianzhen; Yang, Qing

    2012-01-01

    The chemical similarity of cellulose and chitin supports the idea that their corresponding hydrolytic enzymes would bind β-1,4-linked glucose residues in a similar manner. A structural and mutational analysis was performed for the plant cellulolytic enzyme BGlu1 from Oryza sativa and the insect chitinolytic enzyme OfHex1 from Ostrinia furnacalis. Although BGlu1 shows little amino-acid sequence or topological similarity with OfHex1, three residues (Trp(490), Glu(328), Val(327) in OfHex1, and Trp(358), Tyr(131) and Ile(179) in BGlu1) were identified as being conserved in the +1 sugar binding site. OfHex1 Glu(328) together with Trp(490) was confirmed to be necessary for substrate binding. The mutant E328A exhibited a 8-fold increment in K(m) for (GlcNAc)(2) and a 42-fold increment in K(i) for TMG-chitotriomycin. A crystal structure of E328A in complex with TMG-chitotriomycin was resolved at 2.5 Å, revealing the obvious conformational changes of the catalytic residues (Glu(368) and Asp(367)) and the absence of the hydrogen bond between E328A and the C3-OH of the +1 sugar. V327G exhibited the same activity as the wild-type, but acquired the ability to efficiently hydrolyse β-1,2-linked GlcNAc in contrast to the wild-type. Thus, Glu(328) and Val(327) were identified as important for substrate-binding and as glycosidic-bond determinants. A structure-based sequence alignment confirmed the spatial conservation of these three residues in most plant cellulolytic, insect and bacterial chitinolytic enzymes.

  5. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin.

    Science.gov (United States)

    Svitil, A L; Chadhain, S; Moore, J A; Kirchman, D L

    1997-02-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products.

  6. Genomic Analysis of a Marine Bacterium: Bioinformatics for Comparison, Evaluation, and Interpretation of DNA Sequences

    Directory of Open Access Journals (Sweden)

    Bhagwan N. Rekadwad

    2016-01-01

    Full Text Available A total of five highly related strains of an unidentified marine bacterium were analyzed through their short genome sequences (AM260709–AM260713. Genome-to-Genome Distance (GGDC showed high similarity to Pseudoalteromonas haloplanktis (X67024. The generated unique Quick Response (QR codes indicated no identity to other microbial species or gene sequences. Chaos Game Representation (CGR showed the number of bases concentrated in the area. Guanine residues were highest in number followed by cytosine. Frequency of Chaos Game Representation (FCGR indicated that CC and GG blocks have higher frequency in the sequence from the evaluated marine bacterium strains. Maximum GC content for the marine bacterium strains ranged 53-54%. The use of QR codes, CGR, FCGR, and GC dataset helped in identifying and interpreting short genome sequences from specific isolates. A phylogenetic tree was constructed with the bootstrap test (1000 replicates using MEGA6 software. Principal Component Analysis (PCA was carried out using EMBL-EBI MUSCLE program. Thus, generated genomic data are of great assistance for hierarchical classification in Bacterial Systematics which combined with phenotypic features represents a basic procedure for a polyphasic approach on unambiguous bacterial isolate taxonomic classification.

  7. Draft Genome Sequence of Enterobacter sp. Strain EA-1, an Electrochemically Active Microorganism Isolated from Tropical Sediment.

    Science.gov (United States)

    Doyle, Lucinda E; Williams, Rohan B H; Rice, Scott A; Marsili, Enrico; Lauro, Federico M

    2018-03-01

    Enterobacter sp. strain EA-1 is an electrochemically active bacterium isolated from tropical sediment in Singapore. Here, the annotated draft genome assembly of the bacterium is reported. Whole-genome comparison indicates that Enterobacter sp. EA-1, along with a previously sequenced Enterobacter isolate from East Asia, forms a distinct clade within the Enterobacter genus. Copyright © 2018 Doyle et al.

  8. Agrobacterium tumefaciens is a diazotrophic bacterium

    International Nuclear Information System (INIS)

    Kanvinde, L.; Sastry, G.R.K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15 N supplied as 15 N 2 . As with most other well-characterized diazotrophic bacteria, the presence of NH 4 + in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship

  9. Characterization of the radioresistance in the radioresistant bacterium deinococcus radiodurans

    International Nuclear Information System (INIS)

    Kong Xiangrong; Du Zeji

    1999-01-01

    The radioresistance of wild type Deinococcus radiodurans KD8301 and the factors affecting the radioresistance were investigated. KH3111 which was a DNA repair mutant of KD8301 (Zeji Du, 1998) was used to be compared with KD8301. Deinococcus radiodurans was discovered by Anderson et al (1956) in X-ray sterilized canned meat that was found to have undergone spoilage. this bacterium and other species of this genus share extreme resistance to ionizing radiation and other agents that damage DNA. Wild type KD8301 and its sensitive mutant KH3111 were irradiated with 60 Co γ-ray at the dose range 0.5 ∼ 10 kGy. Dose-survival fraction curves were made and the radio resistances were determined by LD 99 . The relative contents of DNA in cells were measured by Fluorescence Spectrophotometry (Freedman and Bruce, 1971). The results indicated that wild type KD8301 possesses more radioresistant than its mutant KH3111, LD99 were 9.5 kGy and 2.4 kGy respectively. KD8301 grown at exponential phase showed a decreased resistance to radiation, and the LD99 was 5.1 kGy. No differences of DNA/protein in cells were found between the exponential phase and the stationary phase. The results could be concluded that wild type KD8301 possesses remarkable radioresistance, but this ability was decreased or disappeared after mutation (in KH3111). None DNA relative content other than the growth stages were determinant factors of radioresistance in Deinococcus radiodurans. This results were different from other report (Dickie N et al, 1990). The cellular mechanisms might be the deference's of the bacterium cell morphology between the exponential phase and the stationary phase. Recently, the mutation site of KH3111 which was mutated chemically from wild type KD8301 was identified (Zeji Du, 1998). One base pair changed in the novel gene pprA which was isolated from KD8301 genomic DNA. This point mutation was confirmed to be responsible for the sensitivity of KH3111 to γ-ray and other DNA

  10. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  11. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  12. A bacterium that can grow by using arsenic instead of phosphorus.

    Science.gov (United States)

    Wolfe-Simon, Felisa; Switzer Blum, Jodi; Kulp, Thomas R; Gordon, Gwyneth W; Hoeft, Shelley E; Pett-Ridge, Jennifer; Stolz, John F; Webb, Samuel M; Weber, Peter K; Davies, Paul C W; Anbar, Ariel D; Oremland, Ronald S

    2011-06-03

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  13. Cadmium-nickel toxicity interactions towards a bacterium, filamentous fungi, and a cultured mammalian cell line

    Energy Technology Data Exchange (ETDEWEB)

    Babich, H.; Shopsis, C.; Borenfreund, E.

    1986-10-01

    The response of the biota to exposure to individual metals may differ from its response to multiple metals, as mixtures of metals may interact antagonistically or synergistically in their resultant toxicity. The present study evaluated the effects of a combination of Cd and Ni on the freshwater bacterium, Aeromonas hydrophila, the terrestrial fungi, Trichodema viride and Aspergillus niger, and the mammalian cell line, BALB/c mouse 3T3 fibroblasts. This particular spectrum of target cells was selected because studies in the literature show a wide variety of possible interactions between Cd and Ni in their combined toxicities towards bacteria cyanobacteria, slime molds, isolated rat hepatocytes, and rats.

  14. A bacterium that can grow by using arsenic instead of phosphorus

    Science.gov (United States)

    Wolfe-Simon, Felisa; Blum, J.S.; Kulp, T.R.; Gordon, G.W.; Hoeft, S.E.; Pett-Ridge, J.; Stolz, J.F.; Webb, S.M.; Weber, P.K.; Davies, P.C.W.; Anbar, A.D.; Oremland, R.S.

    2011-01-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  15. PRODUCTION AND CHARACTERIZATION OF CELLULOLYTIC ENZYMES BY ASPERGILLUS NIGER AND RHIZOPUS SP . BY SOLID STATE FERMENTATION OF PRICKLY PEAR

    Directory of Open Access Journals (Sweden)

    TAMIRES CARVALHO DOS SANTOS

    2016-01-01

    Full Text Available Prickly palm cactus husk was used as a solid - state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box - Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp . Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.

  16. Characterization of cellulolytic enzyme system of Schizophyllum commune mutant and evaluation of its efficiency on biomass hydrolysis.

    Science.gov (United States)

    Sornlake, Warasirin; Rattanaphanjak, Phatcharamon; Champreda, Verawat; Eurwilaichitr, Lily; Kittisenachai, Suthathip; Roytrakul, Sittiruk; Fujii, Tatsuya; Inoue, Hiroyuki

    2017-07-01

    Schizophyllum commune is a basidiomycete equipped with an efficient cellulolytic enzyme system capable of growth on decaying woods. In this study, production of lignocellulose-degrading enzymes from S. commune mutant G-135 (SC-Cel) on various cellulosic substrates was examined. The highest cellulase activities including CMCase, FPase, and β-glucosidase were obtained on Avicel-PH101 while a wider range of enzymes attacking non-cellulosic polysaccharides and lignin were found when grown on alkaline-pretreated biomass. Proteomic analysis of SC-Cel also revealed a complex enzyme system comprising seven glycosyl hydrolase families with an accessory carbohydrate esterase, polysaccharide lyase, and auxiliary redox enzymes. SC-Cel obtained on Avicel-PH101 effectively hydrolyzed all agricultural residues with the maximum glucan conversion of 98.0% using corn cobs with an enzyme dosage of 5 FPU/g-biomass. The work showed potential of SC-Cel on hydrolysis of various herbaceous biomass with enhanced efficiency by addition external β-xylosidase.

  17. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.

    Science.gov (United States)

    Saratale, Ganesh D; Kshirsagar, Siddheshwar D; Sampange, Vilas T; Saratale, Rijuta G; Oh, Sang-Eun; Govindwar, Sanjay P; Oh, Min-Kyu

    2014-12-01

    Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.

  18. Molecular cloning of cellulase genes from indigenous bacterial isolates

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Pauline Liew Woan Ying; Mat Rasol Awang

    2006-01-01

    Indigenous cellulolytic bacterial isolates having high activities in degrading carboxymethyl cellulose (CMC) were isolated from local environments. Identification of these isolates were performed by molecular techniques. By using polymerase chain reaction (PCR) techniques, PCR products encoding cellulase gene were amplified from the total genomic DNAs. Purified PCR product was successfully cloned and expressed in Escherichia coli host system. The complete nucleotide sequences of the cellulase genes determined. The analysis of amino acid sequences deduced from the genes indicated that the cloned DNA fragments show high homology to those of endoglucanase genes of family GH5. All cloned genes consist of an N-terminal signal peptide, a catalytic domain of family 5 glycosyl hydrolase and a cellulose-binding domain of family III. (Author)

  19. Experimental evolution of aging in a bacterium

    Directory of Open Access Journals (Sweden)

    Stearns Stephen C

    2007-07-01

    Full Text Available Abstract Background Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose asymmetric division allows mother and daughter to be distinguished. Results We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters. Conclusion Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.

  20. A Desulfitobacterium strain isolated from human feces that does not dechlorinate chloroethenes or chlorophenols

    NARCIS (Netherlands)

    van de Pas, BA; Harmsen, HJM; Raangs, GC; de Vos, WM; Schraa, G; Stams, AJM

    An anaerobic bacterium, strain DP7, was isolated from human feces in mineral medium with formate and 0.02% yeast extract as energy and carbon source. This rod-shaped motile bacterium used pyruvate, lactate, formate, hydrogen, butyrate, and ethanol as electron donor for sulfite reduction. Other