WorldWideScience

Sample records for cellular viability technique

  1. Suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by bulking

    International Nuclear Information System (INIS)

    This work demonstrates the suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by the overabundance of the filamentous bacteria (Thiothrix-021N). This technique was used to establish the chlorine dosage according to the observed damages on cellular membranes of both, floc-forming bacteria as well as filamentous bacteria. To identify the filamentous bacteria responsible for the macro-structural alteration of the flocs, several criteria were, met, including morphologic characteristics as well as conventional microbiological stains: Gram, Neisser and polyhydroxy alkanoates. FISH was used to confirm the obtained results, providing a definitive identification of the filamentous bacteria responsible for the alteration. (Author) 11 refs

  2. Effect of cadmium on cellular viability in two species of microalgae (Scenedesmus sp. and Dunaliella viridis).

    Science.gov (United States)

    Marcano, Letty Beatriz C; Carruyo, Ingrid M; Montiel, Xiomara M; Morales, Carolina B; de Soto, Patricia Moreno

    2009-07-01

    We determined the effect of several concentrations of cadmium (0, 5, 10, and 20 microg/l) on cellular viability in the microalgae Scenedesmus sp. and Dunaliella viridis, by measuring growth at 0, 24, 48, 72, and 96 h and pigment production at 10 days. Algae were obtained from the Nonvascular Plant Laboratory collection, in the Facultad Experimental de Ciencias, Universidad del Zulia, Venezuela. Growth was measured by cellular counting, while pigment content was evaluated using conventional spectrophotometric techniques. Growth of both species decreased in the exposed cultures comparing with the control, but its behavior was similar, because in both control and exposed cultures, its was observed an adaptive phase in the first hours, as well as a growth phase after 72 h. Cadmium concentrations above 10 microg/l produced an adverse effect on pigment production, depending on the concentration and/or exhibition time. However, even though cadmium inhibited growth and pigment production, levels of both parameters indicated cellular viability, demonstrating the adaptability of the algae cultures when they were exposed to the metal. PMID:19172231

  3. Intrinsic Structural Disorder Confers Cellular Viability on Oncogenic Fusion Proteins

    OpenAIRE

    Hedi Hegyi; László Buday; Peter Tompa

    2009-01-01

    Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs....

  4. Quantification of cellular viability for the MTT method

    International Nuclear Information System (INIS)

    In the last years, the scientists have been given to the task of finding new biomaterials whose biocompatibility with the human body allow them to substitute parts of the organism, as the bones and the junctures and also that they are little rejected. In the following work it was evaluated and quantified by the method of the MTT, a colorimetric, quick, simple and economic technical, the possible citohepatic effect of a watery extract of a biomaterials of polymeric origin (acrilamide and metacrilic acid) obtained for technical of gamma irradiation, consistent in culture medium 199 and veal serum, in cells Vero. In order to compare the answer of the analysis material, they were used the controls negative (polyethylene of high molecular weight), and positive (Sulphate of Streptomycin), just as they indicate it the established norms, being achieved the waited result of each one of them. In the observation made to the optic microscope, after 24 and 48 hours of contact between the cells and the extract of the analysis material, they were not perceived indicative of damage or cellular lysis, or morphologic changes in the structure of cells that it indicated us the possible cytotoxic effect of this biomaterials, therefore the qualitative analysis was not enough for the determination of the cytotoxic effect of the analysis sample

  5. Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins.

    Directory of Open Access Journals (Sweden)

    Hedi Hegyi

    2009-10-01

    Full Text Available Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins, they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL; (ii a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK; (iii the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF. Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations.

  6. 3-bromopyruvate inhibits glycolysis, depletes cellular glutathione, and compromises the viability of cultured primary rat astrocytes.

    Science.gov (United States)

    Ehrke, Eric; Arend, Christian; Dringen, Ralf

    2015-07-01

    The pyruvate analogue 3-bromopyruvate (3-BP) is an electrophilic alkylator that is considered a promising anticancer drug because it has been shown to kill cancer cells efficiently while having little toxic effect on nontumor cells. To test for potential adverse effects of 3-BP on brain cells, we exposed cultured primary rat astrocytes to 3-BP and investigated the effects of this compound on cell viability, glucose metabolism, and glutathione (GSH) content. The presence of 3-BP severely compromised cell viability and slowed cellular glucose consumption and lactate production in a time- and concentration-dependent manner, with half-maximal effects observed at about 100 µM 3-BP after 4 hr of incubation. The cellular hexokinase activity was not affected in 3-BP-treated astrocytes, whereas within 30 min after application of 3-BP the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was inhibited, and cellular GSH content was depleted in a concentration-dependent manner, with half-maximal effects observed at about 30 µM 3-BP. The depletion of cellular GSH after exposure to 100 µM 3-BP was not prevented by the presence of 10 mM of the monocarboxylates lactate or pyruvate, suggesting that 3-BP is not taken up into astrocytes predominantly by monocarboxylate transporters. The data suggest that inhibition of glycolysis by inactivation of GAPDH and GSH depletion contributes to the toxicity that was observed for 3-BP-treated cultured astrocytes. PMID:25196479

  7. Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminates bacteria of alcoholic fermentation

    International Nuclear Information System (INIS)

    The aim of this work was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products, in reduction of cellular viability of Saccharomyces cerevisiae, when in mixed culture of yeast and active and treated bacteria. Also was to evaluated an alternative medium (MCC) for the cultivation of bacteria and yeast, constituted of sugarcane juice diluted to 5 deg Brix and supplemented with yeast extract and peptone. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast Saccharomyces cerevisiae (strain Y-904) for 72 h on 32 deg C, under agitation. The cellular viability, budding rate and population of S. cerevisiae, the total acidity, volatile acidity and pH of culture were determined from 0, 24, 48 e 72 h of mixed culture. Also were determined the initial and final of microorganism population across the pour plate method, in traditional culture medium (PCA for Bacillus, MRS-agar for Lactobacillus and YEPD-agar for yeast S. cerevisiae) and in medium constituted of sugarcane juice. The bacteria cultures were treated by heat sterilization (120 deg C for 20 minutes), antibacterial agent (Kamoran HJ in concentration 3,0 ppm) or irradiation (radiation gamma, with doses of 5,0 kGy for Lactobacillus and 15,0 kGy for Bacillus). The results of the present research showed that just the culture mediums more acids (with higher concentrations of total and volatile acidity, and smaller values of pH), contaminated with active bacteria L. fermentum and B. subtilis, caused reduction on yeast cellular viability. Except the bacteria B. subtilis treated with radiation, the others bacteria treated by different procedures (heat, radiation e antibacterial) did not cause reduction on yeast cellular viability and population, indicating that the isolated presence of the cellular metabolic of theses bacteria was not enough to reduce the

  8. Single spin measurement using cellular automata techniques

    CERN Document Server

    Perez-Delgado, C A; Cory, D G; Mosca, M; Cappellaro, Paola; Cory, David G.; Mosca, Michele; Perez-Delgado, Carlos A.

    2006-01-01

    We propose an approach for single spin measurement. Our method uses techniques from the theory of quantum cellular automata to correlate a large amount of ancillary spins to the one to be measured. It has the distinct advantage of being efficient, and to a certain extent fault-tolerant. Under ideal conditions, it requires the application of only order of cube root of N steps (each requiring a constant number of rf pulses) to create a system of N correlated spins. It is also fairly robust against pulse errors, imperfect initial polarization of the ancilla spin system, and does not rely on entanglement. We study the scalability of our scheme through numerical simulation.

  9. Single spin measurement using cellular automata techniques

    OpenAIRE

    Perez-Delgado, Carlos A.; Mosca, Michele; Cappellaro, Paola; Cory, David G.

    2006-01-01

    We propose an approach for single spin measurement. Our method uses techniques from the theory of quantum cellular automata to correlate a large amount of ancillary spins to the one to be measured. It has the distinct advantage of being efficient, and to a certain extent fault-tolerant. Under ideal conditions, it requires the application of only order of cube root of N steps (each requiring a constant number of rf pulses) to create a system of N correlated spins. It is also fairly robust agai...

  10. Cell structure and percent viability by a slide centrifuge technique.

    OpenAIRE

    Fitzgerald, M G; Hosking, C S

    1982-01-01

    It was found that a slide centrifuge (Cytospin) preparation of a cell suspension allowed a reliable assessment of not only cell structure but also the percentage of non-viable cells. The non-viable cells appeared as "smear" cells and paralleled in number the cells taking up trypan blue. Direct experiment showed the unstained viable cells in a trypan blue cell suspension remained intact in a Cytospin preparation while the cells taking up trypan blue were the "smear" cells. The non-viability of...

  11. Application of staining techniques to improve the viability assessment of turbot (Psetta maxima) ova

    OpenAIRE

    Omnes, Marie-helene; Dorange, Germaine; Suquet, Marc; Normant, Yvon

    1999-01-01

    Staining-dye procedures were tested on the turbot ovule in order to develop a rapid technique for determining ovule viability. Neutral red and Trypan blue dyes provided better assessment of the proportion of viable or dead female gametes when inducing fertilisation.

  12. Application of modern fluorescence techniques in studying growth, viability and phosphatase production of phytoplankton

    OpenAIRE

    RYCHTECKÝ, Pavel

    2014-01-01

    In this thesis, the modern fluorescence techniques (PDMPO, SYTOX Green and FLEA) coupled with image cytometry were employed to study phytoplankton growth, viability and production of extracellular phosphatases. Seasonal studies at the Římov Reservoir and the Lipno Reservoir were conducted, as well as laboratory experiments.

  13. Organophosphorous biocides reduce tenacity and cellular viability but not esterase activities in a non-target prosobranch (limpet)

    International Nuclear Information System (INIS)

    Detecting impacts of organophosphorus biocides (OP) is facilitated by analysing “biomarkers” – biological responses to environmental insults. Understanding is hampered by studying biomarkers in isolation at different levels of biological response and limited work on ecologically-important species. We tested the relevance of esterases as biomarkers of OP-exposure in limpets (Patella vulgata), abundant prosobranchs that structure the assemblages on rocky shores through their grazing. We characterized esterases in haemolymph and tissue, and quantified their dose-dependent inhibition by chlorfenvinphos (0.1–3.0 mM) in vitro. To determine whether esterases are useful biomarkers we exposed limpets to chlorfenvinphos (0–10 μg L−1). Despite reduced tenacity (ability to stick to a surface) and haemocyte-viability, esterases remained unaffected. Tenacity was reduced by >50% at 5 μg L−1 and by 95% at 10 μg L−1, whilst haemocyte-viability was more sensitive with >40% reductions at concentrations of 0.5 μg L−1 and above. We discuss results in relation to linking sub-lethal and ecological impacts at contaminated sites. - Highlights: • We investigated if esterases are useful biomarkers of chlorfenvinphos-exposure. • Esterases in tissues of limpets (Patella vulgata) were characterized. • The dose-dependent inhibition of esterases by chlorfenvinphos was shown in vitro. • In vivo, tenacity and haemocyte-viability were reduced, but not esterase activities. - Organophosphorous biocides reduce tenacity and cellular viability but not esterase activities in the limpet, Patella vulgata

  14. Cellular viability effects of fatty acid amide hydrolase inhibition on cerebellar neurons

    OpenAIRE

    Lueneberg Kathia; Domínguez Guadalupe; Arias-Carrión Oscar; Palomero-Rivero Marcela; Millán-Aldaco Diana; Morán. Julio; Drucker-Colín René; Murillo-Rodríguez Eric

    2011-01-01

    Abstract The endocannabinoid anandamide (ANA) participates in the control of cell death inducing the formation of apoptotic bodies and DNA fragmentation. The aim of this study was to evaluate whether the ANA degrading enzyme, the fatty acid amide hydrolase (FAAH), would induce cellular death. Experiments were performed in cerebellar granule neurons cultured with the FAAH inhibitor, URB597 (25, 50 or 100 nM) as well as endogenous lipids such as oleoylethanolamide (OEA) or palmitoylethanolamide...

  15. A real-time, non-invasive, micro-optrode technique for detecting seed viability by using oxygen influx.

    Science.gov (United States)

    Xin, Xia; Wan, Yinglang; Wang, Wenjun; Yin, Guangkun; McLamore, Eric S; Lu, Xinxiong

    2013-01-01

    Quantifying seed viability is required for seed bank maintenance. The classical methods for detecting seed viability are time consuming and frequently cause seed damage and unwanted germination. We have established a novel micro-optrode technique (MOT) to measure seed viability in a quick and non-invasive manner by measuring the oxygen influxes of intact seeds, approximately 10 seconds to screen one seed. Here, we used soybean, wheat, and oilseed rape as models to test our method. After 3-hour imbibition, oxygen influxes were recorded in real-time with the total measurement taking less than 5 minutes. The results indicated a significantly positive correlation between oxygen influxes and viability in all 3 seed types. We also established a linear equation between oxygen influxes and seed viability for each seed type. For measurements, seeds were kept in the early imbibition stage without germination. Thus, MOT is a reliable, quick, and low-cost seed viability detecting technique. PMID:24162185

  16. A real-time, non-invasive, micro-optrode technique for detecting seed viability by using oxygen influx

    OpenAIRE

    Xin, Xia; Wan, Yinglang; Wang, Wenjun; Yin, Guangkun; McLamore, Eric S.; Lu, Xinxiong

    2013-01-01

    Quantifying seed viability is required for seed bank maintenance. The classical methods for detecting seed viability are time consuming and frequently cause seed damage and unwanted germination. We have established a novel micro-optrode technique (MOT) to measure seed viability in a quick and non-invasive manner by measuring the oxygen influxes of intact seeds, approximately 10 seconds to screen one seed. Here, we used soybean, wheat, and oilseed rape as models to test our method. After 3-hou...

  17. Location Management Technique to Reduce Complexity in Cellular Networks

    Directory of Open Access Journals (Sweden)

    C. Selvan

    2010-07-01

    Full Text Available An important issue in the design of mobile computing is how to manage the location information of mobile nodes in wireless cellular networks. The existing system has two approaches. First approach is spatial quantization technique in which location update takes place only when the mobile terminal move from one location area to other and second approach is temporal quantization in which location update takes place only after a specific time threshold. In this paper, we introduce Intelligent Agent Quantization(IAQ which is based on prediction of movements and distance between node and Base Station Controller(BSC to locate the mobile nodes. The main idea of using IAQ is reduce the update cost considerably with slight increase in paging cost.

  18. Assessment of microcirculation of the skin using Tissue Viability Imaging: A promising technique for detecting venous stasis in the skin

    OpenAIRE

    Bergkvist, Max; Henricson, Joakim; Iredahl, Fredrik; Tesselaar, Erik; Sjöberg, Folke; Farnebo, Simon

    2015-01-01

    Background: : Venous occlusion in the skin is difficult to detect by existing measurement techniques. Our aim was to find out whether Tissue Viability Imaging (TiVi) was better at detecting venous occlusion by comparing it with results of laser Doppler flowmetry (LDF) during graded arterial and venous stasis in human forearm skin. Methods: : Arterial and venous occlusions were simulated in 10 healthy volunteers by inflating a blood pressure cuff around the upper right arm. Changes in the conc...

  19. Interference cancellation technique under imperfect synchronization in cellular systems

    Institute of Scientific and Technical Information of China (English)

    WANG; Xin; WU; Zhuo

    2009-01-01

    In this paper, an asynchronous cooperative cellular system applied with space-time block coding(STBC)is investigated. A signal detector is proposed based on parallel interference cancellation(PIC), to cancel the inter-symbol interference(ISI)caused by the imperfect synchronization. Simulation results show that the proposed PIC detector can effectively suppress the ISI, but there is still a comparatively high error floor, due to the co-channel interference(CCI)of the cellular system.

  20. Novel Cell Preservation Technique to Extend Bovine In Vitro White Blood Cell Viability

    OpenAIRE

    Laurin, Emilie L.; McKenna, Shawn L. B.; Sanchez, Javier; Bach, Horacio; Rodriguez-Lecompte, Juan Carlos; Chaffer, Marcelo; Keefe, Greg P

    2015-01-01

    Although cell-mediated immunity based diagnostics can be integral assays for early detection of various diseases of dairy cows, processing of blood samples for these tests is time-sensitive, often within 24 hours of collection, to maintain white blood cell viability. Therefore, to improve utility and practicality of such assays, the objective of this study was to assess the use of a novel white blood cell preservation technology in whole bovine blood. Blood samples from ten healthy cows were ...

  1. Evaluation of Techniques for Performing Cellular Isolation During Microgravity Conditions

    Science.gov (United States)

    Kunz, Hawley; Rubins, Kathleen; Chouker, Alexander; Quiriarte, Heather; Sams, Clarence; Crucian, Brian

    2016-01-01

    This study (OpNom 'Functional Immune') will be a comprehensive immunity Flight Definition investigation that will use longitudinal repeated measures to assess various aspects of immunity and viral reactivation during long-duration spaceflight.This proposal builds on the successful sampling architecture of the former Integrated Immune flight study, which for the first time returned ambient, live blood samples from space to allow functional assays. Blood (ambient, live) and saliva samples will be collected before, during, and following spaceflight. Previously uninvestigated live cell assays will be performed to assess cellular function during spaceflight. Specialized preservatives will be utilized to assess comprehensive immunophenotype, gene expression and proteomics. Measures of inflammation, stress, antimicrobial activity, etc. will be assessed in blood, saliva, and/or urine. The reactivation of a panel of herpesviruses will be assessed both during flight, and post-flight until shedding resolves. Array technology will be utilized to allow maximal information to be derived from minimal in-flight samples. This study will be a hybrid of NASA internal scientists and researchers external to NASA. The NASA 'Core' science package and implementation strategy was selected and approved in 2014. Via NRA, the solicitation for external participation, with science directed to comply with the parent study sampling architecture, is in progress

  2. Bioluminescence: a versatile technique for imaging cellular and molecular features

    Science.gov (United States)

    Paley, Miranda A.

    2016-01-01

    Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems.

  3. Advances in high-resolution imaging – techniques for three-dimensional imaging of cellular structures

    OpenAIRE

    Lidke, Diane S.; Lidke, Keith A.

    2012-01-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below th...

  4. A New Optimized Data Clustering Technique using Cellular Automata and Adaptive Central Force Optimization (ACFO

    Directory of Open Access Journals (Sweden)

    G. Srinivasa Rao

    2015-06-01

    Full Text Available As clustering techniques are gaining more important today, we propose a new clustering technique by means of ACFO and cellular automata. The cellular automata uniquely characterizes the condition of a cell at a specific moment by employing the data like the conditions of a reference cell together with its adjoining cell, total number of cells, restraint, transition function and neighbourhood calculation. With an eye on explaining the condition of the cell, morphological functions are executed on the image. In accordance with the four stages of the morphological process, the rural and the urban areas are grouped separately. In order to steer clear of the stochastic turbulences, the threshold is optimized by means of the ACFO. The test outcomes obtained vouchsafe superb performance of the innovative technique. The accomplishment of the new-fangled technique is assessed by using additional number of images and is contrasted with the traditional methods like CFO (Central Force Optimization and PSO (Particle Swarm Optimization.

  5. Viability Theory

    CERN Document Server

    Aubin, Jean-Pierre; Saint-Pierre, Patrick

    2011-01-01

    Viability theory designs and develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It involves interdisciplinary investigations spanning fields that have traditionally developed in isolation. The purpose of this book is to present an initiation to applications of viability theory, explai

  6. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos.

    Science.gov (United States)

    Edman, R M; Linger, R J; Belikoff, E J; Li, F; Sze, S-H; Tarone, A M; Scott, M J

    2015-02-01

    The New World screwworm fly, Cochliomyia hominivorax, and the Australian sheep blow fly, Lucilia cuprina, are major pests of livestock. The sterile insect technique was used to eradicate C. hominivorax from North and Central America. This involved area-wide releases of male and female flies that had been sterilized by radiation. Genetic systems have been developed for making 'male-only' strains that would improve the efficiency of genetic control of insect pests. One system involves induction of female lethality in embryos through activation of a pro-apoptotic gene by the tetracycline-dependent transactivator. Sex-specific expression is achieved using an intron from the transformer gene, which we previously isolated from several calliphorids. In the present study, we report the isolation of the promoters from the C. hominivorax slam and Lucilia sericata bnk cellularization genes and show that these promoters can drive expression of a GFP reporter gene in early embryos of transgenic L. cuprina. Additionally, we report the isolation of the L. sericata pro-apoptotic hid and rpr genes, identify conserved motifs in the encoded proteins and determine the relative expression of these genes at different stages of development. We show that widespread expression of the L. sericata pro-apoptotic genes was lethal in Drosophila melanogaster. The isolated gene promoters and pro-apoptotic genes could potentially be used to build transgenic embryonic sexing strains of calliphorid livestock pests. PMID:25225046

  7. Cellular viability of Saccharomyces cerevisiae cultivated in association with contaminates bacteria of alcoholic fermentation;Viabilidade celular de Saccharomyces cerevisiae cultivada em associacao com bacterias contaminantes da fermentacao alcoolica

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Thais de Paula

    2005-07-01

    The aim of this work was to study the influence of the bacteria Bacillus and Lactobacillus, as well as their metabolic products, in reduction of cellular viability of Saccharomyces cerevisiae, when in mixed culture of yeast and active and treated bacteria. Also was to evaluated an alternative medium (MCC) for the cultivation of bacteria and yeast, constituted of sugarcane juice diluted to 5 deg Brix and supplemented with yeast extract and peptone. The bacteria Bacillus subtilis, Bacillus coagulans, Bacillus stearothermophilus, Lactobacillus fermentum and Lactobacillus plantarum were cultivated in association with yeast Saccharomyces cerevisiae (strain Y-904) for 72 h on 32 deg C, under agitation. The cellular viability, budding rate and population of S. cerevisiae, the total acidity, volatile acidity and pH of culture were determined from 0, 24, 48 e 72 h of mixed culture. Also were determined the initial and final of microorganism population across the pour plate method, in traditional culture medium (PCA for Bacillus, MRS-agar for Lactobacillus and YEPD-agar for yeast S. cerevisiae) and in medium constituted of sugarcane juice. The bacteria cultures were treated by heat sterilization (120 deg C for 20 minutes), antibacterial agent (Kamoran HJ in concentration 3,0 ppm) or irradiation (radiation gamma, with doses of 5,0 kGy for Lactobacillus and 15,0 kGy for Bacillus). The results of the present research showed that just the culture mediums more acids (with higher concentrations of total and volatile acidity, and smaller values of pH), contaminated with active bacteria L. fermentum and B. subtilis, caused reduction on yeast cellular viability. Except the bacteria B. subtilis treated with radiation, the others bacteria treated by different procedures (heat, radiation e antibacterial) did not cause reduction on yeast cellular viability and population, indicating that the isolated presence of the cellular metabolic of theses bacteria was not enough to reduce the

  8. Leading research on artificial techniques controlling cellular function; Saibo zoshoku seigyo gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Advanced research and its applicability were surveyed to apply the advanced functional cells to industry. The basic target was set to develop, produce, control and utilize the functional cells, such as intelligent materials and self-regulation bioreactors. The regulation factors regarding apotosis, which is a process of cell suicide programmed within the cell itself of multicellular organisms, cell cycle and aging/ageless were investigated. Furthermore, the function of regulatory factors was investigated at the protein level. Injection of factors regulating cellular function and tissue engineering required for the regulation of cell proliferation were investigated. Tissue engineering is considered to be the intracellular regulation by gene transduction and the extracellular regulation by culture methods, such as coculture. Analysis methods for cell proliferation and function of living cells were investigated using the probes recognizing molecular structure. Novel biomaterials, artificial organ systems, cellular therapy and useful materials were investigated for utilizing the regulation techniques of cell proliferation. 425 refs., 85 figs., 9 tabs.

  9. A study of the biological effects of rare earth elements at cellular level using nuclear techniques

    International Nuclear Information System (INIS)

    Objective: To investigate the biological effects and the effecting mechanisms of rare earth elements La, Gd and Ce on cultured rat cells. Methods: The biological effects of La3+ on cultured rat cells and the subcellular distribution of La and Gd and Ce, and the inflow of 45Ca2+ into the cells and total cellular calcium were measured by isotopic tracing, Proton Induced X Ray Emission Analysis (PIXE) and the techniques of biochemistry and cellular biology. Results: La3+ at the concentration of 10-10(or 10-9) - 10-6 mol/L significantly increased quantity of incorporation of 3H-TdR into DNA, total cellular protein and the activity of succinic dehydrogenase of mitochondria. The cell cycle analysis showed that the proportions of cells in S phase were accordingly increased acted by La3+ at above range of concentration. But these values were significantly decreased when concentration of La3+ raised to 10-4 - 10-3 mol/L. It was further discovered that La, Gd and Ce distributed mostly in the nuclei, and then in membranes. Gd and Ce also promoted the inflow of 45Ca2+ into the cells and increased the total calcium content in cells. Conclusions: 1) La3+ at a wide concentration range of 10-10( or 10-9) - 10-6 mol/L promotes proliferation of cultured rat cells, but at even higher concentration (10-4 - 10-3 mol/L) shows cellular toxicity, and there is a striking dose-effect relationship. 2) La, Gd and Ce can enter the cells and mainly distribute in the nuclei. 3) Gd and Ce can promote the inflow of extracellular Ca2+ into the cells and increase total cellular calcium

  10. Cellular uptake and intracellular fate of engineered nanoparticles: a review on the application of imaging techniques.

    Science.gov (United States)

    Tantra, Ratna; Knight, Alex

    2011-09-01

    The use of imaging tools to probe nanoparticle-cell interactions will be crucial to elucidating the mechanisms of nanoparticle-induced toxicity. Of particular interest are mechanisms associated with cell penetration, translocation and subsequent accumulation inside the cell, or in cellular compartments. The objective of the present paper is to review imaging techniques that have been previously used in order to assess such interactions, and new techniques with the potential to be useful in this area. In order to identify the most suitable techniques, they were evaluated and matched against a list of evaluation criteria. We conclude that limitations exist with all of the techniques and the ultimate choice will thus depend on the needs of end users, and their particular application. The state-of-the-art techniques appear to have the least limitations, despite the fact that they are not so well established and still far from being routine. For example, super-resolution microscopy techniques appear to have many advantages for understanding the details of the interactions between nanoparticles and cells. Future research should concentrate on further developing or improving such novel techniques, to include the development of standardized methods and appropriate reference materials. PMID:20846020

  11. A signal separation technique for sub-cellular imaging using dynamic optical coherence tomography

    CERN Document Server

    Ammari, Habib; Shi, Cong

    2016-01-01

    This paper aims at imaging the dynamics of metabolic activity of cells. Using dynamic optical coherence tomography, we introduce a new multi-particle dynamical model to simulate the movements of the collagen and the cell metabolic activity and develop an efficient signal separation technique for sub-cellular imaging. We perform a singular-value decomposition of the dynamic optical images to isolate the intensity of the metabolic activity. We prove that the largest eigenvalue of the associated Casorati matrix corresponds to the collagen. We present several numerical simulations to illustrate and validate our approach.

  12. Geographic Spatiotemporal Dynamic Model using Cellular Automata and Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Ahmad Zuhdi

    2011-05-01

    Full Text Available Geospatial data and information availability has been increasing rapidly and has provided users with knowledge on entities change and movement in a system. Cellular Geography model applies Cellular Automata on Geographic data by defining transition rules to the data grid. This paper presents the techniques for extracting transition rule(s from time series data grids, using multiple linear regression analysis. Clustering technique is applied to minimize the number of transition rules, which can be offered and chosen to change a new unknown grid. Each centroid of a cluster is associated with a transition rule and a grid of data. The chosen transition rule is associated with grid that has a minimum distance to the new data grid to be simulated. Validation of the model can be provided either quantitatively through an error measurement or qualitatively by visualizing the result of the simulation process. The visualization can also be more informative by adding the error information. Increasing number of cluster may give possibility to improve the simulation accuracy.

  13. Effect of Procyanidin-rich Extract from Natural Cocoa Powder on Cellular Viability, Cell Cycle Progression, and Chemoresistance in Human Epithelial Ovarian Carcinoma Cell Lines

    Science.gov (United States)

    Taparia, Shruti; Khanna, Aparna

    2016-01-01

    Background: Over the last 400 years, cocoa and chocolate have been described as having potential medicinal value, being consumed as a beverage or eaten as food. Concentration–dependant, antiproliferation, and cytotoxic effects of some of their polyphenolic constituents have been demonstrated against various cancers. Such an effect remains to be demonstrated in ovarian cancer Objective: To investigate the effect of cocoa procyanidins against ovarian cancer in vitro using OAW42 and OVCAR3 cell lines. Materials and Methods: Cocoa procyanidins were extracted and enriched from non alkalized cocoa powder. The polyphenolic content and antioxidant activity were determined. Effect on cell viability was determined after the treatment with ≤1000 μg/mL cocoa procyanidin-rich extract on OAW42 and OVCAR3 and normal human dermal fibroblasts. Similarly, chemosensitization effect was determined by pretreating cancer cell lines with extract followed by doxorubicin hydrochloride treatment. The effect of treatment on cell cycle and P-glycoprotein (P-gp) expression was determined using flow cytometry. Results: The cocoa extract showed high polyphenolic content and antioxidant activity. Treatment with extract caused cytotoxicity and chemosensitization in OAW42 and OVCAR3 cell lines. Normal dermal fibroblasts showed an increase in cell viability post treatment with extract. Treatment with extract affected the cell cycle and an increasing percentage of cells in hypodiploid sub-G1/G0 phase was observed. Treatment of OVCAR3 with the extract caused reduction of P-gp expression. Conclusion: Cocoa procyanidins were found to be selectively cytotoxic against epithelial ovarian cancer, interfered with the normal cell cycle and sensitized cells to subsequent chemotherapeutic treatment. Chemosensitization was found to be associated with P-gp reduction in OVCAR3 cells. SUMMARY Among the naturally occurring flavonoids, procyanidins have been shown to be effective against cancersNon alkalized

  14. NucleoCounter—An efficient technique for the determination of cell number and viability in animal cell culture processes

    OpenAIRE

    Shah, Dimpalkumar; Naciri, Mariam; Clee, Paul; Al-Rubeai, Mohamed

    2006-01-01

    The NucleoCounter is a novel, portable cell counting device based on the principle of fluorescence microscopy. The present work establishes its use with animal cells and checks its reliability, consistency and accuracy in comparison with other cytometric techniques. The main advantages of this technique are its ability to handle a large number of samples with a high degree of precision and its simplicity and specificity in detecting viable cells quantitatively in a heterogeneous culture. The ...

  15. NucleoCounter-An efficient technique for the determination of cell number and viability in animal cell culture processes.

    Science.gov (United States)

    Shah, Dimpalkumar; Naciri, Mariam; Clee, Paul; Al-Rubeai, Mohamed

    2006-05-01

    The NucleoCounter is a novel, portable cell counting device based on the principle of fluorescence microscopy. The present work establishes its use with animal cells and checks its reliability, consistency and accuracy in comparison with other cytometric techniques. The main advantages of this technique are its ability to handle a large number of samples with a high degree of precision and its simplicity and specificity in detecting viable cells quantitatively in a heterogeneous culture. The work addresses and overcomes the problems of subjectivity, and some of the inherent sampling errors associated with using the traditional haemocytometer and Trypan Blue exclusion method. NucleoCounter offers reduced intra- and inter-observer variation as well as consistency in repetitive analysis that establishes it as an efficient and highly potential device for at-line monitoring of animal cell processes. Furthermore, since the only manual steps required are sample aspiration and mixing with two reagents, it is feasible that the whole method could be automated and brought on-line for process monitoring and control. PMID:19002893

  16. Comparison of Cell formation techniques in Cellular manufacturing using three cell formation algorithms

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Giri

    2016-01-01

    Full Text Available In the present era of globalization and competitive market, cellular manufacturing has become a vital tool for meeting the challenges of improving productivity, which is the way to sustain growth. Getting best results of cellular manufacturing depends on the formation of the machine cells and part families. This paper examines advantages of ART method of cell formation over array based clustering algorithms, namely ROC-2 and DCA. The comparison and evaluation of the cell formation methods has been carried out in the study. The most appropriate approach is selected and used to form the cellular manufacturing system. The comparison and evaluation is done on the basis of performance measure as grouping efficiency and improvements over the existing cellular manufacturing system is presented.

  17. Design and Implementation of 16-bit Arithmetic Logic Unit using Quantum dot Cellular Automata (QCA Technique

    Directory of Open Access Journals (Sweden)

    Rashmi Pandey

    2014-09-01

    Full Text Available Quantum Dot Cellular Automata (QCA is an advanced nanotechnology that attempts to create general computational at the nano-scale by controlling the position of single electrons. Quantum dot cellular automata (QCA defines a new device architecture that permits the innovative design of digital systems. QCA technology has large potential in terms of high space density and power dissipation with the development of the faster computer with smaller size & low power consumption.QCA help us to overcome the limitations of CMOS technology. In this paper, A design 16-bit arithmetic logic unit (ALU based on the Quantum dot cellular automata (QCA is presented. The simulation result of 16 bit ALU is verified using QCA Designer tool.

  18. Dosimetric techniques for the evaluation of the EM power absorption induced by cellular phones

    International Nuclear Information System (INIS)

    International guidelines, ICNIRP, and proposed standards, IEEE-ANSI, define basic restrictions in terms of rate of power absorbed for mass unit (SAR) for localised exposure of electromagnetic fields such as in the near field region of cellular phones. Compliance tests of cellular phones consist in checking that emitted power from mobile telecommunication equipment (MTE) is below the reference levels and they are performed by assessing the absorbed power in specific head phantoms. The outcome of this work is the description of experimental procedures for evaluating SAR induced into the head by localised exposure. The set up instituted for compliance testing of MTE is described with the different components: dielectric simulators, electric field sensors, scanning system, remote control and data recording. Calibration procedures of E sensors and uncertainty evaluation of measures are presented. Finally the results of a comparison among a few European laboratories and of a test of some hand-set devices are shown. (author)

  19. Techniques to Study Specific Cell-Surface Receptor-Mediated Cellular Vitamin A Uptake

    OpenAIRE

    KAWAGUCHI, RIKI; Sun, Hui

    2010-01-01

    STRA6 is a multitransmembrane domain protein that was recently identified as the cell-surface receptor for plasma retinol binding protein (RBP), the vitamin A carrier protein in the blood. STRA6 binds to RBP with high affinity and mediates cellular uptake of vitamin A from RBP. It is not homologous to any known receptors, transporters, and channels, and it represents a new class of membrane transport protein. Consistent with the diverse physiological functions of vitamin A, STRA6 is widely ex...

  20. Evolution of secondary cellular circulation flow above submarine bedforms imaged by remote sensing techniques

    OpenAIRE

    Hennings, Ingo; Herbers, Dagmar

    2013-01-01

    Normalized radar cross section (NRCS) modulation and acoustic Doppler current profiler (ADCP) measurements above submarine sand ribbons and sand waves are presented. The two study areas are located in the Southern Bight of the North Sea at the Birkenfels wreck and in the sand wave field of the Lister Tief in the German Bight of the North Sea. These measurements reveal the developments of secondary cellular circulations in tidally induced coastal sea areas. Secondary circulation cells can deve...

  1. Concrete construction and properties of the difference equation derived from the cellular automaton using the filtration technique

    Science.gov (United States)

    Watanabe, Tomonori

    2002-01-01

    Following the proposal of a filtration technique by Nobe, Satsuma and Tokihiro, we concretely construct partial difference equations, which preserve any time evolution patterns of cellular automaton (CA) stably by the filtration technique. We illustrate how to develop a method of filtration for applying to the typical two spatial dimensional CA rule - the game of life - and verify that the filtration method provides the stable difference equation associated with the CA, compared with the inverse ultradiscretization. Besides, in order to discuss whether the filtration technique can lead one to partial differential equations from CA rules, we show a derivation of the Burgers equation from Rule 184 CA via the discrete Burgers equation constructed by the filtration method as an example.

  2. Evaluation of myocardial viability by MRI

    International Nuclear Information System (INIS)

    Distinguishing between viable and non-viable myocardium is an important clinical issue. Several magnetic resonance (MR) techniques to address this issue have been proposed. Spectroscopy of phosphorus-31 and hydrogen-1 from creatine as well as imaging of sodium-23 and potassium-39 reflect information related to cellular metabolism. The spatial and temporal resolutions of these techniques are limited, however, by the small magnitude of the MR signal. Proton imaging techniques include examination of pathologic alterations in MR relaxation times (T1 and T2), wall thickness and thickening, cine MRI combined with low-dose dobutamine, first-pass contrast enhancement patterns, and delayed contrast enhancement patterns. Of the proton imaging approaches, cine MRI combined with low-dose dobutamine is supported by the largest body of clinical evidence supporting the hypothesis that the technique yields useful information regarding myocardial viability. Recent data suggest that delayed contrast enhancement examines the transmural extent of viable myocardium irrespective of contractile function and that this technique should also be considered in a clinical setting. (orig.)

  3. Dairy goat kids fed liquid diets in substitution of goat milk and slaughtered at different ages: an economic viability analysis using Monte Carlo techniques.

    Science.gov (United States)

    Knupp, L S; Veloso, C M; Marcondes, M I; Silveira, T S; Silva, A L; Souza, N O; Knupp, S N R; Cannas, A

    2016-03-01

    The aim of this study was to analyze the economic viability of producing dairy goat kids fed liquid diets in alternative of goat milk and slaughtered at two different ages. Forty-eight male newborn Saanen and Alpine kids were selected and allocated to four groups using a completely randomized factorial design: goat milk (GM), cow milk (CM), commercial milk replacer (CMR) and fermented cow colostrum (FC). Each group was then divided into two groups: slaughter at 60 and 90 days of age. The animals received Tifton hay and concentrate ad libitum. The values of total costs of liquid and solid feed plus labor, income and average gross margin were calculated. The data were then analyzed using the Monte Carlo techniques with the @Risk 5.5 software, with 1000 iterations of the variables being studied through the model. The kids fed GM and CMR generated negative profitability values when slaughtered at 60 days (US$ -16.4 and US$ -2.17, respectively) and also at 90 days (US$ -30.8 and US$ -0.18, respectively). The risk analysis showed that there is a 98% probability that profitability would be negative when GM is used. In this regard, CM and FC presented low risk when the kids were slaughtered at 60 days (8.5% and 21.2%, respectively) and an even lower risk when animals were slaughtered at 90 days (5.2% and 3.8%, respectively). The kids fed CM and slaughtered at 90 days presented the highest average gross income (US$ 67.88) and also average gross margin (US$ 18.43/animal). For the 60-day rearing regime to be economically viable, the CMR cost should not exceed 11.47% of the animal-selling price. This implies that the replacer cannot cost more than US$ 0.39 and 0.43/kg for the 60- and 90-day feeding regimes, respectively. The sensitivity analysis showed that the variables with the greatest impact on the final model's results were animal selling price, liquid diet cost, final weight at slaughter and labor. In conclusion, the production of male dairy goat kids can be economically

  4. Ex vivo activity quantification in micrometastases at the cellular scale using the α-camera technique

    DEFF Research Database (Denmark)

    Chouin, Nicolas; Lindegren, Sture; Frost, Sofia H L;

    2013-01-01

    Targeted α-therapy (TAT) appears to be an ideal therapeutic technique for eliminating malignant circulating, minimal residual, or micrometastatic cells. These types of malignancies are typically infraclinical, complicating the evaluation of potential treatments. This study presents a method of ex...

  5. Time-lapse analysis of potential cellular responsiveness to Johrei, a Japanese healing technique

    Directory of Open Access Journals (Sweden)

    Moore Dan

    2005-01-01

    Full Text Available Abstract Background Johrei is an alternative healing practice which involves the channeling of a purported universal healing energy to influence the health of another person. Despite little evidence to support the efficacy of such practices the use of such treatments is on the rise. Methods We assessed cultured human cancer cells for potential responsiveness to Johrei treatment from a short distance. Johrei treatment was delivered by practitioners who participated in teams of two, alternating every half hour for a total of four hours of treatment. The practitioners followed a defined set of mental procedures to minimize variability in mental states between experiments. An environmental chamber maintained optimal growth conditions for cells throughout the experiments. Computerized time-lapse microscopy allowed documentation of cancer cell proliferation and cell death before, during and after Johrei treatments. Results Comparing eight control experiments with eight Johrei intervention experiments, we found no evidence of a reproducible cellular response to Johrei treatment. Conclusion Cell death and proliferation rates of cultured human cancer cells do not appear responsive to Johrei treatment from a short distance.

  6. Assessment of myocardial viability.

    Science.gov (United States)

    Travin, Mark I; Bergmann, Steven R

    2005-01-01

    The prevalence of left ventricular (LV) dysfunction and resultant congestive heart failure is increasing. Patients with this condition are at high risk for cardiac death and usually have significant limitations in their lifestyles. Although there have been advances in medical therapy resulting in improved survival and well being, the best and most definitive therapy, when appropriate, is revascularization. In the setting of coronary artery disease, accounting for approximately two thirds of cases of congestive heart failure, LV dysfunction often is not the result of irreversible scar but rather caused by impairment in function and energy use of still viable-myocytes, with the opportunity for improved function if coronary blood flow is restored. Patients with LV dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischemia but at the same time benefit most from revascularization. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy, whether using thallium-201, Tc-99m sestamibi, or Tc-99m tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management. Metabolic imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularization, including some patients referred instead for cardiac transplantation. Other noninvasive modalities, such as stress echocardiography, also facilitate the assessment of myocardial viability, but there are advantages and disadvantages compared with the nuclear techniques. Nuclear imaging appears to require fewer viable cells for detection, resulting in a higher sensitivity but a lower specificity than stress

  7. Maximin, Viability and Sustainability

    OpenAIRE

    Vincent Martinet; Luc Doyen

    2010-01-01

    The maximin criterion defines the highest utility level which can be sustained in an intergenerational equity perspective. The viability approach characterizes all the economic trajectories sustaining a given, not necessarily maximal, utility level. In this paper, we exhibit the strong links between maximin and viability: We show that the value function of the maximin problem can be obtained in the viability framework via a static optimization problem under constraints. This result allows us ...

  8. Approximating viability kernels with support vector machines

    OpenAIRE

    Deffuant, G.; Chapel, L.; Martin, S.

    2007-01-01

    We propose an algorithm which performs a progressive approximation of a viability kernel, iteratively using a classification method. We establish the mathematical conditions that the classification method should fulfill to guarantee the convergence to the actual viability kernel. We study more particularly the use of support vector machines (SVMs) as classification techniques. We show that they make possible to use gradient optimisation techniques to find a viable control at each time step, a...

  9. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    International Nuclear Information System (INIS)

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique

  10. Cellular Automata

    OpenAIRE

    Bagnoli, Franco

    1998-01-01

    An introduction to cellular automata (both deterministic and probabilistic) with examples. Definition of deterministic automata, dynamical properties, damage spreading and Lyapunov exponents; probabilistic automata and Markov processes, nonequilibrium phase transitions, directed percolation, diffusion; simulation techniques, mean field. Investigation themes: life, epidemics, forest fires, percolation, modeling of ecosystems and speciation. They represent my notes for the school "Dynamical Mod...

  11. Assessment of beta-emitter radionuclides in biological samples using liquid scintillation counting. Application to the study of internal doses in molecular and cellular biology techniques

    International Nuclear Information System (INIS)

    The radioisotopic techniques used in Molecular and Cellular Biology involve external and internal irradiation risk. It is necessary to control the possible internal contamination associated to the development of these techniques. The internal contamination risk can be due to physical and chemical properties of the labelled compounds, aerosols generated during the performance technique. The aim of this work was to estimate the possible intake of specific beta emitters during the technique development and to propose the required criterions to perform Individual Monitoring. The most representative radioisotopic techniques were selected attending their potential risk of internal contamination. Techniques were analysed applying IAEA methodology according to the used activity in each technique. It was necessary to identify the worker groups that would require individual monitoring on the base of their specific risk. Different measurement procedures were applied to study the possible intake in group risk and more than 160 persons were measured by in vitro bioassay. (Author) 96 refs

  12. Comparacion de la viabilidad de las semillas obtenidas por medio de las tecnicas de extraccion fisica por lavado y de germinacion Comparing the viability of seeds obtained by the physical extraction techniques VBP and VBP plus germination

    Directory of Open Access Journals (Sweden)

    M.S. Zuluaga

    2004-06-01

    Full Text Available El objetivo del presente trabajo fue comparar la viabilidad obtenida por la técnica de viabilidad por presión (VPP respecto de la viabilidad obtenida por una combinación de la metodología VPP más germinación. Asimismo se trató de establecer si ambos procedimientos determinan la viabilidad de las mismas especies o si existen diferencias en las especies establecidas como viables. El número de semillas viables estimado por la técnica VPP fue de 3475 (9,85% del total del banco de semillas, en tanto el número de semillas no viables fue de 31795 (90,15% del total del banco de semillas. Luego de aplicar la técnica de germinación (5 ciclos sobre ambas categorías, en las viables se obtuvo una germinación de 3286 semillas (9,32% del total del banco de semillas, no germinando 189 semillas (0,53% del total de dicho banco. Hubo un 7.23% adicional del banco de semillas que resultó viable por germinación, cuando previamente había sido considerado no viable por la técnica VPP. Los resultados alcanzados muestran que la técnica VPP realiza una subestimación significativa del banco de semillas, en tanto la sobreestimación no alcanzó niveles de significancia. Estos resultados ponen de manifiesto que con la técnica VPP no sólo se obtiene un menor número total de semillas viables, sino que no permitiría reflejar la verdadera proporción de semillas viables y no viables del banco total. Cuando se incorpora al análisis la técnica de germinación, se encuentra que la proporción del banco no es la misma de acuerdo a la metodología empleada, pues mientras la VPP establece, dentro del banco, semillas viables y no viables, se observó que aplicando la técnica de germinación algunas semillas consideradas viables no germinaron mientras que otras consideradas como no viables sí lo hiciero.The objective of this study was to compare the viability of seeds obtained through the techniques "viability by pressure" (VBP and "viability by pressure plus

  13. Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging

    International Nuclear Information System (INIS)

    In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

  14. Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chi Kook; Cho, Byoung Kwan [College of Agriculture and Life Science, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeon [National Acadamy of Agricultural Science, Daejeon (Korea, Republic of); Kim, Moon S. [Environmental Microbial and Food Safety Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agriculture, Washington (United States)

    2012-10-15

    In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

  15. Viability, invariance and applications

    CERN Document Server

    Carja, Ovidiu; Vrabie, Ioan I

    2007-01-01

    The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and issuing in K remains in K, at least for a short time.The book includes the most important necessary and sufficient conditions for viability starting with Nagumo's Viability Theorem for ordinary differential equations with continuous right-hand sides and continuing with the corresponding extensions either to differential inclusions or to semilinear or even fully nonlinear evolution equations, systems and inclusions. In th...

  16. Discrete Viability Theory

    Czech Academy of Sciences Publication Activity Database

    Augustová, Petra

    Banská Bystrica : Faculty of Natural Sciences, Matej Bel University, 2011, s. 1-17. [Visegrad Conference on Dynamical Systems 2011. Banská Bystrica (SK), 27.06.2011-03.07.2011] Grant ostatní: GA MŠk(CZ) GAP103/10/0628 Institutional research plan: CEZ:AV0Z10750506 Keywords : viability theory * iterations * discrete dynamical systems Subject RIV: BC - Control Systems Theory http://mathematics.fpv.umb.sk/vcds11/

  17. Viability in holder of irradiated cells: distinguish between repair and cell multiplication

    International Nuclear Information System (INIS)

    In experiments in which liquid holding recovery (LHR) was measured, the majority of cellular population is formed by non-viable cells and cell multiplication may be important for LHR expression. In order to distinguish between recuperation of viability (true LHR) and cell multiplication, it was necessary to employ improved plating techniques and a fluctuation test based on Poisson distribution. Our results are an indication that this fluctuation test, used together with the traditional method, is a good tool to distinguish repair from cell multiplication. (author)

  18. Viability Assessment Volume 1

    International Nuclear Information System (INIS)

    Since May 1996, under its draft Civilian Radioactive Waste Management Program Plan (DOE 1996), DOE has been carrying out a 5-year program of work to support the decision in 2001 by the Secretary of Energy on whether or not to recommend the site to the President. Part of this program was to address major unresolved technical issues and to complete an assessment of the viability of the Yucca Mountain site by 1998. Affirming the DOE plans, Congress directed DOE in the 1997 Energy and Water Development Appropriations Act to provide a viability assessment of the Yucca Mountain site to Congress and the President. This Viability Assessment (VA) document is the DOE report to Congress and the President. They are expected to use the VA to make an informed decision about program direction and funding. Drawing on 15 years of scientific investigation and design work at Yucca Mountain, the VA summarizes a large technical basis of field investigations, laboratory tests, models, analyses, and engineering, described in cited references. The VA identifies the major uncertainties relevant to the technical defensibility of DOE analyses and designs, the DOE approach to managing these uncertainties, and the status of work toward the site recommendation and LA. The VA also identifies DOE plans for the remaining work, and the estimated costs of completing an LA and constructing and operating a repository. The attention to uncertainties is important because DOE must evaluate how the repository will perform during the next 10,000 years or longer. Uncertainties exist because of variability in the natural (geologic and hydrologic) systems at Yucca Mountain and because of imperfect scientific understanding of the natural processes that might affect the repository system. This is Volume 1 and it covers, Introduction and Site Characteristics, includes a high-level summary of the results of the VA and some additional background information. (The overview is bound separately.) Section 1 of Volume

  19. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique

    International Nuclear Information System (INIS)

    This paper reports on work in developing a cellular automaton (CA) model coupling with a topology deformation technique to simulate the microstructural evolution of 30Cr2Ni4MoV rotor steel during the high-temperature austenitizing and dynamic recrystallization (DRX). The state transition rules for simulating the normal grain growth was established based on the curvature-driven mechanism, thermodynamic driving mechanism and established based on the curvature-driven mechanism, thermodynamic driving mechanism and the lowest energy principle. To describe the compression effect on the topology of grain deformation more accurately, the update topology deformation model was proposed in which a cellular coordinate system and a material coordinate system were established separately. The cellular coordinate system remains unchangeable, but the material coordinate system and the corresponding grain boundary shape will change with deformation in the update topology deformation model. The effects of a wide range of thermomechanical parameters (e.g., temperature and strain rate) on the DRX kinetics and mean grain size were investigated. It was found that increasing the temperature and/or decreasing the strain rate can reduce the incubation period, and decreasing the temperature and/or increasing the strain rate can refine the DRX grain size. The simulation results are validated by comparing the experimental results.

  20. Integrated cellular systems

    Science.gov (United States)

    Harper, Jason C.

    The generation of new three-dimensional (3D) matrices that enable integration of biomolecular components and whole cells into device architectures, without adversely altering their morphology or activity, continues to be an expanding and challenging field of research. This research is driven by the promise that encapsulated biomolecules and cells can significantly impact areas as diverse as biocatalysis, controlled delivery of therapeutics, environmental and industrial process monitoring, early warning of warfare agents, bioelectronics, photonics, smart prosthetics, advanced physiological sensors, portable medical diagnostic devices, and tissue/organ replacement. This work focuses on the development of a fundamental understanding of the biochemical and nanomaterial mechanisms that govern the cell directed assembly and integration process. It was shown that this integration process relies on the ability of cells to actively develop a pH gradient in response to evaporation induced osmotic stress, which catalyzes silica condensation within a thin 3D volume surrounding the cells, creating a functional bio/nano interface. The mechanism responsible for introducing functional foreign membrane-bound proteins via proteoliposome addition to the silica-lipid-cell matrix was also determined. Utilizing this new understanding, 3D cellular immobilization capabilities were extended using sol-gel matrices endowed with glycerol, trehalose, and media components. The effects of these additives, and the metabolic phase of encapsulated S. cerivisiase cells, on long-term viability and the rate of inducible gene expression was studied. This enabled the entrapment of cells within a novel microfluidic platform capable of simultaneous colorimetric, fluorescent, and electrochemical detection of a single analyte, significantly improving confidence in the biosensor output. As a complementary approach, multiphoton protein lithography was utilized to engineer 3D protein matrices in which to

  1. Viability of mesenchymal stem cells during electrospinning

    Directory of Open Access Journals (Sweden)

    G. Zanatta

    2012-02-01

    Full Text Available Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

  2. Absolute zinc quantification at the sub-cellular level by combined use of hard X-ray fluorescence and phase contrast imaging techniques

    International Nuclear Information System (INIS)

    Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to obtain quantitative maps of the projected zinc mass fraction in whole cell of PC12 cell lines. The experiments were performed on freeze dried cells at the nano-imaging station ID22NI of the European Synchrotron Radiation Facility (ESRF). X-ray fluorescence analysis gives the areal mass of most major, minor and trace elements while quantitative phase contrast imaging provides maps of the projected mass. The combined method was validated on calibration samples by comparison with other alternative techniques such as Atomic Force Microscopy (AFM) and Scanning Transmission Ion Microscopy (STIM). Up to now, absolute quantification at the sub-cellular level was impossible using X-ray fluorescence microscopy but can be reached for the first time with the use of the proposed approach

  3. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  4. Influence of location-dependent protuberance damage on cell viability

    Institute of Scientific and Technical Information of China (English)

    YANG HaiFeng; ZHOU Ming; DI JianKe; ZHAO EnLan; YANG PeiFang; GONG AiHua; SUN XiangLan

    2009-01-01

    The influence of femtosecond laser-induced damages on viability of olfactory ensheathing cells (OECs) is investigated. Several cytokinetic processes including cellular damage, recovery and death are dis-cussed. Using femtosecond laser with the power of 100 μW and cutting speed of 2 μm/s, we cut the cellular protuberance with smaller diameter twice in different locations, and then observe the viability of the damaged cells. Under the same conditions, the root of protuberance with larger diameter is cut six times to observe changes of cellular shape. Whether the damage is located in the end, middle or root of protuberance with smaller diameter, the cell viability can recover within 3 h. When the damage is located in the root of protuberance with larger diameter, the damaged cell will die in the way of oncoais. Cytokinetic phenomena including intracellular high Ca2+ concentration, cellular morphologic change, recovery and oncosis are discussed. Meanwhile, high Ca2+ concentration is observed after femtosec-ond laser surgery. Therefore, femtosecond laser surgery is an important tool for establishing cell damage model and studying cytokinetics.

  5. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  6. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    KAUST Repository

    Marquet, Pierre

    2014-09-22

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

  7. Cellular Cardiomyoplasty: Clinical Application

    OpenAIRE

    Chachques, J. (J.); Acar, C; J. Herreros; Trainini, J. (Jorge); Prosper, F.; D’Attellis, N. (N.); Fabiani, J. N.; Carpentier, A

    2004-01-01

    Myocardial regeneration can be induced with the implantation of a variety of myogenic and angiogenic cell types. More than 150 patients have been treated with cellular cardiomyoplasty worldwide, 18 patients have been treated by our group. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit postischemic remodelling, and restore regional myocardial contractility. Techniques for skeletal myoblasts culture and ex vivo expansion using auto...

  8. Direct In Situ Viability Assessment of Bacteria in Probiotic Dairy Products Using Viability Staining in Conjunction with Confocal Scanning Laser Microscopy

    OpenAIRE

    Auty, M. A. E.; Gardiner, G. E.; McBrearty, S. J.; O'Sullivan, E. O.; Mulvihill, D M; Collins, J K; Fitzgerald, G. F.; Stanton, C; Ross, R.P

    2001-01-01

    The viability of the human probiotic strains Lactobacillus paracasei NFBC 338 and Bifidobacterium sp. strain UCC 35612 in reconstituted skim milk was assessed by confocal scanning laser microscopy using the LIVE/DEAD BacLight viability stain. The technique was rapid (

  9. Birth, meaningful viability and abortion.

    Science.gov (United States)

    Jensen, David

    2015-06-01

    What role does birth play in the debate about elective abortion? Does the wrongness of infanticide imply the wrongness of late-term abortion? In this paper, I argue that the same or similar factors that make birth morally significant with regard to abortion make meaningful viability morally significant due to the relatively arbitrary time of birth. I do this by considering the positions of Mary Anne Warren and José Luis Bermúdez who argue that birth is significant enough that the wrongness of infanticide does not imply the wrongness of late-term abortion. On the basis of the relatively arbitrary timing of birth, I argue that meaningful viability is the point at which elective abortion is prima facie morally wrong. PMID:25012846

  10. Wildlife Tunnel Enhances Population Viability

    OpenAIRE

    Michael McCarthy; Dean Heinze; Rodney van der Ree; Ian Mansergh

    2009-01-01

    Roads and traffic are pervasive components of landscapes throughout the world: they cause wildlife mortality, disrupt animal movements, and increase the risk of extinction. Expensive engineering solutions, such as overpasses and tunnels, are increasingly being adopted to mitigate these effects. Although some species readily use such structures, their success in preventing population extinction remains unknown. Here, we use population viability modeling to assess the effectiveness of tunnels f...

  11. Rapid onsite assessment of spore viability.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  12. Myocardial viability with a new technique in the echocardiogram of stress. Viabilidad miocárdica con una nueva técnica en la ecocardiografía de estrés.

    Directory of Open Access Journals (Sweden)

    Angel G. Obregón Santos

    2004-12-01

    Full Text Available Introduction: Inside the different diagnostic methods to identify myocardial viability, the stress Echocardiography is one of the broadly most utilized in the clinical practice. Objective: To determine the precision in the diagnosis of viable myocardium of digitized images of stress echocardiography with Dobutamina. Methods: To 15 patients in those that areas of myocardial viability were detected, through the images kept in the hard disk of a computer, and that they were accepted for treatment interventionist of angioplastìa more stent, they were carried out ventriculography later on, to contrast with the realized previous diagnosis. The Positive Predictive Value (VPP was determined, the stocking of the Ejection fraction and the Index of myocardial contractility. Results: The viability for treatment interventionist was reached in the 15 patients proposed by echocardiography, and there was improvement of the ejection fraction, of the contractility index and the angina. The VPP was of 100%. Reoclusion was verified to the 30 days of the intervention in 13,3% of the patients. Summations: The digitized images allow a better real quantitative analysis outside of the ecocardiograph, with high precision and easy access.

    Fundamento: Dentro de los distintos métodos diagnósticos para identificar viabilidad miocárdica, la ecocardiografía de estrés es uno de los más ampliamente utilizados en la práctica clínica. Objetivo: Determinar la precisión en el diagnóstico de miocardio viable de imágenes digitalizadas de ecocardiografía de estrés con dobutamina. Métodos: Estudio realizado a 15 pacientes en los que se detectaron áreas de viabilidad miocárdica, a través de las imágenes guardadas en el disco duro de una computadora, y que fueron aceptados para

  13. Myocardial Viability: What We Knew and What Is New

    Directory of Open Access Journals (Sweden)

    Adel Shabana

    2012-01-01

    Full Text Available Some patients with chronic ischemic left ventricular dysfunction have shown significant improvements of contractility with favorable long-term prognosis after revascularization. Several imaging techniques are available for the assessment of viable myocardium, based on the detection of preserved perfusion, preserved glucose metabolism, intact cell membrane and mitochondria, and presence of contractile reserve. Nuclear cardiology techniques, dobutamine echocardiography and positron emission tomography are used to assess myocardial viability. In recent years, new advances have improved methods of detecting myocardial viability. This paper summarizes the pathophysiology, methods, and impact of detection of myocardial viability, concentrating on recent advances in such methods. We reviewed the literature using search engines MIDLINE, SCOUPS, and EMBASE from 1988 to February 2012. We used key words: myocardial viability, hibernation, stunning, and ischemic cardiomyopathy. Recent studies showed that the presence of viable myocardium was associated with a greater likelihood of survival in patients with coronary artery disease and LV dysfunction, but the assessment of myocardial viability did not identify patients with survival benefit from revascularization, as compared with medical therapy alone. This topic is still debatable and needs more evidence.

  14. Loss of rachis cell viability is associated with ripening disorders in grapes

    OpenAIRE

    Hall, Geoffrey E.; Bondada, Bhaskar R.; Keller, Markus

    2010-01-01

    Rachises of grape (Vitis vinifera L.) clusters that appeared healthy or displayed symptoms of the ripening disorders berry shrivel (BS) or bunch-stem necrosis (BSN) were treated with the cellular viability stain fluorescein diacetate and examined by confocal microscopy. Clusters with BS and BSN symptoms experienced a decrease of cell viability throughout the rachis, and their berries contained 70–80% less sugar than healthy berries. The xylem-mobile dye basic fuchsin, infiltrated via the cut ...

  15. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    Science.gov (United States)

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  16. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    Directory of Open Access Journals (Sweden)

    Donna Vanhauteghem

    Full Text Available Our previous work described a clear loss of Escherichia coli (E. coli membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine and N,N-dimethylglycine (DMG, but not N,N,N-trimethylglycine (betaine, under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.

  17. Spatial and Temporal Measurements of Temperature and Cell Viability in Response to Nanoparticle Mediated Photothermal Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Jon R [ORNL; Rodgers, Amanda [Virginia Polytechnic Institute and State University; Harvie, Erica [Virginia Polytechnic Institute and State University; Carswell, William [Virginia Polytechnic Institute and State University; Torti, Suzy [Wake Forest University, Winston-Salem; Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL; Geohegan, David B [ORNL; Rylander, Christopher [Virginia Polytechnic Institute and State University; Rylander, Nichole M [Virginia Polytechnic Institute and State University

    2012-01-01

    Aim: Nanoparticle enhanced photothermal therapy is a promising alternative to tumor resection. However, quantitative measurements of cellular response to these treatments are limited. This paper introduces a Bimodal Enhanced Analysis of Spatiotemporal Temperature (BEAST) algorithm to rapidly determine the viability of cancer cells in vitro following photothermal therapy alone or in combination with nanoparticles. Materials & Methods: To illustrate the capability of the BEAST viability algorithm, single wall carbon nanohorns were added to renal cancer (RENCA) cells in vitro and time-dependent spatial temperature maps measured with an infrared camera during laser therapy were correlated with post-treatment cell viability distribution maps obtained by cell-staining fluorescent microscopy. Conclusion: The BEAST viability algorithm accurately and rapidly determined the cell viability as function of time, space, and temperature.

  18. Tychastic measure of viability risk

    CERN Document Server

    Aubin, Jean-Pierre; Dordan, Olivier

    2014-01-01

    This book presents a forecasting mechanism of the price intervals for deriving the SCR (solvency capital requirement) eradicating the risk during the exercise period on one hand, and measuring the risk by computing the hedging exit time function associating with smaller investments the date until which the value of the portfolio hedges the liabilities on the other. This information, summarized under the term “tychastic viability measure of risk” is an evolutionary alternative to statistical measures, when dealing with evolutions under uncertainty. The book is written by experts in the field and the target audience primarily comprises research experts and practitioners.

  19. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  20. Effect of ethanolic extract of propolis on cell viability of chinese hamster ovary cells (CHO-K1) irradiated with 60CO gamma-rays using differential staining technique

    International Nuclear Information System (INIS)

    The objective of present study was to assess the effect of Brazilian propolis (AF-08) on CHO-K1 cells irradiated with 60Co, through the differential staining technique, using acridine orange and ethidium bromide. The cells were pre-incubated with different concentrations of propolis (50, 100 and 200 μg/mL) for 24h and irradiated with 5 Gy, analyzed at 24 and 48h after exposure. This technique is based on the cell capacity to incorporate fluorescent DNA dyes, where the viable (green), apoptotic (orange/yellow) and necrotic (red) cells can be identified through fluorescence microscopy. Digital high-resolution images were acquired from at least 5 visualization fields, and cells were analyzed using ImageJ and Flowing software. This approach permitted to analyze a large number of cells/sample with the time reduction, much easier and faster, proportioning more statistical power of the technique. The treatment with propolis only was not cytotoxic at 24 and 48h, except for the higher concentration of 200 μg/mL associated or not with radiation, increasing apoptotic and mainly necrotic cells (p<0.001). The data showed a promising use of propolis as well as technique used, pointing out that 200 μg/mL of propolis was cytotoxic, but at lower one (50 μg/mL) presented a radioprotective effect in irradiated CHO-K1 cells. (author)

  1. Effect of ethanolic extract of propolis on cell viability of chinese hamster ovary cells (CHO-K1) irradiated with {sup 60}CO gamma-rays using differential staining technique

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Marcos P.M. de; Castro, Renato F. de; Okazaki, Kayo; Vieira, Daniel P., E-mail: dpvieira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The objective of present study was to assess the effect of Brazilian propolis (AF-08) on CHO-K1 cells irradiated with {sup 60}Co, through the differential staining technique, using acridine orange and ethidium bromide. The cells were pre-incubated with different concentrations of propolis (50, 100 and 200 μg/mL) for 24h and irradiated with 5 Gy, analyzed at 24 and 48h after exposure. This technique is based on the cell capacity to incorporate fluorescent DNA dyes, where the viable (green), apoptotic (orange/yellow) and necrotic (red) cells can be identified through fluorescence microscopy. Digital high-resolution images were acquired from at least 5 visualization fields, and cells were analyzed using ImageJ and Flowing software. This approach permitted to analyze a large number of cells/sample with the time reduction, much easier and faster, proportioning more statistical power of the technique. The treatment with propolis only was not cytotoxic at 24 and 48h, except for the higher concentration of 200 μg/mL associated or not with radiation, increasing apoptotic and mainly necrotic cells (p<0.001). The data showed a promising use of propolis as well as technique used, pointing out that 200 μg/mL of propolis was cytotoxic, but at lower one (50 μg/mL) presented a radioprotective effect in irradiated CHO-K1 cells. (author)

  2. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  3. Bacterial plasmolysis as a physical indicator of viability

    Energy Technology Data Exchange (ETDEWEB)

    Korber, D.R.; Choi, A.; Wolfaardt, G.M.; Caldwell, D.E. [Univ. of Saskatchewan, Saskatoon (Canada)

    1996-11-01

    Bacterial plasmolytic response to osmotic stress was evaluated as a physical indicator of membrane integrity and hence cellular viability. Digital image analysis and either low-magnification dark-field, high-magnification phase-contrast, or confocal laser microscopy, in conjunction with pulse application of a 1.5 NaCl solution, were used as a rapid, growth-independent method for quantifying the viability of attached biofilm bacteria. Bacteria were considered viable if they were capable of plasmolysis, as quantified by changes in cell area or light scattering. When viable Salmonella enteritidis biofilm cells were exposed to 1.5 M NaCl, and {approximately}50% reduction in cell protoplast area (as determined by high-magnification phase-contrast microscopy) was observed. In contrast, heat- and formalin-killed S. enteritidis cells were unresponsive to NaCl treatment. Furthermore, the mean dark-field cell area of a viable, sessile population of Pseudomonas fluorescens cells ({approximately}1,100 cells) increased by 50% as a result of salt stress, from 1,035 {+-} 162 to 1,588 {+-} 284 {mu}m{sup 2}, because of increased light scattering of the condensed, plasmolyzed cell protoplast. Light scattering of ethanol-killed control biofilm cells underwent little change following salt stress. When the results obtained with scanning confocal laser microscopy and a fluorescent viability probe were compared with the accuracy of plasmolysis as a viability indicator, it was found that the two methods were in close agreement. Used alone or in conjunction with fluorochemical probes, physical indicators of membrane integrity provided a rapid, direct, growth-independent method for determining the viability of biofilm bacteria known to undergo plasmolysis, and this method may have value during efficacy testing of biocides and other antimicrobial agents when nondestructive time course analyses and required. 42 refs., 7 figs.

  4. Non-disruptive measurement system of cell viability in bioreactors

    Science.gov (United States)

    Rudek, F.; Nelsen, B. L.; Baselt, T.; Berger, T.; Wiele, M.; Prade, I.; Hartmann, P.

    2016-04-01

    Nutrient and oxygen transport, as well as the removal of metabolic waste are essential processes to support and maintain viable tissue. Current bioreactor technology used to grow tissue cultures in vitro has a fundamental limit to the thickness of tissues. Based on the low diffusion limit of oxygen a maximum tissue thickness of 200 μm is possible. The efficiency of those systems is currently under investigation. During the cultivation process of the artificial tissue in bioreactors, which lasts 28 days or longer, there are no possibilities to investigate the viability of cells. This work is designed to determine the influence of a non-disruptive cell viability measuring system on cellular activity. The measuring system uses a natural cellular marker produced during normal metabolic activity. Nicotinamide adenine dinucleotide (NADH) is a coenzyme naturally consumed and produced during cellular metabolic processes and has thoroughly been studied to determine the metabolic state of a cell. Measuring the fluorescence of NADH within the cell represents a non-disruptive marker for cell viability. Since the measurement process is optical in nature, NADH fluorescence also provides a pathway for sampling at different measurement depths within a given tissue sample. The measurement system we are using utilizes a special UV light source, to excite the NADH fluorescence state. However, the high energy potentially alters or harms the cells. To investigate the influence of the excitation signal, the cells were irradiated with a laser operating at a wavelength of 355 nm and examined for cytotoxic effects. The aim of this study was to develop a non-cytotoxic system that is applicable for large-scale operations during drug-tissue interaction testing.

  5. Viability of telework at PROCEMPA.

    Science.gov (United States)

    Fetzner, Maria Amelia de Mesquita

    2003-02-01

    At the end of the 20th century, telework appears as one of the modalities of flexible work, which is related to new organizational structures as well as to increasing use of technology. It revolutionizes the traditional ways of performing work. Its implementation creates a number of questions to be answered by the organizations and the individuals involved. This article presents a case study on the viability of implementing telework at Procempa (The Data Processing Company of the City of Porto Alegre). The case study analyzes the technical, organizational, psychological, legal, and labor union dimensions. As a result of this study, we can identify the organization's stage of readiness for telework, the conditions under which it would be implemented, and the specific issues of an implementation. PMID:12650560

  6. Wildlife Tunnel Enhances Population Viability

    Directory of Open Access Journals (Sweden)

    Michael McCarthy

    2009-12-01

    Full Text Available Roads and traffic are pervasive components of landscapes throughout the world: they cause wildlife mortality, disrupt animal movements, and increase the risk of extinction. Expensive engineering solutions, such as overpasses and tunnels, are increasingly being adopted to mitigate these effects. Although some species readily use such structures, their success in preventing population extinction remains unknown. Here, we use population viability modeling to assess the effectiveness of tunnels for the endangered Mountain Pygmy-possum (Burramys parvus in Australia. The underpasses reduced, but did not completely remove, the negative effects of a road. The expected minimum population size of a “reconnected” population remained 15% lower than that of a comparable “undivided” population. We propose that the extent to which the risk of extinction decreases should be adopted as a measure of effectiveness of mitigation measures and that the use of population modeling become routine in these evaluations.

  7. Cellular resilience.

    Science.gov (United States)

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  8. Cell Attachment and Viability Study of PCL Nano-fiber Modified by Cold Atmospheric Plasma.

    Science.gov (United States)

    Atyabi, Seyed Mohammad; Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Mivehchi, Houri; Nagheh, Zahra

    2016-06-01

    The field of tissue engineering is an emerging discipline which applies the basic principles of life sciences and engineering to repair and restore living tissues and organs. The purpose of this study was to investigate the effect of cold and non-thermal plasma surface modification of poly (ϵ-caprolactone) (PCL) scaffolds on fibroblast cell behavior. Nano-fiber PCL was fabricated through electrospinning technique, and some fibers were then treated by cold and non-thermal plasma. The cell-biomaterial interactions were studied by culturing the fibroblast cells on nano-fiber PCL. Scaffold biocompatibility test was assessed using an inverted microscope. The growth and proliferation of fibroblast cells on nano-fiber PCL were analyzed by MTT viability assay. Cellular attachment on the nano-fiber and their morphology were evaluated using scanning electron microscope. The result of cell culture showed that nano-fiber could support the cellular growth and proliferation by developing three-dimensional topography. The present study demonstrated that the nano-fiber surface modification with cold plasma sharply enhanced the fibroblast cell attachment. Thus, cold plasma surface modification greatly raised the bioactivity of scaffolds. PMID:27286857

  9. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading

    DEFF Research Database (Denmark)

    Wu, Zhigang; Hjort, Klas; Wicher, Grzegorz;

    2008-01-01

    A high viability microfluidic cell separation technique of high throughput was demonstrated based on size difference continuous mode hydrodynamic spreading with viscoelastic tuning. Using water with fluorescent dye as sample fluid and in parallel introducing as elution a viscoelastic biocompatibl...

  10. Graphene's Viability for Fusion Applications

    Science.gov (United States)

    Navarro, Marcos; Hall, Karla; Rojas, Richard; Santarius, John; Kulcinski, Gerald

    2015-11-01

    Graphene is a source of interest for multiple applications due to its unusual electronic and physical properties. As a coating material, it has reduced oxidation of the main substrate, though no effort has been reported of testing it under fusion conditions. A number of experimental studies have established that defect-free graphene is an excellent barrier material for gases. We explore its viability to maintain a significant pressure difference under ion irradiation. Deuterium is used as a projectile on graphene coated silicon over a range of 10-50 keV energies and various fluences. The vacancy yield (amount of damage) and natural resonance for graphene are found at around 1350 cm-1 and 1550 cm-1, respectively. Damage of each sample is quantified via Raman spectroscopy (RS) using the ratio of the intensities at these wavenumbers. Graphene is also tested here as a coating for some fusion components. Though tungsten is a very promising divertor and first wall candidate, after intense irradiation, it is prone to developing fuzz or grass structures, leading to a diminished lifetime. Graphene grown on tungsten is tested under reactor conditions with 30 keV He ions at several fluences, and the sputtering of both materials is studied via RS and Scanning Electron Microscopy. This work was supported by the Graduate Engineering Research Scholars and the TEAM-Science program at the University of Wisconsin-Madison.

  11. Evaluation of skin viability effect on ethosome and liposome-mediated psoralen delivery via cell uptake.

    Science.gov (United States)

    Zhang, Yong-Tai; Shen, Li-Na; Wu, Zhong-Hua; Zhao, Ji-Hui; Feng, Nian-Ping

    2014-10-01

    This study investigated the effect of skin viability on its permeability to psoralen delivered by ethosomes, as compared with liposomes. With decreasing skin viability, the amount of liposome-delivered psoralen that penetrated through the skin increased, whereas skin deposition of psoralen from both ethosomes and liposomes reduced. Psoralen delivery to human-immortalized epidermal cells was more effective using liposomes, whereas delivery to human embryonic skin fibroblast cells was more effective when ethosomes were used. These findings agreed with those of in vivo studies showing that skin psoralen deposition from ethosomes and liposomes first increased and then plateaued overtime, which may indicate gradual saturation of intracellular drug delivery. It also suggested that the reduced deposition of ethosome- or liposome-delivered psoralen in skin with reduced viability may relate to reduced cellular uptake. This work indicated that the effects of skin viability should be taken into account when evaluating nanocarrier-mediated drug skin permeation. PMID:25070929

  12. Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner.

    Science.gov (United States)

    Kottyan, Leah C; Collier, Ann R; Cao, Khanh H; Niese, Kathryn A; Hedgebeth, Megan; Radu, Caius G; Witte, Owen N; Khurana Hershey, Gurjit K; Rothenberg, Marc E; Zimmermann, Nives

    2009-09-24

    The microenvironment of the lung in asthma is acidic, yet the effect of acidity on inflammatory cells has not been well established. We now demonstrate that acidity inhibits eosinophil apoptosis and increases cellular viability in a dose-dependent manner between pH 7.5 and 6.0. Notably, acidity induced eosinophil cyclic adenosine 5'-monophosphate (cAMP) production and enhanced cellular viability in an adenylate cyclase-dependent manner. Furthermore, we identify G protein-coupled receptor 65 (GPR65) as the chief acid-sensing receptor expressed by eosinophils, as GPR65-deficient eosinophils were resistant to acid-induced eosinophil cAMP production and enhanced viability. Notably, GPR65(-/-) mice had attenuated airway eosinophilia and increased apoptosis in 2 distinct models of allergic airway disease. We conclude that eosinophil viability is increased in acidic microenvironments in a cAMP- and GPR65-dependent manner. PMID:19641187

  13. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    OpenAIRE

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J

    2014-01-01

    Abstract. Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a sec...

  14. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  15. Cellular effects of LRRK2 mutations

    OpenAIRE

    Cookson, Mark R.

    2012-01-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are a relatively common cause of inherited Parkinson's disease (PD) but the mechanism(s) by which mutations lead to disease are poorly understood. Here, I will discuss what is known about LRRK2 in cellular models, focusing on specifically on assays that have been used to tease apart the effects of LRRK2 mutations on cellular phenotypes. LRRK2 expression has been suggested to cause loss of neuronal viability, although because it also has a stro...

  16. Cellular-based preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  17. Assessment of myocardial viability using PET

    International Nuclear Information System (INIS)

    The potential for recovery of left ventricular dysfunction after myocardial revascularization represents a practical clinical definition for myocardial viability. The evaluation of viable myocardium in patients with severe global left ventricular dysfunction due to coronary artery disease and with regional dysfunction after acute myocardial infarction is an important issue whether left ventricular dysfunction may be reversible or irreversible after therapy. If the dysfunction is due to stunning or hibernation, functional improvement is observed. But stunned myocardium may recover of dysfunction with no revascularization. Hibernation is chronic process due to chronic reduction in the resting myocardial blood flow. There are two types of myocardial hibernation; 'functional hibernation' with preserved contractile reserve and 'structural hibernation' without contractile reserve in segments with preserved glucose metabolism. This review focus on the application of F-18 FDG and other radionuclides to evaluate myocardial viability. In addition the factors influencing predictive value of FDG imaging for evaluating viability and the different criteria for viability are also reviewed

  18. Mammalian cell viability in electrospun composite nanofiber structures.

    Science.gov (United States)

    Canbolat, Mehmet Fatih; Tang, Christina; Bernacki, Susan H; Pourdeyhimi, Behnam; Khan, Saad

    2011-10-10

    Incorporation of mammalian cells into nanofibers (cell electrospinning) and multilayered cell-nanofiber structures (cell layering) via electrospinning are promising techniques for tissue engineering applications. We investigate the viability of 3T3-L1 mouse fibroblasts after incorporation into poly(vinyl alcohol) nanofibers and multilayering with poly(caprolactone) nanofibers and analyze the possible factors that affect cell viability. We observe that cells do not survive cell electrospinning but survive cell layering. Assessing the factors involved in cell electrospinning, we find that dehydration and fiber stretching are the main causes of cell death. In cell layering, the choice of solvent is critical, as residual solvent in the electrospun fibers could be detrimental to the cells. PMID:21984502

  19. Application of Bio-speckle Activity to Assess Seed Viability

    Directory of Open Access Journals (Sweden)

    Sen Men

    2015-05-01

    Full Text Available This study presents an assessment method for seed viability, using bio-speckle technique. Bio-speckle is caused by moving of the biological material under highly coherent light. If this phenomenon can be measured by successive speckle patterns during the period of germination, it is possible to identify different activities of the seeds. Viable and non-viable pisumsativum seeds were illuminated by a helium-neon laser source of 7mW with wavelength of 632.8 nm. The speckle patterns were recorded by a digital colour charge-couple device camera and stored in the host computer for further analysis using Matlab. Two methods were used to obtain information of biological activities from these speckle patterns. It was observed that the seeds activities can be distinguished as viable seeds and non-viable seeds. The results indicate that bio-speckle can be used to assess seed viability.

  20. Radiolabelled Cellular Blood Elements

    International Nuclear Information System (INIS)

    This volume contains the abstracts of the 5th International Symposion on Radiolabelling of Cellular Blood Elements to be held in Vienna, Austria, September 10-14, 1989. The Meeting is the fifth in a series of meetings designed to discuss the basics and clinical application of radiolabelling techniques. In these days, beside the search for new labelling agents and extending the knowledge in clinical use, the use of monoclonal antibodies is a big new challenge. All reviewed contributions that have been accepted for presentation are contained in this volume. (authors) 58 of them are of INIS scope

  1. Non-invasive imaging in detecting myocardial viability: Myocardial function versus perfusion

    Directory of Open Access Journals (Sweden)

    Iqbal A. Elfigih

    2014-12-01

    Full Text Available Coronary artery disease (CAD is the most prevalent and single most common cause of morbidity and mortality [1] with the resulting left ventricular (LV dysfunction an important complication. The distinction between viable and non-viable myocardium in patients with LV dysfunction is a clinically important issue among possible candidates for myocardial revascularization. Several available non-invasive techniques are used to detect and assess ischemia and myocardial viability. These techniques include echocardiography, radionuclide images, cardiac magnetic resonance imaging and recently myocardial computed tomography perfusion imaging. This review aims to distinguish between the available non-invasive imaging techniques in detecting signs of functional and perfusion viability and identify those which have the most clinical relevance in detecting myocardial viability in patients with CAD and chronic ischemic LV dysfunction. The most current available studies showed that both myocardial perfusion and function based on non-invasive imaging have high sensitivity with however wide range of specificity for detecting myocardial viability. Both perfusion and function imaging modalities provide complementary information about myocardial viability and no optimum single imaging technique exists that can provide very accurate diagnostic and prognostic viability assessment. The weight of the body of evidence suggested that non-invasive imaging can help in guiding therapeutic decision making in patients with LV dysfunction.

  2. Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner

    OpenAIRE

    Kottyan, Leah C.; Collier, Ann R.; Cao, Khanh H.; Niese, Kathryn A; Hedgebeth, Megan; Radu, Caius G.; Owen N Witte; Gurjit K Khurana Hershey; Rothenberg, Marc E.; Zimmermann, Nives

    2009-01-01

    The microenvironment of the lung in asthma is acidic, yet the effect of acidity on inflammatory cells has not been well established. We now demonstrate that acidity inhibits eosinophil apoptosis and increases cellular viability in a dose-dependent manner between pH 7.5 and 6.0. Notably, acidity induced eosinophil cyclic adenosine 5′-monophosphate (cAMP) production and enhanced cellular viability in an adenylate cyclase–dependent manner. Furthermore, we identify G protein-coupled receptor 65 (...

  3. The effect of temperature on the viability of human mesenchymal stem cells

    OpenAIRE

    Reissis, Yannis; García-Gareta, Elena; Korda, Michelle; Blunn, Gordon W.; Hua, Jia

    2013-01-01

    Introduction Impaction allograft with cement is a common technique used in revision hip surgeries for the last 20 years. However, its clinical results are inconsistent. Recent studies have shown that mesenchymal stem cells (MSCs) seeded onto allograft can enhance bone formation. This in vitro study investigates whether the increase in temperature related to the polymerisation of bone cement will affect the viability of human MSCs. Methods The viability of human MSCs was measured after incubat...

  4. Effects of Triclosan on Neural Stem Cell Viability and Survival

    Science.gov (United States)

    Park, Bo Kyung; Gonzales, Edson Luck T.; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  5. The use of fluorescent probes to assess viability of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis by flow cytometry

    NARCIS (Netherlands)

    Chitarra, L.G.; Breeuwer, P.; Abee, T.; Bulk, van den R.W.

    2006-01-01

    Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter

  6. Cellular bridges: Routes for intercellular communication and cell migration

    OpenAIRE

    Zani, Brett G.; Edelman, Elazer R.

    2010-01-01

    Cell-to-cell communication is the basis of all biology in multicellular organisms, allowing evolution of complex forms and viability in dynamic environments. Though biochemical interactions occur over distances, physical continuity remains the most direct means of cellular interactions. Cellular bridging through thin cytoplasmic channels—plasmodesmata in plants and tunneling nanotubes in animals—creates direct routes for transfer of signals and components, even pathogens, between cells. Recen...

  7. Effect of lecithin content blend with poly (L-lactic acid) on viability and proliferation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Lecithin constitutes a natural mixture of phospholipids and neutral lipids and plays critical roles in cellular membrane structure and cellular signaling. In this study, lecithin was blended with poly (L-lactic acid) (PLLA) for modifying the surface of PLLA because it might obtain appropriate hydrophilicity and biocompatibility. The modified PLLA films were manufactured using conventional solvent-casting technique. The hydrophilicity clearly increased with an increase of lecithin content in the polymer blends, as determined by measuring the water contact angle (WCA). The cytocompatibility and any potential cytotoxic effects were studied over 7 days by seeding mesenchymal stem cells (MSCs) on the films of PLLA containing 0-15% lecithin (wt.%), in comparison with tissue culture plates (TCPs). Cell viability and proliferation were assessed using WST-8, lactate dehydrogenase (LDH) and cell morphology was studied by toluidine blue and propidium iodide staining. This results obtained above suggested that 5%lecithin-containing PLLA films could possess the optimal hydrophilicity, higher adhesion and proliferation of MSCs for a prolonged period and did not demonstrate any significant toxic effects to cells. The study showed that the hydrophilicity and biocompatibility of the modified PLLA were markedly improved by directly introducing lecithin into the polymer without the use of multiple synthetic steps. The information obtained should be useful for future research in vascular tissue engineering (VTE).

  8. Viability Kernel for Ecosystem Management Models

    CERN Document Server

    Anaya, Eladio Ocana; Oliveros--Ramos, Ricardo; Tam, Jorge

    2009-01-01

    We consider sustainable management issues formulated within the framework of control theory. The problem is one of controlling a discrete--time dynamical system (e.g. population model) in the presence of state and control constraints, representing conflicting economic and ecological issues for instance. The viability kernel is known to play a basic role for the analysis of such problems and the design of viable control feedbacks, but its computation is not an easy task in general. We study the viability of nonlinear generic ecosystem models under preservation and production constraints. Under simple conditions on the growth rates at the boundary constraints, we provide an explicit description of the viability kernel. A numerical illustration is given for the hake--anchovy couple in the Peruvian upwelling ecosystem.

  9. Probiotic viability – does it matter?

    Directory of Open Access Journals (Sweden)

    Sampo J. Lahtinen

    2012-06-01

    Full Text Available Probiotics are viable by definition, and viability of probiotics is often considered to be a prerequisite for the health benefits. Indeed, the overwhelming majority of clinical studies in the field have been performed with viable probiotics. However, it has also been speculated that some of the mechanisms behind the probiotic health effects may not be dependent on the viability of the cells and, therefore, is also possible that also non-viable probiotics could have some health benefits. The efficacy of non-viable probiotics has been assessed in a limited number of studies, with varying success. While it is clear that viable probiotics are more effective than non-viable probiotics and that, in many cases, viability is indeed a prerequisite for the health benefit, there are also some cases where it appears that non-viable probiotics could also have beneficial effects on human health.

  10. The Using of Morphometric Parameters in Establishing the Viability of Mouse Embryos

    OpenAIRE

    Ada Cean; Nicolae Păcală; Alexandra Ivan; Ioan Bencsik; Dorel Dronca; Gabi Dumitrescu; Oana Ciobotaru

    2011-01-01

    The aim of this paper was to investigate if morphometric parameters can be used in establishing the viability of the mouse embryos. For the experiments, we used mouse mature oocytes and embryos in vivo obtained. The morphometric parameters taken into consideration were: pellucid zone thickness, outer and inner diameter, and outer and inner perimeter and for oocytes and zygotes the cellular mass diameter was also measured. The oocytes were measured immediately after recovery then they were in ...

  11. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    OpenAIRE

    Rong Fan; Travis Emery; Yongguo Zhang; Yuxuan Xia; Jun Sun; Jiandi Wan

    2016-01-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viabili...

  12. Cellular Automata Simulations - Tools and Techniques

    OpenAIRE

    Fuks, Henryk

    2010-01-01

    We presented an overview of basic issues associated with CA simulations, concentrating on selected problems which, in the mind of the author, deserve closer attention. We also demonstrated how HCELL can be used to perform some typical CA simulation tasks. Obviously, many important topics have been omitted. In particular, the issue of dimensionality of space has not been addressed, and yet many important CA models require 2D, 3D, and higher dimensional lattices. Some collective phenomena in CA...

  13. Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation

    Science.gov (United States)

    Kalies, Stefan; Keil, Sebastian; Sender, Sina; Hammer, Susanne C.; Antonopoulos, Georgios C.; Schomaker, Markus; Ripken, Tammo; Escobar, Hugo Murua; Meyer, Heiko; Heinemann, Dag

    2015-11-01

    Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle-mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle-mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle-mediated laser manipulation.

  14. Abundance, viability and culturability of Antarctic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; DeSouza, M.J.B.D.; Nair, S.; Chandramohan, D.

    10 sup(10) in lakes and from 4.3 to 8.51 x 10 sup(10) 1 sup(-1) in sea water. The anaerobic retrievability in the lakes was sometimes more by 2 orders. The mean percentages of viability in different lakes varied from 4.3 to 64.5% under aerobic...

  15. Viability of nonminimally coupled f (R) gravity

    Science.gov (United States)

    Bertolami, Orfeu; Páramos, Jorge

    2016-03-01

    In this work we explore the viability of nonminimally coupled matter-curvature gravity theories, namely the conditions required for the absence of tachyon instabilities and ghost degrees of freedom. We contrast our finds with recent claims of a pathological behaviour of this class of models, which resorted to, in our view, an incorrect analogy with k-essence.

  16. EFFECT OF HALOGENS ON 'GIARDIA' CYST VIABILITY

    Science.gov (United States)

    The objective of this research was to determine the effect of chlorine and other disinfecting agents on Giardia lamblia cyst viability. The agents studied included free residual chlorine and six different methods recommended for emergency disinfection of small quantities of water...

  17. Recent development of cellular manufacturing systems

    Indian Academy of Sciences (India)

    P K Arora; A Haleem; M K Singh

    2013-06-01

    Cellular manufacturing system has been proved a vital approach for batch and job shop production systems. Group technology has been an essential tool for developing a cellular manufacturing system. The paper aims to discuss various cell formation techniques and highlights the significant research work done in past over the years and attempts to points out the gap in research.

  18. Laser-based direct-write techniques for cell printing

    Science.gov (United States)

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2016-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088

  19. The Influence of Preservation Solution on the Viability of Grafts in Hair Transplantation Surgery

    OpenAIRE

    Coen G. Gho, MD; H. A. Martino Neumann, MD, PhD

    2013-01-01

    Summary: Hair transplantation techniques have changed in the last decades. Partial longitudinal follicular unit transplantation is a new hair transplantation technique, which differs from all other hair transplantation techniques by the size of the graft and therefore much more vulnerable grafts compared to the conventional hair transplantation grafts. In this study, we reveal the influence of the preservation solution on the viability of the grafts. We have extracted 15 hair transplantation ...

  20. The cybernetics of viability: an overview

    Science.gov (United States)

    Nechansky, Helmut

    2011-10-01

    A three-level approach to viability is developed, considering (1) living systems, (2) a niche, understood as the area within the reach of their actions, and (3) an environment. A systematic analysis of the interrelations between these levels shows that living systems emerge with matter/energy processing systems. These can add controller structures when producing excess energy. A three-sensor controller structure enables a living system to deal with unfavourable and scarce environments. Further evolution of these controller structures offers improved ways to act on niches. Maintaining niches in scarce environments can require technology or economy. So social systems emerge, which are understood as aggregates of living systems. Basic patterns of interactions within social systems are analysed. So the introduction of the notion of the niche into the discussion of viability allows us to explain phenomena ranging from properties of single living systems to societal organization.

  1. Viability of the rat hypothalamus in vitro

    International Nuclear Information System (INIS)

    This article reports on a study of the viability of excised rat hypothalami chiefly by virtue of their ability to synthesize proteins, as assessed by the incorporation of labelled [3H] amino acids into a protein fraction and the effect on this incorporation by inhibitors of protein synthesis. In addition, and in support of previous work, oxygen consumption by the incubated hypothalami has been verified using a Warburg constant volume manometer

  2. Cytotoxicity and Effects on Cell Viability of Nickel Nanowires

    KAUST Repository

    Rodriguez, Jose E.

    2013-05-01

    Recently, magnetic nanoparticles are finding an increased use in biomedical applications and research. Nanobeads are widely used for cell separation, biosensing and cancer therapy, among others. Due to their properties, nanowires (NWs) are gaining ground for similar applications and, as with all biomaterials, their cytotoxicity is an important factor to be considered before conducting biological studies with them. In this work, the cytotoxic effects of nickel NWs (Ni NWs) were investigated in terms of cell viability and damage to the cellular membrane. Ni NWs with an average diameter of 30-34 nm were prepared by electrodeposition in nanoporous alumina templates. The templates were obtained by a two-step anodization process with oxalic acid on an aluminum substrate. Characterization of NWs was done using X-Ray diffraction (XRD) and energy dispersive X-Ray analysis (EDAX), whereas their morphology was observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell viability studies were carried out on human colorectal carcinoma cells HCT 116 by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cell proliferation colorimetric assay, whereas the lactate dehydrogenase (LDH) homogenous membrane fluorimetric assay was used to measure the degree of cell membrane rupture. The density of cell seeding was calculated to obtain a specific cell number and confluency before treatment with NWs. Optical readings of the cell-reduced MTT products were measured at 570 nm, whereas fluorescent LDH membrane leakage was recorded with an excitation wavelength of 525 nm and an emission wavelength of 580 - 640 nm. The effects of NW length, cell exposure time, as well as NW:cell ratio, were evaluated through both cytotoxic assays. The results show that cell viability due to Ni NWs is affected depending on both exposure time and NW number. On the other hand, membrane rupture and leakage was only significant at later exposure times. Both

  3. Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities.

    Science.gov (United States)

    Park, Ji Hun; Yang, Sung Ho; Lee, Juno; Ko, Eun Hyea; Hong, Daewha; Choi, Insung S

    2014-04-01

    The chronological progresses in single-cell nanocoating are described. The historical developments in the field are divided into biotemplating, cytocompatible nanocoating, and cells in nano-nutshells, depending on the main research focuses. Each subfield is discussed in conjunction with the others, regarding how and why to manipulate living cells by nanocoating at the single-cell level. PMID:24452932

  4. Viability of Bioprinted Cellular Constructs Using a Three Dispenser Cartesian Printer

    Science.gov (United States)

    Dennis, SG.; Trusk, T.; Richards, D.; Jia, J.; Tan, Y.; Mei, Y.; Fann, S.; Markwald, R.; Yost, M.

    2016-01-01

    Tissue engineering has centralized its focus on the construction of replacements for non-functional or damaged tissue. The utilization of three-dimensional bioprinting in tissue engineering has generated new methods for the printing of cells and matrix to fabricate biomimetic tissue constructs. The solid freeform fabrication (SFF) method developed for three-dimensional bioprinting uses an additive manufacturing approach by depositing droplets of cells and hydrogels in a layer-by-layer fashion. Bioprinting fabrication is dependent on the specific placement of biological materials into three-dimensional architectures, and the printed constructs should closely mimic the complex organization of cells and extracellular matrices in native tissue. This paper highlights the use of the Palmetto Printer, a Cartesian bioprinter, as well as the process of producing spatially organized, viable constructs while simultaneously allowing control of environmental factors. This methodology utilizes computer-aided design and computer-aided manufacturing to produce these specific and complex geometries. Finally, this approach allows for the reproducible production of fabricated constructs optimized by controllable printing parameters. PMID:26436877

  5. Relevant aspects in the surface properties in titanium dental implants for the cellular viability.

    Science.gov (United States)

    Velasco-Ortega, E; Alfonso-Rodríguez, C A; Monsalve-Guil, L; España-López, A; Jiménez-Guerra, A; Garzón, I; Alaminos, M; Gil, F J

    2016-07-01

    Roughness and topographical features are the most relevant of the surface properties for a dental implant for its osseointegration. For that reason, we studied the four surfaces more used in titanium dental implants: machined, sandblasted, acid etching and sandblasted plus acid etching. The roughness and wettability (contact angle and surface free energy) was studied by means 3D-interferometric microscope and sessile drop method. Normal human gingival fibroblasts (HGF) were obtained from small oral mucosa biopsies and were used for cell cultures. To analyze cell integrity, we first quantified the total amount of DNA and LDH released from dead cells to the culture medium. Then, LIVE/DEAD assay was used as a combined method assessing cell integrity and metabolism. All experiments were carried out on each cell type cultured on each Ti material for 24h, 48h and 72h. To evaluate the in vivo cell adhesion capability of each Ti surface, the four types of discs were grafted subcutaneously in 5 Wistar rats. Sandblasted surfaces were significantly rougher than acid etching and machined. Wettability and surface free energy decrease when the roughness increases in sand blasted samples. This fact favors the protein adsorption. The DNA released by cells cultured on the four Ti surfaces did not differ from that of positive control cells (p>0.05). The number of cells per area was significantly lower (psurface than in the machined and surface for both cell types (7±2 cells for HGF and 10±5 cells for SAOS-2). The surface of the machined-type discs grafted in vivo had a very small area occupied by cells and/or connective tissue (3.5%), whereas 36.6% of the sandblasted plus acid etching surface, 75.9% of sandblasted discs and 59.6% of acid etching discs was covered with cells and connective tissue. Cells cultured on rougher surfaces tended to exhibit attributes of more differentiated osteoblasts than cells cultured on smoother surfaces. These surface properties justify that the sandblasted implants is able to significantly increase bone contact and bone growth with very good osseointegration results in vivo. PMID:27127022

  6. HIGH TEMPERATURE EFFECT ON TOMATO (Lycopersicon esculentum PIGMENT AND PROTEIN CONTENT AND CELLULAR VIABILITY

    Directory of Open Access Journals (Sweden)

    Daymi Camejo

    2001-01-01

    Full Text Available Cultivares de tomate con diferente sensibilidad a las altas temperaturas (Campbell-28 y Amalia y el tipo silvestre Nagcarlang, fueron expuestos a diferentes condiciones de estrés (45oC-dos horas de exposición, 45oC-tres horas de exposición y 25oC como control. Los contenidos de clorofila “a”, “b” y total fueron determinados, así como los de carotenoides y proteinas totales solubles. La relación clorofila “a”/“b” y clorofila/carotenoides fue estimada a partir de los resultados obtenidos. Las variables evaluadas fueron modificadas según el cultivar y la condición de estrés. La selección de Nagcarlang como modelo de termotolerancia permite establecer que variables tales como: relación de clorofila “a”/“b”, clorofila/carotenoides, contenido de proteínas totales solubles y viabilidad celular, pudieran ser útiles para describir cultivares tolerantes a las altas temperaturas, dependiendo del tiempo de exposición al estrés.

  7. ABC of the cardiac magnetic resonance. Part 1: perfusion, viability and coronary anatomy

    International Nuclear Information System (INIS)

    The objective of this work is to demonstrate the fundamental concepts, the basic sequences and the clinical and potential applications of cardiac magnetic resonance as a diagnostic technique in updated radiology and cardiology practices. In this second part, we present basic aspects of the cardiac magnetic resonance application in the coronary anatomy and myocardial perfusion and viability. (author)

  8. 24 CFR 971.5 - Long-term viability.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Long-term viability. 971.5 Section... ASSESSMENT OF THE REASONABLE REVITALIZATION POTENTIAL OF CERTAIN PUBLIC HOUSING REQUIRED BY LAW § 971.5 Long-term viability. (a) Reasonable investment. (1) Proposed revitalization costs for viability must...

  9. Assessment of beta-emitter radionuclides in biological samples using liquid scintillation counting. Application to the study of internal doses in molecular and cellular biology techniques; Evaluacion en muestras biologicas de radionucleidos emisores beta mediante espectrometria de centelleo en fase liquida. Aplicaciones al estudio de dosis internas en tecnicas de investigacion de biologia molecular y celular

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, I.; Delgado, A.; Navarro, T.; Macias, M. T.

    2007-07-01

    The radioisotopic techniques used in Molecular and Cellular Biology involve external and internal irradiation risk. It is necessary to control the possible internal contamination associated to the development of these techniques. The internal contamination risk can be due to physical and chemical properties of the labelled compounds, aerosols generated during the performance technique. The aim of this work was to estimate the possible intake of specific beta emitters during the technique development and to propose the required criterions to perform Individual Monitoring. The most representative radioisotopic techniques were selected attending their potential risk of internal contamination. Techniques were analysed applying IAEA methodology according to the used activity in each technique. It was necessary to identify the worker groups that would require individual monitoring on the base of their specific risk. Different measurement procedures were applied to study the possible intake in group risk and more than 160 persons were measured by in vitro bioassay. (Author) 96 refs.

  10. Viability of osteocytes in bone autografts harvested for dental implantology

    International Nuclear Information System (INIS)

    Bone autograft remains a very useful and popular way for filling bone defects. In maxillofacial surgery or implantology, it is used to increase the volume of the maxilla or mandible before placing dental implants. Because there is a noticeable delay between harvesting the graft and its insertion in the receiver site, we evaluated the morphologic changes at the light and transmission electron microscopy levels. Five patients having an autograft (bone harvested from the chin) were enrolled in the study. A small fragment of the graft was immediately fixed after harvesting and a second one was similarly processed at the end of the grafting period when bone has been stored at room temperature for a 20 min ± 33 s period in saline. A net increase in the number of osteocyte lacunae filled with cellular debris was observed (+41.5%). However no cytologic alteration could be observed in the remaining osteocytes. The viability of these cells is known to contribute to the success of autograft in association with other less well-identified factors.

  11. Viability of osteocytes in bone autografts harvested for dental implantology

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, Bernard [CFI-College Francais d' Implantologie, 6 rue de Rome, 75008 Paris (France); Gaudin, Christine; Georgeault, Sonia; Mallet, Romain; Basle, Michel F; Chappard, Daniel, E-mail: daniel.chappard@univ-angers.f [INSERM, U 922-LHEA, Faculte de Medecine, 49045 Angers Cedex (France)

    2009-02-15

    Bone autograft remains a very useful and popular way for filling bone defects. In maxillofacial surgery or implantology, it is used to increase the volume of the maxilla or mandible before placing dental implants. Because there is a noticeable delay between harvesting the graft and its insertion in the receiver site, we evaluated the morphologic changes at the light and transmission electron microscopy levels. Five patients having an autograft (bone harvested from the chin) were enrolled in the study. A small fragment of the graft was immediately fixed after harvesting and a second one was similarly processed at the end of the grafting period when bone has been stored at room temperature for a 20 min +- 33 s period in saline. A net increase in the number of osteocyte lacunae filled with cellular debris was observed (+41.5%). However no cytologic alteration could be observed in the remaining osteocytes. The viability of these cells is known to contribute to the success of autograft in association with other less well-identified factors.

  12. Photonic Crystal Optical Tweezers with High Efficiency for Live Biological Samples and Viability Characterization

    Science.gov (United States)

    Jing, Peifeng; Wu, Jingda; Liu, Gary W.; Keeler, Ethan G.; Pun, Suzie H.; Lin, Lih Y.

    2016-01-01

    We propose and demonstrate a new optical trapping method for single cells that utilizes modulated light fields to trap a wide array of cell types, including mammalian, yeast, and Escherichia coli cells, on the surface of a two-dimensional photonic crystal. This method is capable of reducing the required light intensity, and thus minimizing the photothermal damage to living cells, thereby extending cell viability in optical trapping and cell manipulation applications. To this end, a thorough characterization of cell viability in optical trapping environments was performed. This study also demonstrates the technique using spatial light modulation in patterned manipulation of live cell arrays over a broad area.

  13. High speed measurement of corn seed viability using hyperspectral imaging

    Science.gov (United States)

    Ambrose, Ashabahebwa; Kandpal, Lalit Mohan; Kim, Moon S.; Lee, Wang-Hee; Cho, Byoung-Kwan

    2016-03-01

    Corn is one of the most cultivated crops all over world as food for humans as well as animals. Optimized agronomic practices and improved technological interventions during planting, harvesting and post-harvest handling are critical to improving the quantity and quality of corn production. Seed germination and vigor are the primary determinants of high yield notwithstanding any other factors that may play during the growth period. Seed viability may be lost during storage due to unfavorable conditions e.g. moisture content and temperatures, or physical damage during mechanical processing e.g. shelling, or over heating during drying. It is therefore vital for seed companies and farmers to test and ascertain seed viability to avoid losses of any kind. This study aimed at investigating the possibility of using hyperspectral imaging (HSI) technique to discriminate viable and nonviable corn seeds. A group of corn samples were heat treated by using microwave process while a group of seeds were kept as control group (untreated). The hyperspectral images of corn seeds of both groups were captured between 400 and 2500 nm wave range. Partial least squares discriminant analysis (PLS-DA) was built for the classification of aged (heat treated) and normal (untreated) corn seeds. The model showed highest classification accuracy of 97.6% (calibration) and 95.6% (prediction) in the SWIR region of the HSI. Furthermore, the PLS-DA and binary images were capable to provide the visual information of treated and untreated corn seeds. The overall results suggest that HSI technique is accurate for classification of viable and non-viable seeds with non-destructive manner.

  14. Population Viability Analysis of Riverine Fishes

    Energy Technology Data Exchange (ETDEWEB)

    Bates, P.; Chandler, J.; Jager, H.I.; Lepla, K.; Van Winkle, W.

    1999-04-12

    Many utilities face conflkts between two goals: cost-efficient hydropower generation and protecting riverine fishes. Research to develop ecological simulation tools that can evaluate alternative mitigation strategies in terms of their benefits to fish populations is vital to informed decision-making. In this paper, we describe our approach to population viability analysis of riverine fishes in general and Snake River white sturgeon in particular. We are finding that the individual-based modeling approach used in previous in-stream flow applications is well suited to addressing questions about the viability of species of concern for several reasons. Chief among these are: (1) the abiIity to represent the effects of individual variation in life history characteristics on predicted population viabili~, (2) the flexibili~ needed to quanti~ the ecological benefits of alternative flow management options by representing spatial and temporal variation in flow and temperaturty and (3) the flexibility needed to quantifi the ecological benefits of non-flow related manipulations (i.e., passage, screening and hatchery supplementation).

  15. Limit of viability: The Swiss experience.

    Science.gov (United States)

    Berger, T M; Roth-Kleiner, M

    2016-09-01

    Progress made in the field of perinatology over the past four decades has led to unprecedented low mortality rates for extremely low birth weight infants. However, because rates of important short-term complications and neurodevelopmental impairment among survivors have remained high, the best approach to borderline viable infants continues to be debated. Not surprisingly, guidelines from various national medical societies for the care of infants born at the limit of viability vary considerably. In 2002, the first Swiss recommendations for the care of borderline viable infants were published. They had been developed by a multidisciplinary team of experts from the fields of obstetrics, pediatrics, and neonatology. Despite the availability of national guidelines, center-to-center outcome variability has since persisted, suggesting that care for the most immature infants is not only evidence-based and guideline-driven but also strongly influenced by local neonatal intensive care unit (NICU) culture. In 2011, revised national recommendations for perinatal care at the limit of viability between 22 and 26 completed weeks of gestation were published. It remains to be seen whether this has led to more uniform outcomes across the Swiss centers in the years that followed. PMID:27476994

  16. Tuneable nanoparticle-nanofiber composite substrate for improved cellular adhesion.

    Science.gov (United States)

    Nicolini, Ariana M; Toth, Tyler D; Yoon, Jeong-Yeol

    2016-09-01

    This work presents a novel technique using a reverse potential electrospinning mode for fabricating nanoparticle-embedded composites that can be tailored to represent various fiber diameters, surface morphologies, and functional groups necessary for improved cellular adhesion. Polycaprolactone (PCL) nanofibers were electrospun in both traditional positive (PP) and reverse potential (RP) electrical fields. The fibers were incorporated with 300nm polystyrene (PS) fluorescent particles, which contained carboxyl, amine groups, and surfactants. In the unconventional RP, the charged colloidal particles and surfactants were shown to have an exaggerated effect on Taylor cone morphology and fiber diameter caused by the changes in charge density and surface tension of the bulk solution. The RP mode was shown to lead to a decrease in fiber diameter from 1200±100nm (diameter±SE) for the nanofibers made with PCL alone to 440±80nm with the incorporation of colloidal particles, compared to the PP mode ranging from 530±90nm to 350±50nm, respectively. The nanoparticle-nanofiber composite substrates were cultured with human umbilical vein endothelial cells (HUVECs) and evaluated for cellular viability and adhesion for up to 5 days. Adhesion to the nanofibrous substrates was improved by 180±10% with the addition of carboxylated particles and by 480±60% with the functionalization of an RGD ligand compared to the PCL nanofibers. The novel approach of electrospinning in the RP mode with the addition of colloids in order to alter charge density and surface tension could be utilized towards many applications, one being implantable biomaterials and tissue engineered scaffolds as demonstrated in this work. PMID:27315331

  17. The Influence of Preservation Solution on the Viability of Grafts in Hair Transplantation Surgery

    Directory of Open Access Journals (Sweden)

    Coen G. Gho, MD

    2013-12-01

    Full Text Available Summary: Hair transplantation techniques have changed in the last decades. Partial longitudinal follicular unit transplantation is a new hair transplantation technique, which differs from all other hair transplantation techniques by the size of the graft and therefore much more vulnerable grafts compared to the conventional hair transplantation grafts. In this study, we reveal the influence of the preservation solution on the viability of the grafts. We have extracted 15 hair transplantation grafts of 0.6 mm and 15 hair transplantation grafts of 0.7 mm from 3 different patients and investigated the influence of 2 commercially available preservation media, saline solution (Braun, Melsungen, Germany and Ringer’s lactate (Braun, on the viability of grafts and compared these solutions with the preservation solution developed by Hair Science Institute with trypan blue. The grafts stored in the preservation solution developed by Hair Science Institute showed a significant better viability compared with the 2 commercially available preservation media saline solution and Ringer’s lactate. This study shows that a preservation solution could influence the viability of the grafts which could be essential for hair transplantations with small grafts such as in partial longitudinal follicular unit transplantation.

  18. Modelling cellular behaviour

    Science.gov (United States)

    Endy, Drew; Brent, Roger

    2001-01-01

    Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.

  19. Macromolecular lesions and cellular radiation chemistry

    International Nuclear Information System (INIS)

    Our studies of the interaction of densely ionizing particles with macromolecules in the living cell may be divided into four parts: characterization of lesions to cellular DNA in the unmodified Bragg ionization curve; characterization of lesions to cellular DNA in the spread Bragg curve as used in radiation therapy; elucidation of the cellular radiation chemistry characteristic of high vs. low LET radiation qualities; and the introduction of novel techniques designed to give a better understanding of the fundamental properties of induction of lesions and their repair potentials in high LET radiation

  20. Extending the viability of acute brain slices.

    Science.gov (United States)

    Buskila, Yossi; Breen, Paul P; Tapson, Jonathan; van Schaik, André; Barton, Matthew; Morley, John W

    2014-01-01

    The lifespan of an acute brain slice is approximately 6-12 hours, limiting potential experimentation time. We have designed a new recovery incubation system capable of extending their lifespan to more than 36 hours. This system controls the temperature of the incubated artificial cerebral spinal fluid (aCSF) while continuously passing the fluid through a UVC filtration system and simultaneously monitoring temperature and pH. The combination of controlled temperature and UVC filtering maintains bacteria levels in the lag phase and leads to the dramatic extension of the brain slice lifespan. Brain slice viability was validated through electrophysiological recordings as well as live/dead cell assays. This system benefits researchers by monitoring incubation conditions and standardizing this artificial environment. It further provides viable tissue for two experimental days, reducing the time spent preparing brain slices and the number of animals required for research. PMID:24930889

  1. Viability of resistance thermometers under reactor conditions

    International Nuclear Information System (INIS)

    The viability of six commercial resistance thermometers is examined under reactor conditions; the sensitive element was P1-2 platinum wire of diameter 50 /mu/m. The resistances R/sub 0/ of the thermometers at 0/degree/C were 46.00/plus or minus/0.02 /OMEGA/while the ratios were R/sub 100//R/sub 0/.1.391/plus or minus/0.0007. The design and manufacturing technology have been described. The thermometers were irradiated in a VVR-M reactor. The thermometers were calibrated before and after irradiation outside the reactor by the reference-point method at temperatures of l00, 231.8, and 327.2/degree/C. 7 refs

  2. Artificial evolution by viability rather than competition.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    Full Text Available Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.

  3. Effect of MWCNT surface and chemical modification on in vitro cellular response

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10–30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment–material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell–nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT’s agglomerates surrounded by numerous cells releasing toxic substances.

  4. Viability of imaging structures inside human dentin using dental transillumination

    Science.gov (United States)

    Grandisoli, C. L.; Alves-de-Souza, F. D.; Costa, M. M.; Castro, L.; Ana, P. A.; Zezell, D. M.; Lins, E. C.

    2014-02-01

    Dental Transillumination (DT) is a technique for imaging internal structures of teeth by detecting infrared radiation transmitted throughout the specimens. It was successfully used to detect caries even considering dental enamel and dentin scatter infrared radiation strongly. Literature reports enamel's scattering coefficient is 10 to 30 times lower than dentin; this explain why DT is useful for imaging pathologies in dental enamel, but does not disable its using for imaging dental structures or pathologies inside the dentin. There was no conclusive data in the literature about the limitations of using DT to access biomedical information of dentin. The goal in this study was to present an application of DT to imaging internal structures of dentin. Slices of tooth were confectioned varying the thickness of groups from 0.5 mm up to 2,5 mm. For imaging a FPA InGaAs camera Xeva 1.7- 320 (900-1700 nm; Xenics, Inc., Belgium) and a 3W lamp-based broadband light source (Ocean Optics, Inc., USA) was used; bandpass optical filters at 1000+/-10 nm, 1100+/-10 nm, 1200+/-10 nm and 1300+/-50 nm spectral region were also applied to spectral selection. Images were captured for different camera exposure times and finally a computational processing was applied. The best results revealed the viability to imaging dent in tissue with thickness up to 2,5 mm without a filter (900-1700nm spectral range). After these results a pilot experiment of using DT to detect the pulp chamber of an incisive human tooth was made. New data showed the viability to imaging the pulp chamber of specimen.

  5. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  6. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  7. Effects of fat preparation methods on the viabilities of autologous fat grafts.

    Science.gov (United States)

    Minn, Kyung-Won; Min, Kyung-Hee; Chang, Hak; Kim, Sukwha; Heo, Eun-Ju

    2010-10-01

    Fat grafts are commonly used in plastic surgery, but their unpredictable absorption rates are a considerable disadvantage. Furthermore, no agreement has been reached regarding the method that best enables fat graft survival. This study aimed to evaluate the effects of different preparation methods on fat graft viability. Fat tissue was harvested from the remnants of transverse rectus abdominis musculocutaneous (TRAM) flaps by syringe aspiration. Harvested fat tissue was prepared using three different methods: centrifugation, metal sieve concentration, and cotton gauze concentration. To evaluate the viabilities of fat cells, XTT assays were performed. For the study, 18 nude mice were allocated to three groups: the centrifugation, metal sieve, and cotton gauze groups (6 mice per group). Prepared fat (1 ml) was injected into the nuchal area of the mice, and 12 weeks later, grafts were dissected to determine graft survival rates and subjected to histologic analysis. No significant differences were observed in graft survival rates and histologic findings (necrosis and vascularity) between the three groups. However, histologic analysis found the metal sieve group to have significantly lower fat cell viability and more inflammation than the other two groups. The findings suggest that the closed centrifugation technique has no advantage over the open cotton gauze technique in terms of fat graft viability, and that the metal sieve concentration method is deficient as a preparation method because it can cause grafted fat degradation. PMID:20442997

  8. Viability of Hybrid Systems A Controllability Operator Approach

    CERN Document Server

    Labinaz, G

    2012-01-01

    The problem of viability of hybrid systems is considered in this work. A model for a hybrid system is developed including a means of including three forms of uncertainty: transition dynamics, structural uncertainty, and parametric uncertainty. A computational basis for viability of hybrid systems is developed and applied to three control law classes. An approach is developed for robust viability based on two extensions of the controllability operator. The three-tank example is examined for both the viability problem and robust viability problem. The theory is applied through simulation to an active magnetic bearing system and to a batch polymerization process showing that viability can be satisfied in practice. The problem of viable attainability is examined based on the controllability operator approach introduced by Nerode and colleagues. Lastly, properties of the controllability operator are presented.

  9. Tracing Conidial Fate and Measuring Host Cell Antifungal Activity Using a Reporter of Microbial Viability in the Lung

    OpenAIRE

    Jhingran, Anupam; Mar, Katrina B.; Kumasaka, Debra K.; Sue E Knoblaugh; Ngo, Lisa Y.; Segal, Brahm H; Iwakura, Yoichiro; Lowell, Clifford A.; Hamerman, Jessica A.; Lin, Xin; Tobias M Hohl

    2012-01-01

    Fluorescence can be harnessed to monitor microbial fate and to investigate functional outcomes of individual microbial cell-host cell encounters at portals of entry in native tissue environments. We illustrate this concept by introducing fluorescent Aspergillus reporter (FLARE) conidia that simultaneously report phagocytic uptake and fungal viability during cellular interactions with the murine respiratory innate immune system. Our studies using FLARE conidia reveal stepwise and cell-type-spe...

  10. Cellular oncogenes in neoplasia.

    OpenAIRE

    Chan, V T; McGee, J O

    1987-01-01

    In recent years cellular homologues of many viral oncogenes have been identified. As these genes are partially homologous to viral oncogenes and are activated in some tumour cell lines they are termed "proto-oncogenes". In tumour cell lines proto-oncogenes are activated by either quantitative or qualitative changes in gene structure: activation of these genes was originally thought to be a necessary primary event in carcinogenesis, but activated cellular oncogenes, unlike viral oncogenes, do ...

  11. An evaluation of the effects of long term cryopreservation, cause of death, and time between death and donation on heart valve leaflet viability

    International Nuclear Information System (INIS)

    The protocol for cryopreservation of allograft heart valves at the Donor Tissue Bank of Victoria was based on validation studies on the viability of the heart valve leaflets at the time of processing. The heart block is removed within 24 hours of death and the aor-tic and pulmonary valves trimmed immediately following retrieval. Following this processing, the valves are incubated in antibiotics at 30 degree C for 6 to 8 hours before being frozen in 10% DMSO at a controlled rate. A sample of tricuspid valve leaflet is placed in Krebs solution at the time of trimfning and is used for viability studies. Leaflet viability studies have been perfon-ned on all heart valves retrieved from 1993 to the present day at the Donor Tissue Bank of Victoria. Viability involves a qualitative assessment of the cellular outgrowth by leaflet fibroblasts, this assessment ranging from '-' for no outgrowth to '++++' for maximum outgrowth. Surgeons do not request valves with any particular viability and will use them whether they are viable or not. This evaluation was to determine the effects of long-term cryopreservation, cause of death, and also time lapse of heart removal following death on the viability of the retrieved leaflets. The aim of investigating the effects of long-term cryopreservation was to determine whether there was any correlation between initial viability and viability following storage for several months to several years. It was also decided to investigate whether there was any correlation between time length between death and heart retrieval and the viability. It was also thought that the cause of death may have had an effect on the viability, for example, did death by carbon monoxide poisoning have an effect on the viability of heart valve cells. Heart valves, which had been cryopreserved but could not be transplanted for various reasons were used to study the effects of cryopreservation in this study. These were thawed according to protocol and a sample of the valve

  12. Storage Viability and Optimization Web Service

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Christ; Lai, Judy; Siddiqui, Afzal; Limpaitoon, Tanachai; Phan, Trucy; Megel, Olivier; Chang, Jessica; DeForest, Nicholas

    2010-10-11

    Non-residential sectors offer many promising applications for electrical storage (batteries) and photovoltaics (PVs). However, choosing and operating storage under complex tariff structures poses a daunting technical and economic problem that may discourage potential customers and result in lost carbon and economic savings. Equipment vendors are unlikely to provide adequate environmental analysis or unbiased economic results to potential clients, and are even less likely to completely describe the robustness of choices in the face of changing fuel prices and tariffs. Given these considerations, researchers at Lawrence Berkeley National Laboratory (LBNL) have designed the Storage Viability and Optimization Web Service (SVOW): a tool that helps building owners, operators and managers to decide if storage technologies and PVs merit deeper analysis. SVOW is an open access, web-based energy storage and PV analysis calculator, accessible by secure remote login. Upon first login, the user sees an overview of the parameters: load profile, tariff, technologies, and solar radiation location. Each parameter has a pull-down list of possible predefined inputs and users may upload their own as necessary. Since the non-residential sectors encompass a broad range of facilities with fundamentally different characteristics, the tool starts by asking the users to select a load profile from a limited cohort group of example facilities. The example facilities are categorized according to their North American Industry Classification System (NAICS) code. After the load profile selection, users select a predefined tariff or use the widget to create their own. The technologies and solar radiation menus operate in a similar fashion. After these four parameters have been inputted, the users have to select an optimization setting as well as an optimization objective. The analytic engine of SVOW is LBNL?s Distributed Energy Resources Customer Adoption Model (DER-CAM), which is a mixed

  13. Protein kinase C is essential for viability of the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Penn, Tina J; Wood, Mark E; Soanes, Darren M; Csukai, Michael; Corran, Andrew John; Talbot, Nicholas J

    2015-10-01

    Protein kinase C constitutes a family of serine-threonine kinases found in all eukaryotes and implicated in a wide range of cellular functions, including regulation of cell growth, cellular differentiation and immunity. Here, we present three independent lines of evidence which indicate that protein kinase C is essential for viability of Magnaporthe oryzae. First, all attempts to generate a target deletion of PKC1, the single copy protein kinase C-encoding gene, proved unsuccessful. Secondly, conditional gene silencing of PKC1 by RNA interference led to severely reduced growth of the fungus, which was reversed by targeted deletion of the Dicer2-encoding gene, MDL2. Finally, selective kinase inhibition of protein kinase C by targeted allelic replacement with an analogue-sensitive PKC1(AS) allele led to specific loss of fungal viability in the presence of the PP1 inhibitor. Global transcriptional profiling following selective PKC inhibition identified significant changes in gene expression associated with cell wall re-modelling, autophagy, signal transduction and secondary metabolism. When considered together, these results suggest protein kinase C is essential for growth and development of M. oryzae with extensive downstream targets in addition to the cell integrity pathway. Targeting protein kinase C signalling may therefore prove an effective means of controlling rice blast disease. PMID:26192090

  14. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    Science.gov (United States)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  15. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    Science.gov (United States)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-01-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis. PMID:27255403

  16. Diagnostic value of dobutamine echocardiography in myocardial viability of about 85 cases

    International Nuclear Information System (INIS)

    Stress echocardiography in low-dose dobutamine is part of the proposed techniques for the identification of viable myocardium. Unlike isotopic techniques that analyze the viability in terms of perfusion and membrane integrity, the echo dobutamine studying the functional aspect of sustain ability is - to - say the existence of a reservation contraction in segments asynergic. To establish the diagnostic value of echo dobutamine in search of sustain ability we conducted a prospective study to nearly 85 patients all presented with a recent myocardial infarction whose average age is 55 years and the sex ratio is 0.95. The examination was performed for all our patients on average twelfth day of myocardial infarction, improved segmental kinetics at least one grade in at least two adjacent segments relative to the ground state is considered as ultrasound test of the viability.

  17. Establishing guidelines to retain viability of probiotics during spray drying

    NARCIS (Netherlands)

    Perdana, J.A.; Fox, M.B.; Boom, R.M.; Schutyser, M.A.I.

    2014-01-01

    We present a model-based approach to map processing conditions suitable to spray dry probiotics with minimal viability loss. The approach combines the drying history and bacterial inactivation kinetics to predict the retention of viability after drying. The approach was used to systematically assess

  18. Establishing Guidelines to Retain Viability of Probiotics during Spray Drying

    NARCIS (Netherlands)

    Perdana, J.A.; Fox, M.B.; Boom, R.M.; Schutyser, M.A.I.

    2015-01-01

    We present the application of a model-based approach to map processing conditions suitable to spray dry probiotics with minimal viability loss. The approach combines the drying history and bacterial inactivation kinetics to predict the retention of viability after drying. The approach was used to sy

  19. Viability, Advantages and Design Methodologies of M-Learning Delivery

    Science.gov (United States)

    Zabel, Todd W.

    2010-01-01

    The purpose of this study was to examine the viability and principle design methodologies of Mobile Learning models in developing regions. Demographic and market studies were utilized to determine the viability of M-Learning delivery as well as best uses for such technologies and methods given socioeconomic and political conditions within the…

  20. Tissue viability imaging : Microvascular response to vasoactive drugs induced by iontophoresis

    OpenAIRE

    Henricson, Joakim; Nilsson, Anders; Tesselaar, Erik; Nilsson, Gert; Sjöberg, Folke

    2009-01-01

    When one is studying the physiology of the cutaneous microcirculation there is a need for relevant non-invasive and versatile techniques. In this study we used a new optical device, the tissue viability imager (TiVi), to map changes in cutaneous microvascular concentrations of red blood cells during iontophoresis of vasoactive substances (noradrenaline (NA) and phenylephrine (Phe) for vasoconstriction and acetylcholine (ACh) and sodium nitroprusside (SNP) for vasodilatation). We aimed to pres...

  1. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    OpenAIRE

    Donna Vanhauteghem; Geert Paul Jules Janssens; Angelo Lauwaerts; Stanislas Sys; Filip Boyen; Eric Cox; Evelyne Meyer

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometr...

  2. Development viability appraisals: applying the residual method of valuation in a planning policy context

    OpenAIRE

    Coleman, C.; N. Crosby; P. McAllister; Wyatt, P

    2012-01-01

    Due to the requirement to demonstrate financial feasibility of policy proposals and scheme-specific planning obligations, development viability and development appraisal have become core themes in the UK planning system. Whilst there is an array of variations of the residual model that can be used to undertake financial appraisals of real estate development opportunities, development appraisal models and techniques have received little attention from the academic community. Most real estate d...

  3. Commercialization of cellular immunotherapies for cancer.

    Science.gov (United States)

    Walker, Anthony; Johnson, Robert

    2016-04-15

    Successful commercialization of a cell therapy requires more than proving safety and efficacy to the regulators. The inherent complexity of cellular products delivers particular manufacturing, logistical and reimbursement hurdles that threaten commercial viability for any therapy with a less than spectacular clinical profile that truly changes the standard of care. This is particularly acute for autologous cell therapies where patients receive bespoke treatments manufactured from a sample of their own cells and where economies of scale, which play an important role in containing the production costs for small molecule and antibody therapeutics, are highly limited. Nevertheless, the promise of 'game-changing' efficacy, as exemplified by very high levels of complete responses in refractory haematological malignancies, has attracted capital investments on a vast scale, and the attendant pace of technology development provides promising indicators for future clinical and commercial success. PMID:27068936

  4. Sperm viability staining in ecology and evolution: potential pitfalls

    DEFF Research Database (Denmark)

    Holman, Luke

    2009-01-01

    The causes and consequences of variation in sperm quality, survival and ageing are active areas of research in ecology and evolution. In order to address these topics, many recent studies have measured sperm viability using fluorescent staining. Although sperm viability staining has produced a...... number of interesting results, it has some potential pitfalls that have rarely been discussed. In the present paper, I review the major findings of ecology and evolution studies employing sperm viability staining and outline the method's principle limitations. The key problem is that the viability assay...... spurious results. I provide methodological advice on sperm viability staining aimed at minimising artefacts and producing robust conclusions, and discuss possible avenues for future research....

  5. Cellular automatons applied to gas dynamic problems

    Science.gov (United States)

    Long, Lyle N.; Coopersmith, Robert M.; McLachlan, B. G.

    1987-06-01

    This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.

  6. Cellular automatons applied to gas dynamic problems

    Science.gov (United States)

    Long, Lyle N.; Coopersmith, Robert M.; Mclachlan, B. G.

    1987-01-01

    This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.

  7. The Using of Morphometric Parameters in Establishing the Viability of Mouse Embryos

    Directory of Open Access Journals (Sweden)

    Ada Cean

    2011-05-01

    Full Text Available The aim of this paper was to investigate if morphometric parameters can be used in establishing the viability of the mouse embryos. For the experiments, we used mouse mature oocytes and embryos in vivo obtained. The morphometric parameters taken into consideration were: pellucid zone thickness, outer and inner diameter, and outer and inner perimeter and for oocytes and zygotes the cellular mass diameter was also measured. The oocytes were measured immediately after recovery then they were in vitro fertilized. After 4-6 hours after fecundation the oocytes that manifested the extrusion of the second polar body (zygotes were measured, and at 24 hours after fecundation the unfertilized oocytes were also measured. The embryos were obtained from mouse females superovulated with gonadotrope hormones (eCG and hCG. For the experiments we used embryos in different developmental stages (2, 4 and 8 cells, morula and blastocyst. After recovery the embryos were morphologically analyzed and divided in viable (quality code 1, 2 and 3 and nonviable embryos (quality code 4 (IETS Manual, 1989 and they were measured for establishing the morphometric parameters value. The data obtained were statistically analyzed using Minitab 15, and T test. For the oocytes it was noticed that the pellucid zone thickness is registering a slightly increase if the oocyte is fertilized, without significantly difference from recovery, but if the oocyte is not fertilized the pellucid zone thickness decrease from 8.3±1.5 μm to 8.0±1.5 μm. For the embryos in early developmental stages only the thickness of the pellucid zone can be an indication of the viability. For the embryos in morula stage the thickness of the pellucid zone and inner diameter can be used as indicator of viability. For the embryos in blastocyst stage the thickness of the pellucid zone, the inner and outer diameter can be used as a viability indicator.

  8. Economic viability of geriatric hip fracture centers.

    Science.gov (United States)

    Clement, R Carter; Ahn, Jaimo; Mehta, Samir; Bernstein, Joseph

    2013-12-01

    Management of geriatric hip fractures in a protocol-driven center can improve outcomes and reduce costs. Nonetheless, this approach has not spread as broadly as the effectiveness data would imply. One possible explanation is that operating such a center is not perceived as financially worthwhile. To assess the economic viability of dedicated hip fracture centers, the authors built a financial model to estimate profit as a function of costs, reimbursement, and patient volume in 3 settings: an average US hip fracture program, a highly efficient center, and an academic hospital without a specific hip fracture program. Results were tested with sensitivity analysis. A local market analysis was conducted to assess the feasibility of supporting profitable hip fracture centers. The results demonstrate that hip fracture treatment only becomes profitable when the annual caseload exceeds approximately 72, assuming costs characteristic of a typical US hip fracture program. The threshold of profitability is 49 cases per year for high-efficiency hip fracture centers and 151 for the urban academic hospital under review. The largest determinant of profit is reimbursement, followed by costs and volume. In the authors’ home market, 168 hospitals offer hip fracture care, yet 85% fall below the 72-case threshold. Hip fracture centers can be highly profitable through low costs and, especially, high revenues. However, most hospitals likely lose money by offering hip fracture care due to inadequate volume. Thus, both large and small facilities would benefit financially from the consolidation of hip fracture care at dedicated hip fracture centers. Typical US cities have adequate volume to support several such centers. PMID:24579222

  9. Irregular Cellular Learning Automata.

    Science.gov (United States)

    Esnaashari, Mehdi; Meybodi, Mohammad Reza

    2015-08-01

    Cellular learning automaton (CLA) is a recently introduced model that combines cellular automaton (CA) and learning automaton (LA). The basic idea of CLA is to use LA to adjust the state transition probability of stochastic CA. This model has been used to solve problems in areas such as channel assignment in cellular networks, call admission control, image processing, and very large scale integration placement. In this paper, an extension of CLA called irregular CLA (ICLA) is introduced. This extension is obtained by removing the structure regularity assumption in CLA. Irregularity in the structure of ICLA is needed in some applications, such as computer networks, web mining, and grid computing. The concept of expediency has been introduced for ICLA and then, conditions under which an ICLA becomes expedient are analytically found. PMID:25291810

  10. Cellular Homeostasis and Aging.

    Science.gov (United States)

    Hartl, F Ulrich

    2016-06-01

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans. PMID:27050288

  11. Reperfusion injury, stunning and myocardial viability

    International Nuclear Information System (INIS)

    Recent experimental data suggest that current thrombolytic strategies may not yet have achieved their full potential for myocardial salvage. In fact, reperfusion may result in microvascular and myocardial cellular injuries. These may translate into transient loss of contractile function ('myocardial stunning'), and possibly contribute to the ultimate extent of myocardial necrosis. The authors review current understanding about the significance, mechanisms, detection and possible treatment of phenomena following reperfusion. A number of imaging modalities, now available to detect the presence and amount of these dysfunctional but variable myocardial segments are presented. These include: Single Photon Emission Computed Tomography, Positron Emission Tomography and Dobutamine Stress Echocardiography. Myocardial reperfusion experiments using animal models have studied possible mechanisms responsible for reperfusion injury. These may help in the search for novel pharmacological and other adjunctive approaches which may-overcome potential adverse effects of reperfusion. 15 refs

  12. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  13. Determination of Lactic Acid Bacteria Viability in the Small Intestine of Catfish (Pangasius djambal by Using the 32P Radioisotope

    Directory of Open Access Journals (Sweden)

    I. Sugoro

    2015-10-01

    Full Text Available The viability of probiotics is important to be determined, as is its probiotic potency in the small instestine of fish. The result can be used as a basis to determine the feeding frequency of the probiotics to the fish.The aim of this study is to gain information about the viability of lactic acid bacteria (LAB in the small intestine of fish by using the 32P isotope technique. Catfish (Pangasius djambal was used as a test fish, and the LAB with the code of P2.1 PTB was the subject of the experiment. Before its viability was tested, the LAB had been labelled with radioisotope 32P, then mixed into catfish feed. Its viability could be determined by counting the activity of 32P. The results showed that the percentage of LAB viability in the small intestine of catfish declined until day 7. The percentage of LAB viability was decreased at an amount of 30% at day 3. Based on this result, the feeding frequency of LAB P2.1 PTB is every 3 days. Received: 04 October 2014 Revised: 26 March 2015; Accepted: 05 April 2015

  14. Determination of lactic acid bacteria viability in the small intestine of catfish (Pangasius Djambal) by using the 32P radioisotope

    International Nuclear Information System (INIS)

    The viability of probiotics is important to be determined, as is its probiotics potency in the small intestine of fish. The result can be used as a basis to determine the feeding frequency of the probiotics to the fish. The aim of this study is to gain information about the viability of lactic acid bacteria (LAB) in the small intestine of fish by using the 32P isotope technique. Catfish (Pangasius djambal) was used as a test fish, and the LAB with the code of P2.1 PTB was the subject of the experiment. Before its viability was tested, the LAB had been labelled with radioisotope 32P, then mixed into catfish feed. Its viability could be determined by counting the activity of 32P. The results showed that the percentage of LAB viability in the small intestine of catfish declined until day 7. The percentage of LAB viability was decreased at an amount of 30% at day 3. Based on this result, the feeding frequency of LAB P2.1 PTB is every 3 days. (author)

  15. Translating partitioned cellular automata into classical type cellular automata

    OpenAIRE

    Poupet, Victor

    2008-01-01

    Partitioned cellular automata are a variant of cellular automata that was defined in order to make it very simple to create complex automata having strong properties such as number conservation and reversibility (which are often difficult to obtain on cellular automata). In this article we show how a partitioned cellular automaton can be translated into a regular cellular automaton in such a way that these properties are conserved.

  16. Mapping functional connectivity in cellular networks

    OpenAIRE

    Buibas, Marius

    2011-01-01

    My thesis is a collection of theoretical and practical techniques for mapping functional or effective connectivity in cellular neuronal networks, at the cell scale. This is a challenging scale to work with, primarily because of the difficulty in labeling and measuring the activities of networks of cells. It is also important as it underlies behavior, function, and complex diseases. I present methods to measure and quantify the dynamic activities of cells using the optical flow technique, whic...

  17. The viability of photovoltaics on the Martian surface

    Science.gov (United States)

    Gaier, James R.; Perez-Davis, Marla E.

    1994-01-01

    The viability of photovoltaics (PV) on the Martian surface may be determined by their ability to withstand significant degradation in the Martian environment. Probably the greatest threat is posed by fine dust particles which are continually blown about the surface of the planet. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted in the Martian Surface Wind Tunnel (MARSWIT) at NASA Ames Research Center. The effects of dust composition, particle size, wind velocity, angle of attack, and protective coatings on the transmittance of light through PV coverglass were determined. Both initially clear and initially dusted samples were subjected both to clear winds and simulated dust storms in the MARSWIT. It was found that wind velocity, particle size, and angle of attack are important parameters affecting occlusion of PV surfaces, while dust composition and protective coatings were not. Neither induced turbulence nor direct current biasing up to 200 volts were effective abatement techniques. Abrasion diffused the light impinging on the PV cells, but did not reduce total coverglass transmittance by more than a few percent.

  18. Genetic Dominance & Cellular Processes

    Science.gov (United States)

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  19. Radioactivity of cellular concrete

    International Nuclear Information System (INIS)

    The natural radioactivity of cellular concrete is discussed. Some data on the concentrations of 40K, 226Ra and 232Th in building materials in Poland are given. The results of dose rates measurements in living quarters as well as outside are presented. (A.S.)

  20. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  1. Green Cellular Networks: A Survey, Some Research Issues and Challenges

    CERN Document Server

    Hasan, Ziaul; Bhargava, Vijay K

    2011-01-01

    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogenous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative rela...

  2. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    Science.gov (United States)

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. PMID:26575708

  3. Radiation induced mitochondrial biogenesis: limitations of metabolic viability based assays in measuring radiation induced cell death

    International Nuclear Information System (INIS)

    Many techniques based on metabolic viability of cells employing MTT and MTS assay are being widely used to measure the radiation and chemotherapeutics induced cell death, because of their high throughput capability. These assays are based on mitochondrial potential of cells to convert the substrate in to measurable products and remain dependent on this notion that all the cells untreated and treated will have equal mitochondrial content and metabolic potential. However, it is increasingly becoming clear that treatment induced changes in both mitochondrial content and metabolism can influence the metabolic viability of cells and radiation is a potential mitochondrial biogenesis inducer. Therefore, we tested if metabolic viability based assays are true measure of radiation induced cell death using the widely used cell lines like RAW264.7, HEK293, NIH3T3, J774.1, BMG-1, MDAMB231, MCF-7, A549 and HeLa. Cells were irradiated with gamma rays (60Co) and enumerated cell numbers (by hemocytometer) and metabolic viability using MTT assay at 24 and 48 hours after exposure. At all the absorbed doses (0-5 Gy), the extent of reduction in cell number was found to be larger than the decrease in formazan formation in all the cell lines tested. Further, this difference in the cell number and formazan formation varied significantly among the cell lines. To test if the increased formazan formation is due to increased mitochondrial content per cell, we analyzed the radiation induced mitochondrial biogenesis using mitochondria specific dye mitotracker red and found a 1.5 to 2 fold increase in mitochondrial content. These findings suggest that radiation induces mitochondrial biogenesis that enhances the metabolic potential leading to increased formazan formation. Therefore, conclusions drawn on radiation induced cytotoxicity based on metabolic viability assays are likely to be erroneous as it may not correlate with growth inhibition and/or loss of clonogenic survival. (author)

  4. Modeling In Vitro Cellular Responses to Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dwaipayan Mukherjee

    2014-01-01

    Full Text Available Engineered nanoparticles (NPs have been widely demonstrated to induce toxic effects to various cell types. In vitro cell exposure systems have high potential for reliable, high throughput screening of nanoparticle toxicity, allowing focusing on particular pathways while excluding unwanted effects due to other cells or tissue dosimetry. The work presented here involves a detailed biologically based computational model of cellular interactions with NPs; it utilizes measurements performed in human cell culture systems in vitro, to develop a mechanistic mathematical model that can support analysis and prediction of in vivo effects of NPs. The model considers basic cellular mechanisms including proliferation, apoptosis, and production of cytokines in response to NPs. This new model is implemented for macrophages and parameterized using in vitro measurements of changes in cellular viability and mRNA levels of cytokines: TNF, IL-1b, IL-6, IL-8, and IL-10. The model includes in vitro cellular dosimetry due to nanoparticle transport and transformation. Furthermore, the model developed here optimizes the essential cellular parameters based on in vitro measurements, and provides a “stepping stone” for the development of more advanced in vivo models that will incorporate additional cellular and NP interactions.

  5. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  6. Automated enumeration and viability measurement of canine stromal vascular fraction cells using fluorescence-based image cytometry method.

    Science.gov (United States)

    Chan, Leo Li-Ying; Cohen, Donald A; Kuksin, Dmitry; Paradis, Benjamin D; Qiu, Jean

    2014-07-01

    In recent years, the lipoaspirate collected from adipose tissue has been seen as a valuable source of adipose-derived mesenchymal stem cells for autologous cellular therapy. For multiple applications, adipose-derived mesenchymal stem cells are isolated from the stromal vascular fraction (SVF) of adipose tissue. Because the fresh stromal vascular fraction typically contains a heterogeneous mixture of cells, determining cell concentration and viability is a crucial step in preparing fraction samples for downstream processing. Due to a large amount of cellular debris contained in the SVF sample, as well as counting irregularities standard manual counting can lead to inconsistent results. Advancements in imaging and optics technologies have significantly improved the image-based cytometric analysis method. In this work, we validated the use of fluorescence-based image cytometry for SVF concentration and viability measurement, by comparing to standard flow cytometry and manual hemocytometer. The concentration and viability of freshly collected canine SVF samples are analyzed, and the results highly correlated between all three methods, which validated the image cytometry method for canine SVF analysis, and potentially for SVF from other species. PMID:24740550

  7. The effects of arginine glutamate, a promising excipient for protein formulation, on cell viability: Comparisons with NaCl.

    Science.gov (United States)

    Kheddo, Priscilla; Golovanov, Alexander P; Mellody, Kieran T; Uddin, Shahid; van der Walle, Christopher F; Dearman, Rebecca J

    2016-06-01

    The effects of an equimolar mixture of l-arginine and l-glutamate (Arg·Glu) on cell viability and cellular stress using in vitro cell culture systems are examined with reference to NaCl, in the context of monoclonal antibody formulation. Cells relevant to subcutaneous administration were selected: the human monocyte cell line THP-1, grown as a single cell suspension, and adherent human primary fibroblasts. For THP-1 cells, the mechanism of cell death caused by relatively high salt concentrations was investigated and effects on cell activation/stress assessed as a function of changes in membrane marker and cytokine (interleukin-8) expression. These studies demonstrated that Arg·Glu does not have any further detrimental effects on THP-1 viability in comparison to NaCl at equivalent osmolalities, and that both salts at higher concentrations cause cell death by apoptosis; there was no significant effect on measures of THP-1 cellular stress/activation. For adherent fibroblasts, both salts caused significant toxicity at ~400mOsm/kg, although Arg·Glu caused a more precipitous subsequent decline in viability than did NaCl. These data indicate that Arg·Glu is of equivalent toxicity to NaCl and that the mechanism of toxicity is such that cell death is unlikely to trigger inflammation upon subcutaneous injection in vivo. PMID:26873863

  8. The market viability of nuclear hydrogen technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Botterud, A.; Conzelmann, G.; Petri, M. C.; Yildiz, B.

    2007-04-06

    The Department of Energy Office of Nuclear Energy is supporting system studies to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options. One of the objectives of the current analysis phase is to determine how nuclear hydrogen technologies could evolve under a number of different futures. The outputs of our work will eventually be used in a larger hydrogen infrastructure and market analysis conducted for DOE-EE using a system-level market simulation tool now underway. This report expands on our previous work by moving beyond simple levelized cost calculations and looking at profitability, risk, and uncertainty from an investor's perspective. We analyze a number of technologies and quantify the value of certain technology and operating characteristics. Our model to assess the profitability of the above technologies is based on Real Options Theory and calculates the discounted profits from investing in each of the production facilities. We use Monte-Carlo simulations to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from a production plant. We also quantify the value of the option to switch between hydrogen and electricity production in order to maximize investor profits. Uncertainty in electricity and hydrogen prices can be represented with two different stochastic processes: Geometric Brownian Motion (GBM) and Mean Reversion (MR). Our analysis finds that the flexibility to switch between hydrogen and electricity leads

  9. How to use information from echocardiography and magnetic resonance for diagnosing myocardial viability.

    Science.gov (United States)

    Sechtem, U

    1996-10-01

    The identification of viable myocardium in patients with coronary artery disease with or without a history of myocardial infarction and regions of akinesia is of great clinical importance. Viable myocardium which is underperfused due to severe atherosclerotic disease in the feeding vessel needs to be revascularized both to ameliorate symptoms and improved prognosis. In contrast, scarred myocardium should not be revascularized and medical therapy for heart failure should be instituted. Due to the complexity of the problem, which requires information about wall motion and coronary artery anatomy, viability tests are usually requested after the results of left heart catheterization with coronary angiography are known. Often cardiac catheterization itself already provides important clues to the presence of viable myocardium: the degree of wall motion abnormality, post-extrasystolic improvement of wall motion, the presence of angina in a patient with single-vessel disease and the presence of collaterals, are all associated with viability. Echocardiography has become a strong competitor to myocardial perfusion studies in assessing myocardial viability. Published figures for sensitivity and specificity parallel those of scintigraphic techniques and even positron emission tomography scans. However, there are insufficient data on the use of echocardiography in patients with severely depressed left ventricular function. A new and exciting technique to detect viable myocardium is magnetic resonance imaging, which has been shown to have similar diagnostic accuracy as FDG-PET. PMID:8950243

  10. Cine viability magnetic resonance imaging of the heart without increased scan time.

    Science.gov (United States)

    Hassanein, Azza S; Khalifa, Ayman M; Ibrahim, El-Sayed H

    2016-02-01

    Cardiac magnetic resonance imaging (MRI) provides information about myocardial morphology, function, and viability from cine, tagged, and late gadolinium enhancement (LGE) images, respectively. While the cine and tagged images are acquired in a time-resolved fashion, the LGE images are acquired at a single timeframe. The purpose of this work is to develop a method for generating cine LGE images without additional scan time. The motion field is extracted from the tagged images, and is then used to guide the deformation of the infarcted region from the acquired LGE image at the acquired timeframe to any other timeframe. Major techniques for motion estimation, including harmonic phase (HARP) and optical flow analysis, are tested in this work for motion estimation. The proposed method is tested on numerical phantom and images from four human subjects. The generated cine LGE images showed both viability and wall motion information in the same set of images without additional scan time or image misregistration problems. The band-pass optical flow analysis resulted in the most accurate motion estimation compared to other methods, especially HARP, which fails to track points at the myocardial boundary. Infarct transmurality from the generated images showed good agreement with myocardial strain, and wall thickening showed good agreement with that measured from conventional cine images. In conclusion, the developed technique allows for generating cine LGE images that enable simultaneous display of wall motion and viability information. The generated images could be useful for estimating myocardial contractility reserve and for treatment prognosis. PMID:26528793

  11. The application of flow cytometry and fluorescent probe technology for detection and assessment of viability of plant pathogenic bacteria

    NARCIS (Netherlands)

    Chitarra, L.G.; Bulk, van den R.W.

    2003-01-01

    Conventional methods to detect and assess the viability of plant pathogenic bacteria are usually based on plating assays or serological techniques. Plating assays provide information about the number of viable cells, expressed as colony-forming units, but are time-consuming and laborious. Serologica

  12. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  13. The activation of cellular oncogenes by retroviral insertion

    International Nuclear Information System (INIS)

    Replication-competent retroviruses can induce a variety of tumors by insertional activation of cellular oncogenes. Transposon tagging techniques have uncovered many novel cellular genes implicated in tumorigenesis. Activation of these genes can occur by insertion of viral promoters, transcriptional enhancement over large distances, or the generation of novel chimeric proteins

  14. STUDY ON POLLEN VIABILITY AS BIOINDICATOR OF AIR QUALITY

    Directory of Open Access Journals (Sweden)

    Florentina ŞTEFLEA

    2012-01-01

    Full Text Available The aim of this research is to estimate the relationship between pollen viability and atmospheric pollution (in polluted and non-polluted conditions. The study was carried out in the city of Timisoara. Two areas, with different intensity of road traffic (very high and absent but all characterized by the presence of the same plant species, were selected. The pollen of herbaceous spontaneous species, arboreal species and a shrub species was used (Robinia pseudacacia, Aesculus x carnea, Catalpa bignonioides, Albizzia julibrissin, Rosa canina, Sambucus nigra, Malva neglecta, Ranunculus acer, Trifolium repens, Cichorium intybus. The pollen of these species was treated with TTC (2, 3, 5 Tryphenil-Tetrazolium-Chloride staining solution and viability was then estimated by light microscopy. The results of the mean pollen viability percentage of the examined species are reported. Pollen viability of herbaceous plants is significantly different between the two environments.

  15. Puget Sound steelhead life cycle model analyses - Population Viability Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This research was initiated by the Puget Sound Steelhead Technical Recovery Team to develop viability criteria for threatened Puget Sound steelhead and to support...

  16. Electromagnetic cellular interactions

    Czech Academy of Sciences Publication Activity Database

    Cifra, Michal; Fields, J. S.; Farhadi, A.

    2011-01-01

    Roč. 105, č. 3 (2011), 223-246. ISSN 0079-6107. [36th International Congress of Physiological Sciences (IUPS2009). Kyoto, 27.07.2009-01.08.2009] R&D Projects: GA ČR(CZ) GPP102/10/P454 Institutional research plan: CEZ:AV0Z20670512 Keywords : bioelectric phenomena * cellular biophysics Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.203, year: 2011

  17. Magnetic Cellular Switches

    OpenAIRE

    Overby, Darryl R.; Alenghat, Francis J.; Montoya-Zavala, Martín; Bei, HuCheng; Oh, Philmo; Karavitis, John; Ingber, Donald E.

    2004-01-01

    This paper focuses on the development of magnetic cellular switches to enable magnetic control of intracellular functions in living mammalian cells, including receptor signal transduction and gene transcription. Our approach takes advantage of the mechanosensitivity of adenosine 3′,5′-monophosphate (cAMP) induction and downstream transcription controlled by the cAMP regulatory element (CRE) to engineer gene constructs that optically report gene expression in living cells. We activate transcri...

  18. Pollen germination capacity and viability in lagenaria siceraria (molina) standley (cucurbitaceae)

    International Nuclear Information System (INIS)

    Present investigation of pollen germination and viability pertain to a monoecious species Lagenaria siceraria (Molina) Standley belonging to Cucurbitaceae. The pollen germination was examined up to 48 weeks in different concentrations of sucrose and boric acid solutions using 'hanging drop technique'. Viability under storage was determined by storing pollen in different humidity conditions in a refrigerator (4 deg. C), freezer (-20 deg. C. -30 deg. C), freeze drier (-60 deg. C). The pollen were also treated in vacuum and in organic solvents. Pollen stored at low temperature showed better percentage of germination compared to pollen stored at 4 deg. C and fresh. Freeze dried pollen (- 60 deg. C) showed the highest percentage of germination. (author)

  19. Viability estimation of pepper seeds using time-resolved photothermal signal characterization

    Science.gov (United States)

    Kim, Ghiseok; Kim, Geon-Hee; Lohumi, Santosh; Kang, Jum-Soon; Cho, Byoung-Kwan

    2014-11-01

    We used infrared thermal signal measurement system and photothermal signal and image reconstruction techniques for viability estimation of pepper seeds. Photothermal signals from healthy and aged seeds were measured for seven periods (24, 48, 72, 96, 120, 144, and 168 h) using an infrared camera and analyzed by a regression method. The photothermal signals were regressed using a two-term exponential decay curve with two amplitudes and two time variables (lifetime) as regression coefficients. The regression coefficients of the fitted curve showed significant differences for each seed groups, depending on the aging times. In addition, the viability of a single seed was estimated by imaging of its regression coefficient, which was reconstructed from the measured photothermal signals. The time-resolved photothermal characteristics, along with the regression coefficient images, can be used to discriminate the aged or dead pepper seeds from the healthy seeds.

  20. Cellular therapy in Tuberculosis

    Directory of Open Access Journals (Sweden)

    Shreemanta K. Parida

    2015-03-01

    Full Text Available Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB. We review here the role of Mesenchymal stromal cells, (MSCs, as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy.

  1. Cellular therapy in tuberculosis.

    Science.gov (United States)

    Parida, Shreemanta K; Madansein, Rajhmun; Singh, Nalini; Padayatchi, Nesri; Master, Iqbal; Naidu, Kantharuben; Zumla, Alimuddin; Maeurer, Markus

    2015-03-01

    Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB). We review here the role of Mesenchymal stromal cells, (MSCs), as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy. PMID:25809753

  2. Quantum cellular automata

    Science.gov (United States)

    Porod, Wolfgang; Lent, Craig S.; Bernstein, Gary H.

    1994-06-01

    The Notre Dame group has developed a new paradigm for ultra-dense and ultra-fast information processing in nanoelectronic systems. These Quantum Cellular Automata (QCA's) are the first concrete proposal for a technology based on arrays of coupled quantum dots. The basic building block of these cellular arrays is the Notre Dame Logic Cell, as it has been called in the literature. The phenomenon of Coulomb exclusion, which is a synergistic interplay of quantum confinement and Coulomb interaction, leads to a bistable behavior of each cell which makes possible their use in large-scale cellular arrays. The physical interaction between neighboring cells has been exploited to implement logic functions. New functionality may be achieved in this fashion, and the Notre Dame group invented a versatile majority logic gate. In a series of papers, the feasibility of QCA wires, wire crossing, inverters, and Boolean logic gates was demonstrated. A major finding is that all logic functions may be integrated in a hierarchial fashion which allows the design of complicated QCA structures. The most complicated system which was simulated to date is a one-bit full adder consisting of some 200 cells. In addition to exploring these new concepts, efforts are under way to physically realize such structures both in semiconductor and metal systems. Extensive modeling work of semiconductor quantum dot structures has helped identify optimum design parameters for QCA experimental implementations.

  3. Inhibition of hypochlorous acid-induced cellular toxicity by nitrite

    Science.gov (United States)

    Whiteman, Matthew; Hooper, D. Craig; Scott, Gwen S.; Koprowski, Hilary; Halliwell, Barry

    2002-09-01

    Chronic inflammation results in increased nitrogen monoxide (NO) formation and the accumulation of nitrite (NO). Neutrophils stimulated by various inflammatory mediators release myeloperoxidase to produce the cytotoxic agent hypochlorous acid (HOCl). Exposure of chondrocytic SW1353 cells to HOCl resulted in a concentration- and time-dependent loss in viability, ATP, and glutathione levels. Treatment of cells with NO but not nitrate (NO) substantially decreased HOCl-dependent cellular toxicity even when NO was added at low (μM) concentrations. In contrast, NO alone (even at 1 mM concentrations) did not affect cell viability or ATP and glutathione levels. These data suggest that NO accumulation at chronic inflammatory sites, where both HOCl and NO are overproduced, may be cytoprotective against damage caused by HOCl. We propose that this is because HOCl is removed by reacting with NO to give nitryl chloride (NO2Cl), which is less damaging in our cell system. inflammation | cell toxicity | nitryl chloride | nitric oxide | arthritis

  4. Dead or alive? Viability assessment of micro- and mesoplankton

    OpenAIRE

    Zetsche, E.M.; F. J. R. Meysman

    2012-01-01

    The rapid and efficient analysis of plankton samples (e.g. enumeration, identification, biomass determination) has been an important driver for recent technological developments in (semi-) automated analysis and imaging instruments. Most focus has been on identification and abundance estimates, while less attention has been given to viability, i.e. the assessment of whether the organisms are dead or alive. However, a wide spectrum of scientific applications requires accurate viability determi...

  5. Mobile social networking application viability: a research framework

    OpenAIRE

    Chee Wei Phang; Juliana Sutanto; Chuan-Hoo Tan; Jan Ondrus

    2014-01-01

    Purpose – The purpose of this article is to outline a conceptual framework on mobile applications that support social interactions among users to warrant commercial viability of such applications. Design/methodology/approach –We build on the social network paradigm to propose an activity-based view on mobile application usage, and theoretically link the pertinent features of mobile social networking applications (MSNAs) to a set of measurement metrics concerning their commercial viability. Fi...

  6. Enhancing Osteochondral Allograft Viability: Effects of Storage Media Composition

    OpenAIRE

    Teng, Margie S.; Yuen, Audrey S.; Kim, Hubert T.

    2008-01-01

    Osteochondral allograft transplantation is a well-accepted treatment for articular cartilage damage. However, chondrocyte viability declines during graft storage, which may compromise graft performance. We first tested the hypothesis that the composition of commonly used storage media affects the viability of articular chondrocytes over time; we then tested the hypothesis that the addition of insulin growth factor-1 or the apoptosis inhibitor ZVAD-fmk could enhance the storage properties of s...

  7. In vitro radiolabel uptake viability assay for Onchocerca microfilariae

    International Nuclear Information System (INIS)

    A radiolabel uptake viability assay for Onchocerca cervicalis using [3H]2-deoxy-D-glucose in Hanks' balanced salt solution, pH 7.5, at 30 C is described and compared to the traditional visual motility assay. A correlation of r = 0.92 between the assays was found, with the radiolabel uptake method apparently a more sensitive indicator of microfilarial viability

  8. Flow cytometric assessment of viability of lactic acid bacteria

    OpenAIRE

    Bunthof, C.J.; Bloemen, K.; Breeuwer, P.; Rombouts, F. M.; Abee, T

    2001-01-01

    The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA binding probes propidium iodide (PI) and TOTO-1 were tested for live/dead discrimination using a Lactococcus, a Streptococcus, three Lactobacillus, two Leuconostoc, an Enterococcus, and a Pediococcu...

  9. Bisphenol A Disrupts Transcription and Decreases Viability in Aging Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Edna Ribeiro-Varandas

    2014-09-01

    Full Text Available Bisphenol A (BPA is a widely utilized endocrine disruptor capable of mimicking endogenous hormones, employed in the manufacture of numerous consumer products, thereby interfering with physiological cellular functions. Recent research has shown that BPA alters epigenetic cellular mechanisms in mammals and may be correlated to enhanced cellular senescence. Here, the effects of BPA at 10 ng/mL and 1 µg/mL, concentrations found in human samples, were analyzed on HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR transcriptional analysis of the Long Interspersed Element-1 (LINE-1 retroelement showed that BPA induces global transcription deregulation in both cell lines, although with more pronounced effects in HUVEC cells. Whereas there was an increase in global transcription in HT29 exclusively after 24 h of exposure, this chemical had prolonged effects on HUVEC. Immunoblotting revealed that this was not accompanied by alterations in the overall content of H3K9me2 and H3K4me3 epigenetic marks. Importantly, cell viability assays and transcriptional analysis indicated that prolonged BPA exposure affects aging processes in senescent HUVEC. To our knowledge this is the first report that BPA interferes with senescence in primary vascular endothelial cells, therefore, suggesting its association to the etiology of age-related human pathologies, such as atherosclerosis.

  10. Bisphenol A Disrupts Transcription and Decreases Viability in Aging Vascular Endothelial Cells

    Science.gov (United States)

    Ribeiro-Varandas, Edna; Pereira, H. Sofia; Monteiro, Sara; Neves, Elsa; Brito, Luísa; Boavida Ferreira, Ricardo; Viegas, Wanda; Delgado, Margarida

    2014-01-01

    Bisphenol A (BPA) is a widely utilized endocrine disruptor capable of mimicking endogenous hormones, employed in the manufacture of numerous consumer products, thereby interfering with physiological cellular functions. Recent research has shown that BPA alters epigenetic cellular mechanisms in mammals and may be correlated to enhanced cellular senescence. Here, the effects of BPA at 10 ng/mL and 1 µg/mL, concentrations found in human samples, were analyzed on HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) transcriptional analysis of the Long Interspersed Element-1 (LINE-1) retroelement showed that BPA induces global transcription deregulation in both cell lines, although with more pronounced effects in HUVEC cells. Whereas there was an increase in global transcription in HT29 exclusively after 24 h of exposure, this chemical had prolonged effects on HUVEC. Immunoblotting revealed that this was not accompanied by alterations in the overall content of H3K9me2 and H3K4me3 epigenetic marks. Importantly, cell viability assays and transcriptional analysis indicated that prolonged BPA exposure affects aging processes in senescent HUVEC. To our knowledge this is the first report that BPA interferes with senescence in primary vascular endothelial cells, therefore, suggesting its association to the etiology of age-related human pathologies, such as atherosclerosis. PMID:25207595

  11. Software-Defined Cellular Mobile Network Solutions

    Institute of Scientific and Technical Information of China (English)

    Jiandong Li; Peng Liu; Hongyan Li

    2014-01-01

    The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, pro-vides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solu-tions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only software-defined cellular network solutions and specifications in order to provide possible research directions.

  12. Infrared image enhancement using Cellular Automata

    Science.gov (United States)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2016-05-01

    Image enhancement is a crucial technique for infrared images. The clear image details are important for improving the quality of infrared images in computer vision. In this paper, we propose a new enhancement method based on two priors via Cellular Automata. First, we directly learn the gradient distribution prior from the images via Cellular Automata. Second, considering the importance of image details, we propose a new gradient distribution error to encode the structure information via Cellular Automata. Finally, an iterative method is applied to remap the original image based on two priors, further improving the quality of enhanced image. Our method is simple in implementation, easy to understand, extensible to accommodate other vision tasks, and produces more accurate results. Experiments show that the proposed method performs better than other methods using qualitative and quantitative measures.

  13. 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy

    Science.gov (United States)

    Whitney, Jon; DeWitt, Matthew; Whited, Bryce M.; Carswell, William; Simon, Alex; Rylander, Christopher G.; Rylander, Marissa Nichole

    2013-07-01

    A new image analysis method called the spatial phantom evaluation of cellular thermal response in layers (SPECTRL) is presented for assessing spatial viability response to nanoparticle enhanced photothermal therapy in tissue representative phantoms. Sodium alginate phantoms seeded with MDA-MB-231 breast cancer cells and single-walled nanohorns were laser irradiated with an ytterbium fiber laser at a wavelength of 1064 nm and irradiance of 3.8 W cm-2 for 10-80 s. SPECTRL quantitatively assessed and correlated 3D viability with spatiotemporal temperature. Based on this analysis, kill and transition zones increased from 3.7 mm3 and 13 mm3 respectively to 44.5 mm3 and 44.3 mm3 as duration was increased from 10 to 80 s. SPECTRL provides a quantitative tool for measuring precise spatial treatment regions, providing information necessary to tailor therapy protocols.

  14. 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy

    International Nuclear Information System (INIS)

    A new image analysis method called the spatial phantom evaluation of cellular thermal response in layers (SPECTRL) is presented for assessing spatial viability response to nanoparticle enhanced photothermal therapy in tissue representative phantoms. Sodium alginate phantoms seeded with MDA-MB-231 breast cancer cells and single-walled nanohorns were laser irradiated with an ytterbium fiber laser at a wavelength of 1064 nm and irradiance of 3.8 W cm−2 for 10–80 s. SPECTRL quantitatively assessed and correlated 3D viability with spatiotemporal temperature. Based on this analysis, kill and transition zones increased from 3.7 mm3 and 13 mm3 respectively to 44.5 mm3 and 44.3 mm3 as duration was increased from 10 to 80 s. SPECTRL provides a quantitative tool for measuring precise spatial treatment regions, providing information necessary to tailor therapy protocols. (paper)

  15. Multispectral imaging of organ viability during uterine transplantation surgery

    Science.gov (United States)

    Clancy, Neil T.; Saso, Srdjan; Stoyanov, Danail; Sauvage, Vincent; Corless, David J.; Boyd, Michael; Noakes, David E.; Thum, Meen-Yau; Ghaem-Maghami, Sadaf; Smith, J. R.; Elson, Daniel S.

    2014-02-01

    Uterine transplantation surgery has been proposed as a treatment for permanent absolute uterine factor infertility (AUFI) in the case of loss of the uterus. Due to the complexity of the vasculature correct reanastomosis of the blood supply during transplantation surgery is a crucial step to ensure reperfusion and viability of the organ. While techniques such as fluorescent dye imaging have been proposed to visualise perfusion there is no gold standard for intraoperative visualisation of tissue oxygenation. In this paper results from a liquid crystal tuneable filter (LCTF)-based multispectral imaging (MSI) laparoscope are described. The system was used to monitor uterine oxygen saturation (SaO2) before and after transplantation. Results from surgeries on two animal models (rabbits and sheep) are presented. A feature-based registration algorithm was used to correct for misalignment induced by breathing or peristalsis in the tissues of interest prior to analysis. An absorption spectrum was calculated at each spatial pixel location using reflectance data from a reference standard, and the relative contributions from oxy- and deoxyhaemoglobin were calculated using a least squares regression algorithm with non-negativity constraints. Results acquired during animal surgeries show that cornual oxygenation changes are consistent with those observed in point measurements taken using a pulse oximeter, showing reduced SaO2 following reanastomosis. Values obtained using the MSI laparoscope were lower than those taken with the pulse oximeter, which may be due to the latter's use of the pulsatile arterial blood signal. Future work incorporating immunological test results will help to correlate SaO2 levels with surgical outcomes.

  16. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG, 5.6 mM (MG, or 23.3 mM(HG under normoxic or hypoxic (1% oxygen condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production.

  17. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  18. Cellular-scale hydrodynamics

    DEFF Research Database (Denmark)

    Abkarian, Manouk; Faivre, Magalie; Horton, Renita; Smistrup, Kristian; Best-Popescu, Catherine A; Stone, Howard A.

    2008-01-01

    Microfluidic tools are providing many new insights into the chemical, physical and physicochemical responses of cells. Both suspension-level and single-cell measurements have been studied. We review our studies of these kinds of problems for red blood cells with particular focus on the shapes of ...... mechanical effects on suspended cells can be studied systematically in small devices, and how these features can be exploited to develop methods for characterizing physicochemical responses and possibly for the diagnosis of cellular-scale changes to environmental factors....

  19. Cellular mechanics and motility

    Science.gov (United States)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  20. Cell spreading and viability on zein films may be facilitated by transglutaminase.

    Science.gov (United States)

    Cui, Hemiao; Liu, Gang L; Padua, Graciela W

    2016-09-01

    Zein is a biocompatible corn protein potentially useful in the development of biomaterials. In this study, the deposition of zein on oxygen plasma treated glass cover slips significantly enhanced cell spreading and viability. The mechanism for cellular response to zein coated surfaces was thought to involve the polyglutamine peptides on the zein structure. We hypothesized that zein was a substrate for tissue transglutaminase (tTG), an extracellular enzyme involved in cell-surface interactions. SDS-PAGE results suggested an interaction between zein and tTG, where zein was the glutamine donor. Cross-linking between zein and tTG may be the first step in successful cell adhesion and spreading. PMID:27315332

  1. Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability

    International Nuclear Information System (INIS)

    Surface functionalization is an important process that has been adopted to well explore the applications of nanomaterials. In this context, we demonstrate the sodium functionalized graphene oxide (NaGO) as an excellent candidate for increasing the life time of titanium (Ti) based ortho-implants. As-prepared aqueous dispersion of NaGO was used to assemble NaGO sheets on commercially pure Ti (CpTi) plates by heat controlled spin coating. The resulting wrinkled NaGO sheets play a dual role in implant material, i.e., passive layer against corrosion and biocompatible scaffold for cell viability. The preparation, physicochemical properties, and biocompatibility of NaGO coatings formed on CpTi were reported. The electrochemical polarization studies demonstrate the relative susceptibility of control GO and NaGO coatings to corrosion, which outline that the NaGO coating act as a geometric blocking layer and hence prevent the implant surface from contacting corrosive media. The immunofluorescence and cell proliferation studies performed using human dermal fibroblasts cells showed that NaGO coatings significantly (P < 0.05) enhanced the cellular viability for longer in vitro culture period (15 days) than control GO and pristine CpTi.

  2. Flow cytometric lifetime-based cell viability assay using propidium iodide

    Science.gov (United States)

    Steinkamp, John A.; Lehnert, Bruce E.; Lehnert, Nancy M.

    1999-05-01

    Assays which discriminate and enumerate dying or dead cells are important in various types of cellular studies. In many instances, there is a need to identify dead cells that interfere with fluorescent probes which are used to measure functional and physiological properties in viable cells. For example, dead cells can introduce analytical errors arising from (1) nonspecific uptake of fluorescent probes, leading to erroneous percentages of positive labeled cells, (2) increased autofluorescence, and (3) altered antigen expression. The ability to detect dead cells is also of importance in determining the effectiveness of cytotoxic agents. Propidium iodide (PPI) exclusion, which is analogous to the non- fluorescent trypan blue dye test for viability, is used extensively in flow cytometry assays. However, the use of PI can potentially limit the application of additional fluorescent probes due to spectral overlap of the probe with PI. In this report we present phase-resolved fluorescence studies on rat and murine thymus cells labeled with phycoerythrin-antiThy 1.1 and phycoerythrin/Texas Red-antiThy 1.2 immunofluorescence markers, respectively, and PI. Overlapping emission spectra are resolved based on differences in fluorescence lifetimes of the probes and PI. These studies demonstrate a new lifetime-based viability method for use in analysis of immunofluorescent probes and for assaying the dynamics of cell killing.

  3. The Cytotoxic Role of Intermittent High Glucose on Apoptosis and Cell Viability in Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-01-01

    Full Text Available Objectives. Glucose fluctuations are both strong predictor of diabetic complications and crucial factor for beta cell damages. Here we investigated the effect of intermittent high glucose (IHG on both cell apoptosis and proliferation activity in INS-1 cells and the potential mechanisms. Methods. Cells were treated with normal glucose (5.5 mmol/L, constant high glucose (CHG (25 mmol/L, and IHG (rotation per 24 h in 11.1 or 25 mmol/L for 7 days. Reactive oxygen species (ROS, xanthine oxidase (XOD level, apoptosis, cell viability, cell cycle, and expression of cyclinD1, p21, p27, and Skp2 were determined. Results. We found that IHG induced more significant apoptosis than CHG and normal glucose; intracellular ROS and XOD levels were more markedly increased in cells exposed to IHG. Cells treated with IHG showed significant decreased cell viability and increased cell proportion in G0/G1 phase. Cell cycle related proteins such as cyclinD1 and Skp2 were decreased significantly, but expressions of p27 and p21 were increased markedly. Conclusions. This study suggested that IHG plays a more toxic effect including both apoptosis-inducing and antiproliferative effects on INS-1 cells. Excessive activation of cellular stress and regulation of cyclins might be potential mechanism of impairment in INS-1 cells induced by IHG.

  4. Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, Mohana [Department of Bionanotechnology, Gachon University, Seongnam Si, Gyeonggi-Do 461 701 (Korea, Republic of); Department of Engineering Physics, École Polytechnique de Montréal, Montreal, Quebec H3T 1J4 (Canada); Veerapandian, Murugan [Department of Bionanotechnology, Gachon University, Seongnam Si, Gyeonggi-Do 461 701 (Korea, Republic of); Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Quebec H3C 3J7 (Canada); Ramasundaram, Subramaniyan; Hong, Seok Won [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14 gil, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Sudhagar, P., E-mail: vedichi@gmail.com [Energy Materials Lab, WCU Program, Department of Energy Engineering, Hanyang University, Seoul 133 791 (Korea, Republic of); Nagarajan, Srinivasan [Energy Materials Lab, WCU Program, Department of Energy Engineering, Hanyang University, Seoul 133 791 (Korea, Republic of); Raman, V. [Department of Materials Science, Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi-shi, Ishikawa-ken 923-1292 (Japan); Ito, Eisuke [Flucto-Order Functions Research Team, RIKEN-ASI, Saitama 351-0198 (Japan); Kim, Sanghyo; Yun, Kyusik [Department of Bionanotechnology, Gachon University, Seongnam Si, Gyeonggi-Do 461 701 (Korea, Republic of); Kang, Yong Soo, E-mail: kangys@hanyang.ac.kr [Energy Materials Lab, WCU Program, Department of Energy Engineering, Hanyang University, Seoul 133 791 (Korea, Republic of)

    2014-02-28

    Surface functionalization is an important process that has been adopted to well explore the applications of nanomaterials. In this context, we demonstrate the sodium functionalized graphene oxide (NaGO) as an excellent candidate for increasing the life time of titanium (Ti) based ortho-implants. As-prepared aqueous dispersion of NaGO was used to assemble NaGO sheets on commercially pure Ti (CpTi) plates by heat controlled spin coating. The resulting wrinkled NaGO sheets play a dual role in implant material, i.e., passive layer against corrosion and biocompatible scaffold for cell viability. The preparation, physicochemical properties, and biocompatibility of NaGO coatings formed on CpTi were reported. The electrochemical polarization studies demonstrate the relative susceptibility of control GO and NaGO coatings to corrosion, which outline that the NaGO coating act as a geometric blocking layer and hence prevent the implant surface from contacting corrosive media. The immunofluorescence and cell proliferation studies performed using human dermal fibroblasts cells showed that NaGO coatings significantly (P < 0.05) enhanced the cellular viability for longer in vitro culture period (15 days) than control GO and pristine CpTi.

  5. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  6. Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability

    Science.gov (United States)

    Marimuthu, Mohana; Veerapandian, Murugan; Ramasundaram, Subramaniyan; Hong, Seok Won; Sudhagar, P.; Nagarajan, Srinivasan; Raman, V.; Ito, Eisuke; Kim, Sanghyo; Yun, Kyusik; Kang, Yong Soo

    2014-02-01

    Surface functionalization is an important process that has been adopted to well explore the applications of nanomaterials. In this context, we demonstrate the sodium functionalized graphene oxide (NaGO) as an excellent candidate for increasing the life time of titanium (Ti) based ortho-implants. As-prepared aqueous dispersion of NaGO was used to assemble NaGO sheets on commercially pure Ti (CpTi) plates by heat controlled spin coating. The resulting wrinkled NaGO sheets play a dual role in implant material, i.e., passive layer against corrosion and biocompatible scaffold for cell viability. The preparation, physicochemical properties, and biocompatibility of NaGO coatings formed on CpTi were reported. The electrochemical polarization studies demonstrate the relative susceptibility of control GO and NaGO coatings to corrosion, which outline that the NaGO coating act as a geometric blocking layer and hence prevent the implant surface from contacting corrosive media. The immunofluorescence and cell proliferation studies performed using human dermal fibroblasts cells showed that NaGO coatings significantly (P enhanced the cellular viability for longer in vitro culture period (15 days) than control GO and pristine CpTi.

  7. Myocardial Viability and Revascularization: Current Understanding and Future Directions.

    Science.gov (United States)

    Patel, Pavan; Ivanov, Alexander; Ramasubbu, Kumudha

    2016-06-01

    The initial observation of functional recovery in dysfunctional myocardium following revascularization led to the introduction of the concept of hibernating myocardium. Since then, the pathophysiologic basis of hibernating myocardium has been well described. Multiple imaging modalities have been utilized to prospectively detect viable myocardium and thus predict its functional recovery following revascularization. It has been hypothesized that viability imaging will be instrumental in the selection of patients with ischemic cardiomyopathy likely to benefit from revascularization. Multiple observational studies built a large body of evidence supporting this concept. However, data from prospective studies failed to substantiate utility of viability testing. This review aims to summarize the current literature and describe the role of viability imaging in current clinical practice as well as future directions. PMID:27115143

  8. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seunghyon [Seoul National University, School of Mechanical and Aerospace Engineering (Korea, Republic of); Kim, Ji-Eun [Korea Research Institute of Standard and Science, Center for NanoSafety Metrology, Division of Convergence Technology (Korea, Republic of); Kim, Daegyu [LG Electronics (Korea, Republic of); Woo, Chang Gyu [Korea Institute of Machinery and Materials, Environmental and Energy Systems Research Division (Korea, Republic of); Pikhitsa, Peter V. [Seoul National University, School of Mechanical and Aerospace Engineering (Korea, Republic of); Cho, Myung-Haing, E-mail: mchotox@snu.ac.kr [Seoul National University, Laboratory of Toxicology, College of Veterinary Medicine (Korea, Republic of); Choi, Mansoo, E-mail: mchoi@snu.ac.kr [Seoul National University, School of Mechanical and Aerospace Engineering (Korea, Republic of)

    2015-09-15

    The cellular toxicity of multi-walled carbon nanotubes (MWCNTs) and onion-like shell-shaped carbon nanoparticles (SCNPs) was investigated by analyzing the comparative cell viability. For the reasonable comparison, physicochemical characteristics were controlled thoroughly such as crystallinity, carbon bonding characteristic, hydrodynamic diameter, and metal contents of the particles. To understand relation between cellular toxicity of the particles and generation of reactive oxygen species (ROS), we measured unpaired singlet electrons of the particles and intracellular ROS, and analyzed cellular toxicity with/without the antioxidant N-acetylcysteine (NAC). Regardless of the presence of NAC, the cellular toxicity of SCNPs was found to be lower than that of MWCNTs. Since both particles show similar crystallinity, hydrodynamic size, and Raman signal with negligible contribution of remnant metal particles, the difference in cell viability would be ascribed to the difference in morphology, i.e., spherical shape (aspect ratio of one) for SCNP and elongated shape (high aspect ratio) for MWCNT.

  9. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles

    International Nuclear Information System (INIS)

    The cellular toxicity of multi-walled carbon nanotubes (MWCNTs) and onion-like shell-shaped carbon nanoparticles (SCNPs) was investigated by analyzing the comparative cell viability. For the reasonable comparison, physicochemical characteristics were controlled thoroughly such as crystallinity, carbon bonding characteristic, hydrodynamic diameter, and metal contents of the particles. To understand relation between cellular toxicity of the particles and generation of reactive oxygen species (ROS), we measured unpaired singlet electrons of the particles and intracellular ROS, and analyzed cellular toxicity with/without the antioxidant N-acetylcysteine (NAC). Regardless of the presence of NAC, the cellular toxicity of SCNPs was found to be lower than that of MWCNTs. Since both particles show similar crystallinity, hydrodynamic size, and Raman signal with negligible contribution of remnant metal particles, the difference in cell viability would be ascribed to the difference in morphology, i.e., spherical shape (aspect ratio of one) for SCNP and elongated shape (high aspect ratio) for MWCNT

  10. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  11. Modeling and cellular studies

    International Nuclear Information System (INIS)

    Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage

  12. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds......, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  13. Correlation of PET and MRI for comparing assessments on myocardial viability

    International Nuclear Information System (INIS)

    Spatially correlating images from different imaging modalities could provide complementary information of physiopathology of the heart. In this study, a surface-based registration technique, relied on integrating morphological information extracted from image datasets, was employed to co-register the functional and anatomical information from positron emission tomography (PET) and magnetic resonance imaging (MRI), respectively. We also evaluated the system performance based on external fiducial marker and concluded that the overall registration accuracy is close to intrinsic system limitation. Therefore, comprehensive image information could be performed for comparing assessments on myocardial viability

  14. Old tools for sophisticated diagnosis: Electrocardiography for the assessment of myocardial viability

    International Nuclear Information System (INIS)

    The identification of residual myocardial viability in patients with a previous myocardial infarction has important clinical implications. Various methods have been developed for the detection of viable myocardium, however most of them are expensive and available only to high-tech centers. In the attempt to obtain reliable information at a low cost, exercise-ECG has been proposed as a useful technique. The results of a series of studies show that ST segment elevation and ventricular arrhythmias elicited by exercise are reliable signs of the presence of reversible myocardial damage

  15. Paraconsistent Annotated Logic in Viability Analysis: an Approach to Product Launching

    Science.gov (United States)

    Romeu de Carvalho, Fábio; Brunstein, Israel; Abe, Jair Minoro

    2004-08-01

    In this paper we present an application of the Para-analyzer, a logical analyzer based on the Paraconsistent Annotated Logic Pτ, introduced by Da Silva Filho and Abe in the decision-making systems. An example is analyzed in detail showing how uncertainty, inconsistency and paracompleteness can be elegantly handled with this logical system. As application for the Para-analyzer in decision-making, we developed the BAM — Baricenter Analysis Method. In order to make the presentation easier, we present the BAM applied in the viability analysis of product launching. Some of the techniques of Paraconsistent Annotated Logic have been applied in Artificial Intelligence, Robotics, Information Technolgy (Computer Sciences), etc..

  16. Economic Viability of Brewery Spent Grain as a Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report summarizes an investigation into the technical feasibility and economic viability of use grain wastes from the beer brewing process as fuel to generate the heat needed in subsequent brewing process. The study finds that while use of spent grain as a biofuel is technically feasible, the economics are not attractive. Economic viability is limited by the underuse of capital equipment. The investment in heating equipment requires a higher utilization that the client brewer currently anticipates. It may be possible in the future that changing factors may swing the decision to a more positive one.

  17. Multiple resource demands and viability in multiplex networks

    CERN Document Server

    Min, Byungjoon

    2014-01-01

    Many complex systems demand manifold resources to be supplied from distinct channels to function properly, i.e, water, gas, and electricity for a city. Here, we study a model for viability of such systems demanding more than one type of vital resources produced and distributed by source nodes in multiplex networks. We found a rich variety of behaviors such as discontinuity, bistability, and hysteresis in the fraction of viable nodes with respect to the density of networks and the fraction of source nodes. Our result suggests that viability in multiplex networks is not only exposed to the risk of abrupt collapse but also suffers excessive complication in recovery.

  18. Effect of Chlorine on Giardia lamblia Cyst Viability

    OpenAIRE

    Jarroll, Edward L.; Bingham, Alan K.; Meyer, Ernest A.

    1981-01-01

    The effect of chlorine concentration on Giardia lamblia cyst viability was tested under a variety of conditions. The ability of Giardia cysts to undergo excystation was used as the criterion of viability. The experimental variables employed included temperature (25, 15, and 5°C), pH (6, 7, and 8), chlorine-cyst contact time (10, 30, and 60 min), and chlorine concentration (1 to 8 mg/liter). In the pH range studied, cyst survival generally was observed to increase as buffer pH increased. Water...

  19. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    Directory of Open Access Journals (Sweden)

    Buchwald Peter

    2009-04-01

    Full Text Available Abstract Background The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media. Methods Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration. Results Partial differential equation (PDE based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 μm diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations. Conclusion Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for

  20. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells

    OpenAIRE

    Li-na Niu; Devon Watson; Kyle Thames; Carolyn M. Primus; Bergeron, Brian E.; Kai Jiao; Bortoluzzi, Eduardo A.; Cutler, Christopher W.; Ji-hua Chen; PASHLEY David H.; Franklin R Tay

    2015-01-01

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA)...

  1. Tracing Conidial Fate and Measuring Host Cell Antifungal Activity Using a Reporter of Microbial Viability in the Lung

    Directory of Open Access Journals (Sweden)

    Anupam Jhingran

    2012-12-01

    Full Text Available Fluorescence can be harnessed to monitor microbial fate and to investigate functional outcomes of individual microbial cell-host cell encounters at portals of entry in native tissue environments. We illustrate this concept by introducing fluorescent Aspergillus reporter (FLARE conidia that simultaneously report phagocytic uptake and fungal viability during cellular interactions with the murine respiratory innate immune system. Our studies using FLARE conidia reveal stepwise and cell-type-specific requirements for CARD9 and Syk, transducers of C-type lectin receptor and integrin signals, in neutrophil recruitment, conidial uptake, and conidial killing in the lung. By achieving single-event resolution in defined leukocyte populations, the FLARE method enables host cell profiling on the basis of pathogen uptake and killing and may be extended to other pathogens in diverse model host organisms to query molecular, cellular, and pharmacologic mechanisms that shape host-microbe interactions.

  2. The State of Cellular Probes

    OpenAIRE

    Yim, Youngbin

    2003-01-01

    Cellular probe technology is one of several potentially promising technologies for obtaining accurate travel time information. In 1996, the Federal Communications Commission (FCC) mandated E911 requirements that cellular location be provided when 911 emergency calls come in to emergency management authorities. The E911 requirements allow 50 -300 meters from the emergency call location, depending on the type of cellular phone technology used and whether handset-based or network-based solutions...

  3. Never-ageing cellular senescence

    OpenAIRE

    Ogrunc, Müge; d’Adda di Fagagna, Fabrizio

    2011-01-01

    Cellular senescence was historically discovered as a form of cellular ageing of in vitro cultured cells. It has been under the spotlight following the evidence of oncogene-induced senescence in vivo and its role as a potent tumour suppressor mechanism. Presently, a PubMed search using keywords ‘cellular senescence and cancer’ reveals 8398 number of references (by April 2011) showing that while our knowledge of senescence keeps expanding, the complexity of the phenomenon keeps us – researchers...

  4. Autohydrogenotrophic denitrification by a bioelectrochemical process: A viability study

    Directory of Open Access Journals (Sweden)

    Mahdi Safari

    2014-06-01

    Full Text Available ABSTRACT In this study, viability of the autotrophic bacteria was investigated in a denitrification process. Bench-scale bioelectrochemical denitrification with separated chambers reactor were applied for nitrate reduction from synthetic wastewater. The influences of current density, retention time, mixing on viability of autotrophic denitrifying bacteria were investigated in the bioelectrochemical reactor (BER. It was found that by increasing the current density up to 8 mA/cm2, nitrate reduction rate was increased. At higher current density (24 - 32 mA/cm2, denitrification rate due to excess of hydrogen gas on cathode surface and accumulation of nitrite, was decreased. Low current density (<16 mA/cm2 has not had a significant effect on viability of denitrifying bacteria. Mixing of the solution reduced the adverse effects of electric current on bacteria and enhanced the denitrification rate which was mainly due to prevention of bacteria localization, increasing the contact of hydrogen and bacteria, and delay in membrane fouling. The viability of cultivable bacteria has not been significantly influenced by running time.

  5. Dynamics of organizational viability : new perspectives and evidence from China

    NARCIS (Netherlands)

    Zhou, Chaohong

    2009-01-01

    The goal of this thesis is to theoretically explore issues in organizational ecology by searching for cross-pollination with other (sub)disciplines, and to empirically probe into industries in the Chinese transition economy. It focuses on the impact of shifts in environments on the viability of two

  6. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    International Nuclear Information System (INIS)

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author)

  7. Proof of Economic Viability of Blended Learning Business Models

    Science.gov (United States)

    Druhmann, Carsten; Hohenberg, Gregor

    2014-01-01

    The discussion on economically sustainable business models with respect to information technology is lacking in many aspects of proven approaches. In the following contribution the economic viability is valued based on a procedural model for design and evaluation of e-learning business models in the form of a case study. As a case study object a…

  8. Viability of human corneal keratocytes during organ culture

    DEFF Research Database (Denmark)

    Møller-Pedersen, T; Møller, H J

    1996-01-01

    The viability of human corneal keratocytes was assessed during four weeks of 'closed system' organ culture at 31 degrees C. After 28 days of culturing, the entire keratocyte population was still alive and viable because all cells incorporated uridine; a parameter for RNA-synthesis. During the first...

  9. Economic viability of new launched school lunch programmes

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård; Smed, Sinne; Mørkbak, Morten Raun;

    2013-01-01

    activities related to the schools’ support and the users’ feeling of ownership, as well as internal professionalism and leadership in the implementation of the school lunch programme are important for the viability of the programme. Strong performance on the latter factors might to some extent compensate for...... the gap between cost and users’ willingness to pay for school lunches....

  10. The economic and social viability of Tanzanian Wildlife Management Areas

    DEFF Research Database (Denmark)

    Homewood, Katherine; Bluwstein, Jevgeniy; Lund, Jens Friis;

    This policy brief contributes to assessing the economic and social viability of Tanzania’s Wildlife Management Areas (WMAs) through preliminary findings by the ‘Poverty and ecosystem Impacts of Tanzania’s Wildlife Management Areas’ (PIMA) project, focusing on benefits, costs, and their distribution...

  11. Morphology and viability of castor bean genotypes pollen grains

    Directory of Open Access Journals (Sweden)

    Maria Selma Alves Silva Diamantino

    2016-01-01

    Full Text Available The objective of this work was to characterize the morphology and viability of the pollen of 15 genotypes of castor bean (Ricinus communis L. and to generate information that can assist in the selection of highly promising male parents for future use in genetic improvement programs aimed at producing seeds for oil extraction. Acetolysis and scanning electron microscopy was used to characterize the morphology of the pollen. The viability of the pollen grains was estimated by in vitro germination and colorimetric analysis (acetocarmine 2% and 2, 3, 5-triphenyltetrazolium chloride 1%. For the in vitro germination, pollen grains were grown in 10 types of solidified culture medium consisting of different concentrations of sucrose, boric acid, calcium nitrate, magnesium sulfate and potassium nitrate. The pollen grains had the following characteristics: medium size, isopolar and subspheroidal shape, radial symmetry, circular ambit, 3-colporate, elongated endoapertures, tectate exine and granulated sexine. The acetocarmine dye overestimated pollen viability. The media M5 and M8 were the most efficient at promoting the germination of pollen grains. The studied genotypes had high levels of viability and can therefore be used as male parents in genetic improvement programs.

  12. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  13. Cellular responses of Prochilodus lineatus hepatocytes after cylindrospermopsin exposure.

    Science.gov (United States)

    Liebel, S; Oliveira Ribeiro, C A; Silva, R C; Ramsdorf, W A; Cestari, M M; Magalhães, V F; Garcia, J R E; Esquivel, B M; Filipak Neto, F

    2011-10-01

    Cylindrospermopsin is a potent toxicant for eukaryotic cells produced by several cyanobacteria. Recently, primary hepatocyte cultures of Neotropical fish have been established, demonstrating to be a quite efficient in vitro model for cellular toxicology studies. In the current study, a protocol for culture of Prochilodus lineatus hepatocytes was established and utilized to investigate the cellular responses to purified cylindrospermopsin exposure. Hepatocytes were successfully dissociated with dispase, resulting in a cell yield of 6.36 × 10(7)cells g(-1) of liver, viability of 97% and attachment on uncoated culture flasks. For investigation of cylindrospermopsin effects, hepatocytes were dissociated, cultured during 96 h and exposed to three concentrations of the toxin (0.1, 1.0 or 10 μgl(-1)) for 72 h. Cylindrospermopsin exposure significantly decreased cell viability (0.1 and 1 μgl(-1)) and multixenobiotic resistance mechanism, MXR (all exposed groups), but increased reactive oxygen/nitrogen species levels (all exposed groups) and lipid peroxidation (10 μgl(-1)). On the other hand no significant alterations were observed for other biochemical biomarkers as 2GSH/GSSG ratio, protein carbonyl levels and DNA strand breaks or glutathione S-transferase and glucose 6-phosphate dehydrogenase activities. In conclusion, hepatocytes might be made sensitive to cylindrospermopsin, at least in part, due to reduction of xenobiotics and endobiotics efflux capacity by MXR. Additionally, the toxin exposure suggests important issues regarding hepatocytes survival at the lowest cylindrospermopsin concentrations. PMID:21600976

  14. Active Cellular Nematics

    Science.gov (United States)

    Duclos, Guillaume; Erlenkaemper, Christoph; Garcia, Simon; Yevick, Hannah; Joanny, Jean-François; Silberzan, Pascal; Biology inspired physics at mesoscales Team; Physical approach of biological problems Team

    We study the emergence of a nematic order in a two-dimensional tissue of apolar elongated fibroblast cells. Initially, these cells are very motile and the monolayer is characterized by giant density fluctuations, a signature of far-from-equilibrium systems. As the cell density increases because of proliferation, the cells align with each other forming large perfectly oriented domains while the cellular movements slow down and eventually freeze. Therefore topological defects characteristic of nematic phases remain trapped at long times, preventing the development of infinite domains. By analogy with classical non-active nematics, we have investigated the role of boundaries and we have shown that cells confined in stripes of width smaller than typically 500 µm are perfectly aligned in the stripe direction. Experiments performed in cross-shaped patterns show that both the number of cells and the degree of alignment impact the final orientation. Reference: Duclos G., Garcia S., Yevick H.G. and Silberzan P., ''Perfect nematic order in confined monolayers of spindle-shaped cells'', Soft Matter, 10, 14, 2014

  15. Viability of fibroblasts cultured under nutritional stress irradiated with red laser, infrared laser, and red light-emitting diode

    Science.gov (United States)

    Volpato, Luiz Evaristo Ricci; de Oliveira, Rodrigo Cardoso; Espinosa, Mariano Martinez; Bagnato, Vanderley Salvador; Machado, Maria A. A. M.

    2011-07-01

    Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm2), infrared laser (780 nm, 40 mW, 1 W/cm2), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm2). All applications were punctual and performed with a spot with 0.4 mm2 of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced.

  16. Comparison of viability of adipose-derived Mesenchymal stem cells on agarose and fibrin glue scaffolds

    Directory of Open Access Journals (Sweden)

    Farzaneh Tafvizi

    2015-06-01

    Full Text Available Background & aim: Utilizing tissue engineering techniques and designing similar structures of the damaged tissues require the use of tools such as scaffolds, cells, and bioactive molecules in vitro. Meanwhile, appropriate cell cultures with the ability to divide and differentiate on the natural scaffolds lacking features like immunogenicity and tumorgenesis is particularly important. Adipose tissue has attracted researchers’ attention due to its abundance of mesenchymal stem cells and its availability through a liposuction. The purpose of the present study was to investigate the reproducibility and viability of the adipose-derived stem cells on natural scaffolds of fibrin glue and agarose. Methods: In the present experimental study, the isolation and identification of the mesenchymal stem cells was performed on tissue obtained from liposuction. The tissues were extensively washed with PBS and were digested with collagenase I, then the mesenchymal stem cells were isolated. The cells were cultured in RPMI medium supplemented with antibiotic. Subsequently, the expression of cell surface markers including CD34, CD44, CD90, and CD105 were analyzed by flow cytometry to confirm the mesenchymal cells. After preparing fibrin glue and agarose scaffolds, the viability and proliferation of the adipose tissue-derived mesenchymal stem cells were examined at the period of 24, 48, and 72 hours by MTT and ELISA assays. The obtained results were analyzed by SPSS ver.19. Results: The results of adipose tissue-derived mesenchymal stem cells culture on the fibrin glue and agarose scaffolds indicated that cell viability on fibrin glue and agarose scaffold were 68.22% and 89.75% in 24 hrs, 64.04% and 66.97% in 48 hours, 222.87% and 1089.68% in 72 hours respectively. Significant proliferation and viability cells on a synthesized agarose scaffold were seen compared to the fibrin glue scaffold after 72 hrs. The viability of the cells significantly increased on the

  17. Biodegradable Magnetic Particles for Cellular MRI

    Science.gov (United States)

    Nkansah, Michael Kwasi

    Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple

  18. Multistructural biomimetic substrates for controlled cellular differentiation

    International Nuclear Information System (INIS)

    Multidimensional scaffolds are considered to be ideal candidates for regenerative medicine and tissue engineering based on their potential to provide an excellent microenvironment and direct the fate of the cultured cells. More recently, the use of stem cells in medicine has opened a new technological opportunity for controlled tissue formation. However, the mechanism through which the substrate directs the differentiation of stem cells is still rather unclear. Data concerning its specific surface chemistry, topology, and its signaling ability need to be further understood and analyzed. In our study, atomic force microscopy was used to study the stiffness, roughness, and topology of the collagen (Coll) and metallized collagen (MC) substrates, proposed as an excellent substrate for regenerative medicine. The importance of signaling molecules was studied by constructing a new hybrid signaling substrate that contains both collagen and laminin extracellular matrix (ECM) proteins. The cellular response—such as attachment capability, proliferation and cardiac and neuronal phenotype expression on the metallized and non-metallized hybrid substrates (collagen + laminin)—was studied using MTT viability assay and immunohistochemistry studies. Our findings indicate that such hybrid materials could play an important role in the regeneration of complex tissues. (paper)

  19. 47 CFR 22.909 - Cellular markets.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular...

  20. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    Science.gov (United States)

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  1. Drosophila Uri, a PP1α binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity

    Directory of Open Access Journals (Sweden)

    Kirchner Jasmin

    2008-04-01

    Full Text Available Abstract Background Protein phosphatase 1 (PP1 is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c fall into PP1α and PP1β subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1α and PP1β. Results URI (unconventional prefoldin RPB5 interactor is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that Drosophila Uri binds PP1α with much higher affinity than PP1β, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a uri loss of function allele, and show that uri is essential for viability in Drosophila. uri mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei. Conclusion Uri is the first PP1α specific binding protein to be described in Drosophila. Uri protein plays a role in transcriptional regulation. Activity of uri is required to maintain DNA integrity and cell survival in normal development.

  2. Mapping of cellular iron using hyperspectral fluorescence imaging in a cellular model of Parkinson's disease

    Science.gov (United States)

    Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min

    2013-05-01

    Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.

  3. Cellular and molecular basis of cerebellar development

    Science.gov (United States)

    Martinez, Salvador; Andreu, Abraham; Mecklenburg, Nora; Echevarria, Diego

    2013-01-01

    Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering, and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification, and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function. PMID:23805080

  4. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  5. Fungal Spores Viability on the International Space Station

    Science.gov (United States)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-04-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the

  6. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    Science.gov (United States)

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-06-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.

  7. Viability and resilience of complex systems concepts, methods and case studies from ecology and society

    CERN Document Server

    Deffuant, Guillaume

    2011-01-01

    One common characteristic of a complex system is its ability to withstand major disturbances and the capacity to rebuild itself. Understanding how such systems demonstrate resilience by absorbing or recovering from major external perturbations requires both quantitative foundations and a multidisciplinary view of the topic. This book demonstrates how new methods can be used to identify the actions favouring the recovery from perturbations on a variety of examples including the dynamics of bacterial biofilms, grassland savannahs, language competition and Internet social networking sites. The reader is taken through an introduction to the idea of resilience and viability and shown the mathematical basis of the techniques used to analyse systems. The idea of individual or agent-based modelling of complex systems is introduced and related to analytically tractable approximations of such models. A set of case studies illustrates the use of the techniques in real applications, and the final section describes how on...

  8. Verification of the viability of virions detection using neutron activation analysis

    International Nuclear Information System (INIS)

    The use of nuclear techniques, as Neutron Activation Analysis, can be an alternative way for the microbiological diagnosis, bringing a significant profit in the analysis time, for not needing pre cultivated samples in appropriate way. In this technique, the samples are collected and submitted to a thermal neutron beam. The interaction of these neutrons with the samples generates gamma rays whose energy spectre is a characteristic of the elemental composition of these samples. Of this done one, a virus presence can be detected in the sample through the distinction of its respective elemental compositions allowing, also, carrying through the analysis in real time. In this work, computational simulations had been become fulfilled using the radiation transport code based on the Monte Carlo Method, MCNP4B, to verify the viability of the application of this system for the virus particle detection in its natural collection environment. (author)

  9. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning

    Science.gov (United States)

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction. PMID:26167934

  10. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Directory of Open Access Journals (Sweden)

    Insoo Sohn

    Full Text Available An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.

  11. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Science.gov (United States)

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction. PMID:26167934

  12. Tissue spectrophotometry and thermographic imaging applied to routine clinical prediction of amputation level viability

    Science.gov (United States)

    Hanson, Jon M.; Harrison, David K.; Hawthorn, Ian E.

    2002-06-01

    About 5% of British males over 50 years develop peripheral arterial occlusive disease. Of these about 2% ultimately require lower limb amputation. In 1995 we proposed a new technique using lightguide spectrophotometry to measure the oxygen saturation level of haemoglobin (SO2) in the skin as a method for predicting tissue viability. This technique, in combination with thermographic imaging, was compared with skin blood flow measurements using the I125)4- Iodoantipyrine (IAP) clearance technique. The optical techniques gave a sensitivity and selectivity of 1.0 for the prediction of successful outcome of a below knee amputation compared with a specificity of 93% using the traditional IAP technique at a below knee to above knee amputation ratio (BKA:AKA) of 75%. The present study assesses the routine clinical application of these optical techniques. The study is ongoing, but the data to date comprises 22 patients. 4 patients were recommended for above knee amputation (AKA) and 18 patients for below knee amputation on the basis of thermographic and tissue SO2 measurements. All but one of the predicted BKA amputations healed. The study to date produces evidence of 94% healing rate (specificity) for a BKA:AKA ratio of 82%. This compares favorably with the previous figures given above.

  13. Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanyan; Lue Lanxin; Feng Zhangqi; Xiao Zhongdang; Huang Ningping, E-mail: nphuang@seu.edu.c, E-mail: zdxiao@seu.edu.c [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-10-01

    Aligned and randomly oriented chitosan nanofibers were prepared by electrospinning. The fibers were modified with the RGD cell-adhesive peptide through a heterobifunctional crosslinker containing a segment of poly(ethylene glycol) (PEG). PEG rendered the surface hydrophilic and provided flexible spacers, allowing the preservation of the bioactivity of further captured RGD peptides. NIH 3T3 cells were used to test the cellular compatibility of these chitosan nanofibrous scaffolds. Cell morphology and viability were investigated by SEM, fluorescent staining and cell counting. The results indicate that RGD-modified surfaces significantly improve the cellular compatibility of chitosan nanofibers and suggest a good candidate as a scaffold employed in tissue engineering.

  14. Investigation of the Cellular and Molecular Mechanisms of Radiation-induced Bystander Effects

    OpenAIRE

    Furlong, Hayley

    2014-01-01

    The overall aim of this study was to investigate the cellular and molecular mechanisms involved in radiation-induced bystander effects in HaCaT cells, predominantly at low-doses of irradiation. They do not follow the original dose-response theory and exhibit a unique cascade of signalling events, which are under intense investigation for radiation risk purposes. An in vitro system was first used to observe the bystander effect, comparing two cell viability assays while measuring apoptotic cel...

  15. Song diversity predicts the viability of fragmented bird populations.

    Directory of Open Access Journals (Sweden)

    Paola Laiolo

    Full Text Available In the global scenario of increasing habitat fragmentation, finding appropriate indicators of population viability is a priority for conservation. We explored the potential of learned behaviours, specifically acoustic signals, to predict the persistence over time of fragmented bird populations. We found an association between male song diversity and the annual rate of population change, population productivity and population size, resulting in birds singing poor repertoires in populations more prone to extinction. This is the first demonstration that population viability can be predicted by a cultural trait (acquired via social learning. Our results emphasise that cultural attributes can reflect not only individual-level characteristics, but also the emergent population-level properties. This opens the way to the study of animal cultural diversity in the increasingly common human-altered landscapes.

  16. Femtosecond Optical Trapping of Cells: Efficiency and Viability

    Institute of Scientific and Technical Information of China (English)

    GONG Jixian; LI Fang; XING Qirong

    2009-01-01

    The femtosecond optical trapping capability and the effect of femtosecond laser pulses on cell viability were studied. The maximum lateral velocity at which the particles just failed to be trapped, together with the measured average trapping power, were used to calculate the lateral trapping force(Q-value). The viability of the cells after femtosecond laser trapping was ascertained by vital staining. Measurement of the Q-values shows that femtosecond optical tweezers are just as effective as continuous wave optical tweezers. The experiments demonstrate that there is a critical limit for expo-sure time at each corresponding laser power of femtosecond optical tweezers, and femtosecond laser tweezers are safe for optical trapping at low power with short exposure time.

  17. VIABILITY OF THE PROBIOTIC BACTERIA L. ACIDOPHILUS IN DAIRY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Janka Koreňová

    2011-12-01

    Full Text Available A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. Viability of probiotic bacteria is important in order to provide health benefits. However, many studies have shown low viability of probiotics in market preparations. This study cover selective enumeration and survival of probiotic bacteria L. acidophilus in some dairy drinks. L. acidophilus was found in the range from 106 to 107 CFU.g-1 in five types of fermented milk products containing probiotic cultures. Two investigated products were up to standard according to Regulation of Ministry of Agriculture and Ministry of Health of Slovak Republic.doi: 10.5219/147

  18. Challenge testing of gametes to enhance their viability

    DEFF Research Database (Denmark)

    Callesen, Henrik

    2010-01-01

    Embryos, oocytes and spermatozoa undergo several manipulations during the in vitro procedures that are an integral part of assisted reproductive technologies (ART) in mammals. Consequently, some of the gametes are damaged irreparably, whereas others react to these challenges with some sort of...... survival mechanism that enables them to come through the process. The details of the mechanism remain unknown but, if identified, it could have immense potential as a new way to improve the viability of embryos produced by ART. However, few publications describe systematic ways to challenge test gametes...... and then to use the results as a basis for improving gamete viability. Furthermore, new methods to monitor the reactions of gametes to such challenge tests are needed. In the present review, these two issues are discussed, as are some of the conditions necessary before a challenge test protocol can be...

  19. Cosmological viability conditions for f(T) dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  20. Nuclear Power Options Viability Study. Volume 4. Bibliography

    International Nuclear Information System (INIS)

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number

  1. Assessing the impact of roads on animal population viability

    OpenAIRE

    Grift, van der, B.; Verboom, J.; Pouwels, R.

    2003-01-01

    Different tools have been developed to study the potential effects of spatial developments, such as the construction of roads, on the viability of animal populations. For instance, with dynamic (meta)population models the impacts of spatial developments can be accurately quantified. However, these models are often species specific and require detailed field research to validate the parameters used. If a multi-species analyses is needed, the use of such models is often impractical and expensiv...

  2. Economic viability of biogas technology in a Bangladesh village

    International Nuclear Information System (INIS)

    We estimate energy consumption for domestic cooking and biogas energy resources for 21 clusters of households in a village. Data were analyzed on a cluster basis, with investments shared. Under the present conditions, biogas technology would not be economically viable. Economic analysis involving viability tools including additional benefits of biogas technology indicate that creating a market for local biogas would make such a project feasible. (Author)

  3. Fermented red ginseng extract inhibits cancer cell proliferation and viability.

    Science.gov (United States)

    Oh, Jisun; Jeon, Seong Bin; Lee, Yuri; Lee, Hyeji; Kim, Ju; Kwon, Bo Ra; Yu, Kang-Yeol; Cha, Jeong-Dan; Hwang, Seung-Mi; Choi, Kyung-Min; Jeong, Yong-Seob

    2015-04-01

    Red ginseng (Panax ginseng C.A. Meyer) is the most widely recognized medicinal herb due to its remedial effects in various disorders, such as cancers, diabetes, and heart problems. In this study, we investigated the anticancer effect of fermented red ginseng extract (f-RGE; provided by Jeonju Biomaterials Institute, Jeonju, South Korea) in a parallel comparison with the effect of nonfermented red ginseng extract (nf-RGE; control) on several cancer cell lines--MCF-7 breast cancer cells, HepG2 hepatocellular carcinoma cells, and reprogrammed MCF-7 cells (mimicking cancer stem cells). Cells were cultured at various concentrations of RGE (from 0.5 up to 5 mg/mL) and their viabilities and proliferative properties were examined. Our data demonstrate the following: (1) nf-RGE inhibited cell viability at ≥1 mg/mL for MCF-7 cells and ≥2 mg/mL for HepG2 cells, (2) in the presence of a carcinogenic agent, 12-O-tetradecanoylphorbol-13-acetate (TPA), nf-RGE treatment in combination with paclitaxel synergistically decreased MCF-7 as well as HepG2 cell viability, (3) f-RGE (which contained a greater level of Rg3 content) more effectively decreased the viability of MCF-7 and HepG2 cells compared to nf-RGE, and (4) f-RGE appeared more potent for inhibiting cancerous differentiation of reprogrammed MCF-7 cells in a synergistic fashion with paclitaxel, especially in the presence of TPA, compared to nf-RGE. These findings suggest that f-RGE treatment may be more effective for decreasing cancer cell survival by inducing apoptotic cell death and also presumably for preventing cancer stem cell differentiation compared to nf-RGE. PMID:25658580

  4. The political viability of a negative income tax

    OpenAIRE

    Jon R. Neill

    2001-01-01

    This paper offers three propositions relating to the political viability of the negative income tax. One, despite its work disincentive, a majority of households would support a linear income tax that makes cash payments to low income households. However two, when government consumption is sufficiently high, a majority would favor a proportional tax over such a tax. Three, under certain conditions, a majority of households will prefer public provision of a private good or an in-kind transfer ...

  5. Using Bayesian Population Viability Analysis to Define Relevant Conservation Objectives

    OpenAIRE

    Green, Adam W.; Bailey, Larissa L.

    2015-01-01

    Adaptive management provides a useful framework for managing natural resources in the face of uncertainty. An important component of adaptive management is identifying clear, measurable conservation objectives that reflect the desired outcomes of stakeholders. A common objective is to have a sustainable population, or metapopulation, but it can be difficult to quantify a threshold above which such a population is likely to persist. We performed a Bayesian metapopulation viability analysis (BM...

  6. ANALYSIS OF ECONOMIC VIABILITY FOR LONG-TERM INVESTMENT

    OpenAIRE

    Manjula Patnaik

    2014-01-01

    he decision making to invests money in long term projects. A high-quality decision process requires that the choices are feasible and well-formulated, that consequence are understood and well explored, that the preferences are included when comparing the full array of costs and benefits of the proposed decision and the action taken are focused on getting result. In case of a new project, financial viability can be judged on the following parameters: Total estimated cost of the...

  7. Economic viability of wind and solar energy for industrial use

    International Nuclear Information System (INIS)

    Non conventional energy sources have begun to move from fringes of technological possibility towards commercial viability. Out of the four sources, i e. solar, wind, biogas and minimicro hydel the first two viz. wind and solar energy are of relevance for industries in western region of India. This has to be seen in the context of developments in technology and hence economics both worldwide and in India. (author)

  8. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    Science.gov (United States)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  9. The Limited Viability of Dual Exchange-Rate Regimes

    OpenAIRE

    Jacob A. Frenkel; Assaf Razin

    1986-01-01

    This paper examines the viability of dual exchange-rate regimes. Typically, under such a regime the exchange rates applicable to current-account(commercial) transactions and to capital-account (financial) transactions differ from each other. This difference may be determined in the free market if the authorities peg the commercial exchange rate and set a binding quota on external borrowing, or it may result from direct pegging of both exchange rates. The analysis starts with a specification o...

  10. The evolutionary dynamics of haplodiploidy: genome architecture and haploid viability

    OpenAIRE

    Blackmon, Heath; Hardy, Nate B.; Ross, Laura

    2015-01-01

    Haplodiploid reproduction, where males are haploid and females are diploid, is widespread among animals, yet we understand little about the forces responsible for its evolution. The current theory is that haplodiploidy has evolved through genetic conflicts, as it provides a transmission advantage to mothers. Male viability is thought to be a major limiting factor; diploid individuals tend to harbor many recessive lethal mutations. This theory predicts that the evolution of haplodiploidy is mo...

  11. Viability And Conidial Production Of Entomopathogenic Fungi Penicillium SP.

    OpenAIRE

    Nurariaty Agus; Annie P. Saranga; Ade Rosmana; Ade Sugiarti

    2015-01-01

    Abstract Penicillium sp. order Eurotiales class Eurotiomycetes family Trichocomaceae is one of the entomopathogenic fungi that have the potential to be developed as biological control agent of pests.The study aims to determine the viability and spora production of Entomopathogenic fungi Penicillium sp. Experiments was conducted in Pests Identification and Biological Control laboratory Department of Plant Pest and Disease Faculty of Agriculture Hasanuddin University. The fungus Penicillium sp....

  12. Organ preservation and viability in kidney and liver transplantation

    OpenAIRE

    Maathuis, Marcus Hubertus Johannes

    2008-01-01

    Organ preservation for transplantation. The easy way or best method? Kidney and liver transplantations are routinely performed nowadays to treat end stage organ diseases. However, the increasing gap between demand and supply, has necessitated the transplantation community to expand donor criteria and accept donor organs which sustained more damage. Organ preservation should maintain organ viability after an organ has been disconnected from the circulation in the donor. At this moment static c...

  13. THE VIABILITY OF INFORMAL MICROENTERPRISE IN SOUTH AFRICA

    OpenAIRE

    DOUGLAS WOODWARD; ROBERT ROLFE; ANDRÉ LIGTHELM; PAULO GUIMARÃES

    2011-01-01

    This paper analyzes entrepreneurs in South Africa's informal sector. The aim is to determine the extent to which African informal retail trade spawns viable enterprises. To assess the prospects for South Africa's informal retail sector, we obtained questionnaires from owners of small-scale establishments in a random sample taken throughout the country in 2007. Owner's income and sales data provided a basis for investigating viability. Regression analysis tests hypotheses identified as crucial...

  14. Drying process strongly affects probiotics viability and functionalities.

    Science.gov (United States)

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. PMID:26325197

  15. Effect of plastic catheter material on bacterial adherence and viability.

    Science.gov (United States)

    Lopez-Lopez, G; Pascual, A; Perea, E J

    1991-06-01

    The kinetics of adherence of single isolates of Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa and Escherichia coli to catheters made of polyvinyl chloride (PVC), Teflon, siliconised latex, polyurethane and Vialon was evaluated by a radiometric assay. Radiolabelled bacteria (10(8) cfu/ml) were incubated in vials containing 1-cm lengths of catheter for up to 3 days. The peak of maximal adherence to each biomaterial was reached after 24 h for P. aeruginosa and after 72 h for the other strains. Bacterial adherence to PVC and siliconised latex was significantly higher (2-6 times; p less than 0.05) than to the other biomaterials for all the strains. The lowest values of adherence were observed with polyurethane and Vialon for the staphylococci but with Teflon for E. coli and P. aeruginosa. Bacterial viability and growth was evaluated in eluates obtained from incubation of segments of each catheter in buffer for 24 h. None of the eluates affected the viability of the staphylococci. However, all of them, significantly increased the growth of E. coli and P. aeruginosa with the exception of the eluate from siliconised latex, in which the inoculum count was reduced to an undetectable level for E. coli. We conclude that bacterial adherence to catheters may depend in part on the nature of the biomaterial and that certain substances eluted from the catheters may affect the viability and growth of different micro-organisms. PMID:1905357

  16. Viability Tests for Fresh and Stored Haemopoietic Cells

    International Nuclear Information System (INIS)

    This paper reviews current methods of measurement of the viability of fresh and stored haemopoietic cells. The life expectancy of granulocytes and monocytes after transfusion can be studied by in-vitro labelling with 3H-DFP and subsequent autoradiography. The evaluation of data in about 30 patients with various haemopoietic conditions indicates a wide variation of the disappearance half-time of granulocytes. 3H-cytidine labels essentially all lymphocytes in vitro, predominantly in their RNA. Transfusion of 3H-cytidine-labelled lymphocytes enables one to measure the lower limit of their life-expectancy as well as their rate of RNA metabolism. If bone-marrow cells are labelled in vitro with 3H-thymidine and subsequently transfused, their capability to circulate, to reach the haemopoietic tissue of the host, to proliferate and to mature can be demonstrated. However, the repopulating capacity of frozen and thawed marrow is independent of the ability of 3H-TDR-labelled marrow cells to circulate, proliferate and mature. It is assumed that bone-marrow cells capable of repopulating depleted haemopoietic tissue are resting under steady-state conditions and can be labelled by means of 3H-TDR only using special conditions. Thus the only viability tests for fresh and stored bone-marrow cells at present appear to be bioassay methods at the animal experimental level. The results indicate the need for the development of reliable viability tests for stem cells applicable in both experimental and clinical conditions. (author)

  17. Viability of lactobacillus acidophilus in various vaginal tablet formulations

    Directory of Open Access Journals (Sweden)

    Fazeli M.R.

    2006-07-01

    Full Text Available The lactobacilli which are present in vaginal fluids play an important role in prevention of vaginosis and there are considerable interests in formulation of these friendly bacteria into suitable pharmaceutical dosage forms. Formulating these microorganisms for vaginal application is a critical issue as the products should retain viability of lactobacilli during formulation and also storage. The aim of this study was to examine the viability and release of Lactobacillus acidophilus from slow-release vaginal tablets prepared by using six different retarding polymers and from two effervescent tablets prepared by using citric or adipic acid. The Carbomer–based formulations showed high initial viablility compared to those based on HPMC-LV, HPMC-HV, Polycarbophil and SCMC polymers which showed one log decrease in viable cells. All retarding polymers in slow release formulations presented a strong bacterial release at about 2 h except Carbomer polymers which showed to be poor bacterial releasers. Although effervescent formulations produced a quick bacterial release in comparison with polymer based slow-release tablets, they were less stable in cold storage. Due to the strong chelating characteristic of citric acid, the viability was quickly lost for aqueous medium of citric acid in comparison with adipic acid based effervescent tablets.

  18. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  19. PET/SPECT imaging: From carotid vulnerability to brain viability

    International Nuclear Information System (INIS)

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  20. Glutamine-Loaded Liposomes: Preliminary Investigation, Characterization, and Evaluation of Neutrophil Viability.

    Science.gov (United States)

    Costa, Larissa Chaves; Souza, Bárbara Nayane Rosário Fernandes; Almeida, Fábio Fidélis; Lagranha, Cláudia Jacques; Cadena, Pabyton Gonçalves; Santos-Magalhães, Nereide Stela; Lira-Nogueira, Mariane Cajubá de Britto

    2016-04-01

    Glutamine has received attention due to its ability to ameliorate the immune system response. Once conventional liposomes are readily recognized and captured by immune system cells, the encapsulation of glutamine into those nanosystems could be an alternative to reduce glutamine dosage and target then to neutrophils. Our goals were to nanoencapsulate glutamine into conventional liposomes (Gln-L), develop an analytical high-performance liquid chromatography (HPLC) method for its quantification, and evaluate the viability of neutrophils treated with Gln-L. Liposomes were prepared using the thin-film hydration technique followed by sonication and characterized according to pH, mean size, zeta potential, and drug encapsulation efficiency (EE%). We also aimed to study the effect of liposomal constituent concentrations on liposomal characteristics. The viability of neutrophils was assessed using flow cytometry after intraperitoneal administration of free glutamine (Gln), Gln-L, unloaded-liposome (UL), and saline solution as control (C) in healthy Wistar rats. The selected liposomal formulation had a mean vesicle size of 114.65 ± 1.82 nm with a polydispersity index of 0.30 ± 0.00, a positive surface charge of 36.30 ± 1.38 mV, and an EE% of 39.49 ± 0.74%. The developed chromatographic method was efficient for the quantification of encapsulated glutamine, with a retention time at 3.8 min. A greater viability was observed in the group treated with glutamine encapsulated compared to the control group (17%), although neutrophils remain viable in all groups. Thus, glutamine encapsulated into liposomes was able to increase the number of viable neutrophils at low doses, thereby representing a promising strategy for the treatment of immunodeficiency conditions. PMID:26228746

  1. Actual problems of cellular cardiomyoplasty

    Directory of Open Access Journals (Sweden)

    Bulat Kaupov

    2010-04-01

    Full Text Available The paper provides review of cellular technologies used incardiology, describes types of cellular preparations depending onsources of cells and types of compounding cells. The generalmechanisms of therapies with stem cells applications are described.Use of cellular preparations for treatment of cardiovascular diseasesand is improvement of the forecast at patients with heartinsufficiency of various genesis is considered as alternative topractice with organ transplantations. Efforts of biotechnologicallaboratories are directed on search of optimum population of cellsfor application in cardiology and studying of mechanisms andfactors regulating function of cardiac stem cells.

  2. Cell viability and repair systems in mammal cells

    International Nuclear Information System (INIS)

    Synchronized cell cultures of mice are irradiated with 4,0J/m2 ultraviolet light at different times. The possible mechanisms involved in the recuperation of the cellular survival observed, are discussed. (M.A.)

  3. Error performance analysis in downlink cellular networks with interference management

    KAUST Repository

    Afify, Laila H.

    2015-05-01

    Modeling aggregate network interference in cellular networks has recently gained immense attention both in academia and industry. While stochastic geometry based models have succeeded to account for the cellular network geometry, they mostly abstract many important wireless communication system aspects (e.g., modulation techniques, signal recovery techniques). Recently, a novel stochastic geometry model, based on the Equivalent-in-Distribution (EiD) approach, succeeded to capture the aforementioned communication system aspects and extend the analysis to averaged error performance, however, on the expense of increasing the modeling complexity. Inspired by the EiD approach, the analysis developed in [1] takes into consideration the key system parameters, while providing a simple tractable analysis. In this paper, we extend this framework to study the effect of different interference management techniques in downlink cellular network. The accuracy of the proposed analysis is verified via Monte Carlo simulations.

  4. Application of an Image Cytometry Protocol for Cellular and Mitochondrial Phenotyping on Fibroblasts from Patients with Inherited Disorders

    DEFF Research Database (Denmark)

    Fernandez-Guerra, Paula; Lund, Martin; Corydon, T J;

    2015-01-01

    Cellular phenotyping of human dermal fibroblasts (HDFs) from patients with inherited diseases provides invaluable information for diagnosis, disease aetiology, prognosis and assessing of treatment options. Here we present a cell phenotyping protocol using image cytometry that combines measurement...... mitochondrial parameters by image cytometry in HDFs from patients with inherited metabolic diseases.......Cellular phenotyping of human dermal fibroblasts (HDFs) from patients with inherited diseases provides invaluable information for diagnosis, disease aetiology, prognosis and assessing of treatment options. Here we present a cell phenotyping protocol using image cytometry that combines measurements...... of crucial cellular and mitochondrial parameters: (1) cell number and viability, (2) thiol redox status (TRS), (3) mitochondrial membrane potential (MMP) and (4) mitochondrial superoxide levels (MSLs). With our protocol, cell viability, TRS and MMP can be measured in one small cell sample and MSL on...

  5. Literature Review on Dynamic Cellular Manufacturing System

    Science.gov (United States)

    Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.

    2014-06-01

    In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.

  6. Origami interleaved tube cellular materials

    International Nuclear Information System (INIS)

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)

  7. Cellular mechanisms during vascular development

    OpenAIRE

    Blum, Yannick

    2012-01-01

    The vascular system is an essential organ in vertebrate animals and provides the organism with enough oxygen and nutrients. It is composed of an interconnected network of blood vessels, which form using a number of different morphogenetic mechanisms. Angiogenesis describes the formation of new blood vessels from preexisting vessels. A number of molecular pathways have been shown to be essential during angiogenesis. However, cellular architecture of blood vessels as well as cellular mechanisms...

  8. Predictive Modelling of Cellular Load

    OpenAIRE

    Carolan, Emmett; McLoone, Seamus; Farrell, Ronan

    2015-01-01

    This work examines the temporal dynamics of cellular load in four Irish regions. Large scale underutilisation of network resources is identified both at the regional level and at the level of individual cells. Cellular load is modeled and prediction intervals are generated. These prediction intervals are used to put an upper bound on usage in a particular cell at a particular time. Opportunities for improvements in network utilization by incorporating these upper bounds on usage are identifie...

  9. Cellular automaton for chimera states

    OpenAIRE

    García-Morales, Vladimir

    2016-01-01

    A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the...

  10. Movies of cellular and sub-cellular motion by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yu Lingfeng

    2006-03-01

    Full Text Available Abstract Background Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. Methods A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Results Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable

  11. GERANYLGERANYLACETONE ATTENUATES CISPLATIN-INDUCED REDUCTIONS IN CELL VIABILITY BY SUPPRESSING THE ELEVATION OF INTRACELLULAR P53 CONTENT WITHOUT HEAT SHOCK PROTEIN INDUCTION

    Science.gov (United States)

    HASEGAWA, MOTOFUSA; ISHIGURO, KAZUHIRO; ANDO, TAKAFUMI; GOTO, HIDEMI

    2012-01-01

    ABSTRACT Geranylgeranylacetone (GGA) was originally used as an anti-ulcer drug to protect gastric mucosa from various stresses, and it is also known to induce heat shock proteins (HSPs), especially HSP70. However, it remains unclear how GGA affects cellular functions in the presence of anti-cancer drugs. We investigated the effects of GGA on cellular viability, caspase-3 activation, HSP induction and p53 content in the presence of cisplatin (CDDP). Rat intestinal epithelium-derived IEC-18 cells and human colon cancer-derived CW-2 cells were incubated with GGA in the presence of CDDP, and we observed that GGA attenuated CDDP-induced viability reductions. GGA also suppressed CDDP-induced caspase-3 activation. However, GGA induced neither HSP70 nor GRP78 expression in the presence of CDDP. We found that GGA suppressed the CDDP-induced elevation of intracellular p53 content. In conclusion, GGA attenuates viability reductions and caspase-3 activation in CDDP-treated cells by suppressing the elevation of intracellular p53 content without HSP induction. PMID:22515118

  12. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat

    Directory of Open Access Journals (Sweden)

    John W. Sleasman

    2008-06-01

    Full Text Available Harmful algal blooms (HABs of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl-3,5- diphenylformazan, respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.

  13. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution

    International Nuclear Information System (INIS)

    Laser-assisted bioprinting is a versatile, non-contact, nozzle-free printing technique which has demonstrated high potential for cell printing with high resolution. Improving cell viability requires determining printing conditions which minimize shear stress for cells within the jet and cell impact at droplet landing. In this context, this study deals with laser-induced jet dynamics to determine conditions from which jets arise with minimum kinetic energies. The transition from a sub-threshold regime to jetting regime has been associated with a geometrical parameter (vertex angle) which can be harnessed to print mesenchymal stem cells with high viability using slow jet conditions. Finally, hydrodynamic jet stability is also studied for higher laser pulse energies which give rise to supersonic but turbulent jets. (paper)

  14. Spray nozzles, pressures, additives and stirring time on viability and pathogenicity of entomopathogenic nematodes (nematoda: rhabditida for greenhouses.

    Directory of Open Access Journals (Sweden)

    Grazielle Furtado Moreira

    Full Text Available The objective of this study was to evaluate different strategies for the application of entomopathogenic nematodes (EPN. Three different models of spray nozzles with air induction (AI 11003, TTI 11003 and AD-IA 11004, three spray pressures (207, 413 and 720 kPa, four different additives for tank mixtures (cane molasses, mineral oil, vegetable oil and glycerin and the influence of tank mixture stirring time were all evaluated for their effect on EPN (Steinernema feltiae viability and pathogenicity. The different nozzles, at pressures of up to 620 kPa, were found to be compatible with S. feltiae. Vegetable oil, mineral oil and molasses were found to be compatible adjuvants for S. feltiae, and stirring in a motorized backpack sprayer for 30 minutes did not impact the viability or pathogenicity of this nematode. Appropriate techniques for the application of nematodes with backpack sprayers are discussed.

  15. Modeling cellular deformations using the level set formalism

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2008-07-01

    Full Text Available Abstract Background Many cellular processes involve substantial shape changes. Traditional simulations of these cell shape changes require that grids and boundaries be moved as the cell's shape evolves. Here we demonstrate that accurate cell shape changes can be recreated using level set methods (LSM, in which the cellular shape is defined implicitly, thereby eschewing the need for updating boundaries. Results We obtain a viscoelastic model of Dictyostelium cells using micropipette aspiration and show how this viscoelastic model can be incorporated into LSM simulations to recreate the observed protrusion of cells into the micropipette faithfully. We also demonstrate the use of our techniques by simulating the cell shape changes elicited by the chemotactic response to an external chemoattractant gradient. Conclusion Our results provide a simple but effective means of incorporating cellular deformations into mathematical simulations of cell signaling. Such methods will be useful for simulating important cellular events such as chemotaxis and cytokinesis.

  16. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  17. Single-Molecule Imaging of Cellular Signaling

    Science.gov (United States)

    De Keijzer, Sandra; Snaar-Jagalska, B. Ewa; Spaink, Herman P.; Schmidt, Thomas

    Single-molecule microscopy is an emerging technique to understand the function of a protein in the context of its natural environment. In our laboratory this technique has been used to study the dynamics of signal transduction in vivo. A multitude of signal transduction cascades are initiated by interactions between proteins in the plasma membrane. These cascades start by binding a ligand to its receptor, thereby activating downstream signaling pathways which finally result in complex cellular responses. To fully understand these processes it is important to study the initial steps of the signaling cascades. Standard biological assays mostly call for overexpression of the proteins and high concentrations of ligand. This sets severe limits to the interpretation of, for instance, the time-course of the observations, given the large temporal spread caused by the diffusion-limited binding processes. Methods and limitations of single-molecule microscopy for the study of cell signaling are discussed on the example of the chemotactic signaling of the slime-mold Dictyostelium discoideum. Single-molecule studies, as reviewed in this chapter, appear to be one of the essential methodologies for the full spatiotemporal clarification of cellular signaling, one of the ultimate goals in cell biology.

  18. Population viability analysis on domestic horse breeds (Equus caballus)

    DEFF Research Database (Denmark)

    Thirstrup, Janne Pia; Bach, Lars; Loeschcke, Volker;

    2009-01-01

    In this study, we performed a population viability analysis on 3 domestic horse breeds (Equus caballus) of Danish origin, namely, the Frederiksborg, the Knabstrupper, and the Jutland breeds. Because of their small population sizes, these breeds are considered endangered. The Vortex software...... (Frederiksborg ) at its present 30% level. Monitoring of the breeds in the future, however, may be exploited to adjust the breeding strategies. We suggest that the large amount of data required by Vortex makes it very useful for analyzing domestic animals because of the comprehensive data material often...

  19. Effect of microemulsions on cell viability of human dermal fibroblasts

    Science.gov (United States)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  20. Viability study for the implantation of an incineration unit for low level radioactive wastes

    International Nuclear Information System (INIS)

    Incineration have been a world-wide accepted volume reduction technique for combustible materials due to its high efficiency and excellent results. This technique is used since the last century as an alternative to reduce cities garbage and during the last four decades for the hazardous wastes. The nuclear industry is also involved in this technique development related to the low level radioactive waste management. There are different types of incineration installations and the definition of the right system is based on a criterious survey of its main characteristics, related to the rad wastes as well technical, economical and burocratic parameters. After the autonomous Brazilian nuclear programme development and the onlook of the future intensive nuclear energy uses, a radwaste generation increase is expected. One of the installations where these radwastes volumes are awaited to be high is the Experimental Center of ARAMAR (CEA). Nuclear reactors for propulsion and power generation have been developed in CEA beyond other nuclear combustible cycle activities. In this panorama it is important to evaluate the incineration role in CEA installations, as a volume reduction technique for an appropriate radioactive wastes management implementation. In this work main aspects related to the low level radwaste incineration systems were up rised. This information are important to a coherent viability study and also to give a clear and impartial about a topic that is still non discussed in the national scenery. (author)

  1. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  2. Prognosis of Different Cellular Generations

    Directory of Open Access Journals (Sweden)

    Preetish Ranjan

    2013-04-01

    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  3. The use of FAME analyses to discriminate between different strains of Geotrichum klebahnii with different viabilities.

    Science.gov (United States)

    Schwarzenauer, Thomas; Lins, Philipp; Reitschuler, Christoph; Illmer, Paul

    2012-02-01

    A considerable decline in viability of spray dried cells of Geotrichum klebahnii was observed and was attributed to an undefined alteration of the used strain. As common techniques were not able to distinguish the altered from the still viable strains, we used the fatty acid methyl ester (FAME) analysis. On the basis of FAME data we were able to discriminate the three strains under investigation. Especially the ratios of cis/trans fatty acid ratios and of saturated/unsaturated fatty acid were significantly reduced in the less viable strain, pointing to an increased stress level in this strain. These findings clearly show the applicability of the FAME analysis to detect strain alterations and that this method is therefore a suitable, fast and feasible tool for quality assurance. PMID:22806872

  4. Advanced analytical techniques

    International Nuclear Information System (INIS)

    The development of several new analytical techniques for use in clinical diagnosis and biomedical research is reported. These include: high-resolution liquid chromatographic systems for the early detection of pathological molecular constituents in physiologic body fluids; gradient elution chromatography for the analysis of protein-bound carbohydrates in blood serum samples, with emphasis on changes in sera from breast cancer patients; electrophoretic separation techniques coupled with staining of specific proteins in cellular isoenzymes for the monitoring of genetic mutations and abnormal molecular constituents in blood samples; and the development of a centrifugal elution chromatographic technique for the assay of specific proteins and immunoglobulins in human blood serum samples

  5. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles.

    Science.gov (United States)

    Schütz, Irene; Lopez-Hernandez, Tania; Gao, Qi; Puchkov, Dmytro; Jabs, Sabrina; Nordmeyer, Daniel; Schmudde, Madlen; Rühl, Eckart; Graf, Christina M; Haucke, Volker

    2016-07-01

    Nanoparticles (NPs) are widely used as components of drugs or cosmetics and hold great promise for biomedicine, yet their effects on cell physiology remain poorly understood. Here we demonstrate that clathrin-independent dynamin 2-mediated caveolar uptake of surface-functionalized silica nanoparticles (SiNPs) impairs cell viability due to lysosomal dysfunction. We show that internalized SiNPs accumulate in lysosomes resulting in inhibition of autophagy-mediated protein turnover and impaired degradation of internalized epidermal growth factor, whereas endosomal recycling proceeds unperturbed. This phenotype is caused by perturbed delivery of cargo via autophagosomes and late endosomes to SiNP-filled cathepsin B/L-containing lysosomes rather than elevated lysosomal pH or altered mTOR activity. Given the importance of autophagy and lysosomal protein degradation for cellular proteostasis and clearance of aggregated proteins, these results raise the question of beneficial use of NPs in biomedicine and beyond. PMID:27226546

  6. Aging, cellular senescence, and cancer.

    Science.gov (United States)

    Campisi, Judith

    2013-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyperplastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. PMID:23140366

  7. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics by...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were...

  8. Cell viability and functionality of probiotic bacteria in dairy products

    Directory of Open Access Journals (Sweden)

    Gabriel eVinderola

    2011-05-01

    Full Text Available Probiotic bacteria, according to the definition adopted by the World Health Organization in 2002, are live microorganisms, which when administered in adequate amounts confer a health benefit to the host. Recent studies show that the same probiotic strain produced and/or preserved under different storage conditions, may present different responses regarding their susceptibility to the adverse conditions of the gastrointestinal tract, its capacity to adhere to the intestinal epithelium, or its immunomodulating capacity, being the functionality affected without changes in cell viability. This could imply that the control of cell viability is not always enough to guarantee the functionality (probiotic capacity of a strain. Therefore, a new challenge arises for food technologists and microbiologists when it comes to designing and monitoring probiotic food: to be able to monitor the cell functionality a probiotic microorganism along all the stages the strain goes through from the moment it is produced and included into the food vehicle until to the moment of consumption. Conventional methodological tools or others still to be developed must be used. The application of cell membrane functionality markers, the use of tests of resistence to intestinal barriers, the study of surface properties and the application of in vivo models comes together as complementary tools to assess the actual capacity of a probiotic into a specific food to exert functional effects regardless the number of viable cells present at the moment of consumption.

  9. Economic viability of present-day biomass energy installations

    International Nuclear Information System (INIS)

    This illustrated, comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the economic viability of biomass energy installations. The installations examined included wood-fired installations, biogas installations and those using bio-diesel and bio-ethanol. The system boundaries involved are defined and various factors that influence cost calculations are examined. The resulting heat and electricity prices for various energy sources and systems are presented and discussed. Examples of small and large-scale installations are presented. For wood-energy, combined heat and power system producing electricity at powers of 1 to 5 MWe are looked at and the various factors influencing their viability are discussed. Biogas installations of various sizes are discussed and the differing investment costs involved are commented on. Here, large industrial installations using communal green wastes are also examined and the influence of communal waste-collection charges on the price for the electricity generated is discussed, as is the influence of the market for the residual compost produced. The production and use of biogas in public wastewater treatment plants is also looked at, including the use of co-substrates. As far as biogenic liquid fuels such as bio-diesel and bio-ethanol are concerned, the report takes a brief look at the situation concerning installations in Switzerland and reviews the production costs involved. Various conclusions are drawn for the various energy sources reviewed as well as for the prices for heat and electrical energy obtained

  10. Viability of Hanseniaspora uvarum yeast preserved by lyophilization and cryopreservation.

    Science.gov (United States)

    de Arruda Moura Pietrowski, Giovana; Grochoski, Mayara; Sartori, Gabriela Felkl; Gomes, Tatiane Aparecida; Wosiacki, Gilvan; Nogueira, Alessandro

    2015-08-01

    Hanseniaspora yeasts are known to produce volatile compounds that give fruity aromas in wine and fermented fruit. This study aimed to verify the feasibility of the Hanseniaspora uvarum strain that had been isolated and identified during a previous study and preserved by lyophilization and freezing at -80 °C (cryopreservation). This strain was assessed in relation to its macroscopic and microscopic morphology and for its ability to ferment apple must. After having been subjected to lyophilization and cryopreservation, viability was assessed in relation to these characteristics during 12 months of storage. The strain showed stable colonial features and its microscopic appearance was unchanged during all recoveries. The plate count results showed consistency in both processes. Regarding the fermentative capacity, the kinetic results showed 100% viability for the strain subjected to lyophilization, as well as for those preserved at -80 °C. These results demonstrate that the preservation methods used are compatible with the maintenance of the relevant characteristics of the strain for the period of evaluation of this study (12 months). PMID:26095929

  11. Effect of various commercial buffers on sperm viability and capacitation.

    Science.gov (United States)

    Andrisani, Alessandra; Donà, Gabriella; Ambrosini, Guido; Bonanni, Guglielmo; Bragadin, Marcantonio; Cosmi, Erich; Clari, Giulio; Armanini, Decio; Bordin, Luciana

    2014-08-01

    A wide variety of sperm preparation protocols are currently available for assisted conception. They include density gradient separation and washing methods. Both aim at isolating and capacitating as much motile sperm as possible for subsequent oocyte fertilization. The aim of this study was to examine the effects of four commercial sperm washing buffers on sperm viability and capacitation. Semen samples from 48 healthy donors (normal values of sperm count, motility, morphology, and volume) were analyzed. After separation (density gradient 40/80%), sperm were incubated in various buffers then analysed for reactive oxygen species (ROS) production, viability, tyrosine phosphorylation (Tyr-P), cholera toxin B subunit (CTB) labeling, and the acrosome reaction (AR). The buffers affected ROS generation in various ways resulting either in rapid cell degeneration (when the amount of ROS was too high for cell survival) or the inability of the cells to maintain correct functioning (when ROS were too few). Only when the correct ROS generation curve was maintained, suitable membrane reorganization, evidenced by CTB labeling was achieved, leading to the highest percentages of both Tyr-P- and acrosome-reacted-cells. Distinguishing each particular pathological state of the sperm sample would be helpful to select the preferred buffer treatment since both ROS production and membrane reorganization can be significantly altered by commercial buffers. PMID:24673547

  12. Selection of donor and organ viability criteria: expanding donation criteria.

    Science.gov (United States)

    Gutiérrez, E; Andrés, A

    2007-01-01

    Donation criteria have been becoming more flexible over the years. Currently, the only absolute exclusion criteria are human immunodeficiency virus infection (HIV), uncontrolled tumor disease and bacterial or viral infections. ClinicaL. conditions dictate organ viability criteria: biochemical, morphological and functional, that must be fulfilled by the donors and their organs in order to focus the decision on which donor organs can be used. These criteria attempt to assure that the transplanted organs function after the extraction, transformation, implantation and reperfusion process without transmitting any infectious or tumour disease. In recent years, the gross and microscopic appearance has become one of the fundamental criteria for selection of potentially viable organs. At present, there is no age limit for hepatic and renal donation; the principal contra-indication is chronic organ damage. The use of each organ must be decided individually after a profound analysis of all the viability criteria, weighing the advantages and disadvantages of the implant of a certain organ for the recipient. PMID:17702512

  13. Proteus mirabilis viability after lithotripsy of struvite calculi

    Science.gov (United States)

    Prabakharan, Sabitha; Teichman, Joel M. H.; Spore, Scott S.; Sabanegh, Edmund; Glickman, Randolph D.; McLean, Robert J. C.

    2000-05-01

    Urinary calculi composed of struvite harbor urease-producing bacteria within the stone. The photothermal mechanism of holmium:YAG lithotripsy is uniquely different than other lithotripsy devices. We postulated that bacterial viability of struvite calculi would be less for calculi fragmented with holmium:YAG irradiation compared to other lithotripsy devices. Human calculi of known struvite composition (greater than 90% magnesium ammonium phosphate hexahydrate) were incubated with Proteus mirabilis. Calculi were fragmented with no lithotripsy (controls), or shock wave, intracorporeal ultrasonic, electrohydraulic, pneumatic, holmium:YAG or pulsed dye laser lithotripsy. After lithotripsy, stone fragments were sonicated and specimens were serially plated for 48 hours at 38 C. Bacterial counts and the rate of bacterial sterilization were compared. Median bacterial counts (colony forming units per ml) were 8 X 106 in controls and 3 X 106 in shock wave, 3 X 107 in ultrasonic, 4 X 105 in electrohydraulic, 8 X 106 in pneumatic, 5 X 104 in holmium:YAG and 1 X 106 in pulsed dye laser lithotripsy, p less than 0.001. The rate of bacterial sterilization was 50% for holmium:YAG lithotripsy treated stones versus 0% for each of the other cohorts, p less than 0.01. P. mirabilis viability is less after holmium:YAG irradiation compared to other lithotripsy devices.

  14. Effect of Antarctic solar radiation on sewage bacteria viability

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.A. [National Environment Research Council, Cambridge (United Kingdom). British Antarctic Survey

    2005-06-01

    The majority of coastal Antarctic research stations discard untreated sewage waste into the near-shore marine environment. However, Antarctic solar conditions are unique, with ozone depletion increasing the proportion of potentially damaging ultraviolet-B (UV-B) radiation reaching the marine environment. This study assessed the influence of Antarctic solar radiation on the viability of Escherichia coli and sewage microorganisms at Rothera Research Station, Adelaide Island, Antarctic Peninsula. Cell viability decreased with increased exposure time and with exposure to shorter wavelengths of solar radiation. Cell survival also declined with decreasing cloud cover, solar zenith angle and ozone column depth. However, particulates in sewage increased the persistence of viable bacteria. Ultraviolet radiation doses over Rothera Point were highest during the austral summer. During this time, solar radiation may act to partially reduce the number of viable sewage-derived microorganisms in the surface seawater around Antarctic outfalls. Nevertheless, this effect is not reliable and every effort should be made to fully treat sewage before release into the Antarctic marine environment. (author)

  15. Determination of Ancylostoma caninum ova viability using metabolic profiling.

    Science.gov (United States)

    Gyawali, P; Beale, D J; Ahmed, W; Karpe, A V; Magalhaes, R J Soares; Morrison, P D; Palombo, E A

    2016-09-01

    Differentiation between viable and non-viable hookworm ova in environmental samples is necessary in order to implement strategies to mitigate re-infections in endemic regions. In this study, an untargeted metabolic profiling method was developed that utilised gas chromatography-mass spectrometry (GC-MS) in order to investigate hookworm ova viability. Ancylostoma caninum was used to investigate the metabolites within viable and non-viable ova. Univariate and multivariate statistical analyses of the data resulted in the identification of 53 significant metabolites across all hookworm ova samples. The major compounds observed in viable and non-viable hookworm ova were tetradecanoic acid, commonly known as myristic acid [fold change (FC) = 0.4], and dodecanoic acid, commonly known as lauric acid (FC = 0.388). Additionally, the viable ova had self-protecting metabolites such as prostaglandins, a typical feature absent in non-viable ova. The results of this study demonstrate that metabolic profiling using GC-MS methods can be used to determine the viability of canine hookworm ova. Further studies are needed to assess the applicability of metabolic profiling using GC-MS to detect viable hookworm ova in the mixed (viable and non-viable) populations from environmental samples and identify the metabolites specific to human hookworm species. PMID:27236650

  16. Resuscitation at the limits of viability--an Irish perspective.

    LENUS (Irish Health Repository)

    Khan, R A

    2012-02-01

    BACKGROUND: Advances in neonatal care continue to lower the limit of viability. Decision making in this grey zone remains a challenging process. OBJECTIVE: To explore the opinions of healthcare providers on resuscitation and outcome in the less than 28-week preterm newborn. DESIGN\\/METHODS: An anonymous postal questionnaire was sent to health care providers working in maternity units in the Republic of Ireland. Questions related to neonatal management of the extreme preterm infant, and estimated survival and long-term outcome. RESULTS: The response rate was 55% (74% obstetricians and 70% neonatologists). Less than 1% would advocate resuscitation at 22 weeks, 10% of health care providers advocate resuscitation at 23 weeks gestation, 80% of all health care providers would resuscitate at 24 weeks gestation. 20% of all health care providers would advocate cessation of resuscitation efforts on 22-25 weeks gestation at 5 min of age. 65% of Neonatologists and 54% trainees in Paediatrics would cease resuscitation at 10 min of age. Obstetricians were more pessimistic about survival and long term outcome in newborns delivered between 23 and 27 weeks when compared with neonatologists. This difference was also observed in trainees in paediatrics and obstetrics. CONCLUSION: Neonatologists, trainees in paediatrics and neonatal nurses are generally more optimistic about outcome than their counterparts in obstetrical care and this is reflected in a greater willingness to provide resuscitation efforts at the limits of viability.

  17. New small molecules targeting apoptosis and cell viability in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Doris Maugg

    Full Text Available Despite the option of multimodal therapy in the treatment strategies of osteosarcoma (OS, the most common primary malignant bone tumor, the standard therapy has not changed over the last decades and still involves multidrug chemotherapy and radical surgery. Although successfully applied in many patients a large number of patients eventually develop recurrent or metastatic disease in which current therapeutic regimens often lack efficacy. Thus, new therapeutic strategies are urgently needed. In this study, we performed a phenotypic high-throughput screening campaign using a 25,000 small-molecule diversity library to identify new small molecules selectively targeting osteosarcoma cells. We could identify two new small molecules that specifically reduced cell viability in OS cell lines U2OS and HOS, but affected neither hepatocellular carcinoma cell line (HepG2 nor primary human osteoblasts (hOB. In addition, the two compounds induced caspase 3 and 7 activity in the U2OS cell line. Compared to conventional drugs generally used in OS treatment such as doxorubicin, we indeed observed a greater sensitivity of OS cell viability to the newly identified compounds compared to doxorubicin and staurosporine. The p53-negative OS cell line Saos-2 almost completely lacked sensitivity to compound treatment that could indicate a role of p53 in the drug response. Taken together, our data show potential implications for designing more efficient therapies in OS.

  18. Adaptive stochastic cellular automata: Applications

    Science.gov (United States)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  19. Cellular senescence in aging primates.

    Science.gov (United States)

    Herbig, Utz; Ferreira, Mark; Condel, Laura; Carey, Dee; Sedivy, John M

    2006-03-01

    The aging of organisms is characterized by a gradual functional decline of all organ systems. Mammalian somatic cells in culture display a limited proliferative life span, at the end of which they undergo an irreversible cell cycle arrest known as replicative senescence. Whether cellular senescence contributes to organismal aging has been controversial. We investigated telomere dysfunction, a recently discovered biomarker of cellular senescence, and found that the number of senescent fibroblasts increases exponentially in the skin of aging baboons, reaching >15% of all cells in very old individuals. In addition, the same cells contain activated ataxia-telangiectasia mutated kinase and heterochromatinized nuclei, confirming their senescent status. PMID:16456035

  20. Cellular automaton for chimera states

    Science.gov (United States)

    García-Morales, Vladimir

    2016-04-01

    A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, some synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent structures with different periodicities are formed.

  1. Prognosis of Different Cellular Generations

    OpenAIRE

    Preetish Ranjan; Prabhat Kumar

    2013-01-01

    Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequen...

  2. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value FTIR microspectroscopy confirmed that cytostatic cells were viable and could still recover while also describing early cellular stress related responses on a molecular level.

  3. n Vitro Immunomodulatory Effect of R10 Fraction of Garlic on Viability and Production of TNF-? in CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    T. Ghazanfari

    2014-01-01

    Full Text Available Introduction & Objective: -cells, especially CD8+ T lymphocytes are the most important cells in anti-tumor response. Previously R10 fraction of garlic extract was reported as an immuno-modulator which induced an effective cellular immunity and Th1 responses. In this study the in vitro immunomodulatory effect of R10 on CD8+ T cells viability and production of TNF-? were evaluated. Materials & Methods: In this experimental study, using monoclonal antibodies attached to magnetic beads with isolating columns by magnetic bead method, CD8+ T cells from spleen cells of Balb/C mice were isolated. R10 fraction based on molecular weight was prepared using Ultra filtration. MTT assay was used to evaluate cell viability. TNF-? level was meas-ured in the supernatant of culture of CD8+ T cells by ELISA. Obtained data was compared and analyzed using Nonparametric Test and Keraskel & Wanny's Test tests.. Results: The findings indicate that all dilutions of R10 fraction increased cell viability of CD8+ T cells in comparison with the negative control group and in the presence of ConA with dilution of 1:50 of R10 fraction significantly increased cell viability of CD8+ T Cells com-pared to ConA alone. Secretion of TNF-? significantly increased by all dilutions of R10 frac-tion. Conclusion: These findings suggest that R10 fraction of garlic can be used as an Immuno-modulator drug candidate for induction of cellular Immunity in tumor therapy. Sci J Hamadan Univ Med Sci 2014; 20 (4:273-279

  4. Multi-robot Coordination by using Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    A. Gacsadi

    2008-05-01

    Full Text Available Vision-based algorithms for multi-robot coordination,are presented in this paper. Cellular Neural Networks (CNNsprocessing techniques are used for real time motion planning ofthe robots. The CNN methods are considered an advantageoussolution for image processing in autonomous mobile robotsguidance.

  5. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yang [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gao, Lihu; Zhong, Zhaocai [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Shulin, E-mail: yshulin@njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-04-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide–chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (T{sub f}) and cooling rates was applied to obtain scaffolds with pore size ranging from 100 μm to 120 μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of T{sub f} at a slow cooling rate of 0.7 °C/min; a more rapid cooling rate under 5 °C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC–chitosan scaffolds with appropriate pores for potential tissue engineering. - Highlights: • Fabrication of recombinant human collagen-chitosan scaffolds by freezing drying • Influence of freeze drying protocols on lyophilized scaffolds • Pore size, microstructure, porosity, swelling and cell viability were compared. • The optimized porous scaffold is suitable for cell (HUVEC) seeding.

  6. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds

    International Nuclear Information System (INIS)

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide–chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (Tf) and cooling rates was applied to obtain scaffolds with pore size ranging from 100 μm to 120 μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of Tf at a slow cooling rate of 0.7 °C/min; a more rapid cooling rate under 5 °C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC–chitosan scaffolds with appropriate pores for potential tissue engineering. - Highlights: • Fabrication of recombinant human collagen-chitosan scaffolds by freezing drying • Influence of freeze drying protocols on lyophilized scaffolds • Pore size, microstructure, porosity, swelling and cell viability were compared. • The optimized porous scaffold is suitable for cell (HUVEC) seeding

  7. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior.

    Science.gov (United States)

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Escamilla, Alan; Curiel, Mario; Valdez-Salas, Ernesto; Nedev, Nicola; Bastidas, Jose M

    2016-03-01

    Amorphous titanium dioxide (TiO2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. PMID:26706527

  8. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M;

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...

  9. Cellular signalling properties in microcircuits

    DEFF Research Database (Denmark)

    Toledo-Rodriguez, Maria; El Manira, Abdeljabbar; Wallén, Peter; Svirskis, Gytis; Hounsgaard, Jørn

    2005-01-01

    Molecules and cells are the signalling elements in microcircuits. Recent studies have uncovered bewildering diversity in postsynaptic signalling properties in all areas of the vertebrate nervous system. Major effort is now being invested in establishing the specialized signalling properties at th...... cellular and molecular levels in microcircuits in specific brain regions. This review is part of the TINS Microcircuits Special Feature....

  10. Quantum Cloning by Cellular Automata

    OpenAIRE

    D'Ariano, G. M.; Macchiavello, C.; M. Rossi

    2012-01-01

    We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.

  11. Analysis of cellular manufacturing systems

    NARCIS (Netherlands)

    Heragu, Sunderesh; Meng, Gang; Zijm, Henk; Ommeren, van Jan-Kees

    2001-01-01

    In this paper, we present an open queuing network modeling approach to estimate performance measures of a cellular manufacturing layout. It is assumed a layout and production data for a planning period of specified length are available. The production data takes into account, processing and handli

  12. In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti–6Al–4V

    International Nuclear Information System (INIS)

    The success of any implant, dental or orthopaedic, is driven by the interaction of implant material with the surrounding tissue. In this context, the nature of the implant surface plays a direct role in determining the long term stability as physico-chemical properties of the surface affect cellular attachment, expression of proteins, and finally osseointegration. Thus to enhance the degree of integration of the implant into the host tissue, various surface modification techniques are employed. In this work, laser surface melting of titanium alloy Ti–6Al–4V was carried out using a CO2 laser with an argon gas atmosphere. Investigations were carried out to study the influence of laser surface modification on the biocompatibility of Ti–6Al–4V alloy implant material. Surface roughness, microhardness, and phase development were recorded. Initial knowledge of these effects on biocompatibility was gained from examination of the response of fibroblast cell lines, which was followed by examination of the response of osteoblast cell lines which is relevant to the applications of this material in bone repair. Biocompatibility with these cell lines was analysed via Resazurin cell viability assay, DNA cell attachment assay, and alamarBlue metabolic activity assay. Laser treated surfaces were found to preferentially promote cell attachment, higher levels of proliferation, and enhanced bioactivity when compared to untreated control samples. These results demonstrate the tremendous potential of this laser surface melting treatment to significantly improve the biocompatibility of titanium implants in vivo. (paper)

  13. Effects of the Imidazoline Binding Site Ligands, Idazoxan and Efaroxan, on the Viability of Insulin-Secreting BRIN-BD11 Cells

    Directory of Open Access Journals (Sweden)

    Gao H

    2003-05-01

    Full Text Available CONTEXT: Certain imidazoline drugs stimulate insulin secretion acutely but their longer term effects on the viability of pancreatic beta-cells are less well characterised. Indeed, some reports have suggested that imidazolines can be toxic to beta-cells while others have reported protective effects against other cytotoxic agents. OBJECTIVE: In order to address these discrepancies, the effects of two structurally related imidazolines, efaroxan and idazoxan, on the viability of clonal BRIN-BD11 beta-cells, were compared. DESIGN AND MAIN OUTCOME MEASURES: BRIN-BD11 cells were exposed to test reagents and their viability monitored by measuring cellular reducing ability and DNA fragmentation. Nitric oxide was measured indirectly via medium nitrite formation. RESULTS: Efaroxan (up to 100 micro M did not directly affect BRIN-BD11 cell viability in the absence of other agents and it did not protect these cells against the cytotoxic effects of interleukin-1beta. Indeed, analysis of DNA fragmentation in BRIN-BD11 cells revealed that efaroxan enhanced the level of damage caused by interleukin-1beta. Idazoxan caused a time- and dose-dependent loss of BRIN-BD11 cell viability in the absence of other ligands. This was associated with marked DNA degradation but was not associated with formation of nitric oxide. The effects of idazoxan were insensitive to blockade of alpha(2-adrenoceptors or 5-HT(1A (5-hydroxytryptamine; serotonin receptors. CONCLUSIONS: The results confirm that idazoxan is cytotoxic to beta-cells but show that efaroxan is better tolerated. However, since efaroxan enhanced the cytotoxic effects of interleukin-1beta, it appears that this imidazoline may sensitise BRIN-BD11 cells to the damaging effects of certain cytokines.

  14. EFFECTIVE MARKET SEGMENTATION AND VIABILITY OF ISLAMIC BANKING IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Mohammed Abubakar Mawoli

    2012-01-01

    Full Text Available Islamic banking has become a global phenomenon as both Islamic and western countries have embraced it. However, the move by the Central Bank of Nigeria (CBN to introduce Islamic Banking in Nigeria was met with many criticisms, especially from the Non-Muslims. As a divorce from subjective criticisms typical of religious opponents’ discussions, the study examined the viability of Islamic banking in Nigeria using market segmentation criteria. Being a library research, secondary data was obtained from various secondary sources and analyzed descriptively. The study found that, the targeted Muslim segment is substantial, identifiable, measurable, accessible and reliable. Hence, the study concludes that the introduction of Islamic banking in Nigeria is worthwhile and the future of Islamic banks in the country is bright and prosperous. The study, therefore, recommends that though Islamic banking has come to stay, Muslims and non-Muslims should support its establishment as all citizens irrespective of religious affiliation are likely to benefit from it.

  15. [Effect of heavy water on the viability of bacteria].

    Science.gov (United States)

    Dronova, N V; Parkhomenko, T V; Popov, V G; Sventitskiĭ, E N; Iakovleva, L Iu

    1988-01-01

    Influence of heavy water (D2O) on the membrane energization, the efflux of hydrogen ions and the respiration of bacteria E. coli M-17 was studied. As has been shown, heavy water of a low concentration (0.05-0.20% v/v) activates and of a high concentration (above 10%) inhibits the absorption of lipophilic cation tetraphenylphosphonium (TPP+) and of oxygen by cells. The return of these characteristics to the initial levels after the removal of D2O points to a reversible action of D2O. A protective effect of D2O towards membrane energization and rate of respiration on dried cells was observed. This fact is in agreement with the data on viability of bacteria. The indicated protective action increases at the stage of rehydration in the presence of D2O. PMID:3390482

  16. Technical viability and development needs for waste forms and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It was not the intent of this session to recommend or advocate any one technology over another.

  17. Reconstruction of boundary conditions from internal conditions using viability theory

    KAUST Repository

    Hofleitner, Aude

    2012-06-01

    This article presents a method for reconstructing downstream boundary conditions to a HamiltonJacobi partial differential equation for which initial and upstream boundary conditions are prescribed as piecewise affine functions and an internal condition is prescribed as an affine function. Based on viability theory, we reconstruct the downstream boundary condition such that the solution of the Hamilton-Jacobi equation with the prescribed initial and upstream conditions and reconstructed downstream boundary condition satisfies the internal value condition. This work has important applications for estimation in flow networks with unknown capacity reductions. It is applied to urban traffic, to reconstruct signal timings and temporary capacity reductions at intersections, using Lagrangian sensing such as GPS devices onboard vehicles.

  18. Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality.

    Directory of Open Access Journals (Sweden)

    Wan Yang

    Full Text Available Humidity has been associated with influenza's seasonality, but the mechanisms underlying the relationship remain unclear. There is no consistent explanation for influenza's transmission patterns that applies to both temperate and tropical regions. This study aimed to determine the relationship between ambient humidity and viability of the influenza A virus (IAV during transmission between hosts and to explain the mechanisms underlying it. We measured the viability of IAV in droplets consisting of various model media, chosen to isolate effects of salts and proteins found in respiratory fluid, and in human mucus, at relative humidities (RH ranging from 17% to 100%. In all media and mucus, viability was highest when RH was either close to 100% or below ∼50%. When RH decreased from 84% to 50%, the relationship between viability and RH depended on droplet composition: viability decreased in saline solutions, did not change significantly in solutions supplemented with proteins, and increased dramatically in mucus. Additionally, viral decay increased linearly with salt concentration in saline solutions but not when they were supplemented with proteins. There appear to be three regimes of IAV viability in droplets, defined by humidity: physiological conditions (∼100% RH with high viability, concentrated conditions (50% to near 100% RH with lower viability depending on the composition of media, and dry conditions (<50% RH with high viability. This paradigm could help resolve conflicting findings in the literature on the relationship between IAV viability in aerosols and humidity, and results in human mucus could help explain influenza's seasonality in different regions.

  19. Characteristics and Warning Indexes of Rice Seeds Viability Loss During Storage at 45℃ Constant Temperature

    Institute of Scientific and Technical Information of China (English)

    LU Xin-xiong; CHEN Xiao-ling

    2002-01-01

    Seed aging characteristics of rice was investigated in this study. Seeds of 34 japonica rice (O-ryza sativa subsp. japonica) varieties were held at 45℃ constant temperature. Changes in seed viability and seed vigor during aging process were measured to study seed viability-losing characteristic and to determine warning index for seed viability loss. As a result, seed viability survival curves were obtained across different rice accessions at 45℃ constant temperature. The curves appeared to be contra-sigmoid survival curves. The loss of seed viability in the aging process consisted of two phases. The first phase took a long duration, in which the viability of vigorous seeds declined slowly. In the second phase, seed viability declined rapidly. It was obvious that seed viability declined inconsistently during storage. It also showed that seed germination was prolonged and the seedling was significantly weakened before the coming of the rapid declining phase of seed viability. These two parameters could be used to indicate seed quality during storage. The rate of compatibility of tests (RCT), coefficient of variation (CV), vigor of seedling, the day the seeds start to germinate could be used as warning indexes to indicate overall quality of a mass of accessions. These warning indexes could also be used in monitoring the viability of seeds stored in the seed genebank.

  20. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    International Nuclear Information System (INIS)

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25–200 μg/mL) and incubation time (0–72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  1. A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products.

    Science.gov (United States)

    Oliveira, Daian Guilherme Pinto; Pauli, Giuliano; Mascarin, Gabriel Moura; Delalibera, Italo

    2015-12-01

    Techniques for directly determining conidial viability have widespread use but also have limitations for quality control assessments of formulated mycoinsecticides, especially in emulsifiable oil. This study proposes a new method based on adaptations of already established protocols that use the direct viability method to make it more economical and accurate, thus enabling its use in the evaluation of formulated products. Appropriate parameters and conditions were defined using products based on Beauveria bassiana and Metarhizium anisopliae in the forms of pure conidia, fungus-colonized rice, ground fungus-colonized rice and oil dispersion. The established protocol, named ESALQ, consists of the transfer of 150 μL of a suspension containing about 0.7 and 1 × 10(6) conidia/mL onto Rodac® plates with 5 mL of potato dextrose agar culture medium + 5 mg/L of Pentabiotic® and 10 μL/L of Derosal® (Carbendazim) and subsequent counting of germinated and non-germinated conidia. For the ground fungus-colonized rice and oil dispersion formulations, prior to transferring the fungal suspension to the medium, rice should be decanted and the oil removed, respectively. This method was compared with another direct viability method and with the Colony-forming unit (CFU) and Fluorescence viability methods, comparing the accuracy obtained using the coefficient of variation (CV) of the analysis of each method. The results showed that in addition to the ease of application, the developed method has higher accuracy than the other methods (with a CV up to seven times lower than in the Standard method and up to 32 times lower than CFU). The CFU method underestimated the concentration of viable conidia in most of the tested fungal forms, and in the emulsifiable oil products, these values were 54% lower for B. bassiana and 84% lower for M. anisopliae. The adaptations and standardizations proposed in the ESALQ method showed effective improvements for routine quality assessment of

  2. Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging

    International Nuclear Information System (INIS)

    Photoacoustic imaging, a promising new diagnostic medical imaging modality, can provide high contrast images of molecular features by introducing highly-absorbing plasmonic nanoparticles. Currently, it is uncertain whether the absorption of low fluence pulsed light by plasmonic nanoparticles could lead to cellular damage. In our studies we have shown that low fluence pulsed laser excitation of accumulated nanoparticles at low concentration does not impact cell growth and viability, while we identify thresholds at which higher nanoparticle concentrations and fluences produce clear evidence of cell death. The results provide insights for improved design of photoacoustic contrast agents and for applications in combined imaging and therapy. (paper)

  3. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    Directory of Open Access Journals (Sweden)

    Panga Jaipal Reddy

    Full Text Available Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  4. Synthesis of dental matrix proteins and viability of odontoblast-like cells irradiated with blue LED.

    Science.gov (United States)

    Alonso, Juliana Rosa Luiz; Turrioni, Ana Paula Silveira; Basso, Fernanda Gonçalves; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-04-01

    To evaluate the effect of irradiation with light-emitting diode (LED; 455 nm) on the viability and synthesis of dentin matrix proteins by odontoblast-like cells, MDPC-23 cells were cultivated (10(4) cells/cm(2)) in 24-well culture plates. After 12 h incubation in Dulbecco's modified Eagle's medium (DMEM), the cells were submitted to nutritional restriction by means of reducing the concentration of fetal bovine serum (FBS) for an additional 12 h. Cells were irradiated one single time with one of the following energy densities (EDs): 0.5, 2, 4, 10, or 15 J/cm(2) and irradiance fixed at 20 mW/cm(2). Non-irradiated cells served as control. After 72 h, cells were evaluated with regard to viability (methylthiazol tetrazolium technique (MTT)), mineralization nodule (MN) formation, total protein (TP) production, alkaline phosphatase activity (ALP), and collagen synthesis (Sircol), n = 8. The data were submitted to Kruskal-Wallis and Mann-Whitney tests (p > 0.05). There was no statistical difference between the viability of cells irradiated or not (control), for all the EDs. However, an increase in TP was observed for all the EDs when compared with the control group. A reduced ALP activity was seen in all irradiated groups, except for the ED of 0.5 J/cm(2), which did not differ from the control. There was no difference between the irradiated groups and control regarding collagen synthesis, with the exception of the ED of 10 J/cm(2), which inhibited this cell function. Significant reduction in MN occurred only for the EDs of 0.5 and 2 J/cm(2). The single irradiation with blue LED (455 nm), irradiance of 20 mW/cm(2), and energy densities ranging from 0.5 to 15 J/cm(2) exerted no effective biostimulatory capacity on odontoblast-like cells. PMID:26873499

  5. Emerging role of calcium-activated potassium channel in the regulation of cell viability following potassium ions challenge in HEK293 cells and pharmacological modulation.

    Directory of Open Access Journals (Sweden)

    Domenico Tricarico

    Full Text Available Emerging evidences suggest that Ca(2+activated-K(+-(BK channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L or hypokalemia (0.55 mEq/L conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293 in the presence or absence of BK channel modulators. The BK channel openers(10(-11-10(-3M were: acetazolamide(ACTZ, Dichlorphenamide(DCP, methazolamide(MTZ, bendroflumethiazide(BFT, ethoxzolamide(ETX, hydrochlorthiazide(HCT, quercetin(QUERC, resveratrol(RESV and NS1619; and the BK channel blockers(2 x 10(-7M-5 x 10(-3M were: tetraethylammonium(TEA, iberiotoxin(IbTx and charybdotoxin(ChTX. Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing the

  6. PM - processing for manufacturing of metals with cellular structures

    International Nuclear Information System (INIS)

    In this review the major Processes about manufacturing of metals with cellular structure are described - based on powder metallurgy, chemical deposition and some other methods (without melting techniques). It can be shown that during the last decade many interesting innovations led to new production methods to design cellular materials. Some of them are used nowadays in industry. Also characterization and properties become more important and have therefore been carried out carefully, because of their strong influence on the functions and applications of such materials. (author)

  7. Optimising base station location for UMTS cellular networks

    International Nuclear Information System (INIS)

    Rapid development of universal mobile telecommunication systems put demands on tools for assisting planning of cellular network infrastructure. The tools need to focus on critical issues in modern cellular networks and techniques used for previous generation system no longer serve useful. In this paper, an algorithm based on Branch and Bound approach is proposed for solving base station location problem, covering interference levels, traffic demands and power control mechanism. The efficiency of the algorithm is evaluated with respect to existing approaches for solving this problem – using the designed and implemented experimentation system

  8. Lattice gas cellular automata and lattice Boltzmann models an introduction

    CERN Document Server

    Wolf-Gladrow, Dieter A

    2000-01-01

    Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.

  9. Environment Aware Location Estimation in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Tuna Tugcu

    2008-03-01

    Full Text Available We propose a novel mobile positioning algorithm for cellular networks based on the estimation of the radio propagation environment. Since radio propagation characteristics vary in different environments, knowing the environment of the mobile user is essential for accurate Received Signal Strength- (RSS- based location estimation. The key feature of our method is its capability to estimate the environment of the mobile user using machine learning techniques and to utilize this information for enhancing RSS-based distance calculations. The proposed algorithm, namely, EARBALE, has been evaluated using field measurements collected from a GSM network in diverse geographic locations. Our approach turns out to be significantly beneficial, enhancing estimation accuracy, and thereby enabling high-performance mobile positioning in a practical and cost-effective manner. Additionally, it is computationally light-wei

  10. Microsystems for cellular force measurement: a review

    International Nuclear Information System (INIS)

    Microsystems are providing key advances in studying single cell mechanical behavior. The mechanical interaction of cells with their extracellular matrix is fundamentally important for cell migration, division, phagocytosis and aptoptosis. This review reports the development of microsystems on studying cell forces. Microsystems provide advantages of studying single cells since the scale of cells is on the micron level. The components of microsystems provide culture, loading, guiding, trapping and on chip analysis of cellular mechanical forces. This paper gives overviews on how MEMS are advancing in the field of cell biomechno sensory systems. It presents different materials, and mode of studying cell mechanics. Finally, we comment on the future directions and challenges on the state of art techniques

  11. Simulating Complex Systems by Cellular Automata

    CERN Document Server

    Kroc, Jiri; Hoekstra, Alfons G

    2010-01-01

    Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on th...

  12. Call Admission Control in Mobile Cellular Networks

    CERN Document Server

    Ghosh, Sanchita

    2013-01-01

    Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently.      CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators.  The second approach is concerned with formulation of CAC ...

  13. Knowledge discovery for geographical cellular automata

    Institute of Scientific and Technical Information of China (English)

    LI; Xia; Anthony; Gar-On; Yeh

    2005-01-01

    This paper proposes a new method for geographical simulation by applying data mining techniques to cellular automata. CA has strong capabilities in simulating complex systems. The core of CA is how to define transition rules. There are no good methods for defining these transition rules. They are usually defined by using heuristic methods and thus subject to uncertainties. Mathematical equations are used to represent transition rules implicitly and have limitations in capturing complex relationships. This paper demonstrates that the explicit transition rules of CA can be automatically reconstructed through the rule induction procedure of data mining. The proposed method can reduce the influences of individual knowledge and preferences in defining transition rules and generate more reliable simulation results. It can efficiently discover knowledge from a vast volume of spatial data.

  14. Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles

    International Nuclear Information System (INIS)

    SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.

  15. Using a Bedside Video-assisted Test Tube Test to Assess Stoma Viability: A Report of 4 Cases.

    Science.gov (United States)

    Ahmad, Sarwat; Turner, Keli; Shah, Paulesh; Diaz, Jose

    2016-07-01

    Mucosal discoloration of an intestinal stoma may indicate self-limited venous congestion or necrosis necessitating operative revision. A common bedside technique to assess stoma viability is the "test tube test". A clear tube is inserted into the stoma and a hand-held light is used to assess the color of the stoma. A technique (video-assisted test tube test [VATTT]) developed by the authors utilizes a standard video bronchoscope inserted into a clear plastic blood collection tube to visually inspect and assess the mucosa. This technique was evaluated in 4 patients (age range 49-72 years, all critically ill) with a discolored stoma after emergency surgery. In each case, physical exam revealed ischemic mucosa at the surface either immediately after surgery or after worsening hypotension weeks later. Serial test tube test assessments were ambiguous when trying to assess deeper mucosa. The VATTT assessment showed viable pink mucosa beneath the surface and until the fascia was revealed in 3 patients. One (1) patient had mucosal ischemia down to the fascia, which prompted operative revision of the stoma. The new stoma was assessed with a VATTT and was viable for the entire length of the stoma. VATTT provided an enhanced, magnified, and clearer way to visually assess stoma viability in the postoperative period that can be performed at the bedside with no adverse events. It may prevent unnecessary relaparotomy or enable earlier diagnosis of deep ostomy necrosis. Validity and reliability studies are warranted. PMID:27428565

  16. Cellular solidification of transparent monotectics

    Science.gov (United States)

    Kaulker, W. F.

    1986-01-01

    Understanding how liquid phase particles are engulfed or pushed during freezing of a monotectic is addressed. The additional complication is that the solid-liquid interface is nonplanar due to constitutional undercooling. Some evidence of particle pushing where the particles are the liquid phase of the montectic was already observed. Cellular freezing of the succinonitrile-glycerol system also occurred. Only a few compositions were tested at that time. The starting materials were not especially pure so that cellular interface observed was likely due to the presence of unkown impurities, the major portion of which was water. Topics addressed include: the effort of modeling the particle pushing process using the computer, establishing an apparatus for the determination of phase diagrams, and the measurement of the temperature gradients with a specimen which will solidify on the temperature gradient microscope stage.

  17. Cellular ceramics in combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Fuessel, Alexander; Boettge, Daniela; Adler, Joerg; Marschallek, Felix; Michaelis, Alexander [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden (Germany)

    2011-11-15

    Cellular materials have become increasingly interesting for applications in combustion environments. Improvements like high power efficiency and low emissions are the main targets of technological development in combustion processes. However, despite scientific and technical success in developing new or improved burner concepts over recent years, a lot of problems remain to be solved in the field of materials science: due to the high power density of the burners the materials are subjected to high loads in terms of thermal shock, temperature and corrosion, especially in so-called porous burner technology. This article shows some examples of research and development strategies and results in developing improved cellular ceramics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Designing Underwater Cellular Networks Parameters

    Directory of Open Access Journals (Sweden)

    Pejman Khadivi

    2008-09-01

    Full Text Available Oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance are some of the applications of underwater networks. Underwater networks should send the gathered information to other users or an offshore station via a base station in the sea. Since the available bandwidth in underwater is severely limited, frequency reuse and cellular networks concepts are very important. In this paper, after driving the ratio of signal to interference for underwater acoustic channels, the constraints for the cell radius are determined. One of the important results of this work is that, for special parameters like bandwidth, it may be impossible to provide the required signal to interference ratio and bandwidth for the network users. Furthermore, in this paper, number of supportable users, per-user bandwidth, and the user capacity for a cellular underwater network are determined.

  19. A comparison of Monte Carlo and cellular automata approaches for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zandler, G.; Di Carlo, A.; Kometer, K.; Lugli, P.; Vogl, P.; Gornik, E. (Technische Univ. Muenchen (Germany))

    1993-02-01

    The authors present a detailed comparison of Monte Carlo and cellular automata approaches as applied to the study of nonequilibrium transport and semiconductor device simulation. They show that the novel cellular automata (CA) technique enjoys all benefits of the more traditional Monte Carlo (MC) method, while at the same time allowing considerably higher performances.

  20. Analytical Results to Improve the Capacity of A Cellular System In Frequency Selective Rayleigh Fading Channel

    Directory of Open Access Journals (Sweden)

    Pravindra Kumar

    2010-10-01

    Full Text Available One of the biggest draw back of wireless environment is the limited bandwidth. However, the users sharing this limited bandwidth have been increased considerably by using SDMA technique that can enhancethe capacity of communication system. There are some techniques that can increase the capacity of the cellular system, these are- Spreading Technique, Error Control Coding Technique, Multipath Diversity Technique ( i.e. Rake Receiver, Smart Antenna Technique. In this paper we have used all these technique and examined how thecapacity of cellular system vary with varying the different parameters such as- the value of spreading factor, the number of Rake fingers, the number of interfering cells, value of directivity of Adaptive Antenna at base station. In the results we find that the capacity of a cellular system is varying with these parameters.

  1. Stochastic Nature in Cellular Processes

    Institute of Scientific and Technical Information of China (English)

    刘波; 刘圣君; 王祺; 晏世伟; 耿轶钊; SAKATA Fumihiko; GAO Xing-Fa

    2011-01-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  2. Xtoys cellular automata on xwindows

    CERN Document Server

    Creutz, M

    1995-01-01

    Xtoys is a collection of xwindow programs for demonstrating simulations of various statistical models. Included are xising, for the two dimensional Ising model, xpotts, for the q-state Potts model, xautomalab, for a fairly general class of totalistic cellular automata, xsand, for the Bak-Tang-Wiesenfield model of self organized criticality, and xfires, a simple forest fire simulation. The programs should compile on any machine supporting xwindows.

  3. Cellular reactions to patterned biointerfaces

    OpenAIRE

    Schulte, Vera Antonie

    2012-01-01

    The subject of this thesis is to study cellular reactions to topographically, mechanically and biochemically tunable polymeric biomaterials. Different aspects of in vitro cell-biomaterial interactions were systematically studied with the murine fibroblast cell line NIH L929 and primary human dermal fibroblasts (HDFs). Besides a general cytocompatibility assessment of the applied materials and the quantification of cell adhesion per se, cell morphological changes (e.g. cell spreading) and intr...

  4. Signal processing in cellular clocks

    OpenAIRE

    Forger, Daniel B.

    2011-01-01

    Many biochemical events within a cell need to be timed properly to occur at specific times of day, after other events have happened within the cell or in response to environmental signals. The cellular biochemical feedback loops that time these events have already received much recent attention in the experimental and modeling communities. Here, we show how ideas from signal processing can be applied to understand the function of these clocks. Consider two signals from the network s(t) and r(...

  5. Analysis of cellular manufacturing systems

    OpenAIRE

    Heragu, Sunderesh; Meng, Gang; Zijm, Henk; Ommeren, van, J.C.

    2001-01-01

    In this paper, we present an open queuing network modeling approach to estimate performance measures of a cellular manufacturing layout. It is assumed a layout and production data for a planning period of specified length are available. The production data takes into account, processing and handling set-up times as well as transfer and process batch size information of multiple products that flow through the system. It is assumed that two sets of discrete material handling devices are used fo...

  6. Cellular Dynamics of RNA Modification

    OpenAIRE

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characteri...

  7. Cellular Dynamics of RNA Modification

    Science.gov (United States)

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Conspectus Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characterized protein and DNA modifications, many RNA modifications are not essential for life. Instead, increasingly more evidence indicates that RNA modifications can play regulatory roles in cells, especially in response to stress conditions. In this Account, we review some known examples of RNA modifications that are dynamically controlled in cells and introduce some contemporary technologies and methods that enhance the studies of cellular dynamics of RNA modifications. Examples of RNA modifications discussed in this Account include (Figure 1): (1) 4-thio uridine (s4U) which can act as a cellular sensor of near UV-light; (2) queuosine (Q) which is a potential biomarker for malignancy; (3) N6-methyl adenine (m6A) which is the prevalent modification in eukaryotic mRNAs; and (4) pseudouridine (ψ) which are inducible by nutrient deprivation. Two recent technical advances that stimulated the studies of cellular dynamics of modified ribonucleosides are also described. First, a genome-wide method combines primer extension and microarray to study N1-methyl adenine (m1A) hypomodification in human tRNA. Second, a quantitative mass spectrometric method investigates dynamic changes of a wide range of tRNA modifications under stress conditions in yeast. In addition, we discuss potential mechanisms that control dynamic regulation of RNA modifications, and hypotheses for discovering potential RNA de-modification enzymes. We conclude the Account by highlighting the need to develop new

  8. CELLULAR FETAL MICROCHIMERISM IN PREECLAMPSIA

    OpenAIRE

    Gammill, Hilary S; Aydelotte, Tessa M.; Guthrie, Katherine A.; Nkwopara, Evangelyn C.; Nelson, J. Lee

    2013-01-01

    Previous studies have shown elevated concentrations of free fetal deoxyribonucleic acid and erythroblasts in maternal circulation in preeclampsia compared with normal pregnancy. Pluripotent and immunocompetent fetal cells also transfer to the maternal circulation during pregnancy, but whether concentrations of fetal mononuclear cells also differed in preeclampsia was unknown. We sought to quantify cellular fetal microchimerism in maternal circulation in women with preeclampsia and healthy con...

  9. The Origins of Cellular Life

    OpenAIRE

    Schrum, Jason P.; Zhu, Ting F.; SZOSTAK, JACK W.

    2010-01-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of fun...

  10. Progress of cellular dedifferentiation research

    Institute of Scientific and Technical Information of China (English)

    LIU Hu-xian; HU Da-hai; JIA Chi-yu; FU Xiao-bing

    2006-01-01

    Differentiation, the stepwise specialization of cells, and transdifferentiation, the apparent switching of one cell type into another, capture much of the stem cell spotlight. But dedifferentiation, the developmental reversal of a cell before it reinvents itself, is an important process too. In multicellular organisms, cellular dedifferentiation is the major process underlying totipotency, regeneration and formation of new stem cell lineages. In humans,dedifferentiation is often associated with carcinogenesis.The study of cellular dedifferentiation in animals,particularly early events related to cell fate-switch and determination, is limited by the lack of a suitable,convenient experimental system. The classic example of dedifferentiation is limb and tail regeneration in urodele amphibians, such as salamanders. Recently, several investigators have shown that certain mammalian cell types can be induced to dedifferentiate to progenitor cells when stimulated with the appropriate signals or materials. These discoveries open the possibility that researchers might enhance the endogenous regenerative capacity of mammals by inducing cellular dedifferentiation in vivo.

  11. Stochastic Viability of Second Generation Biofuel Chains: Micro-economic Spatial Modeling in France

    OpenAIRE

    Bamiére, Laure; Martinet, Vincent; Gouel, Christophe; Le Cadre, Elodie

    2011-01-01

    Within an overall project to assess the ability of the agricultural sector to contribute to bioenergy production, we set out here to examine the economic and technological viability of a bioenergy facility in an uncertain economic context, using the stochastic viability approach. We consider two viability constraints: the facility demand for lignocellulosic feedstock has to be satisfied each year and the associated supply cost has to be lower than de profitability threshold of the facility. W...

  12. Influence of corona discharge field on seed viability and dynamics of germination

    OpenAIRE

    G. Rutkauskas; A. Pozeliene; S. Lynikiene

    2006-01-01

    Literature sources state that an electromagnetic field causes physiological-biochemical changes in seeds. Water assimilation becomes faster, breathing of a germinating seed intensifies and its viability improves. Having reviewed the data about using electromagnetic fields in stimulating seed viability by different authors, it becomes obvious that research of seed germination dynamics is scarce. In addition, viability of illcondition seeds is rarely indicated. The research reported herein was ...

  13. Dynamic properties of cellular neural networks

    Directory of Open Access Journals (Sweden)

    Angela Slavova

    1993-01-01

    Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.

  14. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  15. DNMT3a epigenetic program regulates the HIF-2α oxygen-sensing pathway and the cellular response to hypoxia

    OpenAIRE

    Lachance, Gabriel; Uniacke, James; Audas, Timothy E.; Holterman, Chet E.; Franovic, Aleksandra; Payette, Josianne; Lee, Stephen

    2014-01-01

    DNA methyltransferase 3a (DNMT3a) mediates the de novo methylation of DNA to regulate gene expression and maintain cellular homeostasis. Mutations in DNMT3a in primary tumors suggest that the DNMT3a epigenetic program is modified during early tumorigenesis. We show that a major consequence of DNMT3a defects is the epigenetic deregulation and unscheduled activation of the EPAS1 (hypoxia-inducible factor 2α) gene that facilitates growth and viability under conditions of low oxygen availability....

  16. Cell Formation Techniques – A Study

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Arora,

    2011-02-01

    Full Text Available Cellular manufacturing system has been proved a vital approach for batch and job shop production systems. Group technology has been an essential tool for developing a cellular manufacturing system. Thepaper aims to discuss various cell formation techniques and highlights the significant research work done in past over the years and attempts to points out the gap in research of past studies.

  17. DETECTION OF MYOCARDIAL VIABILITY IN ISСHAEMIC DAMAGE USING MAGNETIC RESONANCE AND EMISSION TOMOGRAPHY

    Directory of Open Access Journals (Sweden)

    V. Yu. Ussov

    2013-01-01

    Full Text Available A review of modern methods of magnetic resonance imaging (MRI and emission tomography (singlephoton emission and positron emission computer tomography – SPECT and PET as toos for diagnosis and prognosis of myocardial ischaemic damage, in particular in coronary revascularization. The definition of term “myocardial viability” is discussed. It has been shown that the integrity of blood-tissue barrier between myocardium and microcirculatory vessels is the most sensitive marker of tissue viability and of functional integrity of myocardium. It’s evaluation by means of contrast-enhanced MRI of myocardium is the most available and most precise technique of diagnosis and prognosis both in patients with postinfarction myocardiosclerosis and in patients with coronary disease without myocardial infarction. It is proposed that in the nearest future the combination of MR-coronarography and contrast-enhanced MRI of myocardium will provide a possibility to obtain the full set of data necessary for planning of endovascular and surgical treatment of various forms of coronary heart disease. PET and SPECT techniques currently are of some essential interest for pathophysiologic research of coronary ishaemia in clinical and experimental studies as well as for qualitative visual studies of pharmacokinetics.

  18. Effect of storage method on spore viability in five globally threatened fern species.

    Science.gov (United States)

    Quintanilla, Luis G; Amigo, Javier; Pangua, Emilia; Pajarón, Santiago

    2002-10-01

    Spore germination of five globally threatened fern species [Culcita macrocarpa C. Presl, Dryopteris aemula (Aiton) O. Kuntze, D. corleyi Fraser-Jenkins, D. guanchica Gibby and Jermy and Woodwardia radicans (L.) Sm.] was determined after 1, 6 or 12 months of storage in glass vials (dry storage) or on agar (wet storage) at -20, 5 or 20 degrees C. In all species, storage technique, storage temperature and the technique-temperature interaction all had a significant effect on germination percentage. In most cases, the germination percentage was best maintained by wet storage at 5 or 20 degrees C. In the case of the hygrophilous species C. macrocarpa and W. radicans, 6 or 12 months' dry storage killed most spores. Only Woodwardia radicans germinated in the dark during wet storage at 20 degrees C. Wet storage at 5 degrees C prevented dark germination, and reduced bacterial and fungal contamination. Wet storage at -20 degrees C killed all or most spores in all species. In the three Dryopteris species, the differences among the storage conditions tested were smaller than in C. macrocarpa and W. radicans, and the decline in spore viability during storage was less marked, with high germination percentages being observed after 12 months of dry storage at all three temperatures. Dry storage, which has lower preparation time and space requirements than wet storage, was generally more effective at the lower temperatures (-20 or 5 degrees C). PMID:12324269

  19. Monitoring the viability of citrus rootstocks seeds stored under refrigeration

    Directory of Open Access Journals (Sweden)

    Sérgio Alves de Carvalho

    2013-03-01

    Full Text Available The citrus nursery tree is produced through the bud grafting process, in which rootstock is usually grown from seed germination. The objective of this research was to evaluate, in two dissimilar environmental conditions, the viability and polyembryony expression of five citrus rootstocks seeds stored in different periods under refrigeration. The rootstock varieties evaluated were: Rangpur lime (Citrus limonia Osb. cv. Limeira, Trifoliate orange (Poncirus trifoliata Raf. cv. Limeira, Citrumelo (P. trifoliata x C. paradisi Macf. cv. Swingle, Sunki mandarin (C. sunki Hort. ex Tanaka and Volkamer lemon (C. volkameriana Ten. & Pasq. cv. Catania 2. The experimental design was the randomized blocks in a 11 x 5 x 2 factorial scheme, evaluating from time zero to the tenth month of storage, the five varieties of rootstock in two environments: germination and growth B.O.D type chamber (Biological Oxygen Demand - Eletrolab Brand Model FC 122 at 25 °C; and greenhouse seedbed with partial temperature control (22 °C to 36 °C and humidity control (75-85%. The plot had 24 seeds in four replicates, using trays with substrate in greenhouse and Petri dishes with filter paper in B.O.D. chamber. The seed germination rate and polyembryony expression were evaluated monthly. It was concluded that Trifoliate and Citrumelo Swingle seeds can be stored for up to seven months, while Volkamer lemon, Rangpur lime and Sunki seeds can be stored for up to ten months. The polyembryony expression rate was slightly higher when measured in greenhouse than in B.O.D. chamber and remained stable in both environments until the seventh month, from which dropped sharply. Citrumelo Swingle seeds expressed the highest polyembryony rate (18.8%, followed by Rangpur lime and Volkamer lemon (average value of 13.7%, Sunki (9.4% and Trifoliate (3.2%. Despite some differences among varieties, the viability of rootstock stored seeds can be monitored either in the greenhouse or in B

  20. Determination of viability of preserved skin in low temperature

    International Nuclear Information System (INIS)

    The skin from fresh human cadavers was stored in 4-18 degree C refrigerator. Before it was grafted for treatment of burn patients, it was quickly put into 40 degree C water and bring back to a former condition. The survival rate of skin was related with time and temperature of store. We used oxygen consumption to observe the change of viability of preserved skin. Oxygen consumption of skin was observed with apparatus made in the 304th Hospital of Peoples Liberation Army. The operating temperature was 5 - 45 degree C. Determination range was 0 - 199 mm Hg, resolving power of digital display was I mm Hg, instrumental error < 0.5 s'. Fresh human cadavers skin was made into 0.3 - 0.4 mm thick piece. Cleaned with NaCl 0.9% for three time. Then it was kept in neomycin solution for fifteen minutes. Then cut into 0.5 x 0.5 cm slices and stored in neomycin (2mg/ml). The skin was stored in 4 degree C refrigerator for five different periods (1, 2, 3, 5 and 7 days). Then the Oxygen consumption was determined immediately. The oxygen consumption was also determined before and after it was stored for 24 hours. After the skin was stored in 4 and -18 degree C for 24 hours the oxygen consumption was determined immediately. The prepared skin, which was stored in ordinary refrigerator, was useful and simple. The preserved skin was grafted onto the bum patient and survival rate was high and in short time. But the result showed the viability of preserved skin reduced with time. The result showed that the oxygen consumption of skin, which was stored at 4 degree C, on the fifth day was 62.23% and on day 7 was 30.5%. The study showed that the preserved skin which was stored at 4 degree C for five days was better while the vitality of skin evidently reduced after seven days and the survival rate was low. The oxygen consumption of preserved skin that was stored in -18 degree C refrigerator for 24 hours was 100%. But in 4 degree C refrigerator it was 89.1%. The result showed that the

  1. Essential role of the N-terminal region of TFII-I in viability and behavior

    Directory of Open Access Journals (Sweden)

    Sousa Nuno

    2010-04-01

    Full Text Available Abstract Background GTF2I codes for a general intrinsic transcription factor and calcium channel regulator TFII-I, with high and ubiquitous expression, and a strong candidate for involvement in the morphological and neuro-developmental anomalies of the Williams-Beuren syndrome (WBS. WBS is a genetic disorder due to a recurring deletion of about 1,55-1,83 Mb containing 25-28 genes in chromosome band 7q11.23 including GTF2I. Completed homozygous loss of either the Gtf2i or Gtf2ird1 function in mice provided additional evidence for the involvement of both genes in the craniofacial and cognitive phenotype. Unfortunately nothing is now about the behavioral characterization of heterozygous mice. Methods By gene targeting we have generated a mutant mice with a deletion of the first 140 amino-acids of TFII-I. mRNA and protein expression analysis were used to document the effect of the study deletion. We performed behavioral characterization of heterozygous mutant mice to document in vivo implications of TFII-I in the cognitive profile of WBS patients. Results Homozygous and heterozygous mutant mice exhibit craniofacial alterations, most clearly represented in homozygous condition. Behavioral test demonstrate that heterozygous mutant mice exhibit some neurobehavioral alterations and hyperacusis or odynacusis that could be associated with specific features of WBS phenotype. Homozygous mutant mice present highly compromised embryonic viability and fertility. Regarding cellular model, we documented a retarded growth in heterozygous MEFs respect to homozygous or wild-type MEFs. Conclusion Our data confirm that, although additive effects of haploinsufficiency at several genes may contribute to the full craniofacial or neurocognitive features of WBS, correct expression of GTF2I is one of the main players. In addition, these findings show that the deletion of the fist 140 amino-acids of TFII-I altered it correct function leading to a clear phenotype, at both

  2. Change in viability of C2C12 myoblasts under compression, shear and oxidative challenges.

    Science.gov (United States)

    Hong, Ye; Yao, Yifei; Wong, Singwan; Bian, Liming; Mak, Arthur F T

    2016-05-24

    Skeletal and epidermal loadings can damage muscle cells and contribute to the development of deep tissue injury (DTI) - a severe kind of pressure ulcers affecting many people with disability. Important predisposing factors include the multiaxial stress and strain fields in the internal tissues, particularly the vulnerable muscles around bony prominences. A careful study of the mechanical damage thresholds for muscle cell death is critical not only to the understanding of the formation of DTI, but also to the design of various body support surfaces for prevention. In this paper, we measured the mechanical damage thresholds of C2C12 myoblasts under prescribed compressive strains (15% and 30%) and shear strains (from 0% to 100%), and studied how oxidative stress, as caused potentially by reperfusion or inflammation, may affect such damage thresholds. A flat plate was used to apply a uniform compressive strain and a radially increasing shear strain on disks of Gelatin-methacrylate (GelMA) hydrogel with myoblasts encapsulated within. The percentages of cell death were estimated with propidium iodide (PI) and calcein AM staining. Results suggested that cell death depended on both the level and duration of the applied strain. There seemed to be a non-linear coupling between compression and shear. Muscle cells often need to function biomechanically in challenging oxidative environments. To study how oxidative stress may affect the mechanical damage thresholds of myoblasts, cell viability under compressive and shear strains was also studied after the cells were pre-treated for different durations (1h and 20h) with different concentrations (0.1mM and 0.5mM) of hydrogen peroxide (H2O2). Oxidative stress can either compromise or enhance the cellular resistance to shear damage, depending on the level and duration of the oxidative exposure. PMID:27017299

  3. A simple method to measure cell viability in proliferation and cytotoxicity assays

    Directory of Open Access Journals (Sweden)

    Ricardo Carneiro Borra

    2009-09-01

    Full Text Available Resazurin dye has been broadly used as indicator of cell viability in several types of assays for evaluation of the biocompatibility of medical and dental materials. Mitochondrial enzymes, as carriers of diaphorase activities, are probably responsible for the transference of electrons from NADPH + H+ to resazurin, which is reduced to resorufin. The level of reduction can be quantified by spectrophotometers since resazurin exhibits an absorption peak at 600 ηm and resorufin at 570 ηm wavelengths. However, the requirement of a spectrophotometer and specific filters for the quantification could be a barrier to many laboratories. Digital cameras containing red, green and blue filters, which allow the capture of red (600 to 700 ηm and green (500 to 600 ηm light wavelengths in ranges bordering on resazurin and resorufin absorption bands, could be used as an alternative method for the assessment of resazurin and resorufin concentrations. Thus, our aim was to develop a simple, cheap and precise method based on a digital CCD camera to measure the reduction of resazurin. We compared the capability of the CCD-based method to distinguish different concentrations of L929 and normal Human buccal fibroblast cell lines with that of a conventional microplate reader. The correlation was analyzed through the Pearson coefficient. The results showed a strong association between the measurements of the method developed here and those made with the microplate reader (r² = 0.996; p < 0.01 and with the cellular concentrations (r² = 0.965; p < 0.01. We concluded that the developed Colorimetric Quantification System based on CCD Images allowed rapid assessment of the cultured cell concentrations with simple equipment at a reduced cost.

  4. Aptamer–polymer functionalized silicon nanosubstrates for enhanced recovered circulating tumor cell viability and in vitro chemosensitivity testing

    Science.gov (United States)

    Shen, Qinglin; Peng, Caixia; Zhan, Yan; Fan, Liang; Wang, Mengyi; Zhou, Qing; Liu, Jue; Lv, Xiaojuan; Tang, Qiu; Li, Jun; Huang, Xiaodong; Xia, Jiahong

    2016-01-01

    Selection of the optimal chemotherapy regimen for an individual cancer patient is challenging. The existing chemosensitivity tests are costly, time-consuming, and not amenable to wide utilization within a clinic. This limitation might be addressed by the recently proposed use of circulating tumor cells (CTCs), which provide an opportunity to noninvasively monitor response to therapy. Over the past few decades, various techniques were developed to capture and recover CTCs, but these techniques were often limited by a capture and recovery performance tradeoff between high viability and high efficiency. In this work, we used anti-epithelial cell adhesion molecule coated aptamer–poly (N-isopropylacrylamide) functionalized silicon nanowire substrates to capture and release epithelial cell adhesion molecule-positive CTCs at 32°C and 4°C, respectively. Then, we applied the nuclease to digest the aptamer to release the captured CTCs (near or at the end of the polymer brush), which cannot be released by heating/cooling process. High viability and purity CTCs could be achieved by decreasing the heating/cooling cycles and enzymatic treatment rounds. Furthermore, the time-saving process is helpful to maintain the morphology and enhance vitality of the recovered CTCs and is beneficial to the subsequent cell culture in vitro. We validated the feasibility of chemosensitivity testing based on the recovered HCC827 cells using an adenosine triphosphate–tumor chemosensitivity assay, and the results suggested that our method can determine which agent and what concentration have the best chemosensitivity for the culturing recovered CTCs. So, the novel method capable of a highly effective capture and recovery of high viability CTCs will pave the way for chemosensitivity testing. PMID:27274239

  5. Aptamer-polymer functionalized silicon nanosubstrates for enhanced recovered circulating tumor cell viability and in vitro chemosensitivity testing.

    Science.gov (United States)

    Shen, Qinglin; Peng, Caixia; Zhan, Yan; Fan, Liang; Wang, Mengyi; Zhou, Qing; Liu, Jue; Lv, Xiaojuan; Tang, Qiu; Li, Jun; Huang, Xiaodong; Xia, Jiahong

    2016-01-01

    Selection of the optimal chemotherapy regimen for an individual cancer patient is challenging. The existing chemosensitivity tests are costly, time-consuming, and not amenable to wide utilization within a clinic. This limitation might be addressed by the recently proposed use of circulating tumor cells (CTCs), which provide an opportunity to noninvasively monitor response to therapy. Over the past few decades, various techniques were developed to capture and recover CTCs, but these techniques were often limited by a capture and recovery performance tradeoff between high viability and high efficiency. In this work, we used anti-epithelial cell adhesion molecule coated aptamer-poly (N-isopropylacrylamide) functionalized silicon nanowire substrates to capture and release epithelial cell adhesion molecule-positive CTCs at 32°C and 4°C, respectively. Then, we applied the nuclease to digest the aptamer to release the captured CTCs (near or at the end of the polymer brush), which cannot be released by heating/cooling process. High viability and purity CTCs could be achieved by decreasing the heating/cooling cycles and enzymatic treatment rounds. Furthermore, the time-saving process is helpful to maintain the morphology and enhance vitality of the recovered CTCs and is beneficial to the subsequent cell culture in vitro. We validated the feasibility of chemosensitivity testing based on the recovered HCC827 cells using an adenosine triphosphate-tumor chemosensitivity assay, and the results suggested that our method can determine which agent and what concentration have the best chemosensitivity for the culturing recovered CTCs. So, the novel method capable of a highly effective capture and recovery of high viability CTCs will pave the way for chemosensitivity testing. PMID:27274239

  6. Viability and DNA fragmentation of rainbow trout embryos (Oncorhynchus mykiss) obtained from eggs stored at 4 °C.

    Science.gov (United States)

    Ubilla, A; Valdebenito, I; Árias, M E; Risopatrón, J

    2016-05-01

    In vitro storage of salmonid eggs leads to aging of the cells causing a decline in quality and reducing their capacity to develop and produce embryos. The quality of salmonid embryos is assessed by morphologic analyses; however, data on the application of biomarkers to determine the cell viability and DNA integrity of embryos in these species are limited. The aim of this study was to evaluate the effect on embryo development, viability and DNA fragmentation in the embryonic cells of in vitro storage time at 4 °C of rainbow trout (Oncorhynchus mykiss) eggs. The embryos were obtained by IVF from eggs stored for 0 (control), 48, and 96 hours at 4 °C. At 72 hours after fertilization, dechorionated embryos were examined to determine percentages of developed embryos (embryos with normal cell division morphology), viability (LIVE/DEAD sperm viability kit), and DNA integrity (terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay). The percentage of developing embryos decreased (P < 0.05) with storage time of the eggs (95.10 ± 2.55; 88.14 ± 4.50; 79.99 ± 6.60 for 0, 48, and 96 hours, respectively). Similarly, cell viability decreased (P < 0.05; 96.07 ± 7.15; 80.42 ± 8.55; 77.47 ± 7.88 for 0, 48, and 96 hours, respectively), and an increase (P < 0.05) in DNA fragmentation in the embryos was observed at 96-hour storage. A positive correlation was found between cell DNA fragmentation and storage time (r = 0.8173; P < 0.0001). The results revealed that terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay technique is reliable mean to assess the state of the DNA in salmonid embryos and that in vitro eggs storage for 96h reduces embryo development and cell DNA integrity. DNA integrity evaluation constitutes a biomarker of the quality of the ova and resulting embryos so as to predict their capacity to produce good-quality embryos in salmonids, particularly under culture conditions. PMID:26893166

  7. Demonstrating the Viability and Affordability of Nuclear Surface Power Systems

    Science.gov (United States)

    Vandyke, Melissa K.

    2006-01-01

    A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.

  8. Viability of biocompatible and biodegradable seeds production with incorporated radionuclides

    International Nuclear Information System (INIS)

    The present work aims the development of radioactive seeds, biocompatible and biodegradable, with the objective of adding options in the cancer treatment. The work focus on the production of seeds biodegradable that incorporate radioisotopes with half life inferior than the degradation time of the material. The idea of producing devices with biodegradable materials impregnated with radioisotopes of short half life will offer new possibilities in the cancer treatment, since they can be used following the same procedures of the permanent interstitial brachytherapy, but using degradable materials compatible with the physiological environment. It will be discussed in particular the possible application of these seeds in the treatment of prostate cancer. A review of the subject and a preliminary evaluation of the viability of production of the seeds will be presented. The method of production of the seeds is based on the incorporation of Iodine and Samarium in glass matrixes obtained by sol-gel processing. X-ray fluorescence was done in the samples produced and the incorporation of Iodine and Samarium atoms was confirmed. (author)

  9. Viability of Variable Generalised Chaplygin gas - a thermodynamical approach

    CERN Document Server

    Panigrahi, D

    2016-01-01

    The viability of the variable generalised Chaplygin gas (VGCG) model is analysed from the standpoint of its thermodynamical stability criteria with the help of an equation of state, $P = - \\frac{B}{\\rho^{\\alpha}}$, where $B = B_{0}V^{-\\frac{n}{3}}$. Here $B_{0}$ is assumed to be a positive universal constant, $n$ is a constant parameter and $V$ is the volume of the cosmic fluid. We get the interesting result that if the well-known stability conditions of a fluid is adhered to, the values of $n$ are constrained to be negative definite to make $ \\left(\\frac{\\partial P}{\\partial V}\\right)_{S} <0$ \\& $ \\left(\\frac{\\partial P}{\\partial V}\\right)_{T} <0$ throughout the evolution. Moreover the positivity of thermal capacity at constant volume $c_{V}$ as also the validity of the third law of thermodynamics are ensured in this case. For the particular case $n = 0$ the effective equation of state reduces to $\\Lambda$CDM model in the late stage of the universe while for $n <0$ it mimics a phantom-like cosmo...

  10. Nuclear hydrogen: An assessment of product flexibility and market viability

    International Nuclear Information System (INIS)

    Nuclear energy has the potential to play an important role in the future energy system as a large-scale source of hydrogen without greenhouse gas emissions. Thus far, economic studies of nuclear hydrogen tend to focus on the levelized cost of hydrogen without accounting for the risks and uncertainties that potential investors would face. We present a financial model based on real options theory to assess the profitability of different nuclear hydrogen production technologies in evolving electricity and hydrogen markets. The model uses Monte Carlo simulations to represent uncertainty in future hydrogen and electricity prices. It computes the expected value and the distribution of discounted profits from nuclear hydrogen production plants. Moreover, the model quantifies the value of the option to switch between hydrogen and electricity production, depending on what is more profitable to sell. We use the model to analyze the market viability of four potential nuclear hydrogen technologies and conclude that flexibility in output product is likely to add significant economic value for an investor in nuclear hydrogen. This should be taken into account in the development phase of nuclear hydrogen technologies

  11. On the viability of quintessential inflationary models from observational data

    CERN Document Server

    de Haro, Jaume

    2016-01-01

    Assuming that primordial density fluctuationas are nearly Gaussian, from a frequentist viewpoint, the two-dimensional marginalized joint coincidence contour in the plane $(n_s,r)$ (being $n_s$ the spectral index and $r$ the ratio of tensor to scalar perturbations), without the presence of running is usually used to test the viability of the inflationary models. The models that provide, between $50$ and $60$ e-folds, a curve in that plane, which lies outside the $95.5 \\%$ C.L are ruled out. I will basically argue that the this low number of e-folds is unjustified, and that models leading to a theoretical value of the running different from zero must be checked with observational data allowing the running. When both prescriptions are taken into account, dealing in the context of quintessential inflation, i.e. when the potential is a combination of an inflationary with a quintessential one that leads to a deflationary regime, inflationary models such as the quartic or the Higgs potential are allowed.

  12. Using Bayesian Population Viability Analysis to Define Relevant Conservation Objectives.

    Directory of Open Access Journals (Sweden)

    Adam W Green

    Full Text Available Adaptive management provides a useful framework for managing natural resources in the face of uncertainty. An important component of adaptive management is identifying clear, measurable conservation objectives that reflect the desired outcomes of stakeholders. A common objective is to have a sustainable population, or metapopulation, but it can be difficult to quantify a threshold above which such a population is likely to persist. We performed a Bayesian metapopulation viability analysis (BMPVA using a dynamic occupancy model to quantify the characteristics of two wood frog (Lithobates sylvatica metapopulations resulting in sustainable populations, and we demonstrate how the results could be used to define meaningful objectives that serve as the basis of adaptive management. We explored scenarios involving metapopulations with different numbers of patches (pools using estimates of breeding occurrence and successful metamorphosis from two study areas to estimate the probability of quasi-extinction and calculate the proportion of vernal pools producing metamorphs. Our results suggest that ≥50 pools are required to ensure long-term persistence with approximately 16% of pools producing metamorphs in stable metapopulations. We demonstrate one way to incorporate the BMPVA results into a utility function that balances the trade-offs between ecological and financial objectives, which can be used in an adaptive management framework to make optimal, transparent decisions. Our approach provides a framework for using a standard method (i.e., PVA and available information to inform a formal decision process to determine optimal and timely management policies.

  13. Using Bayesian Population Viability Analysis to Define Relevant Conservation Objectives.

    Science.gov (United States)

    Green, Adam W; Bailey, Larissa L

    2015-01-01

    Adaptive management provides a useful framework for managing natural resources in the face of uncertainty. An important component of adaptive management is identifying clear, measurable conservation objectives that reflect the desired outcomes of stakeholders. A common objective is to have a sustainable population, or metapopulation, but it can be difficult to quantify a threshold above which such a population is likely to persist. We performed a Bayesian metapopulation viability analysis (BMPVA) using a dynamic occupancy model to quantify the characteristics of two wood frog (Lithobates sylvatica) metapopulations resulting in sustainable populations, and we demonstrate how the results could be used to define meaningful objectives that serve as the basis of adaptive management. We explored scenarios involving metapopulations with different numbers of patches (pools) using estimates of breeding occurrence and successful metamorphosis from two study areas to estimate the probability of quasi-extinction and calculate the proportion of vernal pools producing metamorphs. Our results suggest that ≥50 pools are required to ensure long-term persistence with approximately 16% of pools producing metamorphs in stable metapopulations. We demonstrate one way to incorporate the BMPVA results into a utility function that balances the trade-offs between ecological and financial objectives, which can be used in an adaptive management framework to make optimal, transparent decisions. Our approach provides a framework for using a standard method (i.e., PVA) and available information to inform a formal decision process to determine optimal and timely management policies. PMID:26658734

  14. A Method for Quantitative Determination of Biofilm Viability

    Directory of Open Access Journals (Sweden)

    Maria Strømme

    2012-06-01

    Full Text Available In this study we present a scheme for quantitative determination of biofilm viability offering significant improvement over existing methods with metabolic assays. Existing metabolic assays for quantifying viable bacteria in biofilms usually utilize calibration curves derived from planktonic bacteria, which can introduce large errors due to significant differences in the metabolic and/or growth rates of biofilm bacteria in the assay media compared to their planktonic counterparts. In the presented method we derive the specific growth rate of Streptococcus mutans bacteria biofilm from a series of metabolic assays using the pH indicator phenol red, and show that this information could be used to more accurately quantify the relative number of viable bacteria in a biofilm. We found that the specific growth rate of S. mutans in biofilm mode of growth was 0.70 h−1, compared to 1.09 h−1 in planktonic growth. This method should be applicable to other bacteria types, as well as other metabolic assays, and, for example, to quantify the effect of antibacterial treatments or the performance of bactericidal implant surfaces.

  15. ANALYSIS OF THE ENVIRONMENTAL VIABILITY OF AGRICULTURAL PRACTICES ADOPTED

    Directory of Open Access Journals (Sweden)

    Rosângela Alves de Souto

    2011-04-01

    Full Text Available The agroecology represents a new focus to the study and management of alternative agricultural systems, andhas offered a theoretical framework whose purpose is to analyze the agricultural processes widely, in otherwords, see agriculture from a systemic approach, highlighting the sustainability inherent to the natural cycles andbiological interactions. Alternative practices of agricultural management has been recently adopted by familyfarmers in Lagoa Seca city - PB, aiming to protect the environment from the intense degrading actions of theconventional agriculture, as well as to improve the farmers life quality. This way, this study aims to identify theagroecological practices which have been adopted by the family farmers in different transition stages,highlighting the local experiences which were experienced and its environmental viability to the region,considering the agroecology principles as a steering mechanism and determinant for such analysis. Therefore,this study has been performed through a based questionnaire, observation in loco and the application of a semistructured interview. The obtained data through this research have revealed that the adopted practices byagroecological farmers from Lagoa Seca have provided the soil, water and local biota conservation, ensuring themaintenance in long term of these natural resources to the current and future generations, besides to promote anincrease in the life quality of the farmers and their families.

  16. Chemicals and lemon essential oil effect on Alicyclobacillus acidoterrestris viability

    Directory of Open Access Journals (Sweden)

    Maria Cristina Maldonado

    2013-12-01

    Full Text Available Alicyclobacillus acidoterrestris is considered to be one of the important target microorganisms in the quality control of acidic canned foods. There is an urgent need to develop a suitable method for inhibiting or controlling the germination and outgrowth of A.acidoterrestris in acidic drinks. The aim of this work was to evaluate the chemicals used in the lemon industry (sodium benzoate, potassium sorbate, and lemon essential oil as a natural compound, against a strain of A.acidoterrestris in MEB medium and in lemon juice concentrate. The results pointed out that sodium benzoate (500-1000-2000 ppm and lemon essential oil (0.08- 0.12- 0.16% completely inhibited the germination of A. acidoterrestris spores in MEB medium and LJC for 11 days. Potassium sorbate (600-1200 ppm was more effective to inhibit the growth of the microbial target in lemon juice than in MEB medium. The effect of sodium benzoate, potassium sorbate and essential oil was sporostatic in MEB and LJC as they did not affect spore viability.

  17. Predictive accuracy of population viability analysis in conservation biology.

    Science.gov (United States)

    Brook, B W; O'Grady, J J; Chapman, A P; Burgman, M A; Akçakaya, H R; Frankham, R

    2000-03-23

    Population viability analysis (PVA) is widely applied in conservation biology to predict extinction risks for threatened species and to compare alternative options for their management. It can also be used as a basis for listing species as endangered under World Conservation Union criteria. However, there is considerable scepticism regarding the predictive accuracy of PVA, mainly because of a lack of validation in real systems. Here we conducted a retrospective test of PVA based on 21 long-term ecological studies--the first comprehensive and replicated evaluation of the predictive powers of PVA. Parameters were estimated from the first half of each data set and the second half was used to evaluate the performance of the model. Contrary to recent criticisms, we found that PVA predictions were surprisingly accurate. The risk of population decline closely matched observed outcomes, there was no significant bias, and population size projections did not differ significantly from reality. Furthermore, the predictions of the five PVA software packages were highly concordant. We conclude that PVA is a valid and sufficiently accurate tool for categorizing and managing endangered species. PMID:10746724

  18. Viability of primary cultured retinal neurons in a hyperglycemic condition

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Xueliang Xu; Renhong Tang; Guoping Chen; Xiang Lei; Limo Gao; Wenjie Li; Yu Chen

    2013-01-01

    using 0.05% trypsin digestion. The cell suspension was incubated in Dulbecco's modified Eagle's 79.86% of primary cultured retinal cells were positive and immunocytochemical staining showed that the purity of anti-neurofilament heavy chain antibody-positive cells was 71.53%, indicating that the primary culture system of rat retinal neurons was a reliable and stable cell system with neurons as the predominant cell type. The primary cultured retinal neurons were further treated with 0, 5.5, 15, 25, and 35 mM glucose for 24, 48, and 72 hours. The thiazolyl blue tetrazolium bromide test and flow cytometry showed that with increasing glucose concentration and treatment duration, the viability of retinal neurons was reduced, and apoptosis increased. In particular, 35 mM glucose exhibited the most significant effect at 72 hours. Thus, rat retinal neurons treated with 35 mM glucose for 72 hours can be used to simulate a neuronal model of diabetic retinopathy.

  19. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  20. Experimental techniques; Techniques experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Roussel-Chomaz, P. [GANIL CNRS/IN2P3, CEA/DSM, 14 - Caen (France)

    2007-07-01

    This lecture presents the experimental techniques, developed in the last 10 or 15 years, in order to perform a new class of experiments with exotic nuclei, where the reactions induced by these nuclei allow to get information on their structure. A brief review of the secondary beams production methods will be given, with some examples of facilities in operation or under project. The important developments performed recently on cryogenic targets will be presented. The different detection systems will be reviewed, both the beam detectors before the targets, and the many kind of detectors necessary to detect all outgoing particles after the reaction: magnetic spectrometer for the heavy fragment, detection systems for the target recoil nucleus, {gamma} detectors. Finally, several typical examples of experiments will be detailed, in order to illustrate the use of each detector either alone, or in coincidence with others. (author)

  1. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability.

    Science.gov (United States)

    Kořený, Luděk; Sobotka, Roman; Kovářová, Julie; Gnipová, Anna; Flegontov, Pavel; Horváth, Anton; Oborník, Miroslav; Ayala, Francisco J; Lukeš, Julius

    2012-03-01

    Heme is an iron-coordinated porphyrin that is universally essential as a protein cofactor for fundamental cellular processes, such as electron transport in the respiratory chain, oxidative stress response, or redox reactions in various metabolic pathways. Parasitic kinetoplastid flagellates represent a rare example of organisms that depend on oxidative metabolism but are heme auxotrophs. Here, we show that heme is fully dispensable for the survival of Phytomonas serpens, a plant parasite. Seeking to understand the metabolism of this heme-free eukaryote, we searched for heme-containing proteins in its de novo sequenced genome and examined several cellular processes for which heme has so far been considered indispensable. We found that P. serpens lacks most of the known hemoproteins and does not require heme for electron transport in the respiratory chain, protection against oxidative stress, or desaturation of fatty acids. Although heme is still required for the synthesis of ergosterol, its precursor, lanosterol, is instead incorporated into the membranes of P. serpens grown in the absence of heme. In conclusion, P. serpens is a flagellate with unique metabolic adaptations that allow it to bypass all requirements for heme. PMID:22355128

  2. Game of Life Cellular Automata

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  3. Cellular automata a parallel model

    CERN Document Server

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  4. Mathematical Physics of Cellular Automata

    CERN Document Server

    Garcia-Morales, Vladimir

    2012-01-01

    A universal map is derived for all deterministic 1D cellular automata (CA) containing no freely adjustable parameters. The map can be extended to an arbitrary number of dimensions and topologies and its invariances allow to classify all CA rules into equivalence classes. Complexity in 1D systems is then shown to emerge from the weak symmetry breaking of the addition modulo an integer number p. The latter symmetry is possessed by certain rules that produce Pascal simplices in their time evolution. These results elucidate Wolfram's classification of CA dynamics.

  5. Estimation in Cellular Radio Systems

    OpenAIRE

    Blom, Jonas; Gunnarsson, Fredrik; Gustafsson, Fredrik

    1999-01-01

    The problem to track time-varying parameters in cellular radio systems is studied, and the focus is on estimation based only on the signals that are readily available. Previous work have demonstrated very good performance, but were relying on analog measurement that are not available. Most of the information is lost due to quantization and sampling at a rate that might be as low as 2 Hz (GSM case). For that matter a maximum likelihood estimator have been designed and exemplified in the case o...

  6. 'Biomoleculas': cellular metabolism didactic software

    International Nuclear Information System (INIS)

    'Biomoleculas' is a software that deals with topics such as the digestion, cellular metabolism and excretion of nutrients. It is a pleasant, simple and didactic guide, made by and for students. In this program, each biomolecule (carbohydrates, lipids and proteins) is accompanied until its degradation and assimilation by crossing and interrelating the different metabolic channels to finally show the destination of the different metabolites formed and the way in which these are excreted. It is used at present as a teaching-learning process tool by the chair of Physiology and Biophysics at the Facultad de Ingenieria - Universidad Nacional de Entre Rios

  7. Protein accounting in the cellular economy

    Science.gov (United States)

    Vázquez-Laslop, Nora; Mankin, Alexander S.

    2014-01-01

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. (2014) gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the needs. PMID:24766801

  8. Cellular Functions of Transient Receptor Potential channels

    OpenAIRE

    Dadon, Daniela; Minke, Baruch

    2010-01-01

    Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca2+. In this review we focus on the roles of these channels in: i) cell death ii) proliferation and differentiation and iii) synaptic vesicle release.

  9. A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification

    Directory of Open Access Journals (Sweden)

    Friehs Karl

    2008-10-01

    Full Text Available Abstract Background Cell viability is one of the basic properties indicating the physiological state of the cell, thus, it has long been one of the major considerations in biotechnological applications. Conventional methods for extracting information about cell viability usually need reagents to be applied on the targeted cells. These reagent-based techniques are reliable and versatile, however, some of them might be invasive and even toxic to the target cells. In support of automated noninvasive assessment of cell viability, a machine vision system has been developed. Results This system is based on supervised learning technique. It learns from images of certain kinds of cell populations and trains some classifiers. These trained classifiers are then employed to evaluate the images of given cell populations obtained via dark field microscopy. Wavelet decomposition is performed on the cell images. Energy and entropy are computed for each wavelet subimage as features. A feature selection algorithm is implemented to achieve better performance. Correlation between the results from the machine vision system and commonly accepted gold standards becomes stronger if wavelet features are utilized. The best performance is achieved with a selected subset of wavelet features. Conclusion The machine vision system based on dark field microscopy in conjugation with supervised machine learning and wavelet feature selection automates the cell viability assessment, and yields comparable results to commonly accepted methods. Wavelet features are found to be suitable to describe the discriminative properties of the live and dead cells in viability classification. According to the analysis, live cells exhibit morphologically more details and are intracellularly more organized than dead ones, which display more homogeneous and diffuse gray values throughout the cells. Feature selection increases the system's performance. The reason lies in the fact that feature

  10. Simulation Modeling by Classification of Problems: A Case of Cellular Manufacturing

    Science.gov (United States)

    Afiqah, K. N.; Mahayuddin, Z. R.

    2016-02-01

    Cellular manufacturing provides good solution approach to manufacturing area by applying Group Technology concept. The evolution of cellular manufacturing can enhance performance of the cell and to increase the quality of the product manufactured but it triggers other problem. Generally, this paper highlights factors and problems which emerge commonly in cellular manufacturing. The aim of the research is to develop a thorough understanding of common problems in cellular manufacturing. A part from that, in order to find a solution to the problems exist using simulation technique, this classification framework is very useful to be adapted during model building. Biology evolution tool was used in the research in order to classify the problems emerge. The result reveals 22 problems and 25 factors using cladistic technique. In this research, the expected result is the cladogram established based on the problems in cellular manufacturing gathered.

  11. Recognition of chemical compounds in contaminated water using time-dependent multiple dose cellular responses

    International Nuclear Information System (INIS)

    Highlights: ► Dose- and time-dependent cellular responses are used to evaluate the cytotoxicity. ► The CI can reflect the cell number, cell viability, morphological change, etc. ► The CSVID can capture the dynamic information after cells exposed to toxins. ► The multi-class classification can distinguish the compounds using multi-doses. ► The majority vote strategy (fingerprint) can improve the classification accuracy. - Abstract: An early determination of toxicant compounds of water contaminations can gain critical time to protect citizens’ health and save substantial amounts of medical costs. To determine toxins in real time, a multi-dose classification algorithm using cellular state variable identification (CSVID) is developed in this paper. First, the dynamic cytotoxicity response profiles of living cells are measured using a real-time cell electronic sensing (RT-CES) system. Changes in cell number expressed as cell index (CI) are recorded on-line as time series. Then CSVID, which reflects the cell killing, cell lysis and certain cellular pathological changes, is extracted from those dynamic cellular responses. Finally, a support vector machine (SVM) algorithm based on CSVID is employed to classify chemical compounds and determine their analogous cellular response pathway. In order to increase the classification accuracy, a majority vote of the class labels is also proposed. Several validation studies demonstrate that CSVID-based classification algorithm has great potential in distinguishing the cytotoxicity response of the cells in the presence of toxins.

  12. Cellular automata modelling of biomolecular networks dynamics.

    Science.gov (United States)

    Bonchev, D; Thomas, S; Apte, A; Kier, L B

    2010-01-01

    The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk. PMID:20373215

  13. Freely Suspended Cellular “Backpacks” Lead to Cell Aggregate Self-Assembly

    OpenAIRE

    Swiston, Albert J., Jr.; Gilbert, Jonathan B.; Irvine, Darrell J.; Cohen, Robert E; Rubner, Michael F.

    2010-01-01

    Cellular “backpacks” are a new type of anisotropic, nanoscale thickness microparticle that may be attached to the surface of living cells creating a “bio-hybrid” material. Previous work has shown that these backpacks do not impair cell viability or native functions such as migration in a B and T cell line, respectively. In the current work, we show that backpacks, when added to a cell suspension, assemble cells into aggregates of reproducible size. We investigate the efficiency of backpack−ce...

  14. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, M P; Guo, S; Kalinin, S V; Jesse, S [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 (United States); Reukov, V V; Thompson, G L; Vertegel, A A, E-mail: sergei2@ornl.go [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)

    2009-10-07

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  15. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting

    OpenAIRE

    E.B Dolan; Haugh, M. G.; Tallon, D.; Casey, C.; McNamara, L. M.

    2012-01-01

    Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 ...

  16. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Science.gov (United States)

    Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  17. 45 CFR 1302.20 - Grantee to show both legal status and financial viability.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Grantee to show both legal status and financial viability. 1302.20 Section 1302.20 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE... both legal status and financial viability. (a) Upon the occurrence of a change in the legal...

  18. 30 CFR 203.85 - What is in an economic viability and relief justification report?

    Science.gov (United States)

    2010-07-01

    ... justification report? 203.85 Section 203.85 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Required Reports § 203.85 What is in an economic viability and relief justification report? This report... economic viability and relief justification report must contain the following items for an oil and...

  19. Universal map for cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    García-Morales, V., E-mail: vmorales@ph.tum.de [Institute for Advanced Study – Technische Universität München, Lichtenbergstr. 2a, D-85748 Garching (Germany)

    2012-08-20

    A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived. -- Highlights: ► A universal map is derived for all deterministic 1D cellular automata (CA). ► The map is generalized to 2D for Von Neumann, Moore and hexagonal neighborhoods. ► A map for all Wolfram's 256 elementary CAs is derived. ► A map for Conway's “Game of Life” is obtained.

  20. Cellular Therapy for Heart Failure.

    Science.gov (United States)

    Psaltis, Peter J; Schwarz, Nisha; Toledo-Flores, Deborah; Nicholls, Stephen J

    2016-01-01

    The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management. PMID:27280304

  1. Energy management in wireless cellular and ad-hoc networks

    CERN Document Server

    Imran, Muhammad; Qaraqe, Khalid; Alouini, Mohamed-Slim; Vasilakos, Athanasios

    2016-01-01

    This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services. .

  2. Economic viability of innovative nuclear reactor and fuel cycle technologies

    International Nuclear Information System (INIS)

    Full text: Nuclear power has established its position as one of the most stable electricity supply sources in many countries in the world, supplying about 17% of total electricity generated. However, in order to keep that position, there are two important challenges that nuclear energy will face in the coming decades. They are: competition, and social/political acceptance (including non-proliferation and terrorism). There is an increasing concern that existing nuclear technologies may not be able to overcome such tough challenges. It is expected that innovative technologies can be a part of the solutions to overcome such challenges. This paper focuses on economic viability of innovative nuclear reactor and its associated fuel cycle technologies. First, it is important to consider the long term energy paths and potential role of nuclear power under different scenarios. We applied global energy optimization model based on IPCC scenarios. Then, we look at Japan, where electricity market is being liberalized, in order to explore how liberalization will have influence economic viability of nuclear power. The following are our basic conclusions: CO2 constraints as well as power generation cost competitiveness could affect future growth of nuclear power quite significantly. Current trend suggests that nuclear power would not grow much without CO2 constraints, or even face minus growth if its power generation cost became higher. On the other hand, cost reduction with CO2 constraints could accelerate future expansion of nuclear power quite significantly; In addition to life-long average generation cost, other investment criteria (such as asset productivity) may become critically important under the liberalized market. Under the liberalized electricity market, short term investment criteria could become more important than 30 year life time average cost. This suggests that small initial investment is more acceptable than large capital investment. Advanced nuclear reactor

  3. Estrogen Enhances the Cell Viability and Motility of Breast Cancer Cells through the ERα-ΔNp63-Integrin β4 Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Jar-Yi Ho

    Full Text Available Estrogen induces ERα-positive breast cancer aggressiveness via the promotion of cell proliferation and survival, the epithelial-mesenchymal transition, and stem-like properties. Integrin β4 signaling has been implicated in estrogen/ERα-induced tumorigenicity and anti-apoptosis; however, this signaling cascade poorly understood. ΔNp63, an N-terminally truncated isoform of the p63 transcription factor, functions as a transcription factor of integrinβ4 and therefore regulates cellular adhesion and survival. Therefore, the aim of the present study was to investigate the estrogen-induced interaction between ERα, ΔNp63 and integrin β4 in breast cancer cells. In ERα-positive MCF-7 cells, estrogen activated ERα transcription, which induced ΔNp63 expression. And ΔNp63 subsequently induced integrin β4 expression, which resulted in AKT phosphorylation and enhanced cell viability and motility. Conversely, there was no inductive effect of estrogen on ΔNp63-integrinβ4-AKT signaling or on cell viability and motility in ERα-negative MDA-MB-231 cells. ΔNp63 knockdown abolishes these estrogen-induced effects and reduces cell viability and motility in MCF-7 cells. Nevertheless, ΔNp63 knockdown also inhibited cell migration in MDA-MB-231 cells through reducing integrin β4 expression and AKT phosphorylation. In conclusion, estrogen enhances ERα-positive breast cancer cell viability and motility through activating the ERα-ΔNp63-integrin β4 signaling pathway to induce AKT phosphorylated activation. Those findings should be useful to elucidate the crosstalk between estrogen/ER signaling and ΔNp63 signaling and provide novel insights into the effects of estrogen on breast cancer progression.

  4. Impedance microflow cytometry for viability studies of microorganisms

    Science.gov (United States)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  5. Important population viability analysis parameters for giant pandas (Aliuropoda melanoleuca)

    Institute of Scientific and Technical Information of China (English)

    Minghao GONG; Yanling SONG; Zhisong YANG; Chen LIN

    2012-01-01

    Population viability analysis (PVA) is a tool to evaluate the risk of extinction for endangered species and aid conservation decision-making.The quality of PVA output is dependent on parameters related to population dynamics and life-history; however,it has been difficult to collect this information for the giant panda (Aliuropoda melanoleuca),a rare and endangered mammal native to China,confined to some 30 fragmented habitat patches.Since giant pandas are long-lived,mature late,have lower reproductive rates,and show little sexual dimorphism,obtaining data to perform adequate PVA has been difficult.Here,we develop a parameter sensitivity index by modeling the dynamics of six giant panda populations in the Minshan Mountains,in order to determine the parameters most influential to giant panda populations.Our data shows that the giant panda populations are most sensitive to changes in four female parameters:initial breeding age,reproductive rate,mortality rate between age 0 and 1,and mortality rate of adults.The parameter sensitivity index strongly correlated with initial population size,as smaller populations were more sensitive to changes in these four variables.This model suggests that demographic parameters of females have more influence on the results of PVA,indicating that females may play a more important role in giant panda population dynamics than males.Consequently,reintroduction of female individuals to a small giant panda population should be a high priority for conservation efforts.Our findings form a technical basis for the coming program of giant panda reintroduction,and inform which parameters are crucial to successfully and feasibly monitoring wild giant panda populations.

  6. Prospective evaluation of femoral head viability following femoral neck fracture

    International Nuclear Information System (INIS)

    The bone scans of 33 patients (pts) with recent subcapital fractures (fx) of the femur were evaluated prospectively to determine their value in predicting femoral head visability. Each of the 33 pts (ll men, 22 women, age range 30-92) had a pre-operative bone scan within 72 hrs of the fx (23 pts within 24 hrs). Anterior and posterior planar views of both hips and pinhole views (50% of pts) were obtained 2 hrs after administration of Tc-99m HDP. The femoral head was classified as perfused if it showed the same activity as the opposite normal side or if it showed only slightly decreased activity. Femoral heads showing absent activity were classified as nonperfused. Overall, 20 of the 33 pts showed a photopenic femoral head on the side of the fx. Only 2 pts showed increased activity at hte site of the fx. Internal fixation of the fx was performed in 23 pts, 12 of whom had one or more follow-up scans. Five of these 12 pts showed absent femoral head activity on their initial scan, but 2 showed later reperfusion. The other 7 pts showed good perfusion initially, with only 1 later showing decreased femoral head activity. The other 10 pts (7 of whom had absent femoral head activity) had immediate resection of the femoral head and insertion of a Cathcart prosthesis. The results suggest that femoral head activity seen on a bone scan in the immediate post-fx period is not always a reliable indicator of femoral head viability. Decreased femoral head activity may reflect, in part, compromised perfusion secondary to post-traumatic edema, with or without anatomic disruption of the blood supply

  7. Knockdown of phosphoethanolamine transmethylation enzymes decreases viability of Haemonchus contortus.

    Science.gov (United States)

    Witola, William H; Cooks-Fagbodun, Sheritta; Ordonez, Adriana Reyes; Matthews, Kwame; Abugri, Daniel A; McHugh, Mark

    2016-06-15

    The phosphobase methylation pathway, in which phosphoethanolamine N-methyltransferases (PMTs) successively catalyze the methylation of phosphoethanolamine to phosphocholine, is essential in the free-living nematode Caenorhabditis elegans. Two PMT-encoding genes (HcPMT1 and HcPMT2) cloned from Haemonchus contortus have been shown, by in vitro assays, to possess enzymatic characteristics similar to those of C. elegans PMTs, but their physiological significance in H. contortus is yet to be elucidated. Therefore, in this study, we endeavored to determine the importance of HcPMT1 and HcPMT2 in the survival of H. contortus by adapting the use of phosphorodiamidate morpholino oligomers (PPMO) antisense approach to block the translation of HcPMT1 and HcPMT2 in the worms. We found that PPMOs targeting HcPMT1 and HcPMT2 down-regulated the expression of HcPMT1 and HcPMT2 proteins in adult H. contortus. Analysis of the effect of HcPMT1 and HcPMT2 knockdown showed that it significantly decreased worm motility and viability, thus validating HcPMT1 and HcPMT2 as essential enzymes for survival of H. contortus. Studies of gene function in H. contortus have been constrained by limited forward and reverse genetic technologies for use in H. contortus. Thus, our success in adaptation of use of PPMO antisense approach in H. contortus provides an important reverse genetic technological advance for studying this parasitic nematode of veterinary significance. PMID:27198768

  8. Myocardial viability assessed by Tl-201 SPECT. Redistribution versus reinjection

    International Nuclear Information System (INIS)

    The purpose of this study was to verify if a third series of images acquired by reinjection thallium-201, 24 h after conventional myocardial perfusion with the radioisotope, improves the identification of myocardial viability segments. The methods: we studied 30 patients, mean age 57.7 ±9.4 years, with old myocardial infarction using thallium (Tl)-201 SPECT, and we obtained three series of images (stress, redistribution after 4 h and reinjection after 24 h. Cardiac images were divided in 5 segments (apical, lateral, anterior, septal and inferior) and each one received a value by a score system according to the Tl-201 myocardial uptake (0=normal uptake; 1=mild hypoperfusion; 2=moderate hypoperfusion; 3=severe hypoperfusion or no myocardial uptake). We considered viable myocardium when the uptake of Tl-201 in the segment related to te myocardial infarction increases at least 1 point in two different axis of Tl-201 SPECT. The results: seven (23,3%) patients demonstrated increase of Tl-201 uptake only at reinjection images, showing a high efficacy of the method. Nine (30%) patients showed persistent hypoperfusion at all series of images suggesting only fibrosis in the are related to the infarction. Fourteen (46,7%) patients showed increase of Tl-201 concentration at redistribution images; among these patients, six showed improvement of myocardial uptake at reinjection. This condition was interpreted as regional chronic ischemic process: hibernating myocardium. The conclusion was that Tl-201 hypoperfusion at redistribution images without significant changes in relation to the stress images do not represent fibrosis at all. The reinjection technic was better than conventional redistribution in the detection of viable myocardium. This data allows a better therapeutic orientation. (author)

  9. Optimising the economic viability of grid-connected photovoltaic systems

    International Nuclear Information System (INIS)

    The impact of photovoltaic (PV) array size, orientation, inclination, load profile, electricity buying price, feed-in tariffs, PV/inverter sizing ratio ('sizing ratio') and PV/inverter cost ratio ('cost ratio') on the economic viability of a grid-connected PV system was investigated using a validated TRNSYS simulation model. The results showed that the fractional load met directly by a PV system depends on matching between PV supply and building load profile, sizing ratio and PV inclination. The profitability of a grid-connected PV system increases if the PV system is sized to reduce excess PV electrical energy fed to the grid when the feed-in tariff is lower than electricity buying price. The effect of feed-in tariffs on PV saving for selected European countries has been shown. The cost of the PV electricity depends on sizing ratio, PV and inverter lifetimes, cost ratio, PV inclination and financial parameters. The effect of cost ratio on the optimum PV/inverter sizing ratio is less significant when the cost ratio lies within 7-11. The minimum PV electricity cost at low and high insolation conditions were obtained for sizing ratios of 1.6 and 1.2, respectively. The lowest PV electricity cost was found for surface slopes within 30-40 for the selected European locations. The PV electricity cost for cost ratio of 5 and 13 varied from 0.44-0.85 EURkWh-1 to 0.38-0.76 EURkWh-1, respectively within high to low insolation conditions when the PV module unit cost, market discount rate, PV size, PV lifetime and inverter lifetime were assumed to be 6.5 EURWp-1, 3%, 13 kWp, 20 years and 10 years, respectively. (author)

  10. Excised segments of rat small intestine in Ussing chamber studies: A comparison of native and stripped tissue viability and permeability to drugs.

    Science.gov (United States)

    Sjögren, Erik; Eriksson, Johanna; Vedin, Charlotta; Breitholtz, Katarina; Hilgendorf, Constanze

    2016-05-30

    Excised rat intestinal tissue mounted in an Ussing chamber can be used for intestinal permeability assessments in drug development. The outer layer of the intestine, the serosa and part of the muscle layer, is traditionally removed since it is considered a barrier to the diffusion of nutrients and oxygen as well as to that of pharmaceutical substances. However, the procedure for removing the serosal-muscle layer, i.e. stripping, is a technically challenging process in the pre-experimental preparation of the tissue which may result in tissue damage and reduced viability of the segment. In this study, the viability of stripped and native (non-stripped) rat small intestine tissue segments mounted in Ussing chambers was monitored and the apparent permeability of the tissue to a set of test compounds across both tissue preparations was determined. Electrical measurements, in particular the potential difference (PD) across the intestinal membrane, were used to evaluate the viability. In this study, there were no differences in initial PD (health status of the tissue) or PD over time (viability throughout the experiment) between native and stripped rat jejunum segments. Overall, there were also no significant differences in permeability between stripped and native rat intestinal tissue for the compounds in this study. Based on these results, we propose that stripping can be excluded from the preparation procedures for rat jejunal tissue for permeability studies when using the Ussing chamber technique. PMID:27073083

  11. Induction of autophagy improves embryo viability in cloned mouse embryos

    Science.gov (United States)

    Shen, XingHui; Zhang, Na; Wang, ZhenDong; Bai, GuangYu; Zheng, Zhong; Gu, YanLi; Wu, YanShuang; Liu, Hui; Zhou, DongJie; Lei, Lei

    2015-01-01

    Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT. PMID:26643778

  12. Cellular effects of halogen blue light from dental curing unit

    International Nuclear Information System (INIS)

    Full text: Halogen curing lights are the most frequently used polymerization source in dental offices. Light-cured bonding systems have become increasingly popular among clinicians because they offer a number of advantages over self-cured adhesives. The effort to increase polymerization quality releases the commercially available high power light density dental curing units. Emitted visible blue light belongs to the range of nonionizing radiation. Common concern in both, patients and dentist grows with regard to the unfavorable effects on the pulp tissue. The aim of study was to evaluate the time and dose dependence effect of halogen light curing unit (Elipar TriLight, ESPE Dental AG, Germany) at the disposed condition modes in vitro. A quartz-tungsten-halogen light source emits radiation of the wavelengths between 400 and 515 nm. This halogen blue light source operates in the three illumination modes, medium (M), exponential (E) and standard (S), and five illumination times. The total irradiance or the light intensity was measured by the light intensity control area on the control panel of device and mean light intensity given by manufacturer was 800 m W/cm2. Continuous culture of V79 cells was illuminated in triplicate. The influence of medium mode (M), exponential (E) and standard (S) illumination during 20, 40 and 80 sec on the cell viability, colony forming ability and proliferation of V79 cell culture was investigated. Trypan blue exclusion test was used to determine cell viability, both, in the treated and control cell samples. Colony forming ability was assessed for each exposure time and mode by colony count on post-exposure day 7. Cell proliferation was determined by cell counts for each time and mode of exposure during five post-exposure days. Statistical difference were determined at p<0.05 (Statistica 7.0, StatSoft Inc., USA). Viability of cells was not affected by blue light in view of exposure time and modes. Regardless to exposure or illumination

  13. The effect of particle design on cellular internalization pathways

    OpenAIRE

    Gratton, Stephanie E. A.; Ropp, Patricia A.; Pohlhaus, Patrick D.; Luft, J. Christopher; Madden, Victoria J.; Napier, Mary E.; DeSimone, Joseph M.

    2008-01-01

    The interaction of particles with cells is known to be strongly influenced by particle size, but little is known about the interdependent role that size, shape, and surface chemistry have on cellular internalization and intracellular trafficking. We report on the internalization of specially designed, monodisperse hydrogel particles into HeLa cells as a function of size, shape, and surface charge. We employ a top-down particle fabrication technique called PRINT that is able to generate unifor...

  14. Development and validation of computational models of cellular interaction

    OpenAIRE

    Smallwood, R H; Holcombe, W.M.L.; Walker, D C

    2004-01-01

    In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of soft...

  15. Lattice Gas Cellular Automata for Computational Fluid Animation

    OpenAIRE

    Giraldi, Gilson A.; Xavier, Adilson V.; Apolinario Jr, Antonio L.; Rodrigues, Paulo S.

    2005-01-01

    The past two decades showed a rapid growing of physically-based modeling of fluids for computer graphics applications. In this area, a common top down approach is to model the fluid dynamics by Navier-Stokes equations and apply a numerical techniques such as Finite Differences or Finite Elements for the simulation. In this paper we focus on fluid modeling through Lattice Gas Cellular Automata (LGCA) for computer graphics applications. LGCA are discrete models based on point particles that mov...

  16. Application of neural networks and cellular automata to calorimetric problems

    Energy Technology Data Exchange (ETDEWEB)

    Brenton, V.; Fonvieille, H.; Guicheney, C.; Jousset, J.; Roblin, Y.; Tamin, F.; Grenier, P.

    1994-09-01

    Computing techniques based on parallel processing have been used to treat the information from the electromagnetic calorimeters in SLAC experiments E142/E143. Cluster finding and separation of overlapping showers are performed by a cellular automaton, pion and electron identification is done by using a multilayered neural network. Both applications are presented and their resulting performances are shown to be improved compared to more standard approaches. (author). 9 refs.; Submitted to Nuclear Instruments and Methods (NL).

  17. Combined effects of low-level laser therapy and human bone marrow mesenchymal stem cell conditioned medium on viability of human dermal fibroblasts cultured in a high-glucose medium.

    Science.gov (United States)

    Hendudari, Farzane; Piryaei, Abbas; Hassani, Seyedeh-Nafiseh; Darbandi, Hasan; Bayat, Mohammad

    2016-05-01

    Low-level laser therapy (LLLT) exhibited biostimulatory effects on fibroblasts viability. Secretomes can be administered to culture mediums by using bone marrow mesenchymal stem cells conditioned medium (BM-MSCs CM). This study investigated the combined effects of LLLT and human bone marrow mesenchymal stem cell conditioned medium (hBM-MSCs CM) on the cellular viability of human dermal fibroblasts (HDFs), which was cultured in a high-glucose (HG) concentration medium. The HDFs were cultured either in a concentration of physiologic (normal) glucose (NG; 5.5 mM/l) or in HG media (15 mM/l) for 4 days. LLLT was performed with a continuous-wave helium-neon laser (632.8 nm, power density of 0.00185 W/cm(2) and energy densities of 0.5, 1, and 2 J/cm(2)). About 10 % of hBM-MSCs CM was added to the HG HDF culture medium. The viability of HDFs was evaluated using dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. A significantly higher cell viability was observed when laser of either 0.5 or 1 J/cm(2) was used to treat HG HDFs, compared to the control groups. The cellular viability of HG-treated HDFs was significantly lower compared to the LLLT + HG HDFs, hBM-MSCs CM-treated HG HDFs, and LLLT + hBM-MSCs CM-treated HG HDFs. In conclusion, hBM-MSCs CM or LLLT alone increased the survival of HG HDFs cells. However, the combination of hBM-MSCs CM and LLLT improved these results in comparison to the conditioned medium. PMID:26984346

  18. Lipid emulsions differentially affect LPS-induced acute monocytes inflammation: in vitro effects on membrane remodeling and cell viability.

    Science.gov (United States)

    Boisramé-Helms, Julie; Delabranche, Xavier; Klymchenko, Andrey; Drai, Jocelyne; Blond, Emilie; Zobairi, Fatiha; Mely, Yves; Hasselmann, Michel; Toti, Florence; Meziani, Ferhat

    2014-11-01

    The aim of this study was to assess how lipid emulsions for parenteral nutrition affect lipopolysaccharide (LPS)-induced acute monocyte inflammation in vitro. An 18 h long LPS induced human monocyte leukemia cell stimulation was performed and the cell-growth medium was supplemented with three different industrial lipid emulsions: Intralipid(®), containing long-chain triglycerides (LCT--soybean oil); Medialipid(®), containing LCT (soybean oil) and medium-chain triglycerides (MCT--coconut oil); and SMOFlipid(®), containing LCT, MCT, omega-9 and -3 (soybean, coconut, olive and fish oils). Cell viability and apoptosis were assessed by Trypan blue exclusion and flow cytometry respectively. Monocyte composition and membrane remodeling were studied using gas chromatography and NR12S staining. Microparticles released in supernatant were measured by prothrombinase assay. After LPS challenge, both cellular necrosis and apoptosis were increased (threefold and twofold respectively) and microparticle release was enhanced (sevenfold) after supplementation with Medialipid(®) compared to Intralipid(®), SMOFlipid(®) and monocytes in the standard medium. The monocytes differentially incorporated fatty acids after lipid emulsion challenge. Finally, lipid-treated cells displayed microparticles characterized by disrupted membrane lipid order, reflecting lipid remodeling of the parental cell plasma membrane. Our data suggest that lipid emulsions differentially alter cell viability, monocyte composition and thereby microparticle release. While MCT have deleterious effects, we have shown that parenteral nutrition emulsion containing LCT or LCT and MCT associated to n-3 and n-9 fatty acids have no effect on endotoxin-induced cell death and inflammation. PMID:25038627

  19. Cellular interactions of surface modified nanoporous silicon particles

    Science.gov (United States)

    Bimbo, Luis M.; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B.; Hirvonen, Jouni; Airaksinen, Anu J.; Santos, Hélder A.

    2012-05-01

    In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi

  20. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    International Nuclear Information System (INIS)

    Research highlights: → TGP52 cells display enhanced functionality in pseudoislet form. → Somatostatin content was reduced, but secretion increased in high glucose conditions. → Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  1. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells

    DEFF Research Database (Denmark)

    Jiang, Xiumei; Miclăuş, Teodora; Wang, Liming;

    2015-01-01

    Toxicity of silver nanoparticles (Ag NPs) has been reported both in vitro and in vivo. However, the intracellular stability and chemical state of Ag NPs are still not very well studied. In this work, we systematically investigated the cellular uptake pathways, intracellular dissolution and chemical...... species, and cytotoxicity of Ag NPs (15.9 ± 7.6 nm) in Chinese hamster ovary cell subclone K1 cells, a cell line recommended by the OECD for genotoxicity studies. Quantification of intracellular nanoparticle uptake and ion release was performed through inductively coupled plasma mass spectrometry. X......-ray absorption near-edge structure (XANES) was employed to assess the chemical state of intracellular silver. The toxic potential of Ag NPs and Ag+ was evaluated by cell viability, reactive oxygen species (ROS) production and live–dead cell staining. The results suggest that cellular uptake of Ag NPs involves...

  2. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  3. Thermomechanical characterisation of cellular rubber

    Science.gov (United States)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-01-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  4. Discrete geodesics and cellular automata

    CERN Document Server

    Arrighi, Pablo

    2015-01-01

    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  5. Cellular compartmentalization of secondary metabolism

    Directory of Open Access Journals (Sweden)

    H. Corby eKistler

    2015-02-01

    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  6. Cellular tolerance to pulsed heating

    Science.gov (United States)

    Simanovski, Dimitrii; Sarkar, M.; Irani, A.; O'Connell-Rodwell, C.; Contag, C.; Schwettman, H. Alan; Palanker, D.

    2005-04-01

    Many laser therapies involve significant heating of tissue with pulses varying from picoseconds to minutes in duration. In some of the applications heating is a primary goal, while in others it is an undesirable side effect. In both cases, if a hyperthermia is involved, the knowledge about the threshold temperature leading to irreversible cellular damage is critically important. We study the dependence of the threshold temperature on duration of the heat exposure in the range of 0.3 ms to 5 seconds. Thin layer of cells cultured in a Petri dish was exposed to a pulsed CO2 laser radiation. Laser beam was focused onto sample providing Gaussian intensity distribution in the focal plane with a beam diameter (2w) 2-10 mm. Surface temperature in the central part of the focal spot (1mm in diameter) was measured by thermal infrared (IR) emission from the sample, recorded with a fast IR detector. For pulses shorter than 1 s the temperature profile across the focal spot was found to closely correspond to the radial distribution of the laser beam intensity, thus allowing for accurate determination of temperature at any given distance from the center of the spot. Immediate cellular damage was assessed using vital staining with the live/dead fluorescent assay. Threshold temperatures were found to vary from 65 °C at 5 s of heating to 160 °C at pulses of 0.3 ms in duration. The shorter end of this range was limited by vaporization, which occurs during the laser pulse and results in mechanical damage to cells. Dependence of the maximal temperature on pulse duration could be approximated by Arrhenius law with activation energy being about 1 eV.

  7. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic

  8. Prioritizing conservation activities using reserve site selection methods and population viability analysis.

    Science.gov (United States)

    Newbold, Stephen C; Siikamäki, Juha

    2009-10-01

    In recent years a large literature on reserve site selection (RSS) has developed at the interface between ecology, operations research, and environmental economics. Reserve site selection models use numerical optimization techniques to select sites for a network of nature reserves for protecting biodiversity. In this paper, we develop a population viability analysis (PVA) model for salmon and incorporate it into an RSS framework for prioritizing conservation activities in upstream watersheds. We use spawner return data for three closely related salmon stocks in the upper Columbia River basin and estimates of the economic costs of watershed protection from NOAA to illustrate the framework. We compare the relative cost-effectiveness of five alternative watershed prioritization methods, based on various combinations of biological and economic information. Prioritization based on biological benefit-economic cost comparisons and accounting for spatial interdependencies among watersheds substantially outperforms other more heuristic methods. When using this best-performing prioritization method, spending 10% of the cost of protecting all upstream watersheds yields 79% of the biological benefits (increase in stock persistence) from protecting all watersheds, compared to between 20% and 64% for the alternative methods. We also find that prioritization based on either costs or benefits alone can lead to severe reductions in cost-effectiveness. PMID:19831069

  9. Analysing the financial viability of WASP expansion plans using the FINPLAN model

    International Nuclear Information System (INIS)

    The National Electricity Board of Malaysia recently acquired the Financial Planning (FINPLAN) Model from the International Atomic Energy Agency (IAEA) under an IAEA technical co-operation project. The project represents a first attempt by the IAEA to validate the suitability of FINPLAN to address the financial viability of a power investment programme under real utility environment. The FINPLAN model is a micro-computer program based on spreadsheets. An important feature of FINPLAN is that it utilizes techniques similar to those used by financial institutions to analyse the financing of large investment programmes. Another advantage of FINPLAN is that it only requires readily available commercial spreadsheet software and relatively inexpensive micro-computer systems. It is therefore very portable and could be easily transferred to other interested users. FINPLAN is intended to be used in conjunction with the WASP model in an iterative way. Firstly, WASP is used to determine the economically optimal expansion plan for a power generating system, and then FINPLAN is applied to determine whether this plan is financially viable; otherwise new WASP solutions may become necessary before an overall feasible solution is found for the system under study. This paper reports some of the main features of FINPLAN and the modifications introduced to the program to suit NEB's financial practice. Results from preliminary analyses of two hypothetical case studies using the ''modified'' FINPLAN are presented. (author). 1 ref., 16 figs

  10. Population viability analysis of the Florida manatee (Trichechus manatus latirostris), 1976-1991

    Science.gov (United States)

    Marmontel, M.; Humphrey, S.R.; O'Shea, T.J.

    1997-01-01

    Recent development of age-determination techniques for Florida manatees (Trichechus manatus latirostris) has permitted derivation of age-specific data on reproduction and survival of a sample of 1212 carcasses obtained throughout Florida from 1976–1991. Population viability analysis using these data projects a slightly negative growth rate (−0.003) and an unacceptably low probability of persistence (0.44) over 1000 years. The main factors affecting population projections were adult survival and fecundity. A 10% increase in adult mortality would drive the population to extinction over a 1000-year time scale, whereas a 10% decrease in adult mortality would allow slow population growth. A 10% decrease in reproduction would also result in extinction. We conclude that management must focus on retaining and improving the conditions under which manatee demography operates. The major identified agent of mortality is boat-manatee collisions, and rapidly increasing numbers of humans and registered boats portend an increase in manatee mortality. Zoning of manatee-occupied waters for reductions in boating activity and speed is essential to safeguard the manatee population. If boating regulations being implemented by the state of Florida in each of 13 key coastal counties are completed, enforced, and effective, manatees and human recreation could coexist indefinitely. If regulation is unsuccessful, the Florida manatee population is likely to decline slowly toward extinction.

  11. The early diagnosis of kidney graft rejection with radioactive autologous bloodplatelets; importance of cell viability

    International Nuclear Information System (INIS)

    This study concerns the possible suitability of gamma camera scintigraphy after injection of 111In-labelled autologous thrombocytes as an early diagnostic method for the initial events of kidney graft rejection. The maintenance of cell function and viability after cell labelling appeared to be essential for the adequate interpretation of the results of subsequent in vivo measurements. Thrombocytes labelled according to the described procedure showed a normal collagen induced aggregation pattern and normal behaviour in vivo. A small group of individuals with well functioning kidneys, transplanted 4 - 6 months before, served as a control group. The transplanted kidneys could always be located on the scintigram taken 24 hours after 111In-thrombocyte injection. Increased accumulation of radioactive thrombocytes in the graft was observed in patients with clinical and biochemical signs of graft rejection. After adequate therapy, this accumulation decreased towards normal values. Concomitantly a reduced survival of circulating labelled platelets was found in periods with high kidney radioactivity and vice versa. However, in order to assess the value of the technique as an early indication of graft rejection more frequent measurements (i.e. 2 - 3 times a day) are necessary. A method using a portable crystal detector is now under investigation. Finally, it might be possible with this method to discriminate between various clinical courses (i.e. the type of rejection) after transplantation. (author)

  12. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  13. Population viability analysis of the Endangered shortnose sturgeon

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL; Bevelhimer, Mark S [ORNL; Peterson, Douglas L. [University of Georgia, Athens, GA

    2011-07-01

    This study used population viability analysis (PVA) to partition the influences of potential threats to the endangered shortnose sturgeon (Acipenser brevirostrum). A workshop brought together experts to help identify potential threats including groundwater withdrawal, poor water quality, saltwater intrusion, mercury effects, harvest as by-catch, and sedimentation of spawning habitat. During the course of the project, we eliminated some threats and added new ones. Groundwater withdrawal was dismissed after a study failed to identify connection with groundwater and the majority of pumping is from a confined aquifer. We also eliminated activities on Fort Stewart as influences on spawning habitat because any successful spawning must occur upstream of Fort Stewart. We added climate change to the list of threats based on our assessment of temperature effects and expectations of sea-level rise. Our study highlighted the role of populations in nearby rivers in providing metapopulation support, raising the concern that the population in the Ogeechee River acts as a demographic sink. As part of this study, we carried out a field sampling study to analyze effects of training activities on headwater streams. We developed a new methodology for sampling design as part of this effort and used a mixed-modeling approach to identify relationships between land cover-land use, including those associated with military training activity and water quality. We found that tank training was associated with higher suspended sediment and equipment training was associated with higher organic carbon) and water quality. We detected effects of training on suspended sediment and organic carbon. We also carried out a field sampling effort in the Canoochee and Ogeechee Rivers. In the Ogeechee River, we found that dissolved oxygen in 40% of measurements during summer were below 4 mg L-1. To evaluate mercury as a potential threat, we developed a mercury uptake model and analyzed mercury levels in

  14. Plant viability and phenotype evolution in DDW presence

    International Nuclear Information System (INIS)

    Full text: Deuterium depleted water (DDW) is a newly available tool for decreasing deuterium concentration in organisms. Relatively few things are known about the plant viability and organogenesis evolution in the presence of 2D. The experiments were conducted both in vitro and ex vitro. Chrysanthemum and tobacco genotypes were chosen as biologic materials. Our main purpose was to study the plants evolution in such conditions. The first stages of plant's life cycle were developed in vitro in controlled environment. The last periods run in normal conditions (in a growth chamber). The in vitro technology was used to deliver throughout growth media different amount of deuterium: low (30 ppm, V5) and high (150 ppm V1). The other variants were a mixture between boiled water/DDW: V2 (3/1), V3 (2/2) and V4 (1/3). For in vitro culture Murashige-Skoog (1962) growth media was prepared in above mentioned liquid mixtures. The growth of ex vitro potted plants took place as described previously. In vitro, the development of Chrysanthemum and tobacco neo - plantlets was favorable on low 2D concentration media. In comparison to Control the Chrysanthemum shoot growth was significantly repressed (d=1.76 cm; p>0.01) but the leaf area was much larger on plantlets developed on 30 ppm 2D media (d=0.37cm2; p>0.01). Immediately after the initiation of in vitro culture the tobacco explants revealed a higher biological activity. In ex vitro conditions the 'Chrysanthemum DDW plants' recovered their growth rate and after 50 days this parameter was significantly higher than in control plants (d=8.5 cm; p>0.01). The leaf area explosively increased from 0.427 cm2 to 2476.9 cm2 covered by a statistically significant difference. The same behavior was observed in tobacco plants. A large variability was detected among ex vitro plants, especially in the tobacco descendants. The molecular analysis did not revealed significant differences among the experimental variants. Our experiments in vitro and ex

  15. Perbaikan Respons Seluler pada Penuaan Hipokampus yang Diperantarai Glutation Hasil Pemberian Alanin-glutamin Dipeptida (IMPROVEMENTS CELLULAR RESPONS IN AGED HIPPOCAMPUS RELATED GLUTATHIONE RESULT OF THE ADMINISTRATION OF ALANINE-GLUTAMINE DIPEPTIDE)

    OpenAIRE

    Sunarno .; Wasmen Manalu; Nastiti Kusumorini; Dewi Ratih Agungpriyono

    2013-01-01

    Physiological aging or aging due to oxidative stress decrease glutathione level in the hippocampuswhich impacts the respons impaired hippocampus celuller. Hippocampus cellular respons disorderscharacterized with decreased viability, increased mortality, and the shortening of the axons of neurons.One way to improve hippocampus cellular respons is to  increase the levels of glutathione and theconcentration of glutathione precursor. One compound that provides glutathione precursors is alanine-gl...

  16. Detecting viability transitions of umbilical cord mesenchymal stem cells by Raman micro-spectroscopy

    International Nuclear Information System (INIS)

    Recent research suggests that human umbilical cord derived mesenchymal stem cells (hUC-MSCs) can be promising candidates for cell-based therapy. Since large population and high viability are generally required, detecting viability transitions of these cells is crucial for their population expansion and quality control. Here, as a non-invasive method, Raman micro-spectroscopy is applied to examine hUC-MSCs with different viability. Using peak fitting and statistic t-test, the Raman peaks with obvious differences between the cells with high viability (> 90%) and low viability (-1, symmetric stretching of C–C in lipids at 877 cm-1 and CH deformation in proteins at 1342 cm-1 show the most significant changes (p < 0.001). When the cell viability decreases, the intensities of the former two peaks are both about doubled while that of the latter peak reduces by about 30%. Based on these results, we propose that the viability of hUC-MSCs can be characterized by these three peaks. And their intensity changes can be understood from the model of excessive reactive oxygen species interacting with the bio-macromolecules

  17. A modified in vitro larvae migration inhibition assay using rumen fluid to evaluate Haemonchus contortus viability.

    Science.gov (United States)

    Whitney, T R; Lee, A E; Klein, D R; Scott, C B; Craig, T M; Muir, J P

    2011-03-10

    technique for measuring Haemonchus contortus larval viability. PMID:21109354

  18. Cell viability of bovine spermatozoa subjected to DNA electroporation and DNAse I treatment.

    Science.gov (United States)

    Cavalcanti, Paulo Varoni; Milazzotto, Marcella Pecora; Simões, Renata; Nichi, Marcilio; de Oliveira Barros, Flavia Regina; Visintin, Jose Antonio; Assumpção, Mayra Elena Ortiz D'Avila

    2016-04-15

    Many mechanisms involved in sperm-mediated gene transfer (SMGT) are still unknown. It is still a matter of debate whether exogenous DNA fragments incorporated by the embryo are originated from those bound to the sperm membrane or by those that penetrated the intracellular compartment. In an attempt to elucidate the transmission mechanism of exogenous DNA molecules by sperm, some authors suggested a treatment with DNAse I to remove DNA molecules outside the sperm. But little is known regarding the effects of DNAse I treatment on sperm viability and its impact on sperm organelles. An important aspect of the SMGT technique is the amount of exogenous DNA incubated with sperm, which may influence the internalization rate. Due to the inconsistencies found in literature, this work aimed to contribute to bovine sperm physiology knowledge evaluating the effects of different DNA concentrations, electroporation, and DNAse I treatments on sperm viability characteristics, DNA uptake, and IVF. For that, the effects of different concentrations of exogenous DNA (250, 500 and 1000 ng/10(6) cells) and incubation or electroporation were tested on sperm functional characteristics and in vitro embryo production. No effect of DNA concentration was observed on uptake, plasma membrane integrity, and mitochondrial membrane potential. The addition of exogenous DNA induced a decrease on acrosomal lesion in the 500-ng group when compared to the control. Cells incubated with DNA, electroporated, and treated with DNAse I presented a deleterious influence on mitochondrial membrane potential. In vitro fertilization was made with 1000 ng of DNA, sperm cells incubated or electroporated followed by DNAse I treatment. No significant difference was found in cleavage rate. Blastocyst rates were 24.36% for the control; 19.65% for incubated; 3.5% for electroporated control; and 17.40% for electroporated. There is a significant difference in blastocyst rate between the control and electroporated

  19. Optical techniques in optogenetics

    Science.gov (United States)

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-07-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience, and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially controlled optogenetic stimulation and detection of cellular activities.

  20. Study progress of cardiac MRI technology in assessment of myocardial viability after myocardial infarction

    International Nuclear Information System (INIS)

    Acute myocardial infarction (AMI) is one of the most common diseases that cause disability and death around the world. Correctly and effectively assessing the myocardial viability after myocardial infarction can reduce the disabled rate and mortality rate. At present, many methods could be used to assess myocardial viability. The cardiac magnetic resonance imaging (CMR) technology has a lot of advantages compared to other methods. In this paper, we reviewed the research progress of CMR in assessment of myocardial viability after myocardial infarction, and compared CMR with other technologies. (authors)

  1. Investigation of cellular responses upon interaction with silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Subbiah R

    2015-08-01

    Full Text Available Ramesh Subbiah,1,2 Seong Beom Jeon,3,4 Kwideok Park,1,2 Sang Jung Ahn,4,5 Kyusik Yun3 1Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 2Department of Biomedical Engineering, Korea University of Science and Technology, Daejon, 3Department of Bionanotechnology, Gachon University, Gyeonggi-do, 4Centre for Advanced Instrumentation, Korea Research Institute of Standard and Science, 5Major of Nano Science, Korea University of Science and Technology, Daejeon, Republic of Korea Abstract: In order for nanoparticles (NPs to be applied in the biomedical field, a thorough investigation of their interactions with biological systems is required. Although this is a growing area of research, there is a paucity of comprehensive data in cell-based studies. To address this, we analyzed the physicomechanical responses of human alveolar epithelial cells (A549, mouse fibroblasts (NIH3T3, and human bone marrow stromal cells (HS-5, following their interaction with silver nanoparticles (AgNPs. When compared with kanamycin, AgNPs exhibited moderate antibacterial activity. Cell viability ranged from ≤80% at a high AgNPs dose (40 µg/mL to >95% at a low dose (10 µg/mL. We also used atomic force microscopy-coupled force spectroscopy to evaluate the biophysical and biomechanical properties of cells. This revealed that AgNPs treatment increased the surface roughness (P<0.001 and stiffness (P<0.001 of cells. Certain cellular changes are likely due to interaction of the AgNPs with the cell surface. The degree to which cellular morphology was altered directly proportional to the level of AgNP-induced cytotoxicity. Together, these data suggest that atomic force microscopy can be used as a potential tool to develop a biomechanics-based biomarker for the evaluation of NP-dependent cytotoxicity and cytopathology. Keywords: AFM, roughness, nanoindentation, biomarker, cytotoxicity, biomechanics

  2. Cellular phones: are they detrimental?

    Science.gov (United States)

    Salama, Osama E; Abou El Naga, Randa M

    2004-01-01

    The issue of possible health effects of cellular phones is very much alive in the public's mind where the rapid increase in the number of the users of cell phones in the last decade has increased the exposure of people to the electromagnetic fields (EMFs). Health consequences of long term use of mobile phones are not known in detail but available data indicates the development of non specific annoying symptoms on acute exposure to mobile phone radiations. In an attempt to determine the prevalence of such cell phones associated health manifestations and the factors affecting their occurrence, a cross sectional study was conducted in five randomly selected faculties of Alexandria University. Where, 300 individuals including teaching staff, students and literate employee were equally allocated and randomly selected among the five faculties. Data about mobile phone's users and their medical history, their pattern of mobile usage and the possible deleterious health manifestations associated with cellular phone use was collected. The results revealed 68% prevalence of mobile phone usage, nearly three quarters of them (72.5%) were complainers of the health manifestations. They suffered from headache (43%), earache (38.3%), sense of fatigue (31.6%), sleep disturbance (29.5%), concentration difficulty (28.5%) and face burning sensation (19.2%). Both univariate and multivariate analysis were consistent in their findings. Symptomatic users were found to have significantly higher frequency of calls/day, longer call duration and longer total duration of mobile phone usage/day than non symptomatic users. For headache both call duration and frequency of calls/day were the significant predicting factors for its occurrence (chi2 = 18.208, p = 0.0001). For earache, in addition to call duration, the longer period of owning the mobile phone were significant predictors (chi2 = 16.996, p = 0.0002). Sense of fatigue was significantly affected by both call duration and age of the user

  3. The mammary cellular hierarchy and breast cancer

    OpenAIRE

    Oakes, Samantha R.; Gallego-Ortega, David; Ormandy, Christopher J.

    2014-01-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and ...

  4. A radiation measurement study on cellular phone

    International Nuclear Information System (INIS)

    This paper will explain the radiation level produced by various selected cellular phone from various models and brands available in the market. The result obtained from this study will also recommend whether a cellular phone is safe for public usage or it might cause any effect on public health. Finally, a database of radiation measurement level produced by selected various cellular phone will also be developed and exhibited in this paper. (Author)

  5. Predicting Cellular Growth from Gene Expression Signatures

    OpenAIRE

    Dunham, Maitreya J.; Troyanskaya, Olga G.; Airoldi, Edoardo; Broach, James R.; Caudy, Amy A.; Gresham, David; Botstein, David; Huttenhower, Curtis; Lu, Charles

    2009-01-01

    Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazo...

  6. Cellular structure in system of interacting particles

    OpenAIRE

    Lev, Bohdan

    2008-01-01

    The general description of formation the cellular structure in the system of interacting particles is proposed. Interactions between particles are presumably well-understood and the phase transition in which can be studied in the scale of particle resolution. We presented analytical results of possible cellular structures for suspension of colloidal particles, in system particles immersed in liquid crystal and gravitational system. We have shown that cellular structure formation can occur in ...

  7. Radiation, nitric oxide and cellular death

    International Nuclear Information System (INIS)

    The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death

  8. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  9. Improving viability and transfection efficiency with human umbilical cord wharton's jelly cells through use of a ROCK inhibitor.

    Science.gov (United States)

    Mellott, Adam J; Godsey, Megan E; Shinogle, Heather E; Moore, David S; Forrest, M Laird; Detamore, Michael S

    2014-04-01

    Differentiating stem cells using gene delivery is a key strategy in tissue engineering and regenerative medicine applications. Nonviral gene delivery bypasses several safety concerns associated with viral gene delivery; however, leading nonviral techniques, such as electroporation, subject cells to high stress and can result in poor cell viabilities. Inhibition of Rho-associated coiled-coil kinase (ROCK) has been shown to mitigate apoptotic mechanisms associated with detachment and freezing of induced pluripotent stem cells and embryonic stem cells; however, inhibiting ROCK in mesenchymal stromal cells (MSCs) for improving gene delivery applications has not been reported previously. In this study, we hypothesized that ROCK Inhibitor (RI) would improve cell viability and gene expression in primary human umbilical cord mesenchymal stromal cells (hUCMSCs) when transfected via Nucleofection™. As hypothesized, the pre-treatment and post-treatment of hUCMSCs transfected via nucleofection with Y-27632-RI significantly improved survival rates of hUCMSCs and gene expression as measured by green fluorescent protein intensity. This study provides the first comparative look at the effect of Y-27632-RI on hUCMSCs that underwent transfection via nucleofection and shows that using Y-27632-RI in concert with nucleofection could greatly enhance the utility of differentiating and reprogramming hUCMSCs for tissue engineering applications. PMID:24552552

  10. Cellular recurrent deep network for image registration

    Science.gov (United States)

    Alam, M.; Vidyaratne, L.; Iftekharuddin, Khan M.

    2015-09-01

    Image registration using Artificial Neural Network (ANN) remains a challenging learning task. Registration can be posed as a two-step problem: parameter estimation and actual alignment/transformation using the estimated parameters. To date ANN based image registration techniques only perform the parameter estimation, while affine equations are used to perform the actual transformation. In this paper, we propose a novel deep ANN based image rigid registration that combines parameter estimation and transformation as a simultaneous learning task. Our previous work shows that a complex universal approximator known as Cellular Simultaneous Recurrent Network (CSRN) can successfully approximate affine transformations with known transformation parameters. This study introduces a deep ANN that combines a feed forward network with a CSRN to perform full rigid registration. Layer wise training is used to pre-train feed forward network for parameter estimation and followed by a CSRN for image transformation respectively. The deep network is then fine-tuned to perform the final registration task. Our result shows that the proposed deep ANN architecture achieves comparable registration accuracy to that of image affine transformation using CSRN with known parameters. We also demonstrate the efficacy of our novel deep architecture by a performance comparison with a deep clustered MLP.

  11. Cellular automata modeling of cooperative eutectic growth

    Directory of Open Access Journals (Sweden)

    E. Olejnik

    2010-01-01

    Full Text Available The model and results of the 2D simulation of the cooperative growth of two phases in the lamellar eutectic are presented. The pro-posed model takes into account heat transfer, components diffusion and nonstationary concentration distribution in the liquid and solid phases, non-equlibrium nature of the phase transformation and kinetics of the growth, influence of the surface energy and interface curva-ture on the conditions of the thermodynamic equilibrium. For the determination of the phase interface shape the Cellular Automata tech-nique (CA was used. For the calculation of temperature and concentration distribution the numerical solution of the Fourier equation was used. The partial differential equations were solved by Finite Differences Method (FDM. The spatial position and cell sizes of CA lattice and FDM mesh are equal.Proposed model can predict the steady state growth with a constant interlamellar spacing in the regular plate eutectic, as well as some transient processes that bring to the changes of that parameters. Obtained simulation data show the solid-liquid interface changes result in the termination of lamella and enlargement of interlamellar spacing. Another simulation results illustrate a pocket formation in the center of one phase that forestalls nucleation (or intergrowth of the new lamellae of another phase. The data of the solidification study of the transparent material (CBr4 – 8,4% C2Cl6 obtained in the thin layer demonstrate the qualita-tive agreement of the simulation.

  12. The cellular particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    This work presents a variant of the Particle Swarm Optimization (PSO) original algorithm, the Cellular-PSO. Inspired by the cellular Genetic Algorithm (GA), particles in Cellular-PSO are arranged into a matrix of cells interconnected according to a given topology. Such topology defines particle's neighborhood, inside which social adaptation may occur. As a consequence, population diversity is increased and the optimization process becomes more efficient and robust. The proposed Cellular-PSO has been applied to the nuclear reactor core design optimization problem and comparative experiments demonstrated that it is superior to the standard PSO. (author)

  13. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies proposes to develop a unique structural cellular core material to improve mechanical performance, reduce platform weight and lower...

  14. Illuminating cellular physiology: recent developments.

    Science.gov (United States)

    Brovko, Lubov Y; Griffiths, Mansel W

    2007-01-01

    Bioluminescent methods are gaining more and more attention among scientists due to their sensitivity, selectivity and simplicity; coupled with the fact that the bioluminescence can be monitored both in vitro and in vivo. Since the discovery of bioluminescence in the 19th century, enzymes involved in the bioluminescent process have been isolated and cloned. The bioluminescent reactions in several different organisms have also been fully characterized and used as reporters in a wide variety of biochemical assays. From the 1990s it became clear that bioluminescence can be detected and quantified directly from inside a living cell. This gave rise to numerous possibilities for the in vivo monitoring of intracellular processes non-invasively using bioluminescent molecules as reporters. This review describes recent developments in the area of bioluminescent imaging for cell biology. Newly developed imaging methods allow transcriptional/translational regulation, signal transduction, protein-protein interaction, oncogenic transformation, cell and protein trafficking, and target drug action to be monitored in vivo in real-time with high temporal and spatial resolution; thus providing researchers with priceless information on cellular functions. Advantages and limitations of these novel bioluminescent methods are discussed and possible future developments identified. PMID:17725230

  15. Efficiency of cellular information processing

    CERN Document Server

    Barato, Andre C; Seifert, Udo

    2014-01-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the E. coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium i...

  16. Application of Neural Network in Prediction of Financial Viability

    OpenAIRE

    Roli Pradhan; K. K. Pathak; V.P. Singh

    2011-01-01

    Bankruptcy prediction is very important for all the organization since it affects the economy and causes a rise in many social problems with incremental high costs. There are large number of techniques that have been developed to predict the bankruptcy of firms, which helps the decision makers such as investors and financial analysts to plan in accordance to the financial position of the firm regarding the terms of credit as well as the recovery of the lent amount. The Altman Model for predic...

  17. Experimental programme to demonstrate the viability of the supercontainer concept for HLW

    International Nuclear Information System (INIS)

    The EIG EURIDICE (a joint venture between the Belgian Organisation for Radioactive Waste Management - ONDRAF/NIRAS - and the Belgian Nuclear Research Centre - SCKoCEN) is responsible for performing large-scale tests, technical demonstrations and experiments to assess the feasibility of a final disposal of vitrified radioactive waste in deep clay layers. This is part of the Belgian Research and Development programme managed by ONDRAF/NIRAS. The current Belgian reference design for vitrified HLW and spent fuel assemblies is the so-called Supercontainer design. The vitrified waste canisters or spent fuel assemblies are enclosed in a carbon steel overpack which has to prevent contact between water from the host formation and the waste during the thermal phase. In order to maintain favourable chemical conditions to avoid corrosion during this period (several hundred or even thousand of years), the overpack is surrounded by a high alkaline concrete buffer of about 70 cm thick. The buffer also provides permanent radiological shielding for the workers, simplifying handling and other operations. All the components of the Supercontainer are constructed in above ground installations, thus creating favourable QA/QC conditions. After the emplacement of the Supercontainers in the disposal galleries, the remaining space will be backfilled. Tests to demonstrate the viability and the construction feasibility of the supercontainer design have been initiated. The viability programme includes Tests to verify the feasibility to construct and emplace the components of the supercontainers, and tests to verify the feasibility to backfill the disposal galleries once the supercontainers are placed. Supercontainer construction: Tests in column to verify the construction feasibility (risk of cracking) of the buffer with two different types of concrete (a self-compacting concrete - SCC - and a rheoplastic concrete RPC) were performed in collaboration with the Belgian concrete factory Socea. A

  18. Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Bernd; Reinartz, Patrick; Schaefer, Wolfgang M.; Buell, Ulrich [University Hospital, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Weber, Christian; Schober, Andreas; Zeiffer, Ute; Liehn, Elisa A.; Hundelshausen, Philipp von [University Hospital, RWTH Aachen University, Department of Molecular Cardiovascular Research, Aachen (Germany)

    2007-05-15

    Cell-based therapy by transplantation of progenitor cells has emerged as a promising development for organ repair, but non-invasive imaging approaches are required to monitor the fate of transplanted cells. Radioactive labelling with {sup 111}In-oxine has been used in preclinical trials. This study aimed to validate {sup 111}In-oxine labelling and subsequent in vivo and ex vivo detection of haematopoietic progenitor cells. Murine haematopoietic progenitor cells (10{sup 6}, FDCPmix) were labelled with 0.1 MBq (low dose) or 1.0 MBq (high dose) {sup 111}In-oxine and compared with unlabelled controls. Cellular retention of {sup 111}In, viability and proliferation were determined up to 48 h after labelling. Labelled cells were injected into the cavity of the left or right cardiac ventricle in mice. Scintigraphic images were acquired 24 h later. Organ samples were harvested to determine the tissue-specific activity. Labelling efficiency was 75 {+-} 14%. Cellular retention of incorporated {sup 111}In after 48 h was 18 {+-} 4%. Percentage viability after 48 h was 90 {+-} 1% (control), 58 {+-} 7% (low dose) and 48 {+-} 8% (high dose) (p<0.0001). Numbers of viable cells after 48 h (normalised to 0 h) were 249 {+-} 51% (control), 42 {+-} 8% (low dose) and 32 {+-} 5% (high dose) (p<0.0001). Cells accumulated in the spleen (86.6 {+-} 27.0% ID/g), bone marrow (59.1 {+-} 16.1% ID/g) and liver (30.3 {+-} 9.5% ID/g) after left ventricular injection, whereas most of the cells were detected in the lungs (42.4 {+-} 21.8% ID/g) after right ventricular injection. Radiolabelling of haematopoietic progenitor cells with {sup 111}In-oxine is feasible, with high labelling efficiency but restricted stability. The integrity of labelled cells is significantly affected, with substantially reduced viability and proliferation and limited migration after systemic transfusion. (orig.)

  19. Amyloid-linked cellular toxicity triggered by bacterial inclusion bodies

    International Nuclear Information System (INIS)

    The aggregation of proteins in the form of amyloid fibrils and plaques is the characteristic feature of some pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. The mechanisms by which the aggregation processes result in cell damage are under intense investigation but recent data indicate that prefibrillar aggregates are the most proximate mediators of toxicity rather than mature fibrils. Since it has been shown that prefibrillar forms of the nondisease-related misfolded proteins are highly toxic to cultured mammalian cells we have studied the cytoxicity associated to bacterial inclusion bodies that have been recently described as protein deposits presenting amyloid-like structures. We have proved that bacterial inclusion bodies composed by a misfolding-prone β-galactosidase fusion protein are clearly toxic for mammalian cells but the β-galactosidase wild type enzyme forming more structured thermal aggregates does not impair cell viability, despite it also binds and enter into the cells. These results are in the line that the most cytotoxic aggregates are early prefibrilar assemblies but discard the hypothesis that the membrane destabilization is Key event to subsequent disruption of cellular processes, such as ion balance, oxidative state and the eventually cell death

  20. Iterative Cellular Screening System for Nanoparticle Safety Testing

    Directory of Open Access Journals (Sweden)

    Franziska Sambale

    2015-01-01

    Full Text Available Nanoparticles have the potential to exhibit risks to human beings and to the environment; due to the wide applications of nanoproducts, extensive risk management must not be neglected. Therefore, we have constructed a cell-based, iterative screening system to examine a variety of nanoproducts concerning their toxicity during development. The sensitivity and application of various cell-based methods were discussed and proven by applying the screening to two different nanoparticles: zinc oxide and titanium dioxide nanoparticles. They were used as benchmarks to set up our methods and to examine their effects on mammalian cell lines. Different biological processes such as cell viability, gene expression of interleukin-8 and heat shock protein 70, as well as morphology changes were investigated. Within our screening system, both nanoparticle suspensions and coatings can be tested. Electric cell impedance measurements revealed to be a good method for online monitoring of cellular behavior. The implementation of three-dimensional cell culture is essential to better mimic in vivo conditions. In conclusion, our screening system is highly efficient, cost minimizing, and reduces the need for animal studies.