WorldWideScience

Sample records for cellular uptake toxicity

  1. Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity.

    Science.gov (United States)

    Pitchaimani, Arunkumar; Nguyen, Tuyen Duong Thanh; Koirala, Mukund; Zhang, Yuntao; Aryal, Santosh

    2017-09-01

    In vitro cell-nanoparticle (NP) studies involve exposure of NPs onto the monolayer cells growing at the bottom of a culture plate, and assumed that the NPs evenly distributed for a dose-responsive effect. However, only a few proportion of the administered dose reaches the cells depending on their size, shape, surface, and density. Often the amount incubated (administered dose) is misled as a responsive dose. Herein, we proposed a cell adhesion-migration (CAM) strategy, where cells incubated with the NP coated cell culture substrate to maximize the cell-NP interaction and investigated the physiological properties of the cells. In the present study, cell adhesion and migration pattern of human breast cancer cell (MCF-7) and mouse melanoma cell (B16-F10) on cell culture substrate decorated with toxic (cetyltrimethylammonium bromide, CTAB) and biocompatible (poly (sodium 4-styrenesulphonate), PSS) gold nanoparticles (AuNPs) of different sizes (5 and 40nm) were investigated and evaluated for cellular uptake efficiency, proliferation, and toxicity. Results showed enhanced cell adhesion, migration, and nanoparticle uptake only on biocompatible PSS coated AuNP, irrespective of its size. Whereas, cytotoxic NP shows retard proliferation with reduced cellular uptake efficiency. Considering the importance of cell adhesion and migration on cellular uptake and cytotoxicity assessment of nanoparticle, CAM strategy would hold great promises in cell-NP interaction studies. Copyright © 2017. Published by Elsevier Ltd.

  2. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions

    International Nuclear Information System (INIS)

    Jain, Suneil; Coulter, Jonathan A.; Butterworth, Karl T.; Hounsell, Alan R.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; Hirst, David G.; O’Sullivan, Joe M.

    2014-01-01

    Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored. Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions. Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred. Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy

  3. In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion.

    Science.gov (United States)

    Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping

    2012-01-01

    To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on

  4. Diselenolane-mediated cellular uptake.

    Science.gov (United States)

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi; Matile, Stefan

    2018-02-21

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.

  5. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  6. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Marija Matulionyte

    2017-02-01

    Full Text Available In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS of bovine serum albumin-encapsulated (BSA-Au NCs and 2-(N-morpholino ethanesulfonic acid (MEScapped photoluminescent gold nanoclusters (Au-MES NCs were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  7. The cyto- and genotoxicity of organotin compounds is dependent on the cellular uptake capability

    International Nuclear Information System (INIS)

    Dopp, E.; Hartmann, L.M.; Recklinghausen, U. von; Florea, A.M.; Rabieh, S.; Shokouhi, B.; Hirner, A.V.; Obe, G.; Rettenmeier, A.W.

    2007-01-01

    Organotin compounds have been widely used as stabilizers and anti-fouling agents with the result that they are ubiquitously distributed in the environment. Organotins accumulate in the food chain and potential effects on human health are disquieting. It is not known as yet whether cell surface adsorption or accumulation within the cell, or indeed both is a prerequisite for the toxicity of organotin compounds. In this study, the alkylated tin derivatives monomethyltin trichloride (MMT), dimethyltin dichloride (DMT), trimethyltin chloride (TMT) and tetramethyltin (TetraMT) were investigated for cyto- and genotoxic effects in CHO-9 cells in relation to the cellular uptake. To identify genotoxic effects, induction of micronuclei (MN), chromosome aberrations (CA) and sister chromatid exchanges (SCE) were analyzed and the nuclear division index (NDI) was calculated. The cellular uptake was assessed using ICP-MS analysis. The toxicity of the tin compounds was also evaluated after forced uptake by electroporation. Our results show that uptake of the organotin compounds was generally low but dose-dependent. Only weak genotoxic effects were observed after exposure of cells to DMT and TMT. MMT and TetraMT were negative in the test systems. After forced uptake by electroporation MMT, DMT and TMT induced significant DNA damage at non-cytotoxic concentrations. The results presented here indicate a considerable toxicological potential of some organotin species but demonstrate clearly that the toxicity is modulated by the cellular uptake capability

  8. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells.

    Science.gov (United States)

    Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2017-05-01

    This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.

  9. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

    Science.gov (United States)

    Haase, A.; Tentschert, J.; Jungnickel, H.; Graf, P.; Mantion, A.; Draude, F.; Plendl, J.; Goetz, M. E.; Galla, S.; Mašić, A.; Thuenemann, A. F.; Taubert, A.; Arlinghaus, H. F.; Luch, A.

    2011-07-01

    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

  10. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

    International Nuclear Information System (INIS)

    Haase, A; Tentschert, J; Jungnickel, H; Goetz, M E; Luch, A; Graf, P; Mantion, A; Thuenemann, A F; Draude, F; Galla, S; Arlinghaus, H F; Plendl, J; Masic, A; Taubert, A

    2011-01-01

    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

  11. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    Directory of Open Access Journals (Sweden)

    Fröhlich E

    2012-11-01

    Full Text Available Eleonore FröhlichCenter for Medical Research, Medical University of Graz, Graz, AustriaAbstract: Many types of nanoparticles (NPs are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.Keywords: endocytosis, plasma membrane, lysosomes, polystyrene particles, quantum dots, dendrimers

  12. Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone

    DEFF Research Database (Denmark)

    Jing, Xiaona; Yang, Mingjun; Kasimova, Marina Robertovna

    2012-01-01

    to evaluate the effect of α-chirality in the β-peptoid residues and the presence of guanidinium groups in the α-amino acid residues on membrane interaction. The molecular properties of the peptidomimetics in solution (surface and intramolecular hydrogen bonding, aqueous diffusion rate and molecular size) were...... studied along with their adsorption to lipid bilayers, cellular uptake, and toxicity. The surface hydrogen bonding ability of the peptidomimetics reflected their adsorbed amounts onto lipid bilayers as well as with their cellular uptake, indicating the importance of hydrogen bonding for their membrane...

  13. Effect of verapamil on cellular uptake of Tc-99m MIBI and tetrofosmin on several cancer cells

    International Nuclear Information System (INIS)

    Kim, Dae Hyun; Yoo, Jung Ah; Bae, Jin Ho; Jeong, Shin Young; Suh, Myung Rang; Ahn, Byeong Cheol; Lee, Kyu Bo; Lee, Jae Tae

    2004-01-01

    Cellular uptake of 99 mTc-sestamibi (MIBI) and 99 mTc-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Cellular uptakes of Tc-99m MIBI and TF were measured in erythroleukemia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto 200 μM at 1*10 6 cells/ m l at 37.deg.C. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of 100 μM and the maximal increase at 50 μM was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7m SK-OV3 cells were decreased with verapamil treatment at a concentration over 1 μM. With a concentration of 200 μM verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with 10μM, but were also decreased with verapamil higher than 10μM, resulting 40% and 5% of baseline at 50 μM. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at 200 μM. Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased

  14. Dietary uptake of Cu sorbed to hydrous iron oxide is linked to cellular toxicity and feeding inhibition in a benthic grazer

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noele; Fuller, Christopher C.; Ringwood, Amy H.

    2016-01-01

    Whereas feeding inhibition caused by exposure to contaminants has been extensively documented, the underlying mechanism(s) are less well understood. For this study, the behavior of several key feeding processes, including ingestion rate and assimilation efficiency, that affect the dietary uptake of Cu were evaluated in the benthic grazer Lymnaea stagnalis following 4–5 h exposures to Cu adsorbed to synthetic hydrous ferric oxide (Cu–HFO). The particles were mixed with a cultured alga to create algal mats with Cu exposures spanning nearly 3 orders of magnitude at variable or constant Fe concentrations, thereby allowing first order and interactive effects of Cu and Fe to be evaluated. Results showed that Cu influx rates and ingestion rates decreased as Cu exposures of the algal mat mixture exceeded 104 nmol/g. Ingestion rate appeared to exert primary control on the Cu influx rate. Lysosomal destabilization rates increased directly with Cu influx rates. At the highest Cu exposure where the incidence of lysosomal membrane damage was greatest (51%), the ingestion rate was suppressed 80%. The findings suggested that feeding inhibition was a stress response emanating from excessive uptake of dietary Cu and cellular toxicity.

  15. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...

  16. Toxicity of pyrolysis gases from some cellular polymers

    Science.gov (United States)

    Hilado, C. J.; Machado, A. M.

    1978-01-01

    Various samples of cellular polymers were evaluated for toxicity of pyrolysis gases, using the screening test method developed at the University of San Francisco. The cellular polymer samples included polyimide, polymethacrylimide, polybismaleimide, polyurethane, polyisocyanurate, polyethylene, polychloroprene, polyvinyl chloride, polystyrene, polysiloxane, and polyphosphazene. The cellular polymers exhibited varying levels of toxicity under these test conditions. Among the rigid cellular polymers, times to death were shortest with the imide type foams and longest with polyvinyl chloride and polystyrene. Among the flexible cellular polymers, times to death were shortest with polyimide and polyester, and longest with polychloroprene and polysiloxane. Increased char yield was not necessarily associated with reduced toxicity.

  17. Temperature and irradiance influences on cadmium and zinc uptake and toxicity in a freshwater cyanobacterium, Microcystis aeruginosa

    International Nuclear Information System (INIS)

    Zeng Jin; Wang Wenxiong

    2011-01-01

    Highlights: → This study is the first to study the influences of temperature and light irradiance, two critical factors for the occurrence of cyanobacterial blooms, on metal uptake, subcellular distribution, and toxicity in a freshwater cyanobacterium commonly blooming in eutrophic lakes. → With increasing metal exposure, both cellular growth rate and photosynthesis became more sensitive to metal toxicity under elevated irradiance and temperature, primarily as a result of increased uptake and accumulation. → Cd in the metal rich granule faction increased under Cd exposure, suggesting that MRG may partially detoxify Cd in the cyanobacterial cells. → This study implies that temperature and irradiance may influence the chemical cycling of metals during cyanobacterial blooming in eutrophic freshwater ecosystems. - Abstract: Temperature and light irradiance are important factors affecting the occurrence of cyanobacterial blooms. In this study, we examined the influences of different temperatures (15, 24, and 30 ° C ) and irradiances (18, 32, and 55 μmol photons m -2 s -1 ) on the uptake and toxicity of cadmium (Cd) and zinc (Zn) in a freshwater cyanobacterium Microcystis aeruginosa. The subcellular distribution of Cd and Zn was analyzed. Enhanced growth rates were observed for the cyanobacterial cells incubated at higher temperature or irradiance conditions with lower metal concentrations. With increasing ambient Cd or Zn concentrations, both cellular growth rate and photosynthesis were significantly inhibited at elevated irradiance conditions. The observed increase in Cd and Zn toxicity might be attributed to the enhanced metal uptake and accumulation in Microcystis. Based on the intracellular Cd concentration, the 50% inhibition concentration (IC 50 ) values were higher at the higher temperature or irradiance treatment. The subcellular distribution demonstrated that Cd in the metal rich granule (MRG) faction increased with elevated [Cd 2+ ] concentration

  18. Elucidating the mechanisms of nickel compound uptake: A review of particulate and nano-nickel endocytosis and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Alexandra; Costa, Max, E-mail: Max.Costa@nyumc.org

    2012-04-01

    Nickel (Ni) is a worldwide pollutant and contaminant that humans are exposed to through various avenues resulting in multiple toxic responses — most alarming is its clear carcinogenic nature. A variety of particulate Ni compounds persist in the environment and can be distinguished by characteristics such as solubility, structure, and surface charge. These characteristics influence cellular uptake and toxicity. Some particulate forms of Ni are carcinogenic and are directly and rapidly endocytized by cells. A series of studies conducted in the 1980s observed this process, and we have reanalyzed the results of these studies to help elucidate the molecular mechanism of particulate Ni uptake. Originally the process of uptake observed was described as phagocytosis, however in the context of recent research we hypothesize that the process is macropinocytosis and/or clathrin mediated endocytosis. Primary considerations in determining the route of uptake here include calcium dependence, particle size, and inhibition through temperature and pharmacological approaches. Particle characteristics that influenced uptake include size, charge, surface characteristics, and structure. This discussion is relevant in the context of nanoparticle studies and the emerging interest in nano-nickel (nano-Ni), where toxicity assessments require a clear understanding of the parameters of particulate uptake and where establishment of such parameters is often obscured through inconsistencies across experimental systems. In this regard, this review aims to carefully document one system (particulate nickel compound uptake) and characterize its properties.

  19. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  20. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  1. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  2. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  3. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.

    Science.gov (United States)

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-06-19

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  4. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Le Thi Minh Phuc

    2017-06-01

    Full Text Available The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF on the uptake efficiency of polystyrene nanoparticles (PS NPs by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  5. Cellular Uptake and Delivery of Myeloperoxidase to Lysosomes Promote Lipofuscin Degradation and Lysosomal Stress in Retinal Cells*

    Science.gov (United States)

    Yogalingam, Gouri; Lee, Amanda R.; Mackenzie, Donald S.; Maures, Travis J.; Rafalko, Agnes; Prill, Heather; Berguig, Geoffrey Y.; Hague, Chuck; Christianson, Terri; Bell, Sean M.; LeBowitz, Jonathan H.

    2017-01-01

    Neutrophil myeloperoxidase (MPO) catalyzes the H2O2-dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N-retinylidene-N-retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N-retinylidene-N-retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death. PMID:28115520

  6. Cellular Uptake and Delivery of Myeloperoxidase to Lysosomes Promote Lipofuscin Degradation and Lysosomal Stress in Retinal Cells.

    Science.gov (United States)

    Yogalingam, Gouri; Lee, Amanda R; Mackenzie, Donald S; Maures, Travis J; Rafalko, Agnes; Prill, Heather; Berguig, Geoffrey Y; Hague, Chuck; Christianson, Terri; Bell, Sean M; LeBowitz, Jonathan H

    2017-03-10

    Neutrophil myeloperoxidase (MPO) catalyzes the H 2 O 2 -dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N -retinylidene- N -retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N -retinylidene- N -retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Influence of extra-cellular and intra-cellular acting thiol oxidants on the 45calcium uptake by the islets of Langerhans of the rat

    International Nuclear Information System (INIS)

    Haegele, R.G.

    1981-01-01

    The glucose-stimulated calcium uptake by the islets of Langerhans is dependent on the intra-cellular GSH/GSSG ratios. The inhibition of calcium uptake is not the consequence of a direct oxidation of membrane-fixed thiol groups. In contrast, direct oxidation of extra cellular thiols leads to an increase in calcium uptake when intra-cellular oxidation is simultaneously prevented. Since this effect only occurs at high intra-cellular GSH/GSSG ratios it can be assumed that the redox state of extra-cellular thiols is dependent on the redox state of the intra-cellular GSH/GSSG ratios. These findings support the theory that the oxidation of extra-cellular thiols by thiol oxidants leads to an increase in calcium uptake and that the extent of uptake is higher, the more the redox state of the extra-cellular thiols tends towards the reduced state prior to oxidation. (orig./MG) [de

  8. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Woo, Kyoungja; Moon, Jihyung; Choi, Kyu-Sil; Seong, Tae-Yeon; Yoon, Kwon-Ha

    2009-01-01

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F 5 -Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F 5 -LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  9. Selective uptake of a toxic lipophilic anthracycline derivative by the low-density lipoprotein receptor pathway in cultured fibroblasts

    International Nuclear Information System (INIS)

    Vitols, S.G.; Masquelier, M.; Peterson, C.O.

    1985-01-01

    N-(N-Retinoyl)-L-leucyldoxorubicin 14-linoleate (r11-DOX), a new lipophilic derivative of doxorubicin, was synthesized and incorporated into low-density lipoprotein (LDL). The drug-LDL complex contained 100- 200 drug molecules/LDL particle. When cultured normal human fibroblasts were incubated with 125 I-LDL-incorporated drug, there was a perfect correlation between the cellular uptake plus degradation of 125 I-LDL and the cellular drug accumulation. The presence of excess native LDL inhibited the cellular uptake and degradation of 125 I-LDL and the drug accumulation to the same extent. In contrast, methylated LDL, which does not bind to the LDL receptor, did not alter the cellular uptake and degradation of 125 I-LDL nor did it alter the drug accumulation. When LDL receptor negative fibroblasts from a patient with the homozygous form of familial hypercholesterolemia were incubated with the drug- 125 I-LDL complex, cellular drug accumulation was very low. The drug-LDL complex inhibited the growth of cultured normal human fibroblasts. The drug incorporated into methylated LDL was much less toxic. These findings suggest that r11-DOX incorporated into LDL is delivered to cells selectively by the LDL receptor pathway. This might be of value in the treatment of leukemia, since it has been previously found that leukemic cells exhibit higher LDL receptor activity than white blood cells and bone marrow cells from healthy subjects

  10. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    Science.gov (United States)

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  11. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyoungja [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: kjwoo@kist.re.kr; Moon, Jihyung [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Choi, Kyu-Sil [Division of Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Yoon, Kwon-Ha [Institute for Radiological Imaging Science, Wonkwang University School of Medicine, 344-2, Shinyong, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2009-05-15

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F{sub 5}-Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F{sub 5}-LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  12. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    International Nuclear Information System (INIS)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi

    2014-01-01

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation

  13. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Sourav

    2012-04-01

    Full Text Available Abstract Background Polymer nanoparticles (PNP are becoming increasingly important in nanomedicine and food-based applications. Size and surface characteristics are often considered to be important factors in the cellular interactions of these PNP, although systematic investigations on the role of surface properties on cellular interactions and toxicity of PNP are scarce. Results Fluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm and surface charges (positive and negative were synthesized, characterized and studied for uptake and cytotoxicity in NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP45 (45 nm showed a higher cytotoxicity compared to the positive bigger PNP90 (90 nm particles including reduction in mitochondrial membrane potential (ΔΨm, induction of reactive oxygen species (ROS production, ATP depletion and TNF-α release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential (ΔΨm, uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning microscopy (CLSM. Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP, caveolin (for negative PNP and mannose receptors (for hydroxylated PNP were found with smaller PNP45 showing stronger interactions with the receptors than bigger PNP90. Conclusions The size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different surface charges play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors (clathrin, caveolin and mannose leading to cellular internalization were observed to depend on

  14. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake

    Directory of Open Access Journals (Sweden)

    Telford William G

    2010-06-01

    Full Text Available Abstract Background The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. Results We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC, we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. Conclusions The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

  15. Metal uptake and acute toxicity in zebrafish: Common mechanisms across multiple metals

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca [Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1 (Canada); Wood, Chris M. [Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1 (Canada)

    2011-10-15

    All metals tested reduced calcium uptake in zebrafish larvae. However, it was whole body sodium loss that was functionally related to toxicity. The zebrafish larvae acute toxicity assay save time, space and resources. - Abstract: Zebrafish larvae (Danio rerio) were used to examine the mechanisms of action and acute toxicities of metals. Larvae had similar physiological responses and sensitivities to waterborne metals as adults. While cadmium and zinc have previously been shown to reduce Ca{sup 2+} uptake, copper and nickel also decreased Ca{sup 2+} uptake, suggesting that the epithelial transport of all these metals is through Ca{sup 2+} pathways. However, exposure to cadmium, copper or nickel for up to 48 h had little or no effect on total whole body Ca{sup 2+} levels, indicating that the reduction of Ca{sup 2+} uptake is not the acute toxic mechanism of these metals. Instead, mortalities were effectively related to whole body Na{sup +}, which decreased up to 39% after 48 h exposures to different metals around their respective 96 h LC50s. Decreases in whole body K{sup +} were also observed, although they were not as pronounced or frequent as Na{sup +} losses. None of the metals tested inhibited Na{sup +} uptake in zebrafish (Na{sup +} uptake was in fact increased with exposure) and the observed losses of Na{sup +}, K{sup +}, Ca{sup 2+} and Mg{sup 2+} were proportional to the ionic gradients between the plasma and water, indicating diffusive ion loss with metal exposure. This study has shown that there is a common pathway for metal uptake and a common mechanism of acute toxicity across groups of metals in zebrafish. The disruption of ion uptake accompanying metal exposure does not appear to be responsible for the acute toxicity of metals, as has been previously suggested, but rather the toxicity is instead due to total ion loss (predominantly Na{sup +}).

  16. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    Science.gov (United States)

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Role of Extracellular Binding Proteins in the Cellular Uptake of Drugs: Impact on Quantitative In Vitro-to-In Vivo Extrapolations of Toxicity and Efficacy in Physiologically Based Pharmacokinetic-Pharmacodynamic Research.

    Science.gov (United States)

    Poulin, Patrick; Burczynski, Frank J; Haddad, Sami

    2016-02-01

    A critical component in the development of physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) models for estimating target organ dosimetry in pharmacology and toxicology studies is the understanding of the uptake kinetics and accumulation of drugs and chemicals at the cellular level. Therefore, predicting free drug concentrations in intracellular fluid will contribute to our understanding of concentrations at the site of action in cells in PBPK/PD research. Some investigators believe that uptake of drugs in cells is solely driven by the unbound fraction; conversely, others argue that the protein-bound fraction contributes a significant portion of the total amount delivered to cells. Accordingly, the current literature suggests the existence of a so-called albumin-mediated uptake mechanism(s) for the protein-bound fraction (i.e., extracellular protein-facilitated uptake mechanisms) at least in hepatocytes and cardiac myocytes; however, such mechanism(s) and cells from other organs deserve further exploration. Therefore, the main objective of this present study was to discuss further the implication of potential protein-facilitated uptake mechanism(s) on drug distribution in cells under in vivo conditions. The interplay between the protein-facilitated uptake mechanism(s) and the effects of a pH gradient, metabolism, transport, and permeation limitation potentially occurring in cells was also discussed, as this should violate the basic assumption on similar free drug concentration in cells and plasma. This was made because the published equations used to calculate drug concentrations in cells in a PBPK/PD model did not consider potential protein-facilitated uptake mechanism(s). Consequently, we corrected some published equations for calculating the free drug concentrations in cells compared with plasma in PBPK/PD modeling studies, and we proposed a refined strategy for potentially performing more accurate quantitative in vitro-to-in vivo extrapolations

  18. Physical Property Control on the Cellular Uptake Pathway and Spatial Distribution of Nanoparticles in Cells.

    Science.gov (United States)

    Ahn, Sungsook; Seo, Eunseok; Kim, Ki Hean; Lee, Sang Joon

    2015-06-01

    Nanoparticles have been developed in broad biomedical research in terms of effective cellular interactions to treat and visualize diseased cells. Considering the charge and polar functional groups of proteins that are embedded in cellular membranes, charged nanoparticles have been strategically developed to enhance electrostatic cellular interactions. In this study, we show that cellular uptake efficiency, pathway, and spatial distribution of gold nanoparticles in a cell are significantly modulated based on the surface condition of gold nanoparticles and human cancer cells that were tuned by controlling the pH of the medium and by introducing an electron beam. Cellular uptake efficiency is increased when electrostatic attraction is induced between the cells and the gold nanoparticles. Cell surface modification changes the cellular uptake pathways of the gold nanoparticles and concentrates the gold nanoparticles at the membrane region. Surface modification of the gold nanoparticles also contributes to deep penetration and homogeneous spatial distributions in a cell.

  19. Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity.

    Directory of Open Access Journals (Sweden)

    Christopher J Folts

    2016-12-01

    Full Text Available Neurodegenerative lysosomal storage disorders (LSDs are severe and untreatable, and mechanisms underlying cellular dysfunction are poorly understood. We found that toxic lipids relevant to three different LSDs disrupt multiple lysosomal and other cellular functions. Unbiased drug discovery revealed several structurally distinct protective compounds, approved for other uses, that prevent lysosomal and cellular toxicities of these lipids. Toxic lipids and protective agents show unexpected convergence on control of lysosomal pH and re-acidification as a critical component of toxicity and protection. In twitcher mice (a model of Krabbe disease [KD], a central nervous system (CNS-penetrant protective agent rescued myelin and oligodendrocyte (OL progenitors, improved motor behavior, and extended lifespan. Our studies reveal shared principles relevant to several LSDs, in which diverse cellular and biochemical disruptions appear to be secondary to disruption of lysosomal pH regulation by specific lipids. These studies also provide novel protective strategies that confer therapeutic benefits in a mouse model of a severe LSD.

  20. Enhancing the cellular uptake of Py–Im polyamides through next-generation aryl turns

    OpenAIRE

    Meier, Jordan L.; Montgomery, David C.; Dervan, Peter B.

    2012-01-01

    Pyrrole–imidazole (Py–Im) hairpin polyamides are a class of programmable, sequence-specific DNA binding oligomers capable of disrupting protein–DNA interactions and modulating gene expression in living cells. Methods to control the cellular uptake and nuclear localization of these compounds are essential to their application as molecular probes or therapeutic agents. Here, we explore modifications of the hairpin γ-aminobutyric acid turn unit as a means to enhance cellular uptake and biologica...

  1. Uptake, translocation, and toxicity of gold nanorods in maize

    Science.gov (United States)

    Moradi Shahmansouri, Nastaran

    Nanomaterials are widely used in many different products, such as electronics, cosmetics, industrial goods, biomedical uses, and other material applications. The heavy emission of nanomaterials into the environment has motived increasing concern regarding the effects on ecosystems, food chains, and, human health. Plants can tolerate a certain amount of natural nanomaterials, but large amounts of ENMs released from a variety of industries could be toxic to plants and possibly threaten the ecosystem. Employing phytoremediation as a contamination treatment method may show promise. However a pre-requisite to successful treatment is a better understanding of the behavior and effects of nanomaterials within plant systems. This study is designed to investigate the uptake, translocation, bioavailability, and toxicity of gold nanorods in maize plants. Maize is an important food and feed crop that can be used to understand the potential hazardous effects of nanoparticle uptake and distribution in the food chain. The findings could be an important contribution to the fields of phytoremediation, agri-nanotechnology, and nanoparticle toxicity on plants. In the first experiment, hydroponically grown maize seedlings were exposed to similar doses of commercial non-coated gold nanorods in three sizes, 10x34 nm, 20x75 nm, and 40x96 nm. The three nanorod species were suspended in solutions at concentrations of 350 mg/l, 5.8 mg/l, and 14 mg/l, respectively. Maize plants were exposed to all three solutions resulting in considerably lower transpiration and wet biomass than control plants. Likewise, dry biomass was reduced, but the effect is less pronounced than that of transpiration and wet biomass. The reduced transpiration and water content, which eventually proved fatal to exposed plants, were most likely a result of toxic effect of gold nanorod, which appeared to physically hinder the root system. TEM images proved that maize plants can uptake gold particles and accumulate them in

  2. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    Science.gov (United States)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  3. Poly-L-arginine: Enhancing Cytotoxicity and Cellular Uptake of Doxorubicin and Necrotic Cell Death.

    Science.gov (United States)

    Movafegh, Bahareh; Jalal, Razieh; Mohammadi, Zobeideh; Aldaghi, Seyyede Araste

    2018-04-11

    Cell resistance to doxorubicin and its toxicity to healthy tissue reduce its efficiency. The use of cell penetrating peptides as drug delivery system along with doxorubicin is a strategy to reduce its side effects. In this study, the influence of poly-L-arginine on doxorubicin cytotoxicity, its cellular uptake and doxorubicin-induced apoptosis on human prostate cancer DU145 cells are assessed. The cytotoxicity of doxorubicin and poly-L-arginine, alone and in combination, in DU145 cells was evaluated at different exposure times using MTT assay. The influence of poly-L-arginine on doxorubicin delivery into cells was evaluated by fluorescence microscopy and ultraviolet spectroscopy. DAPI and ethidium bromide-acridine orange stainings, flow cytometry using annexin V/propidium iodide, western blot analysis with anti-p21 antibody and caspase-3 activity were used to examine the influence of poly-L-arginine on doxorubicin-induced cell death. Poly-L-arginine had no cytotoxicity at low concentrations and short exposure times. Poly-L-arginine increased the cytotoxic effect of doxorubicin in DU145 cells in a time-dependent manner. But no significant reduction was found in HFF cell viability. Poly-L-arginine seems to facilitate doxorubicin uptake and increase its intracellular concentration. 24 h combined treatment of cells with doxorubicin (0.5 μM) and poly-L-arginine (1 μg ml-1) caused a small increase in doxorubicin-induced apoptosis and significant elevated necrosis in DU145 cells as compared to each agent alone. Conlusion: Our results indicate that poly-L-arginine at lowest and highest concentrations act as proliferation-inducing and antiproliferative agents, respectively. Between these concentrations, poly-L-arginine increases the cellular uptake of doxorubicin and its cytotoxicity through induction of necrosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Wang, Thomas T Y; Wang, Qin

    2013-08-07

    Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS)-stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with different zein/CAS mass ratios. The prepared nanoparticles demonstrated good stabilities to maintain particle size (120-140 nm) in cell culture medium and HBSS buffer at 37 °C. The nanoparticles showed no cytotoxicity for Caco-2 cells for 72 h. CAS not only significantly enhanced cell uptake of zein nanoparticles in a concentration- and time-dependent manner but also remarkably improved epithelial transport through Caco-2 cell monolayer. The cell uptake of zein-CAS nanoparticles indicated an energy-dependent endocytosis process as evidenced by cell uptake under blocking conditions, that is, 4 °C, sodium azide, and colchicine. Fluorescent microscopy clearly showed the internalization of zein-CAS nanoparticles. This study may shed some light on the cellular evaluations of hydrophobic protein nanoparticles.

  5. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    International Nuclear Information System (INIS)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng; Li, Chung-Leung

    2009-01-01

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  6. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Li, Chung-Leung, E-mail: hcchang@po.sinica.edu.t, E-mail: chungL@gate.sinica.edu.t [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China)

    2009-10-21

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  7. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  8. Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2016-07-01

    Full Text Available Evodiamine (EVO and rutaecarpine (RUT are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds.

  9. Zinc-arsenic interactions in soil: Solubility, toxicity and uptake.

    Science.gov (United States)

    Kader, Mohammed; Lamb, Dane T; Wang, Liang; Megharaj, Mallavarapu; Naidu, Ravi

    2017-11-01

    Arsenic (As) and zinc (Zn) are common co-contaminants in mining impacted soils. Their interaction on solubility and toxicity when present concurrently is not well understood in natural systems. The aim of this study was to observe their interaction in solubility (soil-solution), bioaccumulation (shoot uptake) and toxicity to cucumber (Cucumis sativa L) conducting 4 weeks pot study in 5 different soils spiked with As (0, 2, 4, 8 to 1024 mg kg -1 ) individually and with Zn at two phytotoxic doses. The As pore-water concentration was significantly reduced (df = 289, Adjusted R 2  = 0.84, p soils. This outcome may be due to adsorption/surface precipitation or tertiary bridging complexation. No homogenous precipitation of zinc arsenate could be established using electron microscopy, XRD or even equilibrium calculations. For bioaccumulation phase, no significant effect of Zn on As uptake was observed except acidic MG soil whereas, Zn uptake was significantly reduced (p soil. The synergistic response (more than additive) was predominant in this soil for a wide range of inhibition concentration (0-80%) at both Zn EC10 and EC50 levels. Since additive response is mostly considered in risk assessment for mixtures, precautions should be implemented for assessment of toxicity for As-Zn mixture in acidic soil due to their synergistic response in some soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of a phospholipase A2 inhibitor on uptake and toxicity of liposomes containing plant phosphatidylinositol

    International Nuclear Information System (INIS)

    Jett, M.; Alving, C.R.

    1986-01-01

    Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing 14 C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A 2 (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. They tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide did not alter cellular uptake of the plant PI liposomes. Inhibitors of lipoxygenase formation, such as indomethacin, also did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A 2 , decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. These data are compatible with the hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A 2

  11. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type.

    Science.gov (United States)

    Kettler, Katja; Veltman, Karin; van de Meent, Dik; van Wezel, Annemarie; Hendriks, A Jan

    2014-03-01

    The increased application of nanoparticles (NPs) is increasing the risk of their release into the environment. Although many toxicity studies have been conducted, the environmental risk is difficult to estimate, because uptake mechanisms are often not determined in toxicity studies. In the present study, the authors review dominant uptake mechanisms of NPs in cells, as well as the effect of NP properties, experimental conditions, and cell type on NP uptake. Knowledge of NP uptake is crucial for risk assessment and is essential to predict the behavior of NPs based on their physical-chemical properties. Important uptake mechanisms for eukaryotic cells are macropinocytosis, receptor-mediated endocytosis, and phagocytosis in specialized mammalian cells. The studies reviewed demonstrate that uptake into nonphagocytic cells depends strongly on NP size, with an uptake optimum at an NP diameter of approximately 50 nm. Increasing surface charges, either positive or negative, have been shown to increase particle uptake in comparison with uncharged NPs. Another important factor is the degree of (homo-) aggregation. Results regarding shape have been ambiguous. Difficulties in the production of NPs, with 1 property changed at a time, call for a full characterization of NP properties. Only then will it be possible to draw conclusions as to which property affected the uptake. © 2013 SETAC.

  12. Cellular uptake of fluorophore-labeled glyco-DNA–gold nanoparticles

    International Nuclear Information System (INIS)

    Witten, Katrin G.; Ruff, Julie; Mohr, Anne; Görtz, Dieter; Recker, Tobias; Rinis, Natalie; Rech, Claudia; Elling, Lothar; Müller-Newen, Gerhard; Simon, Ulrich

    2013-01-01

    DNA-functionalized gold nanoparticles (AuNP–DNA) were hybridized with complementary di-N-acetyllactosamine-(di-LacNAc, [3Gal(β1-4)GlcNAc(β1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP–DNA–di-LacNAc. While AuNP–DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered

  13. Cellular uptake of fluorophore-labeled glyco-DNA-gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Katrin G.; Ruff, Julie [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany); Mohr, Anne; Goertz, Dieter; Recker, Tobias; Rinis, Natalie [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Rech, Claudia; Elling, Lothar [RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering (Germany); Mueller-Newen, Gerhard [RWTH Aachen University, Institute of Biochemistry and Molecular Biology, University Hospital Aachen (Germany); Simon, Ulrich, E-mail: ulrich.simon@ac.rwth-aachen.de [RWTH Aachen University, Institute of Inorganic Chemistry and JARA - Fundamentals of Future Information Technology (Germany)

    2013-10-15

    DNA-functionalized gold nanoparticles (AuNP-DNA) were hybridized with complementary di-N-acetyllactosamine-(di-LacNAc, [3Gal({beta}1-4)GlcNAc({beta}1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP-DNA-di-LacNAc. While AuNP-DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered.

  14. Release Properties and Cellular Uptake in Caco-2 Cells of Size-Controlled Chitosan Nanoparticles.

    Science.gov (United States)

    Je, Hyun Jeong; Kim, Eun Suh; Lee, Ji-Soo; Lee, Hyeon Gyu

    2017-12-20

    The influences of particle size on the physicochemical, release, and cellular uptake properties of chitosan nanoparticles (CSNPs) were investigated. Ionotropic CSNPs of different sizes (200-1000 nm) loaded with two model core materials (resveratrol or coumarin-6) were prepared using tripolyphosphate and carrageenan as cross-linkers. With an increase of particle size, zeta potential (34.6 ± 0.5 to 51.1 ± 0.9) and entrapment efficiency (14.9 ± 1.4 to 40.9 ± 1.9) of the CSNPs were significantly (p cellular uptake of CSNPs were significantly increased from 3.70 ± 0.03 to 5.24 ± 0.20 with an increase of particle size from 200 to 600 nm, whereas those significantly decreased from 5.24 ± 0.20 to 4.55 ± 0.2 for particles larger than 600 nm in transwell assay. Moreover, much the same uptake patterns were also observed in confocal microscopy and flow cytometry. Investigation of cellular uptake of CSNPs revealed positive correlations between ZP and EE and indicated the effects of complex factors of nanoparticles other than size. These results provide a better understanding of CSNPs absorption and raises the possibility of controlling alternative nanoparticle properties to enhance bioavailability.

  15. Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode,

    Directory of Open Access Journals (Sweden)

    Hyun-Jeong Eom

    2015-03-01

    Full Text Available Objectives In this study, the effect of tube length and outer diameter (OD size of hydroxylated-multi walled carbon nanotubes (OH-MWCNTs on their uptake and toxicity was investigated in the nematode Caenorhabditis elegans using a functional mutant analysis. Methods The physicochemical properties of three different OH-MWCNTs were characterized. Uptake and toxicity were subsequently investigated on C. elegans exposed to MWCNTs with different ODs and tube lengths. Results The results of mutant analysis suggest that ingestion is the main route of MWCNTs uptake. We found that OH-MWCNTs with smaller ODs were more toxic than those with larger ODs, and OH-MWCNTs with shorter tube lengths were more toxic than longer counterparts to C. elegans. Conclusions Overall the results suggest the aspect ratio affects the toxicity of MWCNTs in C. elegans. Further thorough study on the relationship between physicochemical properties and toxicity needs to be conducted for more comprehensive understanding of the uptake and toxicity of MWCNTs.

  16. Cellular Uptake of Tile-Assembled DNA Nanotubes.

    Science.gov (United States)

    Kocabey, Samet; Meinl, Hanna; MacPherson, Iain S; Cassinelli, Valentina; Manetto, Antonio; Rothenfusser, Simon; Liedl, Tim; Lichtenegger, Felix S

    2014-12-30

    DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP -expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i) DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii) Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii) Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.

  17. Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells.

    Science.gov (United States)

    Vaidyanathan, Sriram; Kaushik, Milan; Dougherty, Casey; Rattan, Rahul; Goonewardena, Sascha N; Banaszak Holl, Mark M; Monano, Janet; DiMaggio, Stassi

    2016-09-12

    Neutral generation 3 poly(amidoamine) dendrimers were labeled with Oregon Green 488 (G3-OG n ) to obtain materials with controlled fluorophore:dendrimer ratios (n = 1-2), a mixture containing mostly 3 dyes per dendrimer, a mixture containing primarily 4 or more dyes per dendrimer ( n = 4+), and a stochastic mixture ( n = 4 avg ). The UV absorbance of the dye conjugates increased linearly as n increased and the fluorescence emission decreased linearly as n increased. Cellular uptake was studied in RAW cells and HEK 293A cells as a function of the fluorophore:dendrimer ratio (n). The cellular uptake of G3-OG n ( n = 3, 4+, 4 avg ) into RAW cells was significantly lower than G3-OG n ( n = 1, 2). The uptake of G3-OG n ( n = 3, 4+, 4 avg ) into HEK 293A cells was not significantly different from G3-OG 1 . Thus, the fluorophore:dendrimer ratio was observed to change the extent of uptake in the macrophage uptake mechanism but not in the HEK 293A cell. This difference in endocytosis indicates the presence of a pathway in the macrophage that is sensitive to hydrophobicity of the particle.

  18. The minute virus of mice exploits different endocytic pathways for cellular uptake

    International Nuclear Information System (INIS)

    Garcin, Pierre O.; Panté, Nelly

    2015-01-01

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake

  19. The minute virus of mice exploits different endocytic pathways for cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2015-08-15

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.

  20. Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jin Cheng [Fourth Military Medical University, Department of Radiation Medicine (China); Bai Ling [Xi' an Gaoxin Hospital, Department of Clinical Laboratories (China); Wu Hong [Fourth Military Medical University, Department of Pharmacy (China); Teng Zenghui [Fourth Military Medical University, Department of Pharmacology (China); Guo Guozhen, E-mail: guozhengg@tom.co [Fourth Military Medical University, Department of Radiation Medicine (China); Chen Jingyuan, E-mail: jy_chen@fmmu.edu.c [Fourth Military Medical University, Department of Occupational and Environmental Health (China)

    2008-08-15

    SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.

  1. Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles

    International Nuclear Information System (INIS)

    Jin Cheng; Bai Ling; Wu Hong; Teng Zenghui; Guo Guozhen; Chen Jingyuan

    2008-01-01

    SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.

  2. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    Science.gov (United States)

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  3. The impact of aminated surface ligands and silica shells on the stability, uptake, and toxicity of engineered silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bonventre, Josephine A.; Pryor, Joseph B.; Harper, Bryan J.; Harper, Stacey L., E-mail: stacey.harper@oregonstate.edu [Oregon State University, Department of Environmental and Molecular Toxicology (United States)

    2014-12-15

    Inherent nanomaterial characteristics, composition, surface chemistry, and primary particle size, are known to impact particle stability, uptake, and toxicity. Nanocomposites challenge our ability to predict nanoparticle reactivity in biological systems if they are composed of materials with contrasting relative toxicities. We hypothesized that toxicity would be dominated by the nanoparticle surface (shell vs core), and that modulating the surface ligands would have a direct impact on uptake. We exposed developing zebrafish (Danio rerio) to a series of ∼70 nm amine-terminated silver nanoparticles with silica shells (AgSi NPs) to investigate the relative influence of surface amination, composition, and size on toxicity. Like-sized aminated AgSi and Si NPs were more toxic than paired hydroxyl-terminated nanoparticles; however, both AgSi NPs were more toxic than the Si NPs, indicating a significant contribution of the silver core to the toxicity. Incremental increases in surface amination did not linearly increase uptake and toxicity, but did have a marked impact on dispersion stability. Mass-based exposure metrics initially supported the hypothesis that smaller nanoparticles (20 nm) would be more toxic than larger particles (70 nm). However, surface area-based metrics revealed that toxicity was independent of size. Our studies suggest that nanoparticle surfaces play a critical role in the uptake and toxicity of AgSi NPs, while the impact of size may be a function of the exposure metric used. Overall, uptake and toxicity can be dramatically altered by small changes in surface functionalization or exposure media. Only after understanding the magnitude of these changes, can we begin to understand the biologically available dose following nanoparticle exposure.

  4. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity

    DEFF Research Database (Denmark)

    Saei, Amir Ata; Yazdani, Mahdieh; Lohse, Samuel E.

    2017-01-01

    can greatly enhance subsequent therapeutic effects of NPs while diminishing their adverse side effects. In this review, we will focus on the effect of surface functionality on the cellular uptake and the transport of NPs by various subcellular processes.......Engineered nanoparticles (NPs) have opened new frontiers in therapeutics and diagnostics in recent years. The surface functionality of these nanoparticles often predominates their interactions with various biological components of human body, and proper selection or control of surface functionality...

  5. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  6. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT in living organisms.

    Directory of Open Access Journals (Sweden)

    Boyin Liu

    Full Text Available Different toxicity tests for carbon nanotubes (CNT have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery.

  7. Cellular uptake of radioiodine delivered by trastuzumab can be modified by the addition of epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Erika; Steffen, Ann-Charlott; Sundberg, Aasa L.; Carlsson, Joergen [Uppsala University, Division of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Persson, Mikael [Uppsala University, Division of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Uppsala University, Division of Experimental Urology, Department of Surgical Sciences, Rudbeck Laboratory, Uppsala (Sweden); Glimelius, Bengt [Uppsala University, Division of Oncology, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden)

    2005-07-01

    The purpose of this study was to analyse whether non-radiolabelled epidermal growth factor (EGF) can modify the cellular uptake of {sup 125}I when delivered as [{sup 125}I]trastuzumab. {sup 125}I was used as a marker for the diagnostically and therapeutically more interesting isotopes {sup 123}I (SPECT), {sup 124}I (PET) and {sup 131}I (therapy). The cell-associated radioactivity was measured in squamous carcinoma A431 cells following addition of [{sup 125}I]trastuzumab. Different concentrations of [{sup 125}I]trastuzumab and unlabelled EGF were used, and the total, membrane-bound and internalised radioactivity was measured. We also analysed how EGF and trastuzumab affected the cell growth. It was generally found that the cellular {sup 125}I uptake was decreased by the addition of EGF when [{sup 125}I]trastuzumab was added for short incubation times. However, if the incubation times were longer, EGF increased the {sup 125}I uptake. This shift came earlier when higher [{sup 125}I]trastuzumab concentrations were applied. The addition of EGF also influenced cell proliferation, and concentrations above 10 ng/ml reduced cell growth by approximately 20% after 24 h of incubation. By adding unlabelled EGF, it was possible to modify the cellular uptake of [{sup 125}I]trastuzumab. This points towards new approaches for the modification of radionuclide uptake in EGFR- and HER2-positive tumours. (orig.)

  8. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seunghyon [Seoul National University, School of Mechanical and Aerospace Engineering (Korea, Republic of); Kim, Ji-Eun [Korea Research Institute of Standard and Science, Center for NanoSafety Metrology, Division of Convergence Technology (Korea, Republic of); Kim, Daegyu [LG Electronics (Korea, Republic of); Woo, Chang Gyu [Korea Institute of Machinery and Materials, Environmental and Energy Systems Research Division (Korea, Republic of); Pikhitsa, Peter V. [Seoul National University, School of Mechanical and Aerospace Engineering (Korea, Republic of); Cho, Myung-Haing, E-mail: mchotox@snu.ac.kr [Seoul National University, Laboratory of Toxicology, College of Veterinary Medicine (Korea, Republic of); Choi, Mansoo, E-mail: mchoi@snu.ac.kr [Seoul National University, School of Mechanical and Aerospace Engineering (Korea, Republic of)

    2015-09-15

    The cellular toxicity of multi-walled carbon nanotubes (MWCNTs) and onion-like shell-shaped carbon nanoparticles (SCNPs) was investigated by analyzing the comparative cell viability. For the reasonable comparison, physicochemical characteristics were controlled thoroughly such as crystallinity, carbon bonding characteristic, hydrodynamic diameter, and metal contents of the particles. To understand relation between cellular toxicity of the particles and generation of reactive oxygen species (ROS), we measured unpaired singlet electrons of the particles and intracellular ROS, and analyzed cellular toxicity with/without the antioxidant N-acetylcysteine (NAC). Regardless of the presence of NAC, the cellular toxicity of SCNPs was found to be lower than that of MWCNTs. Since both particles show similar crystallinity, hydrodynamic size, and Raman signal with negligible contribution of remnant metal particles, the difference in cell viability would be ascribed to the difference in morphology, i.e., spherical shape (aspect ratio of one) for SCNP and elongated shape (high aspect ratio) for MWCNT.

  9. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles

    International Nuclear Information System (INIS)

    Kang, Seunghyon; Kim, Ji-Eun; Kim, Daegyu; Woo, Chang Gyu; Pikhitsa, Peter V.; Cho, Myung-Haing; Choi, Mansoo

    2015-01-01

    The cellular toxicity of multi-walled carbon nanotubes (MWCNTs) and onion-like shell-shaped carbon nanoparticles (SCNPs) was investigated by analyzing the comparative cell viability. For the reasonable comparison, physicochemical characteristics were controlled thoroughly such as crystallinity, carbon bonding characteristic, hydrodynamic diameter, and metal contents of the particles. To understand relation between cellular toxicity of the particles and generation of reactive oxygen species (ROS), we measured unpaired singlet electrons of the particles and intracellular ROS, and analyzed cellular toxicity with/without the antioxidant N-acetylcysteine (NAC). Regardless of the presence of NAC, the cellular toxicity of SCNPs was found to be lower than that of MWCNTs. Since both particles show similar crystallinity, hydrodynamic size, and Raman signal with negligible contribution of remnant metal particles, the difference in cell viability would be ascribed to the difference in morphology, i.e., spherical shape (aspect ratio of one) for SCNP and elongated shape (high aspect ratio) for MWCNT

  10. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  11. Acute silver toxicity in aquatic animals is a function of sodium uptake rate

    DEFF Research Database (Denmark)

    Bianchini, A.; Grosell, Martin Hautopp; Gregory, S.

    2002-01-01

    -specific surface area of the gills depends on animal body mass; and (iv) the gill surface is also the major site of Na+ loss by diffusion, we hypothesized that whole body Na+ uptake rate (i.e., turnover rate) and secondarily body mass would be good predictors of acute silver toxicity. Results obtained from...... toxicological (LC50 of AgNO3) and physiological (22Na uptake rate) tests performed on juvenile fish (rainbow trout, Oncorhynchus mykiss), early juvenile and adult crayfish (Cambarus diogenes diogenes), and neonate and adult daphnids (Daphnia magna) in moderately hard water of constant quality support the above...... hypothesis. Therefore, sensitivity to AgNO3, in terms of either total measured silver or free Ag+, was reliably predicted from the whole body Na+ uptake rate in animals with body mass ranging over 6 orders of magnitude (from micrograms to grams). A positive log-log correlation between acute AgNO3 toxicity...

  12. Uptake of dissolved inorganic and organic nitrogen by the benthic toxic dinoflagellate Ostreopsis cf. ovata.

    Science.gov (United States)

    Jauzein, Cécile; Couet, Douglas; Blasco, Thierry; Lemée, Rodolphe

    2017-05-01

    Environmental factors that shape dynamics of benthic toxic blooms are largely unknown. In particular, for the toxic dinoflagellate Ostreopsis cf. ovata, the importance of the availability of nutrients and the contribution of the inorganic and organic pools to growth need to be quantified in marine coastal environments. The present study aimed at characterizing N-uptake of dissolved inorganic and organic sources by O. cf. ovata cells, using the 15 N-labelling technique. Experiments were conducted taking into account potential interactions between nutrient uptake systems as well as variations with the diel cycle. Uptake abilities of O. cf. ovata were parameterized for ammonium (NH 4 + ), nitrate (NO 3 - ) and N-urea, from the estimation of kinetic and inhibition parameters. In the range of 0 to 10μmolNL -1 , kinetic curves showed a clear preference pattern following the ranking NH 4 + >NO 3 - >N-urea, where the preferential uptake of NH 4 + relative to NO 3 - was accentuated by an inhibitory effect of NH 4 + concentration on NO 3 - uptake capabilities. Conversely, under high nutrient concentrations, the preference for NH 4 + relative to NO 3 - was largely reduced, probably because of the existence of a low-affinity high capacity inducible NO 3 - uptake system. Ability to take up nutrients in darkness could not be defined as a competitive advantage for O. cf. ovata. Species competitiveness can also be defined from nutrient uptake kinetic parameters. A strong affinity for NH 4 + was observed for O. cf. ovata cells that may partly explain the success of this toxic species during the summer season in the Bay of Villefranche-sur-mer (France). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. ZnO nanofluids for the improved cytotoxicity and cellular uptake of doxorubicin

    Directory of Open Access Journals (Sweden)

    Safoura Soleymani

    2018-01-01

    Full Text Available Objective(s: Combination anticancer therapy holds promise for improving the therapeutic efficacy of chemotherapy drugs such as doxorubicin (DOX as well as decreasing their dose-limiting side effects. Overcoming the side effects of doxorubicin (DOX is a major challenge to the effective treatment of cancer. Zinc oxide nanoparticles (ZnO NPs are emerging as potent tools for a wide variety of biomedical applications. The aim of this study was to develop a combinatorial approach for enhancing the anticancer efficacy and cellular uptake of DOX. Materials and Methods: ZnO NPs were synthesized by the solvothermal method and were characterized by X-ray diffraction (XRD, dynamic light scattering (DLS and transmission electron microscopy (TEM. ZnO NPs were dispersed in 10% bovine serum albumin (BSA and the cytotoxic effect of the resulting ZnO nanofluids was evaluated alone and in combination with DOX on DU145 cells. The influence of ZnO nanofluids on the cellular uptake of DOX and DOX-induced catalase mRNA expression were investigated by fluorescence microscopy and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR, respectively. Results: The MTT results revealed that ZnO nanofluids decreased the cell viability of DU145 cells in a timeand dose-dependent manner. Simultaneous combination treatment of DOX and ZnO nanofluid showed a significant increase in anticancer activity and the cellular uptake of DOX compared to DOX alone. Also, a time-dependent reduction of catalase mRNA expression was observed in the cells treated with ZnO nanofluids and DOX, alone and in combination with each other. Conclusion: These results indicate the role of ZnO nanofluid as a growth-inhibitory agent and a drug delivery system for DOX in DU145 cells. Thus, ZnO nanofluid could be a candidate for combination chemotherapy.

  14. Cisplatin carbonato complexes. Implications for uptake, antitumor properties, and toxicity.

    Science.gov (United States)

    Centerwall, Corey R; Goodisman, Jerry; Kerwood, Deborah J; Dabrowiak, James C

    2005-09-21

    The reaction of aquated cisplatin with carbonate which is present in culture media and blood is described. The first formed complex is a monochloro monocarbonato species, which upon continued exposure to carbonate slowly forms a biscarbonato complex. The formation of carbonato species under conditions that simulate therapy may have important implications for uptake, antitumor properties, and toxicity of cisplatin.

  15. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA.The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component of 34 µM.The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.

  16. On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

    Directory of Open Access Journals (Sweden)

    Claudia Messerschmidt

    2016-09-01

    Full Text Available For any living cell the exchange with its environment is vital. Therefore, many different kinds of cargo are able to enter cells via energy-dependent or -independent routes. Nanoparticles are no exemption. It is known that small silica nanoparticles with a diameter below 50 nm are taken up by cells and that their uptake exerts pronounced toxic effects beyond a certain concentration threshold. However, neither the exact uptake mechanism of these particles nor the actual reason for their toxicity has yet been elucidated. In this study we examined the uptake of silica nanoparticles with a diameter of 7, 12 and 22 nm by means of transmission electron microscopy, accompanied by toxicological assays. We show that for every particle diameter tested a different membrane morphology during uptake can be observed and that the amount of particles entering in one event is different for the three sizes. Silica particles with a diameter of 22 nm show single-particle internalization with a membrane wrapped around the particles in the cytosol, whereas 12 nm particles display row-like multi-particle uptake into elongated membrane structures and those with a diameter of 7 nm or less end up in tubular endocytic structures containing many particles. These membrane morphologies proved to be highly reproducible as we found them in five different cell lines. Additionally, we performed ATP and LDH assays to determine particle toxicity. Exceeding a certain concentration threshold the nanoparticles showed a high toxic potential both in the biochemical assay measurements and from morphological findings. We could not find any hint at the induction of apoptosis, neither morphologically nor biochemically. In this regard we discuss membrane damage and consumption as one possible mechanism of toxicity, linking morphological observations to toxicological findings to bridge the gap in understanding the mechanism of toxicity of small nanoparticles.

  17. Bioaccessibility and Cellular Uptake of β-Carotene Encapsulated in Model O/W Emulsions: Influence of Initial Droplet Size and Emulsifiers

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2017-09-01

    Full Text Available The effects of the initial emulsion structure (droplet size and emulsifier on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers.

  18. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells.

    Science.gov (United States)

    Kim, Jayoung; Sunshine, Joel C; Green, Jordan J

    2014-01-15

    Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.

  19. Uptake, metabolism, accumulation and toxicity of cyanide in willow trees

    DEFF Research Database (Denmark)

    Larsen, Morten; Ucisik, Ahmed Süheyl; Trapp, Stefan

    2005-01-01

    Chemicals taken up into plants may be accumulated so leading to toxic effects. Uptake and phytotoxicity of free cyanide was determined with the willow-tree transpiration test. Willow sets were grown in sand and irrigated with varying levels of cyanide (CN). Toxicity was determined by measuring...... transpiration. At CN concentrations below 10 mg/L, no toxic effects were observed. At 20 mg/L, transpiration was reduced to approximately 50% after 96 h. With 30, 40 and 50 mg/L, the transpiration decreased with a similar rate to cyanide in plant...... tissue was observed at 40 and 50 mg/L. The kinetics of metabolism of cyanide by roots, stems and leaves of willows was determined by the closed-bottle metabolism test. The Michaelis−Menten parameters vmax and KM (maximal metabolic velocity and half-saturation constant, respectively) were determined...

  20. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line

    International Nuclear Information System (INIS)

    Clift, Martin J.D.; Rothen-Rutishauser, Barbara; Brown, David M.; Duffin, Rodger; Donaldson, Ken; Proudfoot, Lorna; Guy, Keith; Stone, Vicki

    2008-01-01

    This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH 2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 μg ml -1 ). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH 2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p 2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction

  1. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  2. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    Science.gov (United States)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  3. Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia).

    Science.gov (United States)

    Magni, Stefano; Gagné, François; André, Chantale; Della Torre, Camilla; Auclair, Joëlle; Hanana, Houda; Parenti, Camilla Carla; Bonasoro, Francesco; Binelli, Andrea

    2018-08-01

    Microplastics (MPs), plastic debris smaller than 5mm, are widely found in both marine and freshwater ecosystems. However, few studies regarding their hazardous effects on inland water organisms, have been conducted. For this reason, the aim of our research was the evaluation of uptake and chronic toxicity of two mixtures (MIXs) of virgin polystyrene microbeads (PMs) of 10μm and 1μm in size (MIX 1, with 5×10 5 of 1μmsizePMs/L and 5×10 5 of 10μmsizePMs/L, and MIX 2 with 2×10 6 of 1μmsizePMs/L and 2×10 6 of 10μmsizePMs/L) on freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia) during 6 exposure days. The PM uptake in the mussel body and hemolymph was assessed using confocal microscopy, while the chronic toxicity of PMs was evaluated on exposed mussels using a comprehensive battery of biomarkers of cellular stress, oxidative damage and neuro- genotoxicity. Confocal microscopy analyses showed that MPs concentrated in the gut lumen of exposed mussels, absorbed and transferred firstly in the tissues and then in the hemolymph. The results revealed that PMs do not produce oxidative stress and genetic damage, with the exception of a significant modulation of catalase and glutathione peroxidase activities in mussels exposed to MIX 1. Regarding neurotoxicity, we observed only a significant increase of dopamine concentration in mussels exposed to both MIXs, suggesting a possible implication of this neurotransmitter in an elimination process of accumulated PMs. This research represents a first study about the evaluation of virgin MP toxicity in zebra mussel and more research is warranted concerning the long term neurological effects of virgin MPs. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  4. Differential Polymer Structure Tunes Mechanism of Cellular Uptake and Transfection Routes of Poly(β-amino ester) Polyplexes in Human Breast Cancer Cells

    OpenAIRE

    Kim, Jayoung; Sunshine, Joel C.; Green, Jordan J.

    2013-01-01

    Successful gene delivery with non-viral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of P...

  5. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    International Nuclear Information System (INIS)

    Parab, Harshala J; Huang, Jing-Hong; Liu, Ru-Shi; Lai, Tsung-Ching; Jan, Yi-Hua; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S

    2011-01-01

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  6. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Harshala J; Huang, Jing-Hong; Liu, Ru-Shi [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Lai, Tsung-Ching; Jan, Yi-Hua; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China); Hwu, Yeu-Kuang [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tsai, Din Ping [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chuang, Shih-Yi; Pang, Jong-Hwei S, E-mail: rsliu@ntu.edu.tw, E-mail: mhsiao@gate.sinica.edu.tw [Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan (China)

    2011-09-30

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  7. Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, Katja, E-mail: K.Kettler@science.ru.nl [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Giannakou, Christina; Jong, Wim H. de [National Institute for Public Health and the Environment (RIVM) (Netherlands); Hendriks, A. Jan [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Krystek, Petra [Philips Innovation Services (Netherlands)

    2016-09-15

    Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.

  8. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.

    Science.gov (United States)

    Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark

    2018-02-01

    High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology.

    Directory of Open Access Journals (Sweden)

    Chung-Yi Yang

    Full Text Available Superparamagnetic iron oxide (SPIO nanoparticles are contrast agents used for magnetic resonance imaging. Ferucarbotran is a clinically approved SPIO-coated carboxydextran with a diameter of about 45-60 nm. We investigated the mechanism of cellular uptake of Ferucarbotran with a cell model using the murine macrophage cell line Raw 264.7. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P<0.001, R(2 = 0. 8048. For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. There was a significant decrease of side scattering counts in the cells and a less significant change in signal intensity based on magnetic resonance in the phenylarsine oxide-treated macrophages. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species at 2, 24, and 48 h; a decrease in mitochondrial membrane potential at 24 h; and an increase in cell proliferation at 24 h. We concluded that Ferucarbotran was internalized into macrophages via the clathrin-mediated pathway and can change the cellular behavior of these cells after labeling.

  10. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Chen, Koki Kanehira and Akiyoshi Taniguchi

    2013-01-01

    Full Text Available Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  11. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    Directory of Open Access Journals (Sweden)

    Lamichhane SP

    2015-01-01

    Full Text Available Surya P Lamichhane,1 Neha Arya,1,2 Nirdesh Ojha,3 Esther Kohler,1 V Prasad Shastri1,2,41Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, 2Helmholtz Virtual Institute on “Multifunctional Biomaterials for Medicine”, 3Laboratory for Process Technology, Department of Microsystems Engineering, University of Freiburg, Freiburg, 4Centre for Biological Signaling Studies (BIOSS, University of Freiburg, Freiburg, GermanyAbstract: The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG production is altered in many diseases (or pathologies, NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549 cells, human pulmonary microvascular endothelial cells (HPMEC, and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 µg/mL by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of

  12. Design of a bistable switch to control cellular uptake.

    Science.gov (United States)

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  13. Cellular toxicity of calf blood extract on human corneal epithelial cells in vitro.

    Science.gov (United States)

    Park, Young Min; Kim, Su Jin; Han, Young Sang; Lee, Jong Soo

    2015-01-01

    To investigate the biologic effects of the calf blood extract on corneal epithelial cells in vitro. The effects on corneal epithelial cells were evaluated after 1, 4, 12, and 24 h of exposure to various concentrations of calf blood extract (3, 5, 8 and 16%). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was performed to measure levels of cellular metabolic activity. The lactate dehydrogenase (LDH) assay was performed to determine the extent of cellular damage. Cellular morphology was examined using phase-contrast microscopy. The scratch wound assay was performed to quantify the migration of corneal epithelial cells. At the 3 and 5% concentrations of calf blood extract, MTT values were similar to those observed in the control group. However, at a concentration of 8 and 16%, cellular metabolic activity was significantly decreased after 4 h of exposure to calf blood extract. After 12 h of exposure to 8 and 16% concentrations of calf blood extract, LDH activity and cellular morphological damage to the corneal epithelial cells were significantly increased. There was no evidence of cellular migration after 12 h exposure to 5% or higher concentration of calf blood extract because of cellular toxicity. Compared with normal corneal epithelial cells, the cellular activity was decreased, and toxicity was increased after over 12 h of exposure to more than 5% concentration of calf blood extract. Further clinical studies will be necessary to determine the optimal concentration and exposure time for the topical application of eye drops containing calf blood extract.

  14. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles

    Science.gov (United States)

    Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.

    2017-09-01

    Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.

  15. Study of the cellular uptake and distribution of 57cobalt bleomycin in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Metelmann, H.R.

    1980-01-01

    We investigated the dependence of the cellular uptake of 57 cobalt-bleomycin on the exposure time and on the dose. In addition we observed the influences due to the incubation temperature, to the growth phase of the tumor cells and due to the composition of the suspensory medium. In supplementary experiments we investigated the binding of the labelled cytostatic agent to erythrocytes, its adsorption to broken Ehrlich ascites tumor cells and the 57 cobalt-bleomycin outflow from pre-loaded intact Ehrlich ascites tumor cells. The 57 cobalt-bleomycin uptake of intact Ehrlich ascites tumor cells is determined by characteristic kinetics. Moreover, the erythrocytes and injured Ehrlich ascites tumor cells show a qualitatively similar graph of the 57 cobalt-bleomycin binding, which can clearly be distinguished from the kinetics found with intact Ehrlich ascites tumor cells. The uptake of this cytostatic agent depends on an unequivocal time-dose-temperature relationship. The transport mechanism of the 57 cobalt-bleomycin uptake was considered as endocytosis. An endocytosis-stimulating inducer could not be detected. However, we obtained indications that the cell-bound cytostatic agent is taken up in two compartments: on the cellular surface and in the interior of the cell. (orig./MG) [de

  16. Comparison of Cellular Uptake and Inflammatory Response via Toll-Like Receptor 4 to Lipopolysaccharide and Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Akiyoshi Taniguchi

    2013-06-01

    Full Text Available The innate immune response is the earliest cellular response to infectious agents and mediates the interactions between microbes and cells. Toll-like receptors (TLRs play an important role in these interactions. We have already shown that TLRs are involved with the uptake of titanium dioxide nanoparticles (TiO2 NPs and promote inflammatory responses. In this paper, we compared role of cellular uptake and inflammatory response via TLR 4 to lipopolysaccharide (LPS and TiO2 NPs. In the case of LPS, LPS binds to LPS binding protein (LBP and CD 14, and then this complex binds to TLR 4. In the case of TiO2 NPs, the necessity of LBP and CD 14 to induce the inflammatory response and for uptake by cells was investigated using over-expression, antibody blocking, and siRNA knockdown experiments. Our results suggested that for cellular uptake of TiO2 NPs, TLR 4 did not form a complex with LBP and CD 14. In the TiO2 NP-mediated inflammatory response, TLR 4 acted as the signaling receptor without protein complex of LPS, LBP and CD 14. The results suggested that character of TiO2 NPs might be similar to the complex of LPS, LBP and CD 14. These results are important for development of safer nanomaterials.

  17. FAT/CD36 expression alone is insufficient to enhance cellular uptake of oleate

    International Nuclear Information System (INIS)

    Eyre, Nicholas S.; Cleland, Leslie G.; Mayrhofer, Graham

    2008-01-01

    Fatty acid translocase (FAT/CD36) is one of several proteins implicated in receptor-mediated uptake of long-chain fatty acids (LCFAs). We have tested whether levels of FAT/CD36 correlate with cellular oleic acid import, using a Tet-Off inducible transfected CHO cell line. Consistent with our previous findings, FAT/CD36 was enriched in lipid raft-derived detergent-resistant membranes (DRMs) that also contained caveolin-1, the marker protein of caveolae. Furthermore in transfected cells, plasma membrane FAT/CD36 co-localized extensively with the lipid raft-enriched ganglioside GM1, and partially with a caveolin-1-EGFP fusion protein. Nevertheless, even at high levels of expression, FAT/CD36 did not affect uptake of oleic acid. We propose that the ability of FAT/CD36 to mediate enhanced uptake of LCFAs is dependent on co-expression of other proteins or factors that are lacking in CHO cells

  18. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li; Zhou, Weihui; Dai, Huaxin; Cao, Fangbin; Zhang, Guoping [Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 (China); Wu, Feibo, E-mail: wufeibo@zju.edu.cn [Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Se alleviated Cd-toxicity, reduced Cd content and O{sub 2}{center_dot}{sup -}, H{sub 2}O{sub 2}, MDA in rice plants. Black-Right-Pointing-Pointer Se counteracted Cd-induced alterations of antioxidant enzymes. Black-Right-Pointing-Pointer Se suppressed Cd-induced increase in SOD, APX, but elevated depressed CAT activity. Black-Right-Pointing-Pointer Se markedly increased H{sup +}-ATPase, Ca{sup 2+}-ATPase activities in roots under Cd exposure. - Abstract: Hydroponic experiments were performed to investigate physiological mechanisms of selenium (Se) mitigation of Cd toxicity in rice. Exogenous Se markedly reduced Cd concentration in leaves, roots, and stems. Addition or pretreatment of 3 {mu}M Se in 50 {mu}M Cd solution significantly addressed Cd-induced growth inhibition, recovered root cell viability, and dramatically depressed O{sub 2}{center_dot}{sup -}, H{sub 2}O{sub 2}, and malondialdehyde (MDA) accumulation. Supplemental Se counteracted 50 {mu}M Cd-induced alterations of certain antioxidant enzymes, and uptake of nutrients, e.g. depressed Cd-induced increase in leaf and root superoxide dismutase (SOD) and leaf peroxidase (POD) activities, but elevated depressed catalase (CAT) activity; decreased Cd-induced high S and Cu concentrations in both leaves and roots. External Se counteracted the pattern of alterations in ATPase activities induced by Cd, e.g. significantly elevated the depressed root H{sup +}- and Ca{sup 2+}-ATPase activities, but decreased the ascent root Na{sup +}K{sup +}-ATP activity. Results indicate that alleviated Cd toxicity by Se application is related to reduced Cd uptake and ROS accumulation, balanced nutrients, and increased H{sup +}- and Ca{sup 2+}-ATPase activities in rice.

  19. Effect of perfluorooctane sulfonate on toxicity and cell uptake of other compounds with different hydrophobicity in green alga.

    Science.gov (United States)

    Liu, Wei; Zhang, Yao-Bin; Quan, Xie; Jin, Yi-He; Chen, Shuo

    2009-04-01

    Perfluorooctane sulfonate (PFOS) was evaluated alone and in binary mixtures with pentachlorophenol, atrazine and diuron, respectively to investigate the effects of interactions between PFOS and other compounds on the growth rate in Scenedesmus obliquus. Single application of PFOS showed no inhibition on the growth of S. obliquus below 40 mg L(-1), whereas PFOS acting with pentachlorophenol resulted in higher algal growth inhibition in comparison with pentachlorophenol alone. A maximum increase of 45% in the growth inhibition was observed at a pentachlorophenol concentration of 2.56 mg L(-1) together with a PFOS concentration of 40 mg L(-1). On the contrary, the algal growth inhibition of atrazine and diuron was depressed by PFOS. Furthermore, cell uptake was examined to gain some insights into the mechanisms of the effects of PFOS on the toxicity of the other compounds. Cell uptake of pentachlorophenol increased while that of atrazine and diuron was reduced in cells that have been exposed to PFOS. The effects of PFOS on the toxicity of pentachlorophenol, atrazine and diuron were possibly related to the influence of PFOS on the cell uptake of these hydrophobic compounds. Results suggested that PFOS influenced the cell uptake and toxicity of structurally different compounds in dissimilar manners and potentially increased the accessibility and toxicity of more hydrophobic compounds to algal cells.

  20. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  1. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level

    International Nuclear Information System (INIS)

    Morlon, Helene; Fortin, Claude; Floriani, Magali; Adam, Christelle; Garnier-Laplace, Jacqueline; Boudou, Alain

    2005-01-01

    The toxicity of selenium in aquatic ecosystems is mainly linked to its uptake and biotransformation by micro-organisms, and its subsequent transfer upwards into the food chain. Thus, organisms at low trophic level, such as algae, play a crucial role. The aim of our study was to investigate the biological effects of selenite on Chlamydomonas reinhardtii, both at the sub-cellular level (effect on ultrastructure) and at the population level (effect on growth). The cells were grown under batch culture conditions in well-defined media and exposed to waterborne selenite at concentrations up to 500 μM; i.e. up to lethal conditions. Based on the relationship between Se concentration and cell density achieved after a 96 h exposure period, an EC 50 of 80 μM with a 95% confidence interval ranging between 64 and 98 μM was derived. No adaptation mechanisms were observed: the same toxicity was quantified for algae pre-contaminated with Se. The inhibition of growth was linked to impairments observed at the sub-cellular level. The intensity of the ultrastructural damages caused by selenite exposure depended on the level and duration of exposure. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For cells collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that these granules contained selenium and were also rich in calcium and phosphorus. This study confirms that the direct toxicity of selenite on the phytoplankton biomass is not likely to take place at concentrations found in the environment. At higher concentrations, the link between effects at the sub-cellular and population levels, the over-accumulation of starch, and the formation of dense granules containing selenium are reported for the first time in the literature for a

  2. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds.

    Science.gov (United States)

    Schrand, Amanda M; Lin, Jonathan B; Hens, Suzanne Ciftan; Hussain, Saber M

    2011-02-01

    Nanoparticles (NPs) offer promise for a multitude of biological applications including cellular probes at the bio-interface for targeted delivery of anticancer substances, Raman and fluorescent-based imaging and directed cell growth. Nanodiamonds (NDs), in particular, have several advantages compared to other carbon-based nanomaterials - including a rich surface chemistry useful for chemical conjugation, high biocompatibility with little reactive oxygen species (ROS) generation, physical and chemical stability that affords sterilization, high surface area to volume ratio, transparency and a high index of refraction. The visualization of ND internalization into cells is possible via photoluminescence, which is produced by direct dye conjugation or high energy irradiation that creates nitrogen vacancy centers. Here, we explore the kinetics and mechanisms involved in the intracellular uptake and localization of novel, highly-stable, fluorophore-conjugated NDs. Examination in a neuronal cell line (N2A) shows ND localization to early endosomes and lysosomes with eventual release into the cytoplasm. The addition of endocytosis and exocytosis inhibitors allows for diminished uptake and increased accumulation, respectively, which further corroborates cellular behavior in response to NDs. Ultimately, the ability of the NDs to travel throughout cellular compartments of varying pH without degradation of the surface-conjugated fluorophore or alteration of cell viability over extended periods of time is promising for their use in biomedical applications as stable, biocompatible, fluorescent probes.

  3. Cytotoxicity of Phenol Red in Toxicity Assays for Carbon Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2012-09-01

    Full Text Available To explore the novel properties of carbon nanoparticles (CNPs in nanotoxicity assays, the adsorption of phenol red (a pH indicator for culture medium by multi-walled carbon nanotubes (MWNTs and three kinds of carbon blacks (CBs with nanosize, and its effects on cytotoxicity were studied. Results indicated that the phenol red adsorbed and delivered into cells by CBs was responsible for the toxicity to Hela cells in the medium without serum. The cellular uptake of phenol red was verified using 125I-labeling techniques. The size-dependent cytotoxicity of CBs was found to closely correlate to adsorption of phenol red, cellular uptake of phenol red-CB complexes and the amount of phenol red delivered into the cells by CBs. Although the CBs were either nontoxic or slightly toxic, as vehicles of phenol red, they played an essential role in the cytotoxicity induced by phenol red. However, MWNTs showed an intrinsic cytotoxicity independent of phenol red. The implications associated with these findings are discussed.

  4. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  5. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  6. Industrial grade 2D molybdenum disulphide (MoS2): an in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation

    Science.gov (United States)

    Moore, Caroline; Movia, Dania; Smith, Ronan J.; Hanlon, Damien; Lebre, Filipa; Lavelle, Ed C.; Byrne, Hugh J.; Coleman, Jonathan N.; Volkov, Yuri; McIntyre, Jennifer

    2017-06-01

    The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than research grade materials. The aim of this study was to explore cytotoxicity, cellular uptake and inflammatory responses in established cell-lines that mimic different potential exposure routes (inhalation, A549; ingestion, AGS; monocyte, THP-1) following incubation with MoS2 flakes of varying sizes (50 nm, 117 nm and 177 nm), produced by liquid phase exfoliation. Using high content screening (HCS) and Live/Dead assays, it was established that 1 µg ml-1 (for the three different MoS2 sizes) did not induce toxic effects on any of the cell-lines. Confocal microscopy images revealed a normal cellular morphology in all cases. Transmission electron microscopy (TEM) confirmed the uptake of all MoS2 nanomaterials in all the cell-lines, the MoS2 ultimately locating in single membrane vesicles. At such sub-lethal doses, inflammatory responses are observed, however, associated, at least partially, with the presence of lipopolysaccharide endotoxin in nanomaterial suspensions and surfactant samples. Therefore, the inflammatory response of the cells to the MoS2 or endotoxin contamination was interrogated using a 10-plex ELISA which illustrates cytokine production. The experiments carried out using wild-type and endotoxin hyporesponsive bone marrow derived dendritic cells confirmed that the

  7. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.

    Science.gov (United States)

    Ge, Yuqing; Zhang, Yu; Xia, Jingguang; Ma, Ming; He, Shiying; Nie, Fang; Gu, Ning

    2009-10-15

    We synthesized three types of magnetic iron oxide nanoparticles (MNPs), which were meso-2,3-dimercaptosuccinic acid (DMSA) coated MNPs (DMSA@MNPs, 17.3+/-4.8 nm, negative charge), chitosan (CS) coated MNPs (CS@MNPs, 16.5+/-6.1 nm, positive charge) and magnetic nanoparticles agglomerates, formed by electronic aggregation between DMSA@MNPs and CS (CS-DMSA@MNPs, 85.7+/-72.9 nm, positive charge) respectively. The interactions of these MNPs with Oral Squamous Carcinoma Cell KB were investigated. The results showed that cellular uptakes of MNPs were on the dependence of incubation time, nanoparticles concentration and nanoparticles properties such as surface charge, size, etc. The cellular uptake was enhanced with the increase of incubation time and nanoparticles concentration. Although all MNPs could enter to cells, we observed apparent differences in the magnitude of nanoparticles uptaken. The cellular uptake of CS-DMSA@MNPs by KB cells was the highest and that of DMSA@MNPs was the lowest among the three types of MNPs. The same conclusions were drawn via the reduction of water proton relaxation times T(2)(*), resulting from the different iron load of labeled cells using a 1.5T clinical MR imager. The finding of this study will have implications in the chemical design of nanomaterials for biomedical applications.

  8. Processed fruit juice ready to drink: screening acute toxicity at the cellular level

    Directory of Open Access Journals (Sweden)

    Erick Leal da Silva

    2017-06-01

    Full Text Available The present study evaluated the acute toxicity at the cellular level of processed juice ready for consumption Orange and Grape flavors, produced by five companies with significant influence on the food market of South American countries, especially in Brazil. This evaluation was performed in root meristem cells of Allium cepa L., at the exposure times of 24 and 48 hours, directly with marketed liquid preparations. Based on the results, it was found that fruit juices, of all companies considered, promoted significant antiproliferative effect to root meristems at the exposure time of 24 hours and resulted in at both exposure times, statistically significant number of mitotic spindle changes and chromosomal breaks. Therefore, under the study conditions, all juice samples analyzed were cytotoxic, genotoxic and mutagenic to root meristem cells. These results indicate that such beverages have relevant potential to cause cellular disorders and, thus, need to be evaluated more fully in more complex test systems, as those in rodents, and then establish specific toxicity at the cellular level of these juices and ensure the well-being of those who consume them.

  9. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jason P; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Giansiracusa, Jeffrey H [Department of Mathematics, Mathematical Institute, University of Oxford, 24-29 St Giles' , Oxford, OX1 3LB (United Kingdom)], E-mail: hollanj3@mskcc.org, E-mail: jasonpholland@gmail.com

    2009-04-07

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [{sup 60/62/64}Cu(II)ATSM] and [{sup 60/62/64}Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO{sub 2}-dependent in vitro cellular uptake and retention of [{sup 64}Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k{sub 1} = 9.8 {+-} 0.59 x 10{sup -4} s{sup -1} and k{sub 2} = 2.9 {+-} 0.17 x 10{sup -3} s{sup -1}), intracellular reduction (k{sub 3} = 5.2 {+-} 0.31 x 10{sup -2} s{sup -1}), reoxidation (k{sub 4} = 2.2 {+-} 0.13 mol{sup -1} dm{sup 3} s{sup -1}) and proton-mediated ligand dissociation (k{sub 5} = 9.0 {+-} 0.54 x 10{sup -5} s{sup -1}). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have

  10. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    based on a splicing correction of a mutated luciferase gene in HeLa pLuc705 cells by targeting antisense oligonucleotides to a cryptic splice site. Further improvement in the delivery of CatLip-PNA conjugates is achieved by using auxiliary agents/treatments (e.g., chloroquine, calcium ions......Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic....... We have found, however, that this low -bioavailability can be significantly improved by chemical conjugation to a lipid domain ("Lip," such as a fatty acid), thereby creating "CatLip"-conjugates. The cellular uptake of these conjugates is conveniently evaluated using a sensitive cellular assay system...

  11. Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake.

    Science.gov (United States)

    Teng, Zhaogang; Wang, Chunyan; Tang, Yuxia; Li, Wei; Bao, Lei; Zhang, Xuehua; Su, Xiaodan; Zhang, Fan; Zhang, Junjie; Wang, Shouju; Zhao, Dongyuan; Lu, Guangming

    2018-01-31

    Mesoporous solids have been widely used in various biomedical areas such as drug delivery and tumor therapy. Although deformability has been recognized as a prime important characteristic influencing cellular uptake, the synthesis of deformable mesoporous solids is still a great challenge. Herein, deformable thioether-, benzene-, and ethane-bridged hollow periodic mesoporous organosilica (HPMO) nanocapsules have successfully been synthesized for the first time by a preferential etching approach. The prepared HPMO nanocapsules possess uniform diameters (240-310 nm), high surface areas (up to 878 m 2 ·g -1 ), well-defined mesopores (2.6-3.2 nm), and large pore volumes (0.33-0.75 m 3 ·g -1 ). Most importantly, the HPMO nanocapsules simultaneously have large hollow cavities (164-270 nm), thin shell thicknesses (20-38 nm), and abundant organic moiety in the shells, which endow a lower Young's modulus (E Y ) of 3.95 MPa than that of solid PMO nanoparticles (251 MPa). The HPMOs with low E Y are intrinsically flexible and deformable in the solution, which has been well-characterized by liquid cell electron microscopy. More interestingly, it is found that the deformable HPMOs can easily enter into human breast cancer MCF-7 cells via a spherical-to-oval morphology change, resulting in a 26-fold enhancement in cellular uptake (43.1% cells internalized with nanocapsules versus 1.65% cells with solid counterparts). The deformable HPMO nanocapsules were further loaded with anticancer drug doxorubicin (DOX), which shows high killing effects for MCF-7 cells, demonstrating the promise for biomedical applications.

  12. Evidence for increased cellular uptake of glutamate and aspartate in the rat hippocampus during kainic acid seizures. A microdialysis study using the "indicator diffusion' method

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    1997-01-01

    Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration of ....... The results indicate that during KA-induced seizures, uptake of glutamate and aspartate is increased, possibly aimed at maintaining the extracellular homeostasis of these two excitatory amino acids.......Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration...... of kainic acid (KA). With [14C]mannitol as an extracellular reference substance, the cellular extraction of the test substance [3H]D-aspartate was measured at different stages of seizure-activity. The results were compared to those obtained in a sham operated control group. During severe generalized clonic...

  13. Development of a toxicity model for paralytic shellfish toxins in mussel: uptake and release of toxins in Green Bay mussel

    International Nuclear Information System (INIS)

    Tabbada, Rhett Simon DC.; Ranada, Ma. Llorina O.; De Leon, Aileen L.; Bulos, Adelina M.; Sta, Maria; Efren, J.; De Vera, Azucena; Balagtas, Angelina; Sombrito, Elvira Z.

    2009-01-01

    In view of the expressed need to study shellfish toxicity and elucidate the kinetics of saxitoxin in green mussels Perna viridis), uptake/depuration rates of saxitoxin were studied in Juag Lagoon, Sorsogon and Sorsogon Bay. Both areas experience recurring blooms of Pyrodinium bahamanse var compressum (PbC) making them excellent study sites. Two sampling stations were selected, to which, mussels were introduced. Algal cell density and mussel toxicity were measured by receptor binding assay (RBA) and high performance liquid chromatography (HPLC) from May to December 2007. During this period, two bloom events occurred, wherein, a decrease in cell density by two orders of magnitude (30,000 to 600 cells·1 +1 ) caused an order of magnitude decrease in toxicity (600 to 30 μg STX eq./100 g shellfish meat). A time lag between peaks of cell density and the corresponding toxicity was revealed. Vegetative cells were present throughout the sampling period, and a uniform horizontal and vertical distribution of cells was observed between the stations. Cell densities were significantly correlated with both RBA and HPLC estimates of STX content in mussels (Pearson r values of 0.7486 and 0.4325 for RBA and HPLC, respectively). In Sorsogon Bay, six sampling stations were also chosen, from which, water and mussels were being collected. Preliminary data showed that the cellular toxin content was primarily STX, making up to 90-100% of total toxin quantified. The average toxicity was estimated at 52.81fmol/cell. The effect of physiological factors to overall shellfish toxicity, though not directly characterized, may be deduced from these studies. (author)

  14. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: sabuchathukulam@yahoo.co.uk [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  15. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    International Nuclear Information System (INIS)

    Joshy, K.S.; Sharma, Chandra P.; Kalarikkal, Nandakumar; Sandeep, K.; Thomas, Sabu; Pothen, Laly A.

    2016-01-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake

  16. Dispersion Behaviour of Silica Nanoparticles in Biological Media and Its Influence on Cellular Uptake.

    Science.gov (United States)

    Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka

    2015-01-01

    Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.

  17. A novel approach for predicting the uptake and toxicity of metallic and metalloid ions

    Science.gov (United States)

    Wang, Peng

    2011-01-01

    Electrostatic nature of plant plasma membrane (PM) plays significant roles in the ion uptake and toxicity. Electrical potential at the PM exterior surface (ψ0o) influences ion distribution at the PM exterior surface, and the depolarization of ψ0o negativity increases the electrical driving force for cation transport, but decreases the driving force for anion transport across the PMs. Assessing environmental risks of toxic ions has been a difficult task because the ion concentration (activity) in medium is not directly corrected to its potential effects. Medium characteristics like the content of major cations have important influences on the bioavailability and toxicity of ions in natural waters and soils. Models such as the Free Ion Activity Model (FIAM) and the Biotic Ligand Model (BLM), as usually employed, neglect the ψ0o and hence often lead to false conclusions about interaction mechanisms between toxic ions and major cations for biology. The neglect of ψ0o is not inconsistent with its importance, and possibly reflects the difficulty in the measurement of ψ0o. Based on the dual effects of the ψ0o, electrostatic models were developed to better predict the uptake and toxicity of metallic and metalloid ions. These results suggest that the electrostatic models provides a more robust mechanistic framework to assess metal(loid) ecotoxicity and predict critical metal(loid) concentrations linked to a biological effect, indicating its potential utility in risk assessment of metal(loid)s in water and terrestrial ecosystems. PMID:21386661

  18. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    Science.gov (United States)

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  19. Membrane Microdomain Structures of Liposomes and Their Contribution to the Cellular Uptake Efficiency into HeLa Cells.

    Science.gov (United States)

    Onuki, Yoshinori; Obata, Yasuko; Kawano, Kumi; Sano, Hiromu; Matsumoto, Reina; Hayashi, Yoshihiro; Takayama, Kozo

    2016-02-01

    The purpose of this study is to obtain a comprehensive relationship between membrane microdomain structures of liposomes and their cellular uptake efficiency. Model liposomes consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol (Ch) were prepared with various lipid compositions. To detect distinct membrane microdomains in the liposomes, fluorescence-quenching assays were performed at temperatures ranging from 25 to 60 °C using 1,6-diphenyl-1,3,5-hexatriene-labeled liposomes and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl. From the data analysis using the response surface method, we gained a better understanding of the conditions for forming distinct domains (Lo, Ld, and gel phase membranes) as a function of lipid composition. We further performed self-organizing maps (SOM) clustering to simplify the complicated behavior of the domain formation to obtain its essence. As a result, DPPC/DOPC/Ch liposomes in any lipid composition were integrated into five distinct clusters in terms of similarity of the domain structure. In addition, the findings from synchrotron small-angle X-ray scattering analysis offered further insight into the domain structures. As a last phase of this study, an in vitro cellular uptake study using HeLa cells was conducted using SOM clusters' liposomes with/without PEGylation. As a consequence of this study, higher cellular uptake was observed from liposomes having Ch-rich ordered domains.

  20. Amyloid-linked cellular toxicity triggered by bacterial inclusion bodies

    International Nuclear Information System (INIS)

    Gonzalez-Montalban, Nuria; Villaverde, Antonio; Aris, Anna

    2007-01-01

    The aggregation of proteins in the form of amyloid fibrils and plaques is the characteristic feature of some pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. The mechanisms by which the aggregation processes result in cell damage are under intense investigation but recent data indicate that prefibrillar aggregates are the most proximate mediators of toxicity rather than mature fibrils. Since it has been shown that prefibrillar forms of the nondisease-related misfolded proteins are highly toxic to cultured mammalian cells we have studied the cytoxicity associated to bacterial inclusion bodies that have been recently described as protein deposits presenting amyloid-like structures. We have proved that bacterial inclusion bodies composed by a misfolding-prone β-galactosidase fusion protein are clearly toxic for mammalian cells but the β-galactosidase wild type enzyme forming more structured thermal aggregates does not impair cell viability, despite it also binds and enter into the cells. These results are in the line that the most cytotoxic aggregates are early prefibrilar assemblies but discard the hypothesis that the membrane destabilization is Key event to subsequent disruption of cellular processes, such as ion balance, oxidative state and the eventually cell death

  1. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway...... for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases...... with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates...

  2. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles.

    Science.gov (United States)

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Whitwell, Harry; Elgy, Christine; Ding, Ping; Mahajan, Sumeet; Morgan, Cliff; Griffiths, Mark; Clark, Howard; Madsen, Jens

    2015-01-01

    The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A(-/-) mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages.

  3. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    Science.gov (United States)

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-01-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers. PMID:27531648

  4. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment.

    Science.gov (United States)

    Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei

    2018-01-10

    Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.

  5. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells

    Directory of Open Access Journals (Sweden)

    Camille C. Hanot

    2015-12-01

    Full Text Available Superparamagnetic iron-oxide nanoparticles (SPIONs show great promise for multiple applications in biomedicine. While a number of studies have examined their safety profile, the toxicity of these particles on reproductive organs remains uncertain. The goal of this study was to evaluate the cytotoxicity of starch-coated, aminated, and PEGylated SPIONs on a cell line derived from Chinese Hamster ovaries (CHO-K1 cells. We evaluated the effect of particle diameter (50 and 100 nm and polyethylene glycol (PEG chain length (2k, 5k and 20k Da on the cytotoxicity of SPIONs by investigating cell viability using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and sulforhodamine B (SRB assays. The kinetics and extent of SPION uptake by CHO-K1 cells was also studied, as well as the resulting generation of intracellular reactive oxygen species (ROS. Cell toxicity profiles of SPIONs correlated strongly with their cellular uptake kinetics, which was strongly dependent on surface properties of the particles. PEGylation caused a decrease in both uptake and cytotoxicity compared to aminated SPIONs. Interestingly, 2k Da PEG-modifed SPIONs displayed the lowest cellular uptake and cytotoxicity among all studied particles. These results emphasize the importance of surface coatings when engineering nanoparticles for biomedical applications.

  6. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    Science.gov (United States)

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: In Vitro Cellular Uptake

    Directory of Open Access Journals (Sweden)

    Min Wu

    2017-12-01

    Full Text Available Iron deficiency anemia is a common clinical consequence for people who suffer from chronic kidney disease, especially those requiring dialysis. Intravenous (IV iron therapy is a widely accepted safe and efficacious treatment for iron deficiency anemia. Numerous IV iron drugs have been approved by U.S. Food and Drug Administration (FDA, including a single generic product, sodium ferric gluconate complex in sucrose. In this study, we compared the cellular iron uptake profiles of the brand (Ferrlecit® and generic sodium ferric gluconate (SFG products. We used a colorimetric assay to examine the amount of iron uptake by three human macrophage cell lines. This is the first published study to provide a parallel evaluation of the cellular uptake of a brand and a generic IV iron drug in a mononuclear phagocyte system. The results showed no difference in iron uptake across all cell lines, tested doses, and time points. The matching iron uptake profiles of Ferrlecit® and its generic product support the FDA’s present position detailed in the draft guidance on development of SFG complex products that bioequivalence can be based on qualitative (Q1 and quantitative (Q2 formulation sameness, similar physiochemical characterization, and pharmacokinetic bioequivalence studies.

  8. Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide.

    Science.gov (United States)

    Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J

    2001-12-13

    We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (PPEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential for enhancing the cellular uptake and transport of small peptide

  9. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Kong, W.D.; Zhu, Y.G.; Liang, Y.C.; Zhang, J.; Smith, F.A.; Yang, M.

    2007-01-01

    A series of experiments were conducted in a hydroponic system to investigate the uptake of oxytetracycline (OTC) and its toxicity to alfalfa (Medicago sativa L.). OTC inhibited alfalfa shoot and root growth by up to 61% and 85%, respectively. The kinetics of OTC uptake could be well described by Michaelis-Menten equation with V max of 2.25 μmol g -1 fresh weight h -1 , and K m of 0.036 mM. The uptake of OTC by alfalfa was strongly inhibited by the metabolic inhibitor, 2,4-DNP (2,4-dinitrophenol), at pH 3.5 and 6.0, but not by the aquaporin competitors, glycerol and Ag + . OTC uptake, however, was significantly inhibited by Hg 2+ , suggesting that the inhibition of influx was due to general cellular stress rather than the specific action of Hg 2+ on aquaporins. Results from the present study suggested that OTC uptake into alfalfa is an energy-dependent process. - Plant uptake of antibiotic oxytetracycline is energy-dependent

  10. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    Science.gov (United States)

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  11. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    David Stirling

    2013-02-01

    Full Text Available Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

  12. Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response

    International Nuclear Information System (INIS)

    Sant'Ana, M.G.; Moraes, R.; Bernardi, M.M.

    2005-01-01

    Cadmium (Cd) is an environmental pollutant that is able to alter the immune function. Previous studies have shown that, in mammals, chronic exposure to Cd decreases the release of macrophagic cytokines such as IL1 and TNα and decreases phagocytosis activity. On the other hand contradictory results showed an increase in the humoral response. The cellular response could be decreased by exposure to Cd. These alterations were observed in mammals. The present study aimed to investigate some of the toxic effects of Cd exposure in birds. In particular, the main objective of this work was to elucidate the effects of exposure to this pollutant on the cellular immune function of the Japanese quail as a model for the study of toxicity in animals exposed in nature. The animals were exposed to the metal (100 ppm, per os) during development, i.e., from 1 to 28 days old. Body weight, biochemical parameters, and cellular immune response were measured during and at the end of treatment. The results showed that the exposure to Cd for 28 days significantly reduced the body weight and induced hepatic toxicity. The kidney function and cellular immune response were not affected by the Cd exposure

  13. Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nano-Electromechanical Device.

    Science.gov (United States)

    Zhang, Zhixin; Wang, Yanyan; Zhang, Hongxiang; Tang, Zifan; Liu, Wenpeng; Lu, Yao; Wang, Zefang; Yang, Haitao; Pang, Wei; Zhang, Hao; Zhang, Daihua; Duan, Xuexin

    2017-05-01

    Efficient delivery of genes and therapeutic agents to the interior of the cell is critical for modern biotechnology. Herein, a new type of chemical-free cell poration method-hypersonic poration-is developed to improve the cellular uptake, especially the nucleus uptake. The hypersound (≈GHz) is generated by a designed piezoelectric nano-electromechanical resonator, which directly induces normal/shear stress and "molecular bombardment" effects on the bilayer membranes, and creates reversible temporal nanopores improving the membrane permeability. Both theory analysis and cellular uptake experiments of exogenous compounds prove the high delivery efficiency of hypersonic poration. Since target molecules in cells are accumulated with the treatment, the delivered amount can be controlled by tuning the treatment time. Furthermore, owing to the intrinsic miniature of the resonator, localized drug delivery at a confined spatial location and tunable arrays of the resonators that are compatible with multiwell plate can be achieved. The hypersonic poration method shows great delivery efficacy combined with advantage of scalability, tunable throughput, and simplification in operation and provides a potentially powerful strategy in the field of molecule delivery, cell transfection, and gene therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro.

    Science.gov (United States)

    Lankoff, Anna; Arabski, Michal; Wegierek-Ciuk, Aneta; Kruszewski, Marcin; Lisowska, Halina; Banasik-Nowak, Anna; Rozga-Wijas, Krystyna; Wojewodzka, Maria; Slomkowski, Stanislaw

    2013-05-01

    Silica nanoparticles have an interesting potential in drug delivery, gene therapy and molecular imaging due to the possibility of tailoring their surface reactivity that can be obtained by surface modification. Despite these potential benefits, there is concern that exposure of humans to certain types of silica nanomaterials may lead to significant adverse health effects. The motivation of this study was to determine the kinetics of cellular binding/uptake of the vinyl- and the aminopropyl/vinyl-modified silica nanoparticles into peripheral blood lymphocytes in vitro, to explore their genotoxic and cytotoxic properties and to compare the biological properties of modified silica nanoparticles with those of the unmodified ones. Size of nanoparticles determined by SEM varied from 10 to 50 nm. The average hydrodynamic diameter and zeta potential also varied from 176.7 nm (+18.16 mV) [aminopropyl/vinyl-modified] and 235.4 nm (-9.49 mV) [vinyl-modified] to 266.3 (-13.32 mV) [unmodified]. Surface-modified silica particles were internalized by lymphocytes with varying efficiency and expressed no cytotoxic nor genotoxic effects, as determined by various methods (cell viability, apoptosis/necrosis, oxidative DNA damage, chromosome aberrations). However, they affected the proliferation of the lymphocytes as indicated by a decrease in mitotic index value and cell cycle progression. In contrast, unmodified silica nanoparticles exhibited cytotoxic and genotoxic properties at high doses as well as interfered with cell cycle.

  15. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination

    Directory of Open Access Journals (Sweden)

    JEROME A ROTH

    2006-01-01

    Full Text Available This review attempts to summarize and clarify our basic knowledge as to the various factors that potentially influence the risks imposed from chronic exposure to high atmospheric levels of manganese (Mn. The studies describe the interrelationship of the different systems in the body that regulate Mn homeostasis by characterizing specific, biological components involved in its systemic and cellular uptake and its elimination from the body. A syndrome known as manganism occurs when individuals are exposed chronically to high levels of Mn, consisting of reduced response speed, intellectual deficits, mood changes, and compulsive behaviors in the initial stages of the disorder to more prominent and irreversible extrapyramidal dysfunction resembling Parkinson's disease upon protracted exposure. Mn intoxication is most often associated with occupations in which abnormally high atmospheric concentrations prevail, such as in welding and mining. There are three potentially important routes by which Mn in inspired air can gain access the body to: 1 direct uptake into the CNS via uptake into the olfactory or trigeminal presynaptic nerve endings located in the nasal mucosa and the subsequent retrograde axonal transport directly into the CNS; 2 transport across the pulmonary epithelial lining and its subsequent deposition into lymph or blood; and/or 3 mucocilliary elevator clearance from the lung and the subsequent ingestion of the metal in the gastrointestinal tract. Each of these processes and their overall contribution to the uptake of Mn in the body is discussed in this review as well as a description of the various mechanisms that have been proposed for the transport of Mn across the blood-brain barrier which include both a transferrin-dependent and a transferrin-independent process that may involve store-operated Ca channels.

  16. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    International Nuclear Information System (INIS)

    Yang, Hong; Guo, Dong; Obianom, Obinna N.; Su, Tong; Polli, James E.; Shu, Yan

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd 2+ ). In this study, we aimed to examine whether Cd 2+ is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd 2+ . The cells overexpressing MATEs showed a 2–4 fold increase of Cd 2+ uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K m ) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd 2+ could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC 50 ) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd 2+ out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd 2+ -induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd 2+ and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  17. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Chitcholtan, Kenny; Sykes, Peter

    2017-11-01

    Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.

  18. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    International Nuclear Information System (INIS)

    Oliver, Ana López-Serrano; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important. - Highlights: • AgNP coated with polyvinyl pyrrolidone (PVP), PVP-AgNP were efficiently assimilated by Lymnaea stagnalis. • Water chemistry has no influence on the dietary uptake of PVP-AgNP by snails. - L. Stagnalis assimilated PVP-AgNPs efficiently from food and water chemistry had no influence on their uptake and toxicity

  19. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    International Nuclear Information System (INIS)

    Lu, Yi-Ching; Chang, Fan-Yu; Tu, Shu-Ju; Chen, Jyh-Ping; Ma, Yunn-Hwa

    2017-01-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNP cell ) appeared to be magnetic field- and concentration-dependent. In H-field, MNP cell reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNP cell , suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNP cell in the L-field may reach as high as 80% of that in H-field during 1–6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNP cell analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo. - Graphical abstract: Averaged MNP uptake by glioma cells in the low and non-uniformed magnetic field reached as high as 80% of that in uniformed magnetic field, which is probably due to both heterogeneous distributions of MNPs in the non-uniformed magnetic field and high capacity of the MNP uptake by these cells. - Highlights: • Enhanced sedimentation

  20. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Ching; Chang, Fan-Yu [Department of Physiology and Pharmacology & Healthy Aging Research Center, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Tu, Shu-Ju [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Chen, Jyh-Ping [Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Ma, Yunn-Hwa, E-mail: yhma@mail.cgu.edu.tw [Department of Physiology and Pharmacology & Healthy Aging Research Center, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Department of Neurology, Chang Gung Memorial Hospital, Guishan, Taoyuan City 33305, Taiwan, ROC (China)

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNP{sub cell}) appeared to be magnetic field- and concentration-dependent. In H-field, MNP{sub cell} reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNP{sub cell}, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNP{sub cell} in the L-field may reach as high as 80% of that in H-field during 1–6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNP{sub cell} analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo. - Graphical abstract: Averaged MNP uptake by glioma cells in the low and non-uniformed magnetic field reached as high as 80% of that in uniformed magnetic field, which is probably due to both heterogeneous distributions of MNPs in the non-uniformed magnetic field and high capacity of the MNP uptake by these cells. - Highlights:

  1. Uptake and partitioning of zinc in Lemnaceae.

    Science.gov (United States)

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  2. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W D [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu, Y G [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Liang, Y C [Ministry of Agriculture Key Laboratory of Plant Nutrition and Nutrient Cycling, Institute of Soils and Fertilizers, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang, J [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Smith, F A [Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, DP 636, Adelaide, SA 5005 (Australia); Yang, M [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2007-05-15

    A series of experiments were conducted in a hydroponic system to investigate the uptake of oxytetracycline (OTC) and its toxicity to alfalfa (Medicago sativa L.). OTC inhibited alfalfa shoot and root growth by up to 61% and 85%, respectively. The kinetics of OTC uptake could be well described by Michaelis-Menten equation with V {sub max} of 2.25 {mu}mol g{sup -1} fresh weight h{sup -1}, and K {sub m} of 0.036 mM. The uptake of OTC by alfalfa was strongly inhibited by the metabolic inhibitor, 2,4-DNP (2,4-dinitrophenol), at pH 3.5 and 6.0, but not by the aquaporin competitors, glycerol and Ag{sup +}. OTC uptake, however, was significantly inhibited by Hg{sup 2+}, suggesting that the inhibition of influx was due to general cellular stress rather than the specific action of Hg{sup 2+} on aquaporins. Results from the present study suggested that OTC uptake into alfalfa is an energy-dependent process. - Plant uptake of antibiotic oxytetracycline is energy-dependent.

  3. New aspects of cellular thallium uptake: Tl+-Na+-2Cl--cotransport is the central mechanism of ion uptake

    International Nuclear Information System (INIS)

    Sessler, M.J.; Maul, F.D.; Hoer, G.; Munz, D.L.; Geck, P.

    1986-01-01

    Cellular uptake mechanisms of 201 Tl + were studied in Ehrlich mouse ascites tumor cells. 201 Tl + phases the cell membrane of tumor cells using three transport systems: the ATPase, the Tl + -Na + -2Cl - -cotransport, and the Ca ++ -dependent ion channel. In the case of 201 Tl + the main route for entering the cells was the cotransport, its importance increasing with the age of the cells; in parallel, the ATPase activity was reduced. In contrast, the transport capacities of the ATPase and the cotransport were of the same magnitude in the case of 42 K + and 86 Rb + . This change in ion distribution was not brought about by varying velocity relations but by changing the number of transport systems in the cell membrane. There was no relationship between transport rates and diameters of the ions. 201 Tl + distribution is proportional to that of K + with a higher intracellular concentration of about 30%. Under physiological conditions the cotransport was reversible suggesting the ability to regulate steady state during varying extracellular ion concentrations. Cells and medium were two compartments, kinetically seen. Due to the significant difference of transport capacities between the three systems with the respective ions the term ''potassium-thallium-analogy'' may be misleading as it erroneously assumes identical uptake conditions. (orig.) [de

  4. Cellular Immunity State of Protein-deficient Rats with the Toxic Liver Injury

    Directory of Open Access Journals (Sweden)

    O.N. Voloshchuk

    2017-05-01

    Full Text Available Studies on the role of immunity mechanisms in the emergence and maintenance of inflammatory and destructive processes in the liver under toxic hepatitis and nutrient deficiency are topical. The aim of research – to study the quantitative content and functional activity of leukocytes under the conditions of acetaminophen-induced hepatitis on the background of nutritional protein deficiency. The most pronounced changes in cell-mediated immunity are observed in protein-deficient animals with toxic hepatitis. The pronounced defects of both specific and non-specific cellular immunity were manifested by the leukocytosis, increase number of segmented neutrophils in blood serum against decrease their phagocytic index and phagocytic number, reduction of total lymphocyte number, and simultaneously lowering of T- and B-lymphocytes was established under the conditions of acetaminophen-induced hepatotoxicity on the background of protein deficiency. Installed changes indicate the defective formation of functional immunity state which can manifest by decrease the body’s ability to carry out the reaction of cellular and humoral immunity. Research results may be used for the rationale of therapeutic approaches to the elimination and correction of the consequences of immunological status disturbances under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  5. Cytotoxicity and cellular uptake of pyrimidine nucleosides for imaging herpes simplex type-1 thymidine kinase (HSV-1 TK) expression in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Kevin W.; Duan Weili; Xu Lihua; Zhou Aihua; Moharram, Sameh; Knaus, Edward E.; McEwan, Alexander J.B.; Wiebe, Leonard I. E-mail: leonard.wiebe@ualberta.ca

    2004-07-01

    In vivo transfer of the herpes simplex virus type-1 thymidine kinase (HSV-1 TK) gene, with subsequent administration of antiviral drugs such as ganciclovir, has emerged as a promising gene therapy protocol for treating proliferative disorders. The in vitro cytotoxicities (IC{sub 50}) for two series of 5-iodo- and (E)-5-(2-iodovinyl)-substituted 2'-deoxy- and 2'-deoxy-2'-fluoro-pyrimidine nucleosides ranged from millimolar to low nanomolar concentrations in mammalian tumor cell lines (KBALB; R-970-5; 143B; EMT-6) and their counterparts engineered to express HSV-1 TK (KBALB-STK; 143B-LTK). Their HSV-1 TK selectivity indices ranged from one (nonselective) to one million (highly selective) based on cytotoxicity, with FIRU being the least toxic to all cell lines, and FIAU being most toxic. HSV-1 TK selectivity, based on uptake, ranged from 10 to 140, with IVDU being most selective for HSV-1 TK expressing cells, followed by IVFRU, FIRU, FIAU, IVFAU and finally IUDR. Phosphorylation of [{sup 125}I]FIAU led to incorporation of the radiolabel into nucleic acids, whereas IVFRU and FIRU radioactivity was trapped primarily in the nucleotide pool. These data indicate that cytotoxicity does not depend on initial metabolic trapping (e.g., phosphorylation), but on elaboration of the mononucleotides to more cytotoxic anabolites. Lipophilicities and nucleoside transport rates of the six nucleosides tested were within narrow ranges. This supports the premise that cellular biochemistry, and not cellular bioavailability, is responsible for the observed broad range of cytotoxicity and trapping. In vivo biodistribution studies with 5-[{sup 125}I]iodo-2'-fluoro-2'-deoxyribouridine (FIRU), 5-[{sup 125}I]iodo-2'-fluoro-2'-deoxyarabinouridine (FIAU) and (E)-5-(2-[{sup 125}I]iodovinyl)-2'-fluoro-2'-deoxyuridine (IVFRU) demonstrate selective accumulation of all three radiotracers in HSV-1 TK-expressing KBABK-STK tumors, compared to their very low

  6. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis.

    Science.gov (United States)

    Hsiao, I-Lun; Hsieh, Yi-Kong; Wang, Chu-Fang; Chen, I-Chieh; Huang, Yuh-Jeen

    2015-03-17

    The so-called "Trojan-horse" mechanism, in which nanoparticles are internalized within cells and then release high levels of toxic ions, has been proposed as a behavior in the cellular uptake of Ag nanoparticles (AgNPs). While several reports claim to have proved this mechanism by measuring AgNPs and Ag ions (I) in cells, it cannot be fully proven without examining those two components in both intra- and extracellular media. In our study, we found that even though cells take up AgNPs similarly to (microglia (BV-2)) or more rapidly than (astrocyte (ALT)) Ag (I), the ratio of AgNPs to total Ag (AgNPs+Ag (I)) in both cells was lower than that in outside media. It could be explained that H2O2, a major intracellular reactive oxygen species (ROS), reacts with AgNPs to form more Ag (I). Moreover, the major speciation of Ag (I) in cells was Ag(cysteine) and Ag(cysteine)2, indicating the possible binding of monomer cysteine or vital thiol proteins/peptides to Ag ions. Evidence we found indicates that the Trojan-horse mechanism really exists.

  7. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    Science.gov (United States)

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  8. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    Science.gov (United States)

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  9. Combined Effect of Cameo2 and CBP on the Cellular Uptake of Lutein in the Silkworm, Bombyx mori

    Science.gov (United States)

    Dong, Xiao-Long; Chai, Chun-Li; Pan, Cai-Xia; Tang, Hui; Chen, Yan-Hong; Dai, Fang-Yin; Pan, Min-Hui; Lu, Cheng

    2014-01-01

    Formation of yellow-red color cocoons in the silkworm, Bombyx mori, occurs as the result of the selective delivery of carotenoids from the midgut to the silk gland via the hemolymph. This process of pigment transport is thought to be mediated by specific cellular carotenoids carrier proteins. Previous studies indicated that two proteins, Cameo2 and CBP, are associated with the selective transport of lutein from the midgut into the silk gland in Bombyx mori. However, the exact roles of Cameo2 and CBP during the uptake and transport of carotenoids are still unknown. In this study, we investigated the respective contributions of these two proteins to lutein and β-carotene transport in Bombyx mori as well as commercial cell-line. We found that tissues, expressed both Cameo2 and CBP, accumulate lutein. Cells, co-expressed Cameo2 and CBP, absorb 2 fold more lutein (PBombyx mori. Cameo2 and CBP, as the membrane protein and the cytosol protein, respectively, have the combined effect to facilitate the cellular uptake of lutein. PMID:24475153

  10. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations.

    Science.gov (United States)

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-08-12

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al(3+) in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain.

  11. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.

    Science.gov (United States)

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-08-01

    Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  13. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-01-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  14. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

    Science.gov (United States)

    Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo

    2016-02-01

    In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide

  15. Bioaccessibility, Cellular Uptake, and Transport of Astaxanthin Isomers and their Antioxidative Effects in Human Intestinal Epithelial Caco-2 Cells.

    Science.gov (United States)

    Yang, Cheng; Zhang, Hua; Liu, Ronghua; Zhu, Honghui; Zhang, Lianfu; Tsao, Rong

    2017-11-29

    The bioaccessibility, bioavailability, and antioxidative activities of three astaxanthin geometric isomers were investigated using an in vitro digestion model and human intestinal Caco-2 cells. This study demonstrated that the trans-cis isomerization of all-E-astaxanthin and the cis-trans isomerization of Z-astaxanthins could happen both during in vitro gastrointestinal digestion and cellular uptake processes. 13Z-Astaxanthin showed higher bioaccessibility than 9Z- and all-E-astaxanthins during in vitro digestion, and 9Z-astaxanthin exhibited higher transport efficiency than all-E- and 13Z-astaxanthins. These might explain why 13Z- and 9Z-astaxanthins are found at higher concentrations in human plasma than all-E-astaxanthin in reported studies. All three astaxanthin isomers were effective in maintaining cellular redox homeostasis as seen in the antioxidant enzyme (CAT, SOD) activities ; 9Z- and 13Z- astaxanthins exhibited a higher protective effect than all-E-astaxanthin against oxidative stress as demonstrated by the lower cellular uptake of Z-astaxanthins and lower secretion and gene expression of the pro-inflammatory cytokine IL-8 in Caco-2 cells treated with H 2 O 2 . We conclude, for the first time, that Z-astaxanthin isomers may play a more important role in preventing oxidative stress induced intestinal diseases.

  16. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong; Guo, Dong; Obianom, Obinna N. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Su, Tong [Department of Oral Maxillofacial Surgery, the First Affiliated Hospital, Xiangya Medical School, Central South University, Hunan 410007 (China); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd{sup 2+}). In this study, we aimed to examine whether Cd{sup 2+} is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd{sup 2+}. The cells overexpressing MATEs showed a 2–4 fold increase of Cd{sup 2+} uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K{sub m}) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd{sup 2+} could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC{sub 50}) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd{sup 2+} out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd{sup 2+}-induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd{sup 2+} and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  17. FDG uptake in the stomach

    International Nuclear Information System (INIS)

    Yun, M. J.; Cho, H. J.; Cho, E. H.; Kim, T. S.; Kang, W. J.; Lee, J. D.

    2007-01-01

    This study was performed to evaluate histopathologic features of advanced gastric cancer (AGC) to predict FDG uptake on PET. 153 patients(102 men; mean age, 55 y) were diagnosed with AGC by surgery were included in this study. PET images were evaluated by visual and semi-quantitative analysis of FDG uptake in primary tumors. Primary tumors size were measured and divided according to Borrmann classification. Tumor histology was classified under WHO classification, depth of invasion and Iymphovascular invasion. The tumors were also grouped by high cellular(cellularity = 50%) and low cellular group (<50%). Microscopic growth type was based on Lauren classification. Stromal fibrosis degree and inflammatory cell infiltration amount was graded as low(none∼mild), or high(moderate∼severe). Lymph node metastases was assessed in all patients. Statistical analyses were performed to evaluate differences in SUV as to histopathologic factors. Of the 153 patients, 21 patients(14%) had primary tumor invisible on initial whole body images. After water ingestion, the tumors became visible in 15 of the 21 patients due to disappearance of physiologic stomach uptake. Polypoid or ulcerofungating tumors, high cellularity, intestinal growth pattern, and larger tumors significantly predicted increased tumor SUVs. Well or moderately differentiated adenocarcinoma tended to show high cellularity and intestinal growth pattern. Poorly differentiated adenocarcinoma had diverse spectrum of histopathology. Signet ring cell carcinomas were mostly ulceroinfiltrative or diffusely infiltrative in macroscopic type and diffuse in microscopic tumor growth. Mucinous adenocarcinomas were mostly low in cellularity. FDG uptake patterns are useful in representing histopathologic characteristics of the entire tumor in gastric cancers. The degree of FDG uptake depends on tumor size, macroscopic type, cellularity, and microscopic growth pattern and it shows no association with well known important prognostic

  18. Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne

    International Nuclear Information System (INIS)

    Rocheleau, Sylvie; Lachance, Bernard; Kuperman, Roman G.; Hawari, Jalal; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geoffrey I.

    2008-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) are cyclic nitramines used as explosives. Their ecotoxicities have been characterized incompletely and little is known about their accumulation potential in soil organisms. We assessed the toxicity and uptake of these explosives in perennial ryegrass Lolium perenne L. exposed in a Sassafras sandy loam (SSL) or in a sandy soil (DRDC, CL-20 only) containing contrasting clay contents (11% and 0.3%, respectively). A 21-d exposure to RDX, HMX or CL-20 in either soil had no adverse effects on ryegrass growth. RDX and HMX were translocated to ryegrass shoots, with bioconcentration factors (BCF) of up to 15 and 11, respectively. In contrast, CL-20 was taken up by the roots (BCF up to 19) with no translocation to the shoots. These studies showed that RDX, HMX, and CL-20 can accumulate in plants and may potentially pose a risk of biomagnification across the food chain. - Cyclic nitramine explosives accumulate in perennial ryegrass and exhibit distinct uptake patterns

  19. Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Sylvie; Lachance, Bernard [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Kuperman, Roman G. [Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424 (United States); Hawari, Jalal [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Thiboutot, Sonia; Ampleman, Guy [Defense Research and Development Canada, 2459 Pie IX Boulevard, Val Belair, Quebec G3J 1X5 (Canada); Sunahara, Geoffrey I. [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada)], E-mail: geoffrey.sunahara@cnrc-nrc.gc.ca

    2008-11-15

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) are cyclic nitramines used as explosives. Their ecotoxicities have been characterized incompletely and little is known about their accumulation potential in soil organisms. We assessed the toxicity and uptake of these explosives in perennial ryegrass Lolium perenne L. exposed in a Sassafras sandy loam (SSL) or in a sandy soil (DRDC, CL-20 only) containing contrasting clay contents (11% and 0.3%, respectively). A 21-d exposure to RDX, HMX or CL-20 in either soil had no adverse effects on ryegrass growth. RDX and HMX were translocated to ryegrass shoots, with bioconcentration factors (BCF) of up to 15 and 11, respectively. In contrast, CL-20 was taken up by the roots (BCF up to 19) with no translocation to the shoots. These studies showed that RDX, HMX, and CL-20 can accumulate in plants and may potentially pose a risk of biomagnification across the food chain. - Cyclic nitramine explosives accumulate in perennial ryegrass and exhibit distinct uptake patterns.

  20. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (u......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  1. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution.

    Science.gov (United States)

    Yi, Yilwoong; Kim, Jae Hong; Kang, Hye-Won; Oh, Hun Seung; Kim, Sung Wan; Seo, Min Hyo

    2005-02-01

    To evaluate a new polymeric nanoparticulate drug delivery formulation that consists of two components: i) an amphiphilic diblock copolymer having tocopherol moiety at the end of the hydrophobic block in which the hydrophobic tocopherol moiety increases stability of hydrophobic core of the nanoparticle in aqueous medium; and ii) a biodegradable copolyester having carboxylate end group that is capable of forming ionic complex with positively charged compounds such as doxorubicin. A doxourubicin-loaded polymeric nanoparticle (Dox-PNP) was prepared by solvent evaporation method. The entrapment efficiency, size distribution, and in vitro release profile at various pH conditions were characterized. In vitro cellular uptake was investigated by confocal microscopy, flow cytometry, and MTT assay using drug-sensitive and drug-resistant cell lines. Pharmacokinetics and biodistribution were evaluated in rats and tumor-bearing mice. Doxorubicin (Dox) was efficiently loaded into the PNP (higher than 95% of entrapment efficiency), and the diameter of Dox-PNP was in the range 20-25 nm with a narrow size distribution. In Vitro study showed that Dox-PNP exhibited higher cellular uptake into both human breast cancer cell (MCF-7) and human uterine cancer cell (MES-SA) than free doxorubicin solution (Free-Dox), especially into drug-resistant cells (MCF-7/ADR and MES-SA/Dx-5). In pharmacokinetics and tissue distribution study, the bioavailability of Dox-PNP calculated from the area under the blood concentration-time curve (AUC) was 69.8 times higher than that of Free-Dox in rats, and Dox-PNP exhibited 2 times higher bioavailability in tumor tissue of tumor-bearing mice. Dox-PNP exhibited enhanced cellular uptake of the drug. In the cytotoxic activity study, this improved cellular uptake was proved to be more advantageous in drug-resistant cell. Dox-PNP exhibited much higher bioavailability in blood plasma and more drug accumulation in tumor tissue than conventional doxorubicin

  2. Detection of the Cyanotoxins L-BMAA Uptake and Accumulation in Primary Neurons and Astrocytes.

    Science.gov (United States)

    Tan, Vanessa X; Mazzocco, Claire; Varney, Bianca; Bodet, Dominique; Guillemin, Tristan A; Bessede, Alban; Guillemin, Gilles J

    2018-01-01

    We show for the first time that a newly developed polyclonal antibody (pAb) can specifically target the cyanotoxin β-methylamino-L-alanine (BMAA) and can be used to enable direct visualization of BMAA entry and accumulation in primary brain cells. We used this pAb to investigate the effect of acute and chronic accumulation, and toxicity of both BMAA and its natural isomer 2,4-diaminobutyric acid (DAB), separately or in combination, on primary cultures of rat neurons. We further present evidence that co-treatment with BMAA and DAB increased neuronal death, as measured by MAP2 fluorescence level, and appeared to reduce BMAA accumulation. DAB is likely to be acting synergistically with BMAA resulting in higher level of cellular toxicity. We also found that glial cells such as microglia and astrocytes are also able to directly uptake BMAA indicating that additional brain cell types are affected by BMAA-induced toxicity. Therefore, BMAA clearly acts at multiple cellular levels to possibly increase the risk of developing neurodegenerative diseases, including neuro- and gliotoxicity and synergetic exacerbation with other cyanotoxins.

  3. Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines.

    Science.gov (United States)

    Na, Ha-Na; Dubuisson, Olga; Hegde, Vijay; Nam, Jae-Hwan; Dhurandhar, Nikhil V

    2016-05-01

    Aging and obesity are associated with elevated pro-inflammatory cytokines such as monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)α, which are linked to insulin resistance. Anti-inflammatory agents have marginal effect in improving insulin resistance. Hence, agents are needed to improve glycemic control despite the inflammation. Ad36, a human adenovirus, increases TNFα and MCP1 mRNA in adipose tissue, yet improves glycemic control in mice. Ad36 via its E4orf1 gene, up-regulates AKT/glucose transporter (Glut)-4 signaling to enhance cellular glucose uptake. Directly test a role of Ad36, or E4orf1 in enhancing cellular glucose uptake in presence of inflammatory cytokines. Experiment 1: 3T3-L1 preadipocytes were treated with 0, 10 or 100 ng/mL lipopolysaccharides (LPS), and infected with 0 or 5 plaque forming units (PFU) of Ad36/cell. 3T3-L1 cells that stably and inducibly express E4orf1 or a null vector (pTRE-E4orf1 or pTRE-null cells), were similarly treated with LPS and then with doxycycline, to induce E4orf1. Experiment 2: 3T3L1 preadipocytes were treated with 25 nM MCP1 or 20 nM TNFα for 16 h, followed by infection with 0 or 5 PFU of Ad36/cell. Experiment 3: pTRE-E4orf1 or -null cells were similarly treated with MCP1 or TNFα followed by doxycycline to induce E4orf1. Cellular glucose uptake and cellular signaling were determined 72 h post-Ad36 infection or E4orf1-induction, in continued presence of MCP1 or TNFα. In 3T3-L1 preadipocytes, Ad36, but not E4orf1, increased MCP1 and TNFα mRNA, in presence of LPS stimulation. Ad36 or E4orf1 up-regulated AKT-phosphorylation and Glut4 and increased glucose uptake (P E4orf1 does not appear to stimulate inflammatory response. Ad36 and E4orf1 both enhance cellular glucose uptake even in presence of inflammation. Further research is needed to harness this novel and beneficial property of E4orf1 to improve hyperglycemia despite chronic inflammation that is commonly present in aging and

  4. Cytotoxicity and cellular uptake of doxorubicin and its formamidine derivatives in HL60 sensitive and HL60/MX2 resistant cells.

    Science.gov (United States)

    Kik, Krzysztof; Wasowska-Lukawska, Malgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-04-01

    In this work a comparison was made of the cytotoxicity and cellular uptake of doxorubicin (DOX) and two of its derivatives containing a formamidino group (-N=CH-N<) at the 3' position with morpholine (DOXM) or hexamethyleneimine (DOXH) ring. All tests were performed in doxorubicin-sensitive HL60 and -resistant HL60/MX2 cells which are known for the presence of altered topoisomerase II. Cytotoxic activity of DOX toward HL60/MX2 cells was about 195 times lower when compared with the sensitive HL60 cell line. DOXM and DOXH were approximately 20 times more active in resistant cells than DOX. It was found that the uptake of DOX was lower in resistant cells by about 16%, while that of DOXM and DOXH was lower by about 36% and 19%, respectively. Thus the changes in the cellular uptake of anthracyclines are not associated with the fact that cytotoxicity of DOXM and DOXH exceed the cytotoxicity of DOX. Experiments in cell-free system containing human topoisomerase II showed that topoisomerase II is not inhibited by DOXM and DOXH. Formamidinoanthracyclines may be more useful than parent drugs in therapy against tumor cells with altered topoisomerase II activity.

  5. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation

    Science.gov (United States)

    Kubota, Kohei; Onishi, Kohei; Sawaki, Kazuaki; Li, Tianshu; Mitsuoka, Kaoru; Sato, Takaaki; Takeoka, Shinji

    2017-01-01

    Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs). In this study, we prepared small interfering RNA (siRNA)-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in lipoplexes were thought to be more likely to localize on the particle surface and thereby undergo dissociation into the medium. Inflammatory cytokine responses also appeared to differ between lipoplexes and LNPs. For tumor necrosis factor-α, release was mainly caused by siRNA. On the other hand, the release of interleukin-1β was mainly due to the cationic nature of particles. LNPs released lower amounts of tumor necrosis factor-α and interleukin-1β than lipoplexes and were thus considered to be better tolerated with respect to cytokine release. In conclusion, siRNA-loaded nanoformulations effect their cellular uptake and immune stimulation in a manner that depends on the structure of the molecular assembly; therefore, nanoformulations should be optimized before extending studies into the in vivo environment. PMID:28790820

  6. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells

    Science.gov (United States)

    Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia

    2015-02-01

    Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the

  7. Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies

    Directory of Open Access Journals (Sweden)

    Robert S. Aronstam

    2010-10-01

    Full Text Available Nanotechnology has evolved to play a prominent role in our economy. Increased use of nanomaterials poses potential human health risk. It is therefore critical to understand the nature and origin of the toxicity imposed by nanomaterials (nanotoxicity. In this article we review the toxicity of the transition metal oxides in the 4th period that are widely used in industry and biotechnology. Nanoparticle toxicity is compellingly related to oxidative stress and alteration of calcium homeostasis, gene expression, pro-inflammatory responses, and cellular signaling events. The precise physicochemical properties that dictate the toxicity of nanoparticles have yet to be defined, but may include element-specific surface catalytic activity (e.g., metallic, semiconducting properties, nanoparticle uptake, or nanoparticle dissolution. These in vitro studies substantially advance our understanding in mechanisms of toxicity, which may lead to safer design of nanomaterials.

  8. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.; Matson, Maria; Å mand, Helene L.; Esbjö rner, Elin K.; Nordé n, Bengt

    2012-01-01

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  9. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.

    2012-07-10

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  10. Manganese oxidation state mediates toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Reaney, S.H.; Smith, D.R.

    2005-01-01

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 μM Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 μM produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 μM), while Mn(III) exposures produced increases in LDH activity at lower exposures (≥50 μM) than did Mn(II) (200 μM only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 μM Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity

  11. Silicate reduces cadmium uptake into cells of wheat

    International Nuclear Information System (INIS)

    Greger, Maria; Kabir, Ahmad H.; Landberg, Tommy; Maity, Pooja J.; Lindberg, Sylvia

    2016-01-01

    Cadmium (Cd) is a health threat all over the world and high Cd content in wheat causes high Cd intake. Silicon (Si) decreases cadmium content in wheat grains and shoot. This work investigates whether and how silicate (Si) influences cadmium (Cd) uptake at the cellular level in wheat. Wheat seedlings were grown in the presence or absence of Si with or without Cd. Cadmium, Si, and iron (Fe) accumulation in roots and shoots was analysed. Leaf protoplasts from plants grown without Cd were investigated for Cd uptake in the presence or absence of Si using the fluorescent dye, Leadmium Green AM. Roots and shoots of plants subjected to all four treatments were investigated regarding the expression of genes involved in the Cd uptake across the plasma membrane (i.e. LCT1) and efflux of Cd into apoplasm or vacuole from the cytosol (i.e. HMA2). In addition, phytochelatin (PC) content and PC gene (PCS1) expression were analysed. Expression of iron and metal transporter genes (IRT1 and NRAMP1) were also analysed. Results indicated that Si reduced Cd accumulation in plants, especially in shoot. Si reduced Cd transport into the cytoplasm when Si was added both directly during the uptake measurements and to the growth medium. Silicate downregulated LCT1 and HMA2 and upregulated PCS1. In addition, Si enhanced PC formation when Cd was present. The IRT1 gene, which was downregulated by Cd was upregulated by Si in root and shoot facilitating Fe transport in wheat. NRAMP1 was similarly expressed, though the effect was limited to roots. This work is the first to show how Si influences Cd uptake on the cellular level. - Highlights: • Si decreases accumulation and translocation of Cd in plants at tissue level. • This work is the first to show how Si influences Cd uptake. • Si decreases Cd uptake into cell and downregulates heavy metal transporter LCT1. • Si downregulates HMA2 transporter, which regulates Cd transport from root to shoot. • Si increases phytochelatin formation

  12. The cellular response of Saccharomyces cerevisiae to multi-walled carbon nanotubes (MWCNTs

    Directory of Open Access Journals (Sweden)

    Chantelle L. Phillips

    2015-03-01

    Full Text Available Nanoparticles (NPs especially those of carbon nanotubes (CNTs have remarkable properties that are very desirable in various biological and biomedical applications. This has necessitated the rapid study of CNT toxicities, to augment their safe use, particularly, in yeast cells. The yeast cell; Saccharomyces cerevisiae is a widely used industrial and biological organism with very limited data regarding their cellular behaviour in NPs. The current study examines the cellular response of S. cerevisiae to MWCNTs. The CNTs were produced by the swirled floating catalytic chemical vapour deposition (SFCCVD method and covalently functionalised using 1,3-dipolar cycloaddition. The CNT properties such as size, surface area, quality and surface vibrations were characterized using TEM, SEM, BET, TGA and Raman spectroscopy, respectively. The cellular uptake was confirmed with a FITC functionalised MWCNTs using 1H NMR, SEM and TEM. The CNT concentrations of 2–40 μg/ml were used to determine the cellular response through cell growth phases and cell viability characteristics. The TEM and SEM analyses showed the production of MWCNTs with an average diameter of 53 ± 12 nm and a length of 2.5 ± 0.5 μm. The cellular uptake of FITC-MWCNTs showed 100% internalisation in the yeast cells. The growth curve responses to the MWCNT doses showed no significant differences at P > 0.05 on the growth rate and viability of the S. cerevisiae cells.

  13. Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast.

    Science.gov (United States)

    Lanthaler, Karin; Bilsland, Elizabeth; Dobson, Paul D; Moss, Harry J; Pir, Pınar; Kell, Douglas B; Oliver, Stephen G

    2011-10-24

    The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs.

  14. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Ji P

    2016-03-01

    Full Text Available Peng Ji, Tong Yu, Ying Liu, Jie Jiang, Jie Xu, Ying Zhao, Yanna Hao, Yang Qiu, Wenming Zhao, Chao WuCollege of Pharmacy, Liaoning Medical University, Jinzhou, Liaoning Province, People’s Republic of ChinaAbstract: Naringenin (NRG, a flavonoid compound, had been reported to exhibit extensive pharmacological effects, but its water solubility and oral bioavailability are only ~46±6 µg/mL and 5.8%, respectively. The purpose of this study is to design and develop NRG-loaded solid lipid nanoparticles (NRG-SLNs to provide prolonged and sustained drug release, with improved stability, involving nontoxic nanocarriers, and increase the bioavailability by means of pulmonary administration. Initially, a group contribution method was used to screen the best solid lipid matrix for the preparation of SLNs. NRG-SLNs were prepared by an emulsification and low-temperature solidification method and optimized using an orthogonal experiment approach. The morphology was examined by transmission electron microscopy, and the particle size and zeta potential were determined by photon correlation spectroscopy. The total drug content of NRG-SLNs was measured by high-performance liquid chromatography, and the encapsulation efficiency (EE was determined by Sephadex gel-50 chromatography and high-performance liquid chromatography. The in vitro NRG release studies were carried out using a dialysis bag. The best cryoprotectant to prepare NRG-SLN lyophilized powder for future structural characterization was selected using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The short-term stability, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay, cellular uptake, and pharmacokinetics in rats were studied after pulmonary administration of NRG-SLN lyophilized powder. Glycerol monostearate was selected to prepare SLNs, and the optimal formulation of NRG-SLNs was spherical in shape, with a particle

  15. Cellular Uptake of the Clostridium perfringens Binary Iota-Toxin

    Science.gov (United States)

    Blöcker, Dagmar; Behlke, Joachim; Aktories, Klaus; Barth, Holger

    2001-01-01

    The binary iota-toxin is produced by Clostridium perfringens type E strains and consists of two separate proteins, the binding component iota b (98 kDa) and an actin-ADP-ribosylating enzyme component iota a (47 kDa). Iota b binds to the cell surface receptor and mediates the translocation of iota a into the cytosol. Here we studied the cellular uptake of iota-toxin into Vero cells. Bafilomycin A1, but not brefeldin A or nocodazole, inhibited the cytotoxic effects of iota-toxin, indicating that toxin is translocated from an endosomal compartment into the cytoplasm. Acidification (pH ≤ 5.0) of the extracellular medium enabled iota a to directly enter the cytosol in the presence of iota b. Activation by chymotrypsin induced oligomerization of iota b in solution. An average mass of 530 ± 28 kDa for oligomers was determined by analytical ultracentrifugation, indicating heptamer formation. The entry of iota-toxin into polarized CaCo-2 cells was studied by measuring the decrease in transepithelial resistance after toxin treatment. Iota-toxin led to a significant decrease in resistance when it was applied to the basolateral surface of the cells but not following application to the apical surface, indicating a polarized localization of the iota-toxin receptor. PMID:11292715

  16. Cellular uptake of 99mTcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    International Nuclear Information System (INIS)

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel; Fontaine, Eric; Pasqualini, Roberto

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ( 99m TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether 99m TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of 99m TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of 99m TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG 2 M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of 99m TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of 99m TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG 2 M. The uptake of 99m TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that 99m TcN-NOET might be a marker of cell proliferation. (orig.)

  17. Time-dependent uptake and toxicity of nickel to Enchytraeus crypticus in the presence of humic acid and fulvic acid

    NARCIS (Netherlands)

    He, Erkai; Qiu, Hao; Qiu, Rongliang; Rentenaar, Charlotte; Devresse, Quentin; Van Gestel, Cornelis A.M.

    2017-01-01

    The present study aimed to investigate the influence of different fractions of dissolved organic carbon (DOC) on the uptake and toxicity of nickel (Ni) in the soil invertebrate Enchytraeus crypticus after different exposure times. The addition of DOC as humic acid or fulvic acid significantly

  18. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    Science.gov (United States)

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  19. Effects of diuretics on iodine uptake in non-toxic goitre: comparison with low-iodine diet

    Energy Technology Data Exchange (ETDEWEB)

    Kapucu, L.Ozlem; Azizoglu, Firat [Department of Nuclear Medicine, Gazi University, Ankara (Turkey); Ayvaz, Goksun; Karakoc, Ayhan [Department of Endocrinology, Gazi University, Ankara (Turkey)

    2003-09-01

    Low-iodine diet has been employed to achieve iodine depletion prior to radioiodine (RI) therapy. However, treatment with diuretics may be more effective than low-iodine diet in causing iodine depletion and subsequent increase in RI uptake by the thyroid. Fifty-five patients with non-toxic goitre were given 0.20 MBq RI p.o. on the first day of the study and thyroid uptake was measured. In 15 patients, a low-iodine diet was started and continued for 14 days. The remaining 40 patients received furosemide 40 mg/day orally for 5 days with an unrestricted diet. On the 15th day of the study, all patients were given 0.20 MBq RI p.o. and thyroid RI uptake was measured again. Additionally, 24-h urinary iodine excretion and RI clearance were measured on the 1st and 6th days in 21 patients from the furosemide group and on the 1st and 15th days in eight patients from the diet group. Furosemide administration led to a 58.40% increase in iodine uptake over the baseline value, which was significantly higher than the increase caused by low-iodine diet (17.22%) (P<0.0001). Urinary excretion of RI decreased in both groups similarly (furosemide, 29.45%; low-iodine diet, 21.06%; P=0.33). Iodine clearance also decreased in each group similarly (10.61% vs 7.53%, P=0.53). Treatment with furosemide prior to administration of RI increases the uptake of RI by the thyroid more effectively than does low-iodine diet. (orig.)

  20. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.

    Science.gov (United States)

    Shahid, Muhammad; Shamshad, Saliha; Rafiq, Marina; Khalid, Sana; Bibi, Irshad; Niazi, Nabeel Khan; Dumat, Camille; Rashid, Muhammad Imtiaz

    2017-07-01

    Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    Science.gov (United States)

    Lu, Yi-Ching; Chang, Fan-Yu; Tu, Shu-Ju; Chen, Jyh-Ping; Ma, Yunn-Hwa

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNPcell) appeared to be magnetic field- and concentration-dependent. In H-field, MNPcell reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNPcell, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNPcell in the L-field may reach as high as 80% of that in H-field during 1-6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNPcell analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo.

  2. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Geh, Stefan; Rettenmeier, Albert W.; Dopp, Elke [University Hospital, Institute of Hygiene and Occupational Medicine, Essen (Germany); Yuecel, Raif [University Hospital, Institute of Cell Biology (Cancer Research), Essen (Germany); Duffin, Rodger [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); University of Edinburgh, ELEGI COLT Lab, Scotland (United Kingdom); Albrecht, Catrin; Borm, Paul J.A. [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); Armbruster, Lorenz [Verein fuer Technische Sicherheit und Umweltschutz e.V., Gotha (Germany); Raulf-Heimsoth, Monika; Bruening, Thomas [Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Hoffmann, Eik [University of Rostock, Institute of Biology, Department of Cell Biology and Biosystems Technology, Rostock (Germany)

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Oe< 10 {mu}m) with an {alpha}-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. (orig.)

  3. Quantitative assessment of surface functionality effects on microglial uptake and retention of PAMAM dendrimers

    Science.gov (United States)

    Liaw, Kevin; Gök, Ozgul; DeRidder, Louis B.; Kannan, Sujatha; Kannan, Rangaramanujam M.

    2018-04-01

    Dendrimers are a promising class of polymeric nanoparticles for delivery of therapeutics and diagnostics. Polyamidoamine (PAMAM) dendrimers have shown significant efficacy in many animal models, with performance dependent on surface functionalities. Understanding the effects of end groups on biological interactions is critical for rational design of dendrimer-mediated therapies. In this study, we quantify the cellular trafficking kinetics (endocytosis and exocytosis) of generation 4 neutral (D4-OH), cationic (D4-NH2), anionic (D3.5-COOH), and generation 6 neutral (D6-OH) PAMAM dendrimers to investigate the nanoscale effects of surface functionality and size on cellular interactions. Resting and LPS-activated microglia were studied due to their central roles in dendrimer therapies for central nervous system disorders. D4-OH exhibits greater cellular uptake and lower retention than the larger D6-OH. D4-OH and D3.5-COOH exhibit similar trafficking kinetics, while D4-NH2 exhibits significant membrane interactions, resulting in faster cell association but lower internalization. Cationic charge may also enhance vesicular escape for greater cellular retention and preferential partitioning to nuclei. LPS activation further improves uptake of dendrimers, with smaller and cationic dendrimers experiencing the greatest increases in uptake compared to resting microglia. These studies have implications for the dependence of trafficking pathway on dendrimer properties and inform the design of dendrimer constructs tailored to specific therapeutic needs. Cationic dendrimers are ideal for delivering genetic materials to nuclei, but toxicity may be a limiting factor. Smaller, neutral dendrimers are best suited for delivering high levels of therapeutics in acute neuroinflammation, while larger or cationic dendrimers provide robust retention for sustained release of therapeutics in longer-term diseases.

  4. Effect of chirality on cellular uptake, imaging and photodynamic therapy of photosensitizers derived from chlorophyll-a.

    Science.gov (United States)

    Srivatsan, Avinash; Pera, Paula; Joshi, Penny; Wang, Yanfang; Missert, Joseph R; Tracy, Erin C; Tabaczynski, Walter A; Yao, Rutao; Sajjad, Munawwar; Baumann, Heinz; Pandey, Ravindra K

    2015-07-01

    We have previously shown that the (124)I-analog of methyl 3-(1'-m-iodobenzyloxy) ethyl-3-devinyl-pyropheophorbide-a derived as racemic mixture from chlorophyll-a can be used for PET (positron emission tomography)-imaging in animal tumor models. On the other hand, as a non-radioactive analog, it showed excellent fluorescence and photodynamic therapy (PDT) efficacy. Thus, a single agent in a mixture of radioactive ((124)I-) and non-radioactive ((127)I) material can be used for both dual-imaging and PDT of cancer. Before advancing to Phase I human clinical trials, we evaluated the activity of the individual isomers as well as the impact of a chiral center at position-3(1) in directing in vitro/in vivo cellular uptake, intracellular localization, epithelial tumor cell-specific retention, fluorescence/PET imaging, and photosensitizing ability. The results indicate that both isomers (racemates), either as methyl ester or carboxylic acid, were equally effective. However, the methyl ester analogs, due to subcellular deposition into vesicular structures, were preferentially retained. All derivatives containing carboxylic acid at the position-17(2) were noted to be substrate for the ABCG2 (a member of the ATP binding cassette transporters) protein explaining their low retention in lung tumor cells expressing this transporter. The compounds in which the chirality at position-3 has been substituted by a non-chiral functionality showed reduced cellular uptake, retention and lower PDT efficacy in mice bearing murine Colon26 tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Caveolae-Mediated Endocytosis Is Critical for Albumin Cellular Uptake and Response to Albumin-Bound Chemotherapy.

    Science.gov (United States)

    Chatterjee, Moumita; Ben-Josef, Edgar; Robb, Ryan; Vedaie, Marall; Seum, Star; Thirumoorthy, Krishnan; Palanichamy, Kamalakannan; Harbrecht, Matthew; Chakravarti, Arnab; Williams, Terence M

    2017-11-01

    Nab-paclitaxel, a nanoparticle conjugate of paclitaxel to human albumin, exhibits efficacy in pancreatic cancer, non-small cell lung cancer and breast cancer. However, there is a lack of predictive biomarkers to identify patients who might benefit most from its administration. This study addresses this gap in knowledge by identifying that caveolin-1 (Cav-1) is a candidate mechanism-based biomarker. Caveolae are small membrane invaginations important for transendothelial albumin uptake. Cav-1, the principal structural component of caveolae, is overexpressed in the cancers noted above that respond to nab-paclitaxel. Thus, we hypothesized that Cav-1 may be critical for albumin uptake in tumors and perhaps determine their response to this drug. Cav-1 protein levels correlated positively with nab-paclitaxel sensitivity. RNAi-mediated attenuation of Cav-1 expression reduced uptake of albumin and nab-paclitaxel in cancer cells and rendered them resistant to nab-paclitaxel-induced apoptosis. Conversely, Cav-1 overexpression enhanced sensitivity to nab-paclitaxel. Selection for cellular resistance to nab-paclitaxel in cell culture correlated with a loss of Cav-1 expression. In mouse xenograft models, cancer cells, where Cav-1 was attenuated, exhibited resistance to the antitumor effects of nab-paclitaxel therapy. Overall, our findings suggest Cav-1 as a predictive biomarker for the response to nab-paclitaxel and other albumin-based cancer therapeutic drugs. Cancer Res; 77(21); 5925-37. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Managing magnetic nanoparticle aggregation and cellular uptake: a precondition for efficient stem-cell differentiation and MRI tracking.

    Science.gov (United States)

    Fayol, Delphine; Luciani, Nathalie; Lartigue, Lenaic; Gazeau, Florence; Wilhelm, Claire

    2013-02-01

    The labeling of stem cells with iron oxide nanoparticles is increasingly used to enable MRI cell tracking and magnetic cell manipulation, stimulating the fields of tissue engineering and cell therapy. However, the impact of magnetic labeling on stem-cell differentiation is still controversial. One compromising factor for successful differentiation may arise from early interactions of nanoparticles with cells during the labeling procedure. It is hypothesized that the lack of control over nanoparticle colloidal stability in biological media may lead to undesirable nanoparticle localization, overestimation of cellular uptake, misleading MRI cell tracking, and further impairment of differentiation. Herein a method is described for labeling mesenchymal stem cells (MSC), in which the physical state of citrate-coated nanoparticles (dispersed versus aggregated) can be kinetically tuned through electrostatic and magnetic triggers, as monitored by diffusion light scattering in the extracellular medium and by optical and electronic microscopy in cells. A set of statistical cell-by-cell measurements (flow cytometry, single-cell magnetophoresis, and high-resolution MRI cellular detection) is used to independently quantify the nanoparticle cell uptake and the effects of nanoparticle aggregation. Such aggregation confounds MRI cell detection as well as global iron quantification and has adverse effects on chondrogenetic differentiation. Magnetic labeling conditions with perfectly stable nanoparticles-suitable for obtaining differentiation-capable magnetic stem cells for use in cell therapy-are subsequently identified. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Assaying Cellular Viability Using the Neutral Red Uptake Assay.

    Science.gov (United States)

    Ates, Gamze; Vanhaecke, Tamara; Rogiers, Vera; Rodrigues, Robim M

    2017-01-01

    The neutral red uptake assay is a cell viability assay that allows in vitro quantification of xenobiotic-induced cytotoxicity. The assay relies on the ability of living cells to incorporate and bind neutral red, a weak cationic dye, in lysosomes. As such, cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red after exposure to the xenobiotic under investigation. The neutral red uptake assay is mainly used for hazard assessment in in vitro toxicology applications. This method has also been introduced in regulatory recommendations as part of 3T3-NRU-phototoxicity-assay, which was regulatory accepted in all EU member states in 2000 and in the OECD member states in 2004 as a test guideline (TG 432). The present protocol describes the neutral red uptake assay using the human hepatoma cell line HepG2, which is often employed as an alternative in vitro model for human hepatocytes. As an example, the cytotoxicity of acetaminophen and acetyl salicylic acid is assessed.

  8. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Claus-Christian Glüer

    2010-12-01

    Full Text Available Superparamagnetic iron-oxide particles (SPIO are used in different ways as contrast agents for magnetic resonance imaging (MRI: Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite, different coatings (none, dextran, carboxydextran, polystyrene and different hydrodynamic diameters (20–850 nm for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC, which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  9. Specific Reagent for Cr(III): Imaging Cellular Uptake of Cr(III) in Hct116 Cells and Theoretical Rationalization.

    Science.gov (United States)

    Ali, Firoj; Saha, Sukdeb; Maity, Arunava; Taye, Nandaraj; Si, Mrinal Kanti; Suresh, E; Ganguly, Bishwajit; Chattopadhyay, Samit; Das, Amitava

    2015-10-15

    A new rhodamine-based reagent (L1), trapped inside the micellar structure of biologically benign Triton-X 100, could be used for specific recognition of Cr(III) in aqueous buffer medium having physiological pH. This visible light excitable reagent on selective binding to Cr(III) resulted in a strong fluorescence turn-on response with a maximum at ∼583 nm and tail of that luminescence band extended until 650 nm, an optical response that is desired for avoiding the cellular autofluorescence. Interference studies confirm that other metal ions do not interfere with the detection process of Cr(III) in aqueous buffer medium having pH 7.2. To examine the nature of binding of Cr(III) to L1, various spectroscopic studies are performed with the model reagent L2, which tend to support Cr(III)-η(2)-olefin π-interactions involving two olefin bonds in molecular probe L1. Computational studies are also performed with another model reagent LM to examine the possibility of such Cr(III)-η(2)-olefin π-interactions. Presumably, polar functional groups of the model reagent LM upon coordination to the Cr(III) center effectively reduce the formal charge on the metal ion and this is further substantiated by results of the theoretical studies. This assembly is found to be cell membrane permeable and shows insignificant toxicity toward live colon cancer cells (Hct116). Confocal laser scanning microscopic studies further revealed that the reagent L1 could be used as an imaging reagent for detection of cellular uptake of Cr(III) in pure aqueous buffer medium by Hct116 cells. Examples of a specific reagent for paramagnetic Cr(III) with luminescence ON response are scanty in the contemporary literature. This ligand design helped us in achieving the turn on response by utilizing the conversion from spirolactam to an acyclic xanthene form on coordination to Cr(III).

  10. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation.

    Science.gov (United States)

    Dalai, Swayamprava; Iswarya, V; Bhuvaneshwari, M; Pakrashi, Sunandan; Chandrasekaran, N; Mukherjee, Amitava

    2014-07-01

    The extensive environmental exposure of engineered metal oxide nanoparticles (NPs) may result in their bioaccumulation in aquatic organisms leading to their biotransfer in a food chain through various routes in a freshwater ecosystem. The present study focuses on the possible modes of TiO2 NP trophic transfer to Ceriodaphnia dubia, in presence and/absence of its diet, Scenedesmus obliquus (primary producer). The acute exposure studies (48h) were designed to have daphnids exposed to (i) the free NPs, (ii) both the free and the algae-borne NPs; and (iii) only the algae-borne NPs in separate tests to understand the possible routes of NP transfer. The dietary uptake of TiO2 NPs (algae-borne) was found to be the primary route for NP biotransfer with ∼70% of total NP uptake. Interestingly, in a separate study it was noticed that the NPs coated with algal exudates were easily taken up by daphnids as compared to pristine NPs of same concentrations, leading to their higher bioaccumulation. A chronic toxicity study, where daphnids were exposed to both free and algae-borne NPs for 21 days was undertaken to comprehend the TiO2 NP effect on daphnia growth and reproduction upon chronic exposure and also the bioaccumulation potential. Both acute and chronic exposure studies suggested higher bioaccumulation of TiO2 in daphnids when the particles were less toxic to the diet (algae). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus.

    Science.gov (United States)

    Zhang, Li; He, Yiliang; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; Tao, Xianji

    2016-06-01

    The release of silver nanoparticles (Ag NPs) in aquatic environment has caused wide public concern about their effects on living organisms (e.g., algae). However, how these small NPs exert cytotoxicity in the living organisms has always been under heated debate. In this study, the uptake and toxicity effects of strongly red-emitting fluorescent silver nanoclusters (r-Ag NCs) exposed to the green algae Scenedesmus obliquus was investigated. Upon exposure to pure r-Ag NCs and r-Ag NCs containing l-cysteine, the algae growth inhibition test showed that Ag(+) ions released from r-Ag NCs played an important role in the toxicity of r-Ag NCs along with the toxicity of intact r-Ag NCs. Furthermore, no signals of intracellular reactive oxygen species (ROS) were observed indicating that r-Ag NCs or released Ag(+) ions - mediated growth inhibition of algae cells was independent of ROS production. Transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM) were employed to study cellular uptake and cytotoxicity. Furthermore, analysis of differential expressed gene demonstrated that r-Ag NCs as well as the released Ag(+) ions can simultaneously exist inside the algae cells, and inhibit the transcriptomic process of genes by their "joint-toxicity" mechanism. Taken together, our study provides a new insight into the molecular mechanisms of r-Ag NCs and Ag(+) ions exposure to the aquatic organism and can be applied to early diagnosis of ecologic risk mediated by others metal-based NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Coupled elasticity–diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-01

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity–diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand–receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand–receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. PMID:25411410

  13. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Cindy, E-mail: c.gunawan@unsw.edu.au [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Sirimanoonphan, Aunchisa [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Teoh, Wey Yang [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Marquis, Christopher P., E-mail: c.marquis@unsw.edu.au [School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW (Australia); Amal, Rose [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2013-09-15

    Highlights: • Uptake of TiO{sub 2} solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO{sub 2} exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO{sub 2} and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO{sub 2} exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO{sub 2} stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO{sub 2} exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO{sub 2}/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials.

  14. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Gunawan, Cindy; Sirimanoonphan, Aunchisa; Teoh, Wey Yang; Marquis, Christopher P.; Amal, Rose

    2013-01-01

    Highlights: • Uptake of TiO 2 solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO 2 exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO 2 and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO 2 exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO 2 stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO 2 exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO 2 /L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials

  15. Quantification of cellular uptake of DNA nanostructures by qPCR.

    Science.gov (United States)

    Okholm, Anders Hauge; Nielsen, Jesper Sejrup; Vinther, Mathias; Sørensen, Rasmus Schøler; Schaffert, David; Kjems, Jørgen

    2014-05-15

    DNA nanostructures facilitating drug delivery are likely soon to be realized. In the past few decades programmed self-assembly of DNA building blocks have successfully been employed to construct sophisticated nanoscale objects. By conjugating functionalities to DNA, other molecules such as peptides, proteins and polymers can be precisely positioned on DNA nanostructures. This exceptional ability to produce modular nanoscale devices with tunable and controlled behavior has initiated an interest in employing DNA nanostructures for drug delivery. However, to obtain this the relationship between cellular interactions and structural and functional features of the DNA delivery device must be thoroughly investigated. Here, we present a rapid and robust method for the precise quantification of the component materials of DNA origami structures capable of entering cells in vitro. The quantification is performed by quantitative polymerase chain reaction, allowing a linear dynamic range of detection of five orders of magnitude. We demonstrate the use of this method for high-throughput screening, which could prove efficient to identify key features of DNA nanostructures enabling cell penetration. The method described here is suitable for quantification of in vitro uptake studies but should easily be extended to quantify DNA nanostructures in blood or tissue samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A structural basis for cellular uptake of GST-fold proteins.

    Directory of Open Access Journals (Sweden)

    Melanie J Morris

    Full Text Available It has recently emerged that glutathione transferase enzymes (GSTs and other structurally related molecules can be translocated from the external medium into many different cell types. In this study we aim to explore in detail, the structural features that govern cell translocation and by dissecting the human GST enzyme GSTM2-2 we quantatively demonstrate that the α-helical C-terminal domain (GST-C is responsible for this property. Attempts to further examine the constituent helices within GST-C resulted in a reduction in cell translocation efficiency, indicating that the intrinsic GST-C domain structure is necessary for maximal cell translocation capacity. In particular, it was noted that the α-6 helix of GST-C plays a stabilising role in the fold of this domain. By destabilising the conformation of GST-C, an increase in cell translocation efficiency of up to ∼2-fold was observed. The structural stability profiles of these protein constructs have been investigated by circular dichroism and differential scanning fluorimetry measurements and found to impact upon their cell translocation efficiency. These experiments suggest that the globular, helical domain in the 'GST-fold' structural motif plays a role in influencing cellular uptake, and that changes that affect the conformational stability of GST-C can significantly influence cell translocation efficiency.

  17. Dependence of FDG uptake on tumor microenvironment

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Ruan, Shutian; Carlin, Sean; Larson, Steven M.; Campa, Jose; Ling, C. Clifton; Humm, John L.

    2005-01-01

    Purpose: To investigate the factors affecting the 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in tumors at a microscopic level, by correlating it with tumor hypoxia, cellular proliferation, and blood perfusion. Methods and Materials: Nude mice bearing Dunning prostate tumors (R3327-AT) were injected with 18 F-FDG and pimonidazole, bromodeoxyuridine, and, 1 min before sacrifice, with Hoechst 33342. Selected tumor sections were imaged by phosphor plate autoradiography, while adjacent sections were used to obtain the images of the spatial distribution of Hoechst 33342, pimonidazole, and bromodeoxyuridine. The images were co-registered and analyzed on a pixel-by-pixel basis. Results: Statistical analysis of the data obtained from these tumors demonstrated that 18 F-FDG uptake was positively correlated with pimonidazole staining intensity in each data set studied. Correlation of FDG uptake with bromodeoxyuridine staining intensity was always negative. In addition, FDG uptake was always negatively correlated with the staining intensity of Hoechst 33342. Conclusions: For the Dunning prostate tumors studied, FDG uptake was always positively correlated with hypoxia and negatively correlated with both cellular proliferation and blood flow. Therefore, for the tumor model studied, higher FDG uptake is indicative of tumor hypoxia, but neither blood flow nor cellular proliferation

  18. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, J., E-mail: judit.kalman@uca.es [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bonnail-Miguel, E. [Department of Physical-Chemistry, University of Cadiz, Poligono Industrial Rio San Pedro s/n, 11,510 Puerto Real, Cadiz (Spain); Smith, B.D. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bury, N.R. [Division of Diabetes and Nutritional Science, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Rainbow, P.S. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)

    2015-02-15

    The relationship between the subcellular distribution of accumulated toxic metals into five operational fractions (subsequently combined into presumed detoxified and non-detoxified components) and toxicity in the clam Scrobicularia plana was investigated under different laboratory exposures. Clams were exposed to metal contaminated media (water and diet) and analysed for the partitioning of accumulated As, Cu and Zn into subcellular fractions. In general, metallothionein-like proteins, metal-rich granules and cellular debris in different proportions acted as main storage sites of accumulated metals in the clam soft tissues for these three metals. No significant differences were noted in the accumulation rates of As, Cu and Zn of groups of individuals with or without apparent signs of toxicity after up to 30 days of exposure to naturally contaminated sediment mixtures. There was, however, an increased proportional accumulation of Cu in the non-detoxified fraction with increased Cu accumulation rate in the clams, suggesting that the Cu uptake rate from contaminated sediments exceeded the combined rates of elimination and detoxification of Cu, with the subsequent likelihood for toxic effects in the clams. - Highlights: • Scrobicularia plana accumulated As, Cu and Zn from naturally toxic sediments. • Toxic metals were accumulated in detoxified and non-detoxified components. • Cu accumulation in the non-detoxified pool increased with increased Cu uptake rate. • Cu uptake rate exceeded combined loss and detoxification rates to cause toxicity.

  19. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field

    International Nuclear Information System (INIS)

    Kalman, J.; Bonnail-Miguel, E.; Smith, B.D.; Bury, N.R.; Rainbow, P.S.

    2015-01-01

    The relationship between the subcellular distribution of accumulated toxic metals into five operational fractions (subsequently combined into presumed detoxified and non-detoxified components) and toxicity in the clam Scrobicularia plana was investigated under different laboratory exposures. Clams were exposed to metal contaminated media (water and diet) and analysed for the partitioning of accumulated As, Cu and Zn into subcellular fractions. In general, metallothionein-like proteins, metal-rich granules and cellular debris in different proportions acted as main storage sites of accumulated metals in the clam soft tissues for these three metals. No significant differences were noted in the accumulation rates of As, Cu and Zn of groups of individuals with or without apparent signs of toxicity after up to 30 days of exposure to naturally contaminated sediment mixtures. There was, however, an increased proportional accumulation of Cu in the non-detoxified fraction with increased Cu accumulation rate in the clams, suggesting that the Cu uptake rate from contaminated sediments exceeded the combined rates of elimination and detoxification of Cu, with the subsequent likelihood for toxic effects in the clams. - Highlights: • Scrobicularia plana accumulated As, Cu and Zn from naturally toxic sediments. • Toxic metals were accumulated in detoxified and non-detoxified components. • Cu accumulation in the non-detoxified pool increased with increased Cu uptake rate. • Cu uptake rate exceeded combined loss and detoxification rates to cause toxicity

  20. Depleted Uranium Toxicity, Accumulation, and Uptake in Cynodon dactylon (Bermuda) and Aristida purpurea (Purple Threeawn).

    Science.gov (United States)

    Butler, Afrachanna D; Wynter, Michelle; Medina, Victor F; Bednar, Anthony J

    2016-06-01

    Yuma Proving Grounds (YPG) in western Arizona is a testing range where Depleted uranium (DU) penetrators have been historically fired. A portion of the fired DU penetrators are being managed under controlled conditions by leaving them in place. The widespread use of DU in armor-penetrating weapons has raised environmental and human health concerns. The present study is focused on the onsite management approach and on the potential interactions with plants local to YPG. A 30 day study was conducted to assess the toxicity of DU corrosion products (e.g., schoepite and meta-schoepite) in two grass species that are native to YPG, Bermuda (Cynodon dactylon) and Purple Threeawn (Aristida purpurea). In addition, the ability for plants to uptake DU was studied. The results of this study show a much lower threshold for biomass toxicity and higher plant concentrations, particularly in the roots than shoots, compared to previous studies.

  1. Nutrient uptake by intact mycorrhizal Pinus sylvestris seedlings: a diagnostic tool to detect copper toxicity.

    Science.gov (United States)

    Van Tichelen, Katia K.; Vanstraelen, Tom; Colpaert, Jan V.

    1999-03-01

    We developed a nondestructive method for detecting early toxic effects of inflethal copper (Cu) concentrations on ectomycorrhizal and non-mycorrhizal (NM) Scots pine (Pinus sylvestris L.) seedlings. The fungal symbionts examined were Paxillus involutus (Fr.) Fr., Suillus luteus (Fr.) S.F. Gray and Thelephora terrestris (Ehrh.) Fr. The accumulation of Cu in needles and fungal development (ergosterol) in roots and infstrate were assessed. Inorganic phosphate (P(i)) and ammonium (NH(4) (+)) uptake capacities were determined in a semi-hydroponic cultivation system on intact P-limited plants that were exposed for 3 weeks to 0.32 (control), 8 or 16 &mgr;moles Cu(2+). Short-term effects of a 1-hour exposure to 32 &mgr;moles Cu(2+) on nutrient uptake rates were also determined. None of the Cu(2+) treatments affected plant growth or root ergosterol concentrations. The active fungal biomass in infstrate invaded by S. luteus was reduced by 50% in the 16 &mgr;M Cu(2+) treatment compared with the control treatment; however, colonization by S. luteus prevented an increased accumulation of Cu in the needles. In contrast, the 16 &mgr;M Cu(2+) treatment caused a 2.2-fold increase in needle Cu concentration in NM plants. Ergosterol concentrations in the infstrate colonized by P. involutus and T. terrestris were not affected by 16 &mgr;molar Cu(2+). Although P. involutus and T. terrestris were less sensitive to Cu(2+) than S. luteus, T. terrestris did not prevent the accumulation of Cu in needles of its host plant in the 16 &mgr;molar Cu(2+) treatment. Mycorrhizal plants consistently had higher P(i) and NH(4) (+) uptake capacities than NM plants. In the control treatment, specific P(i) uptake rates were almost 10, 4 and 3 times higher in plants associated with P. involutus, S. luteus and T. terrestris, respectively, than in NM plants, and specific NH(4) (+) uptake rates were about 2, 2 and 5 times higher, respectively, than those of NM seedlings. Compared with the corresponding

  2. Reevaluation of the 131I thyroid uptake in Rio de Janeiro

    International Nuclear Information System (INIS)

    Rosenthal, D.; Frankenfeld, T.G.P.; Assis Paiva, H.J. de; Fridman, J.

    1982-01-01

    The values of the 3 and 24 hour thyroid radioiodine uptake were analysed in 919 of the patients examined during 1977-1980. Reference values determined for 95% of the normal population are 2.5 - 17.5% for the 3 hour thyroid uptake values, and 10.5 - 41.2% for the 24 hour values. The non-toxic diffuse goiter group has significantly higher mean values than normals or patients with non-toxic nodular goiters and cold nodules, their upper values reaching 24.7% and 52.9% for 3 and 24 hour uptake. The discriminatory power of the test for non-toxic diffuse goiters may be increased if higher limits than those determined for normals are used in day to day routine. Values of 20% for 3 hour uptake and 45% for the 24 hour uptake improve diagnosis in these patients without seriously reducing the capacity for identification of thyrotoxicosis. A value greater than 0.6 for the ratio between the 3 hour and 24 hour uptake can serve as a coadjuvant factor in the diagnosis of diffuse toxic goiters; values higher than 0.8 were found in less than 0.5% of the non-toxic patients. (Author) [pt

  3. Cellular uptake of {sup 99m}TcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel [Universite de Grenoble, Radiopharmaceutiques Biocliniques, La Tronche (France); Fontaine, Eric [Universite de Grenoble, Laboratoire de Bioenergetique Fondamentale et Appliquee, Grenoble (France); Pasqualini, Roberto [Cis Bio International Schering SA, Gif-sur-Yvette (France)

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ({sup 99m}TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether {sup 99m}TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of {sup 99m}TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of {sup 99m}TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG{sub 2}M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of {sup 99m}TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of {sup 99m}TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG{sub 2}M. The uptake of {sup 99m}TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that {sup 99m}TcN-NOET might be a marker of cell proliferation. (orig.)

  4. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles.

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-06

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity-diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand-receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand-receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities

    International Nuclear Information System (INIS)

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.

  6. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities.

    Science.gov (United States)

    Lim, Seong-Rin; Schoenung, Julie M

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones. 2010 Elsevier Ltd. All rights reserved.

  7. Quantitative cellular uptake of double fluorescent core-shelled model submicronic particles

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Lara, E-mail: leclerc@emse.fr [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Boudard, Delphine [LINA (France); Pourchez, Jeremie; Forest, Valerie [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Marmuse, Laurence; Louis, Cedric [NANO-H S.A.S (France); Bin, Valerie [LINA (France); Palle, Sabine [Universite Jean Monnet, Centre de Microscopie Confocale Multiphotonique (France); Grosseau, Philippe; Bernache-Assollant, Didier [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Cottier, Michele [LINA (France)

    2012-11-15

    The relationship between particles' physicochemical parameters, their uptake by cells and their degree of biological toxicity represent a crucial issue, especially for the development of new technologies such as fabrication of micro- and nanoparticles in the promising field of drug delivery systems. This work was aimed at developing a proof-of-concept for a novel model of double fluorescence submicronic particles that could be spotted inside phagolysosomes. Fluorescein isothiocyanate (FITC) particles were synthesized and then conjugated with a fluorescent pHrodo Trade-Mark-Sign probe, red fluorescence of which increases in acidic conditions such as within lysosomes. After validation in acellular conditions by spectral analysis with confocal microscopy and dynamic light scattering, quantification of phagocytosis was conducted on a macrophage cell line in vitro. The biological impact of pHrodo functionalization (cytotoxicity, inflammatory response, and oxidative stress) was also investigated. Results validate the proof-of-concept of double fluorescent particles (FITC + pHrodo), allowing detection of entirely engulfed pHrodo particles (green and red labeling). Moreover incorporation of pHrodo had no major effects on cytotoxicity compared to particles without pHrodo, making them a powerful tool for micro- and nanotechnologies.

  8. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    Science.gov (United States)

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.

  9. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles.

    Science.gov (United States)

    Jindal, Anil B

    2017-10-30

    Encapsulation of therapeutic agents in nanoparticles offers several benefits including improved bioavailability, site specific delivery, reduced toxicity and in vivo stability of proteins and nucleotides over conventional delivery options. These benefits are consequence of distinct in vivo pharmacokinetic and biodistribution profile of nanoparticles, which is dictated by the complex interplay of size, surface charge and surface hydrophobicity. Recently, particle shape has been identified as a new physical parameter which has exerted tremendous impact on cellular uptake and biodistribution, thereby in vivo performance of nanoparticles. Improved therapeutic efficacy of anticancer agents using non-spherical particles is the recent development in the field. Additionally, immunological response of nanoparticles was also altered when antigens were loaded in non-spherical nanovehicles. The apparent impact of particle shape inspired the new research in the field of drug delivery. The present review therefore details the research in this field. The review focuses on methods of fabrication of particles of non-spherical geometries and impact of particle shape on cellular uptake, biodistribution, tumor targeting and production of immunological responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Recombinant human thyrotropin stimulation prior to 131I therapy in toxic multinodular goitre with low radioactive iodine uptake.

    Science.gov (United States)

    Azorín Belda, M J; Martínez Caballero, A; Figueroa Ardila, G C; Martínez Ramírez, M; Gómez Jaramillo, C A; Dolado Ardit, J I; Verdú Rico, J

    Stimulation with recombinant human thyrotropin (rhTSH) increases thyroid radioiodine uptake, and is an aid to 131 I therapy in non-toxic multinodular goitre (MNG). However, there are not many studies using rhTSH prior to 131 I in toxic multinodular goitre to improve hyperthyroidism and compressive symptoms. A prospective study was conducted on patients with MNG and hyperthyroidism. Patients were recruited consecutively and divided into group I, stimulated with 0.3mg of rhTSH before radioiodine therapy, and a control group or group II, without stimulation. Thyroid function, radioiodine thyroid uptake, thyroid weight, and compressive symptoms were measured, and patients were followed-up for 9 months. Group I consisted of 16 patients (14 women), with a mean age 69.7 years, and group II with 16 patients (12 women), with a mean age 70.7 years. After stimulation with 0.3mg rhTSH in group I, 131 I uptake (RAIU) at 24h increased by 78.4%, and the estimated absorbed dose by 89.3%. In group II, the estimated absorbed dose was lower than group I after stimulation with rhTSH (29.8Gy vs. 56.4Gy; P=0.001). At 9 months of follow-up, hyperthyroidism was controlled in 87.5% of patients in group I, and 56.2% in group II (P=0.049). The mean reduction in thyroid weight was higher in group I than in group II (39.3% vs. 26.9%; P=0.017), with a tendency towards subjective improvement of compressive symptoms in group I, although non-significant. Only 2 patients described tachycardias after rhTSH administration, which were resolved with beta-blockers. Stimulation with 0.3mg of recombinant human thyrotropin prior to radioiodine therapy achieves a reduction in thyroid weight and functional improvement in patients with hyperthyroidism and multinodular goitre with low uptake, and with no need for hospital admission. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  11. Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach

    International Nuclear Information System (INIS)

    Solmesky, Leonardo J; Weil, Miguel; Shuman, Michal; Goldsmith, Meir; Peer, Dan

    2011-01-01

    Lipid-based nanoparticles (LNPs) are widely used for the delivery of drugs and nucleic acids. Although most of them are considered safe, there is confusing evidence in the literature regarding their potential cellular toxicities. Moreover, little is known about the recovery process cells undergo after a cytotoxic insult. We have previously studied the systemic effects of common LNPs with different surface charge (cationic, anionic, neutral) and revealed that positively charged LNPs ((+)LNPs) activate pro-inflammatory cytokines and induce interferon response by acting as an agonist of Toll-like receptor 4 on immune cells. In this study, we focused on the response of human fibroblasts exposed to LNPs and their cellular recovery process. To this end, we used image-based high content analysis (HCA). Using this strategy, we were able to show simultaneously, in several intracellular parameters, that fibroblasts can recover from the cytotoxic effects of (+)LNPs. The use of HCA opens new avenues in understanding cellular response and nanotoxicity and may become a valuable tool for screening safe materials for drug delivery and tissue engineering.

  12. Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach

    Science.gov (United States)

    Solmesky, Leonardo J.; Shuman, Michal; Goldsmith, Meir; Weil, Miguel; Peer, Dan

    2011-12-01

    Lipid-based nanoparticles (LNPs) are widely used for the delivery of drugs and nucleic acids. Although most of them are considered safe, there is confusing evidence in the literature regarding their potential cellular toxicities. Moreover, little is known about the recovery process cells undergo after a cytotoxic insult. We have previously studied the systemic effects of common LNPs with different surface charge (cationic, anionic, neutral) and revealed that positively charged LNPs ((+)LNPs) activate pro-inflammatory cytokines and induce interferon response by acting as an agonist of Toll-like receptor 4 on immune cells. In this study, we focused on the response of human fibroblasts exposed to LNPs and their cellular recovery process. To this end, we used image-based high content analysis (HCA). Using this strategy, we were able to show simultaneously, in several intracellular parameters, that fibroblasts can recover from the cytotoxic effects of (+)LNPs. The use of HCA opens new avenues in understanding cellular response and nanotoxicity and may become a valuable tool for screening safe materials for drug delivery and tissue engineering.

  13. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    Science.gov (United States)

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-07-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.

  14. Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity

    International Nuclear Information System (INIS)

    Avery, S.V.

    1995-01-01

    The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions. Caesium exists almost exclusively as the monovalent cation Cs + in the natural environment. Although Cs + is a weak Lewis acid that exhibits a low tendency to form complexes with ligands, its chemical similarity to the biologically essential alkali cation K + facilitates high levels of metabolism-dependent intracellular accumulation. Microbial Cs + (K + ) uptake is generally mediated by monovalent cation transport systems located on the plasma membrane. These differ widely in specificity for alkali cations and consequently microorganisms display large differences in their ability to accumulate Cs + ; Cs + appears to have an equal or greater affinity than K + for transport in certain microorganisms. Microbial Cs + accumulation is markedly influenced by the presence of external cations, e.g. K + , Na + , NH 4 + and H + , and is generally accompanied by an approximate stoichiometric exchange for intracellular K + . However, stimulation of growth of K + -starved microbial cultures by Cs + is limited and it has been proposed that it is not the presence of Cs + in cells that is growth inhibitory but rather the resulting loss of K + . Increased microbial tolerance to Cs + may result from sequestration of Cs + in vacuoles or changes in the activity and/or specificity of transport systems mediating Cs + uptake. The precise intracellular target(s) for Cs + - induced toxicity has yet to be clearly defined, although certain internal structures, e.g. ribosomes, become unstable in the presence of Cs + and Cs + is known to substitute poorly for K + in the activation of many K + -requiring enzymes. (author)

  15. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate

    International Nuclear Information System (INIS)

    Paone, Gaetano; Itti, Emmanuel; Lin, Chieh; Meignan, Michel; Haioun, Corinne; Dupuis, Jehan; Gaulard, Philippe

    2009-01-01

    To assess, in patients with diffuse large B-cell lymphoma (DLBCL), whether the low sensitivity of 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) for bone marrow assessment may be explained by histological characteristics of the cellular infiltrate. From a prospective cohort of 110 patients with newly diagnosed aggressive lymphoma, 21 patients with DLBCL had bone marrow involvement. Pretherapeutic FDG-PET images were interpreted visually and semiquantitatively, then correlated with the type of cellular infiltrate and known prognostic factors. Of these 21 patients, 7 (33%) had lymphoid infiltrates with a prominent component of large transformed lymphoid cells (concordant bone marrow involvement, CBMI) and 14 (67%) had lymphoid infiltrates composed of small cells (discordant bone marrow involvement, DBMI). Only 10 patients (48%) had abnormal bone marrow FDG uptake, 6 of the 7 with CBMI and 4 of the 14 with DBMI. Therefore, FDG-PET positivity in the bone marrow was significantly associated with CBMI, while FDG-PET negativity was associated with DBMI (Fisher's exact test, p=0.024). There were no significant differences in gender, age and overall survival between patients with CBMI and DBMI, while the international prognostic index was significantly higher in patients with CBMI. Our study suggests that in patients with DLBCL with bone marrow involvement bone marrow FDG uptake depends on two types of infiltrate, comprising small (DBMI) or large (CBMI) cells. This may explain the apparent low sensitivity of FDG-PET previously reported for detecting bone marrow involvement. (orig.)

  16. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2010-09-01

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  17. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625

    Directory of Open Access Journals (Sweden)

    Galdiero E

    2017-04-01

    Full Text Available Emilia Galdiero,1 Annarita Falanga,2 Antonietta Siciliano,1 Valeria Maselli,1 Marco Guida,1 Rosa Carotenuto,1 Margherita Tussellino,1 Lucia Lombardi,3 Giovanna Benvenuto,4 Stefania Galdiero2 1Department of Biology, 2Department of Pharmacy and CiRPEB, University of Naples Federico II, 3Department of Experimental Medicine, Second University of Naples, 4Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Abstract: The use of quantum dots (QDs for nanomedicine is hampered by their potential toxicologic effects and difficulties with delivery into the cell interior. We accomplished an in vivo study exploiting Daphnia magna and Xenopus laevis to evaluate both toxicity and uptake of QDs coated with the membranotropic peptide gH625 derived from the glycoprotein H of herpes simplex virus and widely used for drug delivery studies. We evaluated and compared the effects of QDs and gH625-QDs on the survival, uptake, induction of several responsive pathways and genotoxicity in D. magna, and we found that QDs coating plays a key role. Moreover, studies on X. laevis embryos allowed to better understand their cell/tissue localization and delivery efficacy. X. laevis embryos raised in Frog Embryo Teratogenesis Assay-Xenopus containing QDs or gH625-QDs showed that both nanoparticles localized in the gills, lung and intestine, but they showed different distributions, indicating that the uptake of gH625-QDs was enhanced; the functionalized QDs had a significantly lower toxic effect on embryos’ survival and phenotypes. We observed that D. magna and X. laevis are useful in vivo models for toxicity and drug delivery studies. Keywords: membranotropic peptide, delivery, blood–brain barrier, nanoparticles, genotoxicity

  18. Toxicity evaluation of e-juice and its soluble aerosols generated by electronic cigarettes using recombinant bioluminescent bacteria responsive to specific cellular damages.

    Science.gov (United States)

    Bharadwaj, Shiv; Mitchell, Robert J; Qureshi, Anjum; Niazi, Javed H

    2017-04-15

    Electronic-cigarettes (e-cigarette) are widely used as an alternative to traditional cigarettes but their safety is not well established. Herein, we demonstrate and validate an analytical method to discriminate the deleterious effects of e-cigarette refills (e-juice) and soluble e-juice aerosol (SEA) by employing stress-specific bioluminescent recombinant bacterial cells (RBCs) as whole-cell biosensors. These RBCs carry luxCDABE-operon tightly controlled by promoters that specifically induced to DNA damage (recA), superoxide radicals (sodA), heavy metals (copA) and membrane damage (oprF). The responses of the RBCs following exposure to various concentrations of e-juice/SEA was recorded in real-time that showed dose-dependent stress specific-responses against both the e-juice and vaporized e-juice aerosols produced by the e-cigarette. We also established that high doses of e-juice (4-folds diluted) lead to cell death by repressing the cellular machinery responsible for repairing DNA-damage, superoxide toxicity, ion homeostasis and membrane damage. SEA also caused the cellular damages but the cells showed enhanced bioluminescence expression without significant growth inhibition, indicating that the cells activated their global defense system to repair these damages. DNA fragmentation assay also revealed the disintegration of total cellular DNA at sub-toxic doses of e-juice. Despite their state of matter, the e-juice and its aerosols induce cytotoxicity and alter normal cellular functions, respectively that raises concerns on use of e-cigarettes as alternative to traditional cigarette. The ability of RBCs in detecting both harmful effects and toxicity mechanisms provided a fundamental understanding of biological response to e-juice and aerosols. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties.

    Science.gov (United States)

    Ahmad, Suhana; Zamry, Anes Ateqah; Tan, Hern-Tze Tina; Wong, Kah Keng; Lim, JitKang; Mohamud, Rohimah

    2017-11-01

    Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xinhui [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liang, Tong [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, Changsheng [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Yuan, Yuan, E-mail: yyuan@ecust.edu.cn [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Qian, Jiangchao, E-mail: jiangchaoqian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-10-01

    Three types of hydroxyapatite nanoparticles (HAPNs) were synthesized employing a sonochemistry-assisted microwave method by changing microwave power (from 200 to 300 W) or using calcination treatment: L200 (200 W, lyophilization), L300 (300 W, lyophilization) and C200 (200 W, lyophilization & calcination). Their physiochemical properties were characterized and correlated with cytotoxicity to human gastric cancer cells (MGC80-3). The major differences among these HAPN preparations were their size and specific surface area, with the L200 showing a smaller size and higher specific surface area. Although all HAPNs inhibited cell proliferation and induced apoptosis of cancer cells, L200 exhibited the greatest toxicity. All types of HAPNs were internalized through energy-dependent pathways, but the L200 nanoparticles were more efficiently uptaken by MGC80-3 cells. Inhibitor studies with dynasore and methyl-β-cyclodextrin suggested that caveolae-mediated endocytosis and, to a much lesser extent, clathrin-mediated endocytosis, were involved in cellular uptake of the various preparations, whereas the inhibition of endocytosis was more obvious for L200. Using fluorescein isothiocyanate-labeled HAPNs and laser-scanning confocal microscopy, we found that all forms of nanoparticles were present in the cytoplasm, and some L200 HAPNs were even found within nuclei. Treatment with all HAPN preparations led to the increase in the intracellular calcium level with the highest level detected for L200. - Highlights: • Three types of HAPNs (L200, L300 and C200) were synthesized employing a sonochemistry-assisted microwave method. • L200 exhibited the greatest cytotoxicity to human gastric cancer (MGC80-3) cells. • L200 showed a smaller size and higher specific surface area. • The L200 nanoparticles were more efficiently uptaken by MGC80-3 cells through energy-dependent pathways. • L200 caused the most significant increase in the intracellular calcium level.

  1. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    International Nuclear Information System (INIS)

    Pradhan, Pallab; Giri, Jyotsnendu; Banerjee, Rinti; Bellare, Jayesh; Bahadur, Dhirendra

    2007-01-01

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles

  2. Degradable self-assembling dendrons for gene delivery: experimental and theoretical insights into the barriers to cellular uptake.

    Science.gov (United States)

    Barnard, Anna; Posocco, Paola; Pricl, Sabrina; Calderon, Marcelo; Haag, Rainer; Hwang, Mark E; Shum, Victor W T; Pack, Daniel W; Smith, David K

    2011-12-21

    This paper uses a combined experimental and theoretical approach to gain unique insight into gene delivery. We report the synthesis and investigation of a new family of second-generation dendrons with four triamine surface ligands capable of binding to DNA, degradable aliphatic-ester dendritic scaffolds, and hydrophobic units at their focal points. Dendron self-assembly significantly enhances DNA binding as monitored by a range of experimental methods and confirmed by multiscale modeling. Cellular uptake studies indicate that some of these dendrons are highly effective at transporting DNA into cells (ca. 10 times better than poly(ethyleneimine), PEI). However, levels of transgene expression are relatively low (ca. 10% of PEI). This indicates that these dendrons cannot navigate all of the intracellular barriers to gene delivery. The addition of chloroquine indicates that endosomal escape is not the limiting factor in this case, and it is shown, both experimentally and theoretically, that gene delivery can be correlated with the ability of the dendron assemblies to release DNA. Mass spectrometric assays demonstrate that the dendrons, as intended, do degrade under biologically relevant conditions over a period of hours. Multiscale modeling of degraded dendron structures suggests that complete dendron degradation would be required for DNA release. Importantly, in the presence of the lower pH associated with endosomes, or when bound to DNA, complete degradation of these dendrons becomes ineffective on the transfection time scale-we propose this explains the poor transfection performance of these dendrons. As such, this paper demonstrates that taking this kind of multidisciplinary approach can yield a fundamental insight into the way in which dendrons can navigate barriers to cellular uptake. Lessons learned from this work will inform future dendron design for enhanced gene delivery. © 2011 American Chemical Society

  3. Potential Use of Chemoprotectants against the Toxic Effects of Cyanotoxins: A Review.

    Science.gov (United States)

    Guzmán-Guillén, Remedios; Puerto, María; Gutiérrez-Praena, Daniel; Prieto, Ana I; Pichardo, Silvia; Jos, Ángeles; Campos, Alexandre; Vasconcelos, Vitor; Cameán, Ana M

    2017-05-23

    Cyanobacterial toxins, particularly microcystins (MCs) and cylindrospermopsin (CYN), are responsible for toxic effects in humans and wildlife. In order to counteract or prevent their toxicity, various strategies have been followed, such as the potential application of chemoprotectants. A review of the main substances evaluated for this aim, as well as the doses and their influence on cyanotoxin-induced toxicity, has been performed. A search of the literature shows that research on MCs is much more abundant than research on CYN. Among chemoprotectants, antioxidant compounds are the most extensively studied, probably because it is well known that oxidative stress is one of the toxic mechanisms common to both toxins. In this group, vitamin E seems to have the strongest protectant effect for both cyanotoxins. Transport inhibitors have also been studied in the case of MCs, as CYN cellular uptake is not yet fully elucidated. Further research is needed because systematic studies are lacking. Moreover, more realistic exposure scenarios, including cyanotoxin mixtures and the concomitant use of chemoprotectants, should be considered.

  4. The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Dominic Docter

    2014-08-01

    Full Text Available Besides the lung and skin, the gastrointestinal (GI tract is one of the main targets for accidental exposure or biomedical applications of nanoparticles (NP. Biological responses to NP, including nanotoxicology, are caused by the interaction of the NP with cellular membranes and/or cellular entry. Here, the physico-chemical characteristics of NP are widely discussed as critical determinants, albeit the exact mechanisms remain to be resolved. Moreover, proteins associate with NP in physiological fluids, forming the protein corona potentially transforming the biological identity of the particle and thus, adding an additional level of complexity for the bio–nano responses.Here, we employed amorphous silica nanoparticles (ASP and epithelial GI tract Caco-2 cells as a model to study the biological impact of particle size as well as of the protein corona. Caco-2 or mucus-producing HT-29 cells were exposed to thoroughly characterized, negatively charged ASP of different size in the absence or presence of proteins. Comprehensive experimental approaches, such as quantifying cellular metabolic activity, microscopic observation of cell morphology, and high-throughput cell analysis revealed a dose- and time-dependent toxicity primarily upon exposure with ASP30 (Ø = 30 nm. Albeit smaller (ASP20, Ø = 20 nm or larger particles (ASP100; Ø = 100 nm showed a similar zeta potential, they both displayed only low toxicity. Importantly, the adverse effects triggered by ASP30/ASP30L were significantly ameliorated upon formation of the protein corona, which we found was efficiently established on all ASP studied. As a potential explanation, corona formation reduced ASP30 cellular uptake, which was however not significantly affected by ASP surface charge in our model. Collectively, our study uncovers an impact of ASP size as well as of the protein corona on cellular toxicity, which might be relevant for processes at the nano–bio interface in general.

  5. Bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity

    Directory of Open Access Journals (Sweden)

    Duan YR

    2012-07-01

    Full Text Available Peihao Yin,1,* Yan Wang,1,* YanYan Qiu,1 LiLi Hou,1 Xuan Liu,1 Jianmin Qin,1 Yourong Duan,2 Peifeng Liu,2 Ming Qiu,3 Qi Li11Department of Clinical Oncology, Putuo Hospital and Interventional Cancer Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; 2Shanghai Cancer Institute, Jiaotong University, Shanghai, China; 3Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China *These authors contributed equally to this workBackground: Recent studies have shown that bufalin has a good antitumor effect but has high toxicity, poor water solubility, a short half-life, a narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study aimed to determine the targeting efficacy of nanoparticles (NPs made of methoxy polyethylene glycol (mPEG, polylactic-co-glycolic acid (PLGA, poly-L-lysine (PLL, and cyclic arginine-glycine-aspartic acid (cRGD loaded with bufalin, ie, bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles (BNPs, in SW620 colon cancer-bearing mice.Methods: BNPs showed uniform size. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these nanoparticles were studied in vitro. The tumor targeting, cellular uptake, and growth-inhibitory effect of BNPs in vivo were tested.Results: BNPs were of uniform size with an average particle size of 164 ± 84 nm and zeta potential of 2.77 mV. The encapsulation efficiency was 81.7% ± 0.89%, and the drug load was 3.92% ± 0.16%. The results of in vitro cytotoxicity studies showed that although the blank NPs were nontoxic, they enhanced the cytotoxicity of bufalin in BNPs. Drug release experiments showed that the release of the drug was prolonged and sustained. The results of confocal laser scanning microscopy indicated that BNPs could effectively bind to human umbilical vein endothelial cells. In the SW620

  6. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Myocardial infarction (MI causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro.Macrophages (both M1 and M2, human induced pluripotent stem cells (hiPSCs, and human amniotic mesenchymal stem cells (hAMSCs were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus and an Electron Multiplying Charge-Couple Device (EM-CCD camera. Custom-written software was developed in MATLAB for image processing.The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001 was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003 and macrophages (0.430±0.023 fCi/μm2, P = 0.002, respectively. hAMSCs exhibited the slowest influx (0.210 min-1 but the fastest efflux (0.327 min-1 rate compared to the other

  7. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Science.gov (United States)

    Zaman, Raiyan T; Tuerkcan, Silvan; Mahmoudi, Morteza; Saito, Toshinobu; Yang, Phillip C; Chin, Frederick T; McConnell, Michael V; Xing, Lei

    2018-01-01

    Myocardial infarction (MI) causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro. Macrophages (both M1 and M2), human induced pluripotent stem cells (hiPSCs), and human amniotic mesenchymal stem cells (hAMSCs) were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) and an Electron Multiplying Charge-Couple Device (EM-CCD) camera. Custom-written software was developed in MATLAB for image processing. The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001) was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003) and macrophages (0.430±0.023 fCi/μm2, P = 0.002), respectively. hAMSCs exhibited the slowest influx (0.210 min-1) but the fastest efflux (0.327 min-1) rate compared to the other tested

  8. Effect of thyroxine on cellular oxygen-consumption and glucose uptake: evidence of an effect of total T4 and not "free T4"

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    Recent studies of cellular T4 and T3 uptake have indicated active transport of the hormones into the cell rather than passive diffusion of the non-protein bound fraction. In order to study the significance of the extracellular environment, oxygen consumption and glucose uptake were examined...... in human mononuclear blood cells. Cells were incubated in protein free medium and in human serum totally depleted of thyroid hormones by resin treatment and fixed amounts of T4 (total T4 = 0-50-100-5000 nmol/l; free T4 = 0-5-11-5600 pmol/l) were added. Thyroxine stimulated glucose uptake and oxygen......-consumption in a dose dependent manner but the T4 stimulation was dependent on the total concentration of T4 and did not differ between serum incubation or non-protein containing medium. Addition of ANS (100 mg/l) which inhibits binding of T4 to TBG, did not increase T4 effect in serum. Inhibition of the Na...

  9. In vitro toxicity studies of polymer-coated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Rayavarapu, Raja G; Petersen, Wilma; Manohar, Srirang; Van Leeuwen, Ton G [Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Hartsuiker, Liesbeth; Otto, Cees [Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Chin, Patrick; Van Leeuwen, Fijs W B [Division of Diagnostic Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Janssen, Hans, E-mail: S.Manohar@utwente.nl [Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2010-04-09

    We evaluated cellular responses to polymer-treated gold nanorods, which were synthesized using the standard wet-chemistry method that utilizes hexadecyltrimethylammonium bromide (CTAB). The nanorod dispersions were coated with either polystyrene sulfonate (PSS) or polyethylene glycol (PEG). Two sizes of nanorods were tested, with optical responses peaking at 628 and 773 nm. The cells were from mammary adenocarcinoma (SKBR3), Chinese Hamster Ovary (CHO), mouse myoblast (C2C12) and Human Leukemia (HL60) cell lines. Their mitochondrial function following exposure to the nanorods were assessed using the MTS assay. We found PEGylated particles to have superior biocompatibility compared with PSS-coated nanorods, which showed substantial cytotoxicity. Electron microscopy showed no cellular uptake of PEGylated particles compared with their PSS counterparts. PEGylated gold nanorods also exhibited better dispersion stability in the presence of cell growth medium; PSS-coated rods tended to flocculate or cluster. In the case of the PSS particles, toxicity correlated with surface area across the two sizes of nanorods studied.

  10. Andrographolide Suppresses MV4-11 Cell Proliferation through the Inhibition of FLT3 Signaling, Fatty Acid Synthesis and Cellular Iron Uptake

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Background: Andrographolide (ADR, the main active component of Andrographis paniculata, displays anticancer activity in various cancer cell lines, among which leukemia cell lines exhibit the highest sensitivity to ADR. In particular, ADR was also reported to have reduced drug resistance in multidrug resistant cell lines. However, the mechanism of action (MOA of ADR’s anticancer and anti-drug-resistance activities remain elusive. Methods: In this study, we used the MV4-11 cell line, a FLT3 positive acute myeloid leukemia (AML cell line that displays multidrug resistance, as our experimental system. We first evaluated the effect of ADR on MV4-11 cell proliferation. Then, a quantitative proteomics approach was applied to identify differentially expressed proteins in ADR-treated MV4-11 cells. Finally, cellular processes and signal pathways affected by ADR in MV4-11 cell were predicted with proteomic analysis and validated with in vitro assays. Results: ADR inhibits MV4-11 cell proliferation in a dose- and time-dependent manner. With a proteomic approach, we discovered that ADR inhibited fatty acid synthesis, cellular iron uptake and FLT3 signaling pathway in MV4-11 cells. Conclusions: ADR inhibits MV4-11 cell proliferation through inhibition of fatty acid synthesis, iron uptake and protein synthesis. Furthermore, ADR reduces drug resistance by blocking FLT3 signaling.

  11. Dynamic cellular uptake of mixed-monolayer protected nanoparticles.

    Science.gov (United States)

    Carney, Randy P; Carney, Tamara M; Mueller, Marie; Stellacci, Francesco

    2012-12-01

    Nanoparticles (NPs) are gaining increasing attention for potential application in medicine; consequently, studying their interaction with cells is of central importance. We found that both ligand arrangement and composition on gold nanoparticles play a crucial role in their cellular internalization. In our previous investigation, we showed that 66-34OT nanoparticles coated with stripe-like domains of hydrophobic (octanethiol, OT, 34%) and hydrophilic (11-mercaptoundecane sulfonate, MUS, 66%) ligands permeated through the cellular lipid bilayer via passive diffusion, in addition to endo-/pino-cytosis. Here, we show an analysis of NP internalization by DC2.4, 3T3, and HeLa cells at two temperatures and multiple time points. We study four NPs that differ in their surface structures and ligand compositions and report on their cellular internalization by intracellular fluorescence quantification. Using confocal laser scanning microscopy we have found that all three cell types internalize the 66-34OT NPs more than particles coated only with MUS, or particles coated with a very similar coating but lacking any detectable ligand shell structure, or 'striped' particles but with a different composition (34-66OT) at multiple data points.

  12. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    Science.gov (United States)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  13. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Energy Technology Data Exchange (ETDEWEB)

    Aldossari, Abdullah A.; Shannahan, Jonathan H. [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States); Podila, Ramakrishna [Clemson University, Department of Physics and Astronomy (United States); Brown, Jared M., E-mail: jared.brown@ucdenver.edu [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States)

    2015-07-15

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf-α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  14. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Science.gov (United States)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  15. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  16. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Science.gov (United States)

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  17. Extraction protocol and liquid chromatography/tandem mass spectrometry method for determining micelle-entrapped paclitaxel at the cellular and subcellular levels: Application to a cellular uptake and distribution study.

    Science.gov (United States)

    Zheng, Nan; Lian, Bin; Du, Wenwen; Xu, Guobing; Ji, Jiafu

    2018-01-01

    Paclitaxel-loaded polymeric micelles (PTX-PM) are commonly used as tumor-targeted nanocarriers and display outstanding antitumor features in clinic, but its accumulation and distribution in vitro are lack of investigation. It is probably due to the complex micellar system and its low concentration at the cellular or subcellular levels. In this study, we developed an improved extraction method, which was a combination of mechanical disruption and liquid-liquid extraction (LLE), to extract the total PTX from micelles in the cell lysate and subcellular compartments. An ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS) method was optimized to detect the low concentration of PTX at cellular and subcellular levels simultaneously, using docetaxel as internal standard (IS). The method was proved to release PTX totally from micelles (≥95.93%) with a consistent and reproducible extraction recovery (≥75.04%). Good linearity was obtained at concentrations ranging from 0.2 to 20ng/mL. The relative error (RE%) for accuracy varied from 0.68 to 7.56%, and the intra- and inter-precision (relative standard deviation, RSD%) was less than 8.64% and 13.14%, respectively. This method was fully validated and successfully applied to the cellular uptake and distribution study of PTX-loaded PLGA-PEG micelles in human breast cancer cells (MCF-7). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dual-function radiation sensitizers and bioreductive drugs: factors affecting cellular uptake and sensitizing efficiency in analogues of RSU 1069

    International Nuclear Information System (INIS)

    Walling, J.; Stratford, I.J.; Adams, G.E.; Stephens, M.A.

    1988-01-01

    Alkyl aziridine analogues of the hypoxic cell radiosensitizer RSU 1069 have been synthesized and one, RB 7040, containing tetramethyl substituted aziridine, is a more efficient sensitizer in vitro than RSU 1069 (Ahmed et al., 1986). The extent to which variation in drug uptake can influence the sensitizing efficiency of RSU 1069 and its analogues has been investigated by determining cellular uptake as a function of pH of extracellular medium (pHsub(e)) over the range 5.4-8.4. Following exposure of V79 cells for 1 h at room temperature, the ratio of intra-to extracellular concentration (Ci/Ce) was near unity at pH 5.4. Increasing pHsub(e) to 8.4 resulted in no change in the ratio Ci/Ce for RSU 1069 (pKsub(a) = 6.04). Values of Ci/Ce increased three-fold for RSU 1165 (pKsub(a) 7.38) and eleven-fold for RB 7040 (pKsub(a) = 8.45). Radiosensitization by RSU 1069 showed little dependence on pHsub(e) whereas increasing pH caused an apparent increase in sensitizing efficiency of both RSU 1165 and RB 7040. When enhancement ratios for sensitization were normalized to take account of the effect of extracellular pH on drug uptake, efficiency of sensitization was independent of pHsub(e). (author)

  19. Multiple pathways for uptake of paraquat, methylglyoxal bis(guanylhydrazone), and polyamines

    Energy Technology Data Exchange (ETDEWEB)

    Byers, T.L.; Kameji, R.; Rannels, D.E.; Pegg, A.E.

    1987-06-01

    The uptake of polyamines, methylglyoxal bis(guanylhydrazone) (MGBG), and paraquat (N,N-dimethyl-4,4'-bipyridylium) into control Chinese hamster ovary (CHO) cells and a mutant CHO cell line selected for resistance to the toxicity of MGBG was examined. In contrast to control CHO cells, the mutant cells had no detectable uptake of (/sup 14/C)-MGBG or any of the polyamines. There was no difference between the two cell lines in the uptake of ..cap alpha..-aminoisobutyric (/sup 3/H-AIB), which indicates that there was no general change in membrane transport processes. The mutant cells were also found to be resistant to the toxicity of paraquat and to have a reduced capability to take up the herbicide. This finding confirms that the uptake of paraquat is necessary for the toxicity of this compound and that the paraquat is taken up by a transport system that also transports MGBG. Competition experiments showed that an excess of unlabeled paraquat inhibited uptake of MGBG and, to a lesser extent, uptake of putrescine and spermidine, but no inhibitory action on spermine uptake could be detected. Studies with type II cells isolated from rat lung also demonstrated uptake of paraquat and spermidine, but paraquat was only a weak inhibitor of spermidine uptake in this system. These results suggest that there may be multiple systems for the uptake of MGBG and polyamines and that paraquat is taken up by at least one but not by all of these systems.

  20. Multiple pathways for uptake of paraquat, methylglyoxal bis(guanylhydrazone), and polyamines

    International Nuclear Information System (INIS)

    Byers, T.L.; Kameji, R.; Rannels, D.E.; Pegg, A.E.

    1987-01-01

    The uptake of polyamines, methylglyoxal bis(guanylhydrazone) (MGBG), and paraquat [N,N-dimethyl-4,4'-bipyridylium] into control Chinese hamster ovary (CHO) cells and a mutant CHO cell line selected for resistance to the toxicity of MGBG was examined. In contrast to control CHO cells, the mutant cells had no detectable uptake of [ 14 C]-MGBG or any of the polyamines. There was no difference between the two cell lines in the uptake of α-aminoisobutyric ( 3 H-AIB), which indicates that there was no general change in membrane transport processes. The mutant cells were also found to be resistant to the toxicity of paraquat and to have a reduced capability to take up the herbicide. This finding confirms that the uptake of paraquat is necessary for the toxicity of this compound and that the paraquat is taken up by a transport system that also transports MGBG. Competition experiments showed that an excess of unlabeled paraquat inhibited uptake of MGBG and, to a lesser extent, uptake of putrescine and spermidine, but no inhibitory action on spermine uptake could be detected. Studies with type II cells isolated from rat lung also demonstrated uptake of paraquat and spermidine, but paraquat was only a weak inhibitor of spermidine uptake in this system. These results suggest that there may be multiple systems for the uptake of MGBG and polyamines and that paraquat is taken up by at least one but not by all of these systems

  1. Plant responses to metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Briat, J.F. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie moleculaire des plantes, CNRS, URA 2133; Lebrun, M. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie vegetale appliquee

    1999-01-01

    Increased metal concentration in the soils, up to toxic levels, is becoming an important environmental problem. Safety rule evolution will require solutions in order to cope with food safety rules, and to freeze metal leakage from heavily metal-poisoned soils, such as those from industrial fallows. In this context, plants could serve to develop bio-assays in order to promote new standards, more realistic than the mass of a given metal per kg of soil, that does not consider the metal bio-disponibility. Plants could also be used for phyto-extraction and/or phyto-stabilization. To reach these objectives, a genetic approach could be useful to generate metal-tolerant plants with enough biomass. In this work is more particularly studied the plant responses to metal toxicity. Metal toxicity for living organisms involves oxidative and /or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathione-derived peptides named phyto-chelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyper accumulate metals provides helpful tools for this research. (authors) 130 refs.

  2. Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution

    Directory of Open Access Journals (Sweden)

    Ding X

    2012-02-01

    Full Text Available Wei Fan1,2,*, Xin Wu1,*, Baoyue Ding3,*, Jing Gao4, Zhen Cai1, Wei Zhang1, Dongfeng Yin1, Xiang Wang1, Quangang Zhu1, Jiyong Liu1, Xueying Ding4, Shen Gao1 1Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 2Department of Pharmaceutics, The 425th Hospital of PLA, Sanya, 3Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, 4Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China*These authors contributed equally to this workBackground: Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers' structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake.Methods: This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers.Results: Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to

  3. Similar uptake profiles of microcystin-LR and -RR in an in vitro human intestinal model

    International Nuclear Information System (INIS)

    Zeller, P.; Clement, M.; Fessard, V.

    2011-01-01

    Highlights: → First description of in vitro cellular uptake of MCs into intestinal cells. → OATP 3A1 and OATP 4A1 are expressed in Caco-2 cell membranes. → MC-LR and MC-RR show similar uptake in Caco-2 cells. → MCs are probably excreted from Caco-2 cells by an active mechanism. -- Abstract: Microcystins (MCs) are cyclic hepatotoxins produced by various species of cyanobacteria. Their structure includes two variable amino acids (AA) leading to more than 80 MC variants. In this study, we focused on the most common variant, microcystin-LR (MC-LR), and microcystin-RR (MC-RR), a variant differing by only one AA. Despite their structural similarity, MC-LR elicits higher liver toxicity than MC-RR partly due to a discrepancy in their uptake by hepatic organic anion transporters (OATP 1B1 and 1B3). However, even though ingestion is the major pathway of human exposure to MCs, intestinal absorption of MCs has been poorly addressed. Consequently, we investigated the cellular uptake of the two MC variants in the human intestinal cell line Caco-2 by immunolocalization using an anti-MC antibody. Caco-2 cells were treated for 30 min to 24 h with several concentrations (1-50 μM) of both variants. We first confirmed the localization of OATP 3A1 and 4A1 at the cell membrane of Caco-2 cells. Our study also revealed a rapid uptake of both variants in less than 1 h. The uptake profiles of the two variants did not differ in our immunostaining study neither with respect to concentration nor the time of exposure. Furthermore, we have demonstrated for the first time the nuclear localization of MC-RR and confirmed that of MC-LR. Finally, our results suggest a facilitated uptake and an active excretion of MC-LR and MC-RR in Caco-2 cells. Further investigation on the role of OATP 3A1 and 4A1 in MC uptake should be useful to clarify the mechanism of intestinal absorption of MCs and contribute in risk assessment of cyanotoxin exposure.

  4. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    Science.gov (United States)

    López-Serrano Oliver, Ana; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important.

  5. Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    Directory of Open Access Journals (Sweden)

    GhoshMitra Somesree

    2009-01-01

    Full Text Available Abstract Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol ethyl ether methacrylate-co-poly(ethylene glycol methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly-N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth even at high iron concentrations (6 mM, indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.

  6. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas)

    International Nuclear Information System (INIS)

    Niyogi, Som; Blewett, Tamzin A.; Gallagher, Trevor; Fehsenfeld, Sandra; Wood, Chris M.

    2016-01-01

    Highlights: • Zinc accumulation in the euryhaline green crab is partially salinity dependent. • Zinc accumulates mainly in the gills of green crab during acute waterborne exposure. • Branchial zinc and calcium transport in the green crab occurs via a common pathway. • Acute waterborne Zn exposure disrupts calcium and zinc homeostasis in the green crab. - Abstract: Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and pharmacological properties of short-term branchial Zn uptake were also examined. Green crabs (n = 10) were exposed to control (no added Zn) and 50 μM (3.25 mg L"−"1) of waterborne Zn (∼25% of 96 h LC_5_0 in 100 seawater) for 96 h at 3 different salinity regimes (100%, 60% and 20% seawater). Exposure to waterborne Zn increased tissue-specific Zn accumulation across different salinities. However, the maximum accumulation occurred in 20% seawater and no difference was recorded between 60% and 100% seawater. Gills appeared to be the primary site of Zn accumulation, since the accumulation was significantly higher in the gills relative to the hepatopancreas, haemolymph and muscle. Waterborne Zn exposure induced a slight increase in haemolymph osmolality and chloride levels irrespective of salinity. In contrast, Zn exposure elicited marked increases in both haemolymph and gill Ca levels, and these changes were more pronounced in 20% seawater relative to that in 60% or 100% seawater. An in vitro gill perfusion technique was used to examine the characteristics of short-term (1–4 h) branchial Zn uptake over an exposure concentration range of 3–12 μM (200–800 μg L"−"1). The rate of short-term branchial Zn

  7. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas)

    Energy Technology Data Exchange (ETDEWEB)

    Niyogi, Som, E-mail: som.niyogi@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Bamfield Marine Sciences Centre, Bamfield, BC (Canada); Blewett, Tamzin A. [Bamfield Marine Sciences Centre, Bamfield, BC (Canada); Department of Biological Sciences, University of Alberta, Edmonton, AB (Canada); Department of Biology, McMaster University, Hamilton, ON (Canada); Gallagher, Trevor [Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Fehsenfeld, Sandra [Bamfield Marine Sciences Centre, Bamfield, BC (Canada); Department of Biological Sciences, University of Manitoba, Winnipeg, MB (Canada); Department of Zoology, University of British Columbia, Vancouver, BC (Canada); Wood, Chris M. [Bamfield Marine Sciences Centre, Bamfield, BC (Canada); Department of Biology, McMaster University, Hamilton, ON (Canada); Department of Zoology, University of British Columbia, Vancouver, BC (Canada)

    2016-09-15

    Highlights: • Zinc accumulation in the euryhaline green crab is partially salinity dependent. • Zinc accumulates mainly in the gills of green crab during acute waterborne exposure. • Branchial zinc and calcium transport in the green crab occurs via a common pathway. • Acute waterborne Zn exposure disrupts calcium and zinc homeostasis in the green crab. - Abstract: Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and pharmacological properties of short-term branchial Zn uptake were also examined. Green crabs (n = 10) were exposed to control (no added Zn) and 50 μM (3.25 mg L{sup −1}) of waterborne Zn (∼25% of 96 h LC{sub 50} in 100 seawater) for 96 h at 3 different salinity regimes (100%, 60% and 20% seawater). Exposure to waterborne Zn increased tissue-specific Zn accumulation across different salinities. However, the maximum accumulation occurred in 20% seawater and no difference was recorded between 60% and 100% seawater. Gills appeared to be the primary site of Zn accumulation, since the accumulation was significantly higher in the gills relative to the hepatopancreas, haemolymph and muscle. Waterborne Zn exposure induced a slight increase in haemolymph osmolality and chloride levels irrespective of salinity. In contrast, Zn exposure elicited marked increases in both haemolymph and gill Ca levels, and these changes were more pronounced in 20% seawater relative to that in 60% or 100% seawater. An in vitro gill perfusion technique was used to examine the characteristics of short-term (1–4 h) branchial Zn uptake over an exposure concentration range of 3–12 μM (200–800 μg L{sup −1}). The rate of short

  8. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Science.gov (United States)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  9. Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris.

    Science.gov (United States)

    Ou-Yang, Hui-Ling; Kong, Xiang-Zhen; Lavoie, Michel; He, Wei; Qin, Ning; He, Qi-Shuang; Yang, Bin; Wang, Rong; Xu, Fu-Liu

    2013-12-01

    The toxic effects of cadmium (Cd) on the green alga Chlorella vulgaris were investigated by following the response to Cd of various toxicity endpoints (cell growth, cell size, photochemical efficiency of PSII in the light or Φ(PSII), maximal photochemical efficiency or Fv/Fm, chlorophyll a fluorescence, esterase activity, and cell viability). These toxicity endpoints were studied in laboratory batch cultures of C. vulgaris over a long-term 96-h exposure to different Cd concentrations using flow cytometry and pulse amplitude modulated fluorometry. The sequence of sensitivity of these toxicity endpoints was: cell yield > Φ(PSII) ≈ esterase activity > Fv/Fm > chlorophyll a fluorescence ≈ cell viability. It is shown that cell apoptosis or cell death only accounted for a minor part of the reduction in cell yield even at very high algistatic free Cd²⁺ concentrations, and other mechanisms such as blocked cell divisions are major contributors to cell yield inhibition. Furthermore, cadmium may affect both the electron donors and acceptors of the electron transport chain at high free Cd²⁺ concentration. Finally, the resistance of cells to cell death was size-dependent; medium-sized cells had the highest toxicity threshold. The present study brings new insights into the toxicity mechanisms of Cd in C. vulgaris and provides a detailed comparison of the sensitivity of various Cd toxicity endpoints. © 2013 SETAC.

  10. Arsenic Uptake and Translocation in Plants.

    Science.gov (United States)

    Li, Nannan; Wang, Jingchao; Song, Won-Yong

    2016-01-01

    Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    Directory of Open Access Journals (Sweden)

    Gérard Valérie A

    2010-03-01

    Full Text Available Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA capped have been investigated with pheochromocytoma 12 (PC12 cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA stabilised CdTe QDs (gel and non - gel were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly

  12. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2010-03-25

    Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs) have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA) capped) have been investigated with pheochromocytoma 12 (PC12) cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours) co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA) stabilised CdTe QDs (gel and non - gel) were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation) were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly susceptible to

  13. Mat rush (juncus effusus l.) trounces manganese toxicity through ultra-morphological modifications and manganese restriction in roots

    International Nuclear Information System (INIS)

    Najeeb, U.; Ali, S.

    2015-01-01

    This study appraised phyto-remediation efficiency and tolerance mechanism of Juncus effusus as was evidenced by ultrastructural modification in its roots under manganese (Mn) toxicity. Three-week-old J. effusus plants were treated with different concentrations of Mn (50, 100 and 500 M) in hydroponics. Although higher Mn levels caused modifications in growth, biomass, height and root morphological traits, J. effusus tolerated Mn toxicity without showing any obvious phyto-toxic symptoms even under the highest level of Mn (500 M). With incremental Mn levels in the growth media, the plants showed a steady increase in Mn uptake, while translocation factor (TF) for Mn declined. This illustrated the tendency of J. effusus plants to avoid Mn-induced stress by restricting maximum Mn in root tissues. Electron microscopy of root tip cells elucidated plant tolerance mechanism to Mn toxicity. Modification in cellular shape and size, and increased number of vacuoles and mitochondria appeared to play a major role in induction of tolerance against Mn toxicity, and ultimate survival of plant. (author)

  14. In vitro study of tumor seeking radiopharmaceutical uptake by human breast cancer cell line MCF-7 after paclitaxel treatment

    International Nuclear Information System (INIS)

    Choi, Joon Young; Choi, Yong; Choe, Yearn Seong; Lee, Kyung Han; Kim, Byung Tae

    2007-01-01

    This study was designed to investigate the cellular uptake of various tumor imaging radiopharmaceuticals in human breast cancer cells before and after paclitaxel exposure considering viable cell number. F-18-fluorodeoxyglucose, C-11-methionine. TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin were used to evaluate the cellular uptake in MCF-7 cells. MCF-7 cells were cultured in multi-well plates. Wells were divided into DMSO exposure control group, and paclitaxel exposure group. The exposure durations of paclitaxel with 10 nM or 100 nM were 2 h, 6 h, 12 h, 24 h, and 48 h. Viable cell fraction was reduced as the concentration and exposure time of paclitaxel increased. After 10 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was not reduced significantly, irrespective of exposure time and viable cell fraction. After 100 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was enhanced significantly irrespective of viable cell fraction. The peak uptake was observed in experimental groups with paclitaxel exposure for 6 to 48 h according the type of radiopharmaceutical. When the cellular uptake was adjusted for the viable cell fraction and cell count, the peak cellular uptake was observed in experimental groups with paclitaxel exposure for 48 h, irrespective of the type of radiopharmaceutical. The cellular uptake of F-18-fluorodeoxyglucose, C-11-methionine, TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin did not reflect viable cell number in MCF-7 cells after paclitaxel exposure for up to 48 h

  15. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation

    Directory of Open Access Journals (Sweden)

    Kubota K

    2017-07-01

    Full Text Available Kohei Kubota,1,2 Kohei Onishi,3 Kazuaki Sawaki,3 Tianshu Li,4 Kaoru Mitsuoka,5 Takaaki Sato,6 Shinji Takeoka1,3,4 1Cooperative Major in Advanced Biomedical Sciences, Graduate School of Advanced Sciences and Engineering, Waseda University (TWIns, Tokyo, Japan; 2Formulation Research and Phramaceutical Process Group, CMC R&D Center, Kyowa Hakko Kirin Co., Ltd, Shizuoka, Japan; 3Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering,Waseda University (TWIns, Tokyo, Japan; 4Research Organization for Nano and Life Innovation, Waseda University (TWIns, Tokyo, Japan; 5Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan; 6Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan Abstract: Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs. In this study, we prepared small interfering RNA (siRNA-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in

  16. Construction and cellular uptake behavior of redox-sensitive docetaxel prodrug-loaded liposomes.

    Science.gov (United States)

    Ren, Guolian; Jiang, Mengjuan; Guo, Weiling; Sun, Bingjun; Lian, He; Wang, Yongjun; He, Zhonggui

    2018-01-01

    A redox-responsive docetaxel (DTX) prodrug consisting of a disulfide linkage between DTX and vitamin E (DTX-SS-VE) was synthesized in our laboratory and was successfully formulated into liposomes. The aim of this study was to optimize the formulation and investigate the cellular uptake of DTX prodrug-loaded liposomes (DPLs). The content of DTX-SS-VE was determined by ultrahigh-performance liquid chromatography (UPLC). The formulation and process were optimized using entrapment efficiency (EE), drug-loading (DL), particle size and polydispersity index (PDI) as the evaluation indices. The optimal formulation was as follows: drug/lipid ratio of 1:12, cholesterol/lipid ratio of 1:10, hydration temperature of 40 °C, sonication power and time of 400 W and 5 min. The EE, DL and particle size of the optimized DPLs were 97.60 ± 0.03%, 7.09 ± 0.22% and 93.06 ± 0.72 nm, respectively. DPLs had good dilution stability under the physiological conditions over 24 h. In addition, DPLs were found to enter tumor cells via different pathways and released DTX from the prodrug to induce apoptosis. Taken together, the optimized formulation and process were found to be a simple, stable and applicable method for the preparation of DPLs that could successfully escape from lysosomes.

  17. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis

    Science.gov (United States)

    Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph

    2016-02-01

    Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics.

  18. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Tan, Cheng; Wang, Wen-Xiong

    2014-01-01

    Titanium dioxide (TiO 2 ) nanoparticles are widely used in water treatments, yet their influences on other contaminants in the water are not well studied. In this study, the aqueous uptake, assimilation efficiency, and toxicity of two ionic metals (cadmium-Cd, and zinc-Zn) in a freshwater zooplankton, Daphnia magna, were investigated following 2 days pre-exposure to nano-TiO 2 . Pre-exposure to 1 mg/L nano-TiO 2 resulted in a significant increase in Cd and Zn uptake from the dissolved phase. After the nano-TiO 2 in the guts were cleared, the uptake rates immediately recovered to the normal levels. Concurrent measurements of reactive oxygen species (ROS) and metallothioneins (MTs) suggested that the increased metal uptake was mainly due to the increased number of binding sites provided by nano-TiO 2 presented in the guts. Consistently, pre-exposure to nano-TiO 2 increased the toxicity of aqueous Cd and Zn due to enhanced uptake. Our study provides the evidence that nano-TiO 2 in the guts of animals could increase the uptake and toxicity of other contaminants. -- Highlights: • Dissolved Cd and Zn uptake in daphnids increased significantly after nano-TiO 2 pre-exposure. • Aqueous toxicity of Cd and Zn also increased after nano-TiO 2 pre-exposure. • Dietary assimilation of Cd and Zn was not affected after nano-TiO 2 pre-exposure. • Metal uptake recovered to normal levels after nano-TiO 2 in the guts were removed. • Nano-TiO 2 in the guts of animals could increase the uptake and toxicity of other contaminants. -- Nano-TiO 2 accumulation in Daphnia magna facilitated the uptake and toxicity of metal contaminants

  19. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures

    Directory of Open Access Journals (Sweden)

    Murugan K

    2015-03-01

    Full Text Available Karmani Murugan, Yahya E Choonara, Pradeep Kumar, Divya Bijukumar, Lisa C du Toit, Viness Pillay Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa Abstract: Cellular internalization and trans-barrier transport of nanoparticles can be manipulated on the basis of the physicochemical and mechanical characteristics of nanoparticles. Research has shown that these factors significantly influence the uptake of nanoparticles. Dictating these characteristics allows for the control of the rate and extent of cellular uptake, as well as delivering the drug-loaded nanosystem intra-cellularly, which is imperative for drugs that require a specific cellular level to exert their effects. Additionally, physicochemical characteristics of the nanoparticles should be optimal for the nanosystem to bypass the natural restricting phenomena of the body and act therapeutically at the targeted site. The factors at the focal point of emerging smart nanomedicines include nanoparticle size, surface charge, shape, hydrophobicity, surface chemistry, and even protein and ligand conjugates. Hence, this review discusses the mechanism of internalization of nanoparticles and ideal nanoparticle characteristics that allow them to evade the biological barriers in order to achieve optimal cellular uptake in different organ systems. Identifying these parameters assists with the progression of nanomedicine as an outstanding vector of pharmaceuticals. Keywords: nanoparticles, transport mechanisms, cellular uptake, size, shape, charge

  20. [Effects of sub-micro emulsion composition on cellular disposition of incorporated lipophilic drug].

    Science.gov (United States)

    Sun, Xiao-Yi; Xiang, Zhi-Qiang; Wu, Shuo; Lv, Yuan-Yuan; Liang, Wen-Quan

    2013-09-01

    To investigate the effects of sub-micro emulsion composition on cellular uptake and disposition of incorporated lipophilic drug. Sub-micro emulsions containing 10 % oil, 1.2 % lecithin and 2.25 % glycerol were prepared, and the fluorescent agent coumarin 6 was used as a model drug. The effects of oil types, co-surfactants and cationic lipid on uptake and elimination kinetics of 6-coumarin in HeLa cells were studied. The uptake mechanism of sub-micro emulsions was further investigated. Oil type and Tweens had no influence on the cellular uptake. Modifications of surfactants with Span series increased the cellular influx, among which Span 20 with hydrophilic-lipophilic balance (HLB) value of 8.6 was the best enhancer. The intracellular drug level reached up to (46.09 ± 1.98)ng/μg protein which had significant difference with control group [(38.54 ± 0.34)ng/μg protein]. The positively charged emulsions significantly increased the uptake rate constant and elimination rate constant which were 4 times and 1.5 times of those in anionic groups, respectively. The uptake enhancement was also observed in cationic emulsions, cellular concentrations at plateau were (42.73 ± 0.84)ng/μg protein, which was about 3 times of that in anionic emulsions [(15.71 ± 0.74)ng/μg protein], when extracellular drug concentration kept at 100 ng/ml. Cationic emulsions delivered the payload mainly by direct drug transfer to contacted cells, while the negative ones depended on both drug passive diffusion and clathrin-mediated endocytosis of drug containing oil droplets which accounted for 20% of the intracellular drug. Interfacial characteristic of sub-micro emulsions such as co-surfactants HLB as well as zeta potentials can influence lipophilic drug both in cellular uptake and elimination.

  1. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    Energy Technology Data Exchange (ETDEWEB)

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  2. Onset of lipoprotein-supported steroidogenesis in differentiating granulosa cells of rats: cellular events involved in mediating FSH-enhanced uptake of low-density lipoproteins

    International Nuclear Information System (INIS)

    Foster, J.D.

    1987-01-01

    Luteal cells use lipoproteins as the main source of cholesterol in steroidogenesis. However, little is known about the mechanisms underlying hormonal control of lipoprotein uptake. Thus, the authors tested the hypothesis that FSH and androgens regulate low density lipoprotein (LDL)-supported steroidogenesis in maturing granulosa cells by affecting receptor-mediated endocytosis of LDL at a cellular level. For this, immature ovarian granulosa cells were cultured with or without hormones, compactin (de novo synthesis inhibitor), or unlabeled or labeled ( 125 I or gold particles) LDL. Nonhormone-treated cultures produced little progestin; FSH and FSH/androstenedione stimulated steroid secretion. Progestin production by hormone-, but not nonhormone-, treated cultures was decreased by compactin, suggesting that de novo synthesis provided sterol for steroidogenesis. EM quantitation of cells exposed to gold-LDL at 37 0 C revealed that, compared to nonhormone-treated cells, FSH-treated cells (1) bound and internalized more gold-LDL, (2) had a smaller percentage of gold-LDL at their surfaces, (3) displayed a faster apparent rate of LDL internalization and delivery to lysosomes, and (4) contained more gold-labeled lysosomes. Data from biochemical studies in which 125 I-LDL was used supported the morphological findings. In conclusion, this study demonstrates that FSH has important effects at the cellular level on LDL uptake, which seem to underlie the striking increase in progestin production accompanying granulosa cell differentiation

  3. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    International Nuclear Information System (INIS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-01-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25–200 μg/mL) and incubation time (0–72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  4. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    Science.gov (United States)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  5. A Clinical Study on 125IT3 Resin Uptake Rate and Serum Thyroxin(T4) in Hyperthyroidism

    International Nuclear Information System (INIS)

    MooN, Ern Soo; Park, Yoh Han; Cho, Chang Ho; Park, In Soo; Lee, Chong Suk; Lee, Hak Choong

    1978-01-01

    Hyperthyroidism may be defined as those clinical conditions which result from an increase in the circulating levels of one or both thyroid hormones. Hyperthyroidism in broad sense could be classified with toxic diffuse goiter, toxic adenomatous goiter, and toxic multinodular goiter on the basis of the circulating thyroid hormone levels. For this study, the subject included 94 cases with hyperthyroidism were presented in 77 with toxic diffuse goiter, 8 with toxic adenomatous goiter, and 9 with toxic multinodular goiter on the levels of 125 IT 3 resin uptake rate and serum thyroxine (T 4 ). The observed results were as follows: 1) In the cases of hyperthyroidism including toxic diffuse goiter, toxic adenomatous goiter, and toxic multinodular goiter, 20.21% of the patients were male and 79.79% female. The majority of the patients were in 2nd to 4th decades of their lives. 2) There were objective signs clearly manifested in hyperthyroidism including toxic diffuse goiter and toxic adenomatous goiter which were rare in the multinodular goiter. The clinical signs in toxic diffuse and toxic adenomatous goiter included wide pulse pressure, tachycardia, systolic murmur, exophthalmos, tremor and warm skin etc. 3) The most frequent complaints of the patients with hyperthyroidism were palpitation, weight loss, increased appetite, perspiration, heat intolerance, nervousness, exertional dyspnea, and menstrual disturbance etc. There was no clear difference in the incidence of symptoms between toxic diffuse goiter and toxic adenomatous goiter, but there was clear difference between toxic multinodular goiter. 4) Considering of results of 125 IT 3 resin uptake rate and serum T 4 level in toxic diffuse goiter, toxic adenomatous goiter and toxic multinodular goiter, 125 IT 3 resin uptake rate was 49.15±9.94% (mean) and serum T 4 21.29±7.04 ug/dl (mean) in toxic diffuse goiter. In toxic multinodular goiter, 125 I T 3 resin uptake rate was 32.47±6.74% (mean) and serum T 4 level 11.03

  6. Cellular Transport Mechanisms of Cytotoxic Metallodrugs: An Overview beyond Cisplatin

    Directory of Open Access Journals (Sweden)

    Sarah Spreckelmeyer

    2014-09-01

    Full Text Available The field of medicinal inorganic chemistry has grown consistently during the past 50 years; however, metal-containing coordination compounds represent only a minor proportion of drugs currently on the market, indicating that research in this area has not yet been thoroughly realized. Although platinum-based drugs as cancer chemotherapeutic agents have been widely studied, exact knowledge of the mechanisms governing their accumulation in cells is still lacking. However, evidence suggests active uptake and efflux mechanisms are involved; this may be involved also in other experimental metal coordination and organometallic compounds with promising antitumor activities in vitro and in vivo, such as ruthenium and gold compounds. Such knowledge would be necessary to elucidate the balance between activity and toxicity profiles of metal compounds. In this review, we present an overview of the information available on the cellular accumulation of Pt compounds from in vitro, in vivo and clinical studies, as well as a summary of reports on the possible accumulation mechanisms for different families of experimental anticancer metal complexes (e.g., Ru Au and Ir. Finally, we discuss the need for rationalization of the investigational approaches available to study metallodrug cellular transport.

  7. Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme.

    Science.gov (United States)

    Hudek, Lee; Pearson, Leanne A; Michalczyk, Agnes; Neilan, Brett A; Ackland, M Leigh

    2013-11-01

    Metal homoeostasis in cyanobacteria is based on uptake and export systems that are controlled by their own regulators. This study characterises the zinc uptake (Znu) system in Nostoc punctiforme. The system was found to comprise of three subunits in an ACB operon: a Zn(2+)-binding protein (ZnuA18), a transmembrane domain (ZnuB) and an ATPase (ZnuC). These proteins are encoded within the znu operon regulated by a zinc uptake transcription repressor (Zur). Interestingly, a second Zn(2+)-binding protein (ZnuA08) was also identified at a distal genomic location. Interactions between components of the ZnuACB system were investigated using knockouts of the individual genes. The znuA08(-), znuA18(-), znuB(-) and znuC(-) mutants displayed overall reduced znuACB transcript levels, suggesting that all system components are required for normal expression of znu genes. Zinc uptake assays in the Zn(2+)-binding protein mutant strains showed that the disruption of znuA18 had a greater negative effect on zinc uptake than disruption of znuA08. Complementation studies in Escherichia coli indicated that both znuA08 and znuA18 were able to restore zinc uptake in a znuA(-) mutant, with znuA18 permitting the highest zinc uptake rate. The N. punctiforme zur was also able to complement the E. coli zur(-) mutant. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Directory of Open Access Journals (Sweden)

    Sang Min Lee

    2012-01-01

    Full Text Available Bee venom (BV, which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS. Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38 following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.

  9. Bioaccumulation and toxicity of zinc in the green alga, Cladophora glomerata.

    Science.gov (United States)

    McHardy, B M; George, J J

    1990-01-01

    The bioaccumulation and toxicity of zinc in Cladophora glomerata from two populations in the River Roding, Essex, UK, were examined in experimental laboratory flowing-water channels. Plants were subjected to zinc concentrations ranging from 0 to 4.0 mg litre(-1) at current velocities of 20-33 cm s(-1) for up to 3 h. Zinc in algal tissue was then quantified and toxicity was assessed by the ability of the alga to grow in a recovery medium after the experimental treatment. There was little difference in zinc bioaccumulation between Cladophora from the site showing mild organic pollution and that from the site subjected to considerable inputs from urban and motorway runoff. Uptake of zinc increased with increasing concentration in the test solution and was linear and proportional up to 0.4 mg litre(-1). Three stages of uptake were identified with the most dramatic accumulation occurring in the first 10 min. Experimental concentration factors ranged from 1.9-5.2 x 10(3), which were in agreement with those previously obtained in the field. Cellular damage was evident in Cladophora subjected to 0.4 mg litre(-1) zinc, and this increased with increasing zinc concentration, thus leading to the conclusion that, at times, the levels of zinc found in the river could be potentially damaging.

  10. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  11. Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of α-Particle Track Autoradiography

    Science.gov (United States)

    Neti, Prasad V.S.V.; Howell, Roger W.

    2010-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086

  12. In-vitro cytotoxicity and cellular uptake studies of luminescent functionalized core-shell nanospheres

    Directory of Open Access Journals (Sweden)

    Anees A. Ansari

    2017-09-01

    Full Text Available Monodispersed luminescent functionalized core-shell nanospheres (LFCSNs were successfully synthesized and investigated for their cyto-toxic effect on human liver hepatocellular carcinoma cell line (HepG2 cells by adopting MTT, DNA Ladder, TUNEL assay and qPCR based gene expressions through mRNA quantifications. The TUNEL and DNA ladder assays suggested an insignificant apoptosis in HepG2 cells due to the LFCSNs treatment. Further, the qPCR results also show that the mRNA expressions of cell cycle checkpoint gene p53 and apoptosis related gene (caspase-9 was up-regulated, while the antiapoptotic gene BCl-2 and apoptosis related genes FADD and CAS-3 (apoptosis effecter gene were down-regulated in the LFCSNs treated cells. The nanospheres that were loaded into the cells confirm their intracellular uptake by light and fluorescent spectro-photometry and microscopy imaging analysis. The loaded nanospheres demonstrate an absolute resistance to photo-bleaching, which were applied for dynamic imaging to real-time tracking in-vitro cell migratory activity for continuous 24 and 48 h durations using a time-lapsed fluorescent microscope. These properties of LFCSNs could therefore promote applications in the area of fluorescent protein biolabeling and drug-delivery.

  13. Exosomes: Mechanisms of Uptake

    Directory of Open Access Journals (Sweden)

    Kelly J. McKelvey

    2015-07-01

    Full Text Available Exosomes are 30–100 nm microvesicles which contain complex cellular signals of RNA, protein and lipids. Because of this, exosomes are implicated as having limitless therapeutic potential for the treatment of cancer, pregnancy complications, infections, and autoimmune diseases. To date we know a considerable amount about exosome biogenesis and secretion, but there is a paucity of data regarding the uptake of exosomes by immune and non-immune cell types (e.g., cancer cells and the internal signalling pathways by which these exosomes elicit a cellular response. Answering these questions is of paramount importance.

  14. Exosomes: Mechanisms of Uptake

    Directory of Open Access Journals (Sweden)

    Kelly J. McKelvey

    2015-07-01

    Full Text Available Exosomes are 30–100 nm microvesicles which contain complex cellular signals of RNA, protein and lipids. Because of this, exosomes are implicated as having limitless therapeutic potential for the treatment of cancer, pregnancy complications, infections, and autoimmune diseases. To date we know a considerable amount about exosome biogenesis and secretion, but there is a paucity of data regarding the uptake of exosomes by immune and non- immune cell types (e.g., cancer cells and the internal signalling pathways by which these exosomes elicit a cellular response. Answering these questions is of para‐ mount importance.

  15. Radio metal (169Yb) uptake in normal and tumour cells in vitro. Influence of metabolic cell activity and complex structure

    International Nuclear Information System (INIS)

    Franke, W.G.; Kampf, G.

    1996-01-01

    Trivalent radio metal tracers have been used for tumour imaging and metastatic pain palliation. For better understanding their tumour accumulation, basic model studies of uptake of different 169 Yb complexes into cultured normal and tumour cells were performed. Whereas the uptake of 169 Yb citrate is strongly dependent on the metabolic activity and is not tumour-cell pacific, the uptake of 169 Yb complexed with amino carbonic acid (NTA, EDTA, DTPA) does not correlate to the metabolic activities. These complexes are taken up to a greater amount by the tumour cells (by a factor of about 2). Uptake of both complex types leads to a stable association to cellular compounds, 169 Yb is not releasable by the strong complexing agent DTPA. Protein binding of the 169 Yb complexes shows great influence on their cellular uptake. The bound proportion is no more available,for cellular uptake. The results indicate that i 0 uptake of 169 Yb citrate is an active cellular transport process which i not tumor-specific, ii) the 169 Yb amino carbonic acid complexes show a weak favouring by the tumour cells, iii) different from earlier acceptions the Yb complexes studied are not taken up by the cells in protein-bound form. The structure of the Yb complex is decisive for its protein binding and cellular uptake. (author). 13 refs., 6 figs

  16. The Response of HeLa Cells to Fluorescent NanoDiamond Uptake

    Directory of Open Access Journals (Sweden)

    Simon R. Hemelaar

    2018-01-01

    Full Text Available Fluorescent nanodiamonds are promising probes for nanoscale magnetic resonance measurements. Their physical properties predict them to have particularly useful applications in intracellular analysis. Before using them in intracellular experiments however, it should be clear whether diamond particles influence cell biology. While cytotoxicity has already been ruled out in previous studies, we consider the non-fatal influence of fluorescent nanodiamonds on the formation of reactive oxygen species (an important stress indicator and potential target for intracellular sensing for the first time. We investigated the influence of different sizes, shapes and concentrations of nanodiamonds on the genetic and protein level involved in oxidative stress-related pathways of the HeLa cell, an important model cell line in research. The changes in viability of the cells and the difference in intracellular levels of free radicals, after diamond uptake, are surprisingly small. At lower diamond concentrations, the cellular metabolism cannot be distinguished from that of untreated cells. This research supports the claims of non-toxicity and includes less obvious non-fatal responses. Finally, we give a handhold concerning the diamond concentration and size to use for non-toxic, intracellular measurements in favour of (cancer research in HeLa cells.

  17. The Response of HeLa Cells to Fluorescent NanoDiamond Uptake.

    Science.gov (United States)

    Hemelaar, Simon R; Saspaanithy, Babujhi; L'Hommelet, Severin R M; Perona Martinez, Felipe P; van der Laan, Kiran J; Schirhagl, Romana

    2018-01-26

    Fluorescent nanodiamonds are promising probes for nanoscale magnetic resonance measurements. Their physical properties predict them to have particularly useful applications in intracellular analysis. Before using them in intracellular experiments however, it should be clear whether diamond particles influence cell biology. While cytotoxicity has already been ruled out in previous studies, we consider the non-fatal influence of fluorescent nanodiamonds on the formation of reactive oxygen species (an important stress indicator and potential target for intracellular sensing) for the first time. We investigated the influence of different sizes, shapes and concentrations of nanodiamonds on the genetic and protein level involved in oxidative stress-related pathways of the HeLa cell, an important model cell line in research. The changes in viability of the cells and the difference in intracellular levels of free radicals, after diamond uptake, are surprisingly small. At lower diamond concentrations, the cellular metabolism cannot be distinguished from that of untreated cells. This research supports the claims of non-toxicity and includes less obvious non-fatal responses. Finally, we give a handhold concerning the diamond concentration and size to use for non-toxic, intracellular measurements in favour of (cancer) research in HeLa cells.

  18. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  19. Cellular MR Imaging

    Directory of Open Access Journals (Sweden)

    Michel Modo

    2005-07-01

    Full Text Available Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall superparamagnetic iron oxide [(USPIO] particles or (polymeric paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, and (USPIO-based cellular imaging has been focused on imaging of macrophage activity. Several of these magneto-pharmaceuticals have been FDA-approved or are in late-phase clinical trials. As for prelabeling of cells in vitro, a challenge has been to induce a sufficient uptake of contrast agents into nonphagocytic cells, without affecting normal cellular function. It appears that this issue has now largely been resolved, leading to an active research on monitoring the cellular biodistribution in vivo following transplantation or transfusion of these cells, including cell migration and trafficking. New applications of cellular MR imaging will be directed, for instance, towards our understanding of hematopoietic (immune cell trafficking and of novel guided (stem cell-based therapies aimed to be translated to the clinic in the future.

  20. Plume residence and toxic material accumulation

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Holpuch, R.

    1975-01-01

    Increased growth rates and 137 Cs concentrations in plume resident trout are thought to be the result of increased metabolism, food consumption, and activity caused by exposure to increased water temperature and flow in thermal discharges. These exposure conditions could contribute to increased accumulation of biologically active, toxic substances by primary forage and predator fish species in the Great Lakes. Uptake and retention of various toxic substances by predators depend on concentrations in forage species (trophic transfer), ambient water, and point source effluents (direct uptake). Contaminants of immediate concern in Great Lakes systems (e.g., chlorinated hydrocarbons) accumulate in adipose tissue, and body concentrations have been correlated with total lipid content in fish. In addition to direct toxic effects on fish, many lipophilic contaminants are known to cause severe human health problems when ingested at concentrations commonly found in Lake Michigan salmonids. Although power plants may or may not be the direct source of a toxic substance, the thermal discharge environment may contribute to the accumulation of toxic substances in fish and the transfer of these materials to man

  1. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    International Nuclear Information System (INIS)

    Ying, Bo; Campbell, Robert B.

    2014-01-01

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  2. Evaluation of cellular viability by quantitative autoradiographic study of myocardial uptake of a fatty acid analogue in isoproterenol-induced focal rat heart necrosis

    International Nuclear Information System (INIS)

    Humbert, T.; Luu-Duc, C.; Comet, M.; Demenge, P.

    1991-01-01

    Previous studies led us to hypothesize that a fatty acid analogue, 15-p-iodophenyl-β-methyl pentadecanoic acid (IMPPA or BMIPP), which is taken up but not quickly metabolized by heart cells, would be a more suitable tracer of cellular viability that 201 Tl. Biodistribution studies of 1- 14 C-IMPPA in conscious, freely moving rats showed that the concentration ratio of radioactivity in the heart with respect to the blood was about 8 for at least 60 min after intravenous administration, permitting its use as a putative tracer in these conscious, freely moving rats. Thereafter, the myocardial uptake of 14 C-IMPPA was studied in isoproterenol-treated rats (daily treatment for 10 days in order to induce cardiac hypertrophy and necrotic foci) with respect to control ones. Comparison of myocardial localizations by quantitative autoradiography of the uptake of 201 Tl and 14 C-IMPPA with that of triphenyltetrazolium chloride (TTC) staining enabled comparative evaluation of nutritional blood flow, localization and uptake of 14 C-IMPPA and necrotic foci size. Distributions of 14 C-IMPPA and 201 Tl in control rats' hearts were homogenous, like TTC staining. In infarcted hearts, areas of decreased 14 C-IMPPA uptake were nearly the same (100%±5%) as those unstained by TTC. These areas were larger than those showing a decrease in thallium uptake (about 70%±5% of the total scar size). Therefore, IMPPA seems to be a more accurate and sensitive indicator of necrosis localization compared with thallium. It may be a useful agent for assessment of myocardial viability by single photon emission tomography (SPET) imaging. (orig.)

  3. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  4. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment

    Science.gov (United States)

    Brunetti, Virgilio; Chibli, Hicham; Fiammengo, Roberto; Galeone, Antonio; Malvindi, Maria Ada; Vecchio, Giuseppe; Cingolani, Roberto; Nadeau, Jay L.; Pompa, Pier Paolo

    2012-12-01

    We show that water soluble InP/ZnS core/shell QDs are a safer alternative to CdSe/ZnS QDs for biological applications, by comparing their toxicity in vitro (cell culture) and in vivo (animal model Drosophila). By choosing QDs with comparable physical and chemical properties, we find that cellular uptake and localization are practically identical for these two nanomaterials. Toxicity of CdSe/ZnS QDs appears to be related to the release of poisonous Cd2+ ions and indeed we show that there is leaching of Cd2+ ions from the particle core despite the two-layer ZnS shell. Since an almost identical amount of In(iii) ions is observed to leach from the core of InP/ZnS QDs, their very low toxicity as revealed in this study hints at a much lower intrinsic toxicity of indium compared to cadmium.

  5. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel–cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ye J

    2016-08-01

    Full Text Available Jun Ye,1,2 Xuejun Xia,1,2 Wujun Dong,1,2 Huazhen Hao,1,2 Luhua Meng,1,2 Yanfang Yang,1,2 Renyun Wang,1,2 Yuanfeng Lyu,3 Yuling Liu1,2 1State Key Laboratory of Bioactive Substance and Function of Natural Medicines, 2Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: There is no effective clinical therapy for triple-negative breast cancers (TNBCs, which have high low-density lipoprotein (LDL requirements and express relatively high levels of LDL receptors (LDLRs on their membranes. In our previous study, a novel lipid emulsion based on a paclitaxel–cholesterol complex (PTX-CH Emul was developed, which exhibited improved safety and efficacy for the treatment of TNBC. To date, however, the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul have not been investigated. In order to offer powerful proof for the therapeutic effects of PTX-CH Emul, we systematically studied the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul and made a comparative evaluation of antineoplastic effects on TNBC (MDA-MB-231 and non-TNBC (MCF7 cell lines through in vitro and in vivo experiments. The in vitro antineoplastic effects and in vivo tumor-targeting efficiency of PTX-CH Emul were significantly more enhanced in MDA-MB-231-based models than those in MCF7-based models, which was associated with the more abundant expression profile of LDLR in MDA-MB-231 cells. The results of the cellular uptake mechanism indicated that PTX-CH Emul was internalized into breast cancer cells through the LDLR-mediated internalization pathway via clathrin-coated pits, localized in lysosomes, and then released into the cytoplasm, which was consistent with the internalization pathway and intracellular trafficking of native

  6. Diselenolane-mediated cellular uptake† †Electronic supplementary information (ESI) available: Detailed procedures and results for all reported experiments. See DOI: 10.1039/c7sc05151d

    Science.gov (United States)

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I.; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi

    2018-01-01

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides. PMID:29675232

  7. Vertical partitioning of phosphate uptake among picoplankton groups in the low Pi Mediterranean Sea

    KAUST Repository

    Talarmin, Agathe Anne Gaelle; Van Wambeke, F.; Lebaron, P.; Moutin, T.

    2015-01-01

    Microbial transformations are key processes in marine phosphorus cycling. In this study, we investigated the contribution of phototrophic and heterotrophic groups to phosphate (Pi) uptake fluxes in the euphotic zone of the low-Pi Mediterranean Sea and estimated Pi uptake kinetic characteristics. Surface soluble reactive phosphorus (SRP) concentrations were in the range of 6-80 nmol Lg'1 across the transect, and the community Pi turnover times, assessed using radiolabeled orthophosphate incubations, were longer in the western basin, where the highest bulk and cellular rates were measured. Using live cell sorting, four vertical profiles of Pi uptake rates were established for heterotrophic prokaryotes (Hprok), phototrophic picoeukaryotes (Pic) and Prochlorococcus (Proc) and Synechococcus (Syn) cyanobacteria. Hprok cells contributed up to 82% of total Pi uptake fluxes in the superficial euphotic zone, through constantly high abundances (2.7-10.2 × 105 cells mLg'1) but variable cellular rates (6.6 ± 9.3 amol P cellg'1 hg'1). Cyanobacteria achieved most of the Pi uptake (up to 62%) around the deep chlorophyll maximum depth, through high abundances (up to 1.4 × 105 Proc cells mLg'1) and high cellular uptake rates (up to 40 and 402 amol P cellg'1 hg'1, respectively for Proc and Syn cells). At saturating concentrations, maximum cellular rates up to 132 amol P cellg'1 hg'1 were measured for Syn at station (St.) C, which was 5 and 60 times higher than Proc and Hprok, respectively. Pi uptake capabilities of the different groups likely contribute to their vertical distribution in the low Pi Mediterranean Sea, possibly along with other energy limitations.

  8. Vertical partitioning of phosphate uptake among picoplankton groups in the low Pi Mediterranean Sea

    KAUST Repository

    Talarmin, Agathe Anne Gaelle

    2015-02-26

    Microbial transformations are key processes in marine phosphorus cycling. In this study, we investigated the contribution of phototrophic and heterotrophic groups to phosphate (Pi) uptake fluxes in the euphotic zone of the low-Pi Mediterranean Sea and estimated Pi uptake kinetic characteristics. Surface soluble reactive phosphorus (SRP) concentrations were in the range of 6-80 nmol Lg\\'1 across the transect, and the community Pi turnover times, assessed using radiolabeled orthophosphate incubations, were longer in the western basin, where the highest bulk and cellular rates were measured. Using live cell sorting, four vertical profiles of Pi uptake rates were established for heterotrophic prokaryotes (Hprok), phototrophic picoeukaryotes (Pic) and Prochlorococcus (Proc) and Synechococcus (Syn) cyanobacteria. Hprok cells contributed up to 82% of total Pi uptake fluxes in the superficial euphotic zone, through constantly high abundances (2.7-10.2 × 105 cells mLg\\'1) but variable cellular rates (6.6 ± 9.3 amol P cellg\\'1 hg\\'1). Cyanobacteria achieved most of the Pi uptake (up to 62%) around the deep chlorophyll maximum depth, through high abundances (up to 1.4 × 105 Proc cells mLg\\'1) and high cellular uptake rates (up to 40 and 402 amol P cellg\\'1 hg\\'1, respectively for Proc and Syn cells). At saturating concentrations, maximum cellular rates up to 132 amol P cellg\\'1 hg\\'1 were measured for Syn at station (St.) C, which was 5 and 60 times higher than Proc and Hprok, respectively. Pi uptake capabilities of the different groups likely contribute to their vertical distribution in the low Pi Mediterranean Sea, possibly along with other energy limitations.

  9. Cellular glutathione prevents cytolethality of monomethylarsonic acid

    International Nuclear Information System (INIS)

    Sakurai, Teruaki; Kojima, Chikara; Ochiai, Masayuki; Ohta, Takami; Sakurai, Masumi H.; Waalkes, Michael P.; Fujiwara, Kitao

    2004-01-01

    Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenic often undergoes methylation, forming compounds such as monomethylarsonic acid (MMAs V ) and dimethylarsinic acid (DMAs V ). However, much less information is available on the in vitro toxic potential or mechanisms of these methylated arsenicals, especially MMAs V . We studied the molecular mechanisms of in vitro cytolethality of MMAs V using a rat liver epithelial cell line (TRL 1215). MMAs V was not cytotoxic in TRL 1215 cells even at concentrations exceeding 10 mM, but it became weakly cytotoxic and induced both necrotic and apoptotic cell death when cellular reduced glutathione (GSH) was depleted with the glutathione synthase inhibitor, L-buthionine-[S,R]-sulfoximine (BSO), or the glutathione reductase inhibitor, carmustine. Similar results were observed in the other mammalian cells, such as human skin TIG-112 cells, chimpanzee skin CRT-1609 cells, and mouse metallothionein (MT) positive and MT negative embryonic cells. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyses GSH-substrate conjugation, also enhanced the cytolethality of MMAs V , but aminooxyacetic acid (AOAA), an inhibitor of β-lyase that catalyses the final breakdown of GSH-substrate conjugates, had no effect. Both the cellular GSH levels and the cellular GST activity were increased by the exposure to MMAs V in TRL 1215 cells. On the other hand, the addition of exogenous extracellular GSH enhanced the cytolethality of MMAs V , although cellular GSH levels actually prevented the cytolethality of combined MMAs V and exogenous GSH. These findings indicate that human arsenic metabolite MMAs V is not a highly toxic compound in mammalian cells, and the level of cellular GSH is critical to its eventual toxic effects

  10. Uptake of manganese in potatoes tolerant of high tissue manganese levels

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.B.

    1987-01-01

    Observations on the accumulations of Mn in potatoes (Solanum tuberosum cv. Norland) focused on factors which enabled plants in field studies to withstand high concentrations of Mn in their foliage. A microculture method for assessing nutrient uptake was introduced and applied to studies of the effects of P and temperature on Mn toxicity. Potato plants in microculture behaved similarly in the symptomatology of Mn toxicity to those grown in solution culture but were more responsive to P. The effects of both P and temperature on Mn toxicity in microculture correlated with changes in Mn uptake and with growth reductions due to low P or temperature stress. The uptake of Mn from solution culture increased with increasing P level in solution. This increase was attributed to an increased health and vitality of potato plants under high P and to changes in pH and nutrient solution concentration as plants matured at different rates. When limited control over solution pH and nutrient concentration was provided the effects of P on Mn uptake were largely eliminated. The well-documented time dependence of Mn accumulation was confirmed in a fractionation experiment.

  11. Cellular internalisation kinetics and cytotoxic properties of statistically designed and optimised neo-geometric copper nanocrystals.

    Science.gov (United States)

    Murugan, Karmani; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2017-09-01

    This study aimed to highlight a statistic design to precisely engineer homogenous geometric copper nanoparticles (CuNPs) for enhanced intracellular drug delivery as a function of geometrical structure. CuNPs with a dual functionality comprising geometric attributes for enhanced cell uptake and exerting cytotoxic activity on proliferating cells were synthesized as a novel drug delivery system. This paper investigated the defined concentrations of two key surfactants used in the reaction to mutually control and manipulate nano-shape and optimisation of the geometric nanosystems. A statistical experimental design comprising a full factorial model served as a refining factor to achieve homogenous geometric nanoparticles using a one-pot method for the systematic optimisation of the geometric CuNPs. Shapes of the nanoparticles were investigated to determine the result of the surfactant variation as the aim of the study and zeta potential was studied to ensure the stability of the system and establish a nanosystem of low aggregation potential. After optimisation of the nano-shapes, extensive cellular internalisation studies were conducted to elucidate the effect of geometric CuNPs on uptake rates, in addition to the vital toxicity assays to further understand the cellular effect of geometric CuNPs as a drug delivery system. In addition to geometry; volume, surface area, orientation to the cell membrane and colloidal stability is also addressed. The outcomes of the study demonstrated the success of homogenous geometric NP formation, in addition to a stable surface charge. The findings of the study can be utilized for the development of a drug delivery system for promoted cellular internalisation and effective drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): Cross-talk between waterborne and dietary uptake

    International Nuclear Information System (INIS)

    Sappal, Ravinder; Burka, John; Dawson, Susan; Kamunde, Collins

    2009-01-01

    Zinc homeostasis was studied at the tissue and gill subcellular levels in rainbow trout (Oncorhynchus mykiss) following waterborne and dietary exposures, singly and in combination. Juvenile rainbow trout were exposed to 150 or 600 μg l -1 waterborne Zn, 1500 or 4500 μg g -1 dietary Zn, and a combination of 150 μg l -1 waterborne and 1500 μg g -1 dietary Zn for 40 days. Accumulation of Zn in tissues and gill subcellular fractions was measured. At the tissue level, the carcass acted as the main Zn depot containing 84-90% of whole body Zn burden whereas the gill held 4-6%. At the subcellular level, the majority of gill Zn was bioavailable with the estimated metabolically active pool being 81-90%. Interestingly, the nuclei-cellular debris fraction bound the highest amount (40%) of the gill Zn burden. There was low partitioning of Zn into the detoxified pool (10-19%) suggesting that sequestration and chelation are not major mechanisms of cellular Zn homeostasis in rainbow trout. Further, the subcellular partitioning of Zn did not conform to the spill-over model of metal toxicity because Zn binding was indiscriminate irrespective of exposure concentration and duration. The contribution of the branchial and gastrointestinal uptake pathways to Zn accumulation depended on the tissue. Specifically, in plasma, blood cells, and gill, uptake from water was dominant whereas both pathways appeared to contribute equally to Zn accumulation in the carcass. Subcellularly, additive uptake from the two pathways was observed in the heat-stable proteins (HSP) fraction. Toxicologically, Zn exposure caused minimal adverse effects manifested by a transitory inhibition of protein synthesis in gills in the waterborne exposure. Overall, subcellular fractionation appears to have value in the quest for a better understanding of Zn homeostasis and interactions between branchial and gastrointestinal uptake pathways

  13. Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): Cross-talk between waterborne and dietary uptake

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder; Burka, John; Dawson, Susan [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); Kamunde, Collins [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada)], E-mail: ckamunde@upei.ca

    2009-03-09

    Zinc homeostasis was studied at the tissue and gill subcellular levels in rainbow trout (Oncorhynchus mykiss) following waterborne and dietary exposures, singly and in combination. Juvenile rainbow trout were exposed to 150 or 600 {mu}g l{sup -1} waterborne Zn, 1500 or 4500 {mu}g g{sup -1} dietary Zn, and a combination of 150 {mu}g l{sup -1} waterborne and 1500 {mu}g g{sup -1} dietary Zn for 40 days. Accumulation of Zn in tissues and gill subcellular fractions was measured. At the tissue level, the carcass acted as the main Zn depot containing 84-90% of whole body Zn burden whereas the gill held 4-6%. At the subcellular level, the majority of gill Zn was bioavailable with the estimated metabolically active pool being 81-90%. Interestingly, the nuclei-cellular debris fraction bound the highest amount (40%) of the gill Zn burden. There was low partitioning of Zn into the detoxified pool (10-19%) suggesting that sequestration and chelation are not major mechanisms of cellular Zn homeostasis in rainbow trout. Further, the subcellular partitioning of Zn did not conform to the spill-over model of metal toxicity because Zn binding was indiscriminate irrespective of exposure concentration and duration. The contribution of the branchial and gastrointestinal uptake pathways to Zn accumulation depended on the tissue. Specifically, in plasma, blood cells, and gill, uptake from water was dominant whereas both pathways appeared to contribute equally to Zn accumulation in the carcass. Subcellularly, additive uptake from the two pathways was observed in the heat-stable proteins (HSP) fraction. Toxicologically, Zn exposure caused minimal adverse effects manifested by a transitory inhibition of protein synthesis in gills in the waterborne exposure. Overall, subcellular fractionation appears to have value in the quest for a better understanding of Zn homeostasis and interactions between branchial and gastrointestinal uptake pathways.

  14. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rasel, Md. Alim Iftekhar; Li, Tong; Nguyen, Trung Dung; Singh, Sanjleena [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia); Zhou, Yinghong; Xiao, Yin [Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (Australia); Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia)

    2015-11-15

    Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.

  15. Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions between Nutrients and Toxicants in Clinical Medicine

    Science.gov (United States)

    Schwalfenberg, Gerry K.; Genuis, Stephen J.

    2015-01-01

    In clinical medicine, increasing attention is being directed towards the important areas of nutritional biochemistry and toxicant bioaccumulation as they relate to human health and chronic disease. Optimal nutritional status, including healthy levels of vitamin D and essential minerals, is requisite for proper physiological function; conversely, accrual of toxic elements has the potential to impair normal physiology. It is evident that vitamin D intake can facilitate the absorption and assimilation of essential inorganic elements (such as calcium, magnesium, copper, zinc, iron, and selenium) but also the uptake of toxic elements (such as lead, arsenic, aluminum, cobalt, and strontium). Furthermore, sufficiency of essential minerals appears to resist the uptake of toxic metals. This paper explores the literature to determine a suitable clinical approach with regard to vitamin D and essential mineral intake to achieve optimal biological function and to avoid harm in order to prevent and overcome illness. It appears preferable to secure essential mineral status in conjunction with adequate vitamin D, as intake of vitamin D in the absence of mineral sufficiency may result in facilitation of toxic element absorption with potential adverse clinical outcomes. PMID:26347061

  16. Cell uptake survey of pegylated nanographene oxide.

    Science.gov (United States)

    Vila, M; Portolés, M T; Marques, P A A P; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Gonçalves, G; Cruz, S M A; Nieto, A; Vallet-Regi, M

    2012-11-23

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml(-1) pegylated GO solutions. GO uptake kinetics revealed differences in the agent's uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.

  17. Cell uptake survey of pegylated nanographene oxide

    International Nuclear Information System (INIS)

    Vila, M; Nieto, A; Vallet-Regi, M; Portolés, M T; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Marques, P A A P; Gonçalves, G; Cruz, S M A

    2012-01-01

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml −1 pegylated GO solutions. GO uptake kinetics revealed differences in the agent’s uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy. (paper)

  18. Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals.

    Science.gov (United States)

    Jarockyte, Greta; Daugelaite, Egle; Stasys, Marius; Statkute, Urte; Poderys, Vilius; Tseng, Ting-Chen; Hsu, Shan-Hui; Karabanovas, Vitalijus; Rotomskis, Ricardas

    2016-08-19

    The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe₃O₄) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3-24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining.

  19. Impacts of BDE209 addition on Pb uptake, subcellular partitioning and gene toxicity in earthworm (Eisenia fetida)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: wzhang@ecust.edu.cn [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liu, Kou; Li, Jing; Liang, Jun; Lin, Kuangfei [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2015-12-30

    Highlights: • 10 or 100 μg g{sup −1} BDE209 addition caused histological changes in Pb-exposed earthworms’ body wall. • Strong histopathological effects with BDE209 addition confirmed the enhanced Pb bioavailability. • The presence of higher levels of BDE209 altered subcellular partitioning of Pb in earthworm. • Co-exposure to Pb and BDE209 declined SOD and CAT gene transcripts synergistically. • BDE209 addition elicited up-regulation of Hsp90 gene expression compared to Pb exposure alone. - Abstract: Lead (Pb) and decabromodiphenyl ether (BDE209) are the mainly co-existed contaminants at e-waste recycling sites. The potential toxicity of Pb (250 μg g{sup −1}) to earthworm Eisenia fetida in the presence of BDE209 (1, 10 and 100 μg g{sup −1}) was determined during 14-d incubation period. Compared to Pb treatment alone, the co-exposure with 1 μg g{sup −1} BDE209 barely affected Pb uptake, subcellular partitioning and gene expression; however, histopathological changes in earthworms’ body wall (epidermal, circular and longitudinal muscles) demonstrated that 10 and 100 μg g{sup −1} BDE209 additions enhanced Pb uptake and altered its subcellular partitioning, indicating that Pb redistributed from fractions E (cell debris) and D (metal-rich granules) to fraction C (cytosols); Additionally, BDE209 supply significantly inhibited (p < 0.05) the induction of SOD (superoxide dismutase) and CAT (catalase) gene expressions (maximum down-regulation 59% for SOD gene at Pb + 100 μg g{sup −1} BDE209 and 89% for CAT gene at Pb + 10 μg g{sup −1} BDE209), while facilitated (p < 0.05) Hsp90 (heat shock protein 90) gene expression with maximum induction rate of 120% after exposure to Pb + 10 μg g{sup −1} BDE209. These findings illustrate the importance of considering environmental BDE209 co-exposure when assessing Pb bioaccumulation and toxicity in multi-contaminated soil ecosystems.

  20. Impacts of BDE209 addition on Pb uptake, subcellular partitioning and gene toxicity in earthworm (Eisenia fetida)

    International Nuclear Information System (INIS)

    Zhang, Wei; Liu, Kou; Li, Jing; Liang, Jun; Lin, Kuangfei

    2015-01-01

    Highlights: • 10 or 100 μg g −1 BDE209 addition caused histological changes in Pb-exposed earthworms’ body wall. • Strong histopathological effects with BDE209 addition confirmed the enhanced Pb bioavailability. • The presence of higher levels of BDE209 altered subcellular partitioning of Pb in earthworm. • Co-exposure to Pb and BDE209 declined SOD and CAT gene transcripts synergistically. • BDE209 addition elicited up-regulation of Hsp90 gene expression compared to Pb exposure alone. - Abstract: Lead (Pb) and decabromodiphenyl ether (BDE209) are the mainly co-existed contaminants at e-waste recycling sites. The potential toxicity of Pb (250 μg g −1 ) to earthworm Eisenia fetida in the presence of BDE209 (1, 10 and 100 μg g −1 ) was determined during 14-d incubation period. Compared to Pb treatment alone, the co-exposure with 1 μg g −1 BDE209 barely affected Pb uptake, subcellular partitioning and gene expression; however, histopathological changes in earthworms’ body wall (epidermal, circular and longitudinal muscles) demonstrated that 10 and 100 μg g −1 BDE209 additions enhanced Pb uptake and altered its subcellular partitioning, indicating that Pb redistributed from fractions E (cell debris) and D (metal-rich granules) to fraction C (cytosols); Additionally, BDE209 supply significantly inhibited (p < 0.05) the induction of SOD (superoxide dismutase) and CAT (catalase) gene expressions (maximum down-regulation 59% for SOD gene at Pb + 100 μg g −1 BDE209 and 89% for CAT gene at Pb + 10 μg g −1 BDE209), while facilitated (p < 0.05) Hsp90 (heat shock protein 90) gene expression with maximum induction rate of 120% after exposure to Pb + 10 μg g −1 BDE209. These findings illustrate the importance of considering environmental BDE209 co-exposure when assessing Pb bioaccumulation and toxicity in multi-contaminated soil ecosystems.

  1. Aluminium alleviates manganese toxicity to rice by decreasing root symplastic Mn uptake and reducing availability to shoots of Mn stored in roots.

    Science.gov (United States)

    Wang, Wei; Zhao, Xue Qiang; Hu, Zhen Min; Shao, Ji Feng; Che, Jing; Chen, Rong Fu; Dong, Xiao Ying; Shen, Ren Fang

    2015-08-01

    Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure. Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn(2+) and Al(3+) in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth. In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn(2+) activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma. The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Molecular Mechanisms of Microcystin Toxicity in Animal Cells

    Directory of Open Access Journals (Sweden)

    Alexandre Campos

    2010-01-01

    Full Text Available Microcystins (MC are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.

  3. Novel route of toxicant exposure in an ancient extant vertebrate: nickel uptake by hagfish skin and the modifying effects of slime.

    Science.gov (United States)

    Glover, Chris N; Blewett, Tamzin A; Wood, Chris M

    2015-02-03

    Utilizing an in vitro technique, the skin of Pacific hagfish (Eptatretus stouti) was shown to take up nickel from the water via a high affinity, low capacity transport pathway. Uptake was biphasic, with saturation occurring at low nickel exposure concentrations, superseded by linear, diffusive uptake at levels greater than 50 μM. In vivo exposures showed that nickel accumulated mainly in the gill, heart, and brain, representing a tissue distribution distinct from that found in teleosts. Slime on the epidermal surface was shown to significantly reduce the uptake of low concentrations (10 μM) of the metals zinc and nickel, but slime had no effect on organic nutrient (the amino acid l-alanine) absorption. At a higher metal exposure concentration (1 mM), slime was no longer protective, indicating saturation of metal-binding sites. This is the first study to show that metals can be taken up by the integument of hagfish. The ability of the skin to act as a transport epithelium may be of particular importance for a burrowing, benthic scavenger, such as hagfish, which are likely to be exposed to relatively enriched levels of metal toxicants through their habitat and lifestyle, and this may have consequences for human health through hagfish consumption.

  4. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Exposure to cadmium

    International Nuclear Information System (INIS)

    Wang Mengjiao; Wang Wenxiong

    2011-01-01

    The aims of this study were to (1) evaluate the changes in the Cd tolerance of a marine diatom after exposure under different Cd concentrations for various durations and (2) to explore the potential subcellular and biochemical mechanisms underlying these changes. The 72-h toxicity, short-term Cd uptake, subcellular Cd distribution, as well as the synthesis of phytochelatins (PCs) were measured in a marine diatom Thalassiosira nordenskioeldii after exposure to a range of free Cd ion concentrations ([Cd 2+ ], 0.01-84 nM) for 1-15 days. Surprisingly, the diatoms did not acquire higher resistance to Cd after exposure; instead their sensitivity to Cd increased with a higher exposed [Cd 2+ ] and a longer exposure period. The underlying mechanisms could be traced to the responses of Cd cellular accumulation and the intrinsic detoxification ability of the preconditioned diatoms. Generally, exposure to a higher [Cd 2+ ] and for a longer period increased the Cd uptake rate, cellular accumulation, as well as the Cd concentration in metal-sensitive fraction (MSF) in these diatoms. In contrast, although PCs were induced by the environmental Cd stress (with PC 2 being the most affected), the increased intracellular Cd to PC-SH ratio implied that the PCs' detoxification ability had reduced after Cd exposure. All these responses resulted in an elevated Cd sensitivity as exposed [Cd 2+ ] and duration increased. This study shows that the physiological/biochemical and kinetic responses of phytoplankton upon metal exposure deserve further investigation.

  5. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Aschner, Michael [Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Luo, Wen-Jing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Chen, Jing-Yuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China)

    2016-04-15

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  6. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    International Nuclear Information System (INIS)

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua; Aschner, Michael; Luo, Wen-Jing; Chen, Jing-Yuan

    2016-01-01

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  7. Incidence and characteristics of uterine leiomyomas with FDG uptake

    International Nuclear Information System (INIS)

    Nishizawa, Sadahiko; Inubushi, Masayuki; Kido, Aki; Miyagawa, Masao; Inoue, Takeshi; Shinohara, Katsura; Kajihara, Makoto

    2008-01-01

    Uterine leiomyomas sometimes show focal 18 F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) images that may result in a false-positive diagnosis for malignant lesions. This study was conducted to investigate the incidence and characteristics of uterine leiomyomas that showed FDG uptake. We reviewed FDG-PET and pelvic magnetic resonance (MR) images of 477 pre-menopausal (pre-MP, age 42.1±7.3 years) and 880 post-MP (age 59.9±6.8 years) healthy women who underwent these tests as parts of cancer screening. Of 1357, 323 underwent annual cancer screening four times, 97 did three times, 191 did twice, and the rest were screened once. Focal FDG uptake (maximal standardized uptake value >3.0) in the pelvis was localized and characterized on co-registered PET/MR images. Uterine leiomyomas were found in 164 pre-MP and 338 post-MP women. FDG uptake was observed in 18 leiomyomas of 17 of the 164 (10.4%) pre-MP women and in 4 leiomyomas of 4 of the 338 (1.2%) post-MP women. The incidence was significantly higher in pre-MP women than in post-MP women (chi-square, P<0.001). Of the 22, 13 showed signal intensity equal to or higher than that of the myometrium on T2-weighted MR images, which suggested abundant cellularity, whereas the majority of leiomyomas without FDG uptake showed low signal intensity. Of the 13 women, 12 examined more than twice showed substantial changes in the level of FDG uptake in leiomyomas each year with FDG uptake disappearing or newly appearing. These changes were observed frequently in relation with menopause or menstrual phases. Leiomyomas with focal FDG uptake were seen in both pre- and post-MP women with a higher incidence in pre-MP women. Abundant cellularity and hormonal dependency may explain a part of the mechanisms of FDG uptake in leiomyomas. It is important to know that the level of FDG uptake in leiomyomas can change and newly appearing FDG uptake does not necessarily mean malignant transformation. (author)

  8. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    Science.gov (United States)

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag 2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag 2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag 2+ nanocrystals was determined to be -25.3±3.11mV significantly (Pcellular uptake. The Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals exhibited an IC 50 of 16.6μM and 6.5μM, significantly (Pcellular morphological alterations in B16F1 cells upon internalization of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated apoptosis via caspase activation. Preliminary investigations substantiated that Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals must be further explored and utilized for the delivery of noscapinoids to melanoma cancer cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity.

    Science.gov (United States)

    Ashraf, Umair; Hussain, Saddam; Anjum, Shakeel Ahmad; Abbas, Farhat; Tanveer, Mohsin; Noor, Mehmood Ali; Tang, Xiangru

    2017-06-01

    Lead (Pb) affects plant growth and its related physio-biochemical functions negatively. The present study investigated the responses of five different fragrant rice cultivars viz., Meixiangzhan (MXZ-2), Xiangyaxiangzhan (XYXZ), Guixiangzhan (GXZ), Basmati-385 (B-385), and Nongxiang-18 (NX-18) to four different Pb concentrations viz., 0, 400, 800 and 1200 μM. Results depicted that Pb toxicity significantly (P rice plants; nonetheless, a significant variation was found in the sensitivity of rice cultivars to Pb toxicity. Soluble sugars increased significantly only at 1200 μM in GXZ and 800 μM in B-385, whilst the maximum reductions in protein contents were observed at 1200 μM Pb for all rice cultivars. Proline contents were reduced for XYXZ and NX-18 at Pb1200 μM. Activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) as well as reduced glutathione (GSH) and oxidized glutathione (GSSG) showed differential behavior among Pb treatments and rice cultivars. Among rice cultivars, GXZ showed better antioxidative defense system under Pb toxicity compared with all other cultivars. For all rice cultivars, the trend for Pb accumulation was recorded as: roots > stems > leaves. Furthermore, significant but negative correlations among Pb uptake and plant height (r = -0.79), tillers per plant (r = -0.91) and plant dry biomass (r = -0.81) were recorded for all rice cultivars whereas the values of translocation factor (TF) from stems to leaves were higher than roots to stems. In sum, Pb reduced the early growth and caused physio-biochemical changes in all rice cultivars, nonetheless, GXZ proved better able to tolerate Pb stress than all other rice cultivars under study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Decreased cisplatin uptake by resistant L1210 leukemia cells

    International Nuclear Information System (INIS)

    Hromas, R.A.; North, J.A.; Burns, C.P.

    1987-01-01

    Cisplatin resistance remains poorly understood compared to other forms of anti-neoplastic drug resistance. In this report radiolabelled cisplatin and rapid separation techniques were used to compare drug uptake by L1210 leukemia cells that are sensitive (K25) or resistant (SCR9) to cisplatin. Uptake of cisplatin by both cell lines was linear without saturation kinetics up to 100 μM. The resistant ZCR9 cells had 36-60% reduced drug uptake as compared to its sensitive parent line, K25. In contrast, there was no difference in the rate of efflux. We conclude that a decreased rate of uptake is one possible mechanism of cellular cisplatin resistance. (Author)

  11. Citric acid modifies surface properties of commercial CeO{sub 2} nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo-Reyes, J. [Chemistry Department, The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Vilchis-Nestor, A.R. [Centro Conjunto de Investigación en Química Sustentable UAEM—UNAM, Carretera Toluca—Atlacomulco km 14.5, San Cayetano, CP 50200 Toluca, Estado de México (Mexico); Majumdar, S. [Chemistry Department, The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Peralta-Videa, J.R. [Chemistry Department, The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Gardea-Torresdey, J.L., E-mail: jgardea@utep.edu [Chemistry Department, The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Av., El Paso, TX 79968 (United States)

    2013-12-15

    Highlights: • The citric acid capping significantly reduced the ζ potential values. • As the amount of CA increased, thicker the layer surrounding the CeO{sub 2} NPs. • CeO{sub 2}/CA NPs had better distribution and small particle size than bare CeO{sub 2} NPs. • CeO{sub 2}/CA NPs decrease the Ce uptake by radish seedlings. -- Abstract: Little is known about the mobility, reactivity, and toxicity to plants of coated engineered nanoparticles (ENPs). Surface modification may change the interaction of ENPs with living organisms. This report describes surface changes in commercial CeO{sub 2} NPs coated with citric acid (CA) at molar ratios of 1:2, 1:3, 1:7, and 1:10 CeO{sub 2}:CA, and their effects on radish (Raphanus sativus) seed germination, cerium and nutrients uptake. All CeO{sub 2} NPs and their absorption by radish plants were characterized by TEM, DLS, and ICP-OES. Radish seeds were germinated in pristine and CA coated CeO{sub 2} NPs suspensions at 50 mg/L, 100 mg/L, and 200 mg/L. Deionized water and CA at 100 mg/L were used as controls. Results showed ζ potential values of 21.6 mV and −56 mV for the pristine and CA coated CeO{sub 2} NPs, respectively. TEM images showed denser layers surrounding the CeO{sub 2} NPs at higher CA concentrations, as well as better distribution and smaller particle sizes. None of the treatments affected seed germination. However, at 200 mg/L the CA coated NPs at 1:7 ratio produced significantly (p ≤ 0.05) more root biomass, increased water content and reduced by 94% the Ce uptake, compared to bare NPs. This suggests that CA coating decrease CeO{sub 2} NPs toxicity to plants.

  12. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    Science.gov (United States)

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  13. Calibration of a Plant Uptake Model with Plant- and Site-Specific. Data for Uptake of Chlorinated Organic Compounds into Radish

    DEFF Research Database (Denmark)

    Trapp, Stefan

    2015-01-01

    The uptake of organic pollutants by plants is an important process for the exposure of humans to toxic chemicals. The objective of this study was to calibrate the parameters of a common plant uptake model by comparison to experimental results from literature. Radish was grown in contaminated soil...... with default data and site-specific data were similar. Deposition from air was the major uptake mechanism into shoots. Transport from soil with resuspended particles was only relevant for the contaminated plot. The calculation results (in dry weight) were most sensitive to changes of the water content of plant...

  14. The uptake of tocopherols by RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Papas Andreas M

    2002-10-01

    Full Text Available Abstract Background Alpha-Tocopherol and gamma-tocopherol are the two major forms of vitamin E in human plasma and the primary lipid soluble antioxidants. The dietary intake of gamma-tocopherol is generally higher than that of alpha-tocopherol. However, alpha-tocopherol plasma levels are about four fold higher than those of gamma-tocopherol. Among other factors, a preferential cellular uptake of gamma-tocopherol over alpha-tocopherol could contribute to the observed higher plasma alpha-tocopherol levels. In this investigation, we studied the uptake and depletion of both alpha-tocopherol and gamma-tocopherol (separately and together in cultured RAW 264.7 macrophages. Similar studies were performed with alpha-tocopheryl quinone and gamma-tocopheryl quinone, which are oxidation products of tocopherols. Results RAW 264.7 macrophages showed a greater uptake of gamma-tocopherol compared to alpha-tocopherol (with uptake being defined as the net difference between tocopherol transported into the cells and loss due to catabolism and/or in vitro oxidation. Surprisingly, we also found that the presence of gamma-tocopherol promoted the cellular uptake of alpha-tocopherol. Mass balance considerations suggest that products other than quinone were formed during the incubation of tocopherols with macrophages. Conclusion Our data suggests that gamma-tocopherol could play a significant role in modulating intracellular antioxidant defence mechanisms. Moreover, we found the presence of gamma-tocopherol dramatically influenced the cellular accumulation of alpha-tocopherol, i.e., gamma-tocopherol promoted the accumulation of alpha-tocopherol. If these results could be extrapolated to in vivo conditions they suggest that gamma-tocopherol is selectively taken up by cells and removed from plasma more rapidly than alpha-tocopherol. This could, in part, contribute to the selective maintenance of alpha-tocopherol in plasma compared to gamma-tocopherol.

  15. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    Science.gov (United States)

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. Copyright © 2016. Published by Elsevier B.V.

  16. A Clinical Study on {sup 125}IT{sub 3} Resin Uptake Rate and Serum Thyroxin(T{sub 4}) in Hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    MooN, Ern Soo; Park, Yoh Han; Cho, Chang Ho; Park, In Soo; Lee, Chong Suk; Lee, Hak Choong [National Medical Center, Seoul (Korea, Republic of)

    1978-09-15

    Hyperthyroidism may be defined as those clinical conditions which result from an increase in the circulating levels of one or both thyroid hormones. Hyperthyroidism in broad sense could be classified with toxic diffuse goiter, toxic adenomatous goiter, and toxic multinodular goiter on the basis of the circulating thyroid hormone levels. For this study, the subject included 94 cases with hyperthyroidism were presented in 77 with toxic diffuse goiter, 8 with toxic adenomatous goiter, and 9 with toxic multinodular goiter on the levels of {sup 125}IT{sub 3} resin uptake rate and serum thyroxine (T{sub 4}). The observed results were as follows: 1) In the cases of hyperthyroidism including toxic diffuse goiter, toxic adenomatous goiter, and toxic multinodular goiter, 20.21% of the patients were male and 79.79% female. The majority of the patients were in 2nd to 4th decades of their lives. 2) There were objective signs clearly manifested in hyperthyroidism including toxic diffuse goiter and toxic adenomatous goiter which were rare in the multinodular goiter. The clinical signs in toxic diffuse and toxic adenomatous goiter included wide pulse pressure, tachycardia, systolic murmur, exophthalmos, tremor and warm skin etc. 3) The most frequent complaints of the patients with hyperthyroidism were palpitation, weight loss, increased appetite, perspiration, heat intolerance, nervousness, exertional dyspnea, and menstrual disturbance etc. There was no clear difference in the incidence of symptoms between toxic diffuse goiter and toxic adenomatous goiter, but there was clear difference between toxic multinodular goiter. 4) Considering of results of {sup 125}IT{sub 3} resin uptake rate and serum T{sub 4} level in toxic diffuse goiter, toxic adenomatous goiter and toxic multinodular goiter, {sup 125}IT{sub 3} resin uptake rate was 49.15+-9.94% (mean) and serum T{sub 4} 21.29+-7.04 ug/dl (mean) in toxic diffuse goiter. In toxic multinodular goiter, {sup 125}I T{sub 3} resin uptake

  17. Interplay of drug metabolizing enzymes with cellular transporters.

    Science.gov (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  18. Cellular uptake: lessons from supramolecular organic chemistry.

    Science.gov (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  19. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application

    Science.gov (United States)

    Alwani, Saniya; Kaur, Randeep; Michel, Deborah; Chitanda, Jackson M; Verrall, Ronald E; Karunakaran, Chithra; Badea, Ildiko

    2016-01-01

    Purpose Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. Methods lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA) was also analyzed using flow cytometry. Results Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed good stability, remaining under 100 nm throughout the testing period. A positive zeta potential of >+20 mV indicated a preservation of surface charges. Size distribution and zeta potential changed for lys-NDs after incubation with blood serum, suggesting an interaction with biomolecules, mainly proteins, and a possible formation of a protein corona. Cellular internalization

  20. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application.

    Science.gov (United States)

    Alwani, Saniya; Kaur, Randeep; Michel, Deborah; Chitanda, Jackson M; Verrall, Ronald E; Karunakaran, Chithra; Badea, Ildiko

    2016-01-01

    Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA) was also analyzed using flow cytometry. Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed good stability, remaining under 100 nm throughout the testing period. A positive zeta potential of >+20 mV indicated a preservation of surface charges. Size distribution and zeta potential changed for lys-NDs after incubation with blood serum, suggesting an interaction with biomolecules, mainly proteins, and a possible formation of a protein corona. Cellular internalization of lys-NDs was confirmed

  1. Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization.

    Science.gov (United States)

    Li, Jinxia; Xing, Xueqing; Sun, Baoyun; Zhao, Yuliang; Wu, Zhonghua

    2017-10-18

    Herein, A549 tumor cell proliferation was confirmed to be positively dependent on the concentration of Fe 3+ or transferrin (Tf). Gd@C 82 (OH) 22 or C 60 (OH) 22 effectively inhibited the iron uptake and the subsequent proliferation of A549 cells. The conformational changes of Tf mixed with FeCl 3 , GdCl 3 , C 60 (OH) 22 or Gd@C 82 (OH) 22 were obtained by SAXS. The results demonstrate that Tf homodimers can be decomposed into monomers in the presence of FeCl 3 , GdCl 3 or C 60 (OH) 22 , but associated into tetramers in the presence of Gd@C 82 (OH) 22 . The larger change of SAXS shapes between Tf+C 60 (OH) 22 and Tf+FeCl 3 implies that C 60 (OH) 22 is bound to Tf, blocking the iron-binding site. The larger deviation of the SAXS shape from a possible crystal structure of Tf tetramer implies that Gd@C 82 (OH) 22 is bound to the Tf tetramer, thus disturbing iron transport. This study well explains the inhibition mechanism of Gd@C 82 (OH) 22 and C 60 (OH) 22 on the iron uptake and the proliferation of A549 tumor cells and highlights the specific interactions of a nanomedicine with the target biomolecules in cancer therapy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yun [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2011-10-15

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: > The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. > The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. > Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  3. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    International Nuclear Information System (INIS)

    Wu Yun; Wang Wenxiong

    2011-01-01

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: → The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. → The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. → Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  4. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  5. Mechanisms of DNA uptake by cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1977-01-01

    Three categories of cellular uptake of DNA can be distinguished. First, in the highly transformable bacteria, such as Diplococcus pneumoniae, Haemophilus influenzae and Bacillus subtilis, elaborate mechanisms of DNA transport have evolved, presumably for the purpose of genetic exchange. These mechanisms can introduce substantial amounts of DNA into the cell. Second, methods have been devised for the forced introduction of DNA by manipulation of bacterial cells under nonphysiological conditions. By such means small but significant amounts of DNA have been introduced into various bacteria, including Escherichia coli. Third, mammalian cells are able to take up biologically active DNA. This has been most clearly demonstrated with viral DNA, although the mechanism of uptake is not well understood. The intention, here, is to survey current understanding of the various mechanisms of DNA uptake. A review of experience with the bacterial systems may throw some light on the mammalian system and lead to suggestions for enhancing DNA uptake by mammalian cells.

  6. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    International Nuclear Information System (INIS)

    Kettler, Katja; Krystek, Petra; Giannakou, Christina; Hendriks, A. Jan; Jong, Wim H. de

    2016-01-01

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

  7. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, Katja, E-mail: K.Kettler@science.ru.nl [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Krystek, Petra [VU University, Institute for Environmental Studies (IVM) (Netherlands); Giannakou, Christina [National Institute for Public Health and the Environment (RIVM) (Netherlands); Hendriks, A. Jan [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Jong, Wim H. de [National Institute for Public Health and the Environment (RIVM) (Netherlands)

    2016-07-15

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

  8. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    Science.gov (United States)

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  9. Toxicity of functional nano-micro zinc oxide tetrapods: impact of cell culture conditions, cellular age and material properties.

    Science.gov (United States)

    Papavlassopoulos, Heike; Mishra, Yogendra K; Kaps, Sören; Paulowicz, Ingo; Abdelaziz, Ramzy; Elbahri, Mady; Maser, Edmund; Adelung, Rainer; Röhl, Claudia

    2014-01-01

    With increasing production and applications of nanostructured zinc oxide, e.g., for biomedical and consumer products, the question of safety is getting more and more important. Different morphologies of zinc oxide structures have been synthesized and accordingly investigated. In this study, we have particularly focused on nano-micro ZnO tetrapods (ZnO-T), because their large scale fabrication has been made possible by a newly introduced flame transport synthesis approach which will probably lead to several new applications. Moreover, ZnO-T provide a completely different morphology then classical spherical ZnO nanoparticles. To get a better understanding of parameters that affect the interactions between ZnO-T and mammalian cells, and thus their biocompatibility, we have examined the impact of cell culture conditions as well as of material properties on cytotoxicity. Our results demonstrate that the cell density of fibroblasts in culture along with their age, i.e., the number of preceding cell divisions, strongly affect the cytotoxic potency of ZnO-T. Concerning the material properties, the toxic potency of ZnO-T is found to be significantly lower than that of spherical ZnO nanoparticles. Furthermore, the morphology of the ZnO-T influenced cellular toxicity in contrast to surface charges modified by UV illumination or O2 treatment and to the material age. Finally, we have observed that direct contact between tetrapods and cells increases their toxicity compared to transwell culture models which allow only an indirect effect via released zinc ions. The results reveal several parameters that can be of importance for the assessment of ZnO-T toxicity in cell cultures and for particle development.

  10. Toxicity of Engineered Nanoparticles to Aquatic Invertebrates

    DEFF Research Database (Denmark)

    Cupi, Denisa; Sørensen, Sara Nørgaard; Skjolding, Lars Michael

    2016-01-01

    This chapter provides a targeted description of some of the most important processes that influence toxicity and uptake of nanoparticles in aquatic invertebrates. It discusses silver nanoparticles (Ag NPs), on how aspects of dissolution and chemical species obtained from this process can influence...... ecotoxicity of aquatic invertebrates. The chapter focuses on how fullerenes affect the toxicity of other pollutants, but also reflect on the fate and behavior of C60 in the aquatic environment, as well as ecotoxicity to aquatic invertebrates. It presents the case of titanium dioxide nanoparticles (TiO2 NPs...... on bioaccumulation focusing on the effect of nanoparticle coating, uptake, and depuration in aquatic invertebrates....

  11. Cellular uptake of misonidazole and analogues with acidic or basic functions

    International Nuclear Information System (INIS)

    Dennis, M.F.; Stratford, M.R.L.; Wardman, P.; Watts, M.E.

    1985-01-01

    Average intracellular concentrations of five radiosensitizers in hamster fibroblast-like V79-379A cells in vitro were measured by high performance liquid chromatography, varying the extracellular pH(pHsub(e)) and estimating the apparent intracellular pH from the distribution of 5,5-dimethyloxazolidine-2,4-dione. The intracellular: extracellular concentration ratio for the 2-nitroimidazole, misonidazole was constant at about 0.7 for pHsub(e)=6.6-7.6, whereas the weak base, Ro 03-8799 (1-(2-nitro-1-imidazolyl)-3-N-piperidino-2-propanol) was concentrated intracellularly at pHsub(e)=7.3-7.4 by a factor of 3.3, the factor increasing from about 0.8 at pHsub(e)=6.0, to 7.5 at pHsub(e)=7.85. The weak acid, azomycin (2-nitroimidazole) showed approximately constant uptake (factor 1.1) between pHsub(e)=6.0-7.0, decreasing to 0.8 at pHsub(e)=7.3 and 0.4 at pHsub(e)=7.8. Measurements of intracellular uptake of Ro 31-0052 (the more hydrophilic and less basic 3'-hydroxypiperidino analogue of Ro 03-8799) and of Ro 31-0258 (3-(2-nitro-1-imidazolyl)propionic acid, a stronger acid than azomycin) were made for comparison. The results were compared with theoretical calculations of pH-induced concentration gradients; the time dependence of the uptake of the bases is not at present clearly understood. (author)

  12. An apolipoprotein-enriched biomolecular corona switches the cellular uptake mechanism and trafficking pathway of lipid nanoparticles.

    Science.gov (United States)

    Digiacomo, L; Cardarelli, F; Pozzi, D; Palchetti, S; Digman, M A; Gratton, E; Capriotti, A L; Mahmoudi, M; Caracciolo, G

    2017-11-16

    Following exposure to biological milieus (e.g. after systemic administration), nanoparticles (NPs) get covered by an outer biomolecular corona (BC) that defines many of their biological outcomes, such as the elicited immune response, biodistribution, and targeting abilities. In spite of this, the role of BC in regulating the cellular uptake and the subcellular trafficking properties of NPs has remained elusive. Here, we tackle this issue by employing multicomponent (MC) lipid NPs, human plasma (HP) and HeLa cells as models for nanoformulations, biological fluids, and target cells, respectively. By conducting confocal fluorescence microscopy experiments and image correlation analyses, we quantitatively demonstrate that the BC promotes a neat switch of the cell entry mechanism and subsequent intracellular trafficking, from macropinocytosis to clathrin-dependent endocytosis. Nano-liquid chromatography tandem mass spectrometry identifies apolipoproteins as the most abundant components of the BC tested here. Interestingly, this class of proteins target the LDL receptors, which are overexpressed in clathrin-enriched membrane domains. Our results highlight the crucial role of BC as an intrinsic trigger of specific NP-cell interactions and biological responses and set the basis for a rational exploitation of the BC for targeted delivery.

  13. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  14. Implications of Resveratrol on Glucose Uptake and Metabolism

    Directory of Open Access Journals (Sweden)

    David León

    2017-03-01

    Full Text Available Resveratrol—a polyphenol of natural origin—has been the object of massive research in the past decade because of its potential use in cancer therapy. However, resveratrol has shown an extensive range of cellular targets and effects, which hinders the use of the molecule for medical applications including cancer and type 2 diabetes. Here, we review the latest advances in understanding how resveratrol modulates glucose uptake, regulates cellular metabolism, and how this may be useful to improve current therapies. We discuss challenges and findings regarding the inhibition of glucose uptake by resveratrol and other polyphenols of similar chemical structure. We review alternatives that can be exploited to improve cancer therapies, including the use of other polyphenols, or the combination of resveratrol with other molecules and their impact on glucose homeostasis in cancer and diabetes.

  15. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  16. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    Science.gov (United States)

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  17. A novel method for measuring cellular antibody uptake using imaging flow cytometry reveals distinct uptake rates for two different monoclonal antibodies targeting L1.

    Science.gov (United States)

    Hazin, John; Moldenhauer, Gerhard; Altevogt, Peter; Brady, Nathan R

    2015-08-01

    Monoclonal antibodies (mAbs) have emerged as a promising tool for cancer therapy. Differing approaches utilize mAbs to either deliver a drug to the tumor cells or to modulate the host's immune system to mediate tumor kill. The rate by which a therapeutic antibody is being internalized by tumor cells is a decisive feature for choosing the appropriate treatment strategy. We herein present a novel method to effectively quantitate antibody uptake of tumor cells by using image-based flow cytometry, which combines image analysis with high throughput of sample numbers and sample size. The use of this method is established by determining uptake rate of an anti-EpCAM antibody (HEA125), from single cell measurements of plasma membrane versus internalized antibody, in conjunction with inhibitors of endocytosis. The method is then applied to two mAbs (L1-9.3, L1-OV52.24) targeting the neural cell adhesion molecule L1 (L1CAM) at two different epitopes. Based on median cell population responses, we find that mAb L1-OV52.24 is rapidly internalized by the ovarian carcinoma cell line SKOV3ip while L1 mAb 9.3 is mainly retained at the cell surface. These findings suggest the L1 mAb OV52.24 as a candidate to be further developed for drug-delivery to cancer cells, while L1-9.3 may be optimized to tag the tumor cells and stimulate immunogenic cancer cell killing. Furthermore, when analyzing cell-to-cell variability, we observed L1 mAb OV52.24 rapidly transition into a subpopulation with high-internalization capacity. In summary, this novel high-content method for measuring antibody internalization rate provides a high level of accuracy and sensitivity for cell population measurements and reveals further biologically relevant information when taking into account cellular heterogeneity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Changes in the cellular energy state affect the activity of the bacterial phosphotransferase system

    DEFF Research Database (Denmark)

    Rohwer, J.M.; Jensen, Peter Ruhdal; Shinohara, Y.

    1996-01-01

    The effect of different cellular free-energy states on the uptake of methyl alfa-D-glucopyranoside, an analoque of glucose, by Escherichia coli phosphoenolpyruvate:carbohydrate phosphotransferase system was investigated. The intracellular ATP/ADP ratio was varied by changing the expression...... of the atp operon, which codes for the H+-ATPase, or by adding an uncoupler of oxidative phosphorylation or an inhibitor of respiration. Corresponding initial phosphotransferase uptake rates were determined using an improved uptake assay that works with growing cells in steady state. The results show...... that the initial uptake rate was decreased under conditions of lowered intracellular ATP/ADP ratios, irrespective of which method was used to change the cellular energy state.. When either the expression of the atp operon was changed or 2,4-dinitrophenol was added to wild-type cells, the relationship between...

  19. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review.

    Science.gov (United States)

    Ip, Y K; Chew, S F; Wilson, J M; Randall, D J

    2004-10-01

    In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH(3) excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH(3) partial pressure gradient (DeltaP(NH3)), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH(4)(+); (2) lowering of environmental pH; (3) low NH(3) permeability of epithelial surfaces; and (4) volatilization of NH(3), while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.

  20. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification.

    Science.gov (United States)

    Yıldırım, Kubilay; Uylaş, Senem

    2016-12-01

    Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Exposure, uptake, distribution and toxicity of nanomaterials in humans.

    Science.gov (United States)

    Holgate, Stephen T

    2010-02-01

    The last decade has witnessed an unprecedented explosion in nanotechnology to take advantage of the unique physicochemical properties that emerge at the nanoscale including quantum effects. However, the excitement generated by new applications of nanotechnology in products has not been matched by a parallel appreciation or understanding of their potential toxic effects in humans and the wider ecology. This review draws some parallels to what we already know about the toxicity of particles in the workplace and in association with air pollution, and then discusses what is known about the toxicology of nanomaterials in mammals including humans. The review identifies substantial gaps in knowledge and makes some recommendations for future research.

  2. Uptake of thallium-201 in enlarged thyroid glands. Concise communication

    International Nuclear Information System (INIS)

    Fukuchi, M.; Kido, A.; Hyodo, K.; Tachibana, K.; Onoue, K.; Morita, T.; Nagai, K.

    1979-01-01

    We have investigated the thyroid uptake of Tl-201 in 37 patients with various types of goiter, and in six with normal thyroids. Significant thallium uptake was found in all cases in which there was thyroid enlargement, including Graves' disease, toxic thyroid nodule, primary hypothyroidism, simple goiter, Hashimoto's disease, thyroid carcinoma, and thyroid adenoma. If goiter was absent, however, there was no demonstrable uptake - e.g., in secondary hypothyroidism, subacute thyroiditis, and the normal controls. Thallium uptake did not correlate with thyroid function tests such as BMR, T 3 -RU, T 3 , T 4 , TSH, antithyroid antibodies, or the 24-hr I-131 uptake. In 23 patients with diffuse goiter, on the other hand, maximum Tl-201 uptake correlated well with thyroid weight: r = 0.836 (p < 0.001); y = 0.02 x + 0.06

  3. Luminescent cyclometalated iridium(III) polypyridine indole complexes--synthesis, photophysics, electrochemistry, protein-binding properties, cytotoxicity, and cellular uptake.

    Science.gov (United States)

    Lau, Jason Shing-Yip; Lee, Pui-Kei; Tsang, Keith Hing-Kit; Ng, Cyrus Ho-Cheong; Lam, Yun-Wah; Cheng, Shuk-Han; Lo, Kenneth Kam-Wing

    2009-01-19

    A series of luminescent cyclometalated iridium(III) polypyridine indole complexes, [Ir(N--C)(2)(N--N)](PF(6)) (HN--C = 2-phenylpyridine (Hppy), N--N = 4-((2-(indol-3-yl)ethyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine (bpy-ind) (1a), N--N = 4-((5-((2-(indol-3-yl)ethyl)aminocarbonyl)pentyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine (bpy-C6-ind) (1b); HN--C = 7,8-benzoquinoline (Hbzq), N--N = bpy-ind (2a), N--N = bpy-C6-ind (2b); and HN--C = 2-phenylquinoline (Hpq), N--N = bpy-ind (3a), N--N = bpy-C6-ind (3b)), have been synthesized, characterized, and their photophysical and electrochemical properties and lipophilicity investigated. Photoexcitation of the complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence (lambda(em) = 540-616 nm, tau(o) = 0.13-5.15 mus). The emission of the complexes has been assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir) --> pi*(N--N)) excited state, probably with some mixing of triplet intraligand ((3)IL) (pi --> pi*) (pq) character for complexes 3a,b. Electrochemical measurements revealed that all the complexes showed an irreversible indole oxidation wave at ca. +1.1 V versus SCE, a quasi-reversible iridium(IV/III) couple at ca. +1.3 V, and a reversible diimine reduction couple at ca. -1.3 V. The interactions of these complexes with an indole-binding protein, bovine serum albumin (BSA), have been studied by emission titrations, and the K(a) values are on the order of 10(4) M(-1). Additionally, the cytotoxicity of the complexes toward human cervix epithelioid carcinoma (HeLa) cells has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC(50) values of the complexes ranged from 1.1 to 6.3 microM, which are significantly smaller than that of cisplatin (30.7 microM) under the same experimental conditions. Furthermore, the cellular uptake of the complexes has been investigated by flow cytometry and laser

  4. Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: The uptake kinetics and mechanisms and the toxic responses

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Song; Zhu, Bin; Huang, Aiguo [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China); Hu, Yang [College of Science, Northwest A& F University, Yangling 712100 (China); Wang, Gaoxue, E-mail: wanggaoxue@126.com [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China); Ling, Fei, E-mail: feiling@nwsuaf.edu.cn [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China)

    2016-11-15

    Highlights: • MWCNTs (<100 mg/L) were not toxic to S. cerevisiae. • MWCNTs were internalized in S. cerevisiae cells by three pathways. • The uptake kinetics and the subcellular distribution of MWCNTs in S. cerevisiae cells were shown. • S. cerevisiae cells were undergoing apoptosis by mitochondrial impairment pathway. - Abstract: Using Saccharomyces cerevisiae as an experimental model, the potential toxicological effects of oxidized multi-walled carbon nanotubes (MWCNTs) were investigated following exposure to 0–600 mg/L for 24 h. Results indicated that MWCNTs (>100 mg/L) had adverse effects on the cell proliferation. MWCNTs were clearly visible in lysosome, vacuole, endosome, mitochondria, multivesicular body and localization in the perinuclear region. The uptake kinetics data demonstrated that the maximum MWCNTs content (209.61 mg/g) was reached at 3 h, and a steady state was reached after 18 h. Based on the combined results of transmission electron microscope, endocytosis inhibition experiments and endocytosis-related genes (END3, END6, Sla2 and Rsp5) expression analysis, we elucidated MWCNTs uptake mechanism: (i) via a direct penetration of single MWCNTs; (ii) via endocytosis of single MWCNTs; and (iii) via endocytosis of MWCNTs aggregates. The percentage of apoptosis was significant increased at 600 mg/L. The decrease of mitochondrial transmembrane potential and the leakage of cytochrome c shown dose-dependent manners. Interestingly, there was no significant increase of reactive oxygen species (ROS). The apoptosis-related genes (SOD1, SOD2, Yca1, Nma111 and Nuc1) were significant changed. These results obtained in our study demonstrated that oxidized MWCNTs induce Saccharomyces cerevisiae apoptosis via mitochondrial impairment pathway.

  5. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    Science.gov (United States)

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  7. Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection

    Energy Technology Data Exchange (ETDEWEB)

    Al Faraj, Achraf, E-mail: aalfaraj@ksu.edu.sa [College of Applied Medical Sciences, King Saud University, Molecular and Cellular Imaging Lab, Department of Radiological Sciences (Saudi Arabia)

    2013-07-15

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of different diseases, which make them attractive vehicles to deliver contrast agents or drugs for diagnostic or therapeutic purposes. In this study, the effect of polyethylene glycol functionalization of magnetic iron oxide nanoparticles and their further surface modification with carboxylic groups on bone marrow-derived M1 and M2 macrophages phenotype, labeling efficiency, uptake mechanism, biocompatibility, and their in vivo MR detection was assessed. An enhanced labeling efficiency was observed for carboxylic surface-modified superparamagnetic iron oxide (SPIO) compared to PEGylated SPIO and to a higher extent to plain SPIO along with a higher uptake by M2 subsets. Magnetic nanoparticles were found located in the periphery of the vesicles dispersed in the cytoplasm in TEM. Investigation of the labeling mechanism by inhibiting different uptake pathways revealed that endocytosis via scavenger receptor A, a process known to be clathrin mediated, plays a central role in the cellular uptake kinetics of both macrophages subpopulations. Biocompatibility evaluation showed no variation in cell viability and mitochondrial membrane potential with a low release of ROS. Flow cytometry and measurement of iNOS and Arginase 1 activity as marker of M1 and M2 macrophages polarization confirmed that magnetic labeling of macrophages subsets did not affect their polarization. In addition, no variation was observed in the biodistribution of magnetic iron oxide-labeled M1 and M2 macrophages subsets when monitored using noninvasive magnetic resonance imaging with a better detection for the enhanced SPIO-PEG-COOH-labeled cells.

  8. Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection

    International Nuclear Information System (INIS)

    Al Faraj, Achraf

    2013-01-01

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of different diseases, which make them attractive vehicles to deliver contrast agents or drugs for diagnostic or therapeutic purposes. In this study, the effect of polyethylene glycol functionalization of magnetic iron oxide nanoparticles and their further surface modification with carboxylic groups on bone marrow-derived M1 and M2 macrophages phenotype, labeling efficiency, uptake mechanism, biocompatibility, and their in vivo MR detection was assessed. An enhanced labeling efficiency was observed for carboxylic surface-modified superparamagnetic iron oxide (SPIO) compared to PEGylated SPIO and to a higher extent to plain SPIO along with a higher uptake by M2 subsets. Magnetic nanoparticles were found located in the periphery of the vesicles dispersed in the cytoplasm in TEM. Investigation of the labeling mechanism by inhibiting different uptake pathways revealed that endocytosis via scavenger receptor A, a process known to be clathrin mediated, plays a central role in the cellular uptake kinetics of both macrophages subpopulations. Biocompatibility evaluation showed no variation in cell viability and mitochondrial membrane potential with a low release of ROS. Flow cytometry and measurement of iNOS and Arginase 1 activity as marker of M1 and M2 macrophages polarization confirmed that magnetic labeling of macrophages subsets did not affect their polarization. In addition, no variation was observed in the biodistribution of magnetic iron oxide-labeled M1 and M2 macrophages subsets when monitored using noninvasive magnetic resonance imaging with a better detection for the enhanced SPIO–PEG–COOH-labeled cells

  9. Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers.

    Science.gov (United States)

    Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M

    2017-07-01

    Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.

  10. Comparison of uptake of 99mTc-MIBI, 99mTc-tetrofosmin and 99mT-Q12 into human breast cancer cell lines

    International Nuclear Information System (INIS)

    Yong, M. de; Bernard, B.F.; Breeman, W.A.P.; Ensing, G.; Benjamins, H.; Bakker, W.H.; Visser, T.J.; Krenning, E.P.

    1996-01-01

    Technetium-99m hexakis-2-methoxyisobutyl-isonitrile (MIBI), 99m Tc-tetrofosmin and 99m Tc-Q12 were all introduced for myocardial imaging but found additional applications as they are taken up by different tumours, enabling imaging of these lesions in patients. The aim of this study was to compare the uptake characteristics of these compounds in vitro in the human adenocarcinoma breast cell lines MCF-7 and ZR-75. It was shown that 99m Tc-MIBI had the highest cellular uptake (15.9%±0.5% dose/mg protein after 60 min in MCF-7, and 14.2%±0.4% dose/mg protein in ZR-75), followed by 99m Tc-tetrofosmin (6.8%±0.6% dose/mg protein in MCF-7, and 8.2%±0.2% dose/mg protein in ZR-75) and 99m TC-Q12 (3.2%±0.1% dose/mg protein in MCF-7, and 3.5%±0.3% dose/mg protein in ZR-75 cells). For all three compounds tenfold differences in specific activity did not influence total cell-associated radioactivity. Uptake of 99m Tc-MIBI and 99m Tc-tetrofosmin was obviously lower at 4 C than at 37 C, whereas 99m Tc-Q12 uptake showed only slight temperature dependence. When uptake was compared in cells grown to different cell densities (1 mg/ml cellular protein versus 0.3 mg/ml), no differences in uptake were detected when uptake was corrected for the amount of cellular protein present in the dishes. Furthermore, for all compounds it was shown that cellular radioactivity decreased rapidly after washing. Apart from the differences in cellular uptake of the three compounds after 60 min, no differences in residual cellular radioactivity after washing were found between the different compounds when expressed as a percentage of their 60-min uptake, suggesting that the efflux process of the radiolabelled compounds was similar. The differences in cell-associated activity after 60 min were thus presumably caused by differences in uptake. (orig./MG)

  11. Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts.

    Science.gov (United States)

    Sabbioni, Enrico; Fortaner, Salvador; Farina, Massimo; Del Torchio, Riccardo; Petrarca, Claudia; Bernardini, Giovanni; Mariani-Costantini, Renato; Perconti, Silvia; Di Giampaolo, Luca; Gornati, Rosalba; Di Gioacchino, Mario

    2014-02-01

    The mechanistic understanding of nanotoxicity requires the physico-chemical characterisation of nanoparticles (NP), and their comparative investigation relative to the corresponding ions and microparticles (MP). Following this approach, the authors studied the dissolution, interaction with medium components, bioavailability in culture medium, uptake and intracellular distribution of radiolabelled Co forms (CoNP, CoMP and Co(2+)) in Balb/3T3 mouse fibroblasts. Co(2+) first saturates the binding sites of molecules in the extracellular milieu (e.g., albumin and histidine) and on the cell surface. Only after saturation, Co(2+) is actively uptaken. CoNP, instead, are predicted to be internalised by endocytosis. Dissolution of Co particles allows the formation of Co compounds (CoNP-rel), whose mechanism of cellular internalisation is unknown. Co uptake (ranking CoMP > CoNP > Co(2+)) reached maximum at 4 h. Once inside the cell, CoNP spread into the cytosol and organelles. Consequently, massive amounts of Co ions and CoNP-rel can reach subcellular compartments normally unexposed to Co(2+). This could explain the fact that the nuclear and mitochondrial Co concentrations resulted significantly higher than those obtained with Co(2+).

  12. Fluorophore:dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime.

    Science.gov (United States)

    Dougherty, Casey A; Vaidyanathan, Sriram; Orr, Bradford G; Banaszak Holl, Mark M

    2015-02-18

    G5-NH2-TAMRAn (n = 1-4, 5+, and 1.5(avg)) were prepared with n = 1-4 as a precise dye:dendrimer ratio, 5+ as a mixture of dendrimers with 5 or more dye per dendrimer, and 1.5(avg) as a Poisson distribution of dye:dendrimer ratios with a mean of 1.5 dye per dendrimer. The absorption intensity increased sublinearly with n whereas the fluorescence emission and lifetime decreased with an increasing number of dyes per dendrimer. Flow cytometry was employed to quantify uptake into HEK293A cells. Dendrimers with 2-4 dyes were found to have greater uptake than dendrimer with a single dye. Fluorescence lifetime imaging microscopy (FLIM) showed that the different dye:dendrimer ratio alone was sufficient to change the fluorescence lifetime of the material observed inside cells. We also observed that the lifetime of G5-NH2-TAMRA5+ increased when present in the cell as compared to solution. However, cells treated with G5-NH2-TAMRA1.5(avg) did not exhibit the high lifetime components present in G5-NH2-TAMRA1 and G5-NH2-TAMRA5+. In general, the effects of the dye:dendrimer ratio on fluorescence lifetime were of similar magnitude to environmentally induced lifetime shifts.

  13. Uptake of magnetic nanoparticles into cells for cell tracking

    International Nuclear Information System (INIS)

    Becker, Christiane; Hodenius, Michael; Blendinger, Gitta; Sechi, Antonio; Hieronymus, Thomas; Mueller-Schulte, Detlef; Schmitz-Rode, Thomas; Zenke, Martin

    2007-01-01

    A challenge for future applications in nanotechnology is the functional integration of nano-sized materials into cellular structures. Here we investigated superparamagnetic Fe 3 O 4 iron oxide nanoparticles coated with a lipid bilayer for uptake into cells and for targeting subcellular compartments. It was found that magnetic nanoparticles (MNPs) are effectively taken up into cells and make cells acquire magnetic activity. Biotin-conjugated MNPs were further functionalized by binding of the fluorescent tag streptavidin-fluorescein isothiocyanate (FITC) and, following uptake into cells, shown to confer magnetic activity and fluorescence labeling. Such FITC-MNPs were localized in the lysosomal compartment of cells which suggests a receptor-mediated uptake mechanism

  14. Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles

    International Nuclear Information System (INIS)

    Wate, Prateek S; Banerjee, Shashwat S; Mascarenhas, Russel R; Zope, Khushbu R; Khandare, Jayant; Jalota-Badhwar, Archana; Misra, R Devesh K

    2012-01-01

    We describe a novel multicomponent graphene nanostructured system that is biocompatible, and has strong NIR optical absorbance and superparamagnetic properties. The fabrication of the multicomponent nanostructure system involves the covalent attachment of 3 components; Fe 3 O 4 (Fe) nanoparticles, PAMAM-G4-NH 2 (G4) dendrimer and Cy5 (Cy) on a graphene oxide (GO) surface to synthesize a biologically relevant multifunctional system. The resultant GO-G4-Fe-Cy nanosystem exhibits high dispersion in an aqueous medium, and is magnetically responsive and fluorescent. In vitro experiments provide a clear indication of successful uptake of the GO-G4-Fe-Cy nanosystem by MCF-7 breast cancer cells, and it is seen to behave as a bright and stable fluorescent marker. The study also reveals varied cellular distribution kinetics profile for the GO nanostructured system compared to free Cy. Furthermore, the newly developed GO nanostructured system is observed to be non-toxic to MDA-MB-231 cell growth, in striking contrast to free G4 dendrimer and GO-G4 conjugate. The GO-G4-Fe-Cy nanostructured system characterized by multifunctionality suggests the merits of graphene for cellular bioimaging and the delivery of bioactives. (paper)

  15. Uptake of thallium-201 in enlarged thyroid glands. Concise communication

    Energy Technology Data Exchange (ETDEWEB)

    Fukuchi, M.; Kido, A.; Hyodo, K.; Tachibana, K.; Onoue, K.; Morita, T.; Nagai, K.

    1979-08-01

    We have investigated the thyroid uptake of Tl-201 in 37 patients with various types of goiter, and in six with normal thyroids. Significant thallium uptake was found in all cases in which there was thyroid enlargement, including Graves' disease, toxic thyroid nodule, primary hypothyroidism, simple goiter, Hashimoto's disease, thyroid carcinoma, and thyroid adenoma. If goiter was absent, however, there was no demonstrable uptake - e.g., in secondary hypothyroidism, subacute thyroiditis, and the normal controls. Thallium uptake did not correlate with thyroid function tests such as BMR, T/sub 3/-RU, T/sub 3/, T/sub 4/, TSH, antithyroid antibodies, or the 24-hr I-131 uptake. In 23 patients with diffuse goiter, on the other hand, maximum Tl-201 uptake correlated well with thyroid weight: r = 0.836 (p < 0.001); y = 0.02 x + 0.06.

  16. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs.

    Science.gov (United States)

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Zaręba, Magdalena; Wałajtys-Rode, Elżbieta; Wołowiec, Stanisław

    2017-01-15

    In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G3 4B . The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G3 4B28gh or with one fluorescein equivalent (attached by reaction of G3 4B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G3 4B27gh1F . As a control the G3 substituted totally with 32 glucoheptoamide residues, G3 gh and its fluorescein labeled analogue G3 31gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1 H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G3 4B28gh1F' and G3 32ghF' , with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in

  17. Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells

    International Nuclear Information System (INIS)

    Guarnieri, Daniela; Guaccio, Angela; Fusco, Sabato; Netti, Paolo A.

    2011-01-01

    The physico-chemical properties of nanoparticles (NPs), such as small dimensions, surface charge and surface functionalization, control their capability to interact with cells and, in particular, with sub-cellular components. This interaction can be also influenced by the adsorption of molecules present in biological fluids, like blood, on NP surface. Here, we analysed the effect of serum proteins on 49 and 100 nm red fluorescent polystyrene NP uptake in porcine aortic endothelial (PAE) cells, as a model for vascular transport. To this aim, NP uptake kinetic, endocytic pathway and intracellular trafficking were studied by monitoring NPs inside cells through confocal microscopy and multiple particle tracking (MPT). We demonstrated that NPs are rapidly internalized by cells in serum-free (SF) medium, according to a saturation kinetic. Conversely, in 10% foetal bovine serum-enriched (SE) medium, NP uptake rate results drastically reduced. Moreover, NP internalization depends on an active endocytic mechanism that does not involve clathrin- and caveolae-mediated vesicular transport, in both SE and SF media. Furthermore, MPT data indicate that NP intracellular trafficking is unaffected by protein presence. Indeed, approximately 50–60% of internalized NPs is characterized by a sub-diffusive behaviour, whereas the remaining fraction shows an active motion. These findings demonstrate that the unspecific protein adsorption on NP surface can affect cellular uptake in terms of internalization kinetics, but it is not effective in controlling active and cellular-mediated uptake mechanisms of NPs and their intracellular routes.

  18. Design strategy of pH-sensitive triblock copolymer micelles for efficient cellular uptake by computer simulations

    Science.gov (United States)

    Xia, Qiang-sheng; Ding, Hong-ming; Ma, Yu-qiang

    2018-03-01

    Efficient delivery of nanoparticles into specific cell interiors is of great importance in biomedicine. Recently, the pH-responsive micelle has emerged as one potential nanocarrier to realize such purpose since there exist obvious pH differences between normal tissues and tumors. Herein, by using dissipative particle dynamics simulation, we investigate the interaction of the pH-sensitive triblock copolymer micelles composed of ligand (L), hydrophobic block (C) and polyelectrolyte block (P) with cell membrane. It is found that the structure rearrangement of the micelle can facilitate its penetration into the lower leaflet of the bilayer. However, when the ligand-receptor specific interaction is weak, the micelles may just fuse with the upper leaflet of the bilayer. Moreover, the ionization degree of polyelectrolyte block and the length of hydrophobic block also play a vital role in the penetration efficiency. Further, when the sequence of the L, P, C beads in the copolymers is changed, the translocation pathways of the micelles may change from direct penetration to Janus engulfment. The present study reveals the relationship between the molecular structure of the copolymer and the uptake of the pH-sensitive micelles, which may give some significant insights into the experimental design of responsive micellar nanocarriers for highly efficient cellular delivery.

  19. Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Shengke; Xie, Ruohan; Wang, Haixin; Hu, Yan; Hou, Dandi; Liao, Xingcheng; Brown, Patrick H.; Yang, Hongxia; Lin, Xianyong; Labavitch, John M.; Lu, Lingli

    2017-04-01

    Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cd sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.

  20. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    International Nuclear Information System (INIS)

    Gou Maling; Shi Huashan; Guo Gang; Men Ke; Zhang Juan; Li Zhiyong; Luo Feng; Qian Zhiyong; Wei Yuquan; Zheng Lan; Zhao Xia

    2011-01-01

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and ∼ 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  1. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gou Maling; Shi Huashan; Guo Gang; Men Ke; Zhang Juan; Li Zhiyong; Luo Feng; Qian Zhiyong; Wei Yuquan [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Zheng Lan; Zhao Xia, E-mail: anderson-qian@163.com [West China Second University Hospital, West China Women' s and Children' s Hospital, Sichuan University, Chengdu 610041 (China)

    2011-03-04

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly({epsilon}-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and {approx} 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  2. Uptake pathways and toxicity of Cd and Zn in the earthworm Eisenia fetida.

    NARCIS (Netherlands)

    Li, L.-Z.; Zhou, D.-M.; Peijnenburg, W.J.G.M.; Wang, P.; van Gestel, C.A.M.; Jin, S.-Y.; Wang, Q.-Y.

    2010-01-01

    The uptake of Cd and Zn by the earthworm Eisenia fetida was determined at varying Ca concentrations and with pre-exposure to different metabolic inhibitors in simulated soil solutions over a 48-h period. The presence of Ca in the solution had complex actions on Cd uptake. At a low Cd concentration

  3. Cellular uptake of lipoproteins and persistent organic compounds-An update and new data

    International Nuclear Information System (INIS)

    Hjelmborg, Philip Sebastian; Andreassen, Thomas Kjaergaard; Bonefeld-Jorgensen, Eva Cecilie

    2008-01-01

    There are a number of interactions related to the transport of lipophilic xenobiotic compounds in the blood stream of mammals. This paper will focus on the interactions between lipoproteins and persistent organic pollutants (POPs) and how these particles are taken up by cells. A number of POPs including the pesticide p,p'-dichlorodiphenyltrichloroethane (DDT), and especially its metabolite p,p'-dichlorodiphenyldichloroethene (DDE), interacts with nuclear hormone receptors causing these to malfunction, which in turn results in a range of deleterious health effects in humans. The aim of the present study was to determine the role of lipoprotein receptors in mouse embryonic fibroblast (MEF) cells in conjunction with uptake of DDT-lipoprotein complexes from supplemented media in vitro. Uptake of DDT by MEF cells was investigated using MEF1 cells carrying the receptors low-density lipoprotein receptor-related protein (LRP) and low-density lipoprotein receptor (LDLR) present and MEF4 cells with no LRP and LDLR expression. Cells were incubated together with the complex of low-density lipoproteins (LDL) and [ 14 C]DDT. The receptor function was further evaluated by adding the 40 kDa receptor-associated protein (RAP) which blocks receptor activity. The results showed that [ 14 C]DDT uptake was decreasing when the LDL concentration was increasing. There was no strong evidence for a receptor-mediated uptake of the [ 14 C]DDT-lipoprotein complex. To conclude, DDT travels in the blood stream and can cross cell membranes while being transported as a DDT-lipoprotein complex. The lipoproteins do not need receptors to cross cell membranes since passive diffusion constitutes a major passageway

  4. Cd Toxicity and Accumulation in Rice Plants Vary with Soil Nitrogen Status and Their Genotypic Difference can be Partly Attributed to Nitrogen Uptake Capacity

    Directory of Open Access Journals (Sweden)

    Qin DU

    2009-12-01

    Full Text Available Two indica rice genotypes, viz. Milyang 46 and Zhenshan 97B differing in Cd accumulation and tolerance were used as materials in a hydroponic system consisting of four Cd levels (0, 0.1, 1.0 and 5.0 µmol/L and three N levels (23.2, 116.0 and 232.0 mg/L to study the effects of nitrogen status and nitrogen uptake capacity on Cd accumulation and tolerance in rice plants. N-efficient rice genotype, Zhenshan 97B, accumulated less Cd and showed higher Cd tolerance than N-inefficient rice genotype, Milyang 46. There was consistency between nitrogen uptake capacity and Cd tolerance in rice plants. Increase of N level in solution slightly increased Cd concentration in shoots but significantly increased in roots of both genotypes. Compared with the control at low N level, Cd tolerance in both rice genotypes could be significantly enhanced under normal N level, but no significant difference was observed between the Cd tolerances under normal N (116.0 mg/L and high N (232.0 mg/L conditions. The result proved that genotypic differences in Cd accumulation and toxicity could be, at least in part, attributed to N uptake capacity in rice plants.

  5. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris.

    Science.gov (United States)

    Shen, Yu-Feng; Liu, Lei; Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Wang, Gao-Xue

    2014-05-01

    This study investigated the effects of trifloxystrobin that one strobilurin used widely in the world as an effective fungicidal agent to control Asian soybean rust on aquatic unicellular algae Chlorella vulgaris. We determined the potential toxic effect of trifloxystrobin on C. vulgaris, and found median inhibition concentration (IC(50)) value 255.58 (95% confidence interval, 207.81-330.29)μgL(-1). In addition, the algal cells were obviously depressed or shrunk at different concentrations by electron microscopy. In the study, a real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL, and one energy gene, ATPs. The results showed that trifloxystrobin reduced the transcript abundances of the three genes and enhanced expression of ATPs after 48 and 96 h. The lowest abundances of psaB, psbC and rbcL transcripts in response to trifloxystrobin exposure were 58%, 79% and 60% of those of the control, respectively. For the potential toxic influences, trifloxystrobin could decrease the soluble protein and total antioxidant contents (T-AOC), and increase superoxide dismutase (SOD) and peroxidase (POD) activity with a gradual concentration-response relationship. Overall, the present study demonstrated that trifloxystrobin could affect the activities of antioxidant enzymes, disrupts photosynthesis in C. vulgaris, and damage cellular structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. An exposure system for measuring nasal and lung uptake of vapors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, A.R.; Brookins, L.K.; Gerde, P. [National Inst. for Working Life, Solna (Sweden)

    1995-12-01

    Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposure system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.

  7. Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinsheng, E-mail: yinshengli@sjtu.edu.cn [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China); Tang, Hao; Hu, Yingxiu; Wang, Xiuhong; Ai, Xiaojie; Tang, Li [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China); Matthew, Cory [Institute of Agriculture & Environment, Massey University, Private Bag 11-222, Palmerston North 4442 (New Zealand); Cavanagh, Jo [Landcare Research, PO Box 40, Lincoln 7640 (New Zealand); Qiu, Jiangping [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-05

    Highlights: • Enrofloxacin (EF) and cadmium (Cd) were independently adsorbed in soils. • EF accelerated and increased Cd bioaccumulation in earthworms. • At high concentration EF (10 mg kg{sup −1}) was toxic to earthworms. • EF enhanced Cd induced oxidative stress, and increased burrowing and respiration. • EF did not affect the Cd induced increase in metallothionein in earthworms. - Abstract: Individual and combined effects of enrofloxacin (EF) and cadmium (Cd) on the earthworm Eisenia fetida at environmentally relevant concentrations were investigated. EF is a veterinary antibiotic; Cd is an impurity in phosphatic fertiliser. For both, residues may accumulate in farm soils. In laboratory tests, over 98% of spiked EF was adsorbed by farm soils, with a half-life >8 weeks. However, earthworms absorbed less than 20% of spiked EF. Earthworms in soil with EF concentration 10 mg kg{sup −1} soil experienced transient oxidative stress and exhibited reduced burrowing activity and respiration after an 8-week exposure; EF at 0.1 and 1.0 mg kg{sup −1} soil did not elicit toxicity symptoms. When both were added, Cd did not affect EF uptake, but each increment of spiked EF increased Cd bioaccumulation and associated oxidative stress of earthworms, and also caused decreased burrow length and CO{sub 2} production. However, metallothionein induction was not affected. The enhanced toxicity of Cd to earthworms in the presence of EF at low environmental concentrations may have implications for the health and reproductive success of earthworm populations and highlights the importance of understanding effects of antibiotic contamination of farm soils, and of awareness of environmental effects from interaction between multiple contaminants.

  8. Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils

    International Nuclear Information System (INIS)

    Li, Yinsheng; Tang, Hao; Hu, Yingxiu; Wang, Xiuhong; Ai, Xiaojie; Tang, Li; Matthew, Cory; Cavanagh, Jo; Qiu, Jiangping

    2016-01-01

    Highlights: • Enrofloxacin (EF) and cadmium (Cd) were independently adsorbed in soils. • EF accelerated and increased Cd bioaccumulation in earthworms. • At high concentration EF (10 mg kg"−"1) was toxic to earthworms. • EF enhanced Cd induced oxidative stress, and increased burrowing and respiration. • EF did not affect the Cd induced increase in metallothionein in earthworms. - Abstract: Individual and combined effects of enrofloxacin (EF) and cadmium (Cd) on the earthworm Eisenia fetida at environmentally relevant concentrations were investigated. EF is a veterinary antibiotic; Cd is an impurity in phosphatic fertiliser. For both, residues may accumulate in farm soils. In laboratory tests, over 98% of spiked EF was adsorbed by farm soils, with a half-life >8 weeks. However, earthworms absorbed less than 20% of spiked EF. Earthworms in soil with EF concentration 10 mg kg"−"1 soil experienced transient oxidative stress and exhibited reduced burrowing activity and respiration after an 8-week exposure; EF at 0.1 and 1.0 mg kg"−"1 soil did not elicit toxicity symptoms. When both were added, Cd did not affect EF uptake, but each increment of spiked EF increased Cd bioaccumulation and associated oxidative stress of earthworms, and also caused decreased burrow length and CO_2 production. However, metallothionein induction was not affected. The enhanced toxicity of Cd to earthworms in the presence of EF at low environmental concentrations may have implications for the health and reproductive success of earthworm populations and highlights the importance of understanding effects of antibiotic contamination of farm soils, and of awareness of environmental effects from interaction between multiple contaminants.

  9. Design of compounds having enhanced tumour uptake, using serum albumin as a carrier. Pt. 2

    International Nuclear Information System (INIS)

    Schilling, U.; Friedrich, E.A.; Sinn, H.; Schrenk, H.H.; Clorius, J.H.; Maier-Borst, W.

    1992-01-01

    In the present in vivo study the uptake kinetics of radioiodinated albumin were determined in normal organs, and tumours of rats using sequential scintigraphy. Results indicate that cellular uptake of the marker takes place. Fluorescence was not observed in muscle tissue. This appears to suggest that the albumin uptake is greater in tumours than in normal tissue, and that it is metabolized in the tumour cells. (Author)

  10. Variable phosphorus uptake rates and allocation across microbial groups in the oligotrophic Gulf of Mexico.

    Science.gov (United States)

    Popendorf, Kimberly J; Duhamel, Solange

    2015-10-01

    Microbial uptake of dissolved phosphorus (P) is an important lever in controlling both microbial production and the fate and cycling of marine P. We investigated the relative role of heterotrophic bacteria and phytoplankton in P cycling by measuring the P uptake rates of individual microbial groups (heterotrophic bacteria and the phytoplankton groups Synechococcus, Prochlorococcus and picoeukaryotic phytoplankton) in the P-depleted Gulf of Mexico. Phosphorus uptake rates were measured using incubations with radiolabelled phosphate and adenosine triphosphate coupled with cell sorting flow cytometry. We found that heterotrophic bacteria were the dominant consumers of P on both a biomass basis and a population basis. Biovolume normalized heterotrophic bacteria P uptake rate per cell (amol P μm(-3) h(-1)) was roughly an order of magnitude greater than phytoplankton uptake rates, and heterotrophic bacteria were responsible for generally greater than 50% of total picoplankton P uptake. We hypothesized that this variation in uptake rates reflects variation in cellular P allocation strategies, and found that, indeed, the fraction of cellular P uptake utilized for phospholipid production was significantly higher in heterotrophic bacteria compared with cyanobacterial phytoplankton. These findings indicate that heterotrophic bacteria have a uniquely P-oriented physiology and play a dominant role in cycling dissolved P. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Bioavailability of contaminants estimated from uptake rates into soil invertebrates

    International Nuclear Information System (INIS)

    Straalen, N.M. van; Donker, M.H.; Vijver, M.G.; Gestel, C.A.M. van

    2005-01-01

    It is often argued that the concentration of a pollutant inside an organism is a good indicator of its bioavailability, however, we show that the rate of uptake, not the concentration itself, is the superior predictor. In a study on zinc accumulation and toxicity to isopods (Porcellio scaber) the dietary EC 50 for the effect on body growth was rather constant and reproducible, while the internal EC 50 varied depending on the accumulation history of the animals. From the data a critical value for zinc accumulation in P. scaber was estimated as 53 μg/g/wk. We review toxicokinetic models applicable to time-series measurements of concentrations in invertebrates. The initial slope of the uptake curve is proposed as an indicator of bioavailability. To apply the dynamic concept of bioavailability in risk assessment, a set of representative organisms should be chosen and standardized protocols developed for exposure assays by which suspect soils can be evaluated. - Sublethal toxicity of zinc to isopods suggests that bioavailability of soil contaminants is best measured by uptake rates, not by body burdens

  12. Cadmium toxicity to two marine phytoplankton under different nutrient conditions

    International Nuclear Information System (INIS)

    Miao, A.-J.; Wang, W.-X.

    2006-01-01

    Cd accumulation and toxicity in two marine phytoplankton (diatom Thalassiosira weissflogii and dinoflagellate Prorocentrum minimum) under different nutrient conditions (nutrient-enriched, N- and P-starved conditions) were examined in this study. Strong interactions between the nutrients and Cd uptake by the two algal species were found. Cd accumulation as well as N and P starvation themselves inhibited the assimilation of N, P, and Si by the phytoplankton. Conversely, N starvation strongly inhibited Cd accumulation but no influence was observed under P starvation. However, the Cd accumulation difference between nutrient-enriched and N-starved cells was smaller when [Cd 2+ ] was increased in the medium, indicating that net Cd accumulation was less dependent on the N-containing ligands at high-Cd levels. As for the subcellular distribution of the accumulated Cd, most was distributed in the insoluble fraction of T. weissflogii while it was evenly distributed in the soluble and insoluble fractions of P. minimum at low-Cd levels. A small percentage of cellular Cd ( 2+ ], which increased when the [Cd 2+ ] increased. Cd toxicity in phytoplankton was quantified as depression of growth and maximal photosynthetic system II quantum yield, and was correlated with the [Cd 2+ ], intracellular Cd concentration, and Cd concentrations in the cell-surface-adsorbed, soluble, and insoluble fractions. According to the estimated median inhibition concentration (IC50) based on the different types of Cd concentration, the toxicity difference among the different nutrient-conditioned cells was the smallest when the Cd concentration in the soluble fraction was used, suggesting that it may be the best predictor of Cd toxicity under different nutrient conditions

  13. Detecting carbon uptake and cellular allocation by individual algae in multispecies assemblages: Tracking carbon into single algal cells

    Energy Technology Data Exchange (ETDEWEB)

    Murdock, Justin N. [USDA Agricultural Research Service, National Sedimentation Laboratory, Oxford Mississippi; Department of Biology, Tennessee Technological University, Cookeville Tennessee

    2015-11-03

    Algal species vary in carbon (C) need and uptake rates. Understanding differences in C uptake and cellular allocation among species from natural communities will bring new insight into many ecosystem process questions including how species changes will alter energy availability and C sequestration in aquatic ecosystems. A major limitation of current methods that measure algal C incorporation is the inability to separate the response of individual species from mixed-species assemblages. I used Fourier-transform infrared microspectroscopy to qualitatively measure inorganic 13C isotope incorporation into individual algal cells in single species, two species, and natural phytoplankton assemblages. Lateral shifts in spectral peaks from 13C treatments were observed in all species. Comparison of peaks associated with carbohydrates, proteins, and lipids allowed for the detection of which individuals took in C, and which macromolecules the C was used to make. For example, shifts in Spirogyra spectral peaks showed substantial C incorporation in carbohydrates. Further, shifts in peaks at 1160 cm-1, 1108 cm-1, 1080 cm-1, 1048 cm-1, and 1030 cm-1 suggested C was being allocated into cellulose. The natural phytoplankton assemblage demonstrated how C could be tracked into co-occurring species. A diatom had large shifts in protein and carbohydrate peaks, while a green alga and euglenoid had only a few shifts in protein related peaks. Fourier-transform infrared microspectroscopy is an established, label free method for measuring the chemical composition of algal cells. However, adding a label such as 13C isotope can greatly expand the technique's capabilities by qualitatively tracking C movement between inorganic and organic states within single cells.

  14. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  15. Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Wang Demin; Hu Ji; Forthaus, Brett E.; Wang Jianmin

    2011-01-01

    Engineered nanomaterials (ENMs) alone could negatively impact the environment and human health. However, their role in the presence of other toxic substances is not well understood. The toxicity of nano-Al 2 O 3 , inorganic As(V), and a combination of both was examined with C. dubia as the model organisms. Bare nano-Al 2 O 3 particles exhibited partial mortality at concentrations of greater than 200 mg/L. When As(V) was also present, a significant amount of As(V) was accumulated on the nano-Al 2 O 3 surface, and the calculated LC 50 of As(V) in the presence of nano-Al 2 O 3 was lower than that it was without the nano-Al 2 O 3 . The adsorption of As(V) on the nano-Al 2 O 3 surface and the uptake of nano-Al 2 O 3 by C. dubia were both verified. Therefore, the uptake of As(V)-loaded nano-Al 2 O 3 was a major reason for the enhanced toxic effect. - Highlights: → Nano-Al 2 O 3 particles alone do not have significant toxic effect on C. dubia. → However, nano-Al 2 O 3 particles significantly enhance the toxicity of As(V). → The uptake of As-loaded nano-Al 2 O 3 by C. dubia plays the major role on the toxicity. - Nano-Al 2 O 3 could accumulate background As(V) and enhance As(V) toxicity on C. dubia through the uptake of As(V)-loaded nano-Al 2 O 3 particles.

  16. Cellular uptake and intracellular fate of engineered nanoparticles: a review on the application of imaging techniques.

    Science.gov (United States)

    Tantra, Ratna; Knight, Alex

    2011-09-01

    The use of imaging tools to probe nanoparticle-cell interactions will be crucial to elucidating the mechanisms of nanoparticle-induced toxicity. Of particular interest are mechanisms associated with cell penetration, translocation and subsequent accumulation inside the cell, or in cellular compartments. The objective of the present paper is to review imaging techniques that have been previously used in order to assess such interactions, and new techniques with the potential to be useful in this area. In order to identify the most suitable techniques, they were evaluated and matched against a list of evaluation criteria. We conclude that limitations exist with all of the techniques and the ultimate choice will thus depend on the needs of end users, and their particular application. The state-of-the-art techniques appear to have the least limitations, despite the fact that they are not so well established and still far from being routine. For example, super-resolution microscopy techniques appear to have many advantages for understanding the details of the interactions between nanoparticles and cells. Future research should concentrate on further developing or improving such novel techniques, to include the development of standardized methods and appropriate reference materials.

  17. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.; Pounds, J.G.

    1990-01-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state 210 Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with 210 Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of 210 Pb from the cells over a 210 -min period. The intracellular metabolism of 210 Pb was characterized by three kinetic pools of 210 Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of 210 Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone

  18. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  19. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-01-01

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola

  20. Copper, but not cadmium, is acutely toxic for trout hepatocytes: short-term effects on energetics and ion homeostasis

    International Nuclear Information System (INIS)

    Manzl, Claudia; Ebner, Hannes; Koeck, Guenter; Dallinger, Reinhard; Krumschnabel, Gerhard

    2003-01-01

    The toxic effects of cadmium (Cd) and copper (Cu) on cellular energy metabolism and ion homeostasis were investigated in hepatocytes from the rainbow trout, Oncorhynchus mykiss. The metal content of cells did not increase during incubation with Cu, whereas a dose-dependent increase was seen with Cd. Cell viability was unaffected in the presence of 100 μM Cd and 10 μM Cu but was significantly reduced after 30 min of exposure to 100 μM Cu, both in the presence and absence of extracellular calcium. Oxygen consumption (VO 2 ) was not affected by 100 μM Cd or 10 μM Cu, whereas 100 μM Cu caused a significant and calcium-dependent increase of VO 2 . Lactate production and basal glucose release were not altered by either of the metals. However, the epinephrine-stimulated rate of glucose release was significantly reduced after 2 h of incubation with 100 μM Cu. Hepatocytes exposed to Cd showed only a marginal increase of intracellular free calcium (Ca i 2+ ), whereas with Cu a pronounced and dose-dependent increase of Ca i 2+ was induced after a delay of 10 to 15 min, the calcium being of extracellular origin. Intracellular pH was not altered by Cd but decreased significantly in the presence of Cu. Overall our data demonstrate that Cu, but not Cd, is acutely toxic for trout hepatocytes. Since Cu does not enter the cells in the short term it appears to exert its acutely toxic effects at the cell membrane. Although Cu toxicity is associated with an uptake of calcium from extracellular space, leading to an elevation of cellular respiration, cytotoxicity does not appear to be dependent on the presence of extracellular calcium

  1. Toxicological Considerations, Toxicity Assessment, and Risk Management of Inhaled Nanoparticles.

    Science.gov (United States)

    Bakand, Shahnaz; Hayes, Amanda

    2016-06-14

    Novel engineered nanoparticles (NPs), nanomaterial (NM) products and composites, are continually emerging worldwide. Many potential benefits are expected from their commercial applications; however, these benefits should always be balanced against risks. Potential toxic effects of NM exposure have been highlighted, but, as there is a lack of understanding about potential interactions of nanomaterials (NMs) with biological systems, these side effects are often ignored. NPs are able to translocate to the bloodstream, cross body membrane barriers effectively, and affect organs and tissues at cellular and molecular levels. NPs may pass the blood-brain barrier (BBB) and gain access to the brain. The interactions of NPs with biological milieu and resulted toxic effects are significantly associated with their small size distribution, large surface area to mass ratio (SA/MR), and surface characteristics. NMs are able to cross tissue and cell membranes, enter into cellular compartments, and cause cellular injury as well as toxicity. The extremely large SA/MR of NPs is also available to undergo reactions. An increased surface area of the identical chemical will increase surface reactivity, adsorption properties, and potential toxicity. This review explores biological pathways of NPs, their toxic potential, and underlying mechanisms responsible for such toxic effects. The necessity of toxicological risk assessment to human health should be emphasised as an integral part of NM design and manufacture.

  2. Toxicological Considerations, Toxicity Assessment, and Risk Management of Inhaled Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shahnaz Bakand

    2016-06-01

    Full Text Available Novel engineered nanoparticles (NPs, nanomaterial (NM products and composites, are continually emerging worldwide. Many potential benefits are expected from their commercial applications; however, these benefits should always be balanced against risks. Potential toxic effects of NM exposure have been highlighted, but, as there is a lack of understanding about potential interactions of nanomaterials (NMs with biological systems, these side effects are often ignored. NPs are able to translocate to the bloodstream, cross body membrane barriers effectively, and affect organs and tissues at cellular and molecular levels. NPs may pass the blood–brain barrier (BBB and gain access to the brain. The interactions of NPs with biological milieu and resulted toxic effects are significantly associated with their small size distribution, large surface area to mass ratio (SA/MR, and surface characteristics. NMs are able to cross tissue and cell membranes, enter into cellular compartments, and cause cellular injury as well as toxicity. The extremely large SA/MR of NPs is also available to undergo reactions. An increased surface area of the identical chemical will increase surface reactivity, adsorption properties, and potential toxicity. This review explores biological pathways of NPs, their toxic potential, and underlying mechanisms responsible for such toxic effects. The necessity of toxicological risk assessment to human health should be emphasised as an integral part of NM design and manufacture.

  3. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    International Nuclear Information System (INIS)

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-01-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations

  4. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application

    Directory of Open Access Journals (Sweden)

    Alwani S

    2016-02-01

    Full Text Available Saniya Alwani,1 Randeep Kaur,1 Deborah Michel,1 Jackson M Chitanda,2 Ronald E Verrall,3 Chithra Karunakaran,4 Ildiko Badea1 1Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, 2Department of Chemical & Biological Engineering, 3Department of Chemistry, University of Saskatchewan, 4Canadian Light Source, Saskatoon, SK, Canada Purpose: Nanodiamonds (NDs are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. Methods: lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA was also analyzed using flow cytometry. Results: Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed

  5. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Biomedical Platforms Based on Composite Nanomaterials and Cellular Toxicity

    Science.gov (United States)

    Bellucci, Stefano; Bergamaschi, A.; Bottini, M.; Magrini, A.; Mustelin, T.

    2007-03-01

    Carbon nanotubes possess unique chemical, physical, optical, and magnetic properties, which make them suitable for many uses in industrial products and in the field of nanotechnology, including nanomedicine. We describe fluorescent nanocomposites for use in biosensors or nanoelectronics. Then we describe recent results on the issue of cytotoxicity of carbon nanotubes obtained in our labs. Silica nanoparticles have been widely used for biosensing and catalytic applications due to their large surface area-to-volume ratio, straightforward manufacture, and the compatibility of silica chemistry with covalent coupling of biomolecules. Carbon nanotubes-composite materials, such as those based on Carbon nanotubes bound to nanoparticles, are suitable, in order to tailor Carbon nanotubes properties for specific applications. We present a tunable synthesis of Multi Wall Carbon nanotubes-Silica nanoparticles. The control of the nanotube morphology and the bead size, coupled with the versatility of silica chemistry, makes these structures an excellent platform for the development of biosensors (optical, magnetic and catalytic applications). We describe the construction and characterization of supramolecular nanostructures consisting of ruthenium-complex luminophores, directly grafted onto short oxidized single-walled carbon nanotubes or physically entrapped in silica nanobeads, which had been covalently linked to short oxidized single-walled carbon nanotubes or hydrophobically adsorbed onto full-length multi-walled carbon nanotubes. These structures have been evaluated as potential electron-acceptor complexes for use in the fabrication of photovoltaic devices, and for their properties as fluorescent nanocomposites for use in biosensors or nanoelectronics. Finally, we compare the toxicity of pristine and oxidized Multi Walled Carbon nanotubes on human T cells - which would be among the first exposed cell types upon intravenous administration of Carbon nanotubes in therapeutic

  7. Diagnostic significance of gallium lung uptake in patients with normal chest radiographs

    International Nuclear Information System (INIS)

    MacMahon, H.; Bekerman, C.

    1978-01-01

    Nine patients were encountered with normal chest radiographs, but diffuse bilateral lung uptake of 67 Ga-citrate. They were divided into three groups. The first consisted of 6 patients who had lymphoma or leukemia and had had multiple cycles of chemotherapy. Here, abnormal uptake may have resulted from a toxic effect of the drugs or from a low-grade, subclinical infectious process. The 2 patients in the second group were drug addicts and a subradiographic interstitial inflammatory reaction was probably responsible for abnormal uptake. The last patient had diffuse uptake of 67 Ga-citrate throughout the lungs two weeks before lymphomatous infiltrates became radiographically visible

  8. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    Science.gov (United States)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  9. Ru(II)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents.

    Science.gov (United States)

    Martínez-Calvo, Miguel; Orange, Kim N; Elmes, Robert B P; la Cour Poulsen, Bjørn; Williams, D Clive; Gunnlaugsson, Thorfinnur

    2016-01-07

    The development of Ru(II) functionalized gold nanoparticles 1–3·AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1–3·AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1–3·AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.

  10. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija [University of Ljubljana, Faculty of Pharmacy (Slovenia); Romih, Rok [University of Ljubljana, Faculty of Medicine, Institute of Cell Biology (Slovenia); Jagodic, Marko [Institute of Mathematics, Physics and Mechanics (Slovenia); Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2012-10-15

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 {mu}g/cm{sup 3} in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  11. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.

    2015-11-01

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles

  12. Study on the enhanced cellular uptake effect of daunorubicin on leukemia cells mediated via functionalized nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guo Dadong; Wu Chunhui; Hu Hongli; Wang Xuemei [State Key Lab of Bioelectronics (Chien-Shiung Wu Lab), Southeast University, Nanjing 210096 (China); Li Xiaomao [Department of Physics, University of Saarland, D-66041 Saarbruecken (Germany); Chen Baoan, E-mail: xuewang@seu.edu.c [Zhongda Hospital, School of Clinical Medical, Southeast University, Nanjing 210096 (China)

    2009-04-15

    The success of cancer chemotherapy is largely dependent on the efficient anticancer drug accumulation in target tumor tissues and cells so as to inhibit the proliferation of the cancer cells. Recently, some biocompatible nanomaterials have been utilized as drug target delivery systems and have shown the great potential to effectively afford the sustained drug delivery for the target cancer cells. In this study, we have explored the possibility for the bio-application of the functionalized nickel (Ni) nanoparticles and the efficiency of the functionalized Ni nanoparticles on drug permeability, and cellular uptake of leukemia K562 cells in vitro has been probed via atomic force microscopy, inverted fluorescence microscopy and confocal microscopy, electrochemical study and MTT (3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl-tetrazolium bromide) assay. It is observed that the presence of relevant Ni nanoparticles could induce the membrane structure change of target cells and efficiently improve the permeability of the cell membrane so that the combination of these Ni nanoparticles with anticancer drug daunorubicin could have a synergistic effect on the efficient cytotoxicity suppression in leukemia cancer cells. These observations indicate the great potential of Ni nanoparticles in the future biomedical application including target cancer diagnosis and chemotherapy.

  13. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing.

    Science.gov (United States)

    Aberdam, Edith; Petit, Isabelle; Sangari, Linda; Aberdam, Daniel

    2017-01-01

    Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  14. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC as a cellular alternative for in vitro ocular toxicity testing.

    Directory of Open Access Journals (Sweden)

    Edith Aberdam

    Full Text Available Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  15. pH modulates arsenic toxicity in Bacillus licheniformis DAS-2.

    Science.gov (United States)

    Tripti, K; Shardendu

    2016-08-01

    The toxic characteristics of arsenic species, As(V) and As(III) result in ecological risks. Arsenic tolerant bacterium was isolated and identified as the Bacillus licheniformis DAS-2 through 16SrDNA sequencing. B. licheniformis DAS-2 was efficient to tolerate and remove both the As(V)[MIC 8mM] and As(III)[MIC 6mM] from the growth medium. The potential for the removal/uptake of arsenic from the 3, 5 and 7mM As(V) enriched growth media was 100%, 60% and 35% respectively and from the 1, 3 and 5mM As(III) enrichment it was 100%, 99% and 58% respectively at neutral pH. 80% of uptake As(V) was reduced to As(III) in 3mM As(V) enrichment which was gradually decreased to only 17% at 7mM As(V) enrichment at neutral pH. The arsenic toxicity in B. licheniformis DAS-2 was found modulated by pH and was examined through alteration in growth, uptake/removal, reduction and measurement of chemical toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The effect of PPAR-γ agonist on 18F-FDG uptake in tumor and macrophages and tumor cells

    International Nuclear Information System (INIS)

    Kim, Se-Lim; Kim, Eun-Mi; Cheong, Su-Jin; Lee, Chang-Moon; Kim, Dong Wook; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Yim, Chang Yeol

    2009-01-01

    Purpose: The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors, and its role in adipogenesis and glucose metabolism has been well established. PPAR-γ agonists have been shown to inhibit many cytokines and to have anti-inflammatory effects. In pathologic conditions, enhanced fluoro-2-deoxy-D-glucose (FDG) uptake is observed not only in malignant tumors but also in inflammatory lesions, and this uptake occurs through the glucose transporter in these cells. Thus, the present study was undertaken to investigate the potential of using PPAR-γ's glucose uptake ability as a diagnostic tool to differentiate between macrophage and tumor cells. Materials and Methods: Cellular uptake studies were carried out on macrophage and two tumor cell lines for comparison by using 18 F-FDG. Western blot analysis was performed to determine the expression levels of both the glucose transporter and hexokinase protein. To confirm the possibility of differentiation between tumor and inflammatory lesions using rosiglitazone based on in vitro studies, 18 F-FDG (3.7x10 6 Bq) uptake in A549 and RAW 264.7 xenograft mice was compared. Results: The cellular uptake study findings were quite different for macrophages and tumor cells. 18 F-FDG uptakes by macrophages decreased by about 60% but was increased twofold in tumor cells after rosiglitazone treatment. Moreover, the expressions of proteins related to glucose uptake correlated well with cellular glucose accumulation in both cell types. Higher tumor uptake was observed after the injection of rosiglitazone in A549 xenograft mice (1.58±0.55 to 4.66±1.16), but no significant change of 18 F-FDG uptake was shown in RAW 264.7 xenograft mice (4.04±1.16 to 4.00±0.14). Conclusion: The present study demonstrates the roles of PPAR-γ agonist on FDG uptake in macrophages and tumor cells in vitro and in vivo. Our findings suggest that rosiglitazone has the

  17. Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina).

    Science.gov (United States)

    Mokgalaka-Matlala, Ntebogeng S; Flores-Tavizón, Edith; Castillo-Michel, Hiram; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2008-01-01

    The effects of arsenite [As(III)] and arsenate [As(V)] on the growth of roots, stems, and leaves and the uptake of arsenic (As), micro- and macronutrients, and total amylolytic activity were investigated to elucidate the phytotoxicity of As to the mesquite plant (Prosopis juliflora x P. velutina). The plant growth was evaluated by measuring the root and shoot length, and the element uptake was determined using inductively coupled plasma optical emission spectroscopy. The root and leaf elongation decreased significantly with increasing As(III) and As(V) concentrations; whereas, stem elongation remained unchanged. The As uptake increased with increasing As(III) or As(V) concentrations in the medium. Plants treated with 50 mg/L As(III) accumulated up to 920 mg/kg dry weight (d wt) in roots and 522 mg/kg d wt in leaves, while plants exposed to 50 mg/L As(V) accumulated 1980 and 210 mg/kg d wt in roots and leaves, respectively. Increasing the As(V) concentration up to 20 mg/L resulted in a decrease in the total amylolytic activity. On the contrary, total amylolytic activity in As(III)-treated plants increased with increasing As concentration up to 20 mg/L. The macro- and micronutrient concentrations changed in As-treated plants. In shoots, Mo and K were reduced but Ca was increased, while in roots Fe and Ca were increased but K was reduced. These changes reduced the size of the plants, mainly in the As(III)-treated plants; however, there were no visible sign of As toxicity.

  18. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Tamara, E-mail: t.s.galloway@exeter.ac.u [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Lewis, Ceri [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Dolciotti, Ida [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy); Johnston, Blair D. [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Moger, Julian [School of Physics, Stocker Road, University of Exeter, Devon EX4 4QL (United Kingdom); Regoli, Francesco [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy)

    2010-05-15

    The ecotoxicology of manufactured nanoparticles (MNPs) in estuarine environments is not well understood. Here we explore the hypothesis that nanoTiO{sub 2} and single walled nanotubes (SWNT) cause sublethal impacts to the infaunal species Arenicola marina (lugworm) exposed through natural sediments. Using a 10 day OECD/ASTM 1990 acute toxicity test, no significant effects were seen for SWNT up to 0.03 g/kg and no uptake of SWNTs into tissues was observed. A significant decrease in casting rate (P = 0.018), increase in cellular damage (P = 0.04) and DNA damage in coelomocytes (P = 0.008) was measured for nanoTiO{sub 2}, with a preliminary LOEC of 1 g/kg. Coherent anti-stokes Raman scattering microscopy (CARS) located aggregates of TiO{sub 2} of >200 nm within the lumen of the gut and adhered to the outer epithelium of the worms, although no visible uptake of particles into tissues was detected. - This study explores the hypothesis that nano-TiO{sub 2} and single walled nanotubes (SWNT) can cause sublethal impacts to Arenicola marina exposed through natural sediments.

  19. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    Directory of Open Access Journals (Sweden)

    Chang Hwa Jung

    2015-06-01

    Full Text Available Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz, a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ and CCAAT/enhanced binding protein alpha (C/EBPα. Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4 from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1, a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1. The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  20. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake.

    Science.gov (United States)

    Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl

    2015-06-15

    Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  1. Mechanisms of Phosphine Toxicity

    Directory of Open Access Journals (Sweden)

    Nisa S. Nath

    2011-01-01

    Full Text Available Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3, the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N and arsenic (As, which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

  2. Investigating the mechanisms of Ni uptake and sub-lethal toxicity in the Atlantic killifish Fundulus heteroclitus in relation to salinity

    International Nuclear Information System (INIS)

    Blewett, Tamzin A.; Ransberry, Victoria E.; McClelland, Grant B.; Wood, Chris M.

    2016-01-01

    The Atlantic killifish (Fundulus heteroclitus) is a resilient estuarine species that may be subjected to anthropogenic contamination of its natural habitat, by toxicants such as nickel (Ni). We investigated Ni accumulation and potential modes of Ni toxicity, in killifish, as a function of environmental salinity. Killifish were acclimated to 4 different salinities [0 freshwater (FW), 10, 30 and 100% seawater (SW)] and exposed to 5 mg/L of Ni for 96 h. Tissue Ni accumulation, whole body ions, critical swim speed and oxidative stress parameters were examined. SW was protective against Ni accumulation in the gills and kidney. Addition of Mg and Ca to FW protected against gill Ni accumulation, suggesting competition with Ni for uptake. Concentration-dependent Ni accumulation in the gill exhibited saturable relationships in both FW- and SW-acclimated fish. However SW fish displayed a lower B_m_a_x (i.e. lower number of Ni binding sites) and a lower K_m (i.e. higher affinity for Ni binding). No effect of Ni exposure was observed on critical swim speed (U_c_r_i_t) or maximum rate of oxygen consumption (MO_2_m_a_x). Markers of oxidative stress showed either no effect (e.g. protein carbonyl formation), or variable effects that appeared to depend more on salinity than on Ni exposure. These data indicate that the killifish is very tolerant to Ni toxicity, a characteristic that may facilitate the use of this species as a site-specific biomonitor of contaminated estuaries. - Highlights: • SW was protective against Ni accumulation in the gills and kidney only. • Mg and Ca in FW protected against Ni accumulation, suggesting competition with Ni. • No effect of Ni exposure was observed on critical swim speed or oxygen consumption. - Marine vertebrates do not have the same response to Ni toxicity as freshwater vertebrates and as such. Euryhaline killifish may be very useful as site-specific biomonitors.

  3. Uptake and dosimetry of Auger emitting diagnostic radionuclides (in particular indium-111) in human male germ cells

    International Nuclear Information System (INIS)

    Nettleton, J.S.; Lawson, R.S.; Prescott, M.C.; Hoyes, K.P.; Morris, I.D.

    2000-01-01

    This paper concerns the uptake and dosimetry of Auger electron emitting radionuclides which are used during routine diagnostic nuclear medicine procedures, in human testes and spermatozoa (sperm). A computer model was developed to calculate the doses to sperm heads from cellular localisation of the Auger electron emitting radionuclides 99m Tc, 111 In, 123 I and 201 Tl. An assumption of ellipsoidal geometry was made to approximate the sperm head. S Factors were determined for differing sub-cellular localisations of radionuclide. The S-Factors determined were then combined with in-vitro data for quantification of radionuclide uptake for 99m Tc pertechnetate, 111 In chloride and 201 Tl chloride, to estimate in-vivo doses to sperm heads following intravenous administration of radionuclide in typical diagnostic quantities. The uptake and resulting cellular radiation dose of 111 In (from the chloride) was significantly larger than the other radionuclides in the chemical forms investigated. Further investigations were carried out to determine localisation of 111 In on sperm. The results of these experiments indicate that the radiation dose to mature sperm following administration of 111 In pharmaceuticals for diagnostic purposes might be large enough to result in DNA damage which is not expressed until after fertilisation of an oocyte. Consideration should therefore be given to providing some contraceptive advice following diagnostic administrations of this radionuclide. In order to consider the possible effects of these radionuclides on other spermatogenic cells, further studies were undertaken to obtain in-vivo data for quantification of 111 In chloride and 201 Tl chloride uptake into the human testis following intravenous administration. Conventional dosimetry was then used to estimate testicular radiation dose using our values of percentage uptake. The results obtained indicate that the values of testicular radiation doses quoted by ICRP for 111 In might be too low by

  4. Measuring in vitro cellular uptake of nanoparticles by transmission electron microscopy

    International Nuclear Information System (INIS)

    Brown, A P; Brydson, R M D; Hondow, N S

    2014-01-01

    Biomedical application of engineered nanoparticles (NPs) is a growing area of research and development. Uncertainty remains as to the mode of action of many NP types and TEM is a tool capable of addressing this if used in conjunction with standard cellular response assays. We will demonstrate imaging of thin sections of fixed, plastic embedded cells by analytical TEM to identify: superparamagnetic iron oxide NP translocation into cell compartments such as endosomes; amorphous silica NP penetration through a cell membrane without membrane encapsulation and zinc oxide NP degradation in cell compartments. We will then discuss how the in vitro cellular responses to a dose of NPs exposed to cell lines can be correlated to the internalized dose per cell section noting however that quantification of the latter requires random sampling procedures or correlation to higher throughout techniques to measure a population of whole cells. Similarly, analytical TEM measures of NP degradation within intracellular compartments will require a more appropriate sample preparation such as cryo-fixation

  5. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing?

    Science.gov (United States)

    Dusinska, Maria; Tulinska, Jana; El Yamani, Naouale; Kuricova, Miroslava; Liskova, Aurelia; Rollerova, Eva; Rundén-Pran, Elise; Smolkova, Bozena

    2017-11-01

    The unique properties of nanomaterials (NMs) are beneficial in numerous industrial and medical applications. However, they could also induce unintended effects. Thus, a proper strategy for toxicity testing is essential in human hazard and risk assessment. Toxicity can be tested in vivo and in vitro; in compliance with the 3Rs, alternative strategies for in vitro testing should be further developed for NMs. Robust, standardized methods are of great importance in nanotoxicology, with comprehensive material characterization and uptake as an integral part of the testing strategy. Oxidative stress has been shown to be an underlying mechanism of possible toxicity of NMs, causing both immunotoxicity and genotoxicity. For testing NMs in vitro, a battery of tests should be performed on cells of human origin, either cell lines or primary cells, in conditions as close as possible to an in vivo situation. Novel toxicity pathways, particularly epigenetic modification, should be assessed along with conventional toxicity testing methods. However, to initiate epigenetic toxicity screens for NM exposure, there is a need to better understand their adverse effects on the epigenome, to identify robust and reproducible causal links between exposure, epigenetic changes and adverse phenotypic endpoints, and to develop improved assays to monitor epigenetic toxicity. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Exploring cellular uptake of iron oxide nanoparticles associated with rhodium citrate in breast cancer cells.

    Science.gov (United States)

    Chaves, Natalia L; Estrela-Lopis, Irina; Böttner, Julia; Lopes, Cláudio Ap; Guido, Bruna C; de Sousa, Aparecido R; Báo, Sônia N

    2017-01-01

    Nanocarriers have the potential to improve the therapeutic index of currently available drugs by improving their efficacy and achieving therapeutic steady-state levels over an extended period. The association of maghemite-rhodium citrate (MRC) nanoparticles (NPs) has the potential to increase specificity of the cytotoxic action. However, the interaction of these NPs with cells, their uptake mechanism, and subcellular localization need to be elucidated. This work evaluates the uptake mechanism of MRC NPs in metastatic and nonmetastatic breast cancer-cell models, comparing them to a nontumor cell line. MRC NPs uptake in breast cancer cells was more effective than in normal cells, with regard to both the amount of internalized material and the achievement of more strategic intracellular distribution. Moreover, this process occurred through a clathrin-dependent endocytosis pathway with different basal expression levels of this protein in the cell lines tested.

  7. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    OpenAIRE

    Tutton, P. J.; Barkla, D. H.

    1982-01-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-indu...

  8. A Mathematical Model for Cisplatin Cellular Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Ardith W. El-Kareh

    2003-03-01

    Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.

  9. Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells

    Directory of Open Access Journals (Sweden)

    Mohamed Alyane

    2016-03-01

    Full Text Available The use of doxorubicin (DOX is limited by its dose-dependent cardiotoxicity. Entrapped DOX in liposome has been shown to reduce cardiotoxicity. Results showed that about 92% of the total drug was encapsulated in liposome. The release experiments showed a weak DOX leakage in both culture medium and in PBS, more than 98% and 90% of the encapsulated DOX respectively was still retained in liposomes after 24 h of incubation. When the release experiments were carried out in phosphate buffer pH5.3, the leakage of DOX from liposomes reached 37% after 24 h of incubation. Evaluation of cellular uptake of the liposomal DOX indicated the possible endocytosis of liposomes because the majority of visible fluorescence of DOX was mainly in the cytoplasm, whereas the nuclear compartment showed a weak intensity. When using unloaded fluorescent-liposomes, the fluorescence was absent in nuclei suggests that liposomes cannot cross the nuclear membrane. MTT assay and measurement of LDH release suggest that necrosis is the form of cellular death predominates in H9c2 cells exposed to high doses of DOX, while for weak doses apoptosis could be the predominate form. Entrapped DOX reduced significantly DOX toxicity after 3 and 6 h of incubation, but after 20 h entrapped DOX is more toxic than free one.

  10. Predicting molybdenum toxicity to higher plants: Influence of soil properties

    International Nuclear Information System (INIS)

    McGrath, S.P.; Mico, C.; Curdy, R.; Zhao, F.J.

    2010-01-01

    The effect of soil properties on the toxicity of molybdenum (Mo) to four plant species was investigated. Soil organic carbon or ammonium-oxalate extractable Fe oxides were found to be the best predictors of the 50% effective dose (ED 50 ) of Mo in different soils, explaining > 65% of the variance in ED 50 for four species except for ryegrass (26-38%). Molybdenum concentrations in soil solution and consequently plant uptake were increased when soil pH was artificially raised because sorption of Mo to amorphous oxides is greatly reduced at high pH. The addition of sulphate significantly decreased Mo uptake by oilseed rape. For risk assessment, we suggest that Mo toxicity values for plants should be normalised using soil amorphous iron oxide concentrations. - Amorphous iron oxides or organic carbon were found to be the best predictors of the toxicity threshold values of Mo to higher plants on different soils.

  11. Cellular uptake of lipoproteins and Persistent Organic Compounds - An update and new data

    DEFF Research Database (Denmark)

    Hjelmborg, Philip Sebastian; Andreassen, Thomas Kjærgaard; Bonefeld-Jørgensen, Eva Cecilie

    2008-01-01

    including the pesticide DDT (p,p'-dichlorodiphenyltrichloroethane), and especially its metabolite DDE (p,p'-dichlorodiphenyldichloroethene), interacts with nuclear hormone receptors causing these to malfunction, which in turn results in a range of deleterious health effects in humans. The aim of the present...... study was to determine the role of lipoprotein receptors in mouse embryonic fibroblast (MEF) cells in conjunction with uptake of DDT-lipoprotein complexes from supplemented media in vitro. Uptake of DDT by MEF cells was investigated using MEF1 cells carrying the receptors LRP (low-density lipoprotein...... receptor-related protein) and LDLR (low density lipoprotein receptor) present and MEF4 cells with no LRP and LDLR expression. Cells were incubated together with the complex of LDL and [14C]DDT. The receptor function was further evaluated by adding the 40 kDa receptor-associated protein (RAP) which blocks...

  12. Mannosylated Chitosan Nanoparticles Based Macrophage-Targeting Gene Delivery System Enhanced Cellular Uptake and Improved Transfection Efficiency.

    Science.gov (United States)

    Peng, Yixing; Yao, Wenjun; Wang, Bo; Zong, Li

    2015-04-01

    Gene transfer mediated by mannosylated chitosan (MCS) is a safe and promising approach for gene and vaccine delivery. MCS nanoparticles based gene delivery system showed high in vivo delivery efficiency and elicited strong immune responses in mice. However, little knowledge about the cell binding, transfection efficiency and intracellular trafficking of MCS nanoparticles had been acquired. In this study, using gastrin-releasing peptide as a model plasmid (pGRP), the binding of MCS/pGRP nanoparticles to macrophages and the intracellular trafficking of MCS/pGRP nanoparticles in macrophages were investigated. MCS-mediated transfection efficiency in macrophages was also evaluated using pGL-3 as a reporter gene. The results showed that the binding and transfection efficiency of MCS nanoparticles in macrophages was higher than that of CS, which was attributed to the interaction between mannose ligands in MCS and mannose receptors on the surface of macrophages. Observation with a confocal laser scanning microscope indicated the cellular uptake of MCS/pGRP nanoparticles were more than that of CS/pGRP nanoparticles in macrophages. MCS/pGRP nanoparticles were taken up by macrophages and most of them were entrapped in endosomal/lysosomal compartments. After the nanoparticles escaping from endosomal/lysosomal compartments, naked pGRP entered the nucleus, and a few MCS might enter the nucleus in terms of nanoparticles. Overall, MCS has the potential to be an excellent macrophage-targeting gene delivery carrier.

  13. Transient toxicity of 2-Deoxy-2-[18F] fluoro-D-Glucose in mammalian cells: concise communication

    International Nuclear Information System (INIS)

    Kassis, A.I.; Adelstein, S.J.; Wolf, A.P.; Fowler, J.G.; Shiue, C.Y.

    1983-01-01

    The kinetics of uptake and toxicity of the positron emitter F-18 have been examined in a cultured cell line. 2-Deoxy-2[ 18 F]fluoro-D-glucose ( 18 FDG) concentrated rapidly within Chinese hamster V79 cells, and the uptake was linear with the extracellular radioactive concentrations. Whereas 18 FDG sythesized 2 hr before the incubation did not appear to be toxic, that synthesized 5 hr previously was highly toxic. Toxicity was transient and independent of both the extracellular/intracellular radioactive concentration and the energy released from the decay of fluorine-18. Similarly synthesized nonradioactive FDG and Na 18 F were not toxic under comparable experimental conditions. The authors conclude that this transient toxicity is due to an unidentified chemical species that is cytocidal following intracellular localization. These toxic levels are not likely to be achieved in the clinical use of 18 FDG due to dilution factors that are orders of magnitude greater than those used in these in vitro studies

  14. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation.

    Science.gov (United States)

    Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Urbán, Patricia; Bogni, Alessia; Ponti, Jessica; Gioria, Sabrina; Kinsner-Ovaskainen, Agnieszka

    2017-06-26

    Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called "critical quality attributes", that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs.

  15. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    Science.gov (United States)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  16. Toxicity of radiation-resistant strains of Bacillus thuringiensis (Berl.) to larval Plutella xylostella (L.)

    International Nuclear Information System (INIS)

    Jangi, M.S.; Ibrahim, Hasan

    1983-01-01

    A total of 24 isolates of Bacillus thuringiensis (Berliner), resistant to a γ-radiation dose of 100 krad, were screened for their toxicity to larval silkworms, Bombyxmori(L.), and 15 of them were subsequently tested for their toxicity to larval diamond-back moth, Plutella xylostella(L.). The LC 50 's of these isolates to B. mori ranged from 1.6 X 10 5 to 6.0 X 10 3 spores/mL or from 5.9 to 0.3 μg cellular protein/mL. The irradiation treatment produced isolates which were significantly more toxic to P. xylostella (LC 50 4 spores/mL or 3.7 μg cellular protein/mL) and/ or less toxic to B. mori (LC 50 > 2.3 X 10 4 spores/mL or 1.0 μg cellular protein/mL) than the parent commercial strain

  17. Lead toxicity in rice: effects, mechanisms, and mitigation strategies--a mini review.

    Science.gov (United States)

    Ashraf, Umair; Kanu, Adam Sheka; Mo, Zhaowen; Hussain, Saddam; Anjum, Shakeel Ahmad; Khan, Imran; Abbas, Rana Nadeem; Tang, Xiangru

    2015-12-01

    Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils.

  18. In-vitro studies with 188Re-HEDP, a clinically used bone pain palliating agent, on bone cancer cells

    International Nuclear Information System (INIS)

    Sharma, Rohit; Kumar, Chandan; Mallia, Madhava B.; Banerjee, Sharmila; Kameswaran, Mythili

    2017-01-01

    Rhenium-188 is an attractive radioisotope for a wide variety of radiotherapy applications. 188 Re-HEDP (HEDPhydroxyethylidene- 1,1-diphosphonic acid) is one such, clinically useful, radiopharmaceutical for palliation of bone pain due to osseous metastasis. Herein, our aim was to study the uptake and retention of 188 Re-HEDP in mineralized bone and to assess its cellular toxicity, along with its underlying mechanism in human osteocarcinoma (MG-63 and Soas-2) cell lines. 188 Re-HEDP uptake was found to be significantly higher in mineralized bone. The 188 Re-HEDP complex also induces G2-M cell cycle arrest and thus contributing to apoptosis and cellular toxicity in bone cancer cells. (author)

  19. Can’t take the heat: Temperature-enhanced toxicity in the mayfly Isonychia bicolor exposed to the neonicotinoid insecticide imidacloprid

    International Nuclear Information System (INIS)

    Camp, A.A.; Buchwalter, D.B.

    2016-01-01

    Highlights: • Temperature has a strong modulating influence on toxicity in aquatic insects. • Increasing temperature decreased the time to onset of imidacloprid toxicity. • Increasing temperature increased the uptake rates of imidacloprid in different taxa. • Sublethal behavioral effects of contaminants are important to assess in toxicology. - Abstract: Neonicotinoid insecticide usage has increased globally in recent decades. Neonicotinoids, such as imidacloprid, are potent insect neurotoxicants that may pose a threat to non-target aquatic organisms, such as aquatic insects. In nature, insects typically live in thermally fluctuating conditions, which may significantly alter both contaminant exposures and affects. Here we investigate the relationship between temperature and time-to-effect for imidacloprid toxicity with the aquatic insect Isonychia bicolor, a lotic mayfly. Additionally, we examined the mechanisms driving temperature-enhanced toxicity including metabolic rate, imidacloprid uptake rate, and tissue bioconcentration. Experiments included acute toxicity tests utilizing sublethal endpoints and mortality, as well as respirometry and radiotracer assays with ["1"4C] imidacloprid. Further, we conducted additional uptake experiments with a suite of aquatic invertebrates (including I. bicolor, Neocloeon triangulifer, Macaffertium modestum, Pteronarcys proteus, Acroneuria carolinensis, and Pleuroceridae sp) to confirm and contextualize our findings from initial experiments. The 96 h EC_5_0 (immobility) for I. bicolor at 15 °C was 5.81 μg/L which was approximately 3.2 fold lower than concentrations associated with 50% mortality. Assays examining the impact of temperature were conducted at 15, 18, 21, and 24 °C and demonstrated that time-to-effect for sublethal impairment and immobility was significantly decreased with increasing temperature. Uptake experiments with ["1"4C] imidacloprid revealed that initial uptake rates were significantly increased with

  20. Can’t take the heat: Temperature-enhanced toxicity in the mayfly Isonychia bicolor exposed to the neonicotinoid insecticide imidacloprid

    Energy Technology Data Exchange (ETDEWEB)

    Camp, A.A., E-mail: aacamp@ncsu.edu; Buchwalter, D.B., E-mail: dbbuchwa@ncsu.edu

    2016-09-15

    Highlights: • Temperature has a strong modulating influence on toxicity in aquatic insects. • Increasing temperature decreased the time to onset of imidacloprid toxicity. • Increasing temperature increased the uptake rates of imidacloprid in different taxa. • Sublethal behavioral effects of contaminants are important to assess in toxicology. - Abstract: Neonicotinoid insecticide usage has increased globally in recent decades. Neonicotinoids, such as imidacloprid, are potent insect neurotoxicants that may pose a threat to non-target aquatic organisms, such as aquatic insects. In nature, insects typically live in thermally fluctuating conditions, which may significantly alter both contaminant exposures and affects. Here we investigate the relationship between temperature and time-to-effect for imidacloprid toxicity with the aquatic insect Isonychia bicolor, a lotic mayfly. Additionally, we examined the mechanisms driving temperature-enhanced toxicity including metabolic rate, imidacloprid uptake rate, and tissue bioconcentration. Experiments included acute toxicity tests utilizing sublethal endpoints and mortality, as well as respirometry and radiotracer assays with [{sup 14}C] imidacloprid. Further, we conducted additional uptake experiments with a suite of aquatic invertebrates (including I. bicolor, Neocloeon triangulifer, Macaffertium modestum, Pteronarcys proteus, Acroneuria carolinensis, and Pleuroceridae sp) to confirm and contextualize our findings from initial experiments. The 96 h EC{sub 50} (immobility) for I. bicolor at 15 °C was 5.81 μg/L which was approximately 3.2 fold lower than concentrations associated with 50% mortality. Assays examining the impact of temperature were conducted at 15, 18, 21, and 24 °C and demonstrated that time-to-effect for sublethal impairment and immobility was significantly decreased with increasing temperature. Uptake experiments with [{sup 14}C] imidacloprid revealed that initial uptake rates were significantly

  1. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania

    2014-04-09

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  2. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-01-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  3. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Science.gov (United States)

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  4. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Directory of Open Access Journals (Sweden)

    Ha-Na Na

    Full Text Available Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR, and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1. In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  5. Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer.

    Science.gov (United States)

    Dumontel, B; Canta, M; Engelke, H; Chiodoni, A; Racca, L; Ancona, A; Limongi, T; Canavese, G; Cauda, V

    2017-11-28

    The widespread use of ZnO nanomaterials for biomedical applications, including therapeutic drug delivery or stimuli-responsive activation, as well as imaging, imposes a careful control over the colloidal stability and long-term behaviour of ZnO in biological media. Moreover, the effect of ZnO nanostructures on living cells, in particular cancer cells, is still under debate. This paper discusses the role of surface chemistry and charge of zinc oxide nanocrystals, of around 15 nm in size, which influence their behaviour in biological fluids and effect on cancer cells. In particular, we address this problem by modifying the surface of pristine ZnO nanocrystals (NCs), rich of hydroxyl groups, with positively charged amino-propyl chains or, more innovatively, by self-assembling a double-lipidic membrane, shielding the ZnO NCs. Our findings show that the prolonged immersion in simulated human plasma and in the cell culture medium leads to highly colloidally dispersed ZnO NCs only when coated by the lipidic bilayer. In contrast, the pristine and amine-functionalized NCs form huge aggregates after already one hour of immersion. Partial dissolution of these two samples into potentially cytotoxic Zn 2+ cations takes place, together with the precipitation of phosphate and carbonate salts on the NCs' surface. When exposed to living HeLa cancer cells, higher amounts of lipid-shielded ZnO NCs are internalized with respect to the other samples, thus showing a reduced cytotoxicity, based on the same amount of internalized NCs. These results pave the way for the development of novel theranostic platforms based on ZnO NCs. The new formulation of ZnO shielded with a lipid-bilayer will prevent strong aggregation and premature degradation into toxic by-products, and promote a highly efficient cell uptake for further therapeutic or diagnostic functions.

  6. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery.

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; De Stefano, Luca; Santos, Hélder A

    2015-12-21

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.

  7. A cell impedance measurement device for the cytotoxicity assay dependent on the velocity of supplied toxic fluid

    Science.gov (United States)

    Kang, Yoon-Tae; Kim, Min-Ji; Cho, Young-Ho

    2018-04-01

    We present a cell impedance measurement chip capable of characterizing the toxic response of cells depending on the velocity of the supplied toxic fluid. Previous impedance-based devices using a single open-top chamber have been limited to maintaining a constant supply velocity, and devices with a single closed-top chamber present difficulties in simultaneous cytotoxicity assay for varying levels of supply velocities. The present device, capable of generating constant and multiple levels of toxic fluid velocity simultaneously within a single stepwise microchannel, performs a cytotoxicity assay dependent on toxic fluid velocity, in order to find the effective velocity of toxic fluid to cells for maximizing the cytotoxic effect. We analyze the cellular toxic response of 5% ethanol media supplied to cancer cells within a toxic fluid velocity range of 0-8.3 mm s-1. We observe the velocity-dependent cell detachment rate, impedance, and death rate. We find that the cell detachment rate decreased suddenly to 2.4% at a velocity of 4.4 mm s-1, and that the change rates of cell resistance and cell capacitance showed steep decreases to 8% and 41%, respectively, at a velocity of 5.7 mm s-1. The cell death rate and impedance fell steeply to 32% at a velocity of 5.7 mm s-1. We conclude that: (1) the present device is useful in deciding on the toxic fluid velocity effective to cytotoxicity assay, since the cellular toxic response is dependent on the velocity of toxic fluid, and; (2) the cell impedance analysis facilitates a finer cellular response analysis, showing better correlation with the cell death rate, compared to conventional visual observation. The present device, capable of performing the combinational analysis of toxic fluid velocity and cell impedance, has potential for application to the fine cellular toxicity assay of drugs with proper toxic fluid velocity.

  8. Predicting molybdenum toxicity to higher plants: Influence of soil properties

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, S.P., E-mail: steve.mcgrath@bbsrc.ac.u [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Mico, C. [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Curdy, R. [Laboratory for Environmental Biotechnology (LBE), Swiss Federal Institute of Technology Lausanne (EPFL) Station 6 CH, 1015 Lausanne (Switzerland); Zhao, F.J. [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2010-10-15

    The effect of soil properties on the toxicity of molybdenum (Mo) to four plant species was investigated. Soil organic carbon or ammonium-oxalate extractable Fe oxides were found to be the best predictors of the 50% effective dose (ED{sub 50}) of Mo in different soils, explaining > 65% of the variance in ED{sub 50} for four species except for ryegrass (26-38%). Molybdenum concentrations in soil solution and consequently plant uptake were increased when soil pH was artificially raised because sorption of Mo to amorphous oxides is greatly reduced at high pH. The addition of sulphate significantly decreased Mo uptake by oilseed rape. For risk assessment, we suggest that Mo toxicity values for plants should be normalised using soil amorphous iron oxide concentrations. - Amorphous iron oxides or organic carbon were found to be the best predictors of the toxicity threshold values of Mo to higher plants on different soils.

  9. A clinical study on 125I T3 resin uptake rate and serum thyroxin (T4) in hyperthyroidism

    International Nuclear Information System (INIS)

    Moon, E.S.; Park, Y.H.; Cho, C.H.; Park, I.S.; Lee, C.S.; Lee, H.C.

    1978-01-01

    Total of 94 cases of hyperthyroidism were classified as toxic diffuse goiter (77 case) as toxic adematous goiter (8 case) and as toxic multinodular goiter (9 case) on the levels of T 3 - 125 I resin uptake rate and the measurement of serum T 4 levels. Various clinical symptoms and diagnostic characteristics were discussed. (author)

  10. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner.

    Science.gov (United States)

    Orlando, Antonina; Cazzaniga, Emanuela; Tringali, Maria; Gullo, Francesca; Becchetti, Andrea; Minniti, Stefania; Taraballi, Francesca; Tasciotti, Ennio; Re, Francesca

    2017-01-01

    Mesoporous silica nanoparticles (MSNPs) are excellent candidates for biomedical applications and drug delivery to different human body areas, the brain included. Although toxicity at cellular level has been investigated, we are still far from using MSNPs in the clinic, because the mechanisms involved in the cellular responses activated by MSNPs have not yet been elucidated. This study used an in vitro multiparametric approach to clarify relationships among size, dose, and time of exposure of MSNPs (0.05-1 mg/mL dose range), and cellular responses by analyzing the morphology, viability, and functionality of human vascular endothelial cells and neurons. The results showed that 24 hours of exposure of endothelial cells to 250 nm MSNPs exerted higher toxicity in terms of mitochondrial activity and membrane integrity than 30 nm MSN at the same dose. This was due to induced cell autophagy (in particular mitophagy), probably consequent to MSNP cellular uptake (>20%). Interestingly, after 24 hours of treatment with 30 nm MSNPs, very low MSNP uptake (rational design of NPs intended for biomedical uses, demonstrating that careful toxicity evaluation is necessary before using MSNPs in patients.

  11. Gallium-67-citrate uptake in a case of acne vulgaris

    International Nuclear Information System (INIS)

    Kipper, M.S.; Taylor, A.; Ashburn, W.L.

    1981-01-01

    A case of increased Ga-67 uptake in a patient with active acne vulgaris is reported. The scan was requested in a search for metastatic testicular carcinoma or bleomycin pulmonary toxicity. Careful clinical evaluation including physical examination was necessary in order to avoid an erroneous scan interpretation

  12. Toxicity of radiation-resistant strains of Bacillus thuringiensis (Berl. ) to larval Plutella xylostella (L. )

    Energy Technology Data Exchange (ETDEWEB)

    Jangi, M.S.; Ibrahim, H. (Faculty of Health Sciences, Universiti Kebangsaan, Malysia, Bangi, Selangor)

    1983-05-01

    A total of 24 isolates of Bacillus thuringiensis (Berliner), resistant to a ..gamma..-radiation dose of 100 krad, were screened for their toxicity to larval silkworms, Bombyxmori(L.), and 15 of them were subsequently tested for their toxicity to larval diamond-back moth, Plutella xylostella(L.). The LC/sub 50/'s of these isolates to B. mori ranged from 1.6 X 10/sup 5/ to 6.0 X 10/sup 3/ spores/mL or from 5.9 to 0.3 ..mu..g cellular protein/mL. The irradiation treatment produced isolates which were significantly more toxic to P. xylostella (LC/sub 50/ < 8.1 X 10/sup 4/ spores/mL or 3.7 ..mu..g cellular protein/mL) and/ or less toxic to B. mori (LC/sub 50/ > 2.3 X 10/sup 4/ spores/mL or 1.0 ..mu..g cellular protein/mL) than the parent commercial strain.

  13. The cellular uptake and transport of zein nanoparticles: Effect of sodium caseinate

    Science.gov (United States)

    Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS) stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with differ...

  14. Speciation, uptake and toxicity of uranium in Atlantic Salmon (Salmo salar)

    Energy Technology Data Exchange (ETDEWEB)

    Teien, Hans-Christian; Hertel-Aas, Turid; Lind, Ole Christian; Skipperud, Lindis; Oughton, Deborah H.; Salbu, Brit [Norwegian University of Life Sciences (NMBU), Center of Excellence in Environmental Radioactivity (CERAD). P.O. Box 5003, N-1432 Aas (Norway); Thoerring, Haavard [Norwegian Radiation Protection Authority (NRPA), P.O. Box 55, N-1332 Oesteraas (Norway)

    2014-07-01

    To obtain information about the bioavailability of uranium (U) and its chemical toxicity, a significant number of Atlantic Salmon (Salmo salar) juveniles (in total about 800 fish) were exposure to commercial available depleted uranium (DU) in controlled experiments conducted in accordance with the OECD guidelines for acute toxicity tests. Speciation, gill accumulation and induced toxicity of U as a function of varying water concentrations of H{sup +}, Ca{sup 2+}, Mg{sup 2+}, Na{sup +} and K{sup +} as well as U were studied. In addition to recording mortality, blood samples were collected and analysed for general stress parameters (plasma Cl and glucose) prior to fish dissection and collection of different tissues. The observed dose-response demonstrated that varying concentrations of K{sup +}, Na{sup +} or Mg{sup 2+} had no apparent effect on the U induced toxicity in terms of 96 h LC50-values. U toxicity was, however, strongly dependent on pH. Reducing pH from about 6.7 to 6.0 or 5.5 reduced the LC50-value from 3.1 to 1.4 mg U/l. However, by increasing pH to 7.9, LC50-values increased to 25 mg/L. Fractionation of the exposure waters, demonstrated that U was present as dissolved species less than 10 kDa in size predominantly as anion, and that a fraction (30%) was present as U colloids ( 3-10 kDa). Furthermore, U accumulated in fish gills, and the accumulation of U in the fish gills increased with increasing U concentration in the water. U accumulation at >50 μg U/g dry weight gill was correlated with ion regulation problems and stress response in fish, reflected by reduced plasma Cl concentration and increased blood glucose, and mortality was observed at concentration levels >300 μg/g gill dry weight. Thus, toxic effects in fish were correlated to U concentration in gills, and the concentration of U in gills was highly dependent upon pH in water and the U speciation. As presented in detail on a poster at the present conference (Cagno et al.), U did not only

  15. Biological (molecular and cellular) markers of toxicity

    International Nuclear Information System (INIS)

    Shugart, L.R.; D'Surney, S.J.; Gettys-Hull, C.; Greeley, M.S. Jr.

    1991-01-01

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO 6 -ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O 6 -ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP

  16. A review of reproductive toxicity of microcystins

    International Nuclear Information System (INIS)

    Chen, Liang; Chen, Jun; Zhang, Xuezhen; Xie, Ping

    2016-01-01

    Highlights: • Reproductive toxicity of MCs on mammals, fishes, amphibians, and birds is reviewed. • PP1/2A inhibition and oxidative stress are important toxic mechanisms of MCs. • Reproductive toxicity of MCs may be closely related to endocrine-disrupting effects. • The trans-generational toxicity of microcystins is a matter of concern. • Data concerning female reproductive and sex-specific effects of MCs are lacking. - Abstract: Animal studies provide strong evidence of positive associations between microcystins (MCs) exposure and reproductive toxicity, representing a threat to human reproductive health and the biodiversity of wild life. This paper reviews current knowledge of the reproductive toxicity of MCs, with regard to mammals, fishes, amphibians, and birds, mostly in males. Toxicity of MCs is primarily governed by the inhibition of protein phosphatases 1 and 2A (PP1 and PP2A) and disturbance of cellular phosphorylation balance. MCs exposure is related to excessive production of reactive oxygen species (ROS) and oxidative stress, leading to cytoskeleton disruption, mitochondria dysfunction, endoplasmic reticulum (ER) stress, and DNA damage. MCs induce cell apoptosis mediated by the mitochondrial and ROS and ER pathways. Through PP1/2A inhibition and oxidative stress, MCs lead to differential expression/activity of transcriptional factors and proteins involved in the pathways of cellular differentiation, proliferation, and tumor promotion. MC-induced DNA damage is also involved in carcinogenicity. Apart from a direct effect on testes and ovaries, MCs indirectly affect sex hormones by damaging the hypothalamic-pituitary-gonad (HPG) axis and liver. Parental exposure to MCs may result in hepatotoxicity and neurotoxicity of offspring. We also summarize the current research gaps which should be addressed by further studies.

  17. A review of reproductive toxicity of microcystins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang, E-mail: chan91@yeah.net [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jun, E-mail: chenjun@ihb.ac.cn [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Zhang, Xuezhen, E-mail: xuezhen@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping, E-mail: xieping@ihb.ac.cn [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2016-01-15

    Highlights: • Reproductive toxicity of MCs on mammals, fishes, amphibians, and birds is reviewed. • PP1/2A inhibition and oxidative stress are important toxic mechanisms of MCs. • Reproductive toxicity of MCs may be closely related to endocrine-disrupting effects. • The trans-generational toxicity of microcystins is a matter of concern. • Data concerning female reproductive and sex-specific effects of MCs are lacking. - Abstract: Animal studies provide strong evidence of positive associations between microcystins (MCs) exposure and reproductive toxicity, representing a threat to human reproductive health and the biodiversity of wild life. This paper reviews current knowledge of the reproductive toxicity of MCs, with regard to mammals, fishes, amphibians, and birds, mostly in males. Toxicity of MCs is primarily governed by the inhibition of protein phosphatases 1 and 2A (PP1 and PP2A) and disturbance of cellular phosphorylation balance. MCs exposure is related to excessive production of reactive oxygen species (ROS) and oxidative stress, leading to cytoskeleton disruption, mitochondria dysfunction, endoplasmic reticulum (ER) stress, and DNA damage. MCs induce cell apoptosis mediated by the mitochondrial and ROS and ER pathways. Through PP1/2A inhibition and oxidative stress, MCs lead to differential expression/activity of transcriptional factors and proteins involved in the pathways of cellular differentiation, proliferation, and tumor promotion. MC-induced DNA damage is also involved in carcinogenicity. Apart from a direct effect on testes and ovaries, MCs indirectly affect sex hormones by damaging the hypothalamic-pituitary-gonad (HPG) axis and liver. Parental exposure to MCs may result in hepatotoxicity and neurotoxicity of offspring. We also summarize the current research gaps which should be addressed by further studies.

  18. Physical-chemical model for cellular uptake of fatty acids: prediction of intracellular pool sizes

    International Nuclear Information System (INIS)

    Cooper, R.; Noy, N.; Zakim, D.

    1987-01-01

    If the uptake of fatty acids by liver is a physical, not a biological, process, then the size and location of the intrahepatic pool of fatty acids can be predicted from uptake rates and thermodynamic data. The purpose of the experiments in this paper was to test the accuracy of this idea. Rat livers were perfused with [ 3 H] palmitate bound to [ 14 C] albumin, and the total amounts of palmitate removed from the perfusate were measured at 3-s intervals. The intrahepatic pools of palmitate calculated from these data were 13.8 and 23.0 nmol/g of liver at ratios of palmitate/albumin (mol/mol) (afferent side) of 2/1 and 4/1, respectively, in the steady state. The intrahepatic pools of palmitate calculated from the distributions of palmitate between membranes, H 2 O, albumin, and fatty acid binding protein and the measured first-order rate constants for acyl-CoA ligases in mitochondria and microsomes were 12.1 and 34.6 nmol/g for perfusate ratios of palmitate/albumin of 2/1 and 4/1, in the steady state. Intrahepatic pools of palmitate measured after establishment of a steady-state rate of uptake were 15.0 and 31.8 nmol/g for these ratios of palmitate/albumin of 2/1 and 4/1

  19. Ingestion of microcystins by Daphnia: Intestinal uptake and toxic effects

    DEFF Research Database (Denmark)

    Rohrlack, T.; Christoffersen, K.; Dittmann, E.

    2005-01-01

    We investigated the intestinal uptake and adverse effects of microcystins ingested with Microcystis on Daphnia galeata. The gut structure, blood microcystin concentration, appearance, and movements of Daphnia fed Microcystis PCC 7806 or a microcystin-deficient PCC 7806 mutant were monitored over ...

  20. Uptake of mineral elements by plants

    International Nuclear Information System (INIS)

    Ven Babu, P.

    2008-01-01

    Scientific investigations into the mineral nutrition of plants, date back to the late 17th century and vast amount of literature has accumulated since then, encompassing the occurrence of mineral elements, their interaction in soil and within plants, kinetics of their uptake, role in metabolism, toxicity to plants and animals and so on. Despite great advances made in the fields of plant physiology, plant biochemistry and genetic engineering and application of sophisticated analytical and biochemical techniques, many aspects of nutrient uptake by plants, their movement within roots and the long distance transport to shoots remain yet to be fully answered and a combination of hypothesis and assumptions are taken into account, for understanding the phenomena. This write up deals with the subject in a brief and narrative manner, so as to enable the reader to get an insight into the field

  1. Cellular toxicity and bioaccumulationof silver nanoparticles in the marine polychaete, Nereis diversicolor

    DEFF Research Database (Denmark)

    cong, Yi; Banta, Gary Thomas; Selck, Henriette

    (comet assay) and bioaccumulation as endpoints. Prior to the toxicity experiment, the physical-chemical properties of Ag NPs were fully characterized. The nominal concentrations used in all exposure scenarios were 0, 5, 10, 25, 50 and 100 µg Ag/g dry weight (dw) sediment. Lysosomal membrane stability...... of Nereis coelomocytes, which was measured by neutral red retention time (NRRT), decreased in a concentration-dependent manner in all Ag treatments, indicating increased permeability of lysosomal membranes. Comet assay results showed that Ag was able to cause DNA damage in Nereis coelomocytes regardless......In this study, the toxicities of commercial silver nanoparticles (Ag NPs, 20 and 80 nm) were compared with the toxicities of Ag+ ions in the marine sediment-dwelling polychaete, Nereis diversicolor, after 10 d of sediment exposure, using lysosomal membrane stability (neutral red assay), DNA damage...

  2. Research on the uptake of mercury 197 acetate in early bronchial cancers and on the variation of this uptake during drug therapy

    International Nuclear Information System (INIS)

    Gautier, H.M.

    1975-01-01

    Mercury 197 was proposed as a means to analyze the behavior of early bronchial cancers, especially during drug treatment. This choice was based on four facts: a hyperfixation of mercury has already been demonstrated in malignant intrathoracic tumors; the use of mercury 197 in acetate form gives higher uptake rates than those observed with bichloride; because of its properties mercury 197 is easy to use in routine radioisotopic practice; mercury toxicity is negligible with the preparation employed. The work was performed in two stages: analysis of the uptake conditions for mercury 197 in acetate form in order to detect the factors which influence this uptake and to define its limits and advantages; on the basis of the above notions, use of mercury 197 as tracer to follow the development of bronchial tumors, the aim being to observe the tumor volume variation under drug treatment (the changes in uptake rate are analyzed and the numerical results obtained used to estimate the degree of efficiency of the treatment proposed, the moment of maximum result and the start of a new tumoral growth) [fr

  3. Select toxic metals status of pregnant women with history of ...

    African Journals Online (AJOL)

    Toxic metals are part of the most important groups of environmental pollutants that can bind to vital cellular components and interfere with their functions via inhalation, foods, water etc. The serum levels of toxic metals (lead, mercury, cadmium and arsenic) in pregnant women with history of pregnancy complications, ...

  4. Cellular distribution of inorganic mercury and its relation to cytotoxicity in bovine kidney cell cultures

    International Nuclear Information System (INIS)

    Bracken, W.M.; Sharma, R.P.; Bourcier, D.R.

    1984-01-01

    A bovine kidney cell culture system was used to assess what relationship mercuric chloride (HgCl 2 ) uptake and subcellular distribution had to cytotoxicity. Twenty-four-hour incubations with 0.05-50 μM HgCl 2 elicited a concentration-related cytotoxicity. Cellular accumulation of 203 Hg was also concentration-related, with 1.0 nmol/10 6 cells at the IC50. Measurement of Hg uptake over the 24-h exposure period revealed a multiphasic process. Peak accumulation was attained by 1 h and was followed by extrusion and plateauing of intracellular Hg levels. Least-squares regression analysis of the cytotoxicity and cellular uptake data indicated a potential relationship between the Hg uptake and cytotoxicity. However, the subcellular distribution of Hg was not concentration-related. Mitochondria and soluble protein fractions accounted for greater than 65% of the cell-associated Hg at all concentrations. The remaining Hg was distributed between the microsomal (6-10%) and nuclear and cell debris (11-22%) fractions at all concentrations tested. Less than 20% of the total cell-associated Hg was bound with metallothionein-like protein. 31 references, 4 figures, 3 tables

  5. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor

    NARCIS (Netherlands)

    Zelcer, Noam; Hong, Cynthia; Boyadjian, Rima; Tontonoz, Peter

    2009-01-01

    Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. Here we show that the sterol-responsive nuclear liver X receptor (LXR) helps maintain cholesterol homeostasis, not only through promotion of cholesterol efflux but also through suppression of low-density

  6. Uptake and accumulation of potentially toxic elements in colonized plant species around the world's largest antimony mine area, China.

    Science.gov (United States)

    Long, Jiumei; Tan, Di; Deng, Sihan; Lei, Ming

    2018-04-11

    To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world's largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17-106, 17-87, and 3-7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg -1 ); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg -1 , respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg -1 ). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.

  7. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively.

    Science.gov (United States)

    Dimkpa, C O; Merten, D; Svatos, A; Büchel, G; Kothe, E

    2009-11-01

    As a toxic metal, cadmium (Cd) affects microbial and plant metabolic processes, thereby potentially reducing the efficiency of microbe or plant-mediated remediation of Cd-polluted soil. The role of siderophores produced by Streptomyces tendae F4 in the uptake of Cd by bacteria and plant was investigated to gain insight into the influence of siderophores on Cd availability to micro-organisms and plants. The bacterium was cultured under siderophore-inducing conditions in the presence of Cd. The kinetics of siderophore production and identification of the siderophores and their metal-bound forms were performed using electrospray ionization mass spectrometry. Inductively coupled plasma spectroscopy was used to measure iron (Fe) and Cd contents in the bacterium and in sunflower plant grown in Cd-amended soil. Siderophores significantly reduced the Cd uptake by the bacterium, while supplying it with iron. Bacterial culture filtrates containing three hydroxamate siderophores secreted by S. tendae F4 significantly promoted plant growth and enhanced uptake of Cd and Fe by the plant, relative to the control. Furthermore, application of siderophores caused slightly more Cd, but similar Fe uptake, compared with EDTA. Bioinoculation with Streptomyces caused a dramatic increase in plant Fe content, but resulted only in slight increase in plant Cd content. It is concluded that siderophores can help reduce toxic metal uptake in bacteria, while simultaneously facilitating the uptake of such metals by plants. Also, EDTA is not superior to hydroxamate siderophores in terms of metal solubilization for plant uptake. The study showed that microbial processes could indirectly influence the availability and amount of toxic metals taken up from the rhizosphere of plants. Furthermore, although EDTA is used for chelator-enhanced phytoremediation, microbial siderophores would be ideal for this purpose.

  8. ``Sheddable'' PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake

    Science.gov (United States)

    Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie

    2016-05-01

    PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic

  9. Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: Isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Renuka Gonte

    2016-09-01

    Full Text Available Hypercrosslinked styrene-maleic acid copolymer beads were used for the removal of metal ions from mimicked industrial effluents. The polymer was characterized by SEM which revealed the presence of a porous network. Carboxyl acid groups of the polymer were identified as active sites for metal uptake. Highly porous surface enhanced metal ion uptake was achieved through a physicochemical process. Equilibrium sorption of metal ions was best described by the Freundlich and Temkin model with R2 > 0.99. Adsorption followed pseudo first and pseudo second order reaction kinetics. Intraparticle diffusion model suggested a three step equilibrium. Desorption was a fast process with ∼90% in 60 min.

  10. Paraquat: model for oxidant-initiated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bus, J.S.; Gibson, J.E.

    1984-04-01

    Paraquat, a quaternary ammonium bipyridyl herbicide, produces degenerative lesions in the lung after systemic administration to man and animals. The pulmonary toxicity of paraquat resembles in several ways the toxicity of several other lung toxins, including oxygen, nitrofurantoin and bleomycin. Although a definitive mechanism of toxicity of parquat has not been delineated, a cyclic single electron reduction/oxidation of the parent molecule is a critical mechanistic event. The redox cycling of paraquat has two potentially important consequences relevant to the development of toxicity: generation of activated oxygen (e.g., superoxide anion, hydrogen perioxide, hydroxyl radical) which is highly reactive to cellular macromolecules; and/or oxidation of reducing equivalents (e.g., NADPH, reduced glutathione) necessary for normal cell function. Paraquat-induced pulmonary toxicity, therefore, is a potentially useful model for evaluation of oxidant mechanisms of toxicity. Furthermore, characterization of the consequences of intracellular redox cycling of xenobiotics will no doubt provide basic information regarding the role of this phenomena in the development of chemical toxicity. 105 references, 2 figures.

  11. Nanodiamond internalization in cells and the cell uptake mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  12. Nanodiamond internalization in cells and the cell uptake mechanism

    International Nuclear Information System (INIS)

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-01-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  13. Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora.

    Science.gov (United States)

    Liu, Chunguang; Dai, Zheng; Xia, Jingye; Chang, Can; Sun, Hongwen

    2018-08-15

    Boron toxicity is a worldwide problem, usually accompanied by salt (NaCl) and drought. The combined stresses may induce complex toxicity to the plant. The aim of the present study was to investigate how the combined stresses of salt and drought affect B toxicity in plants. Puccinellia tenuiflora seedlings were planted in vermiculite. A three (B) × three (salt) × three (drought) factorial experiment (for a total of 27 treatments) was conducted. After a 30-day cultivation, plants were harvested to determine dry weight and the concentrations of B, Na + , K + , Ca 2+ , and Mg 2+ . Plant growth was inhibited by B toxicity, which was alleviated by salt and drought. B stress enhanced B uptake and transport of the plant, which was inhibited by salt and drought. B stress had a little effect on K + and Na + concentration and caused Ca 2+ and Mg 2+ accumulation in the plant. Salt addition increased Na + concentration and inhibited Ca 2+ and Mg 2+ accumulation. Drought addition inhibited Na + accumulation and enhanced Ca 2+ and Mg 2+ accumulation. The combined stresses of salt and drought had a greater alleviation on the inhibition of dry weight caused by B than individual salt and drought. Besides, the combined stresses of salt and drought also enhanced B uptake and inhibited B transport. The results indicate that salt, drought, and the combined stresses of salt and drought all can alleviate B toxicity in P. tenuiflora, the main mechanism of which is the restriction of B and Na + uptake caused by salt and drought. The combined stresses of salt and drought have a greater effect on B toxicity than individual salt and drought. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Developmental toxicity of oxidized multi-walled carbon nanotubes on Artemia salina cysts and larvae: Uptake, accumulation, excretion and toxic responses.

    Science.gov (United States)

    Zhu, Song; Luo, Fei; Tu, Xiao; Chen, Wei-Chao; Zhu, Bin; Wang, Gao-Xue

    2017-10-01

    Using Artemia salina (A. salina) cysts (capsulated and decapsulated) and larvae [instar I (0-24 h), II (24-48 h) and III (48-72 h)] as experimental models, developmental toxicity of oxidized multi-walled carbon nanotubes (O-MWCNTs) was evaluated. Results revealed that hatchability of capsulated and decapsulated cysts was significantly decreased (p larvae in 600 mg/L. The EC 50 values for swimming inhibition of instar I, II and III were 535, 385 and 472 mg/L, respectively. Instar II showed the greatest sensitivity to O-MWCNTs, and followed by instar III, instar I, decapsulated cysts and capsulated cysts. Effects on hatchability, mortality and swimming were accounted for O-MWCNTs rather than metal catalyst impurities. Body length was decreased with the concentrations increased from 0 to 600 mg/L. O-MWCNTs attached onto the cysts, gill and body surface, resulting in irreversible damages. Reactive oxygen species, malondialdehyde content, total antioxidant capacity and antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) activities were increased following exposure, indicating that the effects were related to oxidative stress. O-MWCNTs were ingested and distributed in phagocyte, lipid vesicle and intestine. Most of the accumulated O-MWCNTs were excreted by A. salina at 72 h, but some still remained in the organism. Data of uptake kinetics showed that O-MWCNTs contents in A. salina were gradually increased from 1 to 48 h and followed by rapidly decreased from 48 to 72 h with a range from 5.5 to 28.1 mg/g. These results so far indicate that O-MWCNTs have the potential to affect aquatic organisms when released into the marine ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Thermal Stress and Toxicity | Science Inventory | US EPA

    Science.gov (United States)

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable

  16. In vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET

    International Nuclear Information System (INIS)

    Wong, Peter K.; Lee, Sze Ting; Murone, Carmel; Eng, John; Lawrentschuk, Nathan; Berlangieri, Salvatore University; Pathmaraj, Kunthi; O’Keefe, Graeme J.; Sachinidis, John; Byrne, Amanda J.; Bolton, Damien M.; Davis, Ian D.; Scott, Andrew M.

    2014-01-01

    The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18F-fluorothymidine (FLT) PET in renal cell carcinoma (RCC), and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferation (Ki-67). Twenty seven patients (16 male, 11 females; age 42-77) with newly diagnosed renal cell carcinoma suitable for resection were prospectively enrolled. All patients had preoperative FLT and FDG PET scans. Visual identification of tumour using FLT PET compared to normal kidney was facilitated by the use of a pre-operative contrast enhanced CT scan. After surgery tumour was taken for histologic analysis and immunohistochemical staining by Ki-67. The SUVmax (maximum standardized uptake value) mean±SD for FLT in tumour was 2.59±1.27, compared to normal kidney (2.47±0.34). The mean SUVmax for FDG in tumour was similar to FLT (2.60±1.08). There was a significant correlation between FLT uptake and the immunohistochemical marker Ki-67 (r=0.72, P<0.0001) in RCC. Ki-67 proliferative index was mean ± SD of 13.3%±9.2 (range 2.2% - 36.3%). There is detectable uptake of FLT in primary renal cell carcinoma, which correlates with cellular proliferation as assessed by Ki-67 labelling index. This finding has relevance to the use of FLT PET in molecular imaging studies of renal cell carcinoma biology

  17. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery.

    Science.gov (United States)

    Sadekar, S; Ghandehari, H

    2012-05-01

    This article summarizes efforts to evaluate poly(amido amine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the effect of PAMAM generation, surface charge and surface modification on toxicity, cellular uptake and transepithelial transport is discussed. Studies on Caco-2 monolayers, as models of intestinal epithelial barrier, show that by engineering surface chemistry of PAMAM dendrimers, it is possible to minimize toxicity while maximizing transepithelial transport. It has been demonstrated that PAMAM dendrimers are transported by a combination of paracellular and transcellular routes. Depending on surface chemistry, PAMAM dendrimers can open the tight junctions of epithelial barriers. This tight junction opening is in part mediated by internalization of the dendrimers. Transcellular transport of PAMAM dendrimers is mediated by a variety of endocytic mechanisms. Attachment or complexation of cytotoxic agents to PAMAM dendrimers enhances the transport of such drugs across epithelial barriers. A remaining challenge is the design and development of linker chemistries that are stable in the gastrointestinal tract (GIT) and the blood stream, but amenable to cleavage at the target site of action. Recent efforts have focused on the use of PAMAM dendrimers as penetration enhancers. Detailed in vivo oral bioavailability of PAMAM dendrimer-drug conjugates, as a function of physicochemical properties will further need to be assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Mechanistic investigation of toxicity of chromium oxide nanoparticles in murine fibrosarcoma cells

    Directory of Open Access Journals (Sweden)

    Alarifi S

    2016-03-01

    Full Text Available Saud Alarifi, Daoud Ali, Saad Alkahtani Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia Abstract: Chromium oxide nanoparticles (Cr2O3NPs are widely used in polymers and paints. In the present study, we aimed to determine the toxicity of Cr2O3NPs in murine fibrosarcoma (L929 cells. The cytotoxicity of Cr2O3NPs was measured by MTT and neutral red uptake assays; Cr2O3NPs had significant cytotoxic effects on L929 cells. Enhancement of intracellular reactive oxygen species was observed in L929 cells after exposure to Cr2O3NPs. Cr2O3NPs produced caspase-3, indicating that exposure to Cr2O3NPs induced apoptosis. After exposure to Cr2O3NPs, the cellular glutathione level decreased and lipid peroxidation, superoxide dismutase, and catalase increased in a dose- and time-dependent manner. By using single-cell gel tests, we also observed increased DNA damage in a Cr2O3NP exposure-duration- and dose-dependent fashion. Cell toxicity and DNA damage may be useful biomarkers for determining the safety of Cr2O3NPs in human and animal health. Keywords: Cr2O3NPs, L929 cells, MTT assay, oxidative stress 

  19. An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow–force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx

    Science.gov (United States)

    Le Deunff, Erwan; Malagoli, Philippe

    2014-01-01

    Background and Aims In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. Methods A cross-combination of a Flow–Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to ‘Enzyme–Substrate’ interpretations, a Flow–Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. Key Results and Conclusions Use of a Flow–Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure–function mechanistic model of N uptake. PMID:24638820

  20. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Hirano, Seishiro; Fujitani, Yuji; Furuyama, Akiko; Kanno, Sanae

    2010-01-01

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC 50 of MWCNT was 12 μg/ml, whereas that of asbestos (crocidolite) was 678 μg/ml. Over the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 μg/ml. BEAS-2B cells were exposed to 2, 5, or 10 μg/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-κB or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-κB was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-κB, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.

  1. Quantitative uptake of colloidal particles by cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Neus [Department of Physics, Philipps University Marburg, Marburg (Germany); Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Hühn, Jonas; Zyuzin, Mikhail V.; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif [Department of Physics, Philipps University Marburg, Marburg (Germany); Said, Alaa Hassan [Department of Physics, Philipps University Marburg, Marburg (Germany); Physics Department, Faculty of Science, South Valley University (Egypt); Escudero, Alberto [Department of Physics, Philipps University Marburg, Marburg (Germany); Instituto de Ciencia de Materiales de Sevilla, CSIC — Universidad de Sevilla, Seville (Spain); Pelaz, Beatriz [Department of Physics, Philipps University Marburg, Marburg (Germany); Gonzalez, Elena [Department of Physics, Philipps University Marburg, Marburg (Germany); University of Vigo, Vigo (Spain); Duarte, Miguel A. Correa [University of Vigo, Vigo (Spain); Roy, Sathi [Department of Physics, Philipps University Marburg, Marburg (Germany); Chakraborty, Indranath [Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL (United States); Lim, Mei L.; Sjöqvist, Sebastian [Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Jungebluth, Philipp [Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg (Germany); Parak, Wolfgang J., E-mail: wolfgang.parak@physik.uni-marburg.de [Department of Physics, Philipps University Marburg, Marburg (Germany); CIC biomaGUNE, San Sebastian (Spain)

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  2. Comparison of toxicity of class-based organic chemicals to algae and fish based on discrimination of excess toxicity from baseline level.

    Science.gov (United States)

    Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H

    2015-07-01

    Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles.

    Science.gov (United States)

    Hu, Xiangang; Ouyang, Shaohu; Mu, Li; An, Jing; Zhou, Qixing

    2015-09-15

    Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.

  4. Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods

    International Nuclear Information System (INIS)

    Luo, Wei; Verweij, Rudo A.; Gestel, Cornelis A.M. van

    2014-01-01

    This study aimed at assessing the bioavailability and toxicity of lead to Eisenia andrei in shooting range soils representing different land uses (forest, grassland, bullet plot). Soils contained 47–2398 mg Pb/kg dry weight (dw), but also had different pH-CaCl 2 (3.2–6.8) and organic matter contents (3.8–13%). Therefore artificial soils with different pH and organic matter contents and two natural soils were included as control soils. Earthworms were exposed for 28 days and toxicity and uptake of Pb were related to total, water and 0.01 M CaCl 2 extractable and porewater Pb concentrations as well as to soil characteristics. Pb uptake in the earthworms linearly increased with increasing soil concentrations. At >2000 mg Pb/kg dw and pH 3.3–3.5, high earthworm mortality with significant weight loss and complete inhibition of reproduction were recorded. At <1000 mg/kg dw, earthworm reproduction was more related to differences in pH and other soil characteristics than to Pb. -- Highlights: • Availability and earthworm toxicity of Pb determined in field-contaminated soils. • Earthworm toxicity of most-polluted soils explained from available Pb levels. • Earthworm response in less polluted soils mainly determined by soil pH. • Earthworm toxicity correlated with Pb uptake from the soil. • Soil properties explained differences in earthworm Pb uptake and effects. -- Combination of physicochemical and biological assays helped explaining Pb toxicity in shooting range soils from available Pb concentrations and soil characteristics

  5. Role of uptake of [14C]valine into protein in the development of tolerance to diisopropylphosphorofluoridate (DFP) toxicity

    International Nuclear Information System (INIS)

    Gupta, R.C.; Dettbarn, W.D.

    1986-01-01

    In a subchronic toxicity study male Sprague-Dawley rats were daily treated with diisopropylphosphorofluoridate (DFP) (0.5 mg/kg, sc) for 14 days. Maximum signs of anticholinesterase toxicity were observed during Days 4 and 5 comparable to those seen 10-15 min following a single sublethal dosage (1.5 mg DFP/kg, sc). Signs disappeared after Days 6-7 of exposure and rats became apparently normal during the remainder of the treatment period. Significant hypothermia was seen following the second to fifth doses with maximum effect after the fifth injection. Subsequent injections of DFP did not cause any reduction in temperature. Incorporation of [ 14 C]valine was measured 24 hr after the 5th and 14th injections of DFP, at a time when body temperature had recovered to control values. The rate of in vivo incorporation of [ 14 C]valine was measured 0.5, 1.0, and 2.0 hr after a subcutaneous injection of L-[1- 14 C]valine at a dose of 5 microCi/mmol/100 g body wt. After five injections the rate of L-[1- 14 C]valine uptake into the free amino acid pool and the incorporation into the protein bound pool was significantly (p less than 0.01) reduced in discrete brain regions, liver, kidney, and skeletal muscles. At the end of the 14-day treatment, protein synthesis in all the skeletal muscles tested had recovered completely (p greater than 0.01) to the values of nontreated control animals. In brain, liver, and kidney, however, no recovery was seen during this period. The recovery of protein synthesis in skeletal muscle may be one of the mechanisms that lead to tolerance development during prolonged administration of subacute concentrations of DFP

  6. Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids

    Digital Repository Service at National Institute of Oceanography (India)

    Augustine, M.S.; Anas, A.; Das, A.V.; Sreekanth, S.; Jayalekshmi, S.

    into solution and by generating free radical species. In animal experiments, QDs preferentially enter the liver and spleen follow-ing intravascular injection which undergo minimal excretion if lar-ger than 6 nm, and appear to be safe to the animal. The present... recently on toxicity studies of quantum dots (QDs) in cells and animals [49,50]. Cell culture experiments have shown that QDs undergo design- dependent intracellular localiza-tion which can cause cytotoxicity by releasing free toxic materials...

  7. Phytoextraction of toxic metals: a central role for glutathione.

    Science.gov (United States)

    Seth, C S; Remans, T; Keunen, E; Jozefczak, M; Gielen, H; Opdenakker, K; Weyens, N; Vangronsveld, J; Cuypers, A

    2012-02-01

    Phytoextraction has a promising potential as an environmentally friendly clean-up method for soils contaminated with toxic metals. To improve the development of efficient phytoextraction strategies, better knowledge regarding metal uptake, translocation and detoxification in planta is a prerequisite. This review highlights our current understanding on these mechanisms, and their impact on plant growth and health. Special attention is paid to the central role of glutathione (GSH) in this process. Because of the high affinity of metals to thiols and as a precursor for phytochelatins (PCs), GSH is an essential metal chelator. Being an important antioxidant, a direct link between metal detoxification and the oxidative challenge in plants growing on contaminated soils is observed, where GSH could be a key player. In addition, as redox couple, oxidized and reduced GSH transmits specific information, in this way tuning cellular signalling pathways under environmental stress conditions. Possible improvements of phytoextraction could be achieved by using transgenic plants or plant-associated microorganisms. Joined efforts should be made to cope with the challenges faced with phytoextraction in order to successfully implement this technique in the field. © 2011 Blackwell Publishing Ltd.

  8. Role of {sup 18}F-FDG PET-CT in monitoring the cyclophosphamide induced pulmonary toxicity in patients with breast cancer - 2 Case Reports

    Energy Technology Data Exchange (ETDEWEB)

    Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar [A.I.I.M.S, New Delhi (India)

    2016-09-15

    Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ({sup 18}F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of {sup 18}F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim {sup 18}F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on {sup 18}F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.

  9. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  10. Notes on the physiology of Hg uptake by the kidney

    International Nuclear Information System (INIS)

    Raynaud, C.

    1976-01-01

    The kidney has many functions of which the best known is excretion, and the purpose of most functional exploration methods is to study the excretion capacity. The Hg uptake test explores another function, the uptake of metals and toxic substances. The uptake process involves an active transport through the peritubular membrane and a concentration inside the kidney cell in a bound or insoluble form. Transfer into the tubular lumen, if any, is quantitatively negligible and appears to be due to neither an active nor a passive transfer. This uptake process may be identified in vivo from the shape of the kidney and urine radioactivity curves, even when excretion and uptake are associated, the former curve rising slowly to a plateau while the latter, very low, also appears to reach a plateau. The kidney and urine 197 HgCl 2 radioactivity curves illustrate this process very well. The 197 Hg uptake fraction at the plateau level has been proposed has a kidney function exploration test, this value being related by a highly significant correlation to other quantitative tests such as inuline and PAH clearances, PAH Tm and urine concentration capacity. In rats the 197 HgCl 2 uptake area has been located, by measurements on dissected nephrons, at the pars recta and to a lesser extent the whole of the proximal convolution [fr

  11. Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)

    Science.gov (United States)

    Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...

  12. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.

    Science.gov (United States)

    Allred, Benjamin E; Rupert, Peter B; Gauny, Stacey S; An, Dahlia D; Ralston, Corie Y; Sturzbecher-Hoehne, Manuel; Strong, Roland K; Abergel, Rebecca J

    2015-08-18

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.

  13. Quantification of inhaled aerosol particles composed of toxic household disinfectant using radioanalytical method.

    Science.gov (United States)

    Shim, Ha Eun; Lee, Jae Young; Lee, Chang Heon; Mushtaq, Sajid; Song, Ha Yeon; Song, Lee; Choi, Seong-Jin; Lee, Kyuhong; Jeon, Jongho

    2018-05-25

    To assess the risk posed by a toxic chemical to human health, it is essential to quantify its uptake in a living subject. This study aims to investigate the biological distribution of inhaled polyhexamethylene guanidine (PHMG) aerosol particle, which is known to cause severe pulmonary damage. By labeling with indium-111 ( 111 In), we quantified the uptake of PHMG for up to 7 days after inhalation exposure in rats. The data demonstrate that PHMG is only slowly cleared, with approximately 74% of inhaled particles persisting in the lungs after 168 h. Approximately 5.3% of inhaled particles were also translocated to the liver after 168 h, although the level of redistribution to other tissues, including the kidneys and spleen, was minimal. These observations suggest that large uptake and slow clearance may underlie the fatal inhalation toxicity of PHMG in humans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).

    Science.gov (United States)

    Poteat, Monica D; Buchwalter, David B

    2014-04-01

    Calcium sequestration in the hypo-osmotic freshwater environment is imperative in maintaining calcium homeostasis in freshwater aquatic organisms. This uptake process is reported to have the unintended consequence of potentially toxic heavy metal (Cd, Zn) uptake in a variety of aquatic species. However, calcium uptake remains poorly understood in aquatic insects, the dominant invertebrate faunal group in most freshwater ecosystems. Here, we examined Ca uptake and interactions with heavy metals (Cd, Zn) at low ambient Ca levels (12.5 μmol l(-1)) in 12 aquatic insect species within Ephemerellidae (mayfly) and Hydropsychidae (caddisfly), two families differentially responsive to trace metal pollution. We found Ca uptake varied 70-fold across the 12 species studied. Body mass and clade (family) were found to significantly influence both Ca uptake and adsorption (P≤0.05). Zn and Cd uptake rate constants (ku) exhibited a strong correlation (r=0.96, Pinsects generally differ from other freshwater taxa in that aqueous Ca uptake does not appear to be compromised by Cd or Zn exposure. It is important to understand the trace metal and major ion physiology of aquatic insects because of their ecological importance and widespread use as ecological indicators.

  15. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.

    Science.gov (United States)

    Hannan, Shabab B; Dräger, Nina M; Rasse, Tobias M; Voigt, Aaron; Jahn, Thomas R

    2016-04-01

    Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes

  16. Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system

    NARCIS (Netherlands)

    Ellis, James Keith; Athersuch, Toby James; Cavill, Rachel; Radford, Robert; Slattery, Craig; Jennings, Paul; McMorrow, Tara; Ryan, Michael P; Ebbels, Timothy Mark David; Keun, Hector Charles

    Toxicity testing is vital to protect human health from exposure to toxic chemicals in the environment. Furthermore, combining novel cellular models with molecular profiling technologies, such as metabolomics can add new insight into the molecular basis of toxicity and provide a rich source of

  17. The prion-ZIP connection: From cousins to partners in iron uptake

    Science.gov (United States)

    Singh, Neena; Asthana, Abhishek; Baksi, Shounak; Desai, Vilok; Haldar, Swati; Hari, Sahi; Tripathi, Ajai K

    2015-01-01

    ABSTRACT Converging observations from disparate lines of inquiry are beginning to clarify the cause of brain iron dyshomeostasis in sporadic Creutzfeldt-Jakob disease (sCJD), a neurodegenerative condition associated with the conversion of prion protein (PrPC), a plasma membrane glycoprotein, from α-helical to a β-sheet rich PrP-scrapie (PrPSc) isoform. Biochemical evidence indicates that PrPC facilitates cellular iron uptake by functioning as a membrane-bound ferrireductase (FR), an activity necessary for the transport of iron across biological membranes through metal transporters. An entirely different experimental approach reveals an evolutionary link between PrPC and the Zrt, Irt-like protein (ZIP) family, a group of proteins involved in the transport of zinc, iron, and manganese across the plasma membrane. Close physical proximity of PrPC with certain members of the ZIP family on the plasma membrane and increased uptake of extracellular iron by cells that co-express PrPC and ZIP14 suggest that PrPC functions as a FR partner for certain members of this family. The connection between PrPC and ZIP proteins therefore extends beyond common ancestry to that of functional cooperation. Here, we summarize evidence supporting the facilitative role of PrPC in cellular iron uptake, and implications of this activity on iron metabolism in sCJD brains. PMID:26689487

  18. Thyroid hormone stimulated glucose uptake in human mononuclear blood cells from normal persons and from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1989-01-01

    Thyroxine and T3 induced oxygen consumption and glucose uptake were studied in vitro in mononuclear blood cells isolated from patients with non-insulin-dependent diabetes mellitus (NIDDM) and from non-diabetic control persons. Cellular oxygen consumption and glucose uptake were promptly increased...

  19. In-vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine (FLT) PET

    International Nuclear Information System (INIS)

    Wong, P.; Lee, S. T.; Eng, J.; Berlangieri, S. U.; Pathmaraj, K.; O'Keefe, G. J.; Lawrentschuk, N.

    2009-01-01

    Full text:Background: The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18F-fluorothymidine (FLT) in renal cell carcinoma, and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferation (Ki-67). Methods: Twenty seven patients (16 men, 11 women; age 42-77) with newly diagnosed renal cell carcinoma suitable for resection were prospectively enrolled. All patients had preoperative FLT and FDG PET scans. After surgery tumour was taken for histologic analysis and immunohistochemical staining by Ki-67. Results: The mean SUVmax (maximum standardized uptake value) ± SD for FLT in tumour was 2.53 ± 1.26, compared to normal kidney (2.47 ± 0.34). The mean SUVmax for FDG in tumour was similar to FLT (2.60 ± 1.08). Visual identification of tumour using FLT PET compared to normal kidney was facilitated by the use of a pre-operative contrast enhanced CT scan. There was a significant correlation between FLT uptake and the immunohistochemical marker Ki-67 (r=0.624, p=0.0008) in RCC. Ki-67 labelling index was mean ± SD of 13.3% ± 9.2 (range 2.2% to 36.3%). Conclusion: There is detectable uptake of FLT in primary renal cell carcinoma, which correlates with cellular proliferation as assessed by Ki-67 labelling index. This finding has relevance to the use of FLT PET in molecular imaging studies of renal cell carcinoma biology.

  20. Quantitative understanding of nanoparticle uptake in watermelon plants

    Directory of Open Access Journals (Sweden)

    Ramesh Raliya

    2016-08-01

    Full Text Available The use of agrochemical-nutrient fertilizers has come under scrutiny in recent years due to concerns that they damage the ecosystem and endanger public health. Nanotechnology offers many possible interventions to mitigate these risks by use of nanofertilizers, nanopesticides, and nanosensors; and concurrently increases profitability, yields, and sustainability within the agricultural industry. Aerosol based foliar delivery of nanoparticles may help to enhance nanoparticle uptake and reduce environmental impacts of chemical fertilizers conventionally applied through a soil route. The purpose of this work was to study uptake, translocation, and accumulation of various gold nanostructures, 30 to 80 nm, delivered by aerosol application to a watermelon plant. Cellular uptake and accumulation of gold nanoparticles were quantified by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS. Observations suggested that nanoparticles could be taken up by the plant through direct penetration and transport through the stomatal opening. Observed translocation of nanoparticles from leaf to root shows evidence that nanoparticles travel by the phloem transport mechanism. Accumulation and transport of nanoparticles depend on nanoparticle shape, application method, and nature of plant tissues.

  1. Cellular and molecular responses of E. fetida coelomocytes exposed to TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bigorgne, Emilie, E-mail: emilie.bigorgne@univ-lorraine.fr; Foucaud, Laurent [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France); Caillet, Celine [Universite de Lorraine-Laboratoire Environnement et Mineralurgie (LEM) CNRS UMR7569 (France); Giamberini, Laure; Nahmani, Johanne [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France); Thomas, Fabien [Universite de Lorraine-Laboratoire Environnement et Mineralurgie (LEM) CNRS UMR7569 (France); Rodius, Francois [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France)

    2012-07-15

    An in vitro approach using coelomocytes of Eisenia fetida was investigated to evaluate toxicity of TiO{sub 2} nanoparticles. Coelomocytes were exposed to well-dispersed suspension of small aggregates (130 nm) of TiO{sub 2} nanoparticles (1-25 {mu}g/ml) during 4, 12 and 24 h. Intracellular localisation suggested that the main route of uptake was endocytosis. Cellular responses showed that TiO{sub 2} nanoparticles were not cytotoxic and had no effect on phagocytosis at any of the four concentrations for each time tested. Concerning molecular responses, an increase of fetidin and metallothionein mRNA expression was observed starting from 4 h of exposure. In contrast, expression of coelomic cytolytic factor mRNA decreased for 10 and 25 {mu}g/ml after 4 h. Superoxide dismutase, catalase and glutathione-S-transferase expression were not modified suggesting that oxidative stress was not induced by TiO{sub 2} in our experimental conditions. This in vitro approach showed that TiO{sub 2} nanoparticles were taken up by coelomocytes and they could modify the molecular response of immune and detoxification system.

  2. Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling

    DEFF Research Database (Denmark)

    Fantke, Peter; Wieland, Peter; Wannaz, Cedric

    2013-01-01

    Dynamic plant uptake models are suitable for assessing environmental fate and behavior of toxic chemicals in food crops. However, existing tools mostly lack in-depth analysis of system dynamics. Furthermore, no existing model is available as parameterized version that is easily applicable for use...

  3. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology.

    Science.gov (United States)

    Saller, S; Kunz, L; Berg, D; Berg, U; Lara, H; Urra, J; Hecht, S; Pavlik, R; Thaler, C J; Mayerhofer, A

    2014-03-01

    Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the

  4. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  5. Membrane Potential-dependent Uptake of 18F-triphenylphosphonium - A New Voltage Sensor as an Imaging Agent for Detecting Burn-induced Apoptosis

    Science.gov (United States)

    Zhao, Gaofeng; Yu, Yong-Ming; Shoup, Timothy M.; Elmaleh, David R.; Bonab, Ali A.; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Background Mitochondrial dysfunction has been closely related to many pathological processes, such as cellular apoptosis. Alterations in organelle membrane potential are associated with mitochondrial dysfunction. A fluorine -18 labeled phosphonium compound: 18F-triphenylphosphonium (18F-TPP) was prepared to determine its potential use as a mitochondria-targeting radiopharmaceutical to evaluate cellular apoptosis. Methods Studies were conducted in both ex vivo cell lines and in vivo using a burned animal model. Uptake of 18F-TPP was assessed in PC-3 cells by gamma counting under the following conditions: graded levels of extra-cellular potassium concentrations, incubation with carbonyl cyanide m-chlorophenylhydrazone (CCCP) and staurosporine. Apoptosis was studied in a burn animal model using TUNEL staining and simultaneous assessment of 18F-TPP uptake by biodistribution. Results We found that stepwise membrane depolarization by potassium (K) resulted in a linear decrease in 18F-TPP uptake, with a slope of 0.62+/−0.08 and a correlation coefficient of 0.936+/−0.11. Gradually increased concentrations of CCCP lead to decreased uptakes of 18F-TPP. Staurosporine significantly decreased the uptake of 18F-TPP in PC-3 cells from 14.2+/−3.8% to 5.6+/−1.3% (P<0.001). Burn induced significant apoptosis (sham: 4.4 +/−1.8% vs. burn: 24.6+/− 6.7 %; p<0.005) and a reduced uptake of tracer in the spleens of burn injured animals as compared to sham burn controls (burn: 1.13+/−0.24% vs. sham: 3.28+/−0.67%; p<0.005). Biodistribution studies demonstrated that burn induced significant reduction in 18F-TPP uptake in spleen, heart, lung, and liver, which were associated with significantly increased apoptosis. Conclusions 18F-TPP is a promising new voltage sensor for detecting mitochondrial dysfunction and apoptosis in various tissues. PMID:24582214

  6. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Feswick, A., E-mail: afeswick@yahoo.ca [Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States); Canadian Rivers Institute, University of New Brunswick, PO Box 5050, Saint John NB, CA (United States); Griffitt, R.J., E-mail: joe.griffitt@usm.edu [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States); Siebein, K., E-mail: kerry.siebein@nist.gov [Major Analytical Instrumentation Center, University of Florida, PO Box 116400, Gainesville, FL 32611 (United States); Barber, D.S., E-mail: barberd@vetmed.ufl.edu [Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States)

    2013-04-15

    Highlights: ► Daphnia underwent a waterborne exposure of PEG, NH{sub 2} and COOH functionalized quantum dot nanoparticles. ► There was preferential retention of COOH nanoparticles. ► TEM demonstrated that NH{sub 2} and COOH nanoparticles were internalized in cells adjacent to the GI tract. ► This cellular internalization was confirmed using energy dispersive spectroscopy. -- Abstract: Nanomaterials are a diverse group of compounds whose inevitable release into the environment warrants study of the fundamental processes that govern the ingestion, uptake and accumulation in aquatic organisms. Nanomaterials have the ability to transfer to higher trophic levels in aquatic ecosystems, and recent evidence suggests that the surface chemistry of both the nanoparticle and biological membrane can influence uptake kinetics. Therefore, our study investigates the effect of surface functionalization on uptake, internalization and depuration in Daphnia spp. Uncharged (polyethylene glycol; PEG), positively charged (amino-terminated: NH{sub 2}) and negatively charged (carboxyl-modified; COOH) cadmium selenide/zinc sulfide quantum dots were used to monitor ingestion, uptake and depuration of nanometals in Daphnia magna and Ceriodaphnia dubia over 24 h of exposure. These studies demonstrated that particles with higher negative charge (COOH quantum dots) were taken up to a greater extent by Daphnia (259.17 ± 17.70 RFU/20 Daphnia) than either the NH{sub 2} (150.01 ± 18.91) or PEG quantum dots (95.17 ± 9.78), however this is likely related to the functional groups attached to the nanoparticles as there were no real differences in zeta potential. Whole body fluorescence associates well with fluorescent microscopic images obtained at the 24 h timepoint. Confocal and electron microscopic analysis clearly demonstrated that all three types of quantum dots could cross the intestinal epithelial barrier and be translocated to other cells. Upon cessation of exposure, elimination of

  7. Quercetin uptake and metabolism by murine peritoneal macrophages in vitro

    Directory of Open Access Journals (Sweden)

    Chieh-Jung Liu

    2015-12-01

    Full Text Available Quercetin (Q, a bioflavonoid ubiquitously distributed in vegetables, fruits, leaves, and grains, can be absorbed, transported, and excreted after oral intake. However, little is known about Q uptake and metabolism by macrophages. To clarify the puzzle, Q at its noncytotoxic concentration (44μM was incubated without or with mouse peritoneal macrophages for different time periods. Medium alone, extracellular, and intracellular fluids of macrophages were collected to detect changes in Q and its possible metabolites using high-performance liquid chromatography. The results showed that Q was unstable and easily oxidized in either the absence or the presence of macrophages. The remaining Q and its metabolites, including isorhamnetin and an unknown Q metabolite [possibly Q– (O-semiquinone], might be absorbed by macrophages. The percentage of maximal Q uptake by macrophages was found to be 2.28% immediately after incubation; however, Q uptake might persist for about 24 hours. Q uptake by macrophages was greater than the uptake of its methylated derivative isorhamnetin. As Q or its metabolites entered macrophages, those compounds were metabolized primarily into isorhamnetin, kaempferol, or unknown endogenous Q metabolites. The present study, which aimed to clarify cellular uptake and metabolism of Q by macrophages, may have great potential for future practical applications for human health and immunopharmacology.

  8. Characterization of Uptake and Internalization of Exosomes by Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Carrie A. Franzen

    2014-01-01

    Full Text Available Bladder tumors represent a special therapeutic challenge as they have a high recurrence rate requiring repeated interventions and may progress to invasive or metastatic disease. Exosomes carry proteins implicated in bladder cancer progression and have been implicated in bladder cancer cell survival. Here, we characterized exosome uptake and internalization by human bladder cancer cells using Amnis ImageStreamX, an image cytometer. Exosomes were isolated by ultracentrifugation from bladder cancer culture conditioned supernatant, labeled with PKH-26, and analyzed on the ImageStreamX with an internal standard added to determine concentration. Exosomes were cocultured with bladder cancer cells and analyzed for internalization. Using the IDEAS software, we determined exosome uptake based on the number of PKH-26+ spots and overall PKH-26 fluorescence intensity. Using unlabeled beads of a known concentration and size, we were able to determine concentrations of exosomes isolated from bladder cancer cells. We measured exosome uptake by recipient bladder cancer cells, and we demonstrated that uptake is dose and time dependent. Finally, we found that uptake is active and specific, which can be partially blocked by heparin treatment. The characterization of cellular uptake and internalization by bladder cancer cells may shed light on the role of exosomes on bladder cancer recurrence and progression.

  9. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.

    Science.gov (United States)

    Keating, Elisa; Martel, Fátima

    2018-01-01

    In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect-an aerobic lactatogenesis- characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.

  10. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.

    Directory of Open Access Journals (Sweden)

    Andrew F Taylor

    Full Text Available We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake.

  11. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    Science.gov (United States)

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  12. Toxicity of aluminium in natural waters controlled by type rather than quantity of natural organic matter

    International Nuclear Information System (INIS)

    Papathanasiou, Grigorios; White, Keith N.; Walton, Rachel; Boult, Stephen

    2011-01-01

    Extension of the conditions under which Al toxicity is tested is required. Environmentally representative preparation of waters is used in investigating roles of alginate (AA) and humic acids (HA) in partitioning of Al (0.5 mg L -1 ), subsequent uptake and accumulation by and toxicity to Lymnaea stagnalis. HA and AA did not alter precipitation of Al(OH) 3 , but altered subsequent behaviour of Al. High (40 mg L -1 ) HA concentrations, and to a lesser extent AA, prevented settling and availability for benthic grazing but made deposited Al more likely to be ingested. HA detoxified but AA increased toxicity relative to Al alone. Low concentration (4 mg L -1 ) AA and HA do not change partitioning but increase uptake; they both detoxify, but AA less than HA. The study shows OC:Al ratio is critical in predicting Al behaviour in natural waters, also uptake is mediated by snail behaviour, not solely a function of concentration and form of Al. Therefore, predicting Al behaviour will be subject to errors in determining relevant water composition and response of biota to the new speciation. However, with respect to toxicity, rather than other aspects of Al behaviour, different ratios of HA and Al are insignificant compared to whether AA is present rather than HA. - Highlights: → Toxicity assessment in which environmental relevance is of primary concern. → Mass balance of Al monitored throughout the exposure period. → Al behaviour influenced by concentration of organic matter. → Strong dependence of toxicity on type rather than concentration of organic matter. → Toxicity is a function of Al behaviour but also animal behaviour.

  13. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dov, Nadav [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel); Korenstein, Rafi, E-mail: korens@post.tau.ac.il [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  14. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dagmar A. Kuhn

    2014-09-01

    Full Text Available Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1 and a human alveolar epithelial type II cell line (A549. In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis. Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

  15. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in the seawater carbonate chemistry

    DEFF Research Database (Denmark)

    Trimborn, S; Lundholm, Nina; Thoms, S

    2008-01-01

    . In terms of carbon source, all species took up both CO2 and HCO3-. K-1/2 values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO3- to net fixation was more than 85% in S. stellaris......The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C-i) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo...... activities of carbonic anhydrase (CA), photosynthetic O-2 evolution and CO2 and HCO3- uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (e...

  16. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways

    Directory of Open Access Journals (Sweden)

    Kim E

    2016-09-01

    Full Text Available Eunjoo Kim,1 Joon Mee Kim,2 Lucia Kim,2 Suk Jin Choi,2 In Suh Park,2 Jee Young Han,2 Young Chae Chu,2 Eun Sook Choi,1 Kun Na,3 Soon-Sun Hong4 1Division of Nano and Energy Convergence Research, Daegu Gyeongbuk Institute of Science and Technology (DGIST, Daegu, 2Department of Pathology, Inha University College of Medicine, Incheon, 3Department of Biotechnology, Catholic University of Korea, Bucheon, 4Department of Biomedical Sciences, Inha University College of Medicine, Incheon, South Korea Abstract: In recent years, iron oxide nanoparticles (IONPs have been applied widely to biomedical fields. However, the relationship between the physicochemical properties of IONPs and their biological behavior is not fully understood yet. We prepared 3-methacryloxypropyl­trimethoxysilane (MPS-coated IONPs, which have a neutral hydrophobic surface, and compared their biological behavior to that of Resovist (ferucarbotran, a commercialized IONP formulation modified with carboxymethyl dextran. The rate of MPS-IONP uptake by human aortic endothelial cells (HAoECs was higher than ferucarbotran uptake, indicating that the neutral hydrophobic nature of MPS-IONPs allowed them to be absorbed more readily through the plasma membrane. However, the signaling pathways activated by MPS-IONPs and ferucarbotran were comparable, suggesting that surface charge is not a key factor for inducing changes in HAoECs. In vivo fate analysis showed that MPS-IONPs accumulated for longer periods in tissues than hydrophilic ferucarbotran. These findings could enlarge our understanding of NP behavior for advanced applications in the biomedical field. Keywords: iron oxide nanoparticles, neutral hydrophobic surface, signaling pathway, uptake, accumulation, reactive oxygen species (ROS

  17. Impact of Silver and Iron Nanoparticle Exposure on Cholesterol Uptake by Macrophages

    Directory of Open Access Journals (Sweden)

    Jonathan H. Shannahan

    2015-01-01

    Full Text Available Macrophages are central to the development of atherosclerosis by absorbing lipids, promoting inflammation, and increasing plaque deposition. Nanoparticles (NPs are becoming increasingly common in biomedical applications thereby increasing exposure to the immune and vascular systems. This project investigated the influence of NPs on macrophage function and specifically cholesterol uptake. Macrophages were exposed to 20 nm silver NPs (AgNPs, 110 nm AgNPs, or 20 nm Fe3O4 NPs for 2 h and NP uptake, cytotoxicity, and subsequent uptake of fluorescently labeled cholesterol were assessed. Macrophage uptake of NPs did not induce cytotoxicity at concentrations utilized (25 μg/mL; however, macrophage exposure to 20 nm AgNPs reduced subsequent uptake of cholesterol. Further, we assessed the impact of a cholesterol-rich environment on macrophage function following NP exposure. In these sets of experiments, macrophages internalized NPs, exhibited no cytotoxicity, and altered cholesterol uptake. Alterations in the expression of scavenger receptor-B1 following NP exposure, which likely influences cholesterol uptake, were observed. Overall, NPs alter cholesterol uptake, which may have implications in the progression of vascular or immune mediated diseases. Therefore, for the safe development of NPs for biomedical applications, it is necessary to understand their impact on cellular function and biological interactions in underlying disease environments.

  18. Overexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology.

    Science.gov (United States)

    González, Andrés; Bes, M Teresa; Barja, François; Peleato, M Luisa; Fillat, María F

    2010-11-01

    Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth. In this study, we have analysed the effects of FurA overexpression on the Anabaena sp. phenotype and investigated which of the observed alterations were directly operated by FurA. Overexpression of the regulator led to changes in cellular morphology, resulting in shorter filaments with rounded cells of different sizes. The furA-overexpressing strain showed a slower photoautotrophic growth and a marked decrease in the oxygen evolution rate. Overexpression of the regulator also decreased both catalase and superoxide dismutase activities, but did not lead to an increase in the levels of intracellular reactive oxygen species. By combining phenotypic studies, reverse transcription-PCR analyses and electrophoretic mobility shift assays, we identified three novel direct targets of FurA, including genes encoding a siderophore outer membrane transporter (schT), bacterial actins (mreBCD) and the PSII reaction center protein D1 (psbA). The affinity of FurA for these novel targets was markedly affected by the absence of divalent metal ions, confirming previous evidence of a critical role for the metal co-repressor in the function of the regulator in vivo. The results unravel new cellular processes modulated by FurA, supporting its role as a global transcriptional regulator in Anabaena sp. PCC 7120.

  19. Phytotoxicity of Sodium Fluoride and Uptake of Fluoride in Willow Trees

    DEFF Research Database (Denmark)

    Clausen, Lauge Peter Westergaard; Gosewinkel Karlson, Ulrich; Trapp, Stefan

    2015-01-01

    The willow tree (Salix viminalis) toxicity test and a cress seed germination test (Lepidium sativum) were used to determine uptake and phytotoxicity of NaF. Concentrations in hydroponic solutions were 0-1000 mg F/L and 0-400 mg F/L in the preliminary and definitive test. A third test was done...

  20. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1982-08-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-induced colonic tumours in rats, and to retard the growth of 2 out of 3 lines of human colonic tumours propagated as xenografts in immune-deprived mice.