WorldWideScience

Sample records for cellular transactivator brn-3a

  1. Brn3a regulates neuronal subtype specification in the trigeminal ganglion by promoting Runx expression during sensory differentiation

    Directory of Open Access Journals (Sweden)

    Raisa Eng S

    2010-01-01

    Full Text Available Abstract The transcription factor Brn3a, product of the pou4f1 gene, is expressed in most sensory neurons throughout embryogenesis. Prior work has demonstrated a role for Brn3a in the repression of early neurogenic genes; here we describe a second major role for Brn3a in the specification of sensory subtypes in the trigeminal ganglion (TG. Sensory neurons initially co-express multiple Trk-family neurotrophin receptors, but are later marked by the unique expression of TrkA, TrkB or TrkC. Maturation of these sensory subtypes is known to depend on the expression of Runx transcription factors. Newborn Brn3a knockout mice fail to express TrkC, which is associated in the TG with mechanoreceptors, plus a set of functional genes associated with nociceptor subtypes. In embryonic Brn3a-/- ganglia, the normal expression of Runx3 is never initiated in TrkC+ neurons, and Runx1 expression is greatly attenuated in TrkA+ nociceptors. These changes are accompanied by expanded expression of TrkB in neurons that abnormally express multiple Trks, followed by the loss of TrkC and TrkA expression. In transgenic embryos expressing a Brn3a-VP16 dominant transactivator, Runx3 mRNA expression is increased, suggesting that it is a direct regulatory target of Brn3a. Chromatin immunoprecipitation confirms that Brn3a binds in vivo to a conserved upstream enhancer element within histone H3-acetylated chromatin in the Runx3 locus. Together these data show that Brn3a acts upstream of the Runx factors, which then repress TrkB expression to allow establishment of the non-overlapping Trk receptor profiles and correct terminally differentiated phenotypes.

  2. Hepatitis B virus DNA integration and transactivation of cellular genes

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    Chronic hepatitis B virus (HBV infection is etiologically related to human hepatocellular carcinoma (HCC. Most HCCs contain integrated HBV DNA in hepatocyte, suggesting that the integration may be involved in carcinogenesis. Available data on the integrants from human hepatocellular carcinomas seem to represent primary integrants as well as the products of secondary rearrangements. By means of structural analyses of the possible primary integrants, it has been observed that the replication intermediates of the viral genome are the preferred substrates for integration. The integrated HBV DNA and the target cellular DNA are invariably associated with deletions, possibly reflecting the substrate for, and the mechanism of, the integration reaction. The host DNA sequences as well as the target site of integration in chromosomes are selected randomly suggesting that HBV DNA integration should bring about random mutagenic effects. Analysis of the samples recovered from hepatocellular carcinomas show that the integrated HBV DNA can mediate secondary rearrangements of chromosomes, such as translocations, inversions, deletions and (possibly amplifications. The integration of HBV DNA into the host genome occurs at early steps of clonal tumor expansion. The integration has been shown in a number of cases to affect a variety of cancer-related genes and to exert insertional mutagenesis. However, in contrast to the woodchuck model, in which specific HBV-DNA integration is detectable in most cases, insertional activation or inactivation of cellular genes appears to be a rare event in man. The discovery of transactivating functions exerted by HBx and truncated HBs(urface proteins supports the notion that these could be relevant to hepatocarcinogenesis as these transactivator sequences have been found in a large number of HCC tumors or hepatoma-derived cell lines. The HBx

  3. Expression of Brn-3a and MDM-2 in Cervical Neoplasia%Brn-3a和MDM-2在宫颈癌及癌前病变中的表达

    Institute of Scientific and Technical Information of China (English)

    黄雅; 冯玉昆; 李建军; 于璐

    2009-01-01

    目的:探讨Brn-3a和MDM-2在宫颈癌和癌前病变中的表达及其作为宫颈癌和癌前病变生物标志物的可行性和临床意义.方法:利用SP免疫组化法检测110例蜡块标本中Brn-3a和MDM-2的表达.结果:宫颈癌及癌前病变各组的Brn-3a表达阳性率均高于对照组,差异有统计学意义(P<0.05);SCC组及CINⅢ组的MDM-2表达阳性率均高于对照组,差异有统计学意义(P<0.05),SCC组与CIN Ⅰ组比较,差异有统计学意义(P<0.05).Brn-3a NtMDM-2在各临床分期及组织学分级中的阳性表达无统计学差异(P>0.05)Brn-3a与MDM-2蛋白阳性表达之间无相关关系(P>0.05).结论:Brn-3a和MDM-2可作为宫颈癌前病变的生物标志物.

  4. BS69 : A novel adenovirus E1A-associated protein that inhibits E1A transactivation

    NARCIS (Netherlands)

    Hateboer, G.; Gennissen, A.M.C.; Ramos, Y.F.M.; Kerkhoven, R.; Sonntag-Buck, V.; Stunnenberg, H.G.; Bernards, R.A.

    1995-01-01

    The adenovirus ElA gene products are nuclear phosphoproteins that can transactivate the other adenovirus early genes as well as several cellular genes, and can transform primary rodent cells in culture. Transformation and transactivation by ElA proteins is most likely to be mediated through binding

  5. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Yoshimitsu, Makoto; Hachiman, Miho [Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ikeda, Masanori [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  6. Sensitivity analysis of retrovirus HTLV-1 transactivation.

    Science.gov (United States)

    Corradin, Alberto; Di Camillo, Barbara; Ciminale, Vincenzo; Toffolo, Gianna; Cobelli, Claudio

    2011-02-01

    Human T-cell leukemia virus type 1 is a human retrovirus endemic in many areas of the world. Although many studies indicated a key role of the viral protein Tax in the control of viral transcription, the mechanisms controlling HTLV-1 expression and its persistence in vivo are still poorly understood. To assess Tax effects on viral kinetics, we developed a HTLV-1 model. Two parameters that capture both its deterministic and stochastic behavior were quantified: Tax signal-to-noise ratio (SNR), which measures the effect of stochastic phenomena on Tax expression as the ratio between the protein steady-state level and the variance of the noise causing fluctuations around this value; t(1/2), a parameter representative of the duration of Tax transient expression pulses, that is, of Tax bursts due to stochastic phenomena. Sensitivity analysis indicates that the major determinant of Tax SNR is the transactivation constant, the system parameter weighting the enhancement of retrovirus transcription due to transactivation. In contrast, t(1/2) is strongly influenced by the degradation rate of the mRNA. In addition to shedding light into the mechanism of Tax transactivation, the obtained results are of potential interest for novel drug development strategies since the two parameters most affecting Tax transactivation can be experimentally tuned, e.g. by perturbing protein phosphorylation and by RNA interference.

  7. Pin1 promotes GR transactivation by enhancing recruitment to target genes.

    Science.gov (United States)

    Poolman, Toryn M; Farrow, Stuart N; Matthews, Laura; Loudon, Andrew S; Ray, David W

    2013-10-01

    The glucocorticoid receptor (GR) is a ligand activated transcription factor, serving to regulate both energy metabolism and immune functions. Factors that influence cellular sensitivity to glucocorticoids (GC) are therefore of great interest. The N-terminal of the GR contains numerous potential proline-directed phosphorylation sites, some of which can regulate GR transactivation. Unrestricted proline isomerisation can be inhibited by adjacent serine phosphorylation and requires a prolyl isomerise, Pin1. Pin1 therefore determines the functional outcome of proline-directed kinases acting on the GR, as cis/trans isomers are distinct pools with different interacting proteins. We show that Pin1 mediates GR transactivation, but not GR trans-repression. Two N-terminal GR serines, S203 and S211, are targets for Pin1 potentiation of GR transactivation, establishing a direct link between Pin1 and the GR. We also demonstrate GC-activated co-recruitment of GR and Pin1 to the GILZ gene promoter. The Pin1 effect required both its WW and catalytic domains, and GR recruitment to its GRE was Pin1-dependent. Therefore, Pin1 is a selective regulator of GR transactivation, acting through N-terminal phospho-serine residues to regulate GR recruitment to its target sites in the genome. As Pin1 is dysregulated in disease states, this interaction may contribute to altered GC action in inflammatory conditions.

  8. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xin-Hong [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan (China); Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan (China); Lv, Xin-Quan [Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan (China); Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan (China); Li, Hui-Xiang, E-mail: Lihuixiang1955@163.com [Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan (China); Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan (China)

    2014-03-28

    Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression.

  9. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Torsten B. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215 (United States); Li, Amy; Liu, Yuen-Joyce [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Gagnon, Etienne [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Institut de Recherche en Immunologie et Cancerologie, Departement de Microbiologie et Immunologie, Universite de Montreal, Montreal, Canada H3T1J4 (Canada); Kobayashi, Koichi S., E-mail: Koichi_Kobayashi@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215 (United States)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.

  10. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions.

    Science.gov (United States)

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability.

  11. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Fabio Cattaneo

    2014-10-01

    Full Text Available G protein-coupled receptors (GPCRs are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors

  12. Properties of virion transactivator proteins encoded by primate cytomegaloviruses

    Directory of Open Access Journals (Sweden)

    Barry Peter A

    2009-05-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1 genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV, strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All

  13. Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Feddersen, Søren; Francoz, S.

    2012-01-01

    The role of the E3 ubiquitin ligase murine double minute 2 (Mdm2) in regulating the stability of the p53 tumor suppressor is well documented. By contrast, relatively little is known about p53-independent activities of Mdm2 and the role of Mdm2 in cellular differentiation. Here we report a novel...... role for Mdm2 in the initiation of adipocyte differentiation that is independent of its ability to regulate p53. We show that Mdm2 is required for cAMP-mediated induction of CCAAT/enhancer-binding protein delta (C/EBP delta) expression by facilitating recruitment of the cAMP regulatory element......-binding protein (CREB) coactivator, CREB-regulated transcription coactivator (Crtc2)/TORC2, to the c/ebp delta promoter. Our findings reveal an unexpected role for Mdm2 in the regulation of CREB-dependent transactivation during the initiation of adipogenesis. As Mdm2 is able to promote adipogenesis...

  14. Comparative Effects of R- and S-equol and Implication of Transactivation Functions (AF-1 and AF-2 in Estrogen Receptor-Induced Transcriptional Activity

    Directory of Open Access Journals (Sweden)

    Mylène Potier

    2010-03-01

    Full Text Available Equol, one of the main metabolites of daidzein, is a chiral compound with pleiotropic effects on cellular signaling. This property may induce activation/inhibition of the estrogen receptors (ER a or b, and therefore, explain the beneficial/deleterious effects of equol on estrogen-dependent diseases. With its asymmetric centre at position C-3, equol can exist in two enantiomeric forms (R- and S-equol. To elucidate the yet unclear mechanisms of ER activation/inhibition by equol, we performed a comprehensive analysis of ERa and ERb transactivation by racemic equol, as well as by enantiomerically pure forms. Racemic equol was prepared by catalytic hydrogenation from daidzein and separated into enantiomers by chiral HPLC. The configuration assignment was performed by optical rotatory power measurements. The ER-induced transactivation by R- and S-equol (0.1–10 µM and 17b-estradiol (E2, 10 nM was studied using transient transfections of ERa and ERb in CHO, HepG2 and HeLa cell lines. R- and S-equol induce ER transactivation in an opposite fashion according to the cellular context. R-equol and S-equol are more potent in inducing ERa in an AF-2 and AF-1 permissive cell line, respectively. Involvement of ERa transactivation functions (AF-1 and AF-2 in these effects has been examined. Both AF-1 and AF-2 are involved in racemic equol, R-equol and S-equol induced ERa transcriptional activity. These results could be of interest to find a specific ligand modulating ER transactivation and could contribute to explaining the diversity of equol actions in vivo.

  15. Degradation, Promoter Recruitment and Transactivation Mediated by the Extreme N-Terminus of MHC Class II Transactivator CIITA Isoform III.

    Directory of Open Access Journals (Sweden)

    Yves B Beaulieu

    Full Text Available Multiple relationships between ubiquitin-proteasome mediated protein turnover and transcriptional activation have been well documented, but the underlying mechanisms are still poorly understood. One way to induce degradation is via ubiquitination of the N-terminal α-amino group of proteins. The major histocompatibility complex (MHC class II transactivator CIITA is the master regulator of MHC class II gene expression and we found earlier that CIITA is a short-lived protein. Using stable and transient transfections of different CIITA constructs into HEK-293 and HeLa cell lines, we show here that the extreme N-terminal end of CIITA isoform III induces both rapid degradation and transactivation. It is essential that this sequence resides at the N-terminal end of the protein since blocking of the N-terminal end with an epitope-tag stabilizes the protein and reduces transactivation potential. The first ten amino acids of CIITA isoform III act as a portable degron and transactivation sequence when transferred as N-terminal extension to truncated CIITA constructs and are also able to destabilize a heterologous protein. The same is observed with the N-terminal ends of several known N-terminal ubiquitination substrates, such as Id2, Cdt1 and MyoD. Arginine and proline residues within the N-terminal ends contribute to rapid turnover. The N-terminal end of CIITA isoform III is responsible for efficient in vivo recruitment to the HLA-DRA promoter and increased interaction with components of the transcription machinery, such as TBP, p300, p400/Domino, the 19S ATPase S8, and the MHC-II promoter binding complex RFX. These experiments reveal a novel function of free N-terminal ends of proteins in degradation-dependent transcriptional activation.

  16. Baicalein exhibits anti-inflammatory effects via inhibition of NF-κB transactivation.

    Science.gov (United States)

    Patwardhan, Raghavendra S; Sharma, Deepak; Thoh, Maikho; Checker, Rahul; Sandur, Santosh K

    2016-05-15

    NF-κB is a crucial mediator of inflammatory and immune responses and a number of phytochemicals that can suppress this immune-regulatory transcription factor are known to have promising anti-inflammatory potential. However, we report that inducer of pro-inflammatory transcription factor NF-κB functions as an anti-inflammatory agent. Our findings reveal that a plant derived flavonoid baicalein could suppress mitogen induced T cell activation, proliferation and cytokine secretion. Treatment of CD4+ T cells with baicalein prior to transfer in to lymphopenic allogenic host significantly suppressed graft versus host disease. Interestingly, addition of baicalein to murine splenic lymphocytes induced DNA binding of NF-κB but did not suppress Concanavalin A induced NF-κB. Since baicalein did not inhibit NF-κB binding to DNA, we hypothesized that baicalein may be suppressing NF-κB trans-activation. Thioredoxin system is implicated in the regulation of NF-κB trans-activation potential and therefore inhibition of thioredoxin system may be responsible for suppression of NF-κB dependent genes. Baicalein not only inhibited TrxR activity in cell free system but also suppressed mitogen induced thioredoxin activity in the nuclear compartment of lymphocytes. Similar to baicalein, pharmacological inhibitors of thioredoxin system also could suppress mitogen induced T cell proliferation without inhibiting DNA binding of NF-κB. Further, activation of cellular thioredoxin system by the use of pharmacological activator or over-expression of thioredoxin could abrogate the anti-inflammatory action of baicalein. We propose a novel strategy using baicalein to limit NF-κB dependent inflammatory responses via inhibition of thioredoxin system.

  17. Hydroxyurea inhibits the transactivation of the HIV-long-terminal repeat (LTR) promoter

    Science.gov (United States)

    Calzado, M A; Macho, A; Lucena, C; Muñoz, E

    2000-01-01

    HIV-1 gene expression is regulated by the promoter/enhancer located within the U3 region of the proviral 5′ LTR that contains multiple potential cis-acting regulatory sites. Here we describe that the inhibitor of the cellular ribonucleoside reductase, hydroxyurea (HU), inhibited phorbol myristate acetate- or tumour necrosis factor-alpha-induced HIV-1-LTR transactivation in both lymphoid and non-lymphoid cells in a dose-dependent manner within the first 6 h of treatment, with a 50% inhibitory concentration of 0·5 mm. This inhibition was found to be specific for the HIV-1-LTR since transactivation of either an AP-1-dependent promoter or the CD69 gene promoter was not affected by the presence of HU. Moreover, gel-shift assays in 5.1 cells showed that HU prevented the binding of the NF-κB to the κB sites located in the HIV-1-LTR region, but it did not affect the binding of both the AP-1 and the Sp-1 transcription factors. By Western blots and cell cycle analyses we detected that HU induced a rapid dephosphorylation of the pRB, the product of the retinoblastoma tumour suppressor gene, and the cell cycle arrest was evident after 24 h of treatment. Thus, HU inhibits HIV-1 promoter activity by a novel pathway that implies an inhibition of the NF-κB binding to the LTR promoter. The present study suggests that HU may be useful as a potential therapeutic approach for inhibition of HIV-1 replication through different pathways. PMID:10792382

  18. A central role for CK1 in catalysing phosphorylation of the P53 transactivation domain at serine 20 after HHV-6B viral infection

    DEFF Research Database (Denmark)

    Maclaine, NJ; Øster, Bodil; Bundgaard, Bettina

    2008-01-01

    The tumour suppressor protein p53 is activated by distinct cellular stresses including radiation, hypoxia, type-I interferon, and DNA/RNA virus infection. The transactivation domain of p53 contains a phosphorylation site at serine 20 (Ser20) whose modification stabilises the binding of the transc......The tumour suppressor protein p53 is activated by distinct cellular stresses including radiation, hypoxia, type-I interferon, and DNA/RNA virus infection. The transactivation domain of p53 contains a phosphorylation site at serine 20 (Ser20) whose modification stabilises the binding...... of the transcriptional co-activator p300 and whose mutation in murine transgenics induces B-cell lymphoma. Although the checkpoint kinase CHK2 is implicated in promoting Ser20-site phosphorylation after irradiation, the enzyme that triggers this phosphorylation after DNA viral infection is undefined. Using human...... was not blocked by D4476. These data highlight a central role for CK1 as the Ser20-site kinase for p53 in DNA virus-infected cells, but also suggest that distinct stresses may selectively trigger different protein kinases to modify the transactivation domain of p53 at Ser20....

  19. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  20. Transactivation Domain of Human c-Myc Is Essential to Alleviate Poly(Q)-Mediated Neurotoxicity in Drosophila Disease Models.

    Science.gov (United States)

    Raj, Kritika; Sarkar, Surajit

    2017-03-18

    Polyglutamine (poly(Q)) disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, represent a group of neurological disorders which arise due to an atypically expanded poly(Q) tract in the coding region of the affected gene. Pathogenesis of these disorders inside the cells begins with the assembly of these mutant proteins in the form of insoluble inclusion bodies (IBs), which progressively sequester several vital cellular transcription factors and other essential proteins, and finally leads to neuronal dysfunction and apoptosis. We have shown earlier that targeted upregulation of Drosophila myc (dmyc) dominantly suppresses the poly(Q) toxicity in Drosophila. The present study examines the ability of the human c-myc proto-oncogene and also identifies the specific c-Myc isoform which drives the mitigation of poly(Q)-mediated neurotoxicity, so that it could be further substantiated as a potential drug target. We report for the first time that similar to dmyc, tissue-specific induced expression of human c-myc also suppresses poly(Q)-mediated neurotoxicity by an analogous mechanism. Among the three isoforms of c-Myc, the rescue potential was maximally manifested by the full-length c-Myc2 protein, followed by c-Myc1, but not by c-MycS which lacks the transactivation domain. Our study suggests that strategies focussing on the transactivation domain of c-Myc could be a very useful approach to design novel drug molecules against poly(Q) disorders.

  1. The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity.

    Science.gov (United States)

    Zhang, Yiguo; Hayes, John D

    2013-01-01

    The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression.

  2. Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation.

    Directory of Open Access Journals (Sweden)

    Dan Su

    2015-01-01

    Full Text Available Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs and gene transactivation from a large pool of potential p53 REs (p53REs. To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS, ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE repeats was significantly higher (p<10-7 and correlated with stronger p53RE sequences (p<10-110 relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53

  3. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay.

    Directory of Open Access Journals (Sweden)

    Vasundhara Sharma

    Full Text Available The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD, a chimeric construct containing the TAD derived from p65 was also generated (p50TAD to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators.

  4. Interferon gamma-dependent transactivation of epidermal growth factor receptor.

    Science.gov (United States)

    Burova, Elena; Vassilenko, Konstantin; Dorosh, Victoria; Gonchar, Ilya; Nikolsky, Nikolai

    2007-04-03

    The present report provides evidence that, in A431 cells, interferon gamma (IFNgamma) induces the rapid (within 5 min), and reversible, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). IFNgamma-induced EGFR transactivation requires EGFR kinase activity, as well as activity of the Src-family tyrosine kinases and JAK2. Here, we show that IFNgamma-induced STAT1 activation in A431 and HeLa cells partially depends on the kinase activity of both EGFR and Src. Furthermore, in these cells, EGFR kinase activity is essential for IFNgamma-induced ERK1,2 activation. This study is the first to demonstrate that EGFR is implicated in IFNgamma-dependent signaling pathways.

  5. Molecular basis for gene-specific transactivation by nuclear receptors

    DEFF Research Database (Denmark)

    Jørgensen, Mads Aagaard; Siersbæk, Rasmus; Mandrup, Susanne

    2010-01-01

    most likely be accounted for by mechanisms involving receptor-specific interactions with DNA as well as receptor-specific interactions with protein complexes binding to adjacent and distant DNA sequences. Here, we review key molecular aspects of transactivation by NRs with special emphasis......Nuclear receptors (NRs) are key transcriptional regulators of metazoan physiology and metabolism. Different NRs bind to similar or even identical core response elements; however, they regulate transcription in a highly receptor- and gene-specific manner. These differences in gene activation can...... on the recent advances in the molecular mechanisms responsible for receptor- and gene-specific transcriptional activation. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease....

  6. Analysis of sequences involved in IE2 transactivation of a baculovirus immediate-early gene promoter and identification of a new regulatory motif.

    Science.gov (United States)

    Shippam-Brett, C E; Willis, L G; Theilmann, D A

    2001-05-01

    Opep-2 is a unique baculovirus early gene that has only been identified in the Orgyia pseudotsugata multiple capsid nucleopolyhedrovirus (OpMNPV). Previous analyses have shown this gene is expressed at very early times post-infection (p.i.) but is shut down by 36-48 h p.i. The promoter of opep-2 therefore, represents a class of early genes that is temporally regulated. In this study, a detailed analysis of the opep-2 promoter is performed to analyze the role individual motifs play in early gene expression. A new 13 base pair regulatory element was identified and shown to be essential in controlling high-level expression of this gene. In addition, mutational analysis revealed that GATA and CACGTG motifs, which have been shown to bind cellular factors in Sf9 and Ld652Y cells, played minor roles in influencing opep-2 expression in the absence of other viral factors. The OpMNPV transactivator IE2 causes a significant activation of the opep-2 promoter. Cotransfection of an extensive number of promoter deletions and mutations did not show any sequence specificity for IE2 transactivation. This is the first detailed analysis of the sequence requirements for IE2 transactivation, and these results suggest that IE2 does not bind directly to specific elements in the opep-2 promoter.

  7. [The level of EGF receptor expression effects its transactivation by IFN gamma in epithelial cells].

    Science.gov (United States)

    Gonchar, I V; Dorosh, V N; Nikol'skiĭ, N N; Burova, E B

    2008-01-01

    Earlier, we demonstrated transactivation of the epidermal growth factor receptor (EGFR) in response to interferon gamma (IFNgamma) in epidermal carcinoma A431 cells. It was shown that IFNgamma-induced EGFR transactivation is impossible in some cancer epithelial cells. Here, we hypothesize that IFNgamma-dependent EGFR transactivation in these cells correlates with EGFR quantity on the cell surface. To test this suggestion, a line of stably transfected HEK293 cells (HEK293delta99 cells) expressing high level of mutant EGFR lacking 99 C-terminal residues has been established. HEK293delta99 cells demonstrated EGFR transactivation in response to IFNgamma unlike the parent HEK293 cells, in which transactivation lacked. In HEK293delta99 and A431 cells, the time courses of EGFR activation induced by IFNgamma have the same pattern. In HEK293delta99 cells like A431, IFNgamma-induced EGFR transactivation requires EGFR kinase activity and occurs via autophosphorylation mechanism. Taken together, these data provide direct evidence of the dependence of IFNgamma-induced EGFR transactivation upon EGFR expression level in epithelial cells.

  8. A previously functional tetracycline-regulated transactivator fails to target gene expression to the bone

    Directory of Open Access Journals (Sweden)

    Schmidt Eva

    2011-08-01

    Full Text Available Abstract Background The tetracycline-controlled transactivator system is a powerful tool to control gene expression in vitro and to generate consistent and conditional transgenic in vivo model organisms. It has been widely used to study gene function and to explore pathological mechanisms involved in human diseases. The system permits the regulation of the expression of a target gene, both temporally and quantitatively, by the application of tetracycline or its derivative, doxycycline. In addition, it offers the possibility to restrict gene expression in a spatial fashion by utilizing tissue-specific promoters to drive the transactivator. Findings In this study, we report our problems using a reverse tetracycline-regulated transactivator (rtTA in a transgenic mouse model system for the bone-specific expression of the Hutchinson-Gilford progeria syndrome mutation. Even though prior studies have been successful utilizing the same rtTA, expression analysis of the transactivator revealed insufficient activity for regulating the transgene expression in our system. The absence of transactivator could not be ascribed to differences in genetic background because mice in a mixed genetic background and in congenic mouse lines showed similar results. Conclusions The purpose of this study is to report our negative experience with previously functional transactivator mice, to raise caution in the use of tet-based transgenic mouse lines and to reinforce the need for controls to ensure the stable functionality of generated tetracycline-controlled transactivators over time.

  9. Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Michelle A Schultz

    Full Text Available Despite androgen deprivation therapy (ADT, persistent androgen receptor (AR signaling enables outgrowth of castration resistant prostate cancer (CRPC. In prostate cancer (PCa cells, ADT may enhance AR activity through induction of oxidative stress. Herein, we investigated the roles of Nrf1 and Nrf2, transcription factors that regulate antioxidant gene expression, on hormone-mediated AR transactivation using a syngeneic in vitro model of androgen dependent (LNCaP and castration resistant (C4-2B PCa cells. Dihydrotestosterone (DHT stimulated transactivation of the androgen response element (ARE was significantly greater in C4-2B cells than in LNCaP cells. DHT-induced AR transactivation was coupled with higher nuclear translocation of p65-Nrf1 in C4-2B cells, as compared to LNCaP cells. Conversely, DHT stimulation suppressed total Nrf2 levels in C4-2B cells but elevated total Nrf2 levels in LNCaP cells. Interestingly, siRNA mediated silencing of Nrf1 attenuated AR transactivation while p65-Nrf1 overexpression enhanced AR transactivation. Subsequent studies showed that Nrf1 physically interacts with AR and enhances AR's DNA-binding activity, suggesting that the p65-Nrf1 isoform is a potential AR coactivator. In contrast, Nrf2 suppressed AR-mediated transactivation by stimulating the nuclear accumulation of the p120-Nrf1 which suppressed AR transactivation. Quantitative RT-PCR studies further validated the inductive effects of p65-Nrf1 isoform on the androgen regulated genes, PSA and TMPRSS2. Therefore, our findings implicate differential roles of Nrf1 and Nrf2 in regulating AR transactivation in PCa cells. Our findings also indicate that the DHT-stimulated increase in p65-Nrf1 and the simultaneous suppression of both Nrf2 and p120-Nrf1 ultimately facilitates AR transactivation in CRPC cells.

  10. Role of PHD fingers and COOH-terminal 30 amino acids in AIRE transactivation activity.

    Science.gov (United States)

    Meloni, Alessandra; Incani, Federica; Corda, Denise; Cao, Antonio; Rosatelli, Maria Cristina

    2008-02-01

    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomic autoimmune disease resulting from the defective function of a gene codifying for a transcription factor named autoimmune regulation (AIRE). The AIRE protein contains several domains among which two PHD fingers involved in the transcriptional activation. We investigated the function of the two PHD finger domains and the COOH terminal portion of AIRE by using several mutated constructs transfected in mammalian cells and a luciferase reporter assay. The results predict that the second PHD as well as the COOH terminal regions have marked transactivational properties. The COOH terminal region contains the fourth LXXLL and the PXXPXP motifs which play a critical role in mediating the transactivation capacity of the AIRE protein. Our study provides a definition of the role of the PHD fingers in transactivation and identifies a new transactivation domain of the AIRE protein localized in the COOH terminal region.

  11. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation.

    Directory of Open Access Journals (Sweden)

    Anders Friberg

    2015-05-01

    Full Text Available Epstein-Barr virus (EBV is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2 is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.

  12. p53 transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system.

    Directory of Open Access Journals (Sweden)

    Virginia Andreotti

    Full Text Available BACKGROUND: The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4. METHODOLOGY/PRINCIPAL FINDINGS: Given the many factors that might influence p53 function, including expression levels, mutations, cofactor proteins and small molecules, we expanded our previously described yeast-based system to provide the opportunity for efficient investigation of their individual and combined impacts in a miniaturized format. The system integrates i variable expression of p53 proteins under the finely tunable GAL1,10 promoter, ii single copy, chromosomally located p53-responsive and control luminescence reporters, iii enhanced chemical uptake using modified ABC-transporters, iv small-volume formats for treatment and dual-luciferase assays, and v opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1. CONCLUSIONS/SIGNIFICANCE: We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins.

  13. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.

    Directory of Open Access Journals (Sweden)

    Jennifer J Jordan

    2008-06-01

    Full Text Available Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0-13 nucleotides (nt, originally defined by the consensus RRRCWWGYYY (n = 0-13 RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs by wild type (WT and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi-in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical (1/2-(a single decamer and (3/4-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of (1/2- and (3/4-site REs greatly expands the p53 master regulatory network.

  14. Transactivating effect of complete S protein of hepatitis B virus and cloning of genes transactivated by complete S protein using suppression subtractive hybridization technique

    Institute of Scientific and Technical Information of China (English)

    Gui-Qin Bai; Yan Liu; Jun Cheng; Shu-Lin Zhang; Ya-Fei Yue; Yan-Ping Huang; Li-Ying Zhang

    2005-01-01

    AIM: To investigate the transactivating effect of complete S protein of hepatitis B virus (HBV) and to construct a subtractive cDNA library of genes transactivated by complete S protein of HBV by suppression subtractive hybridization (SSH) technique and to clone genes associated with its transactivation activity, and to pave the way for elucidating the pathogenesis of hepatitis B virus infection.METHODS: pcDNA3.1(-)-complete S containing full-length HBV S gene was constructed by insertion of HBV complete S gene into BarmH-I/Kpn I sites. HepG2 cells were cotransfected with pcDNA3.1(-)-complete S and pSV-lacZ.After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). Suppression subtractive hybridization and bioinformatics techniques were used.The mRNA of HepG2 cells transfected with pcDNA3.1(-)-complete S and pcDNA3.1(-) empty vector was isolated,and detected for the expression of complete S protein by reverse transcription polymerase chain reaction (RT-PCR)method, and cDNA was synthesized. After digestion with restriction enzyme RcaI, cDNA fragments were obtained.Tester cDNA was then divided into two groups and ligated to the specific adaptors 1 and 2, respectively. After tester cDNA had been hybridized with driver cDNA twice and underwent nested PCR twice, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library. Amplification of the library was carried out within E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with BLAST search after polymerase chain reaction (PCR) amplification.RESULTS: The complete S mRNA could be detected by RT-PCR in HepG2 cells transfected with the pcDNA3.1(-)-complete S. The activity of β-gal in HepG2 cells transfected with the pcDNA3.1(-)-complete S was 6.9 times higher than that of control plasmid. The subtractive library of genes transactivated by HBV complete S protein was constructed successfully. The amplified library contains 86

  15. EGF receptor transactivation in angiotensin II and endothelin control of vascular protein synthesis in vivo.

    Science.gov (United States)

    Beaucage, Pierre; Moreau, Pierre

    2004-11-01

    Endothelin represents a necessary intermediate of angiotensin II-induced resistance artery remodeling in hypertension. Recent data suggest that epidermal growth factor receptors are rapidly transactivated by angiotensin II stimulation to mediate its growth-promoting effects. Because endothelin also transactivates epidermal growth factor receptors in vitro, we studied the contribution of epidermal growth factor receptor transactivation in the in vivo trophic actions of the upstream effector angiotensin II and its downstream mediator endothelin in rat mesenteric arteries. Twenty-six-hour infusion of angiotensin II (400 ng/kg per min) or endothelin (5 pmol/kg per min) via osmotic pumps significantly enhanced vascular protein synthesis. With angiotensin II, treatment with the inhibitor of epidermal growth factor receptor transactivation (AG1478, 0.5 mg/kg) produced a significant attenuation (P < 0.05) of protein synthesis. In contrast, AG1478 did not abrogate the elevation of protein synthesis induced by endothelin. In conclusion, angiotensin II-induced epidermal growth factor receptor transactivation seems to be involved in the recruitment of endothelin in the cascade leading to vascular protein synthesis, rather than in the effect of endothelin on small artery remodeling.

  16. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein

    DEFF Research Database (Denmark)

    Helin, K; Harlow, E; Fattaey, A

    1993-01-01

    to transcription factor E2F has provided a model for the mechanism of pRB-mediated growth regulation. Since adenovirus E1A proteins dissociate the pRB-E2F complexes and stimulate E2F-dependent transcription, it has been suggested that pRB inhibits E2F transactivation. Although some evidence for this hypothesis has...... been provided, it has not been possible to determine the mechanism of pRB-mediated inhibition of E2F transactivation. In this study, we constructed mutants of E2F-1 that do not bind to pRB yet retain the ability to transactivate the adenovirus E2 promoter through E2F DNA-binding sites. We demonstrated...

  17. Genes transactivated by hepatitis C virus core protein, a microarray assay

    Institute of Scientific and Technical Information of China (English)

    Min Liu; Shu-Lin Zhang; Jun Cheng; Yan Liu; Lin Wang; Qing Shao; Jian Zhang; Shu-Mei Lin

    2005-01-01

    AIM: To explore the new target genes transactivated by hepatitis C virus (HCV) core protein and to elucidate the pathogenesis of HCV infection.METHODS: Reverse transcribed cDNA was subjected tomicroarray assay. The coding gene transactivated by HCV core protein was cloned and analyzed with bioinformatics methods.RESULTS: The expressive vector of pcDNA3.1(-)-core was constructed and confirmed by restriction enzyme digestion and DNA sequencing and approved correct. mRNA was purified from HepG2 and HepG2 cells transfected with pcDNA3.1(-)-core, respectively. The cDNA derived was subjected to microarray assay. A new gene namedHCTP4 was cloned with molecular biological method in combination with bioinformatics method.CONCLUSION: HCV core is a potential transactivator.Microarray is an efficient and convenient method for analysis of differentially expressed genes.

  18. SUV39H1 interacts with HTLV-1 Tax and abrogates Tax transactivation of HTLV-1 LTR

    Directory of Open Access Journals (Sweden)

    Tanaka Yuetsu

    2006-01-01

    Full Text Available Abstract Background Tax is the oncoprotein of HTLV-1 which deregulates signal transduction pathways, transcription of genes and cell cycle regulation of host cells. Transacting function of Tax is mainly mediated by its protein-protein interactions with host cellular factors. As to Tax-mediated regulation of gene expression of HTLV-1 and cellular genes, Tax was shown to regulate histone acetylation through its physical interaction with histone acetylases and deacetylases. However, functional interaction of Tax with histone methyltransferases (HMTase has not been studied. Here we examined the ability of Tax to interact with a histone methyltransferase SUV39H1 that methylates histone H3 lysine 9 (H3K9 and represses transcription of genes, and studied the functional effects of the interaction on HTLV-1 gene expression. Results Tax was shown to interact with SUV39H1 in vitro, and the interaction is largely dependent on the C-terminal half of SUV39H1 containing the SET domain. Tax does not affect the methyltransferase activity of SUV39H1 but tethers SUV39H1 to a Tax containing complex in the nuclei. In reporter gene assays, co-expression of SUV39H1 represses Tax transactivation of HTLV-1 LTR promoter activity, which was dependent on the methyltransferase activity of SUV39H1. Furthermore, SUV39H1 expression is induced along with Tax in JPX9 cells. Chromatin immunoprecipitation (ChIP analysis shows localization of SUV39H1 on the LTR after Tax induction, but not in the absence of Tax induction, in JPX9 transformants retaining HTLV-1-Luc plasmid. Immunoblotting shows higher levels of SUV39H1 expression in HTLV-1 transformed and latently infected cell lines. Conclusion Our study revealed for the first time the interaction between Tax and SUV39H1 and apparent tethering of SUV39H1 by Tax to the HTLV-1 LTR. It is speculated that Tax-mediated tethering of SUV39H1 to the LTR and induction of the repressive histone modification on the chromatin through H3 K9

  19. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  20. Trans-activation of an artificial dTam3 transposable element in transgenic tobacco plants

    NARCIS (Netherlands)

    Haring, Michel A.; Teeuwen-de Vroomen, Marianne J.; Nijkamp, H. John J.; Hille, Jacques

    1991-01-01

    In Antirrhinum majus only autonomous Tam3 transposons have been characterized. We investigated whether an artificial dTam3 element, with a deletion in the presumptive transposase coding region, can be trans-activated in tobacco by an activator Tam3 element, which was immobilized by the deletion of o

  1. Integrated cell-based platform to study EGFR activation and transactivation.

    Science.gov (United States)

    Caruso, Marie-Elaine; Clément, Paule; Parent, Stéphane; Dupriez, Vincent; Bossé, Roger; Rouleau, Nathalie

    2013-09-01

    The epidermal growth factor receptor (EGFR) pathway is one of the most deregulated molecular pathways in human epithelial cancers. Many approved drugs were optimized to directly target EGFR but yielded only modest clinical improvement in cancer patients due to low efficacy and drug resistance. Transactivation of EGFR by other cell surface receptors such as G-protein-coupled receptors (GPCRs) was proposed to explain this lack of efficacy. Even if direct EGFR activation and transactivation by GPCR contribute to the activation of the same signaling pathways, they are often studied as independent events resulting in partial investigation of a drug's mechanism of action. We present a novel high-throughput approach that integrates interrogation of direct activation of EGFR and its transactivation via GPCR activation. Using distinct technology platforms, three readouts were used to measure (1) direct activation of GPCR via cyclic adenosine monophosphate (cAMP) detection, (2) direct activation of EGFR through the release of intracellular Ca(2+), and (3) EGFR transactivation by GPCR using the detection of p-extracellular-signal-regulated kinases 1/2 (p-ERK1/2). In addition to being simple, quick, and homogenous, our methods were shown to be more sensitive than those in current use. These enabling tools should improve the knowledge pertaining to GPCRs and receptor tyrosine kinases trans-regulation and facilitate the design of more potent and better targeted new therapeutic strategies.

  2. c-Jun transactivates Puma gene expression to promote osteoarthritis.

    Science.gov (United States)

    Lu, Huading; Hou, Gang; Zhang, Yongkai; Dai, Yuhu; Zhao, Huiqing

    2014-05-01

    Osteoarthritis (OA) is a chronic degenerative joint disorder in which genetic, hormonal, mechanical and ageing factors affect its progression. Current studies are focusing on chondrocytes as a key mediator of OA at a cellular level. however, the mechanism underlying chondrocyte apoptosis remains unclear. PUMA is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family and is involved in a large number of physiological and pathological processes. In the present study, we examined whether PUMA has a role in IL-1β-induced apoptosis and whether the c-Jun N-terminal kinase (JNK)/c-Jun pathway mediates the induction of PUMA, thus contributing to chondrocyte apoptosis. The results demonstrated an increase in PUMA protein and mRNA levels in cultured mouse chondrocytes following 4 h of IL-1β treatment. Furthermore, this upregulation of PUMA was critical for chondrocyte apoptosis as knockdown of PUMA using PUMA-specific siRNA significantly reduced apoptosis in cultured cells. Upon pharmacological inhibition of the JNK/c-Jun pathway with CE11004 or SP600125, the expression of PUMA was notably suppressed with a concomitant decrease in apoptosis observed in IL-1β-treated chondrocytes. Also, immunohistochemical studies revealed that the PUMA and c-Jun proteins were upregulated in chondrocytes from the articular cartilage of OA patients. Together, these data suggest a role for PUMA and the JNK/c-Jun pathway in the regulation of chondrocyte apoptosis during OA.

  3. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    Directory of Open Access Journals (Sweden)

    Zhixiang Wang

    2016-01-01

    Full Text Available Both G protein-coupled receptors (GPCRs and receptor-tyrosine kinases (RTKs regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR, a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges.

  4. Human placental TEF-5 transactivates the human chorionic somatomammotropin gene enhancer.

    Science.gov (United States)

    Jiang, S W; Wu, K; Eberhardt, N L

    1999-06-01

    Human chorionic somatomammotropin (hCS) gene expression in the placenta is controlled by an enhancer (CSEn) containing SV40-related GT-IIC and SphI/SphII enhansons. These enhancers are controlled by members of the transcription enhancer factor-1 (TEF-1) family. Recently TEF-5, whose mRNA is abundant in placenta, was shown to bind cooperatively to a unique, tandemly repeated element in CSEn2, suggesting that TEF-5 regulates CSEn activity. However, expression of TEF-5 using a cDNA lacking the 5'-untranslated region and containing a modified translation initiation site was not accompanied by CSEn activation. Using nested, degenerate PCR primers corresponding to conserved TEF domains, several novel TEF-1-related cDNAs have been cloned from a human placental cDNA library. The open reading frame of one 3033-bp clone was identical to TEF-5 and contained 300- and 1423-bp 5'- and 3'-untranslated regions, respectively. The in vitro generated approximately 53-kDa TEF-5 polypeptide binds specifically to GT-IIC and SphI/SphII oligonucleotides. Overexpression of TEF-5 in BeWo cells using the intact 3033-bp cDNA transactivates the hCS and SV40 enhancers and artificial enhancers comprised of tandemly repeated GT-IIC enhansons, but not OCT enhansons. The data demonstrate that TEF-5 is a transactivator that is likely involved in the transactivation of CSEn enhancer function. Further, the data suggest that elements within the untranslated regions, initiation site, or both control TEF-5 expression in ways that influence its transactivation function.

  5. Molecular Mechanisms and Genome-Wide Aspects of PPAR Subtype Specific Transactivation

    DEFF Research Database (Denmark)

    Bugge, Anne Skovsø; Mandrup, Susanne

    2010-01-01

    The peroxisome proliferator-activated receptors (PPARs) are central regulators of fat metabolism, energy homeostasis, proliferation, and inflammation. The three PPAR subtypes, PPARα, β/δ, and γ activate overlapping but also very different target gene programs. This review summarizes the insights...... into PPAR subtype-specific transactivation provided by genome-wide studies and discusses the recent advances in the understanding of the molecular mechanisms underlying PPAR subtype specificity with special focus on the regulatory role of AF-1....

  6. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  7. Suppression of RNA Silencing by a Geminivirus Nuclear Protein, AC2, Correlates with Transactivation of Host Genes†

    OpenAIRE

    Trinks, Daniela; R Rajeswaran; Shivaprasad, P. V.; Akbergenov, Rashid; Edward J Oakeley; Veluthambi, K; Hohn, Thomas; Pooggin, Mikhail M.

    2005-01-01

    Bipartite geminiviruses encode a small protein, AC2, that functions as a transactivator of viral transcription and a suppressor of RNA silencing. A relationship between these two functions had not been investigated before. We characterized both of these functions for AC2 from Mungbean yellow mosaic virus-Vigna (MYMV). When transiently expressed in plant protoplasts, MYMV AC2 strongly transactivated the viral promoter; AC2 was detected in the nucleus, and a split nuclear localization signal (N...

  8. Transactivating effect of hepatitis C virus core protein:A suppression subtractive hybridization study

    Institute of Scientific and Technical Information of China (English)

    Min Liu; Yan Liu; Jun Cheng; Shu-Lin Zhang; Lin Wang; Qing Shao; Jian Zhang; Qian Yang

    2004-01-01

    AIM: To investigate the transactivating effect of hepatitis C virus (HCV) core protein and to screen genes transactivated by HCV core protein.METHODS: pcDNA3.1(-)-core containing full-length HCV core gene was constructed by insertion of HCV core gene into EcoRI/BanHI site. HepG2 cells were cotransfected with pcDNA3.1(-)-core and pSV-lacZ. After 48 h, cells were collected and detected for the expression of β-gal by an enzyme-linked immunosorbent assay (ELISA) kit. HepG2 cells were transiently transfected with pcDNA3.1(-)-core using Lipofectamine reagent. Cells were collected and total mRNA was isolated. A subtracted cDNA library was generated and constructed into a pGEM-Teasy vector. The library was amplified with E. coli strain JM109. The cDNAs were sequenced and analyzed in GenBank with BLAST search after polymerase chain reaction (PCR).RESULTS: The core mRNA and protein could be detected in HepG2 cell lysate which was transfected by the pcDNA3.1(-)-core. The activity of β-galactosidase in HepG2 cells transfected by the pcDNA3.1(-)-core was 5.4 times higher than that of HepG2 cells transfected by control plasmid. The subtractive library of genes transactivated by HCV core protein was constructed successfully. The amplified library contained 233positive clones. Colony PCR showed that 2:13 clones contained 100-1 000 bp inserts. Sequence analysis was performed in 63 clones. Six of the sequences were unknown genes. The full length sequences were obtained with bioinformatics method, accepted by GenBank. It was suggested that six novel cDNA sequences might be target genes transactivated by HCV core protein.CONCLUSION: The core protein of HCV has transactivating effects on SV40 early promoter/enhancer. A total of 63 clones from cDNA library were randomly chosen and sequenced.Using the BLAST program at the National Center for Biotechnology Information, six of the sequences were unknown genes. The other 57 sequences were highly similar to known genes.

  9. Screening of the target genes trans-activated by HLA-HA8 in hepatocytes

    Directory of Open Access Journals (Sweden)

    Qi WANG

    2011-06-01

    Full Text Available Objective To clone and identify the target genes trans-activated by human minor histocompatibility antigen HLA-HA8 in hepatocytes with suppression subtractive hybridization(SSH and bioinfomatics technique.Methods mRNA was isolated from HepG2 cells transfected by pcDNA3.1(--HLA-HA8 and pcDNA3.1(- empty vector,and then used to synthesize the double-stranded cDNA(marked as Tester and Driver,respectively by reverse transcription.After being digested with restriction enzyme Rsa I,the tester cDNA was divided into two parts and ligated to the specific adaptor 1 and adaptor 2,respectively,and then hybridized with driver cDNA twice and underwent PCR twice.The production was subcloned into pEGM-Teasy plasmid vectors to set up the subtractive library.The library was then amplified by transfection into E.coli strain DH5α.The cDNA was sequenced and analyzed in GenBank with Blast search after PCR amplification.Results The subtractive library of genes trans-activated by HLA-HA8 was constructed successfully.The amplified library contained 101 positive clones.Colony PCR showed that all these clones contained 200-1000bp inserts.Twenty eight clones were selected randomly to analyze the sequences.The result of homologous analysis showed that altogether 16 coding sequences were gotten,of which 4 sequences were with unknown function.Conclusions The obtained sequences trans-activated by HLA-HA8 may code different proteins and play important roles in cell growth and metabolism,energy synthesis and metabolism,material transport and signal transduction.This finding will bring some new clues for the studies not only on the biological functions of HLA-HA8,but also on the HBV infection mechanism.

  10. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  11. Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53.

    Science.gov (United States)

    Lowry, David F; Stancik, Amber; Shrestha, Ranjay Mann; Daughdrill, Gary W

    2008-05-01

    Internuclear distances derived from paramagnetic relaxation enhancement (PRE) data were used to restrain molecular dynamics simulations of the intrinsically unstructured transactivation domain of the tumor suppressor protein, p53. About 1000 structures were simulated using ensemble averaging of replicate molecules to compensate for the inherent bias in the PRE-derived distances. Gyration radii measurements on these structures show that the p53 transactivation domain (p53TAD) is statistically predominantly in a partially collapsed state that is unlike the open structure that is found for p53TAD bound to either the E3 ubiquitin ligase, MDM2, or the 70 kDa subunit of replication protein A, RPA70. Contact regions that potentially mediate the collapse were identified and found to consist of mostly hydrophobic residues. The identified contact regions preferentially place the MDM2 and RPA70 binding regions in close proximity. We show that our simulations thoroughly sample the available range of conformations and that a fraction of the molecules are in an open state that would be competent for binding either MDM2 or RPA70. We also show that the Stokes radius estimated from the average gyration radius of the ensemble is in good agreement with the value determined using size exclusion chromatography. Finally, the presence of a persistent loop localized to a PXP motif was identified. Serine residues flanking the PXP motif become phosphorylated in response to DNA damage, and we postulate that this will perturb the equilibrium population to more open conformations.

  12. The dorsal-related immunity factor, Dif, is a sequence-specific trans-activator of Drosophila Cecropin gene expression.

    OpenAIRE

    Petersen, U M; Björklund, G; Ip, Y T; Engström, Y

    1995-01-01

    A new member of the Rel family of transcription factors, the dorsal-related immunity factor, Dif, was recently cloned and suggested to be involved in regulating the immune response in Drosophila. Despite its classification as a Rel family member, the Dif cDNA-encoded product has not been proven previously to be a transcription factor. We now present evidence that the Dif gene product trans-activates the Drosophila Cecropin A1 gene in co-transfection assays. The transactivation requires a 40 b...

  13. Adenovirus E4 open reading frame 4-induced dephosphorylation inhibits E1A activation of the E2 promoter and E2F-1-mediated transactivation independently of the retinoblastoma tumor suppressor protein

    DEFF Research Database (Denmark)

    Mannervik, M; Fan, S; Ström, A C

    1999-01-01

    of the viral E4 open reading frame 4 (E4-ORF4) protein. This effect does not to require the retinoblastoma protein that previously has been shown to regulate E2F activity. The inhibitory activity of E4-ORF4 appears to be specific because E4-ORF4 had little effect on, for example, E4-ORF6/7 transactivation...... of the E2 promoter. We further show that the repressive effect of E4-ORF4 on E2 transcription works mainly through the E2F DNA-binding sites in the E2 promoter. In agreement with this, we find that E4-ORF4 inhibits E2F-1/DP-1-mediated transactivation. We also show that E4-ORF4 inhibits E2 mRNA expression...... during virus growth. E4-ORF4 has previously been shown to bind to and activate the cellular protein phosphatase 2A. The inhibitory effect of E4-ORF4 was relieved by okadaic acid, which inhibits protein phosphatase 2A activity, suggesting that E4-ORF4 represses E2 transcription by inducing transcription...

  14. Relationship between polymorphism of class Ⅱ transactivator gene promoters and chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Ying-Ren Zhao; Ling Gong; Ying-Li He; Fang Liu; Chang Lu

    2005-01-01

    AIM: To investigate the relationship between the polymorphism of class Ⅱ transactivator (CⅡTA) gene promoters and chronic hepatitis B (CHB).METHODS: Genomic DNA was prepared from peripheral blood leukocytes. Promoters Ⅰ, Ⅲ and Ⅳ of gene were analyzed respectively with polymerase chain reaction single strand conformation polymorphism (PCR-SSCP) in 65 patients with CHB, 26 patients with acute hepatitis B (AHB) and 85 normal controls.RESULTS: No abnormal migration was found in PCR-SSCP analysis of the three promoters in the three groups. Also,no sequential difference was observed at the three promoters among the CHB patients, AHB patients and normal controls.CONCLUSION: No polymorphism in promoters Ⅰ, Ⅲ and Ⅳ of CⅡTA gene exists in CHB patients, ABH patients and normal controls, suggesting that the promoter of CⅡTA gene might be a conserved domain.

  15. Effect of Calpain inhibitor I on glucocorticoid receptor-dependent degradation and its transactivation ability

    Institute of Scientific and Technical Information of China (English)

    程晓刚; 粟永萍; 罗成基; 刘晓宏

    2004-01-01

    Objective: To investigate the effect of Calpain inhibitor I on glucocorticoid receptor-dependent proteasomal degradation and its transcriptional activity. Methods: After Raw-264.7 cells were treated with Calpain inhibitor I, dexamethasone, or both for about 12 h, the change of glucocorticoid receptor was detected by western blot analysis. COS-7 cells were transfected with PRsh-GRα expression vector and glucocorticoid-responsive receptor pMAMneo-CAT, then the effect of Calpain inhibitor I on glucocorticoid receptor transcriptional activation ability was determined by CAT activity. Results: The glucocorticoid receptor levels decreased after RAW-264.7 cells were treated with dexamethasone for 12 hours, which effect can be inhibited by Calpain inhibitor I to some extent. CAT activity assay showed that Calpain inhibitor I enhance glucocorticoid receptor transcriptional activity. Conclusion: Calpain inhibitor I can inhibit the down-regulation of dexamethasone on glucocoaicoid receptor, and enhances glucocorticoid receptor transactivation ability.

  16. Hypo- and hypermorphic FOXC1 mutations in dominant glaucoma: transactivation and phenotypic variability.

    Directory of Open Access Journals (Sweden)

    Cristina Medina-Trillo

    Full Text Available Dominant glaucoma, a heterogeneous, infrequent and irreversible optic neuropathy, is often associated with elevated intraocular pressure and early-onset. The role of FOXC1 in this type of glaucoma was investigated in twelve Spanish probands via nucleotide variation screening of its proximal promoter and unique exon. Functional evaluations of the identified variants included analyses of the transcriptional activity, protein stability, DNA binding ability and subcellular localization. Four different mutations that were identified in four probands (33.3% were associated with remarkable phenotypic variability and were functionally classified as either hypermorphic (p.Y47X, p.Q106X and p.G447_G448insDG or hypomorphic (p.I126S alleles. To the best of our knowledge, three of the variants are novel (p.Y47X, p.I126S and p.G447_G448insDG and, in addition, hypermorphic FOXC1 mutations are reported herein for the first time. The presence of an intact N-terminal activation domain in the truncated proteins p.Y47X and p.Q106X may underlie their associated transactivation hyperactivity by a gain-of-function mechanism involving dysregulated protein-protein interactions. Similarly, altered molecular interactions may also lead to increased p.G447_G448insDG activity. In contrast, the partial loss-of-function associated with p.I126S was due to impaired protein stability, DNA binding, protein phosphorylation and subcellular distribution. These results support that moderate and variable FOXC1 transactivation changes are associated with moderate goniodysgenesis, dominant glaucoma and remarkable phenotypic variability.

  17. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor.

    Science.gov (United States)

    Di Florio, Alessia; Sancho, Veronica; Moreno, Paola; Delle Fave, Gianfranco; Jensen, Robert T

    2013-03-01

    Foregut neuroendocrine tumors [NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor (EGFR) by growth factors, gastrointestinal (GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid,BON, the somatostatinoma QGP-1 and the rat islet tumor,Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr(1068) EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs.

  18. Intracellular Transactivation of Epidermal Growth Factor Receptor by alpha(1A)-Adrenoceptor Is Mediated by Phosphatidylinositol 3-Kinase Independently of Activation of Extracellular Signal Regulated Kinases 1/2 and Serine-Threonine Kinases in Chinese Hamster Ovary Cells

    NARCIS (Netherlands)

    Ulu, Nadir; Henning, Robert H.; Guner, Sahika; Zoto, Teuta; Duman-Dalkilic, Basak; Duin, Marry; Gurdal, Hakan

    2013-01-01

    Transactivation of epidermal growth factor receptor (EGFR) by alpha(1)-adrenoceptor (alpha(1)-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all alpha(1)-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster

  19. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    Directory of Open Access Journals (Sweden)

    Huarong Guo

    2012-09-01

    Full Text Available p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase and pRL-CMV-luc (CMV promoter linked to Renilla luciferase into marine flatfish flounder gill (FG cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation, but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl phthalate (DEHP, a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner.

  20. Activating transcription factor 4 mediates a multidrug resistance phenotype of esophageal squamous cell carcinoma cells through transactivation of STAT3 expression.

    Science.gov (United States)

    Zhu, Hongwu; Chen, Xiong; Chen, Bin; Chen, Bei; Fan, Jianyong; Song, Weibing; Xie, Ziying; Jiang, Dan; Li, Qiuqiong; Zhou, Meihua; Sun, Dayong; Zhao, Yagang

    2014-11-01

    Multidrug resistance (MDR) is a major challenge to the clinical treatment of esophageal cancer. The stress response gene activating transcription factor 4 (ATF4) is involved in homeostasis and cellular protection. However, relatively little is known about the expression and function of ATF4 in esophageal squamous cell carcinoma (ESCC) MDR. In this study, we investigate the potential role and mechanisms of ATF4 in ESCC MDR. We demonstrated that overexpression of ATF4 promotes the MDR phenotype in ESCC cells, while depletion of ATF4 in the MDR ESCC cell line induces drug re-sensitization. We also demonstrated that ATF4 transactivates STAT3 expression by directly binding to the signal transducers and activators of transcription 3 (STAT3) promoter, resulting in MDR in ESCC cells. Significantly, inhibition of STAT3 by small interfering RNA (siRNA) or a selective inhibitor (JSI-124) reintroduces therapeutic sensitivity. In addition, increased Bcl-2, survivin, and MRP1 expression levels were observed in ATF4-overexpressing cells. In conclusion, ATF4 may promote MDR in ESCC cells through the up-regulation of STAT3 expression, and thus is an attractive therapeutic target to combat therapeutic resistance in ESCC.

  1. EPI-001, A Compound Active against Castration-Resistant Prostate Cancer, Targets Transactivation Unit 5 of the Androgen Receptor.

    Science.gov (United States)

    De Mol, Eva; Fenwick, R Bryn; Phang, Christopher T W; Buzón, Victor; Szulc, Elzbieta; de la Fuente, Alex; Escobedo, Albert; García, Jesús; Bertoncini, Carlos W; Estébanez-Perpiñá, Eva; McEwan, Iain J; Riera, Antoni; Salvatella, Xavier

    2016-09-16

    Castration-resistant prostate cancer is the lethal condition suffered by prostate cancer patients that become refractory to androgen deprivation therapy. EPI-001 is a recently identified compound active against this condition that modulates the activity of the androgen receptor, a nuclear receptor that is essential for disease progression. The mechanism by which this compound exerts its inhibitory activity is however not yet fully understood. Here we show, by using high resolution solution nuclear magnetic resonance spectroscopy, that EPI-001 selectively interacts with a partially folded region of the transactivation domain of the androgen receptor, known as transactivation unit 5, that is key for the ability of prostate cells to proliferate in the absence of androgens, a distinctive feature of castration-resistant prostate cancer. Our results can contribute to the development of more potent and less toxic novel androgen receptor antagonists for treating this disease.

  2. Identifying p53 Transactivation Domain 1-Specific Inhibitors to Alleviate the Side Effects of Prostate Cancer Therapy

    Science.gov (United States)

    2015-12-01

    Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The p53 transactivation domain 1 (TAD1) plays a critical role in inducing p53 mediated cell-cycle arrest...p53-associated pathologies occurring in response to acute DNA damage, while keeping p53- mediated tumor suppression intact, thus allowing improvement...Aside from its beneficial tumor suppressive capability, p53 is also a critical mediator of DNA damage signals and this property provokes it to induce

  3. Antidepressant Drugs Transactivate TrkB Neurotrophin Receptors in the Adult Rodent Brain Independently of BDNF and Monoamine Transporter Blockade

    OpenAIRE

    Tomi Rantamäki; Liisa Vesa; Hanna Antila; Antonio Di Lieto; Päivi Tammela; Angelika Schmitt; Klaus-Peter Lesch; Maribel Rios; Eero Castrén

    2011-01-01

    BACKGROUND: Antidepressant drugs (ADs) have been shown to activate BDNF (brain-derived neurotrophic factor) receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their ne...

  4. Activity of the TonEBP/OREBP transactivation domain varies directly with extracellular NaCl concentration

    OpenAIRE

    2002-01-01

    Hypertonicity-induced binding of the transcription factor TonEBP/OREBP to its cognate DNA element, ORE/TonE, is associated with increased transcription of several osmotically regulated genes. Previously, it was found that hypertonicity rapidly causes nuclear translocation and phosphorylation of TonEBP/OREBP and, more slowly, increases TonEBP/OREBP abundance. Also, the C terminus of TonEBP/OREBP was found to contain a transactivation domain (TAD). We have now tested for tonicity dependence of ...

  5. The c-Myc Transactivation Domain Is a Direct Modulator of Apoptotic versus Proliferative Signals

    Science.gov (United States)

    Chang, David W.; Claassen, Gisela F.; Hann, Stephen R.; Cole, Michael D.

    2000-01-01

    We have assayed the oncogenic, proliferative, and apoptotic activities of the frequent mutations that occur in the c-myc gene in Burkitt's lymphomas. Some alleles have a modest (50 to 60%) increase in transforming activity; however, the most frequent Burkitt's lymphoma allele (T58I) had an unexpected substantial decrease in transforming activity (85%). All alleles restored the proliferation function of c-Myc in cells that grow slowly due to a c-myc knockout. There was discordance for some alleles between apoptotic and oncogenic activities, but only the T58A allele had elevated transforming activity with a concomitant reduced apoptotic potential. We discovered a novel missense mutation, MycS71F, that had a very low apoptotic activity compared to wild-type Myc, yet this mutation has never been found in lymphomas, suggesting that there is no strong selection for antiapoptotic c-Myc alleles. MycS71F also induced very low levels of cytochrome c release from mitochondria, suggesting a mechanism of action for this mutation. Phosphopeptide mapping provided a biochemical basis for the dramatically different biological activities of the transformation-defective T58I and transformation-enhanced T58A c-Myc alleles. Furthermore, the antiapoptotic survival factor insulin-like growth factor 1 was found to suppress phosphorylation of T58, suggesting that the c-Myc transactivation domain is a direct target of survival signals. PMID:10825194

  6. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xiangru Wen

    Full Text Available Magnetic poly (D,L-lactide-co-glycolide (PLGA/lipid nanoparticles (MPLs were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol (DSPE-PEG-NH2, and magnetic nanoparticles (NPs, and then conjugated to trans-activating transcriptor (TAT peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES, naringin (NAR, and glutathione (GSH were encapsulated in MPLs with drug loading capacity (>10% and drug encapsulation efficiency (>90%. The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  7. Downregulation of class II transactivator (CIITA) expression by synthetic cannabinoid CP55,940.

    Science.gov (United States)

    Gongora, Celine; Hose, Stacey; O'Brien, Terrence P; Sinha, Debasish

    2004-01-30

    Cannabinoid receptors are known to be expressed in microglia; however, their involvement in specific aspects of microglial immune function has not been demonstrated. Many effects of cannabinoids are mediated by two G-protein coupled receptors, designated CB1 and CB2. We have shown that the CB1 receptor is expressed in microglia that also express MHC class II antigen (J. Neuroimmunol. 82 (1998) 13-21). In our present study, we have analyzed the effect of cannabinoid agonist CP55,940 on MHC class II expression on the surface of IFN-gamma induced microglial cells by flow cytometry. CP55,940 blocked the class II MHC expression induced by IFN-gamma. It has been shown that the regulation of class II MHC genes occurs primarily at the transcriptional level, and a non-DNA binding protein, class II transactivator (CIITA), has been shown to be the master activator for class II transcription. We find that mRNA levels of CIITA are increased in IFN-gamma induced EOC 20 microglial cells and that this increase is almost entirely eliminated by the cannabinoid agonist CP55,940. These data suggests that cannabinoids affect MHC class II expression through actions on CIITA at the transcriptional level.

  8. SOX10 transactivates S100B to suppress Schwann cell proliferation and to promote myelination.

    Directory of Open Access Journals (Sweden)

    Sayaka Fujiwara

    Full Text Available Schwann cells are an important cell source for regenerative therapy for neural disorders. We investigated the role of the transcription factor sex determining region Y (SRY-box 10 (SOX10 in the proliferation and myelination of Schwann cells. SOX10 is predominantly expressed in rat sciatic nerve-derived Schwann cells and is induced shortly after birth. Among transcription factors known to be important for the differentiation of Schwann cells, SOX10 potently transactivates the S100B promoter. In cultures of Schwann cells, overexpressing SOX10 dramatically induces S100B expression, while knocking down SOX10 with shRNA suppresses S100B expression. Here, we identify three core response elements of SOX10 in the S100B promoter and intron 1 with a putative SOX motif. Knockdown of either SOX10 or S100B enhances the proliferation of Schwann cells. In addition, using dissociated cultures of dorsal root ganglia, we demonstrate that suppressing S100B with shRNA impairs myelination of Schwann cells. These results suggest that the SOX10-S100B signaling axis critically regulates Schwann cell proliferation and myelination, and therefore is a putative therapeutic target for neuronal disorders.

  9. Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor.

    Science.gov (United States)

    Berghuis, Paul; Dobszay, Marton B; Wang, Xinyu; Spano, Sabrina; Ledda, Fernanda; Sousa, Kyle M; Schulte, Gunnar; Ernfors, Patrik; Mackie, Ken; Paratcha, Gustavo; Hurd, Yasmin L; Harkany, Tibor

    2005-12-27

    In utero exposure to Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the active component from marijuana, induces cognitive deficits enduring into adulthood. Although changes in synaptic structure and plasticity may underlie Delta(9)-THC-induced cognitive impairments, the neuronal basis of Delta(9)-THC-related developmental deficits remains unknown. Using a Boyden chamber assay, we show that agonist stimulation of the CB(1) cannabinoid receptor (CB(1)R) on cholecystokinin-expressing interneurons induces chemotaxis that is additive with brain-derived neurotrophic factor (BDNF)-induced interneuron migration. We find that Src kinase-dependent TrkB receptor transactivation mediates endocannabinoid (eCB)-induced chemotaxis in the absence of BDNF. Simultaneously, eCBs suppress the BDNF-dependent morphogenesis of interneurons, and this suppression is abolished by Src kinase inhibition in vitro. Because sustained prenatal Delta(9)-THC stimulation of CB(1)Rs selectively increases the density of cholecystokinin-expressing interneurons in the hippocampus in vivo, we conclude that prenatal CB(1)R activity governs proper interneuron placement and integration during corticogenesis. Moreover, eCBs use TrkB receptor-dependent signaling pathways to regulate subtype-selective interneuron migration and specification.

  10. Human CMTM2/CKLFSF2 enhances the ligand-induced transactivation of the androgen receptor

    Institute of Scientific and Technical Information of China (English)

    LIU DaZhen; YIN CaiHua; ZHANG YingMei; TIAN LinJie; LI Ting; LI Dan; MA DaLong; GUO YingLu; WANG Ying

    2009-01-01

    CKLF (chemokine-like factor)-Iike MARVEL (MAL and related proteins for vesicle trafficking and membrane link domain) transmembrane domain containing (CMTM) is a novel gene family. One member of this family, CMTM2, also named chemokine-like factor superfamily 2 (CKLFSF2), is expressed highly in the testis and moderately in the prostate, marrow and peripheral blood cells. However, the function of human CMTM2 remains unknown. Here, we found that CMTM2 was upregulated in 5α-dihydrotestosterone (DHT)-treated LNCaP cells. We investigated the relationship between CMTM2 and the androgen receptor. Our results showed that CMTM2 enhanced DHT-mediated androgen receptor (AR) transactiration and the expression of prostate specific antigen (PSA). We also observed that CMTM2 enhanced the AR protein level, which was reversed by silencing endogenous CMTM2 expression, which suggested that CMTM2 might play an important role in maintaining the AR protein level. We also found that CMTM2 suppressed Akt activation. A previous study showed that Akt could phosphorylate AR at Ser210 and Ser790 and lead to AR ubiquitylation and degradation as well as suppression of AR activity.Taken together, suppressing Akt activation and increasing the AR protein level might be one of the mechanisms for the CMTM2-mediated enhancement of AR transactivation.

  11. Suppression of RNA Silencing by a Geminivirus Nuclear Protein, AC2, Correlates with Transactivation of Host Genes†

    Science.gov (United States)

    Trinks, Daniela; Rajeswaran, R.; Shivaprasad, P. V.; Akbergenov, Rashid; Oakeley, Edward J.; Veluthambi, K.; Hohn, Thomas; Pooggin, Mikhail M.

    2005-01-01

    Bipartite geminiviruses encode a small protein, AC2, that functions as a transactivator of viral transcription and a suppressor of RNA silencing. A relationship between these two functions had not been investigated before. We characterized both of these functions for AC2 from Mungbean yellow mosaic virus-Vigna (MYMV). When transiently expressed in plant protoplasts, MYMV AC2 strongly transactivated the viral promoter; AC2 was detected in the nucleus, and a split nuclear localization signal (NLS) was mapped. In a model Nicotiana benthamiana plant, in which silencing can be triggered biolistically, AC2 reduced local silencing and prevented its systemic spread. Mutations in the AC2 NLS or Zn finger or deletion of its activator domain abolished both these effects, suggesting that suppression of silencing by AC2 requires transactivation of host suppressor(s). In line with this, in Arabidopsis protoplasts, MYMV AC2 or its homologue from African cassava mosaic geminivirus coactivated >30 components of the plant transcriptome, as detected with Affymetrix ATH1 GeneChips. Several corresponding promoters cloned from Arabidopsis were strongly induced by both AC2 proteins. These results suggest that silencing suppression and transcription activation by AC2 are functionally connected and that some of the AC2-inducible host genes discovered here may code for components of an endogenous network that controls silencing. PMID:15681452

  12. Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes.

    Science.gov (United States)

    Trinks, Daniela; Rajeswaran, R; Shivaprasad, P V; Akbergenov, Rashid; Oakeley, Edward J; Veluthambi, K; Hohn, Thomas; Pooggin, Mikhail M

    2005-02-01

    Bipartite geminiviruses encode a small protein, AC2, that functions as a transactivator of viral transcription and a suppressor of RNA silencing. A relationship between these two functions had not been investigated before. We characterized both of these functions for AC2 from Mungbean yellow mosaic virus-Vigna (MYMV). When transiently expressed in plant protoplasts, MYMV AC2 strongly transactivated the viral promoter; AC2 was detected in the nucleus, and a split nuclear localization signal (NLS) was mapped. In a model Nicotiana benthamiana plant, in which silencing can be triggered biolistically, AC2 reduced local silencing and prevented its systemic spread. Mutations in the AC2 NLS or Zn finger or deletion of its activator domain abolished both these effects, suggesting that suppression of silencing by AC2 requires transactivation of host suppressor(s). In line with this, in Arabidopsis protoplasts, MYMV AC2 or its homologue from African cassava mosaic geminivirus coactivated >30 components of the plant transcriptome, as detected with Affymetrix ATH1 GeneChips. Several corresponding promoters cloned from Arabidopsis were strongly induced by both AC2 proteins. These results suggest that silencing suppression and transcription activation by AC2 are functionally connected and that some of the AC2-inducible host genes discovered here may code for components of an endogenous network that controls silencing.

  13. Transactivating-transduction protein-polyethylene glycol modified liposomes traverse the blood-spinal cord and blood-brain barriers

    Institute of Scientific and Technical Information of China (English)

    Xianhu Zhou; Chunyuan Wang; Shiqing Feng; Jin Chang; Xiaohong Kong; Yang Liu; Shijie Gao

    2012-01-01

    Naive liposomes can cross the blood-brain barrier and blood-spinal cord barrier in small amounts. Liposomes modified by a transactivating-transduction protein can deliver antibiotics for the treatment of acute bacterial infection-induced brain inflammation. Liposomes conjugated with polyethylene glycol have the capability of long-term circulation. In this study we prepared transactivating-transduction protein-polyethylene glycol-modified liposomes labeled with fluorescein isothiocyanate. Thus, liposomes were characterized by transmembrane, long-term circulation and fluorescence tracing. Uptake, cytotoxicity, and the ability of traversing blood-spinal cord and blood-brain barriers were observed following coculture with human breast adenocarcinoma cells (MCF-7). Results demonstrated that the liposomes had good biocompatibility, and low cytotoxicity when cocultured with human breast adenocarcinoma cells. Liposomes could traverse cell membranes and entered the central nervous system and neurocytes through the blood-spinal cord and blood-brain barriers of rats via the systemic circulation. These results verified that fluorescein isothiocyanate-modified transactivating-transduction protein-polyethylene glycol liposomes have the ability to traverse the blood-spinal cord and blood-brain barriers.

  14. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.G.; Kenney, S.C.; Kamine, J.; Pagano, J.S.; Huang, E.S.

    1987-12-01

    Almost all homosexual patients with acquired immunodeficiency syndrome are also actively infected with human cytomegalovirus (HCMV). The authors have hypothesized that an interaction between HCMV and human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome, may exist at a molecular level and contribute to the manifestations of HIV infection. In this report, they demonstrate that the immediate-early gene region of HCMV, in particular immediate-early region 2, trans-activates the expression of the bacterial gene chloramphenicol acetyltransferase that is fused to the HIV long terminal repeat and carried by plasmid pHIV-CAT. The HCMV immediate-early trans-activator increases the level of mRNA from the plamid pHIV-CAT. The sequences of HIV that are responsive to trans-activation by the HDMV immediate-early region are distinct from HIV sequences that are required for response to the HIV tat. The stimulation of HIV gene expression by HDMV gene functions could enhance the consequences of HIV infection in persons with previous or concurrent HCMV infection.

  15. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein.

    Science.gov (United States)

    Brázda, Václav; Čechová, Jana; Battistin, Michele; Coufal, Jan; Jagelská, Eva B; Raimondi, Ivan; Inga, Alberto

    2017-01-29

    The TP53 gene is the most frequently mutated gene in human cancer and p53 protein plays a crucial role in gene expression and cancer protection. Its role is manifested by interactions with other proteins and DNA. p53 is a transcription factor that binds to DNA response elements (REs). Due to the palindromic nature of the consensus binding site, several p53-REs have the potential to form cruciform structures. However, the influence of cruciform formation on the activity of p53-REs has not been evaluated. Therefore, we prepared sets of p53-REs with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures, for in vitro and in vivo analyses. Then we evaluated the presence of cruciform structures when inserted into plasmid DNA and employed a yeast-based assay to measure transactivation potential of these p53-REs cloned at a chromosomal locus in isogenic strains. We show that transactivation in vivo correlated more with relative propensity of an RE to form cruciforms than to its predicted in vitro DNA binding affinity for wild type p53. Structural features of p53-REs could therefore be an important determinant of p53 transactivation function.

  16. Mulberroside A suppresses PXR-mediated transactivation and gene expression of P-gp in LS174T cells.

    Science.gov (United States)

    Li, Yuhua; Huang, Ling; Sun, Jiahong; Wei, Xiaohua; Wen, Jinhua; Zhong, Guoping; Huang, Min; Bi, Huichang

    2016-12-05

    Mulberroside A (Mul A) is the main bioactive constituents of Sangbaipi, which is officially listed in the Chinese Pharmacopoeia. The pregnane X receptor (PXR) has been recognized as the critical mediator of human P-glycoprotein (P-gp) gene transactivation. In this study, the effect of Mul A on PXR-mediated transactivation and gene expression of P-gp was investigated. It was found that Mul A significantly suppressed PXR-mediated P-gp luciferase activity induced by rifampicin (Rif). Furthermore, Rif induced an elevation of P-gp expression and transport activity, which was apparently suppressed by Mul A. However, Mul A did not suppress the P-gp luciferase activity, P-gp expression, and function in the absence of Rif. These findings suggest that Mul A suppresses PXR-mediated transactivation and P-gp expression induced by Rif. This should be taken into consideration to predict any potential herb-drug interactions when Mul A or Sangbaipi are co-administered with Rif or other PXR agonist drugs.

  17. Screening of endocrine disrupting chemicals with MELN cells, an ER-transactivation assay combined with cytotoxicity assessment.

    Science.gov (United States)

    Berckmans, P; Leppens, H; Vangenechten, C; Witters, H

    2007-10-01

    There is growing concern that some chemicals can cause endocrine disrupting effects to wild animals and humans. Therefore a rapid and reliable screening assay to assess the activity of endocrine disrupting chemicals (EDCs) is required. These EDCs can act at multiple sites. Most studied mechanism is direct interaction with the hormone receptors, e.g. estrogen receptor. In this study the luciferase reporter gene assay using transgenic human MELN cells was used. Since cytotoxicity of the chemicals can decrease the luminescent signal in the transactivation assays, a cytotoxicity assay must be implemented. Mostly the neutral red (NR) assay is performed in parallel with the estrogenicity assay. To increase the reliability and cost-efficiency of the test, a method to measure estrogenicity and cytotoxicity in the same cell culture plate instead of in parallel plates was developed and evaluated. Therefore the NR-assay was compared with the CytoTox-ONE homogeneous membrane integrity assay. The latter measures LDH (lactate dehydrogenase) leakage based on a fluorometric method. For all compounds tested, the CytoTox-ONE test showed comparable curves and EC50-values to those obtained by the NR-assay. So the CytoTox-ONE kit, which seemed more sensitive than measurements of LDH-leakage based on a colorimetric method, is recommended to test cytotoxicity to MELN cells, with the advantage to use the same cells for ER-transactivation measurements. The chemicals tested in the optimised MELN assay showed estrogenic potencies comparable to those reported for several other transactivation assays.

  18. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Holmstroem, Therese E.; Mattsson, Charlotte L.; Wang, Yanling; Iakovleva, Irina; Petrovic, Natasa [Department of Physiology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm (Sweden); Nedergaard, Jan, E-mail: jan@metabol.su.se [Department of Physiology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm (Sweden)

    2010-10-01

    In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one G{sub i}-protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.

  19. cAMP-independent role of PKA in tonicity-induced transactivation of tonicity-responsive enhancer/ osmotic response element-binding protein

    OpenAIRE

    2002-01-01

    Hypertonicity-induced increase in activity of the transcription factor tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) protects renal cells by increasing transcription of genes, including those involved in increased accumulation of organic osmolytes. We previously showed that hypertonicity increases transactivating activity of TonEBP/OREBP. Assay with a binary GAL4 transactivation system showed that the 984 C-terminal amino acids of TonEBP/OREBP (amino aci...

  20. Transcriptional Activity of HTLV-I Tax Influences the Expression of Marker Genes Associated with Cellular Transformation

    Directory of Open Access Journals (Sweden)

    Francene J. Lemoine

    2001-01-01

    Full Text Available Human T cell leukemia virus type I (HTLV-I has been identified as the etiologic agent of adult T cell leukemia (ATL. HTLV-I encodes a transcriptional regulatory protein, Tax, which also functions as the viral transforming protein. Through interactions with a number of cellular transcription factors Tax can modulate cellular gene expression. Since the majority of Tax-responsive cellular genes are important regulators of cellular proliferation, the transactivating functions of Tax appear to be necessary for cellular transformation by HTLV-I. Gaining a complete understanding of the broad range of genes regulated by Tax, the temporal pattern of their expression, and their effects on cell function may identify early markers of disease progression mediated by this virus.

  1. Serine 249 phosphorylation by ATM protein kinase regulates hepatocyte nuclear factor-1α transactivation.

    Science.gov (United States)

    Zhao, Long; Chen, Hui; Zhan, Yi-Qun; Li, Chang-Yan; Ge, Chang-Hui; Zhang, Jian-Hong; Wang, Xiao-Hui; Yu, Miao; Yang, Xiao-Ming

    2014-07-01

    Hepatocyte nuclear factor-1 alpha (HNF1α) exerts important effects on gene expression in multiple tissues. Several studies have directly or indirectly supported the role of phosphorylation processes in the activity of HNF1α. However, the molecular mechanism of this phosphorylation remains largely unknown. Using microcapillary liquid chromatography MS/MS and biochemical assays, we identified a novel phosphorylation site in HNF1α at Ser249. We also found that the ATM protein kinase phosphorylated HNF1α at Ser249 in vitro in an ATM-dependent manner and that ATM inhibitor KU55933 treatment inhibited phosphorylation of HNF1α at Ser249 in vivo. Coimmunoprecipitation assays confirmed the association between HNF1α and ATM. Moreover, ATM enhanced HNF1α transcriptional activity in a dose-dependent manner, whereas the ATM kinase-inactive mutant did not. The use of KU55933 confirmed our observation. Compared with wild-type HNF1α, a mutation in Ser249 resulted in a pronounced decrease in HNF1α transactivation, whereas no dominant-negative effect was observed. The HNF1αSer249 mutant also exhibited normal nuclear localization but decreased DNA-binding activity. Accordingly, the functional studies of HNF1αSer249 mutant revealed a defect in glucose metabolism. Our results suggested that ATM regulates the activity of HNF1α by phosphorylation of serine 249, particularly in glucose metabolism, which provides valuable insights into the undiscovered mechanisms of ATM in the regulation of glucose homeostasis.

  2. Class II transactivator (CIITA enhances cytoplasmic processing of HIV-1 Pr55Gag.

    Directory of Open Access Journals (Sweden)

    Kristen A Porter

    Full Text Available BACKGROUND: The Pr55(gag (Gag polyprotein of HIV serves as a scaffold for virion assembly and is thus essential for progeny virion budding and maturation. Gag localizes to the plasma membrane (PM and membranes of late endosomes, allowing for release of infectious virus directly from the cell membrane and/or upon exocytosis. The host factors involved in Gag trafficking to these sites are largely unknown. Upon activation, CD4+ T cells, the primary target of HIV infection, express the class II transcriptional activator (CIITA and therefore the MHC class II isotype, HLA-DR. Similar to Gag, HLA-DR localizes to the PM and at the membranes of endosomes and specialized vesicular MHC class II compartments (MIICs. In HIV producer cells, transient HLA-DR expression induces intracellular Gag accumulation and impairs virus release. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that both stable and transient expression of CIITA in HIV producer cells does not induce HLA-DR-associated intracellular retention of Gag, but does increase the infectivity of virions. However, neither of these phenomena is due to recapitulation of the class II antigen presentation pathway or CIITA-mediated transcriptional activation of virus genes. Interestingly, we demonstrate that CIITA, apart from its transcriptional effects, acts cytoplasmically to enhance Pr160(gag-pol (Gag-Pol levels and thereby the viral protease and Gag processing, accounting for the increased infectivity of virions from CIITA-expressing cells. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that CIITA enhances HIV Gag processing, and provides the first evidence of a novel, post-transcriptional, cytoplasmic function for a well-known transactivator.

  3. The HIV-1 transactivator factor (Tat induces enterocyte apoptosis through a redox-mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Vittoria Buccigrossi

    Full Text Available The intestinal mucosa is an important target of human immunodeficiency virus (HIV infection. HIV virus induces CD4+ T cell loss and epithelial damage which results in increased intestinal permeability. The mechanisms involved in nutrient malabsorption and alterations of intestinal mucosal architecture are unknown. We previously demonstrated that HIV-1 transactivator factor (Tat induces an enterotoxic effect on intestinal epithelial cells that could be responsible for HIV-associated diarrhea. Since oxidative stress is implicated in the pathogenesis and morbidity of HIV infection, we evaluated whether Tat induces apoptosis of human enterocytes through oxidative stress, and whether the antioxidant N-acetylcysteine (NAC could prevent it. Caco-2 and HT29 cells or human intestinal mucosa specimens were exposed to Tat alone or combined with NAC. In an in-vitro cell model, Tat increased the generation of reactive oxygen species and decreased antioxidant defenses as judged by a reduction in catalase activity and a reduced (GSH/oxidized (GSSG glutathione ratio. Tat also induced cytochrome c release from mitochondria to cytosol, and caspase-3 activation. Rectal dialysis samples from HIV-infected patients were positive for the oxidative stress marker 8-hydroxy-2'-deoxyguanosine. GSH/GSSG imbalance and apoptosis occurred in jejunal specimens from HIV-positive patients at baseline and from HIV-negative specimens exposed to Tat. Experiments with neutralizing anti-Tat antibodies showed that these effects were direct and specific. Pre-treatment with NAC prevented Tat-induced apoptosis and restored the glutathione balance in both the in-vitro and the ex-vivo model. These findings indicate that oxidative stress is one of the mechanism involved in HIV-intestinal disease.

  4. Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays.

    Science.gov (United States)

    Fuhrmann, U; Slater, E P; Fritzemeier, K H

    1995-01-01

    Gestodene is a novel progestin used in oral contraceptives with an increased separation of progestogenic versus androgenic activity and a distinct antimineralocorticoid activity. This specific pharmacological profile of gestodene is defined by its pattern of binding affinities to a variety of steroid hormone receptors. In the present study the affinity of gestodene to the progesterone receptor (PR), the androgen receptor (AR), the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR) and the estrogen receptor (ER) was re-evaluated by steroid binding assays and compared to those obtained for 3-keto-desogestrel and progesterone. The two synthetic progestins displayed identical high affinity to rabbit PR and similar marked binding to rat AR and GR, while progesterone showed high affinity to PR but only low binding to AR and GR. Furthermore, 3-keto-desogestrel exhibited almost no binding to MR, whereas gestodene, similar to progesterone, showed marked affinity to this receptor. In addition to receptor binding studies, transactivation assays were carried out to investigate the effects of gestodene on AR-, GR- and MR-mediated induction of transcription. In contrast to progesterone, which showed antiandrogenic activity, gestodene and 3-keto-desogestrel both exhibited androgenic activity. Furthermore, all three progestins exhibited weak GR-mediated antagonistic activity. In contrast to progesterone, which showed almost no glucocorticoid activity, gestodene and 3-keto-desogestrel showed weak glucocorticoid action. In addition, gestodene inhibited the aldosterone-induced reporter gene transcription, similar to progesterone, whereas unlike progesterone, gestodene did not induce reporter gene transcription. 3-Keto-desogestrel showed neither antimineralocorticoid nor mineralocorticoid action.

  5. Strain background influences neurotoxicity and behavioral abnormalities in mice expressing the tetracycline transactivator.

    Science.gov (United States)

    Han, Harry J; Allen, Carolyn C; Buchovecky, Christie M; Yetman, Michael J; Born, Heather A; Marin, Miguel A; Rodgers, Shaefali P; Song, Bryan J; Lu, Hui-Chen; Justice, Monica J; Probst, Frank J; Jankowsky, Joanna L

    2012-08-01

    The tet-off system has been widely used to create transgenic models of neurological disorders including Alzheimer's, Parkinson's, Huntington's, and prion disease. The utility of this system lies in the assumption that the tetracycline transactivator (TTA) acts as an inert control element and does not contribute to phenotypes under study. Here we report that neuronal expression of TTA can affect hippocampal cytoarchitecture and behavior in a strain-dependent manner. While studying neurodegeneration in two tet-off Alzheimer's disease models, we unexpectedly discovered neuronal loss within the dentate gyrus of single transgenic TTA controls. Granule neurons appeared most sensitive to TTA exposure during postnatal development, and doxycycline treatment during this period was neuroprotective. TTA-induced degeneration could be rescued by moving the transgene onto a congenic C57BL/6J background and recurred on reintroduction of either CBA or C3H/He backgrounds. Quantitative trait analysis of B6C3 F2 TTA mice identified a region on Chromosome 14 that contains a major modifier of the neurodegenerative phenotype. Although B6 mice were resistant to degeneration, they were not ideal for cognitive testing. F1 offspring of TTA C57BL/6J and 129X1/SvJ, FVB/NJ, or DBA/1J showed improved spatial learning, but TTA expression caused subtle differences in contextual fear conditioning on two of these backgrounds, indicating that strain and genotype can interact independently under different behavioral settings. All model systems have limitations that should be recognized and mitigated where possible; our findings stress the importance of mapping the effects caused by TTA alone when working with tet-off models.

  6. Hydrogen sulfide represses androgen receptor transactivation by targeting at the second zinc finger module.

    Science.gov (United States)

    Zhao, Kexin; Li, Shuangshuang; Wu, Lingyun; Lai, Christopher; Yang, Guangdong

    2014-07-25

    Androgen receptor (AR) signaling is indispensable for the development of prostate cancer from the initial androgen-dependent state to a later aggressive androgen-resistant state. This study examined the role of hydrogen sulfide (H(2)S), a novel gasotransmitter, in the regulation of AR signaling as well as its mediation in androgen-independent cell growth in prostate cancer cells. Here we found that H(2)S inhibits cell proliferation of both androgen-dependent (LNCaP) and antiandrogen-resistant prostate cancer cells (LNCaP-B), with more significance on the latter, which was established by long term treatment of parental LNCaP cells with bicalutamide. The expression of cystathionine γ-lyase (CSE), a major H(2)S producing enzyme in prostate tissue, was reduced in both human prostate cancer tissues and LNCaP-B cells. LNCaP-B cells were resistant to bicalutamide-induced cell growth inhibition, and CSE overexpression could rebuild the sensitivity of LNCaP-B cells to bicalutamide. H(2)S significantly repressed the expression of prostate-specific antigen (PSA) and TMPRSS2, two AR-targeted genes. In addition, H(2)S inhibited AR binding with PSA promoter and androgen-responsive element (ARE) luciferase activity. We further found that AR is post-translationally modified by H(2)S through S-sulfhydration. Mutation of cysteine 611 and cysteine 614 in the second zinc finger module of AR-DNA binding domain diminished the effects of H(2)S on AR S-sulfhydration and AR dimerization. These data suggest that reduced CSE/H2S signaling contributes to antiandrogen-resistant status, and sufficient level of H(2)S is able to inhibit AR transactivation and treat castration-resistant prostate cancer.

  7. Conformational control of the binding of the transactivation domain of the MLL protein and c-Myb to the KIX domain of CREB.

    Directory of Open Access Journals (Sweden)

    Elif Nihal Korkmaz

    Full Text Available The KIX domain of CBP is a transcriptional coactivator. Concomitant binding to the activation domain of proto-oncogene protein c-Myb and the transactivation domain of the trithorax group protein mixed lineage leukemia (MLL transcription factor lead to the biologically active ternary MLL∶KIX∶c-Myb complex which plays a role in Pol II-mediated transcription. The binding of the activation domain of MLL to KIX enhances c-Myb binding. Here we carried out molecular dynamics (MD simulations for the MLL∶KIX∶c-Myb ternary complex, its binary components and KIX with the goal of providing a mechanistic explanation for the experimental observations. The dynamic behavior revealed that the MLL binding site is allosterically coupled to the c-Myb binding site. MLL binding redistributes the conformational ensemble of KIX, leading to higher populations of states which favor c-Myb binding. The key element in the allosteric communication pathways is the KIX loop, which acts as a control mechanism to enhance subsequent binding events. We tested this conclusion by in silico mutations of loop residues in the KIX∶MLL complex and by comparing wild type and mutant dynamics through MD simulations. The loop assumed MLL binding conformation similar to that observed in the KIX∶c-Myb state which disfavors the allosteric network. The coupling with c-Myb binding site faded, abolishing the positive cooperativity observed in the presence of MLL. Our major conclusion is that by eliciting a loop-mediated allosteric switch between the different states following the binding events, transcriptional activation can be regulated. The KIX system presents an example how nature makes use of conformational control in higher level regulation of transcriptional activity and thus cellular events.

  8. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.

    2007-01-01

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  9. Study of transactivating effect of pre-S2 protein of hepatitis B virus and cloning of genes transactivated by pre-S2 protein with suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    Dong Ji; Jun Cheng; Guo-Feng Chen; Yan Liu; Lin Wang; Jiang Guo

    2005-01-01

    AIM: To investigate the transactivating effect of pre-S2 protein of hepatitis B virus (HBV) and construct a subtractive cDNA library of genes transactivated by pre-S2 protein with suppression subtractive hybridization (SSH)technique, and to pave the way for elucidating the pathogenesis of HBV infection.METHODS: pcDNA3.1(-)-pre-S2 containing pre-S2 region of HBV genome was constructed by routine molecular methods. HepG2 cells were cotransfected with pcDNA3.1 (-)-pre-S2/pSV-lacZ and empty pcDNA3.1(-)/pSV-lacZ.After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). SSH and bioinformatics techniques were used, the mRNA of HepG2 cells transfected with pcDNA3.1(-)-pre-S2 and pcDNA3.1(-) empty vector was isolated, respectively, cDNA was synthesized. After digestion with restriction enzyme RsaI, cDNA fragments were obtained. Tester cDNA was then divided into two groups and ligated to the specific adaptor 1 and adaptor 2, respectively. After tester cDNA was hybridized with driver cDNA twice and underwent two times of nested PCR, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library.Amplification of the library was carried out with E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with Blast search after PCR.RESULTS: The pre-S2 mRNA could be detected in HepG2 cells transfected with pcDNA3.1(-)-pre-S2 plasmid. The activity of β-gal in HepG2 cells transfected with pcDNA3.1 (-)-pre-S2/pSV-lacZ was 7.0 times higher than that of control plasmid (P<0.01). The subtractive library of genes transactivated by HBV pre-S2 protein was constructed successfully. The amplified library contains 96 positive clones. Colony PCR showed that 86 clones contained 200-1 000 bp inserts. Sequence analysis was performed in 50 clones randomly, and the full length sequences were obtained with bioinformatics method and searched for homologous DNA sequence from GenBank, altogether 25 coding sequences

  10. Glutamine repeat variants in human RUNX2 associated with decreased femoral neck BMD, broadband ultrasound attenuation and target gene transactivation.

    Directory of Open Access Journals (Sweden)

    Nigel A Morrison

    Full Text Available RUNX2 is an essential transcription factor required for skeletal development and cartilage formation. Haploinsufficiency of RUNX2 leads to cleidocranial displaysia (CCD a skeletal disorder characterised by gross dysgenesis of bones particularly those derived from intramembranous bone formation. A notable feature of the RUNX2 protein is the polyglutamine and polyalanine (23Q/17A domain coded by a repeat sequence. Since none of the known mutations causing CCD characterised to date map in the glutamine repeat region, we hypothesised that Q-repeat mutations may be related to a more subtle bone phenotype. We screened subjects derived from four normal populations for Q-repeat variants. A total of 22 subjects were identified who were heterozygous for a wild type allele and a Q-repeat variant allele: (15Q, 16Q, 18Q and 30Q. Although not every subject had data for all measures, Q-repeat variants had a significant deficit in BMD with an average decrease of 0.7SD measured over 12 BMD-related parameters (p = 0.005. Femoral neck BMD was measured in all subjects (-0.6SD, p = 0.0007. The transactivation function of RUNX2 was determined for 16Q and 30Q alleles using a reporter gene assay. 16Q and 30Q alleles displayed significantly lower transactivation function compared to wild type (23Q. Our analysis has identified novel Q-repeat mutations that occur at a collective frequency of about 0.4%. These mutations significantly alter BMD and display impaired transactivation function, introducing a new class of functionally relevant RUNX2 mutants.

  11. Adenosine A1 receptor-mediated transactivation of the EGF receptor produces a neuroprotective effect on cortical neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    Ke-qiang XIE; Li-min ZHANG; Yan CAO; Jun ZHU; Lin-yin FENG

    2009-01-01

    Aim:To understand the mechanism of the transactivation of the epidermal growth factor receptor (EGFR) mediated by the adenosine A1 receptor (A1R).Methods:Primary cultured rat cortical neurons subjected to oxygen-glucose deprivation (OGD) and HEK293/A1R cells were treated with the A1R-specific agonist N6-cyclopentyladenosine (CPA).Phospho-EGFR,Akt,and ERK1/2 were observed by Western blot.An interaction between EGFR and AIR was detected using immunoprecipitation and immunocytochemistry.Results:The A1R agonist CPA causes protein kinase B (Akt) activation and protects primary cortical neurons from oxygen-glucose deprivation (OGD) insult.A1R and EGFR co-localize in the membranes of neurons and form an immunocomplex.A1R stimulation induces significant EGFR phosphorylation via a P13K and Src kinase signaling pathway;this stimulation provides a neuroprotective effect in cortical neurons.CPA leads to sustained phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) in cortical neurons,but only to transient phosphorylation in HEK 293/A1R cells.The response to the AtR agonist is mediated primarily through EGFR trans-activation that is dependent on pertussis toxin (PTX)-sensitive G1 protein and metalloproteases in HEK 293/A1R.Conclusion:A1R-mediated EGFR transactivation confers a neuroprotective effect in primary cortical neurons.P13 kinase and Src kinase play pivotal roles in this response.

  12. Epstein-Barr virus nuclear antigen 2 transactivates the long terminal repeat of human immunodeficiency virus type 1.

    Science.gov (United States)

    Scala, G; Quinto, I; Ruocco, M R; Mallardo, M; Ambrosino, C; Squitieri, B; Tassone, P; Venuta, S

    1993-05-01

    Human immunodeficiency virus type 1 (HIV-1)-infected subjects show a high incidence of Epstein-Barr virus (EBV) infection. This suggests that EBV may function as a cofactor that affects HIV-1 activation and may play a major role in the progression of AIDS. To test this hypothesis, we generated two EBV-negative human B-cell lines that stably express the EBNA2 gene of EBV. These EBNA2-positive cell lines were transiently transfected with plasmids that carry either the wild type or deletion mutants of the HIV-1 long terminal repeat (LTR) fused to the chloramphenicol acetyltransferase (CAT) gene. There was a consistently higher HIV-1 LTR activation in EBNA2-expressing cells than in control cells, which suggested that EBNA2 proteins could activate the HIV-1 promoter, possibly by inducing nuclear factors binding to HIV-1 cis-regulatory sequences. To test this possibility, we used CAT-based plasmids carrying deletions of the NF-kappa B (pNFA-CAT), Sp1 (pSpA-CAT), or TAR (pTAR-CAT) region of the HIV-1 LTR and retardation assays in which nuclear proteins from EBNA2-expressing cells were challenged with oligonucleotides encompassing the NF-kappa B or Sp1 region of the HIV-1 LTR. We found that both the NF-kappa B and the Sp1 sites of the HIV-1 LTR are necessary for EBNA2 transactivation and that increased expression resulted from the induction of NF-kappa B-like factors. Moreover, experiments with the TAR-deleted pTAR-CAT and with the tat-expressing pAR-TAT plasmids indicated that endogenous Tat-like proteins could participate in EBNA2-mediated activation of the HIV-1 LTR and that EBNA2 proteins can synergize with the viral tat transactivator. Transfection experiments with plasmids expressing the EBNA1, EBNA3, and EBNALP genes did not cause a significant HIV-1 LTR activation. Thus, it appears that among the latent EBV genes tested, EBNA2 was the only EBV gene active on the HIV-1 LTR. The transactivation function of EBNA2 was also observed in the HeLa epithelial cell line

  13. Human immunodeficiency virus trans-activator of transcription peptide detection via ribonucleic acid aptamer on aminated diamond biosensor

    Science.gov (United States)

    Rahim Ruslinda, A.; Wang, Xianfen; Ishii, Yoko; Ishiyama, Yuichiro; Tanabe, Kyosuke; Kawarada, Hiroshi

    2011-09-01

    The potential of ribonucleic acid (RNA) as both informational and ligand binding molecule have opened a scenario in the development of biosensors. An aminated diamond-based RNA aptasensor is presented for human immunodeficiency virus (HIV) trans-activator of transcription (Tat) peptide protein detection that not only gives a labeled or label-free detection method but also provides a reusable platform for a simple, sensitive, and selective detection of proteins. The immobilized procedure was based on the binding interaction between positively charged amine terminated diamond and the RNA aptamer probe molecules with the negatively charged surface carboxylic compound linker molecule such as terephthalic acid.

  14. Polyclonal antibody preparation and expression in liver tissues of transactivated protein 5 of hepatitis C virus nonstructural 5A

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To prepare polyclonal antibody of transactivated protein 5 of hepatitis C virus nonstructural 5A (NA5ATP5) and to explore its expression in the liver tissues. Methods In Escherichia coli BL21,the prokaryotic expression vector pET32a(+)-NS5ATP5 was induced by isopropyl-β-D-thiogalactoside (IPTG),and it was analyzed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. And the purified protein was used to immunize the rabbit to prepare polyclonal antibody,wi...

  15. Novel Functional Association of Serine Palmitoyltransferase Subunit 1-A Peptide in Sphingolipid Metabolism with Cytochrome P4501A1 Transactivation and Proliferative Capacity of the Human Glioma LN18 Brain Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    J. Stewart

    2006-09-01

    Full Text Available Some chemical modulators of cytochrome P4501A1, Cyp1A1, expression also perturb the activity of serine palmitoyltransferase, SPT, a heterodimeric protein responsible for catalyzing the first reaction in sphingolipid biosynthesis. The effect of altered SPT activity on Cyp1A1 expression has generally been attributed to changes in the composition of bioactive sphingolipids, generated downstream in the SPT metabolic pathway, but the precise mechanism remains poorly defined. A generally accepted model for chemical-induced transactivation of the Cyp1A1 gene involves intracellular signaling mediated by proteins including the arylhydrocarbon receptor, AhR, whose interaction with the 90 kilo Dalton heat shock protein, Hsp90, is essential for maintaining a high affinity ligandbinding receptor conformation. Because ligand-induced Cyp1A1 expression is important in the bioactivation of environmentally relevant compounds to genotoxic derivatives capable of perturbing cellular processes, binding to Hsp90 represents an important regulatory point in the cytotoxicity process. In the present study, based on evidence that indicates subunit 1 of serine palmitoyltransferase, SPT1, interacts with Hsp90, both ligand-induced Cyp1A1 transactivation and capacity for proliferation were evaluated using the wild type Glioma LN18 human brain cancer cell line and its recombinant counterparts expressing green fluorescent SPT1 fusion proteins. Exposure to the prototypical Cyp1A1 inducer, 3-methylcholanthrene, 3-MC, resulted in the translocation of SPT1 from a primarily cytoplasmic domain to sites of focal adhesion complexes. Immunolabel for Hsp90, which was dispersed throughout the cell, became primarily cytoplasmic, while the distribution of AhR remained unaffected. When compared to the wild type, cells transfected with recombinant SPT1-GFP vectors had significantly attenuated levels of 3-MC-induced Cyp1A1 mRNA, as determined by quantitative reverse transcription PCR. Although

  16. JUNB PROMOTER REGULATION - RAS MEDIATED TRANSACTIVATION BY C-ETS-1 AND C-ETS-2

    NARCIS (Netherlands)

    COFFER, P; DEJONGE, M; METTOUCHI, A; BINETRUY, B; GHYSDAEL, J; KRUIJER, W

    1994-01-01

    The Jun gene family encode components of the AP-1 transcription factor complex that regulate a variety of TRE-containing target promoters. Expression of family members is induced by a wide variety of extracellular stimuli and thought to be important in mediating cellular proliferation and differenti

  17. Cloning and identification of NS5ATP2 gene and its spliced variant transactivated by hepatitis C virus non-structural protein 5A

    Institute of Scientific and Technical Information of China (English)

    Qian Yang; Jun Cheng; Yan Liu; Yuan Hong; Jian-Jun Wang; Shu-Lin Zhang

    2004-01-01

    AIM: To clone, identify and study new NS5ATP2 gene and its spliced variant transactivated by hepatitis C virus nonstructural protein 5A.METHODS: On the basis of subtractive cDNA library of genes transactivated by NS5A protein of hepatitis C virus, the coding sequence of new gene and its spliced variant were obtained by bioinformatics method. Polymerase chain reaction (PCR)was conducted to amplify NS5ATP2 gene.RESUJLTS: The coding sequence of a new gene and its spliced variant were cloned and identified successfully.CONCLUSION: A new gene has been recognized as the new target transactivated by HCV NS5A protein. These results brought some new clues for studying the biological functions of new genes and pathogenesis of the viral proteins.

  18. Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice.

    Directory of Open Access Journals (Sweden)

    Lukas E Dow

    Full Text Available Tetracycline or doxycycline (dox-regulated control of genetic elements allows inducible, reversible and tissue specific regulation of gene expression in mice. This approach provides a means to investigate protein function in specific cell lineages and at defined periods of development and disease. Efficient and stable regulation of cDNAs or non-coding elements (e.g. shRNAs downstream of the tetracycline-regulated element (TRE requires the robust expression of a tet-transactivator protein, commonly the reverse tet-transactivator, rtTA. Most rtTA strains rely on tissue specific promoters that often do not provide sufficient rtTA levels for optimal inducible expression. Here we describe the generation of two mouse strains that enable Cre-dependent, robust expression of rtTA3, providing tissue-restricted and consistent induction of TRE-controlled transgenes. We show that these transgenic strains can be effectively combined with established mouse models of disease, including both Cre/LoxP-based approaches and non Cre-dependent disease models. The integration of these new tools with established mouse models promises the development of more flexible genetic systems to uncover the mechanisms of development and disease pathogenesis.

  19. Transactivation of ErbB receptors by leptin in the cardiovascular system: mechanisms, consequences and target for therapy.

    Science.gov (United States)

    Bełtowski, Jerzy; Jazmroz-Wiśniewska, Anna

    2014-01-01

    Many experimental and clinical studies have demonstrated that elevated leptin concentration in patients with obesity/metabolic syndrome contributes to the pathogenesis of cardiovascular disorders including arterial hypertension, atherosclerosis, restenosis after coronary angioplasty and myocardial hypertrophy. Receptor tyrosine kinases belonging to the ErbB family, especially ErbB1 (epidermal growth factor receptor) and ErbB2 are abundantly expressed in the blood vessels and the heart. EGFR is activated not only by its multiple peptide ligands but also by many other factors including angiotensin II, endothelin-1, norepinephrine, thrombin and prorenin; the phenomenon referred to as "transactivation". Augmented EGFR signaling contributes to abnormalities of vascular tone and renal sodium handling as well as vascular remodeling and myocardial hypertrophy through various intracellular mechanisms, in particular extracellular signal-regulated kinases (ERK) and phosphoinositide 3-kinase (PI3K). Recent experimental studies indicate that chronically elevated leptin transactivates the EGFR through the mechanisms requiring reactive oxygen species and cytosolic tyrosine kinase, c-Src. In addition, hyperleptinemia increases ErbB2 activity in the arterial wall. Stimulation of EGFR and ErbB2 downstream signaling pathways such as ERK and PI3K in the vascular wall and the kidney may contribute to the increase in vascular tone, enhanced tubular sodium reabsorption as well as vascular and renal lesions in hyperleptinemic obese subjects.

  20. Low levels of the reverse transactivator fail to induce target transgene expression in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Nikenza Viceconte

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a genetic disease with multiple features that are suggestive of premature aging. Most patients with HGPS carry a mutation on one of their copies of the LMNA gene. The LMNA gene encodes the lamin A and lamin C proteins, which are the major proteins of the nuclear lamina. The organs of the cardiovascular system are amongst those that are most severely affected in HGPS, undergoing a progressive depletion of vascular smooth muscle cells, and most children with HGPS die in their early teens from cardio-vascular disease and other complications from atherosclerosis. In this study, we developed a transgenic mouse model based on the tet-ON system to increase the understanding of the molecular mechanisms leading to the most lethal aspect of HGPS. To induce the expression of the most common HGPS mutation, LMNA c.1824C>T; p.G608G, in the vascular smooth muscle cells of the aortic arch and thoracic aorta, we used the previously described reverse tetracycline-controlled transactivator, sm22α-rtTA. However, the expression of the reverse sm22α-transactivator was barely detectable in the arteries, and this low level of expression was not sufficient to induce the expression of the target human lamin A minigene. The results from this study are important because they suggest caution during the use of previously functional transgenic animal models and emphasize the importance of assessing transgene expression over time.

  1. Identification of a novel Rev-interacting cellular protein

    Directory of Open Access Journals (Sweden)

    Werner Thomas

    2005-04-01

    Full Text Available Abstract Background Human cell types respond differently to infection by human immunodeficiency virus (HIV. Defining specific interactions between host cells and viral proteins is essential in understanding how viruses exploit cellular functions and the innate strategies underlying cellular control of HIV replication. The HIV Rev protein is a post-transcriptional inducer of HIV gene expression and an important target for interaction with cellular proteins. Identification of Rev-modulating cellular factors may eventually contribute to the design of novel antiviral therapies. Results Yeast-two hybrid screening of a T-cell cDNA library with Rev as bait led to isolation of a novel human cDNA product (16.4.1. 16.4.1-containing fusion proteins showed predominant cytoplasmic localization, which was dependent on CRM1-mediated export from the nucleus. Nuclear export activity of 16.4.1 was mapped to a 60 amino acid region and a novel transport signal identified. Interaction of 16.4.1 with Rev in human cells was shown in a mammalian two-hybrid assay and by colocalization of Rev and 16.4.1 in nucleoli, indicating that Rev can recruit 16.4.1 to the nucleus/nucleoli. Rev-dependent reporter expression was inhibited by overexpressing 16.4.1 and stimulated by siRNAs targeted to 16.4.1 sequences, demonstrating that 16.4.1 expression influences the transactivation function of Rev. Conclusion These results suggest that 16.4.1 may act as a modulator of Rev activity. The experimental strategies outlined in this study are applicable to the identification and biological characterization of further novel Rev-interacting cellular factors.

  2. A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor.

    Science.gov (United States)

    Yan, Fang; Liu, Liping; Dempsey, Peter J; Tsai, Yu-Hwai; Raines, Elaine W; Wilson, Carole L; Cao, Hailong; Cao, Zheng; Liu, LinShu; Polk, D Brent

    2013-10-18

    p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17(-/-) MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17(-/-) MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.

  3. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  4. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  5. p53 Requires an Intact C-Terminal Domain for DNA Binding and Transactivation

    OpenAIRE

    2011-01-01

    The p53 tumor suppressor plays a critical role in mediating cellular response to a wide range of environmental stresses. p53 regulates these processes mainly by acting as a short-lived DNA binding protein that stimulates transcription from numerous genes involved in cell cycle arrest, programmed cell death, and other processes. To investigate the importance of C-terminal domain of p53, we generated a series of deletion and point mutations in this region and analyzed their effects on p53 trans...

  6. The Myc Transactivation Domain Promotes Global Phosphorylation of the RNA Polymerase II Carboxy-Terminal Domain Independently of Direct DNA Binding▿ †

    Science.gov (United States)

    Cowling, Victoria H.; Cole, Michael D.

    2007-01-01

    Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc−/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters and stimulates TFIIH binding in an MBII-dependent manner. Expression of the Myc transactivation domain increases CDK mRNA cap methylation, polysome loading, and the rate of translation. We find that some traditional Myc transcriptional target genes are also regulated by this Myc-driven translation mechanism. We propose that Myc transactivation domain-driven RNA Pol II CTD phosphorylation has broad effects on both transcription and mRNA metabolism. PMID:17242204

  7. Conserved Structural Motifs at the C-Terminus of Baculovirus Protein IE0 are Important for its Functions in Transactivation and Supporting hr5-mediated DNA Replication

    Directory of Open Access Journals (Sweden)

    Neta Luria

    2012-05-01

    Full Text Available IE0 and IE1 are transactivator proteins of the most studied baculovirus, the Autographa californica multiple nucleopolyhedrovirus (AcMNPV. IE0 is a 72.6 kDa protein identical to IE1 with the exception of its 54 N-terminal amino acid residues. To gain some insight about important structural motifs of IE0, we expressed the protein and C‑terminal mutants of it under the control of the Drosophila heat shock promoter and studied the transactivation and replication functions of the transiently expressed proteins. IE0 was able to promote replication of a plasmid bearing the hr5 origin of replication of AcMNPV in transient transfections with a battery of eight plasmids expressing the AcMNPV genes dnapol, helicase, lef-1, lef-2, lef-3, p35, ie-2 and lef-7. IE0 transactivated expression of the baculovirus 39K promoter. Both functions of replication and transactivation were lost after introduction of selected mutations at the basic domain II and helix-loop-helix conserved structural motifs in the C-terminus of the protein. These IE0 mutants were unable to translocate to the cell nucleus. Our results point out the important role of some structural conserved motifs to the proper functioning of IE0.

  8. Interleukin-6-induced STAT3 transactivation and Ser(727) phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components

    NARCIS (Netherlands)

    Schuringa, JJ; Jonk, LJC; Dokter, WHA; Vellenga, E; Kruijer, W

    2000-01-01

    In the present study, signal transducer and activator of transcription 3 (STAT3) Ser(727) phosphorylation and transactivation was investigated in relation to activation of mitogen-activated protein (MAP) kinase family members including extracellular-signal-regulated protein kinase (ERK)-1, c-Jun N-t

  9. Interaction of c-Myc with the pRb-related protein p107 results in inhibition of c-Myc-mediated transactivation

    NARCIS (Netherlands)

    Beijersbergen, R.L.; Hijmans, E.M.; Zhu, L.; Bernards, R.A.

    1994-01-01

    The product of the c-myc proto-oncogene, c-Myc, is a sequence-specific DNA binding protein with an Nterminal transactivation domain and a C-terminal DNA binding domain. Several lines of evidence indicate that c-Myc activity is essential for normal cell cycle progression. Since the abundance of c-Myc

  10. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    Science.gov (United States)

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  11. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation

    DEFF Research Database (Denmark)

    Helin, K; Wu, C L; Fattaey, A R;

    1993-01-01

    the hypophosphorylated form of the retinoblastoma protein (pRB). The other protein, murine DP-1, was purified from an E2F DNA-affinity column, and it was subsequently shown to bind the consensus E2F DNA-binding site. To study a possible interaction between E2F-1 and DP-1, we have now isolated a cDNA for the human...... is required for stable interaction with pRB in vivo and that trans-activation by E2F-1/DP-1 heterodimers is inhibited by pRB. We suggest that "E2F" is the activity that is formed when an E2F-1-related protein and a DP-1-related protein dimerize....

  12. Recombinant production of Epstein-Barr virus BZLF1 trans-activator and characterization of its DNA-binding specificity.

    Science.gov (United States)

    Lim, Chun Shen; Goh, Siang Ling; Krishnan, Gopala; Ng, Ching Ching

    2014-03-01

    This paper describes the recombinant production of a biologically active Epstein-Barr virus BZLF1 trans-activator, i.e., Z-encoded broadly reactive activator (ZEBRA), that recognized specific DNA motifs. We used auto-induction for histidine-tagged BZLF1 expression in Escherichia coli and immobilized cobalt affinity membrane chromatography for protein purification under native conditions. We obtained the purified BZLF1 at a yield of 5.4mg per gram of wet weight cells at 75% purity, in which 27% of the recombinant BZLF1 remained biologically active. The recombinant BZLF1 bound to oligonucleotides containing ZEBRA response elements, either AP-1 or ZIIIB, but not a ZIIIB mutant. The recombinant BZLF1 showed a specific DNA-binding activity which could be useful for functional studies.

  13. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  14. Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells.

    Science.gov (United States)

    Andresen, Bradley T; Linnoila, Jenny J; Jackson, Edwin K; Romero, Guillermo G

    2003-03-01

    Angiotensin (Ang) II promotes the phosphorylation of extracellular regulated kinase (ERK); however, the mechanisms leading to Ang II-induced ERK phosphorylation are debated. The currently accepted theory involves transactivation of epidermal growth factor receptor (EGFR). We have shown that generation of phosphatidic acid (PA) is required for the recruitment of Raf to membranes and the activation of ERK by multiple agonists, including Ang II. In the present report, we confirm that phospholipase D-dependent generation of PA is required for Ang II-mediated phosphorylation of ERK in Wistar-Kyoto and spontaneously hypertensive rat preglomerular smooth muscle cells (PGSMCs). However, EGF stimulation does not activate phospholipase D or generate PA. These observations indicate that EGF recruits Raf to membranes via a mechanism that does not involve PA, and thus, Ang II-mediated phosphorylation of ERK is partially independent of EGFR-mediated signaling cascades. We hypothesized that phosphoinositide-3-kinase (PI3K) can also act to recruit Raf to membranes; therefore, inhibition of PI3K should inhibit EGF signaling to ERK. Wortmannin, a PI3K inhibitor, inhibited EGF-mediated phosphorylation of ERK (IC50, approximately 14 nmol/L). To examine the role of the EGFR in Ang II-mediated phosphorylation of ERK we utilized 100 nmol/L wortmannin to inhibit EGFR signaling to ERK and T19N RhoA to block Ang II-mediated ERK phosphorylation. Wortmannin treatment inhibited EGF-mediated but not Ang II-mediated phosphorylation of ERK. Furthermore, T19N RhoA inhibited Ang II-mediated ERK phosphorylation, whereas T19N RhoA had significantly less effect on EGF-mediated ERK phosphorylation. We conclude that transactivation of the EGFR is not primarily responsible for Ang II-mediated activation of ERK in PGSMCs.

  15. Androgen receptor-dependent transactivation of growth arrest-specific gene 6 mediates inhibitory effects of testosterone on vascular calcification.

    Science.gov (United States)

    Son, Bo-Kyung; Akishita, Masahiro; Iijima, Katsuya; Ogawa, Sumito; Maemura, Koji; Yu, Jing; Takeyama, Kenichi; Kato, Shigeaki; Eto, Masato; Ouchi, Yasuyoshi

    2010-03-05

    Recent epidemiological studies have found that androgen deficiency is associated with a higher incidence of cardiovascular disease in men. However, little is known about the mechanism underlying the cardioprotective effects of androgens. Here we show the inhibitory effects of testosterone on vascular calcification and a critical role of androgen receptor (AR)-dependent transactivation of growth arrest-specific gene 6 (Gas6), a key regulator of inorganic phosphate (P(i))-induced calcification of vascular smooth muscle cells (VSMC). Testosterone and nonaromatizable androgen dihydrotestosterone inhibited P(i)-induced calcification of human aortic VSMC in a concentration-dependent manner. Androgen inhibited P(i)-induced VSMC apoptosis, an essential process for VSMC calcification. The effects on VSMC calcification were mediated by restoration of P(i)-induced down-regulation of Gas6 expression and a subsequent reduction of Akt phosphorylation. These effects of androgen were blocked by an AR antagonist, flutamide, but not by an estrogen receptor antagonist, ICI 182,780. We then explored the mechanistic role of the AR in Gas6 expression and found an abundant expression of AR predominantly in the nucleus of VSMC and two consensus ARE sequences in the Gas6 promoter region. Dihydrotestosterone stimulated Gas6 promoter activity, and this effect was abrogated by flutamide and by AR siRNA. Site-specific mutation revealed that the proximal ARE was essential for androgen-dependent transactivation of Gas6. Furthermore, chromatin immunoprecipitation assays demonstrated ligand-dependent binding of the AR to the proximal ARE of Gas6. These results indicate that AR signaling directly regulates Gas6 transcription, which leads to inhibition of vascular calcification, and provides a mechanistic insight into the cardioprotective action of androgens.

  16. EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy.

    Science.gov (United States)

    Esposito, Giovanni; Perrino, Cinzia; Cannavo, Alessandro; Schiattarella, Gabriele G; Borgia, Francesco; Sannino, Anna; Pironti, Gianluigi; Gargiulo, Giuseppe; Di Serafino, Luigi; Franzone, Anna; Scudiero, Laura; Grieco, Paolo; Indolfi, Ciro; Chiariello, Massimo

    2011-06-01

    Urotensin II (UTII) and its seven trans-membrane receptor (UTR) are up-regulated in the heart under pathological conditions. Previous in vitro studies have shown that UTII trans-activates the epidermal growth factor receptor (EGFR), however, the role of such novel signalling pathway stimulated by UTII is currently unknown. In this study, we hypothesized that EGFR trans-activation by UTII might exert a protective effect in the overloaded heart. To test this hypothesis, we induced cardiac hypertrophy by transverse aortic constriction (TAC) in wild-type mice, and tested the effects of the UTII antagonist Urantide (UR) on cardiac function, structure, and EGFR trans-activation. After 7 days of pressure overload, UR treatment induced a rapid and significant impairment of cardiac function compared to vehicle. In UR-treated TAC mice, cardiac dysfunction was associated with reduced phosphorylation levels of the EGFR and extracellular-regulated kinase (ERK), increased apoptotic cell death and fibrosis. In vitro UTR stimulation induced membrane translocation of β-arrestin 1/2, EGFR phosphorylation/internalization, and ERK activation in HEK293 cells. Furthermore, UTII administration lowered apoptotic cell death induced by serum deprivation, as shown by reduced TUNEL/Annexin V staining and caspase 3 activation. Interestingly, UTII-mediated EGFR trans-activation could be prevented by UR treatment or knockdown of β-arrestin 1/2. Our data show, for the first time in vivo, a new UTR signalling pathway which is mediated by EGFR trans-activation, dependent by β-arrestin 1/2, promoting cell survival and cardioprotection.

  17. ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17.

    Directory of Open Access Journals (Sweden)

    Derek Sham

    Full Text Available The respiratory epithelium is subject to continuous environmental stress and its responses to injury or infection are largely mediated by transactivation of the epidermal growth factor receptor (EGFR and downstream signaling cascades. Based on previous studies indicating involvement of ATP-dependent activation of the NADPH oxidase homolog DUOX1 in epithelial wound responses, the present studies were performed to elucidate the mechanisms by which DUOX1-derived H(2O(2 participates in ATP-dependent redox signaling and EGFR transactivation. ATP-mediated EGFR transactivation in airway epithelial cells was found to involve purinergic P2Y(2 receptor stimulation, and both ligand-dependent mechanisms as well as ligand-independent EGFR activation by the non-receptor tyrosine kinase Src. Activation of Src was also essential for ATP-dependent activation of the sheddase ADAM17, which is responsible for liberation and activation of EGFR ligands. Activation of P2Y(2R results in recruitment of Src and DUOX1 into a signaling complex, and transient siRNA silencing or stable shRNA transfection established a critical role for DUOX1 in ATP-dependent activation of Src, ADAM17, EGFR, and downstream wound responses. Using thiol-specific biotin labeling strategies, we determined that ATP-dependent EGFR transactivation was associated with DUOX1-dependent oxidation of cysteine residues within Src as well as ADAM17. In aggregate, our findings demonstrate that DUOX1 plays a central role in overall epithelial defense responses to infection or injury, by mediating oxidative activation of Src and ADAM17 in response to ATP-dependent P2Y(2R activation as a proximal step in EGFR transactivation and downstream signaling.

  18. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  19. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  20. Cellular blue naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    2001-01-01

    Full Text Available A 31-year-old man had asymptomatic, stationary, 1.5X2 cm, shiny, smooth, dark blue nodule on dorsum of right hand since 12-14 years. In addition he had developed extensive eruption of yellow to orange papulonodular lesions on extensors of limbs and buttocks since one and half months. Investigations confirmed that yellow papules were xanthomatosis and he had associated diabetes mellitus and hyperlipidaemia. Biopsy of blue nodule confirmed the clinical diagnosis of cellular blue naevus. Cellular blue naevus is rare and its association with xanthomatosis and diabetes mellitus were interesting features of above patients which is being reported for its rarity.

  1. HTLV Tax: a fascinating multifunctional co-regulator of viral and cellular pathways

    Directory of Open Access Journals (Sweden)

    Robert eCurrer

    2012-11-01

    Full Text Available Human T cell lymphotropic virus type 1 (HTLV-1 has been identified as the causative agent of adult T cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The virus infects between 15 and 20 million people worldwide of which approximately 2 to 5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications of Tax and sub-cellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.

  2. Cellular rehabilitation of photobiomodulation

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Yuan, Jian-Qin; Wang, Yan-Fang; Xu, Xiao-Yang; Liu, Song-Hao

    2007-05-01

    Homeostasis is a term that refers to constancy in a system. A cell in homeostasis normally functions. There are two kinds of processes in the internal environment and external environment of a cell, the pathogenic processes (PP) which disrupts the old homeostasis (OH), and the sanogenetic processes (SP) which restores OH or establishes a new homeostasis (NH). Photobiomodualtion (PBM), the cell-specific effects of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems, is a kind of modulation on PP or SP so that there is no PBM on a cell in homeostasis. There are two kinds of pathways mediating PBM, the membrane endogenetic chromophores mediating pathways which often act through reactive oxygen species, and membrane proteins mediating pathways which often enhance cellular SP so that it might be called cellular rehabilitation. The cellular rehabilitation of PBM will be discussed in this paper. It is concluded that PBM might modulate the disruption of cellular homeostasis induced by pathogenic factors such as toxin until OH has been restored or NH has been established, but can not change homeostatic processes from one to another one.

  3. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  4. Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade.

    Directory of Open Access Journals (Sweden)

    Tomi Rantamäki

    Full Text Available BACKGROUND: Antidepressant drugs (ADs have been shown to activate BDNF (brain-derived neurotrophic factor receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their neurotrophin ligands. METHODOLOGY: In this study we examined the role of BDNF, TrkB kinase activity and monoamine reuptake in the AD-induced TrkB activation in vivo and in vitro by employing several transgenic mouse models, cultured neurons and TrkB-expressing cell lines. PRINCIPAL FINDINGS: Using a chemical-genetic TrkB(F616A mutant and TrkB overexpressing mice, we demonstrate that ADs specifically activate both the maturely and immaturely glycosylated forms of TrkB receptors in the brain in a TrkB kinase dependent manner. However, the tricyclic AD imipramine readily induced the phosphorylation of TrkB receptors in conditional bdnf⁻/⁻ knock-out mice (132.4±8.5% of control; P = 0.01, indicating that BDNF is not required for the TrkB activation. Moreover, using serotonin transporter (SERT deficient mice and chemical lesions of monoaminergic neurons we show that neither a functional SERT nor monoamines are required for the TrkB phosphorylation response induced by the serotonin selective reuptake inhibitors fluoxetine or citalopram, or norepinephrine selective reuptake inhibitor reboxetine. However, neither ADs nor monoamine transmitters activated TrkB in cultured neurons or cell lines expressing TrkB receptors, arguing that ADs do not directly bind to TrkB. CONCLUSIONS: The present findings suggest that ADs transactivate brain TrkB receptors independently of BDNF and monoamine reuptake blockade and emphasize the need of an intact tissue context for the

  5. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, S.; Kamine, J.; Markovitz, D.; Fenrick, R.; Pagano, J.

    1988-03-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.

  6. Epidermal Growth Factor Receptor Transactivation by the Cannabinoid Receptor (CB1) and Transient Receptor Potential Vanilloid 1 (TRPV1) Induces Differential Responses in Corneal Epithelial Cells

    Science.gov (United States)

    2010-01-01

    inhibitors of proteolytic release of heparin bound EGF ( HB -EGF). CB1- induced Ca2þ transients were reduced during exposure to either the CB1 antagonist...blockage eliminated this response. Furthermore, EGFR transactivation was abolished by inhibitors of proteolytic release of heparin bound EGF ( HB -EGF...IL-8 or IL-6 Chemiluminescent Immunoassay ; R&D Systems, Minneapolis, MN). The cells were washed with basic medium and then exposed to CPZ, or AM251

  7. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  8. Mitochondrial dysfunction and transactivation of p53-dependent apoptotic genes in BaP-treated human fetal lung fibroblasts.

    Science.gov (United States)

    Yang, Guangtao; Jiang, Ying; Rao, Kaimin; Chen, Xi; Wang, Qian; Liu, Ailin; Xiong, Wei; Yuan, Jing

    2011-12-01

    Benzo(a)pyrene (BaP) has been shown to be an inducer of apoptosis. However, mechanisms involved in BaP-induced mitochondrial dysfunction are not well-known. In this study, human fetal lung fibroblasts cells were treated with BaP (8, 16, 32, 64 and 128 μM) for 4 and 12 h. Cell viability, intracellular level of reactive oxygen species (ROS), total antioxidant capacity (T-AOC), mitochondrial membrane potential (ΔΨ(m)) and cytochrome c release were determined. Changes in transcriptional levels of p53-dependent apoptotic genes (p53, APAF1, CASPASE3, CASPASE9, NOXA and PUMA) were measured. At time point of 4 h, BaP induced the intracellular ROS generation in 64 (p BaP groups (p BaP groups (p BaP groups (p BaP group (p BaP groups (p BaP group a relatively little expression of p53 mRNA was observed (p BaP promoted the generation of excessive ROS and subsequently the mitochondrial depolarization, whereas transactivations of the p53-dependent apoptotic genes were significantly induced at the later period.

  9. Transactivator of transcription (TAT) peptide- chitosan functionalized multiwalled carbon nanotubes as a potential drug delivery vehicle for cancer therapy.

    Science.gov (United States)

    Dong, Xia; Liu, Lanxia; Zhu, Dunwan; Zhang, Hailing; Leng, Xigang

    2015-01-01

    Carbon nanotube (CNT)-based drug delivery vehicles might find great potential in cancer therapy via the combination of chemotherapy with photothermal therapy due to the strong optical absorbance of CNTs in the near-infrared region. However, the application of CNTs in cancer therapy was considerably constrained by their lack of solubility in aqueous medium, as well as the cytotoxicity caused by their hydrophobic surface. Intracellular delivery efficiency is another factor determining the application potential of CNTs in cancer therapy. In the present study, low-molecular-weight chitosan conjugated with transactivator of transcription (TAT) peptide was used for noncovalent functionalization of multiwalled carbon nanotubes (MWCNTs), aiming at providing a more efficient drug delivery vehicle for cancer therapy. The TAT-chitosan-conjugated MWCNTs (MWCNTs-TC) were further investigated for their water solubility, cytotoxicity, cell-penetrating capability, and accumulation in tumor. It was found that MWCNTs-TC were essentially nontoxic with satisfying water solubility, and they were more efficient in terms of cancer-targeted intracellular transport both in vitro and in vivo as compared with chitosan-modified MWCNTs (MWCNTs-CS), suggesting the great application potential of MWCNTs-TC in cancer therapy.

  10. Secretory Transactivating Transcription-apoptin fusion protein induces apoptosis in hepatocellular carcinoma HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Su-Xia Han; Jin-Lu Ma; Yi Lv; Chen Huang; Hai-Hua Liang; Kang-Min Duan

    2008-01-01

    AIM: To determine whether SP-TAT-apoptin induces apoptosis and also maintains its tumor cell specificity.METHODS: In this study, we designed a secretory protein by adding a secretory signal peptide (SP) to the N terminus of Transactivating Transcription (TAT)-apoptin (SP-TAT-apoptin), to test the hypothesis that it gains an additive bystander effect as an anti-cancer therapy. We used an artificial human secretory SP whose amino acid sequence and corresponding cDNA sequence were generated by the SP hidden Markov model.RESULTS: In human liver carcinoma HepG2 cells, SP-TAT-apoptin expression showed a diffuse pattern in the early phase after transfection. After 48h, however, it translocated into the nuclear compartment and caused massive apoptotic cell death, as determined by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and annexin-V binding assay. SP-TAT-apoptin did not, however, cause any cell death in non-malignant human umbilical vein endothelial cells (HUVECs). Most importantly, the conditioned medium from Chinese hamster ovary (CHO) cells transfected with SP-TAT-apoptin also induced significant cell death in HepG2 cells, but not in HUVECs.CONCLUSION: The data demonstrated that SP-TAT-apoptin induces apoptosis only in malignant cells, and its secretory property might greatly increase its potency once it is delivered in vivo for cancer therapy.

  11. Methylation of Gata3 protein at Arg-261 regulates transactivation of the Il5 gene in T helper 2 cells.

    Science.gov (United States)

    Hosokawa, Hiroyuki; Kato, Miki; Tohyama, Hiroyuki; Tamaki, Yuuki; Endo, Yusuke; Kimura, Motoko Y; Tumes, Damon John; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I; Tanaka, Tomoaki; Nakayama, Toshinori

    2015-05-22

    Gata3 acts as a master regulator for T helper 2 (Th2) cell differentiation by inducing chromatin remodeling of the Th2 cytokine loci, accelerating Th2 cell proliferation, and repressing Th1 cell differentiation. Gata3 also directly transactivates the interleukin-5 (Il5) gene via additional mechanisms that have not been fully elucidated. We herein identified a mechanism whereby the methylation of Gata3 at Arg-261 regulates the transcriptional activation of the Il5 gene in Th2 cells. Although the methylation-mimicking Gata3 mutant retained the ability to induce IL-4 and repress IFNγ production, the IL-5 production was selectively impaired. We also demonstrated that heat shock protein (Hsp) 60 strongly associates with the methylation-mimicking Gata3 mutant and negatively regulates elongation of the Il5 transcript by RNA polymerase II. Thus, arginine methylation appears to play a pivotal role in the organization of Gata3 complexes and the target gene specificity of Gata3.

  12. Structural characterization of a noncovalent complex between ubiquitin and the transactivation domain of the erythroid-specific factor EKLF.

    Science.gov (United States)

    Raiola, Luca; Lussier-Price, Mathieu; Gagnon, David; Lafrance-Vanasse, Julien; Mascle, Xavier; Arseneault, Genevieve; Legault, Pascale; Archambault, Jacques; Omichinski, James G

    2013-11-05

    Like other acidic transactivation domains (TAD), the minimal TAD from the erythroid-specific transcription factor EKLF (EKLFTAD) has been shown to contribute both to its transcriptional activity as well as to its ubiquitin(UBI)-mediated degradation. In this article, we examine the activation-degradation role of the acidic TAD of EKLF and demonstrate that the first 40 residues (EKLFTAD1) within this region form a noncovalent interaction with UBI. Nuclear magnetic resonance (NMR) structural studies of an EKLFTAD1-UBI complex show that EKLFTAD1 adopts a 14-residue α helix that forms the recognition interface with UBI in a similar manner as the UBI-interacting helix of Rabex5. We also identify a similar interaction between UBI and the activation-degradation region of SREBP1a, but not with the activation-degradation regions of p53, GAL4, and VP16. These results suggest that select activation-degradation regions like the ones found in EKLF and SREBP1a function in part through their ability to form noncovalent interactions with UBI.

  13. GABAB receptor subunit GB1 at the cell surface independently activates ERK1/2 through IGF-1R transactivation.

    Directory of Open Access Journals (Sweden)

    Guillaume A Baloucoune

    Full Text Available BACKGROUND: Functional GABA(B receptor is believed to require hetero-dimerization between GABA(B1 (GB1 and GABA(B2 (GB2 subunits. The GB1 extracellular domain is required for ligand binding, and the GB2 trans-membrane domain is responsible for coupling to G proteins. Atypical GABA(B receptor responses observed in GB2-deficient mice suggested that GB1 may have activity in the absence of GB2. However the underlying mechanisms remain poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS: Here, by using cells overexpressing a GB1 mutant (GB1asa with the ability to translocate to the cell surface in the absence of GB2, we show that GABA(B receptor agonists, such as GABA and Baclofen, can induce ERK1/2 phosphorylation in the absence of GB2. Furthermore, we demonstrate that GB1asa induces ERK1/2 phosphorylation through Gi/o proteins and PLC dependent IGF-1R transactivation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that GB1 may form a functional receptor at the cell surface in the absence of GB2.

  14. Polyclonal antibody preparation and expression in liver tissues of transactivated protein 5 of hepatitis C virus nonstructural 5A

    Institute of Scientific and Technical Information of China (English)

    Xiao-quan Li; Shu-lin Zhang; Li-hua Zhong; Jun Cheng; Yuan Hong; Meng-dong Lan; Xiao-bin Chen; Cheng-fu Sun

    2009-01-01

    Objective To prepare polyclonal antibody of transactivated protein 5 of hepatitis C virus nonstructural 5A (NA5ATP5) and to explore its expression in the liver tissues. Methods In Escherichia coil BL21, the prokaryotic expression vector pET32a(+)-NS5ATP5 was induced by isopropyl-β-D-thiogalactoside (IPTG), and it was analyzed with sodium dodecyl sulfate-polyaerylamide gel electrophoresis (SDS-PAGE) and Western blotting. And the purified protein was used to immunize the rabbit to prepare polyelonai antibody, with which we studied the function of NSSATP5 by determining the different liver tissues with the streptavidin-perosidase (SP) immunohistochemistry method. Results Recombinant NS5ATP5 (molecular weight: 65 kD) and polyclonal antibody were successfully prepared. NS5ATP5 expression in the liver of patients with chronic HCV infection was much higher than that of a normal person, and it was detected mainly in the cytoplasm. Conclusion The findings of the expression difference between HCV patients and normal people led to a novel diagnostic marker to detect HCV infection.

  15. Naked Polyamidoamine Polymers Intrinsically Inhibit Angiotensin II-Mediated EGFR and ErbB2 Transactivation in a Dendrimer Generation- and Surface Chemistry-Dependent Manner.

    Science.gov (United States)

    Akhtar, Saghir; El-Hashim, Ahmed Z; Chandrasekhar, Bindu; Attur, Sreeja; Benter, Ibrahim F

    2016-05-01

    The effects of naked polyamidoamine (PAMAM) dendrimers on renin-angiotensin system (RAS) signaling via Angiotensin (Ang) II-mediated transactivation of the epidermal growth factor receptor (EGFR) and the closely related family member ErbB2 (HER2) were investigated. In primary aortic vascular smooth muscle cells, a cationic fifth-generation (G5) PAMAM dendrimer dose- and time-dependently inhibited Ang II/AT1 receptor-mediated transactivation of EGFR and ErbB2 as well as their downstream signaling via extracellular-regulated kinase 1/2 (ERK1/2). Inhibition even occurred at noncytotoxic concentrations at short (1 h) exposure times and was dependent on dendrimer generation (G7 > G6 > G5 > G4) and surface group chemistry (amino > carboxyl > hydroxyl). Mechanistically, the cationic G5 PAMAM dendrimer inhibited Ang II-mediated transactivation of EGFR and ErbB2 via inhibition of the nonreceptor tyrosine kinase Src. This novel, early onset, intrinsic biological action of PAMAM dendrimers as inhibitors of the Ang II/AT1/Src/EGFR-ErbB2/ERK1/2 signaling pathway could have important toxicological and pharmacological implications.

  16. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  17. A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development.

    Science.gov (United States)

    Maurange, Cédric; Paro, Renato

    2002-10-15

    In Drosophila, the Trithorax-group (trxG) and Polycomb-group (PcG) proteins interact with chromosomal elements, termed Cellular Memory Modules (CMMs). By modifying chromatin, this ensures a stable heritable maintenance of the transcriptional state of developmental regulators, like the homeotic genes, that is defined embryonically. We asked whether such CMMs could also control expression of genes involved in patterning imaginal discs during larval development. Our results demonstrate that expression of the hedgehog gene, once activated, is maintained by a CMM. In addition, our experiments indicate that the switching of such CMMs to an active state during larval stages, in contrast to embryonic stages, may require specific trans-activators. Our results suggest that the patterning of cells in particular developmental fields in the imaginal discs does not only rely on external cues from morphogens, but also depends on the previous history of the cells, as the control by CMMs ensures a preformatted gene expression pattern.

  18. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  19. Cellular automata: structures

    OpenAIRE

    Ollinger, Nicolas

    2002-01-01

    Jury : François Blanchard (Rapporteur), Marianne Delorme (Directeur), Jarkko Kari (Président), Jacques Mazoyer (Directeur), Dominique Perrin, Géraud Sénizergues (Rapporteur); Cellular automata provide a uniform framework to study an important problem of "complex systems" theory: how and why do system with a easily understandable -- local -- microscopic behavior can generate a more complicated -- global -- macroscopic behavior? Since its introduction in the 40s, a lot of work has been done to ...

  20. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  1. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  2. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA.

    Science.gov (United States)

    Sampey, Gavin C; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M; Zadeh, Mohammad Asad; Lepene, Benjamin; Klase, Zachary A; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-15

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART.

  3. Suppression of RelA/p65 transactivation activity by a lignoid manassantin isolated from Saururus chinensis.

    Science.gov (United States)

    Lee, Jeong-Hyung; Hwang, Bang Yeon; Kim, Kyung-Sook; Nam, Jeong Beom; Hong, Young Soo; Lee, Jung Joon

    2003-11-15

    In our search for NF-kappaB inhibitors from natural resources, we have previously identified two structurally related dilignans, manassantin A and B as specific inhibitors of NF-kappaB activation from Saururus chinensis. However, their molecular mechanism of action remains unclear. We here demonstrate that manassantins A and B are potent inhibitors of NF-kappaB activation by the suppression of transciptional activity of RelA/p65 subunit of NF-kappaB. These compounds significantly inhibited the induced expression of NF-kappaB reporter gene by LPS or TNF-alpha in a dose-dependent manner. However, these compounds did not prevent the DNA-binding activity of NF-kappaB assessed by electrophoretic mobility shift assay as well as the induced-degradation of IkappaB-alpha protein by LPS or TNF-alpha. Further analysis revealed that manassantins A and B dose-dependently suppressed not only the induced NF-kappaB activation by overexpression of RelA/p65, but also transactivation activity of RelA/p65. Furthermore, treatment of cells with these compounds prevented the TNF-alpha-induced expression of anti-apoptotic NF-kappaB target genes Bfl-1/A1, a prosurvival Bcl-2 homologue, and resulted in sensitizing HT-1080 cells to TNF-alpha-induced cell death. Similarly, these compounds also suppressed the LPS-induced inducible nitric oxide synthase expression and nitric oxide production. Taken together, manassantins A and B could be valuable candidate for the intervention of NF-kappaB-dependent pathological condition such as inflammation and cancer.

  4. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.

    Science.gov (United States)

    Lee, Sook-Jeong; Hwang, Sung-Ook; Noh, Eun Joo; Kim, Dong-Uk; Nam, Miyoung; Kim, Jong Hyeok; Nam, Joo Hyun; Hoe, Kwang-Lae

    2014-02-14

    Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.

  5. Cardiac-specific expression of the tetracycline transactivator confers increased heart function and survival following ischemia reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Laila Elsherif

    Full Text Available Mice expressing the tetracycline transactivator (tTA transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions. Protection against ischemia/reperfusion injury was assessed using isolated perfused hearts where α-MHC-tTA mice had robust protection against ischemia/reperfusion injury which was not blocked by pharmacological inhibition of PI3Ks with LY294002. Furthermore, α-MHC-tTA mice subjected to coronary artery ligation exhibited significantly reduced infarct size compared to control animals. Our findings reveal that α-MHC-tTA transgenic mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury similar to cardiac pre- and post-conditioning effects. However, in contrast to classical pre- and post-conditioning, the α-MHC-tTA phenotype is not inhibited by the classic preconditioning inhibitor LY294002 suggesting involvement of a non-PI3K-AKT signaling pathway in this phenotype. Thus, further study of the α-MHC-tTA model may reveal novel molecular targets for therapeutic intervention during ischemic injury.

  6. Activity of the TonEBP/OREBP transactivation domain varies directly with extracellular NaCl concentration.

    Science.gov (United States)

    Ferraris, Joan D; Williams, Chester K; Persaud, Prita; Zhang, Zheng; Chen, Ye; Burg, Maurice B

    2002-01-22

    Hypertonicity-induced binding of the transcription factor TonEBP/OREBP to its cognate DNA element, ORE/TonE, is associated with increased transcription of several osmotically regulated genes. Previously, it was found that hypertonicity rapidly causes nuclear translocation and phosphorylation of TonEBP/OREBP and, more slowly, increases TonEBP/OREBP abundance. Also, the C terminus of TonEBP/OREBP was found to contain a transactivation domain (TAD). We have now tested for tonicity dependence of the TAD activity of the 983 C-terminal amino acids of TonEBP/OREBP. HepG2 cells were cotransfected with a reporter construct and one of several TAD expression vector constructs. The reporter construct contained GAL4 DNA binding elements, a minimal promoter, and the Photinus luciferase gene. TAD expression vectors generate chimeras comprised of the GAL4 DNA binding domain fused to (i) the 983 C-terminal amino acids of TonEBP/OREBP, (ii) 17 glutamine residues, (iii) the TAD of c-Jun, or (iv) no TAD. All TAD-containing chimeras were functional at normal extracellular osmolality (300 mosmol/kg), but the activity only of the chimera containing the 983 C-terminal amino acids of TonEBP/OREBP varied with extracellular NaCl concentration, decreasing by >80% at 200 mosmol/kg and increasing 8-fold at 500 mosmol/kg. The chimera containing the 983 C-terminal amino acids of TonEBP/OREBP was constitutively localized to the nucleus and showed tonicity-dependent posttranslational modification consistent with phosphorylation. The activity at 500 mosmol/kg was reduced by herbimycin, a tyrosine kinase inhibitor and by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, a protein kinase CK2 inhibitor. Thus, the 983 C-terminal amino acids of TonEBP/OREBP contain a TAD that is regulated osmotically, apparently by tonicity-dependent phosphorylation.

  7. Interaction of human dipeptidyl peptidase IV and human immunodeficiency virus type-1 transcription transactivator in Sf9 cells

    Directory of Open Access Journals (Sweden)

    Reutter Werner

    2010-10-01

    Full Text Available Abstract Background Dipeptidyl peptidase IV (DPPIV also known as the T cell activation marker CD26 is a multifunctional protein which is involved in various biological processes. The association of human-DPPIV with components of the human immunodeficiency virus type-1 (HIV1 is well documented and raised some discussions. Several reports implicated the interaction of human-DPPIV with the HIV1 transcription transactivator protein (HIV1-Tat and the inhibition of the dipeptidyl peptidase activity of DPPIV by the HIV1-Tat protein. Furthermore, enzyme kinetic data implied another binding site for the HIV1-Tat other than the active centre of DPPIV. However, the biological significance of this interaction of the HIV1-Tat protein and human-DPPIV has not been studied, yet. Therefore, we focused on the interaction of HIV1-Tat protein with DPPIV and investigated the subsequent biological consequences of this interaction in Spodoptera frugiperda cells, using the BAC-TO-BAC baculovirus system. Results The HIV1-Tat protein (Tat-BRU co-localized and co-immunoprecipitated with human-DPPIV protein, following co-expression in the baculovirus-driven Sf9 cell expression system. Furthermore, tyrosine phosphorylation of DPPIV protein was up-regulated in Tat/DPPIV-co-expressing cells after 72 h culturing and also in DPPIV-expressing Sf9 cells after application of purified recombinant Tat protein. As opposed to the expression of Tat alone, serine phosphorylation of the Tat protein was decreased when co-expressed with human-DPPIV protein. Conclusions We show for the first time that human-DPPIV and HIV1-Tat co-immunoprecipitate. Furthermore, our findings indicate that the interaction of HIV1-Tat and human-DPPIV may be involved in signalling platforms that regulate the biological function of both human-DPPIV and HIV1-Tat.

  8. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  9. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  10. Engineering Cellular Metabolism.

    Science.gov (United States)

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.

  11. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    Science.gov (United States)

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins.

  12. Intracellular transactivation of epidermal growth factor receptor by α1A-adrenoceptor is mediated by phosphatidylinositol 3-kinase independently of activation of extracellular signal regulated kinases 1/2 and serine-threonine kinases in Chinese hamster ovary cells.

    Science.gov (United States)

    Ulu, Nadir; Henning, Robert H; Guner, Sahika; Zoto, Teuta; Duman-Dalkilic, Basak; Duin, Marry; Gurdal, Hakan

    2013-10-01

    Transactivation of epidermal growth factor receptor (EGFR) by α1-adrenoceptor (α1-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all α1-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster ovary (CHO) cells stably expressing one subtype of α1-AR were transiently transfected with EGFR. The transactivation mechanism was examined both by coexpression of a chimeric erythropoietin (EPO)-EGFR with an extracellular EPO and intracellular EGFR domain, and by pharmacologic inhibition of external and internal signaling routes. All three α1-AR subtypes transactivated EGFR, which was dependent on the increase in intracellular calcium. The EGFR kinase inhibitor AG1478 [4-(3'-chloroanilino)-6,7-dimethoxyquinazoline] abrogated α1A-AR and α1D-AR induced phosphorylation of EGFR, but both the inhibition of matrix metalloproteinases by GM6001 [(R)-N4-hydroxy-N(1)-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-ethyl]-2-isobutyl-succinamide] or blockade of EGFR by cetuximab did not. Stimulation of α1A-AR and α1D-AR also induced phosphorylation of EPO-EGFR chimeric receptors. Moreover, α1A-AR stimulation enhanced phosphorylation of extracellular signal regulated kinase (ERK) 1/2 and serine-threonine kinases (Akt), which were both unaffected by AG1478, indicating that ERK1/2 and Akt phosphorylation is independent of EGFR transactivation. Accordingly, inhibitors of ERK1/2 or Akt did not influence the α1A-AR-mediated EGFR transactivation. Inhibition of calcium/calmodulin-dependent kinase II (CaMKII), phosphatidylinositol 3-kinase (PI3K), and Src, however, did block EGFR transactivation by α1A-AR and α1D-AR. These findings demonstrate that all α1-AR subtypes transactivate EGFR, which is dependent on an intracellular signaling route involving an increase in calcium and activation of CaMKII, PI3K, and Src, but not the of ERK1/2 and Akt pathways.

  13. The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle.

    OpenAIRE

    1989-01-01

    A spliced cDNA spanning the Epstein-Barr virus BZLF1 gene expresses the BZLF1 protein and is active in inducing the virus productive cycle. A deletion mutant which lacks the N-terminal half of the protein is inactive. Cotransfection experiments in EBV-negative B-lymphocyte cell lines demonstrated that the BZLF1 gene activates the promoter for the BSLF2 + BMLF1 gene in the absence of any other EBV gene product. These results confirmed that the spliced BZLF1 gene is the transactivating gene str...

  14. Functional endothelial cells derived from embryonic stem cells labeled with HIV transactivator peptide-conjugated superparamagnetic nanoparticles

    Institute of Scientific and Technical Information of China (English)

    GAO Bin; FU Wei-guo; DONG Zhi-hui; FANG Zheng-dong; LIU Zhen-jie; SI Yi; ZHANG Xiang-man; WANG Yu-qi

    2011-01-01

    Background The development of regenerative therapies using derivatives of embryonic stem (ES) cells would be facilitated by a non-invasive method to monitor transplanted cells in vivo,for example,magnetic resonance imaging of cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles.Although ES cells have been labeled with SPIO particles,the potential adverse effects of the label have not been fully examined.The objective of this study was to determine whether SPIO labeling affects murine ES cell viability,proliferation,or ability to differentiate into functional endothelial cells (ECs).Methods Cross-linked iron oxide (CLIO,an SPIO) was conjugated with human immunodeficiency virus transactivator of transcription (HIV-Tat) peptides,and murine ES cells were labeled with either CLiO-Tat,CLIO,or HIV-Tat.After labeling,ES cells were cultured for 4 days and FIk-1+ ES cells identified and sorted by immunocytochemistry and fluorescence activated cell sorting (FACS).FIk-1+ cells were raplated on fibronectin-coated dishes,and ECs were obtained by culturing these for 4 weeks in endothelial cell growth medium supplemented with vascular endothelial growth factor (VEGF).ES cell viability was determined using trypan blue exclusion,and the proportion of SPIO+ cells was evaluated using Prussian blue staining and transmission electron microscopy.After differentiation,the behavior and phenotype of ECs were analyzed by reverse transcription-polymerase chain reaction,flow cytometry,immunocytochemistry,Dil-labeled acetylated low-density lipoprotein (AcLDL) uptake,and Matrigel tube formation assay.Results CLIO-Tat was a highly effective label for ES cells,with >96% of cells incorporating the particles,and it did not alter the viability of the labeled cells.ECs derived from CLIO-Tat+ ES cells were very similar to murine aortic ECs in their morphology,expression of endothelial cell markers,ability to form vascular-like channels,and scavenging of AcLDL from the culture medium

  15. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression.

    Directory of Open Access Journals (Sweden)

    Victor Y L Leung

    2011-11-01

    Full Text Available Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between

  16. Cellular bioluminescence imaging.

    Science.gov (United States)

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  17. Cellular neurothekeoma with melanocytosis.

    Science.gov (United States)

    Wu, Ren-Chin; Hsieh, Yi-Yueh; Chang, Yi-Chin; Kuo, Tseng-Tong

    2008-02-01

    Cellular neurothekeoma (CNT) is a benign dermal tumor mainly affecting the head and neck and the upper extremities. It is characterized histologically by interconnecting fascicles of plump spindle or epithelioid cells with ample cytoplasm infiltrating in the reticular dermis. The histogenesis of CNT has been controversial, although it is generally regarded as an immature counterpart of classic/myxoid neurothekeoma, a tumor with nerve sheath differentiation. Two rare cases of CNT containing melanin-laden cells were described. Immunohistochemical study with NKI/C3, vimentin, epithelial membrane antigen, smooth muscle antigen, CD34, factor XIIIa, collagen type IV, S100 protein and HMB-45 was performed. Both cases showed typical growth pattern of CNT with interconnecting fascicles of epithelioid cells infiltrating in collagenous stroma. One of the nodules contained areas exhibiting atypical cytological features. Melanin-laden epithelioid or dendritic cells were diffusely scattered throughout one nodule, and focally present in the peripheral portion of the other nodule. Both nodules were strongly immunoreactive to NKI/C3 and vimentin, but negative to all the other markers employed. CNT harboring melanin-laden cells may pose diagnostic problems because of their close resemblance to nevomelanocytic lesions and other dermal mesenchymal tumors. These peculiar cases may also provide further clues to the histogenesis of CNT.

  18. Free fall and cellular automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2016-03-01

    Full Text Available Three reasonable hypotheses lead to the thesis that physical phenomena can be described and simulated with cellular automata. In this work, we attempt to describe the motion of a particle upon which a constant force is applied, with a cellular automaton, in Newtonian physics, in Special Relativity, and in General Relativity. The results are very different for these three theories.

  19. About Strongly Universal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Maurice Margenstern

    2013-09-01

    Full Text Available In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

  20. Reactive Programming of Cellular Automata

    OpenAIRE

    Boussinot, Frédéric

    2004-01-01

    Implementation of cellular automata using reactive programming gives a way to code cell behaviors in an abstract and modular way. Multiprocessing also becomes possible. The paper describes the implementation of cellular automata with the reactive programming language LOFT, a thread-based extension of C. Self replicating loops considered in artificial life are coded to show the interest of the approach.

  1. The mungbean yellow mosaic begomovirus transcriptional activator protein transactivates the viral promoter-driven transgene and causes toxicity in transgenic tobacco plants.

    Science.gov (United States)

    Rajeswaran, Rajendran; Sunitha, Sukumaran; Shivaprasad, Padubidri V; Pooggin, Mikhail M; Hohn, Thomas; Veluthambi, Karuppannan

    2007-12-01

    The Begomovirus transcriptional activator protein (TrAP/AC2/C2) is a multifunctional protein which activates the viral late gene promoters, suppresses gene silencing, and determines pathogenicity. To study TrAP-mediated transactivation of a stably integrated gene, we generated transgenic tobacco plants with a Mungbean yellow mosaic virus (MYMV) AV1 late gene promoter-driven reporter gene and supertransformed them with the MYMV TrAP gene driven by a strong 35S promoter. We obtained a single supertransformed plant with an intact 35S-TrAP gene that activated the reporter gene 2.5-fold. However, 10 of the 11 supertransformed plants did not have the TrAP region of the T-DNA, suggesting the likely toxicity of TrAP in plants. Upon transformation of wild-type tobacco plants with the TrAP gene, six of the seven transgenic plants obtained had truncated T-DNAs which lacked TrAP. One plant, which had the intact TrAP gene, did not express TrAP. The apparent toxic effect of the TrAP transgene was abolished by mutations in its nuclear-localization signal or zinc-finger domain and by deletion of its activation domain. Therefore, all three domains of TrAP, which are required for transactivation and suppression of gene silencing, also are needed for its toxic effect.

  2. Macrophage inhibitory cytokine-1 transactivates ErbB family receptors via the activation of Src in SK-BR-3 human breast cancer cells.

    Science.gov (United States)

    Park, Yun Jung; Lee, Hansoo; Lee, Jeong-Hyung

    2010-02-01

    The function of macrophage inhibitory cytokine-1 (MIC-1) in cancer remains controversial, and its signaling pathways remain poorly understood. In this study, we demonstrate that MIC-1 induces the transactivation of EGFR, ErbB2, and ErbB3 through the activation of c-Src in SK-BR-3 breast cells. MIC-1 induced significant phosphorylation of EGFR at Tyr845, ErbB2 at Tyr877, and ErbB3 at Tyr1289 as well as Akt and p38, Erk1/2, and JNK mitogen-activated protein kinases (MAPKs). Treatment of SK-BR-3 cells with MIC-1 increased the phosphorylation level of Src at Tyr416, and induced invasiveness of those cells. Inhibition of c-Src activity resulted in the complete abolition of MIC-1-induced phosphorylation of the EGFR, ErbB2, and ErbB3, as well as invasiveness and matrix metalloproteinase (MMP)-9 expression in SK-BR-3 cells. Collectively, these results show that MIC-1 may participate in the malignant progression of certain cancer cells through the activation of c-Src, which in turn may transactivate ErbB-family receptors.

  3. PKCθ/β and CYLD are antagonistic partners in the NFκB and NFAT transactivation pathways in primary mouse CD3+ T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Nikolaus Thuille

    Full Text Available In T cells PKCθ mediates the activation of critical signals downstream of TCR/CD28 stimulation. We investigated the molecular mechanisms by which PKCθ regulates NFκB transactivation by examining PKCθ/β single and double knockout mice and observed a redundant involvement of PKCθ and PKCβ in this signaling pathway. Mechanistically, we define a PKCθ-CYLD protein complex and an interaction between the positive PKCθ/β and the negative CYLD signaling pathways that both converge at the level of TAK1/IKK/I-κBα/NFκB and NFAT transactivation. In Jurkat leukemic T cells, CYLD is endoproteolytically processed in the initial minutes of stimulation by the paracaspase MALT1 in a PKC-dependent fashion, which is required for robust IL-2 transcription. However, in primary T cells, CYLD processing occurs with different kinetics and an altered dependence on PKC. The formation of a direct PKCθ/CYLD complex appears to regulate the short-term spatial distribution of CYLD, subsequently affecting NFκB and NFAT repressional activity of CYLD prior to its MALT1-dependent inactivation. Taken together, our study establishes CYLD as a new and critical PKCθ interactor in T cells and reveals that antagonistic PKCθ/β-CYLD crosstalk is crucial for the adjustment of immune thresholds in primary mouse CD3(+ T cells.

  4. The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation.

    Science.gov (United States)

    Tétreault, Nicolas; Champagne, Marie-Pier; Bernier, Gilbert

    2009-03-15

    In mammals, a limited set of homeobox-containing transcription factors are expressed in the presumptive eye field and required to initiate eye development. How these factors interact together at the genetic and molecular level to coordinate this developmental process is poorly understood. We found that the Lhx2 and Pax6 transcription factors operate in a concerted manner during retinal development to promote transcriptional activation of the Six6 homeobox-gene in primitive and mature retinal progenitors. Lhx2 demarcates the presumptive retina field at the neural plate stage and Lhx2 inactivation delays initiation of Rx, Six3 and Pax6 expression in this domain. The later expressed Six6 is properly activated in the pituitary/hypothalamic axis of Lhx2(-/-) embryos, but expression fails to be initiated in the optic vesicle. Lhx2 and Pax6 associate with the chromatin at several regions of Six6 in vivo and cooperate for trans-activation of Six6 regulatory elements in vitro. In retinal progenitor/stem cells, both Lhx2 and Pax6 are genetically required for proper Six6 expression and forced co-expression of Lhx2 and Pax6 can synergistically trans-activate the Six6 locus. Our work reveals how two master regulators of eye development coordinate their action to sequentially promote tissue-specific transcriptional initiation and full activation of a retinal determinant gene.

  5. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  6. Cellular systems biology profiling applied to cellular models of disease.

    Science.gov (United States)

    Giuliano, Kenneth A; Premkumar, Daniel R; Strock, Christopher J; Johnston, Patricia; Taylor, Lansing

    2009-11-01

    Building cellular models of disease based on the approach of Cellular Systems Biology (CSB) has the potential to improve the process of creating drugs as part of the continuum from early drug discovery through drug development and clinical trials and diagnostics. This paper focuses on the application of CSB to early drug discovery. We discuss the integration of protein-protein interaction biosensors with other multiplexed, functional biomarkers as an example in using CSB to optimize the identification of quality lead series compounds.

  7. A Course in Cellular Bioengineering.

    Science.gov (United States)

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  8. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    Directory of Open Access Journals (Sweden)

    Capra Valérie

    2006-03-01

    Full Text Available Abstract Background Cysteine-containing leukotrienes (cysteinyl-LTs are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC proliferation. We used human ASMC (HASMC to identify the signal transduction pathway(s of the leukotriene D4 (LTD4-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS was estimated by measuring dichlorodihydrofluorescein (DCF oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX and phosphoinositide 3-kinase (PI3K inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF

  9. Energy Landscape of Cellular Networks

    Science.gov (United States)

    Wang, Jin

    2008-03-01

    Cellular Networks are in general quite robust and perform their biological functions against the environmental perturbations. Progresses have been made from experimental global screenings, topological and engineering studies. However, there are so far few studies of why the network should be robust and perform biological functions from global physical perspectives. In this work, we will explore the global properties of the network from physical perspectives. The aim of this work is to develop a conceptual framework and quantitative physical methods to study the global nature of the cellular network. The main conclusion of this presentation is that we uncovered the underlying energy landscape for several small cellular networks such as MAPK signal transduction network and gene regulatory networks, from the experimentally measured or inferred inherent chemical reaction rates. The underlying dynamics of these networks can show bi-stable as well as oscillatory behavior. The global shapes of the energy landscapes of the underlying cellular networks we have studied are robust against perturbations of the kinetic rates and environmental disturbances through noise. We derived a quantitative criterion for robustness of the network function from the underlying landscape. It provides a natural explanation of the robustness and stability of the network for performing biological functions. We believe the robust landscape is a global universal property for cellular networks. We believe the robust landscape is a quantitative realization of Darwinian principle of natural selection at the cellular network level. It may provide a novel algorithm for optimizing the network connections, which is crucial for the cellular network design and synthetic biology. Our approach is general and can be applied to other cellular networks.

  10. Mathematical Modeling of Cellular Metabolism.

    Science.gov (United States)

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  11. Ligand-controlled interaction of histone acetyltransferase binding to ORC-1 (HBO1) with the N-terminal transactivating domain of progesterone receptor induces steroid receptor coactivator 1-dependent coactivation of transcription

    NARCIS (Netherlands)

    M. Georgiakaki (Maria); L.J. Blok (Leen); R. Milgrom (Roni); M. Lombès (Marc); A. Guiochon-Mantel (Anne); H. Loosfelt (Hugues); N. Chabbert-Buffet (Nathalie); B. Dasen (Boris); G. Meduri (Geri); S. Wenk (Sandra); L. Rajhi (Leila); L. Amazit (Larbi); A. Chauchereau (Anne); C.W. Burger (Curt)

    2006-01-01

    textabstractModulators of cofactor recruitment by nuclear receptors are expected to play an important role in the coordination of hormone-induced transactivation processes. To identify such factors interacting with the N-terminal domain (NTD) of the progesterone receptor (PR), we used this domain as

  12. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses.

    Science.gov (United States)

    Zhou, Rui; Hu, Guoku; Liu, Jun; Gong, Ai-Yu; Drescher, Kristen M; Chen, Xian-Ming

    2009-12-01

    Cryptosporidium parvum is a protozoan parasite that infects the gastrointestinal epithelium and causes diarrheal disease worldwide. Innate epithelial immune responses are key mediators of the host's defense to C. parvum. MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are involved in regulation of both innate and adaptive immune responses. Using an in vitro model of human cryptosporidiosis, we analyzed C. parvum-induced miRNA expression in biliary epithelial cells (i.e., cholangiocytes). Our results demonstrated differential alterations in the mature miRNA expression profile in cholangiocytes following C. parvum infection or lipopolysaccharide stimulation. Database analysis of C. parvum-upregulated miRNAs revealed potential NF-kappaB binding sites in the promoter elements of a subset of miRNA genes. We demonstrated that mir-125b-1, mir-21, mir-30b, and mir-23b-27b-24-1 cluster genes were transactivated through promoter binding of the NF-kappaB p65 subunit following C. parvum infection. In contrast, C. parvum transactivated mir-30c and mir-16 genes in cholangiocytes in a p65-independent manner. Importantly, functional inhibition of selected p65-dependent miRNAs in cholangiocytes increased C. parvum burden. Thus, we have identified a panel of miRNAs regulated through promoter binding of the NF-kappaB p65 subunit in human cholangiocytes in response to C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general.

  13. Role of epidermal growth factor receptor transactivation in the activation of cytosolic phospholipase A(2) in leptin protection of salivary gland acinar cells against ethanol cytotoxicity.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2009-06-01

    A pleiotropic hormone, leptin, secreted into saliva by the acinar cells of salivary glands is an important mediator of the processes of oral mucosal defense. Here, we report on the role of epidermal growth factor receptor (EGFR) transactivation in the signaling events that mediate leptin protection of sublingual salivary gland acinar cells against ethanol cytotoxicity. We show that the protective effect of leptin against ethanol cytotoxicity was associated with the increased EGFR protein tyrosine kinase and cytosolic phospholipase A(2) (cPLA(2)) activity, and characterized by a marked increase in matrix metalloproteinase MMP-9 and arachidonic acid (AA) release, and PGE(2) generation. The loss in countering capacity of leptin against ethanol cytotoxicity was attained with JAK inhibitor AG490, Src inhibitor PP2, and EGFR inhibitor AG1478, as well as ERK inhibitor PD98059. Moreover, the agents evoked also the inhibition in leptin-induced up-regulation in cPLA(2) activity, AA release, and PGE(2) generation. The changes caused by leptin in EGFR phosphorylation, MMP-9, and cPLA(2) activation were susceptible to suppression by metalloprotease inhibitor GM6001, but the production of MMP-9 was not affected by EGFR inhibitor AG1478 or PKC inhibitor Ro318220. These findings point to the involvement of MMP-9 in the event of leptin-induced EGFR transactivation that results in the signaling cascade leading to cPLA(2) activation and up-regulation in PGE(2) generation, thus providing new insights into the mechanism of oral mucosal protection against ethanol toxicity.

  14. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex.

    Directory of Open Access Journals (Sweden)

    Ojore Oka

    Full Text Available The transcription factor B-Myb is a key regulator of the cell cycle in vertebrates, with activation of transcription involving the recognition of specific DNA target sites and the recruitment of functional partner proteins, including the coactivators p300 and CBP. Here we report the results of detailed studies of the interaction between the transactivation domain of B-Myb (B-Myb TAD and the TAZ2 domain of p300. The B-Myb TAD was characterized using circular dichroism, fluorescence and NMR spectroscopy, which revealed that the isolated domain exists as a random coil polypeptide. Pull-down and spectroscopic experiments clearly showed that the B-Myb TAD binds to p300 TAZ2 to form a moderately tight (K(d ~1.0-10 µM complex, which results in at least partial folding of the B-Myb TAD. Significant changes in NMR spectra of p300 TAZ2 suggest that the B-Myb TAD binds to a relatively large patch on the surface of the domain (~1200 Å(2. The apparent B-Myb TAD binding site on p300 TAZ2 shows striking similarity to the surface of CBP TAZ2 involved in binding to the transactivation domain of the transcription factor signal transducer and activator of transcription 1 (STAT1, which suggests that the structure of the B-Myb TAD-p300 TAZ2 complex may share many features with that reported for STAT1 TAD-p300 TAZ2.

  15. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses.

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2009-12-01

    Full Text Available Cryptosporidium parvum is a protozoan parasite that infects the gastrointestinal epithelium and causes diarrheal disease worldwide. Innate epithelial immune responses are key mediators of the host's defense to C. parvum. MicroRNAs (miRNAs regulate gene expression at the posttranscriptional level and are involved in regulation of both innate and adaptive immune responses. Using an in vitro model of human cryptosporidiosis, we analyzed C. parvum-induced miRNA expression in biliary epithelial cells (i.e., cholangiocytes. Our results demonstrated differential alterations in the mature miRNA expression profile in cholangiocytes following C. parvum infection or lipopolysaccharide stimulation. Database analysis of C. parvum-upregulated miRNAs revealed potential NF-kappaB binding sites in the promoter elements of a subset of miRNA genes. We demonstrated that mir-125b-1, mir-21, mir-30b, and mir-23b-27b-24-1 cluster genes were transactivated through promoter binding of the NF-kappaB p65 subunit following C. parvum infection. In contrast, C. parvum transactivated mir-30c and mir-16 genes in cholangiocytes in a p65-independent manner. Importantly, functional inhibition of selected p65-dependent miRNAs in cholangiocytes increased C. parvum burden. Thus, we have identified a panel of miRNAs regulated through promoter binding of the NF-kappaB p65 subunit in human cholangiocytes in response to C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general.

  16. Versatile reporter systems show that transactivation by human T-cell leukemia virus type 1 Tax occurs independently of chromatin remodeling factor BRG1.

    Science.gov (United States)

    Zhang, Ling; Liu, Meihong; Merling, Randall; Giam, Chou-Zen

    2006-08-01

    Potent activation of human T-cell leukemia virus type 1 (HTLV-1) gene expression is mediated by the virus-encoded transactivator protein Tax and three imperfect 21-bp repeats in the viral long terminal repeats. Each 21-bp repeat contains a cAMP-responsive-element core flanked by 5' G-rich and 3' C-rich sequences. Tax alone does not bind DNA. Rather, it interacts with basic domain-leucine zipper transcription factors CREB and ATF-1 to form ternary complexes with the 21-bp repeats. In the context of the ternary complexes, Tax contacts the G/C-rich sequences and recruits transcriptional coactivators CREB-binding protein (CBP)/p300 to effect potent transcriptional activation. Using an easily transduced and chromosomally integrated reporter system derived from a self-inactivating lentivirus vector, we showed in a BRG1- and BRM1-deficient adrenal carcinoma cell line, SW-13, that Tax- and 21-bp repeat-mediated transactivation does not require BRG1 or BRM1 and is not enhanced by BRG1. With a similar reporter system, we further demonstrated that Tax- and tumor necrosis factor alpha-induced NF-kappaB activation occurs readily in SW-13 cells in the absence of BRG1 and BRM1. These results suggest that the assembly of stable multiprotein complexes containing Tax, CREB/ATF-1, and CBP/p300 on the 21-bp repeats is the principal mechanism employed by Tax to preclude nucleosome formation at the HTLV-1 enhancer/promoter. This most likely bypasses the need for BRG1-containing chromatin-remodeling complexes. Likewise, recruitment of CBP/p300 by NF-kappaB may be sufficient to disrupt histone-DNA interaction for the initiation of transcription.

  17. Serine 350 of human pregnane X receptor is crucial for its heterodimerization with retinoid X receptor alpha and transactivation of target genes in vitro and in vivo.

    Science.gov (United States)

    Wang, Yue-Ming; Chai, Sergio C; Lin, Wenwei; Chai, Xiaojuan; Elias, Ayesha; Wu, Jing; Ong, Su Sien; Pondugula, Satyanarayana R; Beard, Jordan A; Schuetz, Erin G; Zeng, Su; Xie, Wen; Chen, Taosheng

    2015-08-15

    The human pregnane X receptor (hPXR), a member of the nuclear receptor superfamily, senses xenobiotics and controls the transcription of genes encoding drug-metabolizing enzymes and transporters. The regulation of hPXR's transcriptional activation of its target genes is important for xenobiotic detoxification and endobiotic metabolism, and hPXR dysregulation can cause various adverse drug effects. Studies have implicated the putative phosphorylation site serine 350 (Ser(350)) in regulating hPXR transcriptional activity, but the mechanism of regulation remains elusive. Here we investigated the transactivation of hPXR target genes in vitro and in vivo by hPXR with a phosphomimetic mutation at Ser(350) (hPXR(S350D)). The S350D phosphomimetic mutation reduced the endogenous expression of cytochrome P450 3A4 (an hPXR target gene) in HepG2 and LS180 cells. Biochemical assays and structural modeling revealed that Ser(350) of hPXR is crucial for formation of the hPXR-retinoid X receptor alpha (RXRα) heterodimer. The S350D mutation abrogated heterodimerization in a ligand-independent manner, impairing hPXR-mediated transactivation. Further, in a novel humanized transgenic mouse model expressing the hPXR(S350D) transgene, we demonstrated that the S350D mutation alone is sufficient to impair hPXR transcriptional activity in mouse liver. This transgenic mouse model provides a unique tool to investigate the regulation and function of hPXR, including its non-genomic function, in vivo. Our finding that phosphorylation regulates hPXR activity has implications for development of novel hPXR antagonists and for safety evaluation during drug development.

  18. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  19. Classifying cellular automata using grossone

    Science.gov (United States)

    D'Alotto, Louis

    2016-10-01

    This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [7] - [12]), to the development and classification of one and two-dimensional cellular automata. By the application of grossone, new and more precise nonarchimedean metrics on the space of definition for one and two-dimensional cellular automata are established. These new metrics allow us to do computations with infinitesimals. Hence configurations in the domain space of cellular automata can be infinitesimally close (but not equal). That is, they can agree at infinitely many places. Using the new metrics, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of cellular automaton maps, can now be computed and hence a classification scheme developed based on this computation.

  20. Prognosis of Different Cellular Generations

    Directory of Open Access Journals (Sweden)

    Preetish Ranjan

    2013-04-01

    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  1. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were synthesized from...

  2. Cellular models for Parkinson's disease.

    Science.gov (United States)

    Falkenburger, Björn H; Saridaki, Theodora; Dinter, Elisabeth

    2016-10-01

    Developing new therapeutic strategies for Parkinson's disease requires cellular models. Current models reproduce the two most salient changes found in the brains of patients with Parkinson's disease: The degeneration of dopaminergic neurons and the existence of protein aggregates consisting mainly of α-synuclein. Cultured cells offer many advantages over studying Parkinson's disease directly in patients or in animal models. At the same time, the choice of a specific cellular model entails the requirement to focus on one aspect of the disease while ignoring others. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types the aspects of Parkinson's disease they model along with technical advantages and disadvantages. It might also be helpful for researchers from other fields consulting literature on cellular models of Parkinson's disease. Important models for the study of dopaminergic neuron degeneration include Lund human mesencephalic cells and primary neurons, and a case is made for the use of non-dopaminergic cells to model pathogenesis of non-motor symptoms of Parkinson's disease. With regard to α-synuclein aggregates, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. Cellular models reproduce the two most salient changes of Parkinson's disease, the degeneration of dopaminergic neurons and the existence of α-synuclein aggregates. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types and treatments the aspects of Parkinson's disease they model along with technical advantages and disadvantages. Furthermore, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. This article is part of a special issue on Parkinson disease.

  3. Cellular basis of Alzheimer's disease.

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-12-01

    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  4. On Cellular MIMO Channel Capacity

    Science.gov (United States)

    Adachi, Koichi; Adachi, Fumiyuki; Nakagawa, Masao

    To increase the transmission rate without bandwidth expansion, the multiple-input multiple-output (MIMO) technique has recently been attracting much attention. The MIMO channel capacity in a cellular system is affected by the interference from neighboring co-channel cells. In this paper, we introduce the cellular channel capacity and evaluate its outage capacity, taking into account the frequency-reuse factor, path loss exponent, standard deviation of shadowing loss, and transmission power of a base station (BS). Furthermore, we compare the cellular MIMO downlink channel capacity with those of other multi-antenna transmission techniques such as single-input multiple-output (SIMO) and space-time block coded multiple-input single-output (STBC-MISO). We show that the optimum frequency-reuse factor F that maximizes 10%-outage capacity is 3 and both 50%- and 90%-outage capacities is 1 irrespective of the type of multi-antenna transmission technique, where q%-outage capacity is defined as the channel capacity that gives an outage probability of q%. We also show that the cellular MIMO channel capacity is always higher than those of SIMO and STBC-MISO.

  5. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, MQT; Stürup, Stefan; Lambert, Ian H.;

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-...

  6. Stimulation of α1a adrenergic receptors induces cellular proliferation or antiproliferative hypertrophy dependent solely on agonist concentration.

    Directory of Open Access Journals (Sweden)

    Beilei Lei

    Full Text Available Stimulation of α1aAdrenergic Receptors (ARs is known to have anti-proliferative and hypertrophic effects; however, some studies also suggests this receptor can increase cell proliferation. Surprisingly, we find the α1aAR expressed in rat-1 fibroblasts can produce either phenotype, depending exclusively on agonist concentration. Stimulation of the α1aAR by high dose phenylephrine (>10(-7 M induces an antiproliferative, hypertrophic response accompanied by robust and extended p38 activation. Inhibition of p38 with SB203580 prevented the antiproliferative response, while inhibition of Erk or Jnk had no effect. In stark contrast, stimulation of the α1aAR with low dose phenylephrine (∼10(-8 M induced an Erk-dependent increase in cellular proliferation. Agonist-induced Erk phosphorylation was preceded by rapid FGFR and EGFR transactivation; however, only EGFR inhibition blocked Erk activation and proliferation. The general matrix metalloprotease inhibitor, GM6001, blocked agonist induced Erk activation within seconds, strongly suggesting EGFR activation involved extracellular triple membrane pass signaling. Erk activation required little Ca(2+ release and was blocked by PLCβ or PKC inhibition but not by intracellular Ca(2+ chelation, suggesting Ca(2+ independent activation of novel PKC isoforms. In contrast, Ca(2+ release was essential for PI3K/Akt activation, which was acutely maximal at non-proliferative doses of agonist. Remarkably, our data suggests EGFR transactivation leading to Erk induced proliferation has the lowest activation threshold of any α1aAR response. The ability of α1aARs to induce proliferation are discussed in light of evidence suggesting antagonistic growth responses reflect native α1aAR function.

  7. Roles of PU.1 in monocyte- and mast cell-specific gene regulation: PU.1 transactivates CIITA pIV in cooperation with IFN-gamma.

    Science.gov (United States)

    Ito, Tomonobu; Nishiyama, Chiharu; Nakano, Nobuhiro; Nishiyama, Makoto; Usui, Yoshihiko; Takeda, Kazuyoshi; Kanada, Shunsuke; Fukuyama, Kanako; Akiba, Hisaya; Tokura, Tomoko; Hara, Mutsuko; Tsuboi, Ryoji; Ogawa, Hideoki; Okumura, Ko

    2009-07-01

    Over-expression of PU.1, a myeloid- and lymphoid-specific transcription factor belonging to the Ets family, induces monocyte-specific gene expression in mast cells. However, the effects of PU.1 on each target gene and the involvement of cytokine signaling in PU.1-mediated gene expression are largely unknown. In the present study, PU.1 was over-expressed in two different types of bone marrow-derived cultured mast cells (BMMCs): BMMCs cultured with IL-3 plus stem cell factor (SCF) and BMMCs cultured with pokeweed mitogen-stimulated spleen-conditioned medium (PWM-SCM). PU.1 over-expression induced expression of MHC class II, CD11b, CD11c and F4/80 on PWM-SCM-cultured BMMCs, whereas IL-3/SCF-cultured BMMCs expressed CD11b and F4/80, but not MHC class II or CD11c. When IFN-gamma was added to the IL-3/SCF-based medium, PU.1 transfectant acquired MHC class II expression, which was abolished by antibody neutralization or in Ifngr(-/-) BMMCs, through the induction of expression of the MHC class II transactivator, CIITA. Real-time PCR detected CIITA mRNA driven by the fourth promoter, pIV, and chromatin immunoprecipitation indicated direct binding of PU.1 to pIV in PU.1-over-expressing BMMCs. PU.1-over-expressing cells showed a marked increase in IL-6 production in response to LPS stimulation in both IL-3/SCF and PWM-SCM cultures. These results suggest that PU.1 overproduction alone is sufficient for both expression of CD11b and F4/80 and for amplification of LPS-induced IL-6 production. However, IFN-gamma stimulation is essential for PU.1-mediated transactivation of CIITA pIV. Reduced expression of mast cell-related molecules and transcription factors GATA-1/2 and up-regulation of C/EBPalpha in PU.1 transfectants indicate that enforced PU.1 suppresses mast cell-specific gene expression through these transcription factors.

  8. Ser-634 and Ser-636 of Kaposi’s sarcoma-associated herpesvirus RTA are involved in transactivation and are potential CDK9 phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Wan-Hua eTsai

    2012-02-01

    Full Text Available The replication and transcription activator (RTA of Kaposi’s sarcoma-associated herpesvirus (KSHV, K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity-purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530 and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ~30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ~30% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full

  9. Reversibly assembled cellular composite materials.

    Science.gov (United States)

    Cheung, Kenneth C; Gershenfeld, Neil

    2013-09-13

    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  10. Glycosylation regulates prestin cellular activity.

    Science.gov (United States)

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  11. Stochastic Nature in Cellular Processes

    Institute of Scientific and Technical Information of China (English)

    刘波; 刘圣君; 王祺; 晏世伟; 耿轶钊; SAKATA Fumihiko; GAO Xing-Fa

    2011-01-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  12. Cellular fiber–reinforced concrete

    OpenAIRE

    Isachenko S.; Kodzoev M.

    2016-01-01

    Methods disperse reinforcement of concrete matrix using polypropylene, glass, basalt and metal fibers allows to make the construction of complex configuration, solve the problem of frost products. Dispersed reinforcement reduces the overall weight of the structures. The fiber replaces the secondary reinforcement, reducing the volume of use of structural steel reinforcement. Cellular Fiber concretes are characterized by high-performance properties, especially increased bending strength and...

  13. Identification of Nonstationary Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    AndrewI.Adamatzky

    1992-01-01

    The principal feature of nonstationary cellular automata(NCA) is that a local transitiol rule of each cell is changed at each time step depending on neighborhood configuration at previous time step.The identification problem for NCA is extraction of local transition rules and the establishment of mechanism for changing these rules using sequence of NCA configurations.We present serial and parallel algorithms for identification of NCA.

  14. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    OpenAIRE

    Popescu, O.; Sumanovski, L. T.; I. Checiu; Elisabeta Popescu; G. N. Misevic

    1999-01-01

    Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals) have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of...

  15. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  16. Progress of cellular dedifferentiation research

    Institute of Scientific and Technical Information of China (English)

    LIU Hu-xian; HU Da-hai; JIA Chi-yu; FU Xiao-bing

    2006-01-01

    Differentiation, the stepwise specialization of cells, and transdifferentiation, the apparent switching of one cell type into another, capture much of the stem cell spotlight. But dedifferentiation, the developmental reversal of a cell before it reinvents itself, is an important process too. In multicellular organisms, cellular dedifferentiation is the major process underlying totipotency, regeneration and formation of new stem cell lineages. In humans,dedifferentiation is often associated with carcinogenesis.The study of cellular dedifferentiation in animals,particularly early events related to cell fate-switch and determination, is limited by the lack of a suitable,convenient experimental system. The classic example of dedifferentiation is limb and tail regeneration in urodele amphibians, such as salamanders. Recently, several investigators have shown that certain mammalian cell types can be induced to dedifferentiate to progenitor cells when stimulated with the appropriate signals or materials. These discoveries open the possibility that researchers might enhance the endogenous regenerative capacity of mammals by inducing cellular dedifferentiation in vivo.

  17. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  18. CBF mediates adenovirus Ela trans-activation by interaction at the C-terminal promoter targeting domain of conserved region 3.

    Science.gov (United States)

    Agoff, S N; Wu, B

    1994-12-01

    Genetic and biochemical evidence suggest that conserved region 3 (CR3) of the adenovirus Ela polypeptide can provide two distinct and separable functions: an N-terminal transcriptional activation region and a C-terminal promoter targeting region. It is thought that the promoter targeting region of Ela CR3 interacts with promoter-specific transcription factors, thereby bringing the activation region of Ela CR3 in proximity of the promoter. Here we report that CBF, a CCAAT-box-binding factor that regulates hsp70 gene expression and mediates Ela trans-activation in vivo, interacts with the promoter targeting region of Ela CR3 in vitro. Point mutations in Ela CR3 that are defective in stimulating transcription from the hsp70 promoter are also defective in stimulating transcription directed by a synthetic activator, GAL-CBF, composed of the DNA-binding domain of yeast GAL4 fused to CBF. These mutations fall into two classes with respect to their abilities to interact with CBF in vitro. Mutations in the transcriptional activation region of Ela CR3 do not affect binding to CBF, but mutation of the promoter targeting region of Ela CR3 prevents association with CBF in vitro.

  19. Equine herpesvirus 1 gene 12, the functional homologue of herpes simplex virus VP16, transactivates via octamer sequences in the equine herpesvirus IE gene promoter.

    Science.gov (United States)

    Elliott, G; O'Hare, P

    1995-10-20

    The HSV-1 transactivator of immediate-early (IE) gene expression, VP16, has several functional homologues among the alphaherpesviruses which have not yet been extensively studied in relation to their modes of action. To date, nothing is known of the exact sites or mechanism of interaction of the equine herpesvirus type 1 (EHV-1) homologue, the gene 12 protein, with the EHV-1 IE promoter. We show that the gene 12 protein utilises the promoter proximal region of the IE gene to induce activation and identify four potential octamer DNA binding sites within that region. Although there was divergence from its consensus, Oct-1 bound to each of these sites in an in vitro complex formation assay, and in the presence of the gene 12 product a second complex of slower migration, which was also dependent on Oct-1, was detected. When each site was inserted into a basal promoter, two conferred activation by gene 12 with a resulting increase in expression of up to 50-fold compared to basal levels. These results show that, despite the differences between the two proteins, the mechanism of interaction of the gene 12 protein with its target is analogous to that of VP16.

  20. Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway.

    Science.gov (United States)

    Zhang, Rong; Xu, Yingqian; Ekman, Niklas; Wu, Zhenhua; Wu, Jiong; Alitalo, Kari; Min, Wang

    2003-12-19

    Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.

  1. G9a is transactivated by C/EBPβ to facilitate mitotic clonal expansion during 3T3-L1 preadipocyte differentiation.

    Science.gov (United States)

    Li, Shu-Fen; Guo, Liang; Qian, Shu-Wen; Liu, Yuan; Zhang, You-You; Zhang, Zhi-Chun; Zhao, Yue; Shou, Jian-Yong; Tang, Qi-Qun; Li, Xi

    2013-05-01

    In 3T3-L1 preadipocyte differentiation, the CCAAT/enhancer-binding protein-β (C/EBPβ) is an important early transcription factor that activates cell cycle genes during mitotic clonal expansion (MCE), sequentially activating peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα during terminal differentiation. Although C/EBPβ acquires its DNA binding activity via dual phosphorylation at about 12-16 h postinduction, the expression of PPARγ and C/EBPα is not induced until 36-72 h. The delayed expression of PPARγ and C/EBPα ensures the progression of MCE, but the mechanism responsible for the delay remains elusive. We provide evidence that G9a, a major euchromatic methyltransferase, is transactivated by C/EBPβ and represses PPARγ and C/EBPα through H3K9 dimethylation of their promoters during MCE. Inhibitor- or siRNA-mediated G9a downregulation modestly enhances PPARγ and C/EBPα expression and adipogenesis in 3T3-L1 preadipocytes. Conversely, forced expression of G9a impairs the accumulation of triglycerides. Thus, this study elucidates an epigenetic mechanism for the delayed expression of PPARγ and C/EBPα.

  2. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-κB DNA-binding activity.

    Science.gov (United States)

    Lin, Yung-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chu, Chih-Ying; Tan, Peng; Yang, Yi-Chieh; Chen, Wei-Yu; Yang, Shun-Fa; Hsiao, Michael; Chien, Ming-Hsien

    2016-04-01

    Renal cell carcinoma (RCC) is the most lethal of all urological malignancies because of its potent metastasis potential. Melatonin exerts multiple tumor-suppressing activities through antiproliferative, proapoptotic, and anti-angiogenic actions and has been tested in clinical trials. However, the antimetastastic effect of melatonin and its underlying mechanism in RCC are unclear. In this study, we demonstrated that melatonin at the pharmacologic concentration (0.5-2 mm) considerably reduced the migration and invasion of RCC cells (Caki-1 and Achn). Furthermore, we found that melatonin suppressed metastasis of Caki-1 cells in spontaneous and experimental metastasis animal models. Mechanistic investigations revealed that melatonin transcriptionally inhibited MMP-9 by reducing p65- and p52-DNA-binding activities. Moreover, the Akt-mediated JNK1/2 and ERK1/2 signaling pathways were involved in melatonin-regulated MMP-9 transactivation and cell motility. Clinical samples revealed an inverse correlation between melatonin receptor 1A (MTNR1A) and MMP-9 expression in normal kidney and RCC tissues. In addition, a higher survival rate was found in MTNR1A(high) /MMP-9(low) patients than in MTNR1A(low) /MMP-9(high) patients. Overall, our results provide new insights into the role of melatonin-induced molecular regulation in suppressing RCC metastasis and suggest that melatonin has potential therapeutic applications for metastastic RCC.

  3. Transactivator of transcription (TAT peptide–chitosan functionalized multiwalled carbon nanotubes as a potential drug delivery vehicle for cancer therapy

    Directory of Open Access Journals (Sweden)

    Dong X

    2015-06-01

    Full Text Available Xia Dong, Lanxia Liu, Dunwan Zhu, Hailing Zhang, Xigang Leng Laboratory of Bioengineering, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin, People’s Republic of China Abstract: Carbon nanotube (CNT-based drug delivery vehicles might find great potential in cancer therapy via the combination of chemotherapy with photothermal therapy due to the strong optical absorbance of CNTs in the near-infrared region. However, the application of CNTs in cancer therapy was considerably constrained by their lack of solubility in aqueous medium, as well as the cytotoxicity caused by their hydrophobic surface. Intracellular delivery efficiency is another factor determining the application potential of CNTs in cancer therapy. In the present study, low-molecular-weight chitosan conjugated with transactivator of transcription (TAT peptide was used for noncovalent functionalization of multiwalled carbon nanotubes (MWCNTs, aiming at providing a more efficient drug delivery vehicle for cancer therapy. The TAT–chitosan-conjugated MWCNTs (MWCNTs-TC were further investigated for their water solubility, cytotoxicity, cell-penetrating capability, and accumulation in tumor. It was found that MWCNTs-TC were essentially nontoxic with satisfying water solubility, and they were more efficient in terms of cancer-targeted intracellular transport both in vitro and in vivo as compared with chitosan-modified MWCNTs (MWCNTs-CS, suggesting the great application potential of MWCNTs-TC in cancer therapy. Keywords: carbon nanotube, TAT, chitosan, drug delivery

  4. Long non-coding RNA NEAT1 is a transcriptional target of p53 and modulates p53-induced transactivation and tumor-suppressor function.

    Science.gov (United States)

    Idogawa, Masashi; Ohashi, Tomoko; Sasaki, Yasushi; Nakase, Hiroshi; Tokino, Takashi

    2017-03-14

    p53 is one of the most important tumor suppressor genes and the direct transcriptional targets of p53 must be explored to elucidate its functional mechanisms. Thus far, the p53 targets that have been primarily studied are protein-coding genes. Our previous study revealed that several long non-coding RNAs (lncRNAs) are direct transcriptional targets of p53, and knockdown of specific lncRNAs modulates p53-induced apoptosis. In this study, analysis of next-generation chromatin immunoprecipitation-sequencing (ChIP-seq) data for p53 revealed that the lncRNA NEAT1 is a direct transcriptional target of p53. The suppression of NEAT1 induction by p53 attenuates the inhibitory effect of p53 on cancer cell growth and also modulates gene transactivation, including that of many lncRNAs. Furthermore, low expression of NEAT1 is related to poor prognosis in several cancers. These results indicate that the induction of NEAT1 expression contributes to the tumor-suppressor function of p53 and suggest that p53 and NEAT1 constitute a transcriptional network contributing to various biological functions and tumor suppression. This article is protected by copyright. All rights reserved.

  5. Ghrelin promotes intestinal epithelial cell proliferation through PI3K/Akt pathway and EGFR trans-activation both converging to ERK 1/2 phosphorylation.

    Science.gov (United States)

    Waseem, Talat; Duxbury, Mark; Ashley, Stanley W; Robinson, Malcolm K

    2014-02-01

    Little is known about ghrelin's effects on intestinal epithelial cells even though it is known to be a mitogen for a variety of other cell types. Because ghrelin is released in close proximity to the proliferative compartment of the intestinal tract, we hypothesized that ghrelin may have potent pro-proliferative effect on intestinal epithelial cells as well. To test this hypothesis, we characterized the effects of ghrelin on FHs74Int and Caco-2 intestinal epithelial cell lines in vitro. We found that ghrelin has potent dose dependent proliferative effects in both cell lines through a yet to be characterized G protein coupled growth hormone secretagogue receptor (GHS-R) subtype. Consistent with above findings, cell cycle flowcytometric analyses demonstrated that ghrelin shifts cells from the G1 to S phase and thereby promotes cell cycle progression. Further characterization of subcellular events, suggested that ghrelin mediates its pro-proliferative effect through Adenylate cyclase (AC)-independent epidermal growth factor receptor (EGFR) trans-activation and PI3K-Akt phosphorylation. Both these pathways converge to stimulate MAPK, ERK 1/2 downstream. The role of ghrelin in states where intestinal mucosal injury and rapid mucosal repair occur warrants further investigation.

  6. PLZF-RAR[alpha] fusion proteins generated from the variant t(11; 17)(q23; q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhu; Chen, Sai-Juan; Wang, Zhen-Yi (Shanghai Second Medical Univ. (China)); Guidez, F.; Rousselot, P.; Agadir, A.; Degos, L.; Chomienne, C. (Laboratoire de Biologie Cellulaire Hematopoietique, Paris (France)); Zelent, A. (Institute for Cancer Research, London (United Kingdom)); Waxman, S. (Mount Sinai Medical Center, New York, NY (United States))

    1994-02-01

    Recently, the authors described a recurrent variant translocation, t(11;17)(q23;q21), in acute promyelocytic leukemia (APL) which juxtaposes PLZF, a gene encoding a zinc finger protein, to RARA, encoding retinoic acid receptor [alpha] (RAR[alpha]). They have now cloned cDNAs encoding PLZF-RAR[alpha] chimeric proteins and studied their transactivating activities. In transient-expression assays, both the PLZF(A)-RAR[alpha] and PLZF(B)-RAR[alpha] fusion proteins like the PML-RAR[alpha] protein resulting from the well-known t(15;17) translocation in APL, antagonized endogenous and transfected wild-type RAR[alpha] in the presence of retinoic acid. Cotransfection assays showed that a significant repression of RAR[alpha] transactivation activity was obtained even with a very low PLZF-RAR[alpha]-expressing plasmid concentration. A [open quotes]dominant negative[close quotes] effect was observed with vectors expressing RAR[alpha] and retinoid X receptor [alpha] (RXR[alpha]). These abnormal transactivation properties observed in retinoic acid-sensitive myeloid cells strongly implicate the PLZF-RAR[alpha] fusion proteins in the molecular pathogenesis of APL.

  7. Cellular immune responses to HIV

    Science.gov (United States)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  8. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in rat...... pancreatic alpha-cells and somatotrophs. We found a pharmacological dissociation between the actions on KATP channels and exocytosis and suggest that compounds that, unlike repaglinide, have direct stimulatory effects on exocytosis in somatotrophs and alpha- and beta-cells, such as sulphonylureas...

  9. Game of Life Cellular Automata

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  10. Cellular automata a parallel model

    CERN Document Server

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  11. ING proteins in cellular senescence.

    Science.gov (United States)

    Menéndez, Camino; Abad, María; Gómez-Cabello, Daniel; Moreno, Alberto; Palmero, Ignacio

    2009-05-01

    Cellular senescence is an effective anti-tumor barrier that acts by restraining the uncontrolled proliferation of cells carrying potentially oncogenic alterations. ING proteins are putative tumor suppressor proteins functionally linked to the p53 pathway and to chromatin regulation. ING proteins exert their tumor-protective action through different types of responses. Here, we review the evidence on the participation of ING proteins, mainly ING1 and ING2, in the implementation of the senescent response. The currently available data support an important role of ING proteins as regulators of senescence, in connection with the p53 pathway and chromatin organization.

  12. Cellular Analogs of Operant Behavior.

    Science.gov (United States)

    1992-07-31

    ing of single units can be demonstrated, does such a cellular subset of neighboring pyramidal cells and interneurons as well as process contribute...excite dopamine neurons by -hyperpolarization of local interneurons . J. Neurosci. 12:483-488; 1992. Kosterlitz, H. W. Biosynthesis of morphine in the...II 197 1 1 ocation preltereite iindiis- HOIdlod VA. artdo \\M I . \\.ill I ’’’’i i R i l’)89) ( pioid mediationl lserilI1 reintoree-Cd bK amlphetcamine

  13. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  14. Selenoprotein H suppresses cellular senescence through genome maintenance and redox regulation.

    Science.gov (United States)

    Wu, Ryan T Y; Cao, Lei; Chen, Benjamin P C; Cheng, Wen-Hsing

    2014-12-05

    Oxidative stress and persistent DNA damage response contribute to cellular senescence, a degeneration process critically involving ataxia telangiectasia-mutated (ATM) and p53. Selenoprotein H (SelH), a nuclear selenoprotein, is proposed to carry redox and transactivation domains. To determine the role of SelH in genome maintenance, shRNA knockdown was employed in human normal and immortalized cell lines. SelH shRNA MRC-5 diploid fibroblasts under ambient O2 displayed a distinct profile of senescence including β-galactosidase expression, autofluorescence, growth inhibition, and ATM pathway activation. Such senescence phenotypes were alleviated in the presence of ATM kinase inhibitors, by p53 shRNA knockdown, or by maintaining the cells under 3% O2. During the course of 5-day recovery, the induction of phospho-ATM on Ser-1981 and γH2AX by H2O2 treatment (20 μm) subsided in scrambled shRNA but exacerbated in SelH shRNA MRC-5 cells. Results from clonogenic assays demonstrated hypersensitivity of SelH shRNA HeLa cells to paraquat and H2O2, but not to hydroxyurea, neocarzinostatin, or camptothecin. While SelH mRNA expression was induced by H2O2 treatment, SelH-GFP did not mobilize to sites of oxidative DNA damage. The glutathione level was lower in SelH shRNA than scrambled shRNA HeLa cells, and the H2O2-induced cell death was rescued in the presence of N-acetylcysteine, a glutathione precursor. Altogether, SelH protects against cellular senescence to oxidative stress through a genome maintenance pathway involving ATM and p53.

  15. Melanoma screening with cellular phones.

    Directory of Open Access Journals (Sweden)

    Cesare Massone

    Full Text Available BACKGROUND: Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria. Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. CONCLUSIONS/SIGNIFICANCE: The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  16. Cellular functions of the microprocessor.

    Science.gov (United States)

    Macias, Sara; Cordiner, Ross A; Cáceres, Javier F

    2013-08-01

    The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.

  17. Cellular automata modelling of SEIRS

    Institute of Scientific and Technical Information of China (English)

    Liu Quan-Xing; Jin Zhen

    2005-01-01

    In this paper the SEIRS epidemic spread is analysed, and a two-dimensional probability cellular automata model for SEIRS is presented. Each cellular automation cell represents a part of the population that may be found in one of five states of individuals: susceptible, exposed (or latency), infected, immunized (or recovered) and death. Here studied are the effects of two cases on the epidemic spread. i.e. the effects of non-segregation and segregation on the latency and the infected of population. The conclusion is reached that the epidemic will persist in the case of non-segregation but it will decrease in the case of segregation. The proposed model can serve as a basis for the development of algorithms to simulate real epidemics based on real data. Last we find the density series of the exposed and the infected will fluctuate near a positive equilibrium point, when the constant for the immunized is less than its corresponding constant τ0. Our theoretical results are verified by numerical simulations.

  18. Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway.

    Directory of Open Access Journals (Sweden)

    Irina Gradinaru

    Full Text Available α1a Adrenergic receptors (α1aARs are the predominant AR subtype in human vascular smooth muscle cells (SMCs. α1aARs in resistance vessels are crucial in the control of blood pressure, yet the impact of naturally occurring human α1aAR genetic variants in cardiovascular disorders remains poorly understood. To this end, we present novel findings demonstrating that 3D cultures of vascular SMCs expressing human α1aAR-247R (247R genetic variant demonstrate significantly increased SMC contractility compared with cells expressing the α1aAR-WT (WT receptor. Stable expression of 247R genetic variant also triggers MMP/EGFR-transactivation dependent serum- and agonist-independent (constitutive hyperproliferation and agonist-dependent hypertrophy of SMCs. Agonist stimulation reduces contractility Using pathway-specific inhibitors we determined that the observed hyperproliferation of 247R-expressing cells is triggered via β-arrestin1/Src/MMP-2/EGFR/ERK-dependent mechanism. MMP-2-specific siRNA inhibited 247R-triggered hyperproliferation indicating MMP-2 involvement in 247R-triggered hyperproliferation in SMCs. β-arrestin1-specific shRNA also inhibited 247R-triggered hyperproliferation but did not affect hypertrophy in 247R-expressing SMCs, indicating that agonist-dependent hypertrophy is independent of β-arrestin1. Our data reveal that in different cardiovascular cells the same human receptor genetic variant can activate alternative modulators of the same signaling pathway. Thus, our findings in SMCs demonstrate that depending on the type of cells expressing the same receptor (or receptor variant, different target-specific inhibitors could be used to modulate aberrant hyperproliferative or hypertrophic pathways in order to restore normal phenotype.

  19. Identification of paired immunoglobulin-like type 2 receptor α as hepatitis B virus DNA polymerase transactivated protein 1 interacting proteins.

    Science.gov (United States)

    Lun, Yong-Zhi; Chi, Qing; Wang, Xue-Lei; Wang, Fang; Sui, Wen

    2014-02-01

    Hepatitis B Virus (HBV) DNA polymerase transactivated protein 1 (HBVDNAPTP1) is a novel protein transfected by HBV DNA polymerase, which has been screened by a suppression subtractive hybridization technique. In the present study, a yeast two-hybrid system was used to screen the proteins interacting with HBVDNAPTP1 in leukocytes in order to investigate the biological function of HBVDNAPTP1. The HBVDNAPTP1 coding sequence was cloned into a pGEM-T vector. Subsequent to sequencing, the HBVDNAPTP1 was subcloned into the bait plasmid pGBKT7 and transformed into yeast AH109. Western blotting confirmed the presence of HBVDNAPTP1 expression in the AH109 yeast strains. The transformed yeast AH109 cells were mated with Y187 yeast cells containing the leucocyte cDNA library pACT2 plasmids in 2X yeast extract peptone D-glucose adenine (YPDA) medium. For selection and screening, diploid yeast was plated on synthetic dropout medium (SD/-Trp-Leu-His-Ade) containing X-α-gal. Following sequencing and the verification of the open reading frames of positive colonies, four different proteins were obtained. To further confirm the interaction between HBVDNAPTP1 and the screened proteins, paired immunoglobulin-like type 2 receptor α (PILRA), one of the positive colonies, was cloned. The glutathione S-transferase pull-down in vitro assay and a co-immunoprecipitation in vivo assay were used to examine the interaction between HBVDNAPTP1 and PILRA, respectively. HBVDNAPTP1 may be involved in the negative regulation of the PILRA‑mediated Janus-activated kinase/signal tranducer and activator of transcription signaling pathway, and exert a positive effect on the initiation of monocyte apoptosis. These results contribute our knowledge of the biological functions of HBVDNAPTP1 and provide novel data to aid in the further analysis of the regulatory mechanism of this protein.

  20. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells.

    Science.gov (United States)

    Li, Lingmei; Qi, Lisha; Liang, Zhijie; Song, Wangzhao; Liu, Yanxue; Wang, Yalei; Sun, Baocun; Zhang, Bin; Cao, Wenfeng

    2015-07-01

    Epithelial-mesenchymal transition (EMT), a process closely related to tumor development, is regulated by a variety of signaling pathways and growth factors, such as transforming growth factor-β1 (TGF-β1) and epidermal growth factor (EGF). Hyaluronan (HA) has been shown to induce EMT through either TGF-β1 or EGF signaling and to be a regulator of the crosstalk between these two pathways in fibroblasts. In this study, in order to clarify whether HA has the same effect in tumor cells, we utilized the lung cancer cell line, A549, and the breast cancer cell line, MCF-7, and found that the effects of stimulation with TGF-β1 were more potent than those of EGF in regulating the expression of EMT-associated proteins and in enhancing cell migration and invasion. In addition, we observed that TGF-β1 activated EGF receptor (EGFR) and its downstream AKT and extracellular signal-regulated kinase (ERK) pathways. Furthermore, we found that TGF-β1 upregulated the expression of hyaluronan synthases (HAS1, HAS2 and HAS3) and promoted the expression of CD44, a cell surface receptor for HA, which interacts with EGFR, resulting in the activation of the downstream AKT and ERK pathways. Conversely, treatment with 4-methylumbelliferone (4-MU; an inhibitor of HAS) prior to stimulation with TGF-β1, inhibited the expression of CD44 and EGFR, abolished the interaction between CD44 and EGFR. Furthermore, the use of shRNA targeting CD44 impaired the expression of EGFR, deactivated the AKT and ERK pathways, reversed EMT and decreased the migration and invasion ability of cells. In conclusion, our data demonstrate that TGF-β1 induces EMT by the transactivation of EGF signaling through HA/CD44 in lung and breast cancer cells.

  1. Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells.

    Science.gov (United States)

    Wen, X; Lin, H H; Shih, H M; Kung, H J; Ann, D K

    1999-12-31

    Etk/BMX is a non-receptor protein tyrosine kinase that requires a functional phosphatidylinositol 3-kinase via the pleckstrin homology domain to be activated by cytokine. In the present study, a conditionally active form of Etk was constructed by fusing the hormone-binding domain of estrogen receptor (ER) to an amino terminus truncated form of Etk, PHDelta1-68Etk, to generate DeltaEtk:ER. In stably transfected Pa-4DeltaEtk:ER cells, the activity of DeltaEtk:ER was stimulated within minutes by the treatment of DeltaEtk:ER stimulant, estradiol, and sustained for greater than 24 h. A robust induction in the phosphorylation of signal transducers and activators of transcription (STAT) proteins, including STAT1, STAT3, and STAT5, was accompanied with DeltaEtk:ER activation. Moreover, the conditionally activated Etk stimulated STAT1- and STAT5-dependent reporter activities by approximately 160- and approximately 15-fold, respectively, however, elicited only a modest STAT3-mediated reporter activation. Qualitatively comparable results were obtained in lung A549 cells, indicating that DeltaEtk:ER inducible system could function in an analogous fashion in different epithelial cells. Furthermore, we demonstrated that Etk activation alone augmented cyclin D1 promoter/enhancer activity via its STAT5 response element in both Pa-4DeltaEtk:ER and A549 cells. Altogether, these findings support the notion that the activation of Etk kinase is sufficient to transactivate STAT-mediated gene expression. Hence, our inducible DeltaEtk:ER system represents a novel approach to investigate the biochemical events following Etk activation and to evaluate the contribution by kinase activation of Etk alone or in conjunction with other signaling pathway(s) to the ultimate biological responses.

  2. Interaction analysis between HLA-DRB1 shared epitope alleles and MHC class II transactivator CIITA gene with regard to risk of rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Marcus Ronninger

    Full Text Available HLA-DRB1 shared epitope (SE alleles are the strongest genetic determinants for autoantibody positive rheumatoid arthritis (RA. One of the key regulators in expression of HLA class II receptors is MHC class II transactivator (CIITA. A variant of the CIITA gene has been found to associate with inflammatory diseases.We wanted to explore whether the risk variant rs3087456 in the CIITA gene interacts with the HLA-DRB1 SE alleles regarding the risk of developing RA. We tested this hypothesis in a case-control study with 11767 individuals from four European Caucasian populations (6649 RA cases and 5118 controls.We found no significant additive interaction for risk alleles among Swedish Caucasians with RA (n = 3869, attributable proportion due to interaction (AP = 0.2, 95%CI: -0.2-0.5 or when stratifying for anti-citrullinated protein antibodies (ACPA presence (ACPA positive disease: n = 2945, AP = 0.3, 95%CI: -0.05-0.6, ACPA negative: n = 2268, AP = -0.2, 95%CI: -1.0-0.6. We further found no significant interaction between the main subgroups of SE alleles (DRB1*01, DRB1*04 or DRB1*10 and CIITA. Similar analysis of three independent RA cohorts from British, Dutch and Norwegian populations also indicated an absence of significant interaction between genetic variants in CIITA and SE alleles with regard to RA risk.Our data suggest that risk from the CIITA locus is independent of the major risk for RA from HLA-DRB1 SE alleles, given that no significant interaction between rs3087456 and SE alleles was observed. Since a biological link between products of these genes is evident, the genetic contribution from CIITA and class II antigens in the autoimmune process may involve additional unidentified factors.

  3. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR RNA.

    Directory of Open Access Journals (Sweden)

    Matthew S Lalonde

    2011-05-01

    Full Text Available The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC(50 ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (- strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism.

  4. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2.

    Directory of Open Access Journals (Sweden)

    Huawang Sun

    Full Text Available Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.

  5. Transactivation of epidermal growth factor receptor in vascular and renal systems in rats with experimental hyperleptinemia: role in leptin-induced hypertension.

    Science.gov (United States)

    Jamroz-Wiśniewska, Anna; Wójcicka, Grazyna; Łowicka, Ewelina; Ksiazek, Marta; Bełtowski, Jerzy

    2008-04-15

    We examined the role of epidermal growth factor (EGF) receptor in the pathogenesis of leptin-induced hypertension in the rat. Leptin, administered in increasing doses (0.1-0.5 mg/kg/day) for 10 days, increased phosphorylation levels of non-receptor tyrosine kinase, c-Src, EGF receptor and extracellular signal-regulated kinases (ERK) in aorta and kidney, which was accompanied by the increase in plasma concentration and urinary excretion of isoprostanes and H2O2. Blood pressure and renal Na+,K+-ATPase activity were higher, whereas urinary sodium excretion was lower in animals receiving leptin. The effects of leptin on renal Na+,K+-ATPase, natriuresis and blood pressure were abolished by NADPH oxidase inhibitor, apocynin, Src kinase inhibitor, PP2, EGF receptor inhibitor, AG1478, protein farnesyltransferase inhibitor, manumycin A, and ERK inhibitor, PD98059. In contrast, inhibitors of insulin-like growth factor-1 and platelet-derived growth factor receptors, AG1024 and AG1295, respectively, only slightly reduced ERK phosphorylation and had no effect on blood pressure in rats receiving leptin. These data indicate that: (1) experimental hyperleptinemia is associated with oxidative stress and c-Src-dependent transactivation of the EGF receptor, which stimulates ERK in vascular wall and the kidney, (2) overactivity of EGF receptor-ERK pathway contributes to leptin-induced hypertension by stimulating renal Na+,K+-ATPase and reducing sodium excretion, (3) inhibitors of c-Src, EGF receptor and ERK may be considered as a novel therapy for hypertension associated with hyperleptinemia, e.g. in patients with obesity and metabolic syndrome.

  6. Oxidative stress contributes to the enhanced expression of Gqα/PLCβ1 proteins and hypertrophy of VSMC from SHR: role of growth factor receptor transactivation.

    Science.gov (United States)

    Atef, Mohammed Emehdi; Anand-Srivastava, Madhu B

    2016-03-01

    We showed previously that vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHRs) exhibit overexpression of Gqα/PLCβ1 proteins, which contribute to increased protein synthesis through the activation of MAP kinase signaling. Because oxidative stress has been shown to be increased in hypertension, the present study was undertaken to examine the role of oxidative stress and underlying mechanisms in enhanced expression of Gqα/PLCβ1 proteins and VSMC hypertrophy. Protein expression was determined by Western blotting, whereas protein synthesis and cell volume, markers for VSMC hypertrophy, were determined by [(3)H]-leucine incorporation and three-dimensional confocal imaging, respectively. The increased expression of Gqα/PLCβ1 proteins, increased protein synthesis, and augmented cell volume exhibited by VSMCs from SHRs were significantly attenuated by antioxidants N-acetyl-cysteine (NAC), a scavenger of superoxide anion, DPI, an inhibitor of NAD(P)H oxidase. In addition, PP2, AG1024, AG1478, and AG1295, inhibitors of c-Src, insulin-like growth factor receptor (IGFR), epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor (PDGFR), respectively, also attenuated the enhanced expression of Gqα/PLCβ1 proteins and enhanced protein synthesis in VSMCs from SHRs toward control levels. Furthermore, the levels of IGF-1R and EGFR proteins and not of PDGFR were also enhanced in VSMCs from SHRs, which were attenuated significantly by NAC, DPI, and PP2. In addition, NAC, DPI, and PP2 also attenuated the enhanced phosphorylation of IGF-1R, PDGFR, EGFR, c-Src, and EKR1/2 in VSMCs from SHRs. These data suggest that enhanced oxidative stress in VSMCs from SHRs activates c-Src, which through the transactivation of growth factor receptors and MAPK signaling contributes to enhanced expression of Gqα/PLCβ1 proteins and resultant VSMC hypertrophy.

  7. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells

    Science.gov (United States)

    Indrakusuma, Ira; Romacho, Tania; Eckel, Jürgen

    2017-01-01

    Background: Obesity is associated with impaired vascular function. In the cardiovascular system, protease-activated receptor 2 (PAR2) exerts multiple functions such as the control of the vascular tone. In pathological conditions, PAR2 is related to vascular inflammation. However, little is known about the impact of obesity on PAR2 in the vasculature. Therefore, we explored the role of PAR2 as a potential link between obesity and cardiovascular diseases. Methods: C57BL/6 mice were fed with either a chow or a 60% high fat diet for 24 weeks prior to isolation of aortas. Furthermore, human coronary artery endothelial cells (HCAEC) and human coronary smooth muscle cells (HCSMC) were treated with conditioned medium obtained from in vitro differentiated primary human adipocytes. To investigate receptor interaction vascular endothelial growth factor receptor 2 (VEGFR2) was blocked by exposure to calcium dobesilate and a VEGFR2 neutralization antibody, before treatment with PAR2 activating peptide. Student's t-test or one-way were used to determine statistical significance. Results: Both, high fat diet and exposure to conditioned medium increased PAR2 expression in aortas and human vascular cells, respectively. In HCSMC, conditioned medium elicited proliferation as well as cyclooxygenase 2 induction, which was suppressed by the PAR2 antagonist GB83. Specific activation of PAR2 by the PAR2 activating peptide induced proliferation and cyclooxygenase 2 expression which were abolished by blocking the VEGFR2. Additionally, treatment of HCSMC with the PAR2 activating peptide triggered VEGFR2 phosphorylation. Conclusion: Under obesogenic conditions, where circulating levels of pro-inflammatory adipokines are elevated, PAR2 arises as an important player linking obesity-related adipose tissue inflammation to atherogenesis. We show for the first time that the underlying mechanisms of these pro-atherogenic effects involve a potential transactivation of the VEGFR2 by PAR2. PMID

  8. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...... including [Cbl-OH2](+), [{Co}-CN-{cis-PtCl(NH3)2}](+), [{Re}-{Co}-CN-{cis-PtCl(NH3)2}](+), and [{Co}-CN-{trans-Pt(Cyt)(NH3)2}](2+) (Cyt = cytarabin) was high compared to neutral B12, which implied the existence of an additional internalization pathway for charged B12 vitamin analogs. The affinities...

  9. Discrete geodesics and cellular automata

    CERN Document Server

    Arrighi, Pablo

    2015-01-01

    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  10. Thermomechanical characterisation of cellular rubber

    Science.gov (United States)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-09-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  11. Cellular compartmentalization of secondary metabolism

    Directory of Open Access Journals (Sweden)

    H. Corby eKistler

    2015-02-01

    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  12. Fundamental Limits to Cellular Sensing

    Science.gov (United States)

    ten Wolde, Pieter Rein; Becker, Nils B.; Ouldridge, Thomas E.; Mugler, Andrew

    2016-03-01

    In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at low concentrations. The signaling networks that transmit the information on the ligand concentration from the receptors into the cell have to filter this receptor input noise as much as possible. These networks, however, are also intrinsically stochastic in nature, which means that they will also add noise to the transmitted signal. In this review, we will first discuss how the diffusive transport and binding of ligand to the receptor sets the receptor correlation time, which is the timescale over which fluctuations in the state of the receptor, arising from the stochastic receptor-ligand binding, decay. We then describe how downstream signaling pathways integrate these receptor-state fluctuations, and how the number of receptors, the receptor correlation time, and the effective integration time set by the downstream network, together impose a fundamental limit on the precision of sensing. We then discuss how cells can remove the receptor input noise while simultaneously suppressing the intrinsic noise in the signaling network. We describe why this mechanism of time integration requires three classes (groups) of resources—receptors and their integration time, readout molecules, energy—and how each resource class sets a fundamental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation, the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy protocols typically considered in the computational literature, explaining why cellular sensing systems can never reach the Landauer limit on the optimal trade

  13. Intrinsic Simulations between Stochastic Cellular Automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2012-08-01

    Full Text Available The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in a unifying and composable manner. Armed with this formalism, we extend the notion of intrinsic simulation between deterministic cellular automata, to the non-deterministic and stochastic settings. We then provide explicit tools to prove or disprove the existence of such a simulation between two stochastic cellular automata, even though the intrinsic simulation relation is shown to be undecidable in dimension two and higher. The key result behind this is the caracterization of equality of stochastic global maps by the existence of a coupling between the random sources. We then prove that there is a universal non-deterministic cellular automaton, but no universal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal partial universality.

  14. THE RELATIONSHIPS OF THREE ELEMENTARY CELLULAR AUTOMATA

    Institute of Scientific and Technical Information of China (English)

    Zhisong JIANG

    2006-01-01

    Limit language complexity of cellular automata which is first posed by S. Wolfram has become a new branch of cellular automata. In this paper, we obtain two interesting relationships between elementary cellular automata of rules 126, 146(182) and 18, and prove that if the limit language of rule 18 is not regular, nor are the limit languages of rules 126 and 146(182).

  15. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  16. Efficiency of cellular information processing

    CERN Document Server

    Barato, Andre C; Seifert, Udo

    2014-01-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the E. coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium i...

  17. The origins of cellular life.

    Science.gov (United States)

    Schrum, Jason P; Zhu, Ting F; Szostak, Jack W

    2010-09-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.

  18. The cellular toxicity of aluminium.

    Science.gov (United States)

    Exley, C; Birchall, J D

    1992-11-07

    Aluminium is a serious environmental toxicant and is inimical to biota. Omnipresent, it is linked with a number of disorders in man including Alzheimer's disease, Parkinson's dementia and osteomalacia. Evidence supporting aluminium as an aetiological agent in such disorders is not conclusive and suffers principally from a lack of consensus with respect to aluminium's toxic mode of action. Obligatory to the elucidation of toxic mechanisms is an understanding of the biological availability of aluminium. This describes the fate of and response to aluminium in any biological system and is thus an important influence of the toxicity of aluminium. A general theme in much aluminium toxicity is an accelerated cell death. Herein mechanisms are described to account for cell death from both acute and chronic aluminium challenges. Aluminium associations with both extracellular surfaces and intracellular ligands are implicated. The cellular response to aluminium is found to be biphasic having both stimulatory and inhibitory components. In either case the disruption of second messenger systems is observed and GTPase cycles are potential target sites. Specific ligands for aluminium at these sites are unknown though are likely to be proteins upon which oxygen-based functional groups are orientated to give exceptionally strong binding with the free aluminium ion.

  19. Integration of mobile satellite and cellular systems

    Science.gov (United States)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  20. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies proposes to develop a unique structural cellular core material to improve mechanical performance, reduce platform weight and lower...

  1. Residues R{sup 199}H{sup 200} of prototype foamy virus transactivator Bel1 contribute to its binding with LTR and IP promoters but not its nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qinglin; Tan, Juan [Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071 (China); Cui, Xiaoxu [Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071 (China); Centre Laboratory, TianJin 4th Centre Hospital, Tianjin 300140 (China); Luo, Di; Yu, Miao [Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071 (China); Liang, Chen [Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada H3T 1E2 (Canada); Departments of Medicine McGill University, Montreal, QC (Canada); Microbiology and Immunology, McGill University, Montreal, QC (Canada); Qiao, Wentao, E-mail: wentaoqiao@nankai.edu.cn [Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-01-20

    Prototype foamy virus encodes a transactivator called Bel1 that enhances viral gene transcription and is essential for PFV replication. Nuclear localization of Bel1 has been reported to rely on two proximal basic motifs R{sup 199}H{sup 200} and R{sup 221}R{sup 222}R{sup 223} that likely function together as a bipartite nuclear localization signal. In this study, we report that mutating R{sup 221}R{sup 222}R{sup 223}, but not R{sup 199}H{sup 200}, relocates Bel1 from the nucleus to the cytoplasm, suggesting an essential role for R{sup 221}R{sup 222}R{sup 223} in the nuclear localization of Bel1. Although not affecting the nuclear localization of Bel1, mutating R{sup 199}H{sup 200} disables Bel1 from transactivating PFV promoters. Results of EMSA reveal that the R{sup 199}H{sup 200} residues are vital for the binding of Bel1 to viral promoter DNA. Moreover, mutating R{sup 199}H{sup 200} in Bel1 impairs PFV replication to a much greater extent than mutating R{sup 221}R{sup 222}R{sup 223}. Collectively, our findings suggest that R{sup 199}H{sup 200} directly participate in Bel1 binding to viral promoter DNA and are indispensible for Bel1 transactivation activity. - Highlights: • The R{sup 221}R{sup 222}R{sup 223} residues are essential for the nuclear localization of Bel1. • Although not affecting the nuclear localization of Bel1, mutating R{sup 199}H{sup 200} disables Bel1 from transactivating PFV promoters. • The R{sup 199}H{sup 200} residues directly participate in Bel1 binding to viral promoter DNA. • Mutating R{sup 199}H{sup 200} in Bel1 impairs PFV replication to a much greater extent than mutating R{sup 221}R{sup 222}R{sup 223}.

  2. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  3. Recent development of cellular manufacturing systems

    Indian Academy of Sciences (India)

    P K Arora; A Haleem; M K Singh

    2013-06-01

    Cellular manufacturing system has been proved a vital approach for batch and job shop production systems. Group technology has been an essential tool for developing a cellular manufacturing system. The paper aims to discuss various cell formation techniques and highlights the significant research work done in past over the years and attempts to points out the gap in research.

  4. Cellular encoding for interactive evolutionary robotics

    NARCIS (Netherlands)

    Gruau, F.C.; Quatramaran, K.

    1996-01-01

    This work reports experiments in interactive evolutionary robotics. The goal is to evolve an Artificial Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using a cellular developmental process called cellular encoding. In a previous work similar experiments ha

  5. LMS filters for cellular CDMA overlay

    OpenAIRE

    1996-01-01

    This paper extends and complements previous research we have performed on the performance of nonadaptive narrowband suppression filters when used in cellular CDMA overlay situations. In this paper, an adaptive LMS filter is applied to cellular CDMA overlay situations in order to reject narrowband interference.

  6. From Cnn Dynamics to Cellular Wave Computers

    Science.gov (United States)

    Roska, Tamas

    2013-01-01

    Embedded in a historical overview, the development of the Cellular Wave Computing paradigm is presented, starting from the standard CNN dynamics. The theoretical aspects, the physical implementation, the innovation process, as well as the biological relevance are discussed in details. Finally, the latest developments, the physical versus virtual cellular machines, as well as some open questions are presented.

  7. The Universe as a Cellular System

    CERN Document Server

    Aragón-Calvo, Miguel A

    2014-01-01

    Cellular systems are observed everywhere in nature, from crystal domains in metals, soap froth and cucumber cells to the network of cosmological voids. Surprisingly, despite their disparate scale and origin all cellular systems follow certain scaling laws relating their geometry, topology and dynamics. Using a cosmological N-body simulation we found that the Cosmic Web, the largest known cellular system, follows the same scaling relations seen elsewhere in nature. Our results extend the validity of scaling relations in cellular systems by over 30 orders of magnitude in scale with respect to previous studies. The dynamics of cellular systems can be used to interpret local observations such as the local velocity anomaly as the result of a collapsing void in our cosmic backyard. Moreover, scaling relations depend on the curvature of space, providing an independent measure of geometry.

  8. The mammary cellular hierarchy and breast cancer.

    Science.gov (United States)

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  9. The anticancer plant triterpenoid, avicin D, regulates glucocorticoid receptor signaling: implications for cellular metabolism.

    Directory of Open Access Journals (Sweden)

    Valsala Haridas

    Full Text Available Avicins, a family of apoptotic triterpene electrophiles, are known to regulate cellular metabolism and energy homeostasis, by targeting the mitochondria. Having evolved from "ancient hopanoids," avicins bear a structural resemblance with glucocorticoids (GCs, which are the endogenous regulators of metabolism and energy balance. These structural and functional similarities prompted us to compare the mode of action of avicin D with dexamethasone (Dex, a prototypical GC. Using cold competition assay, we show that Avicin D competes with Dex for binding to the GC receptor (GR, leading to its nuclear translocation. In contrast to Dex, avicin-induced nuclear translocation of GR does not result in transcriptional activation of GC-dependent genes. Instead we observe a decrease in the expression of GC-dependent metabolic proteins such as PEPCK and FASN. However, like Dex, avicin D treatment does induce a transrepressive effect on the pro-inflammatory transcription factor NF-κB. While avicin's ability to inhibit NF-κB and its downstream targets appear to be GR-dependent, its pro-apoptotic effects were independent of GR expression. Using various deletion mutants of GR, we demonstrate the requirement of both the DNA and ligand binding domains of GR in mediating avicin D's transrepressive effects. Modeling of avicin-GR interaction revealed that avicin molecule binds only to the antagonist confirmation of GR. These findings suggest that avicin D has properties of being a selective GR modulator that separates transactivation from transrepression. Since the gene-activating properties of GR are mainly linked to its metabolic effects, and the negative interference with the activity of transcription factors to its anti-inflammatory and immune suppressive effects, the identification of such a dissociated GR ligand could have great potential for therapeutic use.

  10. The anticancer plant triterpenoid, avicin D, regulates glucocorticoid receptor signaling: implications for cellular metabolism.

    Science.gov (United States)

    Haridas, Valsala; Xu, Zhi-Xiang; Kitchen, Doug; Jiang, Anna; Michels, Peter; Gutterman, Jordan U

    2011-01-01

    Avicins, a family of apoptotic triterpene electrophiles, are known to regulate cellular metabolism and energy homeostasis, by targeting the mitochondria. Having evolved from "ancient hopanoids," avicins bear a structural resemblance with glucocorticoids (GCs), which are the endogenous regulators of metabolism and energy balance. These structural and functional similarities prompted us to compare the mode of action of avicin D with dexamethasone (Dex), a prototypical GC. Using cold competition assay, we show that Avicin D competes with Dex for binding to the GC receptor (GR), leading to its nuclear translocation. In contrast to Dex, avicin-induced nuclear translocation of GR does not result in transcriptional activation of GC-dependent genes. Instead we observe a decrease in the expression of GC-dependent metabolic proteins such as PEPCK and FASN. However, like Dex, avicin D treatment does induce a transrepressive effect on the pro-inflammatory transcription factor NF-κB. While avicin's ability to inhibit NF-κB and its downstream targets appear to be GR-dependent, its pro-apoptotic effects were independent of GR expression. Using various deletion mutants of GR, we demonstrate the requirement of both the DNA and ligand binding domains of GR in mediating avicin D's transrepressive effects. Modeling of avicin-GR interaction revealed that avicin molecule binds only to the antagonist confirmation of GR. These findings suggest that avicin D has properties of being a selective GR modulator that separates transactivation from transrepression. Since the gene-activating properties of GR are mainly linked to its metabolic effects, and the negative interference with the activity of transcription factors to its anti-inflammatory and immune suppressive effects, the identification of such a dissociated GR ligand could have great potential for therapeutic use.

  11. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    Science.gov (United States)

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.

  12. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    Directory of Open Access Journals (Sweden)

    O.Popescu

    1999-01-01

    Full Text Available Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of isolated and purified glyconectins revealed the presence of specific carbohydrate structures, acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight containing fucose, glucuronic or galacturonic acids, and sulfate groups, originally found in sponges and sea urchin embryos, may represent a new class of carbohydrate carcino-embryonal antigens in mice and humans. Such interactions between biological macromolecules are usually investigated by kinetic binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance, and other spectroscopic analyses. However, these methods do not supply a direct estimation of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Recently, we have introduced atomic force microscopy to quantify the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion proteoglycans is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. As a model, we selected the glyconectin 1, a cell adhesion proteoglycan isolated from the marine sponge Microciona prolifera. This glyconectin mediates in vivo cell recognition and aggregation via homophilic, species-specific, polyvalent, and calcium ion-dependent carbohydrate-carbohydrate interactions. Under physiological conditions, an adhesive force of up to 400 piconewtons

  13. Cellular Cell Bifurcation of Cylindrical Detonations

    Institute of Scientific and Technical Information of China (English)

    HAN Gui-Lai; JIANG Zong-Lin; WANG Chun; ZHANG Fan

    2008-01-01

    Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

  14. Optimal Band Allocation for Cognitive Cellular Networks

    CERN Document Server

    Liu, Tingting

    2011-01-01

    FCC new regulation for cognitive use of the TV white space spectrum provides a new means for improving traditional cellular network performance. But it also introduces a number of technical challenges. This letter studies one of the challenges, that is, given the significant differences in the propagation property and the transmit power limitations between the cellular band and the TV white space, how to jointly utilize both bands such that the benefit from the TV white space for improving cellular network performance is maximized. Both analytical and simulation results are provided.

  15. Cryptographic primitives based on cellular transformations

    Directory of Open Access Journals (Sweden)

    B.V. Izotov

    2003-11-01

    Full Text Available Design of cryptographic primitives based on the concept of cellular automata (CA is likely to be a promising trend in cryptography. In this paper, the improved method performing data transformations by using invertible cyclic CAs (CCA is considered. Besides, the cellular operations (CO as a novel CAs application in the block ciphers are introduced. Proposed CCAs and COs, integrated under the name of cellular transformations (CT, suit well to be used in cryptographic algorithms oriented to fast software and cheap hardware implementation.

  16. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  17. On-Chip Detection of Cellular Activity

    Science.gov (United States)

    Almog, R.; Daniel, R.; Vernick, S.; Ron, A.; Ben-Yoav, H.; Shacham-Diamand, Y.

    The use of on-chip cellular activity monitoring for biological/chemical sensing is promising for environmental, medical and pharmaceutical applications. The miniaturization revolution in microelectronics is harnessed to provide on-chip detection of cellular activity, opening new horizons for miniature, fast, low cost and portable screening and monitoring devices. In this chapter we survey different on-chip cellular activity detection technologies based on electrochemical, bio-impedance and optical detection. Both prokaryotic and eukaryotic cell-on-chip technologies are mentioned and reviewed.

  18. Cellular Factors Required for Lassa Virus Budding

    OpenAIRE

    Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Yokosawa, Hideyoshi; Yasuda, Jiro

    2006-01-01

    It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicula...

  19. A Matrix Construction of Cellular Algebras

    Institute of Scientific and Technical Information of China (English)

    Dajing Xiang

    2005-01-01

    In this paper, we give a concrete method to construct cellular algebras from matrix algebras by specifying certain fixed matrices for the data of inflations. In particular,orthogonal matrices can be chosen for such data.

  20. Cellular Defect May Be Linked to Parkinson's

    Science.gov (United States)

    ... 160862.html Cellular Defect May Be Linked to Parkinson's: Study Abnormality might apply to all forms of ... that may be common to all forms of Parkinson's disease. The defect plays a major role in ...

  1. Integration of Mobil Satellite and Cellular Systems

    Science.gov (United States)

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  2. Cellular Automaton Modeling of Pattern Formation

    NARCIS (Netherlands)

    Boerlijst, M.C.

    2006-01-01

    Book review Andreas Deutsch and Sabine Dormann, Cellular Automaton Modeling of Biological Pattern Formation, Characterization, Applications, and Analysis, Birkhäuser (2005) ISBN 0-8176-4281-1 331pp..

  3. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies has developed, produced and tested, as part of the Phase-I SBIR, a new form of composite cellular core material, named Interply Core,...

  4. Densities and entropies in cellular automata

    CERN Document Server

    Guillon, Pierre

    2012-01-01

    Following work by Hochman and Meyerovitch on multidimensional SFT, we give computability-theoretic characterizations of the real numbers that can appear as the topological entropies of one-dimensional and two-dimensional cellular automata.

  5. Non-genomic estrogen/estrogen receptor α promotes cellular malignancy of immature ovarian teratoma in vitro.

    Science.gov (United States)

    Hung, Yao-Ching; Chang, Wei-Chun; Chen, Lu-Min; Chang, Ying-Yi; Wu, Ling-Yu; Chung, Wei-Min; Lin, Tze-Yi; Chen, Liang-Chi; Ma, Wen-Lung

    2014-06-01

    Malignant immature ovarian teratomas (IOTs) most often occur in women of reproductive age. It is unclear, however, what roles estrogenic signaling plays in the development of IOT. In this study, we examined whether estrogen receptors (ERα and β) promote the cellular malignancy of IOT. Estradiol (E2), PPT (propylpyrazole), and DPN (diarylpropionitrile) (ERα- and β-specific agonists, respectively), as well as ERα- or ERβ-specific short hairpin (sh)RNA were applied to PA-1 cells, a well-characterized IOT cell line. Cellular tumorigenic characteristics, for example, cell migration/invasion, expression of the cancer stem/progenitor cell marker CD133, and evidence for epithelial-mesenchymal transition (EMT) were examined. In PA-1 cells that expressed ERα and ERβ, we found that ERα promoted cell migration and invasion. We also found that E2/ERα signaling altered cell behavior through non-classical transactivation function. Our data show non-genomic E2/ERα activations of focal adhesion kinase-Ras homolog gene family member A (FAK-RhoA) and ERK governed cell mobility capacity. Moreover, E2/ERα signaling induces EMT and overexpression of CD133 through upregulation micro-RNA 21 (miR21; IOT stem/progenitor promoter), and ERK phosphorylations. Furthermore, E2/ERα signaling triggers a positive feedback regulatory loop within miR21 and ERK. At last, expression levels of ERα, CD133, and EMT markers in IOT tissue samples were examined by immunohistochemistry. We found that cytosolic ERα was co-expressed with CD133 and mesenchymal cell markers but not epithelial cell markers. In conclusion, estrogenic signals exert malignant transformation capacity of cancer cells, exclusively through non-genomic regulation in female germ cell tumors.

  6. On the Behavior Characteristics of Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-cai; ZHANG Jiang-ling; FENG Dan

    2005-01-01

    In this paper, the inherent relationships between the running regulations and behavior characteristics of cellular automata are presented; an imprecise taxonomy of such systems is put forward; the three extreme cases of stable systems are discussed; and the illogicalness of evolutional strategies of cellular automata is analyzed. The result is suitable for the emulation and prediction of behavior of discrete dynamics systems; especially it can be taken as an important analysis means of dynamic performance of complex networks.

  7. Sponging of Cellular Proteins by Viral RNAs

    OpenAIRE

    Charley, Phillida A.; Wilusz, Jeffrey

    2014-01-01

    Viral RNAs accumulate to high levels during infection and interact with a variety of cellular factors including miRNAs and RNA-binding proteins. Although many of these interactions exist to directly modulate replication, translation and decay of viral transcripts, evidence is emerging that abundant viral RNAs may in certain cases serve as a sponge to sequester host non coding RNAs and proteins. By effectively reducing the ability of cellular RNA binding proteins to regulate host cell gene exp...

  8. Polymersomes containing quantum dots for cellular imaging

    Directory of Open Access Journals (Sweden)

    Camblin M

    2014-05-01

    Full Text Available Marine Camblin,1 Pascal Detampel,1 Helene Kettiger,1 Dalin Wu,2 Vimalkumar Balasubramanian,1,* Jörg Huwyler1,*1Division of Pharmaceutical Technology, 2Department of Chemistry, University of Basel, Basel, Switzerland*These authors contributed equally to this workAbstract: Quantum dots (QDs are highly fluorescent and stable probes for cellular and molecular imaging. However, poor intracellular delivery, stability, and toxicity of QDs in biological compartments hamper their use in cellular imaging. To overcome these limitations, we developed a simple and effective method to load QDs into polymersomes (Ps made of poly(dimethylsiloxane-poly(2-methyloxazoline (PDMS-PMOXA diblock copolymers without compromising the characteristics of the QDs. These Ps showed no cellular toxicity and QDs were successfully incorporated into the aqueous compartment of the Ps as confirmed by transmission electron microscopy, fluorescence spectroscopy, and fluorescence correlation spectroscopy. Ps containing QDs showed colloidal stability over a period of 6 weeks if stored in phosphate-buffered saline (PBS at physiological pH (7.4. Efficient intracellular delivery of Ps containing QDs was achieved in human liver carcinoma cells (HepG2 and was visualized by confocal laser scanning microscopy (CLSM. Ps containing QDs showed a time- and concentration-dependent uptake in HepG2 cells and exhibited better intracellular stability than liposomes. Our results suggest that Ps containing QDs can be used as nanoprobes for cellular imaging.Keywords: quantum dots, polymersomes, cellular imaging, cellular uptake

  9. Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Siva Prasad Darla

    2014-01-01

    Full Text Available In the modern manufacturing environment, Cellular Manufacturing Systems (CMS have gained greater importance in job shop or batch-type production to gain economic advantage similar to those of mass production. Successful implementation of CMS highly depends on the determination of part families; machine cells and minimizing inter cellular movement. This study considers machine component grouping problems namely inter-cellular movement and cell load variation by developing a mathematical model and optimizing the solution using Genetic Algorithm to arrive at a cell formation to minimize the inter-cellular movement and cell load variation. The results are presented with a numerical example.

  10. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  11. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-01

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  12. Complexity, dynamic cellular network, and tumorigenesis.

    Science.gov (United States)

    Waliszewski, P

    1997-01-01

    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  13. Online isolation of defects in cellular nanocomputers

    Institute of Scientific and Technical Information of China (English)

    Teijiro Isokawa; Shin'ya Kowada; Ferdinand Peper; Naotake Kamiura; Nobuyuki Matsui

    2007-01-01

    Unreliability will be a major issue for computers built from components at nanometer scales.Thus,it's to be expected that such computers will need a high degree of defect-tolerance to overcome components' defects which have arisen during the process of manufacturing.This paper presents a novel approach to defect-tolerance that is especially geared towards nanocomputers based on asynchronous cellular automata.According to this approach,defective cells are detected and isolated by small configurations that move around randomly in cellular space.These configurations,called random flies,will attach to configurations that are static,which is typical for configurations that contain defective cells.On the other hand,dynamic configurations,like those that conduct computations,will not be isolated from the rest of the cellular space by the random flies,and will be able to continue their operations unaffectedly.

  14. Cellular Signaling in Health and Disease

    CERN Document Server

    Beckerman, Martin

    2009-01-01

    In today’s world, three great classes of non-infectious diseases – the metabolic syndromes (such as type 2 diabetes and atherosclerosis), the cancers, and the neurodegenerative disorders – have risen to the fore. These diseases, all associated with increasing age of an individual, have proven to be remarkably complex and difficult to treat. This is because, in large measure, when the cellular signaling pathways responsible for maintaining homeostasis and health of the body become dysregulated, they generate equally stable disease states. As a result the body may respond positively to a drug, but only for a while and then revert back to the disease state. Cellular Signaling in Health and Disease summarizes our current understanding of these regulatory networks in the healthy and diseased states, showing which molecular components might be prime targets for drug interventions. This is accomplished by presenting models that explain in mechanistic, molecular detail how a particular part of the cellular sign...

  15. Software-Defined Cellular Mobile Network Solutions

    Institute of Scientific and Technical Information of China (English)

    Jiandong Li; Peng Liu; Hongyan Li

    2014-01-01

    The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, pro-vides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solu-tions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only software-defined cellular network solutions and specifications in order to provide possible research directions.

  16. Infrared image enhancement using Cellular Automata

    Science.gov (United States)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2016-05-01

    Image enhancement is a crucial technique for infrared images. The clear image details are important for improving the quality of infrared images in computer vision. In this paper, we propose a new enhancement method based on two priors via Cellular Automata. First, we directly learn the gradient distribution prior from the images via Cellular Automata. Second, considering the importance of image details, we propose a new gradient distribution error to encode the structure information via Cellular Automata. Finally, an iterative method is applied to remap the original image based on two priors, further improving the quality of enhanced image. Our method is simple in implementation, easy to understand, extensible to accommodate other vision tasks, and produces more accurate results. Experiments show that the proposed method performs better than other methods using qualitative and quantitative measures.

  17. Asymptotic Behavior of Excitable Cellular Automata

    CERN Document Server

    Durrett, R; Durrett, Richard; Griffeath, David

    1993-01-01

    Abstract: We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the "shape" of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and som...

  18. Spin Echo Studies on Cellular Water

    CERN Document Server

    Chang, D C; Nichols, B L; Rorschach, H E

    2014-01-01

    Previous studies indicated that the physical state of cellular water could be significantly different from pure liquid water. To experimentally investigate this possibility, we conducted a series of spin-echo NMR measurements on water protons in rat skeletal muscle. Our result indicated that the spin-lattice relaxation time and the spin-spin relaxation time of cellular water protons are both significantly shorter than that of pure water (by 4.3-fold and 34-fold, respectively). Furthermore, the spin diffusion coefficient of water proton is almost 1/2 of that of pure water. These data suggest that cellular water is in a more ordered state in comparison to pure water.

  19. Cellular biosensing: chemical and genetic approaches.

    Science.gov (United States)

    Haruyama, Tetsuya

    2006-05-24

    Biosensors have been developed to determine the concentration of specific compounds in situ. They are already widely employed as a practical technology in the clinical and healthcare fields. Recently, another concept of biosensing has been receiving attention: biosensing for the evaluation of molecular potency. The development of this novel concept has been supported by the development of related technologies, as such as molecular design, molecular biology (genetic engineering) and cellular/tissular engineering. This review is addresses this new concept of biosensing and its application to the evaluation of the potency of chemicals in biological systems, in the field of cellular/tissular engineering. Cellular biosensing may provide information on both pharmaceutical and chemical safety, and on drug efficacy in vitro as a screening tool.

  20. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    Science.gov (United States)

    Habibi, Meisam K.; Lu, Yang

    2014-07-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  1. Alleviate Cellular Congestion Through Opportunistic Trough Filling

    Directory of Open Access Journals (Sweden)

    Yichuan Wang

    2014-04-01

    Full Text Available The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly in both large and small time scales. To alleviate network congestion and improve network performance, we present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time as the performance metrics. Simulation results show promising performance improvement over the standard schemes. The work shed lights on addressing the pressing issue of cellular overload.

  2. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.

    Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...... is equivalent to knowledge of the weight multiplicities of the tilting modules for $\\U_{\\zeta}(\\fsl_2)$. In the final section we independently determine the weight multiplicities of indecomposable tilting modules for $U_\\zeta(\\fsl_2)$ and the decomposition numbers of the endomorphism algebras. We indicate how...

  3. Performance comparison of virtual cellular manufacturing with functional and cellular layouts in DRC settings

    NARCIS (Netherlands)

    Suresh, N.; Slomp, J.

    2005-01-01

    This study investigates the performance of virtual cellular manufacturing (VCM) systems, comparing them with functional layouts (FL) and traditional, physical cellular layout (CL), in a dual-resource-constrained (DRC) system context. VCM systems employ logical cells, retaining the process layouts of

  4. Virtual networks in the cellular domain

    OpenAIRE

    Söderström, Gustav

    2003-01-01

     Data connectivity between cellular devices can be achieved in different ways. It is possible to enable full IPconnectivity in the cellular networks. However this connectivity is combined with a lot of issues such as security problems and the IPv4 address space being depleted. As a result of this many operators use Network Address Translation in their packet data networks, preventing users in different networks from being able to contact each other. Even if a transition to IPv6 takes place an...

  5. The cellular decision between apoptosis and autophagy

    Institute of Scientific and Technical Information of China (English)

    Yong-Jun Fan; Wei-Xing Zong

    2013-01-01

    Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis,respectively.While apoptosis fulfills its role through dismantling damaged or unwanted cells,autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules.Yet in some conditions,autophagy can lead to cell death.Apoptosis and autophagy can be stimulated by the same stresses.Emerging evidence indicates an interplay between the core proteins in both pathways,which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy.This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.

  6. Cellular basis of Alzheimer′s disease

    Directory of Open Access Journals (Sweden)

    Bali Jitin

    2010-10-01

    Full Text Available Alzheimer′s disease (AD is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  7. Cellular basis of Alzheimer’s disease

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-01-01

    Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD. PMID:21369424

  8. Cellular-based sea level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.

    , and cellular modem are mounted on the top portion of this structure. The pressure sensor and the logger are continuously powered on, and their electrical current consumption is 30 and 15 mA respectively. The cellular modem consumes 15 mA and 250 mA during... standby and data transmission modes, respectively. The pressure sensor located below the low-tide level measures the hydrostatic pressure of the overlying water layer. An indigenously designed and developed microprocessor-based data logger interrogates...

  9. Refining cellular automata with routing constraints

    OpenAIRE

    Millo, Jean-Vivien; De Simone, Robert

    2012-01-01

    A cellular automaton (CA) is an infinite array of cells, each containing the same automaton. The dynamics of a CA is distributed over the cells where each computes its next state as a function of the previous states of its neighborhood. Thus, the transmission of such states between neighbors is considered as feasible directly, in no time. When considering the implementation of a cellular automaton on a many-cores System-on-Chip (SoC), this state transmission is no longer abstract and instanta...

  10. Cellular telephone use and cancer risk

    DEFF Research Database (Denmark)

    2006-01-01

    -up of a large nationwide cohort of 420,095 persons whose first cellular telephone subscription was between 1982 and 1995 and who were followed through 2002 for cancer incidence. Standardized incidence ratios (SIRs) were calculated by dividing the number of observed cancer cases in the cohort by the number....... The risk for smoking-related cancers was decreased among men (SIR = 0.88, 95% CI = 0.86 to 0.91) but increased among women (SIR = 1.11, 95% CI = 1.02 to 1.21). Additional data on income and smoking prevalence, primarily among men, indicated that cellular telephone users who started subscriptions in the mid...

  11. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...... insulation....

  12. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  13. Green Cellular - Optimizing the Cellular Network for Minimal Emission from Mobile Stations

    CERN Document Server

    Ezri, Doron

    2009-01-01

    Wireless systems, which include cellular phones, have become an essential part of the modern life. However the mounting evidence that cellular radiation might adversely affect the health of its users, leads to a growing concern among authorities and the general public. Radiating antennas in the proximity of the user, such as antennas of mobile phones are of special interest for this matter. In this paper we suggest a new architecture for wireless networks, aiming at minimal emission from mobile stations, without any additional radiation sources. The new architecture, dubbed Green Cellular, abandons the classical transceiver base station design and suggests the augmentation of transceiver base stations with receive only devices. These devices, dubbed Green Antennas, are not aiming at coverage extension but rather at minimizing the emission from mobile stations. We discuss the implications of the Green Cellular architecture on 3G and 4G cellular technologies. We conclude by showing that employing the Green Cell...

  14. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular...

  15. Cellular grafts in management of leucoderma

    Directory of Open Access Journals (Sweden)

    Mysore Venkataram

    2009-01-01

    Full Text Available Cellular grafting methods constitute important advances in the surgical management of leucoderma. Different methods such as noncultured epidermal suspensions, melanocyte cultures, and melanocyte-keratinocyte cultures have all been shown to be effective. This article reviews these methods.

  16. Cellular basis of memory for addiction.

    Science.gov (United States)

    Nestler, Eric J

    2013-12-01

    DESPITE THE IMPORTANCE OF NUMEROUS PSYCHOSOCIAL FACTORS, AT ITS CORE, DRUG ADDICTION INVOLVES A BIOLOGICAL PROCESS: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. Here, we review the types of molecular and cellular adaptations that occur in specific brain regions to mediate addiction-associated behavioral abnormalities. These include alterations in gene expression achieved in part via epigenetic mechanisms, plasticity in the neurophysiological functioning of neurons and synapses, and associated plasticity in neuronal and synaptic morphology mediated in part by altered neurotrophic factor signaling. Each of these types of drug-induced modifications can be viewed as a form of "cellular or molecular memory." Moreover, it is striking that most addiction-related forms of plasticity are very similar to the types of plasticity that have been associated with more classic forms of "behavioral memory," perhaps reflecting the finite repertoire of adaptive mechanisms available to neurons when faced with environmental challenges. Finally, addiction-related molecular and cellular adaptations involve most of the same brain regions that mediate more classic forms of memory, consistent with the view that abnormal memories are important drivers of addiction syndromes. The goal of these studies which aim to explicate the molecular and cellular basis of drug addiction is to eventually develop biologically based diagnostic tests, as well as more effective treatments for addiction disorders.

  17. Cellular Plasticity in Prostate Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Dima Y. Jadaan

    2015-01-01

    Full Text Available Purpose. Experimental data suggest that tumour cells can reversibly transition between epithelial and mesenchymal states (EMT and MET, a phenomenon known as cellular plasticity. The aim of this review was to appraise the clinical evidence for the role of cellular plasticity in prostate cancer (PC bone metastasis. Methods. An electronic search was performed using PubMed for studies that have examined the differential expression of epithelial, mesenchymal, and stem cell markers in human PC bone metastasis tissues. Results. The review included nineteen studies. More than 60% of the studies used ≤20 bone metastasis samples, and there were several sources of heterogeneity between studies. Overall, most stem cell markers analysed, except for CXCR4, were positively expressed in bone metastasis tissues, while the expression of EMT and MET markers was heterogeneous between and within samples. Several EMT and stemness markers that are involved in osteomimicry, such as Notch, Met receptor, and Wnt/β pathway, were highly expressed in bone metastases. Conclusions. Clinical findings support the role of cellular plasticity in PC bone metastasis and suggest that epithelial and mesenchymal states cannot be taken in isolation when targeting PC bone metastasis. The paper also highlights several challenges in the clinical detection of cellular plasticity.

  18. Corneal cellular proliferation and wound healing

    OpenAIRE

    Gan, Lisha

    2000-01-01

    Background. Cellular proliferation plays an important role in both physiological and pathological processes. Epithelial hyperplasia in the epithelium, excessive scar formation in retrocorneal membrane formation and neovascularization are examples of excessive proliferation of cornea cells. Lack of proliferative ability causes corneal degeneration. The degree of proliferative and metabolic activity will directly influence corneal transparency and very evidently refractive res...

  19. A Quantum Relativistic Prisoner's Dilemma Cellular Automaton

    Science.gov (United States)

    Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen

    2016-10-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.

  20. Recursive definition of global cellular-automata mappings

    DEFF Research Database (Denmark)

    Feldberg, Rasmus; Knudsen, Carsten; Rasmussen, Steen

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as...

  1. Quantitative proteomics reveals cellular targets of celastrol.

    Directory of Open Access Journals (Sweden)

    Jakob Hansen

    Full Text Available Celastrol, a natural substance isolated from plant extracts used in traditional Chinese medicine, has been extensively investigated as a possible drug for treatment of cancer, autoimmune diseases, and protein misfolding disorders. Although studies focusing on celastrol's effects in specific cellular pathways have revealed a considerable number of targets in a diverse array of in vitro models there is an essential need for investigations that can provide a global view of its effects. To assess cellular effects of celastrol and to identify target proteins as biomarkers for monitoring treatment regimes, we performed large-scale quantitative proteomics in cultured human lymphoblastoid cells, a cell type that can be readily prepared from human blood samples. Celastrol substantially modified the proteome composition and 158 of the close to 1800 proteins with robust quantitation showed at least a 1.5 fold change in protein levels. Up-regulated proteins play key roles in cytoprotection with a prominent group involved in quality control and processing of proteins traversing the endoplasmic reticulum. Increased levels of proteins essential for the cellular protection against oxidative stress including heme oxygenase 1, several peroxiredoxins and thioredoxins as well as proteins involved in the control of iron homeostasis were also observed. Specific analysis of the mitochondrial proteome strongly indicated that the mitochondrial association of certain antioxidant defense and apoptosis-regulating proteins increased in cells exposed to celastrol. Analysis of selected mRNA transcripts showed that celastrol activated several different stress response pathways and dose response studies furthermore showed that continuous exposure to sub-micromolar concentrations of celastrol is associated with reduced cellular viability and proliferation. The extensive catalog of regulated proteins presented here identifies numerous cellular effects of celastrol and constitutes

  2. Cellular circadian clocks in mood disorders.

    Science.gov (United States)

    McCarthy, Michael J; Welsh, David K

    2012-10-01

    Bipolar disorder (BD) and major depressive disorder (MDD) are heritable neuropsychiatric disorders associated with disrupted circadian rhythms. The hypothesis that circadian clock dysfunction plays a causal role in these disorders has endured for decades but has been difficult to test and remains controversial. In the meantime, the discovery of clock genes and cellular clocks has revolutionized our understanding of circadian timing. Cellular circadian clocks are located in the suprachiasmatic nucleus (SCN), the brain's primary circadian pacemaker, but also throughout the brain and peripheral tissues. In BD and MDD patients, defects have been found in SCN-dependent rhythms of body temperature and melatonin release. However, these are imperfect and indirect indicators of SCN function. Moreover, the SCN may not be particularly relevant to mood regulation, whereas the lateral habenula, ventral tegmentum, and hippocampus, which also contain cellular clocks, have established roles in this regard. Dysfunction in these non-SCN clocks could contribute directly to the pathophysiology of BD/MDD. We hypothesize that circadian clock dysfunction in non-SCN clocks is a trait marker of mood disorders, encoded by pathological genetic variants. Because network features of the SCN render it uniquely resistant to perturbation, previous studies of SCN outputs in mood disorders patients may have failed to detect genetic defects affecting non-SCN clocks, which include not only mood-regulating neurons in the brain but also peripheral cells accessible in human subjects. Therefore, reporters of rhythmic clock gene expression in cells from patients or mouse models could provide a direct assay of the molecular gears of the clock, in cellular clocks that are likely to be more representative than the SCN of mood-regulating neurons in patients. This approach, informed by the new insights and tools of modern chronobiology, will allow a more definitive test of the role of cellular circadian clocks

  3. Fibronectin-induced VEGF receptor and calcium channel transactivation stimulate GLUT-1 synthesis and trafficking through PPARγ and TC10 in mouse embryonic stem cells.

    Science.gov (United States)

    Suh, Han Na; Han, Ho Jae

    2013-05-01

    Extracellular matrix (ECM) mediates interactions between integrin and growth factor receptor (GFR) or ion channel. Although this crosstalk promotes integration of the downstream signal pathways and then regulates cellular function, the effect of ECM on glucose transporter (GLUT) in stem cells has not been elucidated. Therefore, we examined the effect of fibronectin on GLUT-1 expression, trafficking, and its related signal pathways in mouse embryonic stem cells (mESCs). Fibronectin increased 2-deoxyglucose (DG) uptake and GLUT-1 protein expression that were blocked by transcription or translation inhibitors. Integrin α5β1-bound fibronectin increased 2-DG uptake through cluster formation with vascular endothelial growth factor receptor (VEGFR) 2, and then activated Ras and PI3K/Akt. In another pathway, integrin α5β1 displayed structural and functional interactions with calcium channels, and stimulated 2-DG uptake through calcium influx and PKC activation. Akt and PKC-induced PPARγ phosphorylation enhanced the decreased expression of PPARγ protein, and subsequently increased GLUT-1 protein synthesis and 2-DG uptake. Fibronectin stimulated TC10 activity and cytoskeleton (F-actin) rearrangement, followed by GLUT-1 trafficking. In conclusion, integrin-bound fibronectin stimulates GLUT-1 synthesis through VEGFR2/Ras/PI3K/Akt and calcium channel/Ca(2+)/PKC, which are merged at PPARγ and GLUT-1 trafficking through TC10 and F-actin.

  4. Linker Histone H1.2 Cooperates with Cul4A and PAF1 to Drive H4K31 Ubiquitylation-Mediated Transactivation

    Directory of Open Access Journals (Sweden)

    Kyunghwan Kim

    2013-12-01

    Full Text Available Increasing evidence suggests that linker histone H1 can influence distinct cellular processes by acting as a gene-specific regulator. However, the mechanistic basis underlying such H1 specificity and whether H1 acts in concert with other chromatin-altering activities remain unclear. Here, we show that one of the H1 subtypes, H1.2, stably interacts with Cul4A E3 ubiquitin ligase and PAF1 elongation complexes and that such interaction potentiates target gene transcription via induction of H4K31ubiquitylation, H3K4me3, and H3K79me2. H1.2, Cul4A, and PAF1 are functionally cooperative because their individual knockdown results in the loss of the corresponding histone marks and the deficiency of target gene transcription. H1.2 interacts with the serine 2-phosphorylated form of RNAPII, and we argue that it recruits the Cul4A and PAF1 complexes to target genes by bridging the interaction between the Cul4A and PAF1 complexes. These data define an expanded role for H1 in regulating gene transcription and illustrate its dependence on the elongation competence of RNAPII.

  5. Quantum features of natural cellular automata

    Science.gov (United States)

    Elze, Hans-Thomas

    2016-03-01

    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schrödinger equation. This includes corresponding conservation laws. The class of “natural” Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, “deformed” quantum mechanical models with a finite discreteness scale l are obtained, which for l → 0 reproduce familiar continuum results. We have recently demonstrated that such automata can form “multipartite” systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce the essential quantum effects of interference and entanglement.

  6. Molecular kinesis in cellular function and plasticity.

    Science.gov (United States)

    Tiedge, H; Bloom, F E; Richter, D

    2001-06-19

    Intracellular transport and localization of cellular components are essential for the functional organization and plasticity of eukaryotic cells. Although the elucidation of protein transport mechanisms has made impressive progress in recent years, intracellular transport of RNA remains less well understood. The National Academy of Sciences Colloquium on Molecular Kinesis in Cellular Function and Plasticity therefore was devised as an interdisciplinary platform for participants to discuss intracellular molecular transport from a variety of different perspectives. Topics covered at the meeting included RNA metabolism and transport, mechanisms of protein synthesis and localization, the formation of complex interactive protein ensembles, and the relevance of such mechanisms for activity-dependent regulation and synaptic plasticity in neurons. It was the overall objective of the colloquium to generate momentum and cohesion for the emerging research field of molecular kinesis.

  7. Designing beauty the art of cellular automata

    CERN Document Server

    Martínez, Genaro

    2016-01-01

    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  8. A cellular glass substrate solar concentrator

    Science.gov (United States)

    Bedard, R.; Bell, D.

    1980-01-01

    The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.

  9. Cellular senescence and the aging brain.

    Science.gov (United States)

    Chinta, Shankar J; Woods, Georgia; Rane, Anand; Demaria, Marco; Campisi, Judith; Andersen, Julie K

    2015-08-01

    Cellular senescence is a potent anti-cancer mechanism that arrests the proliferation of mitotically competent cells to prevent malignant transformation. Senescent cells accumulate with age in a variety of human and mouse tissues where they express a complex 'senescence-associated secretory phenotype' (SASP). The SASP includes many pro-inflammatory cytokines, chemokines, growth factors and proteases that have the potential to cause or exacerbate age-related pathology, both degenerative and hyperplastic. While cellular senescence in peripheral tissues has recently been linked to a number of age-related pathologies, its involvement in brain aging is just beginning to be explored. Recent data generated by several laboratories suggest that both aging and age-related neurodegenerative diseases are accompanied by an increase in SASP-expressing senescent cells of non-neuronal origin in the brain. Moreover, this increase correlates with neurodegeneration. Senescent cells in the brain could therefore constitute novel therapeutic targets for treating age-related neuropathologies.

  10. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  11. Astrobiological Complexity with Probabilistic Cellular Automata

    CERN Document Server

    Vukotić, B

    2012-01-01

    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and ne...

  12. Cellular automata in image processing and geometry

    CERN Document Server

    Adamatzky, Andrew; Sun, Xianfang

    2014-01-01

    The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation. The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of mass...

  13. Prodrug Approach for Increasing Cellular Glutathione Levels

    Directory of Open Access Journals (Sweden)

    Ivana Cacciatore

    2010-03-01

    Full Text Available Reduced glutathione (GSH is the most abundant non-protein thiol in mammalian cells and the preferred substrate for several enzymes in xenobiotic metabolism and antioxidant defense. It plays an important role in many cellular processes, such as cell differentiation, proliferation and apoptosis. GSH deficiency has been observed in aging and in a wide range of pathologies, including neurodegenerative disorders and cystic fibrosis (CF, as well as in several viral infections. Use of GSH as a therapeutic agent is limited because of its unfavorable biochemical and pharmacokinetic properties. Several reports have provided evidence for the use of GSH prodrugs able to replenish intracellular GSH levels. This review discusses different strategies for increasing GSH levels by supplying reversible bioconjugates able to cross the cellular membrane more easily than GSH and to provide a source of thiols for GSH synthesis.

  14. Mobile node localization in cellular networks

    CERN Document Server

    Malik, Yasir; Abdulrazak, Bessam; Tariq, Usman; 10.5121/ijwmn.2011.3607

    2012-01-01

    Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In this paper, we are interested in outdoor localization particularly in cellular networks of mobile nodes and presented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time) and coordinate information of Base Transceiver Station (BTSs). To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  15. Mobile Node Localization in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yasir Malik

    2012-01-01

    Full Text Available Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In thispaper, we are interested in outdoor localization particularly in cellular networks of mobile nodes andpresented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time and coordinate information of Base Transceiver Station (BTSs. To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  16. A Modified Sensitive Driving Cellular Automaton Model

    Institute of Scientific and Technical Information of China (English)

    GE Hong-Xia; DAI Shi-Qiang; DONG Li-Yun; LEI Li

    2005-01-01

    A modified cellular automaton model for traffic flow on highway is proposed with a novel concept about the variable security gap. The concept is first introduced into the original Nagel-Schreckenberg model, which is called the non-sensitive driving cellular automaton model. And then it is incorporated with a sensitive driving NaSch model,in which the randomization brake is arranged before the deterministic deceleration. A parameter related to the variable security gap is determined through simulation. Comparison of the simulation results indicates that the variable security gap has different influence on the two models. The fundamental diagram obtained by simulation with the modified sensitive driving NaSch model shows that the maximumflow are in good agreement with the observed data, indicating that the presented model is more reasonable and realistic.

  17. Quantum features of natural cellular automata

    CERN Document Server

    Elze, Hans-Thomas

    2016-01-01

    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schroedinger equation. This includes corresponding conservation laws. The class of "natural" Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, "deformed" quantum mechanical models with a finite discreteness scale $l$ are obtained, which for $l\\rightarrow 0$ reproduce familiar continuum results. We have recently demonstrated that such automata can form "multipartite" systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce...

  18. WD40 proteins propel cellular networks.

    Science.gov (United States)

    Stirnimann, Christian U; Petsalaki, Evangelia; Russell, Robert B; Müller, Christoph W

    2010-10-01

    Recent findings indicate that WD40 domains play central roles in biological processes by acting as hubs in cellular networks; however, they have been studied less intensely than other common domains, such as the kinase, PDZ or SH3 domains. As suggested by various interactome studies, they are among the most promiscuous interactors. Structural studies suggest that this property stems from their ability, as scaffolds, to interact with diverse proteins, peptides or nucleic acids using multiple surfaces or modes of interaction. A general scaffolding role is supported by the fact that no WD40 domain has been found with intrinsic enzymatic activity despite often being part of large molecular machines. We discuss the WD40 domain distributions in protein networks and structures of WD40-containing assemblies to demonstrate their versatility in mediating critical cellular functions.

  19. Cellular Dynamics Revealed by Digital Holographic Microscopy☆

    KAUST Repository

    Marquet, P.

    2016-11-22

    Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.

  20. SELF-ORGANIZED CRITICALITY AND CELLULAR AUTOMATA

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2007-01-01

    Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.

  1. Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway.

    Science.gov (United States)

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-10-23

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%-5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis.

  2. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  3. Leiomyoma cellulare in postoperative material: clinical cases

    OpenAIRE

    2013-01-01

    Introduction: Leiomyoma in one of the most common benign endometrial cancers. Location of the myoma in the cervix and the area of the broad ligament of the uterus is rare. Leiomyoma cellulare (LC) occurs in about 5.0% of leiomyoma cases. Aim of the research: To determine the occurrence of LC among 294 cases of myomas as well as myomas and uterine endometriosis, found in postoperative examinations. Material and methods: Patients were qualified for the surgery based on a gynaecolog...

  4. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  5. Cognitive resource management for heterogeneous cellular networks

    CERN Document Server

    Liu, Yongkang

    2014-01-01

    This Springer Brief focuses on cognitive resource management in heterogeneous cellular networks (Het Net) with small cell deployment for the LTE-Advanced system. It introduces the Het Net features, presents practical approaches using cognitive radio technology in accommodating small cell data relay and optimizing resource allocation and examines the effectiveness of resource management among small cells given limited coordination bandwidth and wireless channel uncertainty. The authors introduce different network characteristics of small cell, investigate the mesh of small cell access points in

  6. Cellular immune findings in Lyme disease.

    Science.gov (United States)

    Sigal, L. H.; Moffat, C. M.; Steere, A. C.; Dwyer, J. M.

    1984-01-01

    From 1981 through 1983, we did the first testing of cellular immunity in Lyme disease. Active established Lyme disease was often associated with lymphopenia, less spontaneous suppressor cell activity than normal, and a heightened response of lymphocytes to phytohemagglutinin and Lyme spirochetal antigens. Thus, a major feature of the immune response during active disease seems to be a lessening of suppression, but it is not yet known whether this response plays a role in the pathophysiology of the disease. PMID:6240164

  7. Light weight cellular structures based on aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, O. [Indian Inst. of Tech., Kanpur (India); Embury, J.D.; Sinclair, C. [McMaster Univ., Hamilton, ON (Canada); Sang, H. [Queen`s Univ., Kingston, ON (Canada); Silvetti, P. [Cordoba Univ. Nacional (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales

    1997-02-01

    An interesting form of lightweight material which has emerged in the past 2 decades is metallic foam. This paper deals with the basic concepts of making metallic foams and a detailed study of foams produced from Al-SiC. In addition, some aspects of cellular solids based on honeycomb structures are outlined including the concept of producing both two-phase foams and foams with composite walls.

  8. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Lehrer, Gus; Zhang, Ruibin

    2015-01-01

    structure are described in terms of certain Temperley–Lieb-like diagrams. We also prove general results that relate endomorphism algebras of specialisations to specialisations of the endomorphism algebras. When ζ is a root of unity of order bigger than d we consider the Uζ-module structure...... we independently recover the weight multiplicities of indecomposable tilting modules for Uζ(sl2) from the decomposition numbers of the endomorphism algebras, which are known through cellular theory....

  9. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  10. Cellular Automation of Galactic Habitable Zone

    CERN Document Server

    Vukotic, Branislav

    2010-01-01

    We present a preliminary results of our Galactic Habitable Zone (GHZ) 2D probabilistic cellular automata models. The relevant time-scales (emergence of life, it's diversification and evolution influenced with the global risk function) are modeled as the probability matrix elements and are chosen in accordance with the Copernican principle to be well-represented by the data inferred from the Earth's fossil record. With Fermi's paradox as a main boundary condition the resulting histories of astrobiological landscape are discussed.

  11. pna - assisted cellular migration on patterned surfaces

    OpenAIRE

    2013-01-01

    ABSTRACT - The ability to control the cellular microenvironment, such as cell-substrate and cell-cell interactions at the micro- and nanoscale, is important for advances in several fields such as medicine and immunology, biochemistry, biomaterials, and tissue engineering. In order to undergo fundamental biological processes, most mammalian cells must adhere to the underlying extracellular matrix (ECM), eliciting cell adhesion and migration processes that are critical to embryogenesis, angioge...

  12. Introduction to Tissular and Cellular Engineering

    Institute of Scientific and Technical Information of China (English)

    JF; STOLTZ

    2005-01-01

    Most human tissues do not regenerate spontaneously, which is why cellular therapies and tissular engineering are promising alternatives. The principle is simple: cells are sampled in a patient and introduced in the damaged tissue or in a tridimentional porous support and cultivated in a bioreactor in which the physico-chemical and mechanical parameters are controlled. Once the tissues (or the cells) are mature they may be implanted. In parallel, the development of biotherapies with stem cells is a field of ...

  13. Cellular Kinetics of Perivascular MSC Precursors

    Directory of Open Access Journals (Sweden)

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  14. Cellular arsenic transport pathways in mammals.

    Science.gov (United States)

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.

  15. A Real Space Cellular Automaton Laboratory

    Science.gov (United States)

    Rozier, O.; Narteau, C.

    2013-12-01

    Investigations in geomorphology may benefit from computer modelling approaches that rely entirely on self-organization principles. In the vast majority of numerical models, instead, points in space are characterised by a variety of physical variables (e.g. sediment transport rate, velocity, temperature) recalculated over time according to some predetermined set of laws. However, there is not always a satisfactory theoretical framework from which we can quantify the overall dynamics of the system. For these reasons, we prefer to concentrate on interaction patterns using a basic cellular automaton modelling framework, the Real Space Cellular Automaton Laboratory (ReSCAL), a powerful and versatile generator of 3D stochastic models. The objective of this software suite released under a GNU license is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems. The models in ReSCAL are essentially constructed from a small number of discrete states distributed on a cellular grid. An elementary cell is a real-space representation of the physical environment and pairs of nearest neighbour cells are called doublets. Each individual physical process is associated with a set of doublet transitions and characteristic transition rates. Using a modular approach, we can simulate and combine a wide range of physical, chemical and/or anthropological processes. Here, we present different ingredients of ReSCAL leading to applications in geomorphology: dune morphodynamics and landscape evolution. We also discuss how ReSCAL can be applied and developed across many disciplines in natural and human sciences.

  16. [Cellular and molecular mechanisms of memory].

    Science.gov (United States)

    Laroche, Serge

    2010-01-01

    A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and morphological remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. Today, it is generally accepted that one key neurobiological mechanism underlying the formation of memories reside in activity-driven modifications of synaptic strength and structural remodelling of neural networks activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation, a long-lasting activity-dependent form of synaptic strengthening, opened a new chapter in the study of the neurobiological substrate of memory in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity and memory formation are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of neuronal gene programs is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.

  17. Literature Review on Dynamic Cellular Manufacturing System

    Science.gov (United States)

    Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.

    2014-06-01

    In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.

  18. Coordination of autophagy with other cellular activities

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Zheng-hong QIN

    2013-01-01

    The cell biological phenomenon of autophagy has attracted increasing attention in recent years,partly as a consequence of the discovery of key components of its cellular machinery.Autophagy plays a crucial role in a myriad of cellular functions.Autophagy has its own regulatory mechanisms,but this process is not isolated.Autophagy is coordinated with other cellular activities to maintain cell homeostasis.Autophagy is critical for a range of human physiological processes.The multifunctional roles of autophagy are explained by its ability to interact with several key components of various cell pathways.In this review,we focus on the coordination between autophagy and other physiological processes,including the ubiquitin-proteasome system (UPS),energy homeostasis,aging,programmed cell death,the immune responses,microbial invasion and inflammation.The insights gained from investigating autophagic networks should increase our understanding of their roles in human diseases and their potential as targets for therapeutic intervention.

  19. Dynamic Channel Allocation in Sectored Cellular Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is known that dynamic channel assignment(DCA) strategy outperforms the fixed channel assignment(FCA) strategy in omni-directional antenna cellular systems. One of the most important methods used in DCA was channel borrowing. But with the emergence of cell sectorization and spatial division multiple access(SDMA) which are used to increase the capacity of cellular systems, the channel assignment faces a series of new problems. In this paper, a dynamic channel allocation scheme based on sectored cellular systems is proposed. By introducing intra-cell channel borrowing (borrowing channels from neighboring sectors) and inter-cell channel borrowing (borrowing channels from neighboring cells) methods, previous DCA strategies, including compact pattern based channel borrowing(CPCB) and greedy based dynamic channel assignment(GDCA) schemes proposed by the author, are improved significantly. The computer simulation shows that either intra-cell borrowing scheme or inter-cell borrowing scheme is efficient enough to uniform and non-uniform traffic service distributions.

  20. HDACi: cellular effects, opportunities for restorative dentistry.

    LENUS (Irish Health Repository)

    Duncan, H F

    2011-12-01

    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  1. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos.

    Science.gov (United States)

    Edman, R M; Linger, R J; Belikoff, E J; Li, F; Sze, S-H; Tarone, A M; Scott, M J

    2015-02-01

    The New World screwworm fly, Cochliomyia hominivorax, and the Australian sheep blow fly, Lucilia cuprina, are major pests of livestock. The sterile insect technique was used to eradicate C. hominivorax from North and Central America. This involved area-wide releases of male and female flies that had been sterilized by radiation. Genetic systems have been developed for making 'male-only' strains that would improve the efficiency of genetic control of insect pests. One system involves induction of female lethality in embryos through activation of a pro-apoptotic gene by the tetracycline-dependent transactivator. Sex-specific expression is achieved using an intron from the transformer gene, which we previously isolated from several calliphorids. In the present study, we report the isolation of the promoters from the C. hominivorax slam and Lucilia sericata bnk cellularization genes and show that these promoters can drive expression of a GFP reporter gene in early embryos of transgenic L. cuprina. Additionally, we report the isolation of the L. sericata pro-apoptotic hid and rpr genes, identify conserved motifs in the encoded proteins and determine the relative expression of these genes at different stages of development. We show that widespread expression of the L. sericata pro-apoptotic genes was lethal in Drosophila melanogaster. The isolated gene promoters and pro-apoptotic genes could potentially be used to build transgenic embryonic sexing strains of calliphorid livestock pests.

  2. [Division of regulatory cellular systems (Lvov)].

    Science.gov (United States)

    Kusen', S I

    1995-01-01

    Two departments of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine were founded in 1969 in Lviv. These were: the Department of Biochemistry of Cell Differentiation headed by Professor S. I. Kusen and Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds headed by Professor G. M. Shavlovsky. The Lviv Division of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine with Professor S. I. Kusen as its chief, was founded in 1974 on the basis of these departments and the Laboratory of Modelling of Regulatory Cellular Systems headed by Professor M. P. Derkach. The above mentioned laboratory which was not the structural unit obtained the status of Structural Laboratory of Cellular Biophysics in 1982 and was headed by O. A. Goida, Candidate of biological sciences. From 1983 the Laboratory of Correcting Therapy of Malignant Tumors and Hemoblastoses at the Institute of Molecular Biology and Genetics, Academy of Sciences of Ukraine (Chief--S. V. Ivasivka, Candidate of medical sciences) was included in the structure of the Division. That Laboratory was soon transformed into the Department of Carbohydrate Metabolism Regulation headed by Professor I. D. Holovatsky. In 1988 this Department was renamed into the Department of Glycoprotein Biochemistry and headed by M. D. Lutsik, Doctor of biological sciences. In 1982 one more Laboratory of Biochemical Genetics was founded at the Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds, in 1988 it was transformed into the Department of Biochemical Genetics (Chief--Professor A. A. Sibirny). In 1989 the Laboratory of Anion Transport was taken from A. V. Palladin Institute of Biochemistry, Academy of Sciences of Ukraine to Lviv Division of this Institute. This laboratory was headed by Professor M. M. Veliky. One more reorganization in the Division structure took place in 1994. The Department of

  3. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  4. Mapping of cellular iron using hyperspectral fluorescence imaging in a cellular model of Parkinson's disease

    Science.gov (United States)

    Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min

    2013-05-01

    Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.

  5. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  6. Cellular adaptation to hypoxia and p53 transcription regulation

    Institute of Scientific and Technical Information of China (English)

    Yang ZHAO; Xue-qun CHEN; Ji-zeng DU

    2009-01-01

    Tumor suppressor p53 is the most frequently mutated gene in human tumors. Meanwhile, under stress conditions, p53 also acts as a transcription factor, regulating the expression of a series of target genes to maintain the integrity of genome. The target genes of p53 can be classified into genes regulating cell cycle arrest, genes involved in apoptosis, and genes inhibiting angiogenesis. p53 protein contains a transactivation domain, a sequence-specific DNA binding domain, a tetramerization domain, a non-specific DNA binding domain that recognizes damaged DNA, and a later identified proline-rich domain. Under stress, p53 proteins accumulate and are activated through two mechanisms. One, involving ataxia telangiectasia-mutated protein (ATM), is that the interaction between p53 and its down-regulation factor murine double minute 2 (MDM2) decreases, leading to p53 phosphorylation on Ser15, as determined by the post-translational mechanism; the other holds that p53 increases and is activated through the binding of ribosomal protein L26 (RPL26) or nucleolin to p53 mRNA 5' untranslated region (UTR), regulating p53 translation. Under hypoxia, p53 decreases transactivation and increases transrepression. The mutations outside the DNA binding domain of p53 also contribute to tumor progress, so further studies on p53 should also be focused on this direction. The subterranean blind mole rat Spalax in Israel is a good model for hypoxia-adaptation. The p53 of Spalax mutated in residue 172 and residue 207 from arginine to lysine, conferring it the ability to survive hypoxic conditions. This model indicates that p53 acts as a master gene of diversity formation during evolution.

  7. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  8. Scalable asynchronous execution of cellular automata

    Science.gov (United States)

    Folino, Gianluigi; Giordano, Andrea; Mastroianni, Carlo

    2016-10-01

    The performance and scalability of cellular automata, when executed on parallel/distributed machines, are limited by the necessity of synchronizing all the nodes at each time step, i.e., a node can execute only after the execution of the previous step at all the other nodes. However, these synchronization requirements can be relaxed: a node can execute one step after synchronizing only with the adjacent nodes. In this fashion, different nodes can execute different time steps. This can be a notable advantageous in many novel and increasingly popular applications of cellular automata, such as smart city applications, simulation of natural phenomena, etc., in which the execution times can be different and variable, due to the heterogeneity of machines and/or data and/or executed functions. Indeed, a longer execution time at a node does not slow down the execution at all the other nodes but only at the neighboring nodes. This is particularly advantageous when the nodes that act as bottlenecks vary during the application execution. The goal of the paper is to analyze the benefits that can be achieved with the described asynchronous implementation of cellular automata, when compared to the classical all-to-all synchronization pattern. The performance and scalability have been evaluated through a Petri net model, as this model is very useful to represent the synchronization barrier among nodes. We examined the usual case in which the territory is partitioned into a number of regions, and the computation associated with a region is assigned to a computing node. We considered both the cases of mono-dimensional and two-dimensional partitioning. The results show that the advantage obtained through the asynchronous execution, when compared to the all-to-all synchronous approach is notable, and it can be as large as 90% in terms of speedup.

  9. Crosstalk between the peroxisome proliferator-activated receptor γ (PPARγ) and the vitamin D receptor (VDR) in human breast cancer cells: PPARγ binds to VDR and inhibits 1α,25-dihydroxyvitamin D3 mediated transactivation.

    Science.gov (United States)

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R; von Knethen, Andreas; Choubey, Divaker; Mehta, Rajendra G

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ERα) physically binds to peroxisome proliferator-activated receptor gamma (PPARγ) and inhibits its transcriptional activity. The interaction between PPARγ and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPARγ and VDR signaling, and for the first time we show that PPARγ physically associates with VDR in human breast cancer cells. We found that overexpression of PPARγ decreased 1α,25-dihydroxyvitamin D(3) (1,25D(3)) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPARγ's hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPARγ's AF2 domain attenuated its repressive action on 1,25D(3) transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPARγ was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXRα). Overexpression of RXRα blocked PPARγ's suppressive effect on 1,25D(3) action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPARγ and VDR pathways.

  10. Cellular regulation of the dopamine transporter

    DEFF Research Database (Denmark)

    Eriksen, Jacob

    2010-01-01

    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. DAT and its trafficking...... in heterologous cells and in cultured DA neurons. DAT has been shown to be regulated by the dopamine D2 receptor (D2R), the primary target foranti-psychotics, through a direct interaction. D2R is among other places expressed as an autoreceptor in DA neurons. Transient over-expression of DAT with D2R in HEK293...

  11. Cellular automata models for synchronized traffic flow

    CERN Document Server

    Jiang Rui

    2003-01-01

    This paper presents a new cellular automata model for describing synchronized traffic flow. The fundamental diagrams, the spacetime plots and the 1 min average data have been analysed in detail. It is shown that the model can describe the outflow from the jams, the light synchronized flow as well as heavy synchronized flow with average speed greater than approximately 24 km h sup - sup 1. As for the synchronized flow with speed lower than 24 km h sup - sup 1 , it is unstable and will evolve into the coexistence of jams, free flow and light synchronized flow. This is consistent with the empirical findings (Kerner B S 1998 Phys. Rev. Lett. 81 3797).

  12. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    Science.gov (United States)

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.

    2016-02-01

    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  13. Cellular trafficking of nicotinic acetylcholine receptors

    Institute of Scientific and Technical Information of China (English)

    Paul A ST JOHN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.

  14. Cellular and physical mechanisms of branching morphogenesis

    Science.gov (United States)

    Varner, Victor D.; Nelson, Celeste M.

    2014-01-01

    Branching morphogenesis is the developmental program that builds the ramified epithelial trees of various organs, including the airways of the lung, the collecting ducts of the kidney, and the ducts of the mammary and salivary glands. Even though the final geometries of epithelial trees are distinct, the molecular signaling pathways that control branching morphogenesis appear to be conserved across organs and species. However, despite this molecular homology, recent advances in cell lineage analysis and real-time imaging have uncovered surprising differences in the mechanisms that build these diverse tissues. Here, we review these studies and discuss the cellular and physical mechanisms that can contribute to branching morphogenesis. PMID:25005470

  15. Cellular automata modelling of hantarvirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Karim, Mohamad Faisal [School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: faisal@usm.my; Md Ismail, Ahmad Izani [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: izani@cs.usm.my; Ching, Hoe Bee [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: Bee_Ching_Janice_Hoe@dell.com

    2009-09-15

    Hantaviruses are a group of viruses which have been identified as being responsible for the outbreak of diseases such as the hantavirus pulmonary syndrome. In an effort to understand the characteristics and dynamics of hantavirus infection, mathematical models based on differential equations have been developed and widely studied. However, such models neglect the local characteristics of the spreading process and do not include variable susceptibility of individuals. In this paper, we develop an alternative approach based on cellular automata to analyze and study the spatiotemporal patterns of hantavirus infection.

  16. Microwave components for cellular portable radiotelephone

    Science.gov (United States)

    Muraguchi, Masahiro; Aikawa, Masayoshi

    1995-09-01

    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  17. Cellular automata modeling of pedestrian's crossing dynamics

    Institute of Scientific and Technical Information of China (English)

    张晋; 王慧; 李平

    2004-01-01

    Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian's crossing dynamics.A conception of "stop point" is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk.The model can be easily extended,is very efficient for simulation of pedestrian's crossing dynamics,can be integrated into traffic simulation software,and has been proved feasible by simulation experiments.

  18. A Computation in a Cellular Automaton Collider Rule 110

    CERN Document Server

    Martinez, Genaro J; McIntosh, Harold V

    2016-01-01

    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.

  19. Diabetes mellitus: channeling care through cellular discovery.

    Science.gov (United States)

    Maiese, Kenneth; Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling

    2010-02-01

    Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.

  20. Cellular traditional Chinese medicine on photobiomodulation

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Cheng, Lei; Liu, Jiang; Wang, Shuang-Xi; Xu, Xiao-Yang; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Although yin-yang is one of the basic models of traditional Chinese medicine (TCM) for TCM objects such as whole body, five zangs or six fus, they are widely used to discuss cellular processes in papers of famous journals such as Cell, Nature, or Science. In this paper, the concept of the degree of difficulty (DD) of a process was introduced to redefine yin and yang and extend the TCM yin-yang model to the DD yin-yang model so that we have the DD yin-yang inter-transformation, the DD yin-yang antagonism, the DD yin-yang interdependence and the DD yin ping yang mi, which and photobiomodulation (PBM) on cells are supported by each other. It was shown that healthy cells are in the DD yin ping yang mi so that there is no PBM, and there is PBM on non-healthy cells until the cells become healthy so that PBM can be called a cellular rehabilitation. The DD yin-yang inter-transformation holds for our biological information model of PBM. The DD yin-yang antagonism and the DD yin-yang interdependence also hold for a series of experimental studies such as the stimulation of DNA synthesis in HeLa cells after simultaneous irradiation with narrow-band red light and a wide-band cold light, or consecutive irradiation with blue and red light.

  1. Alpha-synuclein is a cellular ferrireductase.

    Directory of Open Access Journals (Sweden)

    Paul Davies

    Full Text Available α-synuclein (αS is a cellular protein mostly known for the association of its aggregated forms with a variety of diseases that include Parkinson's disease and Dementia with Lewy Bodies. While the role of αS in disease is well documented there is currently no agreement on the physiological function of the normal isoform of the protein. Here we provide strong evidence that αS is a cellular ferrireductase, responsible for reducing iron (III to bio available iron (II. The recombinant form of the protein has a V(Max of 2.72 nmols/min/mg and K(m 23 µM. This activity is also evident in lysates from neuronal cell lines overexpressing αS. This activity is dependent on copper bound to αS as a cofactor and NADH as an electron donor. Overexpression of α-synuclein by cells significantly increases the percentage of iron (II in cells. The common disease mutations associated with increased susceptibility to PD show no [corrected] differences in activity or iron (II levels. This discovery may well provide new therapeutic targets for PD and Lewy body dementias.

  2. Cellular and molecular approaches to memory storage.

    Science.gov (United States)

    Laroche, S

    2000-01-01

    There has been nearly a century of interest in the idea that information is stored in the brain as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, considerable progress has been made in understanding the cellular and molecular mechanisms underlying synaptic plasticity and in identifying the neural systems which express it. In parallel, the hypothesis that the mechanisms underlying synaptic plasticity are activated during learning and serve learning and memory has gained much empirical support. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. These advances are reviewed below.

  3. Filovirus tropism: Cellular molecules for viral entry

    Directory of Open Access Journals (Sweden)

    Ayato eTakada

    2012-02-01

    Full Text Available In human and nonhuman primates, filoviruses (Ebola and Marburg viruses cause severe hemorrhagic fever.Recently, other animals such as pigs and some species of fruit bats have also been shown to be susceptible to these viruses. While having a preference for some cell types such as hepatocytes, endothelial cells, dendritic cells, monocytes, and macrophages, filoviruses are known to be pantropic in infection of primates. The envelope glycoprotein (GP is responsible for both receptor binding and fusion of the virus envelope with the host cell membrane. It has been demonstrated that filovirus GP interacts with multiple molecules for entry into host cells, whereas none of the cellular molecules so far identified as a receptor/coreceptor fully explains filovirus tissue tropism and host range. Available data suggest that the mucin-like region (MLR on GP plays an important role in attachment to the preferred target cells, whose infection is likely involved in filovirus pathogenesis, whereas the MLR is not essential for the fundamental function of the GP in viral entry into cells in vitro. Further studies elucidating the mechanisms of cellular entry of filoviruses may shed light on the development of strategies for prophylaxis and treatment of Ebola and Marburg hemorrhagic fevers.

  4. Elements of the Cellular Metabolic Structure

    Directory of Open Access Journals (Sweden)

    Ildefonso Martínez De La Fuente

    2015-04-01

    Full Text Available A large number of studies have shown the existence of metabolic covalent modifications in different molecular structures, able to store biochemical information that is not encoded by the DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes. Recently, the emergence of Hopfield-like attractor dynamics has been observed in the self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by the specific input stimuli. The Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in the covalent post-translational modulation so that determined functional memory can be embedded in multiple stable molecular marks. Both the metabolic dynamics governed by Hopfield-type attractors (functional processes and the enzymatic covalent modifications of determined molecules (structural dynamic processes seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory. Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory and an essentially conservative system (genetic memory. The molecular information of both systems seems to coordinate the physiological development of the whole cell.

  5. Engineering Cellular Photocomposite Materials Using Convective Assembly

    Directory of Open Access Journals (Sweden)

    Orlin D. Velev

    2013-05-01

    Full Text Available Fabricating industrial-scale photoreactive composite materials containing living cells, requires a deposition strategy that unifies colloid science and cell biology. Convective assembly can rapidly deposit suspended particles, including whole cells and waterborne latex polymer particles into thin (<10 µm thick, organized films with engineered adhesion, composition, thickness, and particle packing. These highly ordered composites can stabilize the diverse functions of photosynthetic cells for use as biophotoabsorbers, as artificial leaves for hydrogen or oxygen evolution, carbon dioxide assimilation, and add self-cleaning capabilities for releasing or digesting surface contaminants. This paper reviews the non-biological convective assembly literature, with an emphasis on how the method can be modified to deposit living cells starting from a batch process to its current state as a continuous process capable of fabricating larger multi-layer biocomposite coatings from diverse particle suspensions. Further development of this method will help solve the challenges of engineering multi-layered cellular photocomposite materials with high reactivity, stability, and robustness by clarifying how process, substrate, and particle parameters affect coating microstructure. We also describe how these methods can be used to selectively immobilize photosynthetic cells to create biomimetic leaves and compare these biocomposite coatings to other cellular encapsulation systems.

  6. Travel Mode Detection Exploiting Cellular Network Data

    Directory of Open Access Journals (Sweden)

    Kalatian Arash

    2016-01-01

    Full Text Available There has been growing interest in exploiting cellular network data for transportation planning purposes in recent years. In this paper, we utilize these data for determining mode of travel in the city of Shiraz, Iran. Cellular data records -including location updates in 5minute time intervals- of 300,000 users from the city of Shiraz has been collected for 40 hours in three consecutive days in a cooperation with the major telecommunications service provider of the country. Depending on the density of mobile BTS’s in different zones of the city, the user location can be located within an average of 200 meters. Considering data filtering and smoothing, data preparation and converting them to comprehensible traces is a large portion of the work. A novel approach to identify stay locations is proposed and implemented in this paper. Origin-Destination matrices are then created based on trips detected, which shows acceptable consistency with current O-D matrices. Finally, Travel times for all trips of a user is estimated as the main attribute for clustering. Trips between same origin and destination zones are combined together in a group. Using K-means algorithm, records within each group are the portioned in two or three clusters, based on their travel speeds. Each cluster represents a certain mode of travel; walking, public transportation or driving a private car.

  7. CUSTOMER SATISFACTION MEASUREMENT TOWARDS IDEA CELLULAR

    Directory of Open Access Journals (Sweden)

    Yousef Mehdipour

    2013-05-01

    Full Text Available Measuring customer satisfaction provides an indication of how successful the organization is at providing products and/or services to the marketplace. Customer satisfaction is a collective outcome of perception, evaluation, and psychological reactions to the consumption experience with a product or service. This researcharticle investigated the attitude of Idea cellular customers to Idea services. All the customers of Idea cellular in Hyderabad city (Andhra Pradesh constituted the population. The sample of the study is 2000 customers that randomly selected. A questionnaire was developed and validated through pilot testing and administered to thesample for the collection of data. The researcher personally visited respondents, thus 100% data were collected.The collected data were tabulated and analyzed by SPSS. Results showed that majority of the respondents of Idea prefer post-paid service than to pre paid and largest segment of respondents are of idea then comes Cell one, Airtel and Vodafone. this study showed that most of the respondents need improvement in service. Majority of respondents gave an excellent rate for “Idea Cellular” services.

  8. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  9. Rhabdomyosarcoma: Advances in Molecular and Cellular Biology

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2015-01-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue malignancy in childhood and adolescence. The two major histological subtypes of RMS are alveolar RMS, driven by the fusion protein PAX3-FKHR or PAX7-FKHR, and embryonic RMS, which is usually genetically heterogeneous. The prognosis of RMS has improved in the past several decades due to multidisciplinary care. However, in recent years, the treatment of patients with metastatic or refractory RMS has reached a plateau. Thus, to improve the survival rate of RMS patients and their overall well-being, further understanding of the molecular and cellular biology of RMS and identification of novel therapeutic targets are imperative. In this review, we describe the most recent discoveries in the molecular and cellular biology of RMS, including alterations in oncogenic pathways, miRNA (miR, in vivo models, stem cells, and important signal transduction cascades implicated in the development and progression of RMS. Furthermore, we discuss novel potential targeted therapies that may improve the current treatment of RMS.

  10. Cellular receptors for plasminogen activators recent advances.

    Science.gov (United States)

    Ellis, V

    1997-10-01

    The generation of the broad-specificity protease plasmin by the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) is implicated in a variety of pathophysiological processes, including vascular fibrin dissolution, extracellular matrix degradation and remodeling, and cell migration. A mechanism for the regulation of plasmin generation is through binding of the plasminogen activators to specific cellular receptors: uPA to the glycolipid-anchored membrane protein urokinase-type plasminogen activator receptor (uPAR) and tPA to a number of putative binding sites. The uPA-uPAR complex can interact with a variety of ligands, including plasminogen, vitronectin, and integrins, indicating a multifunctional role for uPAR, regulating not only efficient and spatially restricted plasmin generation but also having the potential to modulate cell adhesion and signal transduction. The cellular binding of tPA, although less well characterized, also has the capacity to regulate plasmin generation and to play a significant role in vessel-wall biology. (Trends Cardiovasc Med 1997;7:227-234). © 1997, Elsevier Science Inc.

  11. Dynamics of active cellular response under stress

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  12. Cellular Auxin Homeostasis:Gatekeeping Is Housekeeping

    Institute of Scientific and Technical Information of China (English)

    Michel Ruiz Rosquete; Elke Barbez; Jürgen Kleine-Vehn

    2012-01-01

    The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle.The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport.Auxin metabolism and transport are both crucial for plant development;however,it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs.In this review,we provide a glance at very diverse topics of auxin biology,such as biosynthesis,conjugation,oxidation,and transport of auxin.This broad,but certainly superficial,overview highlights the mutual importance of auxin metabolism and transport.Moreover,it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis.Even though these processes have been so far only separately studied,we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport.Besides the integrative power of the global hormone signaling,we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.

  13. Cellular contractility requires ubiquitin mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Yuval Cinnamon

    Full Text Available BACKGROUND: Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA remains, a major missing link in understanding contractility. PRINCIPAL FINDINGS: We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation. CONCLUSIONS: Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis, either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING ubiquitin ligase and is required for cellular contractions.

  14. EFFECTIVENESS OF CELLULAR INJECTION MOLDING PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2013-06-01

    Full Text Available In a study of cellular injection, molding process uses polyvinylchloride PVC. Polymers modified with introducing blowing agents into them in the Laboratory of the Department of Technologies and Materiase of Technical University of Kosice. For technological reasons, blowing agents have a form of granules. In the experiment, the content of the blowing agent (0–2,0 % by mass fed into the processed polymer was adopted as a variable factor. In the studies presented in the article, the chemical blowing agents occurring in the granulated form with a diameter of 1.2 to 1.4 mm were used. The view of the technological line for cellular injection molding and injection mold cavity with injection moldings are shown in Figure 1. The results of the determination of selected properties of injection molded parts for various polymeric materials, obtained with different content of blowing agents, are shown in Figures 4-7. Microscopic examination of cross-sectional structure of the moldings were obtained using the author's position image analysis of porous structure. Based on analysis of photographs taken (Figures 7, 8, 9 it was found that the coating containing 1.0% of blowing agents is a clearly visible solid outer layer and uniform distribution of pores and their sizes are similar.

  15. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  16. Characteristics of cellular composition of periodontal pockets

    Science.gov (United States)

    Hasiuk, Petro; Hasiuk, Nataliya; Kindiy, Dmytro; Ivanchyshyn, Victoriya; Kalashnikov, Dmytro; Zubchenko, Sergiy

    2016-01-01

    Purpose The development of inflammatory periodontal disease in young people is an urgent problem of today's periodontology, and requires a development of new methods that would give an opportunity not only to diagnose but also for prognosis of periodontitis course in a given patients contingent. Results Cellular structure of periodontal pockets is presented by hematogenous and epithelial cells. Our results are confirmed by previous studies, and show that the penetration of periodontal pathogens leads to formation in periodontal tissue of a highly active complex compounds—cytokines that are able to modify the activity of neutrophils and reduce their specific antibacterial properties. Cytokines not only adversely affect the periodontal tissues, but also cause further activation of cells that synthesized them, and inhibit tissue repair and process of resynthesis of connective tissue by fibroblasts. Conclusion Neutrophilic granulocytes present in each of the types of smear types, but their functional status and quantitative composition is different. The results of our cytological study confirmed the results of immunohistochemical studies, and show that in generalized periodontitis, an inflammatory cellular elements with disorganized epithelial cells and connective tissue of the gums and periodontium, and bacteria form specific types of infiltration in periodontal tissues. PMID:28180007

  17. Benchmark study between FIDAP and a cellular automata code

    Science.gov (United States)

    Akau, R. L.; Stockman, H. W.

    A fluid flow benchmark exercise was conducted to compare results between a cellular automata code and FIDAP. Cellular automata codes are free from gridding constraints, and are generally used to model slow (Reynolds number approximately 1) flows around complex solid obstacles. However, the accuracy of cellular automata codes at higher Reynolds numbers, where inertial terms are significant, is not well-documented. In order to validate the cellular automata code, two fluids problems were investigated. For both problems, flow was assumed to be laminar, two-dimensional, isothermal, incompressible and periodic. Results showed that the cellular automata code simulated the overall behavior of the flow field.

  18. Oxidative stress action in cellular aging

    Directory of Open Access Journals (Sweden)

    Monique Cristine de Oliveira

    2010-12-01

    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  19. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    Science.gov (United States)

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying

  20. Multipartite cellular automata and the superposition principle

    Science.gov (United States)

    Elze, Hans-Thomas

    2016-05-01

    Cellular automata (CA) can show well known features of quantum mechanics (QM), such as a linear updating rule that resembles a discretized form of the Schrödinger equation together with its conservation laws. Surprisingly, a whole class of “natural” Hamiltonian CA, which are based entirely on integer-valued variables and couplings and derived from an action principle, can be mapped reversibly to continuum models with the help of sampling theory. This results in “deformed” quantum mechanical models with a finite discreteness scale l, which for l→0 reproduce the familiar continuum limit. Presently, we show, in particular, how such automata can form “multipartite” systems consistently with the tensor product structures of non-relativistic many-body QM, while maintaining the linearity of dynamics. Consequently, the superposition principle is fully operative already on the level of these primordial discrete deterministic automata, including the essential quantum effects of interference and entanglement.

  1. Complex cellular responses to reactive oxygen species.

    Science.gov (United States)

    Temple, Mark D; Perrone, Gabriel G; Dawes, Ian W

    2005-06-01

    Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H(2)O(2). This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.

  2. Knowledge discovery for geographical cellular automata

    Institute of Scientific and Technical Information of China (English)

    LI Xia; Anthony Gar-On Yeh

    2005-01-01

    This paper proposes a new method for geographical simulation by applying data mining techniques to cellular automata. CA has strong capabilities in simulating complex systems. The core of CA is how to define transition rules. There are no good methods for defining these transition rules. They are usually defined by using heuristic methods and thus subject to uncertainties. Mathematical equations are used to represent transition rules implicitly and have limitations in capturing complex relationships. This paper demonstrates that the explicit transition rules of CA can be automatically reconstructed through the rule induction procedure of data mining. The proposed method can reduce the influences of individual knowledge and preferences in defining transition rules and generate more reliable simulation results. It can efficiently discover knowledge from a vast volume of spatial data.

  3. Exactly solvable cellular automaton traffic jam model.

    Science.gov (United States)

    Kearney, Michael J

    2006-12-01

    A detailed study is undertaken of the v{max}=1 limit of the cellular automaton traffic model proposed by Nagel and Paczuski [Phys. Rev. E 51, 2909 (1995)]. The model allows one to analyze the behavior of a traffic jam initiated in an otherwise freely flowing stream of traffic. By mapping onto a discrete-time queueing system, itself related to various problems encountered in lattice combinatorics, exact results are presented in relation to the jam lifetime, the maximum jam length, and the jam mass (the space-time cluster size or integrated vehicle waiting time), both in terms of the critical and the off-critical behavior. This sets existing scaling results in their natural context and also provides several other interesting results in addition.

  4. Simulating Complex Systems by Cellular Automata

    CERN Document Server

    Kroc, Jiri; Hoekstra, Alfons G

    2010-01-01

    Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on th...

  5. Inhibitors of the Cellular Trafficking of Ricin

    Directory of Open Access Journals (Sweden)

    Daniel Gillet

    2012-01-01

    Full Text Available Throughout the last decade, efforts to identify and develop effective inhibitors of the ricin toxin have focused on targeting its N-glycosidase activity. Alternatively, molecules disrupting intracellular trafficking have been shown to block ricin toxicity. Several research teams have recently developed high-throughput phenotypic screens for small molecules acting on the intracellular targets required for entry of ricin into cells. These screens have identified inhibitory compounds that can protect cells, and sometimes even animals against ricin. We review these newly discovered cellular inhibitors of ricin intoxication, discuss the advantages and drawbacks of chemical-genetics approaches, and address the issues to be resolved so that the therapeutic development of these small-molecule compounds can progress.

  6. Simulation of earthquakes with cellular automata

    Directory of Open Access Journals (Sweden)

    P. G. Akishin

    1998-01-01

    Full Text Available The relation between cellular automata (CA models of earthquakes and the Burridge–Knopoff (BK model is studied. It is shown that the CA proposed by P. Bak and C. Tang,although they have rather realistic power spectra, do not correspond to the BK model. We present a modification of the CA which establishes the correspondence with the BK model.An analytical method of studying the evolution of the BK-like CA is proposed. By this method a functional quadratic in stress release, which can be regarded as an analog of the event energy, is constructed. The distribution of seismic events with respect to this “energy” shows rather realistic behavior, even in two dimensions. Special attention is paid to two-dimensional automata; the physical restrictions on compression and shear stiffnesses are imposed.

  7. Partitioned quantum cellular automata are intrinsically universal

    CERN Document Server

    Arrighi, Pablo

    2010-01-01

    There have been several non-axiomatic approaches taken to define Quantum Cellular Automata (QCA). Partitioned QCA (PQCA) are the most canonical of these non-axiomatic definitions. In this work we show that any QCA can be put into the form of a PQCA. Our construction reconciles all the non-axiomatic definitions of QCA, showing that they can all simulate one another, and hence that they are all equivalent to the axiomatic definition. This is achieved by defining generalised n-dimensional intrinsic simulation, which brings the computer science based concepts of simulation and universality closer to theoretical physics. The result is not only an important simplification of the QCA model, it also plays a key role in the identification of a minimal n-dimensional intrinsically universal QCA.

  8. Particles and Patterns in Cellular Automata

    Energy Technology Data Exchange (ETDEWEB)

    Jen, E.; Das, R.; Beasley, C.E.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Our objective has been to develop tools for studying particle interactions in a class of dynamical systems characterized by discreteness, determinism, local interaction, and an inherently parallel form of evolution. These systems can be described by cellular automata (CA) and the behavior we studied has improved our understanding of the nature of patterns generated by CAs, their ability to perform global computations, and their relationship to continuous dynamical systems. We have also developed a rule-table mathematics that enables one to custom-design CA rule tables to generate patterns of specified types, or to perform specified computational tasks.

  9. Protein S-palmitoylation in cellular differentiation

    Science.gov (United States)

    Zhang, Mingzi M.

    2017-01-01

    Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein–protein and membrane–protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related enzymes that are associated with cellular differentiation and/or tissue development in yeasts, protozoa, mammals, plants and other model eukaryotes. PMID:28202682

  10. Mathematical analysis of complex cellular activity

    CERN Document Server

    Bertram, Richard; Teka, Wondimu; Vo, Theodore; Wechselberger, Martin; Kirk, Vivien; Sneyd, James

    2015-01-01

    This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Burst...

  11. Determining Lineage Pathways from Cellular Barcoding Experiments

    Directory of Open Access Journals (Sweden)

    Leïla Perié

    2014-02-01

    Full Text Available Cellular barcoding and other single-cell lineage-tracing strategies form experimental methodologies for analysis of in vivo cell fate that have been instrumental in several significant recent discoveries. Due to the highly nonlinear nature of proliferation and differentiation, interrogation of the resulting data for evaluation of potential lineage pathways requires a new quantitative framework complete with appropriate statistical tests. Here, we develop such a framework, illustrating its utility by analyzing data from barcoded multipotent cells of the blood system. This application demonstrates that the data require additional paths beyond those found in the classical model, which leads us to propose that hematopoietic differentiation follows a loss of potential mechanism and to suggest further experiments to test this deduction. Our quantitative framework can evaluate the compatibility of lineage trees with barcoded data from any proliferating and differentiating cell system.

  12. Cellular senescence mediates fibrotic pulmonary disease

    Science.gov (United States)

    Schafer, Marissa J.; White, Thomas A.; Iijima, Koji; Haak, Andrew J.; Ligresti, Giovanni; Atkinson, Elizabeth J.; Oberg, Ann L.; Birch, Jodie; Salmonowicz, Hanna; Zhu, Yi; Mazula, Daniel L.; Brooks, Robert W.; Fuhrmann-Stroissnigg, Heike; Pirtskhalava, Tamar; Prakash, Y. S.; Tchkonia, Tamara; Robbins, Paul D.; Aubry, Marie Christine; Passos, João F.; Kirkland, James L.; Tschumperlin, Daniel J.; Kita, Hirohito; LeBrasseur, Nathan K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function. PMID:28230051

  13. Cellular regulation of the dopamine transporter

    DEFF Research Database (Denmark)

    Eriksen, Jacob

    2010-01-01

    -membrane spanning protein Tac, thereby creating an extracellular antibody epitope. Upon expression in HEK293 cells this TacDAT fusion protein displayed functional properties similar to the wild type transporter. In an ELISA based internalization assay, TacDAT intracellular accumulation was increased by inhibitors......The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. DAT and its trafficking...... to natively expressed transporter, DAT was visualized directly in cultured DA neurons using the fluorescent cocaine analog JHC 1-64. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little cololization was observed...

  14. A cellular automata model for ant trails

    Indian Academy of Sciences (India)

    Sibel Gokce; Ozhan Kayacan

    2013-05-01

    In this study, the unidirectional ant traffic flow with U-turn in an ant trail was investigated using one-dimensional cellular automata model. It is known that ants communicate with each other by dropping a chemical, called pheromone, on the substrate. Apart from the studies in the literature, it was considered in the model that (i) ant colony consists of two kinds of ants, goodand poor-smelling ants, (ii) ants might make U-turn for some special reasons. For some values of densities of good- and poor-smelling ants, the flux and mean velocity of the colony were studied as a function of density and evaporation rate of pheromone.

  15. Computing by Temporal Order: Asynchronous Cellular Automata

    Directory of Open Access Journals (Sweden)

    Michael Vielhaber

    2012-08-01

    Full Text Available Our concern is the behaviour of the elementary cellular automata with state set 0,1 over the cell set Z/nZ (one-dimensional finite wrap-around case, under all possible update rules (asynchronicity. Over the torus Z/nZ (n<= 11,we will see that the ECA with Wolfram rule 57 maps any v in F_2^n to any w in F_2^n, varying the update rule. We furthermore show that all even (element of the alternating group bijective functions on the set F_2^n = 0,...,2^n-1, can be computed by ECA57, by iterating it a sufficient number of times with varying update rules, at least for n <= 10. We characterize the non-bijective functions computable by asynchronous rules.

  16. Threshold effects and cellular recognition. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Rando, R R

    1980-01-01

    In the first year we focused on developing the techniques required for the successful incorporation of synthetic glycolipids into cells. To these ends a new water-soluble spacer group (8-amino-3-6-dioxaoctanoic acid) was developed and incorporated into the cholesterol based synthetic glycolipids. These glycolipids could be incorporated into liposomes, rendering them susceptible to aggregation by the appropriate lectin. They also allowed us to define the minimal distance between the sugar moiety and membrane required for agglutination. Finally and most importantly, we were able to functionally incorporate these new glycolipids in cells and render them agglutinable with the appropriate lectins. Functional incorporation does not occur with glycolipids bearing hydropholic spacer groups. We are now in a position to begin using the new glycolipids to answer questions about the roles of cell surface sugars in cellular recognition, which is the subject of this renewal proposal.

  17. Anisotropic selection in cellular genetic algorithms

    CERN Document Server

    Simoncini, David; Collard, Philippe; Clergue, Manuel

    2008-01-01

    In this paper we introduce a new selection scheme in cellular genetic algorithms (cGAs). Anisotropic Selection (AS) promotes diversity and allows accurate control of the selective pressure. First we compare this new scheme with the classical rectangular grid shapes solution according to the selective pressure: we can obtain the same takeover time with the two techniques although the spreading of the best individual is different. We then give experimental results that show to what extent AS promotes the emergence of niches that support low coupling and high cohesion. Finally, using a cGA with anisotropic selection on a Quadratic Assignment Problem we show the existence of an anisotropic optimal value for which the best average performance is observed. Further work will focus on the selective pressure self-adjustment ability provided by this new selection scheme.

  18. Cellular Automata Models for Diffusion of Innovations

    CERN Document Server

    Fuks, H; Fuks, Henryk; Boccara, Nino

    1997-01-01

    We propose a probabilistic cellular automata model for the spread of innovations, rumors, news, etc. in a social system. The local rule used in the model is outertotalistic, and the range of interaction can vary. When the range R of the rule increases, the takeover time for innovation increases and converges toward its mean-field value, which is almost inversely proportional to R when R is large. Exact solutions for R=1 and $R=\\infty$ (mean-field) are presented, as well as simulation results for other values of R. The average local density is found to converge to a certain stationary value, which allows us to obtain a semi-phenomenological solution valid in the vicinity of the fixed point n=1 (for large t).

  19. Cellular antioxidant activity of common vegetables.

    Science.gov (United States)

    Song, Wei; Derito, Christopher M; Liu, M Keshu; He, Xiangjiu; Dong, Mei; Liu, Rui Hai

    2010-06-01

    The measurement of antioxidant activity using biologically relevant assays is important to screen fruits, vegetables, natural products, and dietary supplements for potential health benefits. The cellular antioxidant activity (CAA) assay quantifies antioxidant activity using a cell culture model and was developed to meet the need for a more biologically representative method than the popular chemistry antioxidant capacity measures. The objective of the study was to determine the CAA, total phenolic contents, and oxygen radical absorbance capacity (ORAC) values of 27 vegetables commonly consumed in the United States. Beets, broccoli, and red pepper had the highest CAA values, whereas cucumber had the lowest. CAA values were significantly correlated to total phenolic content. Potatoes were found to be the largest contributors of vegetable phenolics and CAA to the American diet. Increased fruit and vegetable consumption is an effective strategy to increase antioxidant intake and decrease oxidative stress and may lead to reduced risk of developing chronic diseases, such as cancer and cardiovascular disease.

  20. Bioceramics for osteogenesis, molecular and cellular advances.

    Science.gov (United States)

    Demirkiran, Hande

    2012-01-01

    The remarkable need for bone tissue replacement in clinical situations, its limited availability and some major drawbacks of autologous (from the patient) and allogeneic (from a donor) bone grafts are driving researchers to search for alternative approaches for bone repair. In order to develop an appropriate bone substitute, one should understand bone structure and properties and its growth, which will guide researchers to select the optimal conditions for tissue culture and implantation. It's well accepted that bioceramics are excellent candidates as bone replacement with osteogenesis, osteoinduction and osteoconduction capacity. Therefore, the molecular and cellular interactions that take place at the surface of bioceramics and their relevance in osteogenesis excites many researchers to delve deeper into this line of research.

  1. Optimal temporal patterns for dynamical cellular signaling

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2016-11-01

    Cells use temporal dynamical patterns to transmit information via signaling pathways. As optimality with respect to the environment plays a fundamental role in biological systems, organisms have evolved optimal ways to transmit information. Here, we use optimal control theory to obtain the dynamical signal patterns for the optimal transmission of information, in terms of efficiency (low energy) and reliability (low uncertainty). Adopting an activation-deactivation decoding network, we reproduce several dynamical patterns found in actual signals, such as steep, gradual, and overshooting dynamics. Notably, when minimizing the energy of the input signal, the optimal signals exhibit overshooting, which is a biphasic pattern with transient and steady phases; this pattern is prevalent in actual dynamical patterns. We also identify conditions in which these three patterns (steep, gradual, and overshooting) confer advantages. Our study shows that cellular signal transduction is governed by the principle of minimizing free energy dissipation and uncertainty; these constraints serve as selective pressures when designing dynamical signaling patterns.

  2. Commercialization of cellular immunotherapies for cancer.

    Science.gov (United States)

    Walker, Anthony; Johnson, Robert

    2016-04-15

    Successful commercialization of a cell therapy requires more than proving safety and efficacy to the regulators. The inherent complexity of cellular products delivers particular manufacturing, logistical and reimbursement hurdles that threaten commercial viability for any therapy with a less than spectacular clinical profile that truly changes the standard of care. This is particularly acute for autologous cell therapies where patients receive bespoke treatments manufactured from a sample of their own cells and where economies of scale, which play an important role in containing the production costs for small molecule and antibody therapeutics, are highly limited. Nevertheless, the promise of 'game-changing' efficacy, as exemplified by very high levels of complete responses in refractory haematological malignancies, has attracted capital investments on a vast scale, and the attendant pace of technology development provides promising indicators for future clinical and commercial success.

  3. Cellular nanotechnology: making biological interfaces smarter.

    Science.gov (United States)

    Mendes, Paula M

    2013-12-21

    Recently, there has been an outburst of research on engineered cell-material interfaces driven by nanotechnology and its tools and techniques. This tutorial review begins by providing a brief introduction to nanostructured materials, followed by an overview of the wealth of nanoscale fabrication and analysis tools available for their development. This background serves as the basis for a discussion of early breakthroughs and recent key developments in the endeavour to develop nanostructured materials as smart interfaces for fundamental cellular studies, tissue engineering and regenerative medicine. The review covers three major aspects of nanostructured interfaces - nanotopographical control, dynamic behaviour and intracellular manipulation and sensing - where efforts are continuously being made to further understand cell function and provide new ways to control cell behaviour. A critical reflection of the current status and future challenges are discussed as a conclusion to the review.

  4. Call Admission Control in Mobile Cellular Networks

    CERN Document Server

    Ghosh, Sanchita

    2013-01-01

    Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently.      CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators.  The second approach is concerned with formulation of CAC ...

  5. Microfluidic electroporation for cellular analysis and delivery.

    Science.gov (United States)

    Geng, Tao; Lu, Chang

    2013-10-01

    Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.

  6. Wireless traffic steering for green cellular networks

    CERN Document Server

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)

    2016-01-01

    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  7. Cellular signaling by fibroblast growth factor receptors.

    Science.gov (United States)

    Eswarakumar, V P; Lax, I; Schlessinger, J

    2005-04-01

    The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.

  8. Statistical physical models of cellular motility

    Science.gov (United States)

    Banigan, Edward J.

    Cellular motility is required for a wide range of biological behaviors and functions, and the topic poses a number of interesting physical questions. In this work, we construct and analyze models of various aspects of cellular motility using tools and ideas from statistical physics. We begin with a Brownian dynamics model for actin-polymerization-driven motility, which is responsible for cell crawling and "rocketing" motility of pathogens. Within this model, we explore the robustness of self-diffusiophoresis, which is a general mechanism of motility. Using this mechanism, an object such as a cell catalyzes a reaction that generates a steady-state concentration gradient that propels the object in a particular direction. We then apply these ideas to a model for depolymerization-driven motility during bacterial chromosome segregation. We find that depolymerization and protein-protein binding interactions alone are sufficient to robustly pull a chromosome, even against large loads. Next, we investigate how forces and kinetics interact during eukaryotic mitosis with a many-microtubule model. Microtubules exert forces on chromosomes, but since individual microtubules grow and shrink in a force-dependent way, these forces lead to bistable collective microtubule dynamics, which provides a mechanism for chromosome oscillations and microtubule-based tension sensing. Finally, we explore kinematic aspects of cell motility in the context of the immune system. We develop quantitative methods for analyzing cell migration statistics collected during imaging experiments. We find that during chronic infection in the brain, T cells run and pause stochastically, following the statistics of a generalized Levy walk. These statistics may contribute to immune function by mimicking an evolutionarily conserved efficient search strategy. Additionally, we find that naive T cells migrating in lymph nodes also obey non-Gaussian statistics. Altogether, our work demonstrates how physical

  9. Trans-Activation between EphA and FGFR Regulates Self-Renewal and Differentiation of Mouse Embryonic Neural Stem/Progenitor Cells via Differential Activation of FRS2α.

    Science.gov (United States)

    Sawada, Takahiro; Arai, Daiki; Jing, Xuefeng; Furushima, Kenryo; Chen, Qingfa; Kawakami, Kazuki; Yokote, Hideyuki; Miyajima, Masayasu; Sakaguchi, Kazushige

    2015-01-01

    Ephs and FGFRs belong to a superfamily of receptor tyrosine kinases, playing important roles in stem cell biology. We previously reported that EphA4 and FGFR form a heterodimer following stimulation with ligands, trans-activating each other and signaling through a docking protein, FRS2α, that binds to both receptors. Here, we investigated whether the interaction between EphA4 and FGFRs can be generalized to other Ephs and FGFRs, and, in addition, examined the downstream signal mediating their function in embryonic neural stem/progenitor cells. We revealed that various Ephs and FGFRs interact with each other through similar molecular domains. When neural stem/progenitor cells were stimulated with FGF2 and ephrin-A1, the signal transduced from the EphA4/FGFR/FRS2α complex enhanced self-renewal, while stimulation with ephrin-A1 alone induced neuronal differentiation. The downstream signal required for neuronal differentiation appears to be MAP kinase mainly linked to the Ras family of G proteins. MAP kinase activation was delayed and sustained, distinct from the transient activation induced by FGF2. Interestingly, this effect on neuronal differentiation required the presence of FGFRs. Specific FGFR inhibitor almost completely abolished the function of ephrin-A1 stimulation. These findings suggest that the ternary complex of EphA, FGFR and FRS2α formed by ligand stimulation regulates self-renewal and differentiation of mouse embryonic neural stem/progenitor cells by ligand-specific fine tuning of the downstream signal via FRS2α.

  10. Trans-Activation between EphA and FGFR Regulates Self-Renewal and Differentiation of Mouse Embryonic Neural Stem/Progenitor Cells via Differential Activation of FRS2α.

    Directory of Open Access Journals (Sweden)

    Takahiro Sawada

    Full Text Available Ephs and FGFRs belong to a superfamily of receptor tyrosine kinases, playing important roles in stem cell biology. We previously reported that EphA4 and FGFR form a heterodimer following stimulation with ligands, trans-activating each other and signaling through a docking protein, FRS2α, that binds to both receptors. Here, we investigated whether the interaction between EphA4 and FGFRs can be generalized to other Ephs and FGFRs, and, in addition, examined the downstream signal mediating their function in embryonic neural stem/progenitor cells. We revealed that various Ephs and FGFRs interact with each other through similar molecular domains. When neural stem/progenitor cells were stimulated with FGF2 and ephrin-A1, the signal transduced from the EphA4/FGFR/FRS2α complex enhanced self-renewal, while stimulation with ephrin-A1 alone induced neuronal differentiation. The downstream signal required for neuronal differentiation appears to be MAP kinase mainly linked to the Ras family of G proteins. MAP kinase activation was delayed and sustained, distinct from the transient activation induced by FGF2. Interestingly, this effect on neuronal differentiation required the presence of FGFRs. Specific FGFR inhibitor almost completely abolished the function of ephrin-A1 stimulation. These findings suggest that the ternary complex of EphA, FGFR and FRS2α formed by ligand stimulation regulates self-renewal and differentiation of mouse embryonic neural stem/progenitor cells by ligand-specific fine tuning of the downstream signal via FRS2α.

  11. Fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin transactivates aryl hydrocarbon receptor-responsive element III in the tyrosine hydroxylase immunoreactive neurons of the mouse midbrain.

    Science.gov (United States)

    Tanida, Takashi; Tasaka, Ken; Akahoshi, Eiichi; Ishihara-Sugano, Mitsuko; Saito, Michiko; Kawata, Shigehisa; Danjo, Megumi; Tokumoto, Junko; Mantani, Youhei; Nagahara, Daichi; Tabuchi, Yoshiaki; Yokoyama, Toshifumi; Kitagawa, Hiroshi; Kawata, Mitsuhiro; Hoshi, Nobuhiko

    2014-02-01

    Fetal exposure to dioxins and related compounds is known to disrupt normal development of the midbrain dopaminergic system, which regulates behavior, cognition and emotion. The toxicity of these chemicals is mediated mainly by aryl hydrocarbon receptor (AhR) signaling. Previously, we identified a novel binding motif of AhR, the AhR-responsive element III (AHRE-III), in vitro. This motif is located upstream from the gene encoding tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis. To provide in vivo evidence, we investigated whether 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) could regulate AHRE-III transcriptional activity in midbrain dopaminergic neurons. We produced transgenic mice with inserted constructs of the AHRE-III enhancers, TH gene promoter and the c-myc-tagged luciferase gene. Single oral administrations of TCDD (0-2000 ng kg⁻¹ body weight) to the transgenic dams markedly enhanced TH-immunoreactive (ir) intensity in the A9, A10 and A8 areas of their offspring at 3 days and 8 weeks of age. The offspring of dams treated with 200 ng kg⁻¹ TCDD exhibited significant increases in the numbers of TH- and double (TH and c-myc)-ir neurons in area A9 compared with controls at 8 weeks. These results show that fetal exposure to TCDD upregulates TH expression and increases TH-ir neurons in the midbrain. Moreover, the results suggest that TCDD directly transactivates the TH promoter via the AhR-AHRE-III-mediated pathway in area A9. Fetal exposure to TCDD caused stable upregulation of TH via the AhR-AHRE-III signaling pathway and overgrowth of TH-ir neurons in the midbrain, implying possible involvement in the etiology of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD).

  12. Controlling Cellular Endocytosis at the Nanoscale

    Science.gov (United States)

    Battaglia, Giuseppe

    2011-03-01

    One of the most challenging aspects of drug delivery is the intra-cellular delivery of active agents. Several drugs and especially nucleic acids all need to be delivered within the cell interior to exert their therapeutic action. Small hydrophobic molecules can permeate cell membranes with relative ease, but hydrophilic molecules and especially large macromolecules such as proteins and nucleic acids require a vector to assist their transport across the cell membrane. This must be designed so as to ensure intracellular delivery without compromising cell viability. We have recently achieved this by using pH-sensitive poly(2-(methacryloyloxy)ethyl-phosphorylcholine)- co -poly(2-(diisopropylamino)ethyl methacrylate) (PMPC-PDPA) and poly(ethylene oxide)-co- poly(2-(diisopropylamino)ethyl methacrylate) (PEO-PDPA) diblock copolymers that self-assemble to form vesicles in aqueous solution. These vesicles combine a non-fouling PMPC or PEO block with a pH-sensitive PDPA block and have the ability to encapsulate both hydrophobic molecules within the vesicular membrane and hydrophilic molecules within their aqueous cores. The pH sensitive nature of the PDPA blocks make the diblock copolymers forming stable vesicles at physiological pH but that rapid dissociation of these vesicles occurs between pH 5 and pH 6 to form molecularly dissolved copolymer chains (unimers). We used these vesicles to encapsulate small and large macromolecules and these were successfully delivered intracellularly including nucleic acid, drugs, quantum dots, and antibodies. Dynamic light scattering, zeta potential measurements, and transmission electron microscopy were used to study and optimise the encapsulation processes. Confocal laser scanning microscopy, fluorescence flow cytometry and lysates analysis were used to quantify cellular uptake and to study the kinetics of this process in vitro and in vivo. We show the effective cytosolic delivery of nucleic acids, proteins, hydrophobic molecules

  13. 1,4-Naphthoquinones: From Oxidative Damage to Cellular and Inter-Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Lars-Oliver Klotz

    2014-09-01

    Full Text Available Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others to cellular and inter-cellular signaling processes are discussed: (i naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.

  14. Cellular basis of gravity resistance in plants

    Science.gov (United States)

    Hoson, Takayuki; Matsumoto, Shouhei; Inui, Kenichi; Zhang, Yan; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi

    Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls via modifications to the cell wall metabolism and apoplastic environment. We studied cellular events that are related to the cell wall changes under hypergravity conditions produced by centrifugation. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of stem organs. In Arabidopsis tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1 g, and the degree of twisting phenotype was intensified under hypergravity conditions. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an es-sential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in modifications to morphology and orientation of microtubule arrays by hypergravity. Actin microfilaments, in addition to microtubules, may be involved in gravity resistance. The nucleus of epidermal cells of azuki bean epicotyls, which is present almost in the center of the cell at 1 g, was displaced to the cell bottom by increasing the magnitude of gravity. Cytochalasin D stimulated the sedimentation by hypergravity of the nu-cleus, suggesting that the positioning of the nucleus is regulated by actin microfilaments, which is

  15. Cellular immune responses towards regulatory cells.

    Science.gov (United States)

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  16. Cellular membrane collapse by atmospheric-pressure plasma jet

    Science.gov (United States)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  17. Cellular membrane collapse by atmospheric-pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  18. Power Control in Multi-Layer Cellular Networks

    CERN Document Server

    Davaslioglu, Kemal

    2012-01-01

    We investigate the possible performance gains of power control in multi-layer cellular systems where microcells and picocells are distributed within macrocells. Although multilayers in cellular networks help increase system capacity and coverage, and can reduce total energy consumption; they cause interference, reducing the performance of the network. Therefore, downlink transmit power levels of multi-layer hierarchical cellular networks need to be controlled in order to fully exploit their benefits. In this work, we present an analytical derivation to determine optimum power levels for two-layer cellular networks and generalize our solution to multi-layer cellular networks. We also simulate our results in a typical multi-layer network setup and observe significant power savings compared to single-layer cellular networks.

  19. Green Cellular Networks: A Survey, Some Research Issues and Challenges

    CERN Document Server

    Hasan, Ziaul; Bhargava, Vijay K

    2011-01-01

    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogenous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative rela...

  20. Numerical investigation on evolution of cylindrical cellular detonation

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; JIANG Zong-lin; HU Zong-min; HAN Gui-lai

    2008-01-01

    Cylindrical cellular detonation is numerically investigated by solving twodimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh.The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction.Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas.Split of cellular structures shows different features in the near-field and far-field from the initiation zone.Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation.Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.

  1. Iron Oxide Nanoparticles Stimulates Extra-Cellular Matrix Production in Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Megan Casco

    2017-01-01

    Full Text Available Nanotechnologies have been integrated into drug delivery, and non-invasive imaging applications, into nanostructured scaffolds for the manipulation of cells. The objective of this work was to determine how the physico-chemical properties of magnetic nanoparticles (MNPs and their spatial distribution into cellular spheroids stimulated cells to produce an extracellular matrix (ECM. The MNP concentration (0.03 mg/mL, 0.1 mg/mL and 0.3 mg/mL, type (magnetoferritin, shape (nanorod—85 nm × 425 nm and incorporation method were studied to determine each of their effects on the specific stimulation of four ECM proteins (collagen I, collagen IV, elastin and fibronectin in primary rat aortic smooth muscle cell. Results demonstrated that as MNP concentration increased there was up to a 6.32-fold increase in collagen production over no MNP samples. Semi-quantitative Immunohistochemistry (IHC results demonstrated that MNP type had the greatest influence on elastin production with a 56.28% positive area stain compared to controls and MNP shape favored elastin stimulation with a 50.19% positive area stain. Finally, there are no adverse effects of MNPs on cellular contractile ability. This study provides insight on the stimulation of ECM production in cells and tissues, which is important because it plays a critical role in regulating cellular functions.

  2. Some Properties of Fractals Generated by Linear Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    倪天佳

    2003-01-01

    Fractals and cellular automata are both significant areas of research in nonlinear analysis. This paper studies a class of fractals generated by cellular automata. The patterns produced by cellular automata give a special sequence of sets in Euclidean space. The corresponding limit set is shown to be a fractal and the dimension is independent of the choice of the finite initial seed. As opposed to previous works, the fractals here do not depend on the time parameter.

  3. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    OpenAIRE

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular pop...

  4. Cell biology of the future: Nanometer-scale cellular cartography.

    Science.gov (United States)

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities.

  5. Cellular recurrent deep network for image registration

    Science.gov (United States)

    Alam, M.; Vidyaratne, L.; Iftekharuddin, Khan M.

    2015-09-01

    Image registration using Artificial Neural Network (ANN) remains a challenging learning task. Registration can be posed as a two-step problem: parameter estimation and actual alignment/transformation using the estimated parameters. To date ANN based image registration techniques only perform the parameter estimation, while affine equations are used to perform the actual transformation. In this paper, we propose a novel deep ANN based image rigid registration that combines parameter estimation and transformation as a simultaneous learning task. Our previous work shows that a complex universal approximator known as Cellular Simultaneous Recurrent Network (CSRN) can successfully approximate affine transformations with known transformation parameters. This study introduces a deep ANN that combines a feed forward network with a CSRN to perform full rigid registration. Layer wise training is used to pre-train feed forward network for parameter estimation and followed by a CSRN for image transformation respectively. The deep network is then fine-tuned to perform the final registration task. Our result shows that the proposed deep ANN architecture achieves comparable registration accuracy to that of image affine transformation using CSRN with known parameters. We also demonstrate the efficacy of our novel deep architecture by a performance comparison with a deep clustered MLP.

  6. Cellular-level surgery using nano robots.

    Science.gov (United States)

    Song, Bo; Yang, Ruiguo; Xi, Ning; Patterson, Kevin Charles; Qu, Chengeng; Lai, King Wai Chiu

    2012-12-01

    The atomic force microscope (AFM) is a popular instrument for studying the nano world. AFM is naturally suitable for imaging living samples and measuring mechanical properties. In this article, we propose a new concept of an AFM-based nano robot that can be applied for cellular-level surgery on living samples. The nano robot has multiple functions of imaging, manipulation, characterizing mechanical properties, and tracking. In addition, the technique of tip functionalization allows the nano robot the ability for precisely delivering a drug locally. Therefore, the nano robot can be used for conducting complicated nano surgery on living samples, such as cells and bacteria. Moreover, to provide a user-friendly interface, the software in this nano robot provides a "videolized" visual feedback for monitoring the dynamic changes on the sample surface. Both the operation of nano surgery and observation of the surgery results can be simultaneously achieved. This nano robot can be easily integrated with extra modules that have the potential applications of characterizing other properties of samples such as local conductance and capacitance.

  7. Extra cellular matrix features in human meninges.

    Science.gov (United States)

    Montagnani, S; Castaldo, C; Di Meglio, F; Sciorio, S; Giordano-Lanza, G

    2000-01-01

    We collected human fetal and adult normal meninges to relate the age of the tissue with the presence of collagenous and non-collagenous components of Extra Cellular Matrix (ECM). Immunohistochemistry led us to observe some differences in the amount and in the distribution of these proteins between the two sets of specimens. In particular, laminin and tenascin seem to be expressed more intensely in fetal meninges when compared to adult ones. In order to investigate whether the morphofunctional characteristics of fetal meninges may be represented in pathological conditions we also studied meningeal specimens from human meningiomas. Our attention was particularly focused on the expression of those non-collagenous proteins involved in nervous cell migration and neuronal morphogenesis as laminin and tenascin, which were present in lesser amount in normal adult specimens. Microscopical evidences led us to hipothesize that these proteins which are synthesized in a good amount during the fetal development of meninges can be newly produced in tumors. On the contrary, the role of tenascin and laminin in adult meninges is probably only interesting for their biophysical characteristics.

  8. Endothelial Cellular Responses to Biodegradable Metal Zinc.

    Science.gov (United States)

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    Biodegradable zinc (Zn) metals, a new generation of biomaterials, have attracted much attention due to their excellent biodegradability, bioabsorbability, and adaptability to tissue regeneration. Compared with magnesium (Mg) and iron (Fe), Zn exhibits better corrosion and mechanical behaviors in orthopedic and stent applications. After implantation, Zn containing material will slowly degrade, and Zn ions (Zn(2+)) will be released to the surrounding tissue. For stent applications, the local Zn(2+)concentration near endothelial tissue/cells could be high. However, it is unclear how endothelia will respond to such high concentrations of Zn(2+), which is pivotal to vascular remodeling and regeneration. Here, we evaluated the short-term cellular behaviors of primary human coronary artery endothelial cells (HCECs) exposed to a concentration gradient (0-140 μM) of extracellular Zn(2+). Zn(2+) had an interesting biphasic effect on cell viability, proliferation, spreading, and migration. Generally, low concentrations of Zn(2+) promoted viability, proliferation, adhesion, and migration, while high concentrations of Zn(2+) had opposite effects. For gene expression profiles, the most affected functional genes were related to cell adhesion, cell injury, cell growth, angiogenesis, inflammation, vessel tone, and coagulation. These results provide helpful information and guidance for Zn-based alloy design as well as the controlled release of Zn(2+)in stent and other related medical applications.

  9. Cellular Automata Model for Elastic Solid Material

    Institute of Scientific and Technical Information of China (English)

    DONG Yin-Feng; ZHANG Guang-Cai; XU Ai-Guo; GAN Yan-Biao

    2013-01-01

    The Cellular Automaton (CA) modeling and simulation of solid dynamics is a long-standing difficult problem.In this paper we present a new two-dimensional CA model for solid dynamics.In this model the solid body is represented by a set of white and black particles alternatively positioned in the x-and y-directions.The force acting on each particle is represented by the linear summation of relative displacements of the nearest-neighboring particles.The key technique in this new model is the construction of eight coefficient matrices.Theoretical and numerical analyses show that the present model can be mathematically described by a conservative system.So,it works for elastic material.In the continuum limit the CA model recovers the well-known Navier equation.The coefficient matrices are related to the shear module and Poisson ratio of the material body.Compared with previous CA model for solid body,this model realizes the natural coupling of deformations in the x-and y-directions.Consequently,the wave phenomena related to the Poisson ratio effects are successfully recovered.This work advances significantly the CA modeling and simulation in the field of computational solid dynamics.

  10. Analytical Modeling of Uplink Cellular Networks

    CERN Document Server

    Novlan, Thomas D; Andrews, Jeffrey G

    2012-01-01

    Cellular uplink analysis has typically been undertaken by either a simple approach that lumps all interference into a single deterministic or random parameter in a Wyner-type model, or via complex system level simulations that often do not provide insight into why various trends are observed. This paper proposes a novel middle way that is both accurate and also results in easy-to-evaluate integral expressions based on the Laplace transform of the interference. We assume mobiles and base stations are randomly placed in the network with each mobile pairing up to its closest base station. The model requires two important changes compared to related recent work on the downlink. First, dependence is introduced between the user and base station point processes to make sure each base station serves a single mobile in the given resource block. Second, per-mobile power control is included, which further couples the locations of the mobiles and their receiving base stations. Nevertheless, we succeed in deriving the cov...

  11. Biophysical Tools to Study Cellular Mechanotransduction

    Directory of Open Access Journals (Sweden)

    Ismaeel Muhamed

    2017-02-01

    Full Text Available The cell membrane is the interface that volumetrically isolates cellular components from the cell’s environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane’s bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na+, Ca2+, K+ channels. The membrane’s biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM, vascular endothelial (VE-cadherin, epithelial (E-cadherin, integrin embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.

  12. On the topological sensitivity of cellular automata

    Science.gov (United States)

    Baetens, Jan M.; De Baets, Bernard

    2011-06-01

    Ever since the conceptualization of cellular automata (CA), much attention has been paid to the dynamical properties of these discrete dynamical systems, and, more in particular, to their sensitivity to the initial condition from which they are evolved. Yet, the sensitivity of CA to the topology upon which they are based has received only minor attention, such that a clear insight in this dependence is still lacking and, furthermore, a quantification of this so-called topological sensitivity has not yet been proposed. The lack of attention for this issue is rather surprising since CA are spatially explicit, which means that their dynamics is directly affected by their topology. To overcome these shortcomings, we propose topological Lyapunov exponents that measure the divergence of two close trajectories in phase space originating from a topological perturbation, and we relate them to a measure grasping the sensitivity of CA to their topology that relies on the concept of topological derivatives, which is introduced in this paper. The validity of the proposed methodology is illustrated for the 256 elementary CA and for a family of two-state irregular totalistic CA.

  13. Biological (molecular and cellular) markers of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.

    1990-10-01

    The overall objective of this study is to evaluate the use of the small aquarium fish, Japanese Medaka (Oryzias latipes), as a predictor of potential genotoxicity following exposure to carcinogens. This will be accomplished by quantitatively investigating the early molecular events associated with genotoxicity of various tissues of Medaka subsequent to exposure of the organism to several known carcinogens, such as diethylnitrosamine (DEN) and benzo(a)pyrene (BaP). Because of the often long latent period between initial contact with certain chemical and physical agents in our environment and subsequent expression of deleterious health or ecological impact, the development of sensitive methods for detecting and estimating early exposure is needed so that necessary interventions can ensue. A promising biological endpoint for detecting early exposure to damaging chemicals is the interaction of these compounds with cellular macromolecules such as Deoxyribonucleic acids (DNA). This biological endpoint assumes significance because it can be one of the critical early events leading eventually to adverse effects (neoplasia) in the exposed organism.

  14. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  15. Cellular effector mechanisms against Plasmodium liver stages.

    Science.gov (United States)

    Frevert, Ute; Nardin, Elizabeth

    2008-10-01

    Advances in our understanding of the molecular and cell biology of the malaria parasite have led to new vaccine development efforts resulting in a pipeline of over 40 candidates undergoing clinical phase I-III trials. Vaccine-induced CD4+ and CD8+ T cells specific for pre-erythrocytic stage antigens have been found to express cytolytic and multi-cytokine effector functions that support a key role for these T cells within the hepatic environment. However, little is known of the cellular interactions that occur during the effector phase in which the intracellular hepatic stage of the parasite is targeted and destroyed. This review focuses on cell biological aspects of the interaction between malaria-specific effector cells and the various antigen-presenting cells that are known to exist within the liver, including hepatocytes, dendritic cells, Kupffer cells, stellate cells and sinusoidal endothelia. Considering the unique immune properties of the liver, it is conceivable that these different hepatic antigen-presenting cells fulfil distinct but complementary roles during the effector phase against Plasmodium liver stages.

  16. [Cellular structure of propionibacteria during their multiplication].

    Science.gov (United States)

    Sobczak, E; Kocoń, J

    1983-01-01

    The aim of the present study was to determine the structure of bacterial cells from Propionibacterium genus as well as their structure during the cellular division. On the basis of the observations made in the electron transmission microscope, in uranyl-acetates-tained preparations of ultra-thin specimens of bacteria, it was stated that propionic bacteria appeared in a shape of short rods, possessing regular profiles of cell walls as opposed to Gram-negative bacteria with a very creased edge line. Besides, it was observed that division of cells had place by formation of septum, most probably preceded by the division of mezosome, which is a signal for creating the divisional wall. In the conducted studies, the following phenomena were started: presence of membraneous structure of mezosomes, which is linked with the chain of circular DNA in bacterial cell, appearance of numerous ribosomes in the regions of tangled threads of nucleic acids, and existence of other undefinite elements. Mezosome present in the cell of propionic bacteria is probably linked with the cell wall at least in two places and on the surface of external cell wall at the site of its linking; it causes the change in electronic density, demonstrated by the undefined holes or scars in cell wall. This finding gives the possibility of distinguishing this genus of Propionibacterium, in the respect of morphology, from other bacteria what, in the opinion of the authors, is a new achievement in the studies on the structure of propionic bacteria.

  17. Thermal effects of radiation from cellular telephones

    Science.gov (United States)

    Wainwright, Peter

    2000-08-01

    A finite element thermal model of the head has been developed to calculate temperature rises generated in the brain by radiation from cellular telephones and similar electromagnetic devices. A 1 mm resolution MRI dataset was segmented semiautomatically, assigning each volume element to one of ten tissue types. A finite element mesh was then generated using a fully automatic tetrahedral mesh generator developed at NRPB. There are two sources of heat in the model: firstly the natural metabolic heat production; and secondly the power absorbed from the electromagnetic field. The SAR was derived from a finite difference time domain model of the head, coupled to a model `mobile phone', namely a quarter-wavelength antenna mounted on a metal box. The steady-state temperature distribution was calculated using the standard Pennes `bioheat equation'. In the normal cerebral cortex the high blood perfusion rate serves to provide an efficient cooling mechanism. In the case of equipment generally available to the public, the maximum temperature rise found in the brain was about 0.1 °C. These results will help in the further development of criteria for exposure guidelines, and the technique developed may be used to assess temperature rises associated with SARs for different types of RF exposure.

  18. Cellular and molecular aspects of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Malcolm G Smith; Georgina L Hold; Eiichi Tahara; Emad M El-Omar

    2006-01-01

    Gastric cancer remains a global killer with a shifting burden from the developed to the developing world.The cancer develops along a multistage process that is defined by distinct histological and pathophysiological phases. Several genetic and epigenetic alterations mediate the transition from one stage to another and these include mutations in oncogenes, tumour suppressor genes and cell cycle and mismatch repair genes. The most significant advance in the fight against gastric caner came with the recognition of the role of Helicobacter pylori (H pylori) as the most important acquired aetiological agent for this cancer. Recent work has focussed on elucidating the complex host/microbial interactions that underlie the neoplastic process. There is now considerable insight into the pathogenesis of this cancer and the prospect of preventing and eradicating the disease has become a reality. Perhaps more importantly, the study of H pylori-induced gastric carcinogenesis offers a paradigm for understanding more complex human cancers. In this review, we examine the molecular and cellular events that underlie H pyloriinduced gastric cancer.

  19. Noise Reduction Potential of Cellular Metals

    Directory of Open Access Journals (Sweden)

    Björn Hinze

    2012-06-01

    Full Text Available Rising numbers of flights and aircrafts cause increasing aircraft noise, resulting in the development of various approaches to change this trend. One approach is the application of metallic liners in the hot gas path of aero-engines. At temperatures of up to 600 °C only metallic or ceramic structures can be used. Due to fatigue loading and the notch effect of the pores, mechanical properties of porous metals are superior to the ones of ceramic structures. Consequently, cellular metals like metallic foams, sintered metals, or sintered metal felts are most promising materials. However, acoustic absorption depends highly on pore morphology and porosity. Therefore, both parameters must be characterized precisely to analyze the correlation between morphology and noise reduction performance. The objective of this study is to analyze the relationship between pore morphology and acoustic absorption performance. The absorber materials are characterized using image processing based on two dimensional microscopy images. The sound absorption properties are measured using an impedance tube. Finally, the correlation of acoustic behavior, pore morphology, and porosity is outlined.

  20. Bacterial Cellular Materials as Precursors of Chloroform

    Science.gov (United States)

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.

    2011-12-01

    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  1. Myoblast fusion: Experimental systems and cellular mechanisms.

    Science.gov (United States)

    Schejter, Eyal D

    2016-12-01

    Fusion of myoblasts gives rise to the large, multi-nucleated muscle fibers that power and support organism motion and form. The mechanisms underlying this prominent form of cell-cell fusion have been investigated by a variety of experimental approaches, in several model systems. The purpose of this review is to describe and discuss recent progress in the field, as well as point out issues currently unresolved and worthy of further investigation. Following a description of several new experimental settings employed in the study of myoblast fusion, a series of topics relevant to the current understanding of the process are presented. These pertain to elements of three major cellular machineries- cell-adhesion, the actin-based cytoskeleton and membrane-associated elements- all of which play key roles in mediating myoblast fusion. Among the issues raised are the diversity of functions ascribed to different adhesion proteins (e.g. external cell apposition and internal recruitment of cytoskeleton regulators); functional significance of fusion-associated actin structures; and discussion of alternative mechanisms employing single or multiple fusion pore formation as the basis for muscle cell fusion.

  2. Cooperative Handover Management in Dense Cellular Networks

    KAUST Repository

    Arshad, Rabe

    2017-02-07

    Network densification has always been an important factor to cope with the ever increasing capacity demand. Deploying more base stations (BSs) improves the spatial frequency utilization, which increases the network capacity. However, such improvement comes at the expense of shrinking the BSs\\' footprints, which increases the handover (HO) rate and may diminish the foreseen capacity gains. In this paper, we propose a cooperative HO management scheme to mitigate the HO effect on throughput gains achieved via cellular network densification. The proposed HO scheme relies on skipping HO to the nearest BS at some instances along the user\\'s trajectory while enabling cooperative BS service during HO execution at other instances. To this end, we develop a mathematical model, via stochastic geometry, to quantify the performance of the proposed HO scheme in terms of coverage probability and user throughput. The results show that the proposed cooperative HO scheme outperforms the always best connected based association at high mobility. Also, the value of BS cooperation along with handover skipping is quantified with respect to the HO skipping only that has recently appeared in the literature. Particularly, the proposed cooperative HO scheme shows throughput gains of 12% to 27% and 17% on average, when compared to the always best connected and HO skipping only schemes at user velocity ranging from 80 km/h to 160 Km/h, respectively.

  3. Some Properties of topological pressure on cellular automata

    Directory of Open Access Journals (Sweden)

    Chih-Hung Chang

    2014-09-01

    Full Text Available This paper investigates the ergodicity and the power rule of the topological pressure of a cellular automaton. If a cellular automaton is either leftmost or rightmost premutive (due to the terminology given by Hedlund [Math.~Syst.~Theor.~3, 320-375, 1969], then it is ergodic with respect to the uniform Bernoulli measure. More than that, the relation of topological pressure between the original cellular automaton and its power rule is expressed in a closed form. As an application, the topological pressure of a linear cellular automaton can be computed explicitly.

  4. Validation of self-reported cellular phone use

    DEFF Research Database (Denmark)

    Samkange-Zeeb, Florence; Berg, Gabriele; Blettner, Maria

    2004-01-01

    BACKGROUND: In recent years, concern has been raised over possible adverse health effects of cellular telephone use. In epidemiological studies of cancer risk associated with the use of cellular telephones, the validity of self-reported cellular phone use has been problematic. Up to now there is ......BACKGROUND: In recent years, concern has been raised over possible adverse health effects of cellular telephone use. In epidemiological studies of cancer risk associated with the use of cellular telephones, the validity of self-reported cellular phone use has been problematic. Up to now...... there is very little information published on this subject. METHODS: We conducted a study to validate the questionnaire used in an ongoing international case-control study on cellular phone use, the "Interphone study". Self-reported cellular phone use from 68 of 104 participants who took part in our study...... was compared with information derived from the network providers over a period of 3 months (taken as the gold standard). RESULTS: Using Spearman's rank correlation, the correlation between self-reported phone use and information from the network providers for cellular phone use in terms of the number of calls...

  5. Movies of cellular and sub-cellular motion by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yu Lingfeng

    2006-03-01

    Full Text Available Abstract Background Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. Methods A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Results Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable

  6. Biodegradable Magnetic Particles for Cellular MRI

    Science.gov (United States)

    Nkansah, Michael Kwasi

    Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple

  7. Effect of lysosomotropic molecules on cellular homeostasis.

    Science.gov (United States)

    Kuzu, Omer F; Toprak, Mesut; Noory, M Anwar; Robertson, Gavin P

    2017-03-01

    Weak bases that readily penetrate through the lipid bilayer and accumulate inside the acidic organelles are known as lysosomotropic molecules. Many lysosomotropic compounds exhibit therapeutic activity and are commonly used as antidepressant, antipsychotic, antihistamine, or antimalarial agents. Interestingly, studies also have shown increased sensitivity of cancer cells to certain lysosomotropic agents and suggested their mechanism of action as a promising approach for selective destruction of cancer cells. However, their chemotherapeutic utility may be limited due to various side effects. Hence, understanding the homeostatic alterations mediated by lysosomotropic compounds has significant importance for revealing their true therapeutic potential as well as toxicity. In this review, after briefly introducing the concept of lysosomotropism and classifying the lysosomotropic compounds into two major groups according to their cytotoxicity on cancer cells, we focused on the subcellular alterations mediated by class-II lysosomotropic compounds. Briefly, their effect on intracellular cholesterol homeostasis, autophagy and lysosomal sphingolipid metabolism was discussed. Accordingly, class-II lysosomotropic molecules inhibit intracellular cholesterol transport, leading to the accumulation of cholesterol inside the late endosomal-lysosomal cell compartments. However, the accumulated lysosomal cholesterol is invisible to the cellular homeostatic circuits, hence class-II lysosomotropic molecules also upregulate cholesterol synthesis pathway as a downstream event. Considering the fact that Niemann-Pick disease, a lysosomal cholesterol storage disorder, also triggers similar pathologic abnormalities, this review combines the knowledge obtained from the Niemann-Pick studies and lysosomotropic compounds. Taken together, this review is aimed at allowing readers a better understanding of subcellular alterations mediated by lysosomotropic drugs, as well as their potential

  8. Cellular events and biomarkers of wound healing

    Directory of Open Access Journals (Sweden)

    Shah Jumaat Mohd. Yussof

    2012-01-01

    Full Text Available Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs and the tissue inhibitors of these metalloproteinases (TIMPs. MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.

  9. Amplitude metrics for cellular circadian bioluminescence reporters.

    Science.gov (United States)

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  10. Viscoelastic properties of cellular polypropylene ferroelectrets

    Science.gov (United States)

    Gaal, Mate; Bovtun, Viktor; Stark, Wolfgang; Erhard, Anton; Yakymenko, Yuriy; Kreutzbruck, Marc

    2016-03-01

    Viscoelastic properties of cellular polypropylene ferroelectrets (PP FEs) were studied at low frequencies (0.3-33 Hz) by dynamic mechanical analysis and at high frequencies (250 kHz) by laser Doppler vibrometry. Relaxation behavior of the in-plane Young's modulus ( Y11 ' ˜ 1500 MPa at room temperature) was observed and attributed to the viscoelastic response of polypropylene matrix. The out-of-plane Young's modulus is very small ( Y33 ' ≈ 0.1 MPa) at low frequencies, frequency- and stress-dependent, evidencing nonlinear viscoelastic response of PP FEs. The high-frequency mechanical response of PP FEs is shown to be linear viscoelastic with Y33 ' ≈ 0.8 MPa. It is described by thickness vibration mode and modeled as a damped harmonic oscillator with one degree of freedom. Frequency dependence of Y33 * in the large dynamic strain regime is described by the broad Cole-Cole relaxation with a mean frequency in kHz range attributed to the dynamics of the air flow between partially closed air-filled voids in PP FEs. Switching-off the relaxation contribution causes dynamic crossover from the nonlinear viscoelastic regime at low frequencies to the linear viscoelastic regime at high frequencies. In the small strain regime, contribution of the air flow seems to be insignificant and the power-law response, attributed to the mechanics of polypropylene cell walls and closed air voids, dominates in a broad frequency range. Mechanical relaxation caused by the air flow mechanism takes place in the sound and ultrasound frequency range (10 Hz-1 MHz) and, therefore, should be taken into account in ultrasonic applications of the PP FEs deal with strong exciting or receiving signals.

  11. Cysteinyl-Leukotriene Receptors and Cellular Signals

    Directory of Open Access Journals (Sweden)

    G. Enrico Rovati

    2007-01-01

    Full Text Available Cysteinyl-leukotrienes (cysteinyl-LTs exert a range of proinflammatory effects, such as constriction of airways and vascular smooth muscle, increase of endothelial cell permeability leading to plasma exudation and edema, and enhanced mucus secretion. They have proved to be important mediators in asthma, allergic rhinitis, and other inflammatory conditions, including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. The classification into subtypes of the cysteinyl-LT receptors (CysLTRs was based initially on binding and functional data, obtained using the natural agonists and a wide range of antagonists. CysLTRs have proved remarkably resistant to cloning. However, in 1999 and 2000, the CysLT1R and CysLT2R were successfully cloned and both shown to be members of the G-protein coupled receptors (GPCRs superfamily. Molecular cloning has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Recombinant CysLTRs couple to the Gq/11 pathway that modulates inositol phospholipids hydrolysis and calcium mobilization, whereas in native systems, they often activate a pertussis toxin-insensitive Gi/o-protein, or are coupled promiscuously to both G-proteins. Interestingly, recent data provide evidence for the existence of an additional receptor subtype that seems to respond to both cysteinyl-LTs and uracil nucleosides, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Finally, a cross-talk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize recent data derived from studies on the molecular and cellular pharmacology of CysLTRs.

  12. The cellular composition of the marsupial neocortex.

    Science.gov (United States)

    Seelke, Adele M H; Dooley, James C; Krubitzer, Leah A

    2014-07-01

    In the current investigation we examined the number and proportion of neuronal and non-neuronal cells in the primary sensory areas of the neocortex of a South American marsupial, the short-tailed opossum (Monodelphis domestica). The primary somatosensory (S1), auditory (A1), and visual (V1) areas were dissected from the cortical sheet and compared with each other and the remaining neocortex using the isotropic fractionator technique. We found that although the overall sizes of V1, S1, A1, and the remaining cortical regions differed from each other, these divisions of the neocortex contained the same number of neurons, but the remaining cortex contained significantly more non-neurons than the primary sensory regions. In addition, the percent of neurons was higher in A1 than in the remaining cortex and the cortex as a whole. These results are similar to those seen in non-human primates. Furthermore, these results indicate that in some respects, such as number of neurons, the neocortex is homogenous across its extent, whereas in other aspects of organization, such as non-neuronal number and percentage of neurons, there is non-uniformity. Whereas the overall pattern of neuronal distribution is similar between short-tailed opossums and eutherian mammals, short-tailed opossum have a much lower cellular and neuronal density than other eutherian mammals. This suggests that the high neuronal density cortices of mammals such as rodents and primates may be a more recently evolved characteristic that is restricted to eutherians, and likely contributes to the complex behaviors we see in modern mammals.

  13. Influence of income on tertiary students acquisition of cellular products

    Directory of Open Access Journals (Sweden)

    G. A.P Drotsky

    2007-12-01

    Full Text Available Purpose: The purpose of the article is to determine whether there are any differences between high and low-income group students in their selection of a cellular phone brand or network operator. Design/Methodology/Approach: Four hypotheses are set to determine if there are any significant differences between the two income groups in current decision-making. It is established that there exist no significant difference between high and low-income students in their selection of cellular phones and network operators. The levels of agreement or disagreement on various statements do, however, give an indication of the importance that students place on aspects that they view as important when acquiring a cellular phone or network operator.Findings: In the article, it is established that no significant differences exist between the two income groups. The levels of agreement or disagreement indicate the importance that subscription method, social value, service quality and branding has on student decision-making. Implications: The article provides a better understanding of the influence that income plays in student's decision-making in acquiring cellular products and services. Possible future research in student cellular usage can be guided through the information obtained in this article. Originality/Value: The article provides information to cellular network operators, service providers and cellular phone manufactures regarding the influence of income on students' acquisition of cellular products and services. Information from the article can assist in the establishment of marketing plans for the student market by these role players.

  14. An algebraic study of unitary one dimensional quantum cellular automata

    CERN Document Server

    Arrighi, P

    2005-01-01

    We provide algebraic characterizations of unitary one dimensional quantum cellular automata. We do so both by algebraizing existing decision procedures, and by adding constraints into the model which do not change the quantum cellular automata's computational power. The configurations we consider have finite but unbounded size.

  15. Infinite Time Cellular Automata: A Real Computation Model

    CERN Document Server

    Givors, Fabien; Ollinger, Nicolas

    2010-01-01

    We define a new transfinite time model of computation, infinite time cellular automata. The model is shown to be as powerful than infinite time Turing machines, both on finite and infinite inputs; thus inheriting many of its properties. We then show how to simulate the canonical real computation model, BSS machines, with infinite time cellular automata in exactly \\omega steps.

  16. THE COMPLEXITY OF LIMIT LANGUAGES OF CELLULAR AUTOMATA: AN EXAMPLE

    Institute of Scientific and Technical Information of China (English)

    XIE Huimin

    2001-01-01

    The limit languages of cellular automata are defined and theircomplexity are discussed. New tools, which include skew evolution, skew periodic string, trace string, some algebraic calculation method, and restricted membership problem, are developed through a discussion focusing on the limit language of an elementary cellular automata of rule 94.It is proved that this language is non-regular.

  17. Cellularity of diagram algebras as twisted semigroup algebras

    CERN Document Server

    Wilcox, Stewart

    2010-01-01

    The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cellularity of these algebras.

  18. Teen Perceptions of Cellular Phones as a Communication Tool

    Science.gov (United States)

    Jonas, Denise D.

    2011-01-01

    The excitement and interest in innovative technologies has spanned centuries. However, the invention of the cellular phone has surpassed previous technology interests, and changed the way we communicate today. Teens make up the fastest growing market of current cellular phone users. Consequently, the purpose of this study was to determine teen…

  19. Cellular phones: to talk or not to talk.

    Science.gov (United States)

    Munshi, Anusheel

    2011-01-01

    Cellular phone use has exponentially increased in recent years. There have been some reports of an association of use of these phones with brain tumours. This article gives a summary view of the possible effects related to cellular phone use. It further discusses if we need to observe precautions while using these devices.

  20. Fluorescopic evaluation of protein-lipid relations in cellular signalling.

    NARCIS (Netherlands)

    Pap, E.H.W.

    1994-01-01

    IntroductionCellular communication is partly mediated through the modulation of protein activity, structure and dynamics by lipids. In contrast to the biochemical aspects of lipid signalling, relatively little is known about the physical properties of the "signal" lipids (lipids involved in cellular

  1. 47 CFR 22.911 - Cellular geographic service area.

    Science.gov (United States)

    2010-10-01

    ... PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.911 Cellular geographic service area. The... Watts (2) The distance from a cell transmitting antenna located in the Gulf of Mexico Service Area (GMSA... for unserved area applications proposing a cell with an ERP not exceeding 10 Watts, the value for...

  2. Insights Into Quantitative Biology: analysis of cellular adaptation

    OpenAIRE

    Agoni, Valentina

    2013-01-01

    In the last years many powerful techniques have emerged to measure protein interactions as well as gene expression. Many progresses have been done since the introduction of these techniques but not toward quantitative analysis of data. In this paper we show how to study cellular adaptation and how to detect cellular subpopulations. Moreover we go deeper in analyzing signal transduction pathways dynamics.

  3. Application of Digital Cellular Radio for Mobile Location Estimation

    Directory of Open Access Journals (Sweden)

    Farhat Anwar

    2012-08-01

    Full Text Available The capability to locate the position of mobiles is a prerequisite to implement a wide range of evolving ITS services. Radiolocation has the potential to serve a wide geographical area. This paper reports an investigation regarding the feasibility of utilizing cellular radio for the purpose of mobile location estimation. Basic strategies to be utilized for location estimation are elaborated. Two possible approaches for cellular based location estimation are investigated with the help of computer simulation. Their effectiveness and relative merits and demerits are identified. An algorithm specifically adapted for cellular environment is reported with specific features where mobiles, irrespective of their numbers, can locate their position without adversely loading the cellular system.Key Words: ITS, GSM, Cellular Radio, DRGS, GPS.

  4. Additional force field in cooling process of cellular Al alloy

    Institute of Scientific and Technical Information of China (English)

    郑明军; 何德坪; 戴戈

    2002-01-01

    The foaming process of Al alloy is similar to that of Al, but there is a solid-liquid state zone in the solidification process of cellular Al alloy which does not exist in the case of Al. In the unidirectional solidification of cellular Al alloy, the proportion of the solid phase gradually reduces from the solid front to the liquid front. This will introduce a force and result in a serious quick shrinkage. By the mathematic and physical mode, the solidification of the cellular Al alloy is studied. The data measured by experiment are close to the result calculated by the mode. This kind of shrinkage can be solved by suitable cooling method in appropriate growth stage. The compressive strength of the cellular Al alloy made by this way is 40% higher than that of cellular Al.

  5. Atypical cellular blue nevus or malignant blue nevus?*

    Science.gov (United States)

    Daltro, Luise Ribeiro; Yaegashi, Lygia Bertalha; Freitas, Rodrigo Abdalah; Fantini, Bruno de Carvalho; Souza, Cacilda da Silva

    2017-01-01

    Blue nevus is a benign melanocytic lesion whose most frequent variants are dendritic (common) blue nevus and cellular blue nevus. Atypical cellular blue nevus presents an intermediate histopathology between the typical and a rare variant of malignant blue nevus/melanoma arising in a cellular blue nevus. An 8-year-old child presented a pigmented lesion in the buttock since birth, but with progressive growth in the last two years. After surgical excision, histopathological examination revealed atypical cellular blue nevus. Presence of mitoses, ulceration, infiltration, cytological atypia or necrosis may occur in atypical cellular blue nevus, making it difficult to differentiate it from melanoma. The growth of blue nevus is unusual and considered of high-risk for malignancy, being an indicator for complete resection and periodic follow-up of these patients. PMID:28225968

  6. Microfluidic Devices for the Measurement of Cellular Secretion

    Science.gov (United States)

    Schrell, Adrian M.; Mukhitov, Nikita; Yi, Lian; Wang, Xue; Roper, Michael G.

    2016-06-01

    The release of chemical information from cells and tissues holds the key to understanding cellular behavior and dysfunction. The development of methodologies that can measure cellular secretion in a time-dependent fashion is therefore essential. Often these measurements are made difficult by the high-salt conditions of the cellular environment, the presence of numerous other secreted factors, and the small mass samples that are produced when frequent sampling is used to resolve secretory dynamics. In this review, the methods that we have developed for measuring hormone release from islets of Langerhans are dissected to illustrate the practical difficulties of studying cellular secretions. Other methods from the literature are presented that provide alternative approaches to particularly challenging areas of monitoring cellular secretion. The examples presented in this review serve as case studies and should be adaptable to other cell types and systems for unique applications.

  7. The number of simple modules of a cellular algebra

    Institute of Scientific and Technical Information of China (English)

    LI Weixia; XI Changchang

    2005-01-01

    Let n be a natural number, and let A be an indecomposable cellular algebra such that the spectrum of its Cartan matrix C is of theform {n, 1,..., 1}. In general, not every natural number could be the number of non-isomorphic simple modules over such a cellular algebra. Thus, two natural questions arise: (1) which numbers could be the number of non-isomorphic simple modules over such a cellular algebra A ? (2) Given such a number, is there a cellular algebra such that its Cartan matrix has the desired property ? In this paper, we shall completely answer the first question, and give a partial answer to the second question by constructing cellular algebras with the pre-described Cartan matrix.

  8. Effective electromechanical properties of cellular piezoelectret: A review

    Institute of Scientific and Technical Information of China (English)

    Yong-Ping Wan; Zheng Zhong

    2012-01-01

    Due to the large quasi-piezoelectric d33 coefficient in the film thickness direction,cellular piezoelectret has emerged as a new kind of compliant electromechanical transducer materials.The macroscopic piezoelectric effect of cellular piezoelectret is closely related to the void microstructures as well as the material constants of host polymer.Complex void microstructures are usually encountered in the optimum design of cellular piezoelectret polymer film with advanced piezoelectric properties.Analysis of the effective electromechanical properties is generally needed.This article presents an overview of the recent progress on theoretical models and numerical simulation for the effective electromechanical properties of cellular piezoelectret.Emphasis is placed on our own works of cellular piezoelectret published in past several years.

  9. Heat Shock Enhances the Expression of the Human T Cell Leukemia Virus Type-I (HTLV-I) Trans-Activator (Tax) Antigen in Human HTLV-I Infected Primary and Cultured T Cells.

    Science.gov (United States)

    Kunihiro, Marie; Fujii, Hideki; Miyagi, Takuya; Takahashi, Yoshiaki; Tanaka, Reiko; Fukushima, Takuya; Ansari, Aftab A; Tanaka, Yuetsu

    2016-07-11

    The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4⁺ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo.

  10. Transactivation of repair genes by BRCA1.

    Science.gov (United States)

    El-Deiry, Wafik S

    2002-01-01

    Recent studies have identified a link between the BRCA1 tumor suppressor and transcriptional regulation of a group of genes involved in nucleotide excision repair. There is some controversy regarding the precise mechanism of upregulation of XPE DDB2 or XPC by BRCA1, with some evidence suggesting that p53 is involved in their regulation. Some evidence suggests BRCA1 may stabilize p53 and direct regulation of DNA repair genes, although how BRCA1 stabilizes p53 remains unclear and whether BRCA1 can upregulate DNA repair genes in a p53-independent manner remains a possibility. A transcriptional component to the action of BRCA1 and involvement of XP genes brings up new and interesting questions about breast cancer development and therapy.

  11. Molecular and cellular limits to somatosensory specificity

    Directory of Open Access Journals (Sweden)

    Viana Félix

    2008-04-01

    involved primarily in nerve impulse generation can also influence the gating of transducing channels, dramatically modifying their activation profile. Thus, we propose that the capacity exhibited by the different functional types of somatosensory receptor neurons to preferentially detect and encode specific stimuli into a discharge of nerve impulses, appears to result of a characteristic combinatorial expression of different ion channels in each neuronal type that finally determines their transduction and impulse firing properties. Transduction channels don't operate in isolation and their cellular context should also be taken into consideration to fully understand their function. Moreover, the inhomogeneous distribution of transduction and voltage-gated channels at soma, axonal branches and peripheral endings of primary sensory neurons influences the characteristics of the propagated impulse discharge that encodes the properties of the stimulus. Alteration of this concerted operation of ion channels in pathological conditions may underlie the changes in excitability accompanying peripheral sensory neuron injuries.

  12. Characterization of cellular titanium for biomedical applications

    Science.gov (United States)

    Hrabe, Nikolas Wilson

    By controlling structural features (relative density, pore size, strut size) of cellular titanium (also known as porous titanium), the mechanical properties can be optimized to reduce the effects of stress shielding currently observed in load-bearing bone replacement implants. Thermal gravimetric analysis of a sacrificial scaffold system lead to important processing modifications in an attempt to meet chemistry requirements for surgical grade titanium not met in previous work. Despite these modifications chemistry did not meet requirements for carbon, nitrogen, or oxygen. Commercially pure titanium (CPTi) porous structures were made over a range of relative densities using laser engineered net shaping (LENS). From monotonic compression tests, yield strength and elastic modulus in the range of bone were achieved but did not scale with relative density as predicted by the Gibson-Ashby analytical model. Compression-compression fatigue resistance was high, as no failures were observed for test stresses up to 133% yield strength, which is thought to be influenced by the dense exterior shell of the samples. Structures were also fabricated over a range of relative densities using selective electron beam melting (SEBM or EBM), and structural, mechanical, and in-vitro properties were measured for three materials (as-built Ti-6A1-4V, Ti-6A1-4V after hot isostatic pressing (HIPing), and as-built CPTi). For structures of all three materials, yield strength and elastic modulus was within the range for bone. Numerical modeling results suggested cell shape and sintered particles on strut surfaces affect the scaling of elastic modulus with relative density and lead to the observed difference from the Gibson-Ashby model. Normalized fatigue strengths at 106 cycles ranged from 0.150.25 for as-built Ti-6A1-4V structures, which is lower than expected. Results for HIPed Ti-6A1-4V structures and CPTi structures suggest that stress concentrations from closed porosity within struts as well

  13. A cellular mechanism for system memory consolidation

    Directory of Open Access Journals (Sweden)

    Michiel W. H. Remme

    2014-03-01

    Full Text Available Declarative memories initially depend on the hippocampus. Over a period of weeks to years, however, these memories become hippocampus-independent through a process called system memory consolidation. The underlying cellular mechanisms are unclear. Here, we suggest a consolidation mechanism, which is based on STDP and a ubiquitous anatomical network motif. As a first step in the memory consolidation process, we consider pyramidal neurons in the hippocampal CA1 area. These cells receive Schaffer collateral (SC input from the CA3 area at the proximal dendrites, and perforant path (PP input from entorhinal cortex at the distal dendrites. Both pathways carry sensory information that has been processed by cortical networks and that enters the hippocampus through the entorhinal cortex. Hence, information from entorhinal cortex reaches CA1 cells through an indirect pathway (via CA3 and SC and a direct pathway (PP. Memories are assumed to be initially stored in the recurrent CA3 network and the SC synapses during the awake, exploratory state. During a subsequent consolidation phase (during slow-wave sleep SC-dependent memories are partly transferred to the PP synapses. Through mathematical analysis and numerical simulations we show that this consolidation process occurs as a natural result from the combination of (1 STDP at PP synapses and (2 the temporal correlations between SC and PP activities, since the (indirect SC input is delayed compared to the (direct PP input by about 5-10 ms. With a detailed compartmental model we then show that the spatial tuning of a CA1 cell is copied from the proximal SC-synaptic inputs to the distal PP-inputs. Next, we repeated the network motif across many levels in a hierarchical network model: each direct connection at one level is part of the indirect pathway of the next level. Analysis and simulations of this hierarchical system demonstrate that memories gradually move from hippocampus into neocortex. Moreover, the

  14. The Relationship between Cellular Phone Use, Performance, and Reaction Time among College Students: Implications for Cellular Phone Use while Driving

    Science.gov (United States)

    Szyfman, Adam; Wanner, Gregory; Spencer, Leslie

    2003-01-01

    Two studies were performed to determine the relationship between cellular phone use and either reaction time or performance among college students. In the first study 60 undergraduates completed a computerized reaction time test. Mean reaction times were significantly higher when participants were talking on a cellular phone, either handheld or on…

  15. Cellular phones and traffic accidents: an epidemiological approach.

    Science.gov (United States)

    Violanti, J M; Marshall, J R

    1996-03-01

    Using epidemiological case-control design and logistic regression techniques, this study examined the association of cellular phone use in motor vehicles and traffic accident risk. The amount of time per month spent talking on a cellular phone and 18 other driver inattention factors were examined. Data were obtained from: (1) a case group of 100 randomly selected drivers involved in accidents within the past 2 years, and (2) a control group of 100 randomly selected licensed drivers not involved in accidents within the past 10 years. Groups were matched on geographic residence. Approximately 13% (N = 7) of the accident and 9% (N = 7) of the non-accident group reported use of cellular phones while driving. Data was obtained from Department of Motor Vehicles accident reports and survey information from study subjects. We hypothesized that increased use of cellular phones while driving was associated with increased odds of a traffic accident. Results indicated that talking more than 50 minutes per month on cellular phones in a vehicle was associated with a 5.59-fold increased risk in a traffic accident. The combined use of cellular phones and motor and cognitive activities while driving were also associated with increased traffic accident risk. Readers should be cautioned that this study: (1) consists of a small sample, (2) reveals statistical associations and not causal relationships, and (3) does not conclude that talking on cellular phones while driving is inherently dangerous.

  16. Cultural Diagnosis: An Empirical Investigation of Cellular Industry of Pakistan

    Directory of Open Access Journals (Sweden)

    Qamar Ali

    2011-11-01

    Full Text Available This study describes research in five cellular companies operating in Pakistan, aimed at identifying their current and preferred organizational culture. Using Quinn and Rohrbaugh (1983 competing values framework, the overall cultural profiles and dominant characteristics of the organizations and industry are determined through a personally administered survey employing the Organizational Culture Assessment Instrument (OCAI. The results indicate that hierarchy culture is dominating in cellular industry, whereas the clan is found to be the most preferred cultural archetype in majority of cellular companies. This indicates a misalignment between what employees think is needed and what is perceived to exist.

  17. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis.

    Science.gov (United States)

    Cornaby, Caleb; Tanner, Anne; Stutz, Eric W; Poole, Brian D; Berges, Bradford K

    2016-03-01

    Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection.

  18. Cellular and Matrix Contributions to Tissue Construct Stiffness Increase with Cellular Concentration

    Science.gov (United States)

    Marquez, J. Pablo; Genin, Guy M.; Pryse, Kenneth M.; Elson, Elliot L.

    2013-01-01

    The mechanics of bio-artificial tissue constructs result from active and passive contributions of cells and extracellular matrix (ECM). We delineated these for a fibroblast-populated matrix (FPM) consisting of chick embryo fibroblast cells in a type I collagen ECM through mechanical testing, mechanical modeling, and selective biochemical elimination of tissue components. From a series of relaxation tests, we found that contributions to overall tissue mechanics from both cells and ECM increase exponentially with the cell concentration. The force responses in these relaxation tests exhibited a logarithmic decay over the 3600 second test duration. The amplitudes of these responses were nearly linear with the amplitude of the applied stretch. The active component of cellular forces rose dramatically for FPMs containing higher cell concentrations. PMID:16874557

  19. p53K370位乙酰化调控紫外线诱导的p53活化及细胞凋亡反应%Acetylation at K370 is critical for mediating p53 transactivation and apoptotic response under UVB exposure

    Institute of Scientific and Technical Information of China (English)

    董雯; 胡美茹; 高明; 郭宁; 宋伦

    2011-01-01

    Objective To explore the role of p53 acetylation at Lys370 in mediating p53 transactivation and its proapoptotic effect under UVB exposure. Methods Wild type (wt) and p53 -/- murine embryonic fibroblasts (MEFs) were exposed to UVB. Lucfferase assay was used to detect the transactivation of p53. The accumulation and acetylation of p53 at Lys370 in the UVB response were tested by Western-blot assay. p53 -/- MEFs were transfected with the plasmids containing wild-type p53 (wt p53) or p53 with a Lys370Arg mutation (K370R) generated by mutagenic PCR and exposed to UVB,then the transactivation of p53 was detected by the lucfferase assay, and the apoptosis of transfected cells was determined by a flow cytometric assay. Results Both dose- and time-dependent experiments indicated a significant increase of p53 transactivity under UVB exposure, along with the strong induction of p53 acetylation at Lys370 under the same conditions. Abrogation of p53 acetylation at Lys370 by mutagenesis did not affect p53 protein stability but remarkably decreased UVB-induced transactivation of p53 and the apoptotic response. Conclusion p53 Acetylation at Lys370 plays an important role in the transactivation of p53 and the induced apoptotic response under UVB exposure.%目的 探讨p53 K370位乙酰化修饰反应在紫外线B(UVB)诱导p53活化及细胞凋亡反应中的作用.方法 体外培养野生型和p53基因缺陷型小鼠胚胎成纤维细胞(wt-MEFs和p53-/-MEFs).以UVB为刺激源,双荧光素酶报告基因法分析wt-MEFs细胞中p53的转录诱导活化情况;Western印迹检测UVB诱导p53在K370位发生乙酰化修饰反应及p53总蛋白表达情况;构建p53点突变体K370R并在p53-/-MEFs细胞中比较UVB诱导wt-p53和p53 K370R的转录活化情况及野生型和突变体蛋白介导细胞凋亡反应的差异.结果 UVB刺激wt-MEFs细胞后p53转录激活活性呈剂量和时间依赖性明显上调;同样条件下UVB能够有效诱导p53在K370位

  20. Cellular modelling using P systems and process algebra

    Institute of Scientific and Technical Information of China (English)

    Francisco J.Romero-Campero; Marian Gheorghe; Gabriel Ciobanu; John M. Auld; Mario J. Pérez-Jiménez

    2007-01-01

    In this paper various molecular chemical interactions are modelled under different computational paradigms. P systems and π-calculus are used to describe intra-cellular reactions like protein-protein interactions and gene regulation control.

  1. Effects of cellular fine structure on scattered light pattern.

    Science.gov (United States)

    Liu, Caigen; Capjack, Clarence E

    2006-06-01

    Biological cells are complex in both morphological and biochemical structure. The effects of cellular fine structure on light scattered from cells are studied by employing a three-dimensional code named AETHER which solves the full set of Maxwell equations by using the finite-difference time-domain method. It is shown that changes in cellular fine structure can cause significant changes in the scattered light pattern over particular scattering angles. These changes potentially provide the possibility for distinguishability of cellular intrastructures. The effects that features of different intrastructure have on scattered light are discussed from the viewpoint of diagnosing cellular fine structure. Finally, we discuss scattered light patterns for lymphocyte-like cells and basophil-like cells.

  2. Changes of cellular fatty acids of soil Actinobacteria producing antibiotics

    OpenAIRE

    LIPENSKÁ, Ivana

    2010-01-01

    Changes of cellular fatty acids in membrane of Actinobacteria. Changes of fatty acids are significant biomarkers of changing conditions of surroundings. This can also indicate production of antibiotics along with production of atypical fatty acids.

  3. Multicarrier Block-Spread CDMA for Broadband Cellular Downlink

    NARCIS (Netherlands)

    Petré, F.; Leus, G.; Moonen, M.; De Man, H.

    2004-01-01

    Effective suppression of multiuser interference (MUI) and mitigation of frequency-selective fading effects within the complexity constraints of the mobile constitute major challenges for broadband cellular downlink transceiver design. Existing wideband direct-sequence (DS) code division multiple acc

  4. Symposium on molecular and cellular mechanisms of mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  5. Material and mechanical factors:new strategy in cellular neurogenesis

    Institute of Scientific and Technical Information of China (English)

    Hillary Stoll; Il Keun Kwon; Jung Yul Lim

    2014-01-01

    Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharma-cological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracellular factors, including material and mechanical cues, also have a strong potential to induce cellular neurogenesis. This article will review recent data on the material (chemical patterning, micro/nano-topography, carbon nanotube, graphene) and mechanical (static cue from substrate stiffness, dynamic cue from stretch and lfow shear) stimulations of cellular neuro-genesis. These approaches may provide new neural regenerative medicine protocols. Scaffolding material templates capable of triggering cellular neurogenesis can be explored in the presence of neurogenesis-stimulatory mechanical environments, and also with conventional soluble factors, to enhance axonal growth and neural network formation in neural tissue engineering.

  6. Influence of corona charging in cellular polyethylene film

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo [Instituto Tecnologico de la Energia (ITE), Av. Juan de la Cierva 24, Parque Tecnologico de Valencia, 46980 Paterna-Valencia (Spain); Llovera Segovia, Pedro, E-mail: gustavo.ortega@ite.es [Instituto de TecnologIa Electrica - Universitat Politecnica de Valencia, Camino de Vera s/n 46022-Valencia (Spain)

    2011-06-23

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  7. Ito equations out of domino cellular automaton with efficiency parameters

    CERN Document Server

    Czechowski, Zbigniew

    2011-01-01

    Ito equations are derived for simple stochastic cellular automaton with parameters and compared with results obtained from the histogram method. Good agreement for various parameters supports wide applicability of the Ito equation as a macroscopic model.

  8. Cellular Phone Towers, Towers, Published in 2008, Duchesne County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Cellular Phone Towers dataset, was produced all or in part from Other information as of 2008. It is described as 'Towers'. Data by this publisher are often...

  9. Cellular modifications and interventions for the damaged heart

    NARCIS (Netherlands)

    Engels, M.C.

    2016-01-01

    The aim of this thesis was to explore cellular modification processes associated with heart disease, as well as harnessing its potential for treatment and prevention of detrimental electrophysiological consequences of heart disease. For regenerative cell replacement therapies, optimal differentiatio

  10. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  11. Cellular Alterations in Shock and Ischemia and Their Correction.

    Science.gov (United States)

    Chaudry, Irshad H.

    1985-01-01

    Reviews recent advances in cellular alterations in shock to help physicians and physiologists keep abreast of current research. Specifically addresses changes occurring as a result of hemorrhagic shock and possible ways such lesions could be corrected. (DH)

  12. Cellular non-deterministic automata and partial differential equations

    Science.gov (United States)

    Kohler, D.; Müller, J.; Wever, U.

    2015-09-01

    We define cellular non-deterministic automata (CNDA) in the spirit of non-deterministic automata theory. They are different from the well-known stochastic automata. We propose the concept of deterministic superautomata to analyze the dynamical behavior of a CNDA and show especially that a CNDA can be embedded in a deterministic cellular automaton. As an application we discuss a connection between certain partial differential equations and CNDA.

  13. Passive Matrix Organic Electroluminescent Display for 3G Cellular Phone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major features of the display technologies for 3G cellular phone are reviewed. The comparison between their potential candidates for 3G cellular phone is given, and a detailed discussion is made on passive matrix organic electroluminescent display technology. A novel method to improve display contrast ratio is presented. Finally several 3G phone set prototypes with OLED display panels are given as well as the market forecast

  14. A Nanocrystal Sensor for Luminescence Detection of Cellular Forces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina; Chou, Jonathan; Lutker, Katie; Werb, Zena; Alivisatos, Paul

    2011-09-29

    Quantum dots have been used as bright fluorescent tags with high photostability to probe numerous biological systems. In this work we present the tetrapod quantum dot as a dynamic, next-generation nanocrystal probe that fluorescently reports cellular forces with spatial and temporal resolution. Its small size and colloidal state suggest that the tetrapod may be further developed as a tool to measure cellular forces in vivo and with macromolecular spatial resolution.

  15. EVOLUTION COMPLEXITY OF THEELEMENTARY CELLULAR AUTOMATON OF RULE 22

    Institute of Scientific and Technical Information of China (English)

    WangYi; JiangZhisong

    2002-01-01

    Cellular automata are the discrete dynamical systems of simple construction but with complex and varied behaviors. In this paper, the elementary cellular automaton of rule 22 is studied by the tools of formal language theory and symbolic dynamics. Its temporal evolution orbits are coarse-grained into evolution sequences and the evolution languages are defined. It is proved that for every n≥2 its width n evolution language is not regular.

  16. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...... by unsupervised adaptation of an image segmentation cellular network. The learning rule is applied to adaptive segmentation of satellite imagery...

  17. Uncovering the footprints of malicious traffic in cellular data networks

    OpenAIRE

    Raghuramu, A; Zang, H; Chuah, CN

    2015-01-01

    © Springer International Publishing Switzerland 2015. In this paper, we present a comprehensive characterization of malicious traffic generated by mobile devices using Deep Packet Inspection (DPI) records and security event logs from a large US based cellular provider network. Our analysis reveals that 0.17% of mobile devices in the cellular network are affected by security threats. This proportion, while small, is orders of magnitude higher than the last reported (in 2013) infection rate of ...

  18. SEM++: A particle model of cellular growth, signaling and migration

    Science.gov (United States)

    Milde, Florian; Tauriello, Gerardo; Haberkern, Hannah; Koumoutsakos, Petros

    2014-06-01

    We present a discrete particle method to model biological processes from the sub-cellular to the inter-cellular level. Particles interact through a parametrized force field to model cell mechanical properties, cytoskeleton remodeling, growth and proliferation as well as signaling between cells. We discuss the guiding design principles for the selection of the force field and the validation of the particle model using experimental data. The proposed method is integrated into a multiscale particle framework for the simulation of biological systems.

  19. The cellular mobile telephone: social perception and real facts

    Directory of Open Access Journals (Sweden)

    Pedro Javier Galache Ríos

    2005-12-01

    Full Text Available The cellular mobil telephone has evolved, in a very short period of time, from a technology restricted and scarcely used to the universalitation of its use by all the societies.The social perception that cellular mobil telephone represents a public health risk has created the need of developing a great deal of scientific/tecnics studies and also the implementation of legislation that gaaranties the development and use of information with the uppermost aim of public health protection.

  20. Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0423 TITLE: Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy PRINCIPAL INVESTIGATOR: Smita...SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0423 Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy 5b. GRANT NUMBER 5c...immune checkpoint blockade, local CTLA-4 modulation, prostate cancer immunotherapy , prostatic acid phosphatase (PAP), RNA-based vaccines 16