WorldWideScience

Sample records for cellular structures

  1. Cellular automata: structures

    OpenAIRE

    Ollinger, Nicolas

    2002-01-01

    Jury : François Blanchard (Rapporteur), Marianne Delorme (Directeur), Jarkko Kari (Président), Jacques Mazoyer (Directeur), Dominique Perrin, Géraud Sénizergues (Rapporteur); Cellular automata provide a uniform framework to study an important problem of "complex systems" theory: how and why do system with a easily understandable -- local -- microscopic behavior can generate a more complicated -- global -- macroscopic behavior? Since its introduction in the 40s, a lot of work has been done to ...

  2. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  3. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  4. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    Science.gov (United States)

    Habibi, Meisam K.; Lu, Yang

    2014-07-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  5. Light weight cellular structures based on aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, O. [Indian Inst. of Tech., Kanpur (India); Embury, J.D.; Sinclair, C. [McMaster Univ., Hamilton, ON (Canada); Sang, H. [Queen`s Univ., Kingston, ON (Canada); Silvetti, P. [Cordoba Univ. Nacional (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales

    1997-02-01

    An interesting form of lightweight material which has emerged in the past 2 decades is metallic foam. This paper deals with the basic concepts of making metallic foams and a detailed study of foams produced from Al-SiC. In addition, some aspects of cellular solids based on honeycomb structures are outlined including the concept of producing both two-phase foams and foams with composite walls.

  6. Elements of the Cellular Metabolic Structure

    Directory of Open Access Journals (Sweden)

    Ildefonso Martínez De La Fuente

    2015-04-01

    Full Text Available A large number of studies have shown the existence of metabolic covalent modifications in different molecular structures, able to store biochemical information that is not encoded by the DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes. Recently, the emergence of Hopfield-like attractor dynamics has been observed in the self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by the specific input stimuli. The Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in the covalent post-translational modulation so that determined functional memory can be embedded in multiple stable molecular marks. Both the metabolic dynamics governed by Hopfield-type attractors (functional processes and the enzymatic covalent modifications of determined molecules (structural dynamic processes seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory. Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory and an essentially conservative system (genetic memory. The molecular information of both systems seems to coordinate the physiological development of the whole cell.

  7. [Cellular structure of propionibacteria during their multiplication].

    Science.gov (United States)

    Sobczak, E; Kocoń, J

    1983-01-01

    The aim of the present study was to determine the structure of bacterial cells from Propionibacterium genus as well as their structure during the cellular division. On the basis of the observations made in the electron transmission microscope, in uranyl-acetates-tained preparations of ultra-thin specimens of bacteria, it was stated that propionic bacteria appeared in a shape of short rods, possessing regular profiles of cell walls as opposed to Gram-negative bacteria with a very creased edge line. Besides, it was observed that division of cells had place by formation of septum, most probably preceded by the division of mezosome, which is a signal for creating the divisional wall. In the conducted studies, the following phenomena were started: presence of membraneous structure of mezosomes, which is linked with the chain of circular DNA in bacterial cell, appearance of numerous ribosomes in the regions of tangled threads of nucleic acids, and existence of other undefinite elements. Mezosome present in the cell of propionic bacteria is probably linked with the cell wall at least in two places and on the surface of external cell wall at the site of its linking; it causes the change in electronic density, demonstrated by the undefined holes or scars in cell wall. This finding gives the possibility of distinguishing this genus of Propionibacterium, in the respect of morphology, from other bacteria what, in the opinion of the authors, is a new achievement in the studies on the structure of propionic bacteria.

  8. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  9. Structural modeling of sandwich structures with lightweight cellular cores

    Institute of Scientific and Technical Information of China (English)

    T. Liu; Z. C. Deng; T. J. Lu

    2007-01-01

    An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores.Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model cangive acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores.

  10. Structural modeling of sandwich structures with lightweight cellular cores

    Science.gov (United States)

    Liu, T.; Deng, Z. C.; Lu, T. J.

    2007-10-01

    An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores. Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model can give acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores.

  11. Effects of cellular fine structure on scattered light pattern.

    Science.gov (United States)

    Liu, Caigen; Capjack, Clarence E

    2006-06-01

    Biological cells are complex in both morphological and biochemical structure. The effects of cellular fine structure on light scattered from cells are studied by employing a three-dimensional code named AETHER which solves the full set of Maxwell equations by using the finite-difference time-domain method. It is shown that changes in cellular fine structure can cause significant changes in the scattered light pattern over particular scattering angles. These changes potentially provide the possibility for distinguishability of cellular intrastructures. The effects that features of different intrastructure have on scattered light are discussed from the viewpoint of diagnosing cellular fine structure. Finally, we discuss scattered light patterns for lymphocyte-like cells and basophil-like cells.

  12. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  13. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    Science.gov (United States)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  14. Control of Cellular Structural Networks Through Unstructured Protein Domains

    Science.gov (United States)

    2016-07-01

    structural and mechanical networks in cells. The research plan seeks to determine the role of molecular­scale steric forces on the assembly, mechanics...Distribution Unlimited UU UU UU UU 01-07-2016 1-Oct-2009 30-Sep-2015 Final Report: WHITEPAPER; Research Area 8; Control of cellular structural networks ...any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington Headquarters Services , Directorate

  15. Global self-regulation of the cellular metabolic structure.

    Directory of Open Access Journals (Sweden)

    Ildefonso M De la Fuente

    Full Text Available BACKGROUND: Different studies have shown that cellular enzymatic activities are able to self-organize spontaneously, forming a metabolic core of reactive processes that remain active under different growth conditions while the rest of the molecular catalytic reactions exhibit structural plasticity. This global cellular metabolic structure appears to be an intrinsic characteristic common to all cellular organisms. Recent work performed with dissipative metabolic networks has shown that the fundamental element for the spontaneous emergence of this global self-organized enzymatic structure could be the number of catalytic elements in the metabolic networks. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate the factors that may affect the catalytic dynamics under a global metabolic structure characterized by the presence of metabolic cores we have studied different transitions in catalytic patterns belonging to a dissipative metabolic network. The data were analyzed using non-linear dynamics tools: power spectra, reconstructed attractors, long-term correlations, maximum Lyapunov exponent and Approximate Entropy; and we have found the emergence of self-regulation phenomena during the transitions in the metabolic activities. CONCLUSIONS/SIGNIFICANCE: The analysis has also shown that the chaotic numerical series analyzed correspond to the fractional Brownian motion and they exhibit long-term correlations and low Approximate Entropy indicating a high level of predictability and information during the self-regulation of the metabolic transitions. The results illustrate some aspects of the mechanisms behind the emergence of the metabolic self-regulation processes, which may constitute an important property of the global structure of the cellular metabolism.

  16. Freeform inkjet printing of cellular structures with bifurcations.

    Science.gov (United States)

    Christensen, Kyle; Xu, Changxue; Chai, Wenxuan; Zhang, Zhengyi; Fu, Jianzhong; Huang, Yong

    2015-05-01

    Organ printing offers a great potential for the freeform layer-by-layer fabrication of three-dimensional (3D) living organs using cellular spheroids or bioinks as building blocks. Vascularization is often identified as a main technological barrier for building 3D organs. As such, the fabrication of 3D biological vascular trees is of great importance for the overall feasibility of the envisioned organ printing approach. In this study, vascular-like cellular structures are fabricated using a liquid support-based inkjet printing approach, which utilizes a calcium chloride solution as both a cross-linking agent and support material. This solution enables the freeform printing of spanning and overhang features by providing a buoyant force. A heuristic approach is implemented to compensate for the axially-varying deformation of horizontal tubular structures to achieve a uniform diameter along their axial directions. Vascular-like structures with both horizontal and vertical bifurcations have been successfully printed from sodium alginate only as well as mouse fibroblast-based alginate bioinks. The post-printing fibroblast cell viability of printed cellular tubes was found to be above 90% even after a 24 h incubation, considering the control effect.

  17. Periodic Cellular Structure Technology for Shape Memory Alloys

    Science.gov (United States)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  18. Prediction of useful casting structure applying Cellular Automaton method

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2009-07-01

    Full Text Available The results of simulation investigations of primary casting’s structure made of hypoeutectic Al-Si alloy using the Calcosoft system with CAFE 3D (Cellular Automaton Finite Element module are presented. CAFE 3-D module let to predict the structure formation of complete castings indicating the spatial distribution of columnar and equiaxed grains. That simplified model concerns only hypoeutectic phase. Simulation investigations of structure concern the useful casting of camshaft which solidified in high-insulation mould with properly chills distribution. These conditions let to apply the expedient locally different simplified the grains blocs geometry which are called by the authors as pseudo-crystals. The mechanical properties in selected cross-sections of casing are estimated.

  19. Composition, structure and mechanical properties of several natural cellular materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The stem piths of sunflower, kaoliang and corn are natural cellular materials. In this paper, the contents of the compositions of these piths are determined and their cell shapes and structures are examined through scanning electron microscope (SEM) and optical microscope. Further research is conducted in the effects of the compositions and structures of the piths on the mechanical properties after testing the partial mechanical properties. The results show that the total cellulose, hemicelluloses and lignin content of each sample approaches 75% of the dry mass of its primary cell walls. With the fall of R value, a parameter relative to the contents of the main compositions, the flexibilities of the cellular piths descend while their stresses and rigidities increase. The basic cell shape making up the sunflower pith is approximately a tetrakaidehedron. The stem piths of kaoliang and corn are made up of cells close to hexangular prisms and a few tubular ones which can observably reinforce their mechanical properties in the axial directions.

  20. Evolutionary principles underlying structure and response dynamics of cellular networks.

    Science.gov (United States)

    Steinacher, Arno; Soyer, Orkun S

    2012-01-01

    The network view in systems biology, in conjunction with the continuing development of experimental technologies, is providing us with the key structural and dynamical features of both cell-wide and pathway-level regulatory, signaling and metabolic systems. These include for example modularity and presence of hub proteins at the structural level and ultrasensitivity and feedback control at the level of dynamics. The uncovering of such features, and the seeming commonality of some of them, makes many systems biologists believe that these could represent design principles that underpin cellular systems across organisms. Here, we argue that such claims on any observed feature requires an understanding of how it has emerged in evolution and how it can shape subsequent evolution. We review recent and past studies that aim to achieve such evolutionary understanding for observed features of cellular networks. We argue that this evolutionary framework could lead to deciphering evolutionary origin and relevance of proposed design principles, thereby allowing to predict their presence or absence in an organism based on its environment and biochemistry and their effect on its future evolution.

  1. A structural and functional homolog supports a general role for frataxin in cellular iron chemistry.

    Science.gov (United States)

    Qi, Wenbin; Cowan, J A

    2010-02-01

    Bacillus subtilis YdhG lacks sequence homology, but demonstrates structural and functional similarity to the frataxin family, supporting a general cellular role for frataxin-type proteins in cellular iron homeostasis.

  2. Holistic design and implementation of pressure actuated cellular structures

    Science.gov (United States)

    Gramüller, B.; Köke, H.; Hühne, C.

    2015-12-01

    Providing the possibility to develop energy-efficient, lightweight adaptive components, pressure-actuated cellular structures (PACS) are primarily conceived for aeronautics applications. The realization of shape-variable flaps and even airfoils provides the potential to safe weight, increase aerodynamic efficiency and enhance agility. The herein presented holistic design process points out and describes the necessary steps for designing a real-life PACS structure, from the computation of truss geometry to the manufacturing and assembly. The already published methods for the form finding of PACS are adjusted and extended for the exemplary application of a variable-camber wing. The transfer of the form-finding truss model to a cross-sectional design is discussed. The end cap and sealing concept is described together with the implementation of the integral fluid flow. Conceptual limitations due to the manufacturing and assembly processes are discussed. The method’s efficiency is evaluated by finite element method. In order to verify the underlying methods and summarize the presented work a modular real-life demonstrator is experimentally characterized and validates the numerical investigations.

  3. Variable modulus cellular structures using pneumatic artificial muscles

    Science.gov (United States)

    Pontecorvo, Michael E.; Niemiec, Robert J.; Gandhi, Farhan S.

    2014-04-01

    This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction with all three muscles pressurized to the same value over a pressure range up to 758 kPa. A change in cell modulus by a factor of 1.33 and a corresponding change in cell angle of 0.41° are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 2068 kPa can change the cell modulus in the horizontal direction by a factor of 6.83 with a change in cell angle of only 2.75°. Both experiment and simulation show that this concept provides a way to decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles.

  4. Structure and dynamics of modulated traveling waves in cellular flames

    CERN Document Server

    Bayliss, A; Riecke, H

    1994-01-01

    We describe spatial and temporal patterns in cylindrical premixed flames in the cellular regime, $Le < 1$, where the Lewis number $Le$ is the ratio of thermal to mass diffusivity of a deficient component of the combustible mixture. A transition from stationary, axisymmetric flames to stationary cellular flames is predicted analytically if $Le$ is decreased below a critical value. We present the results of numerical computations to show that as $Le$ is further decreased traveling waves (TWs) along the flame front arise via an infinite-period bifurcation which breaks the reflection symmetry of the cellular array. Upon further decreasing $Le$ different kinds of periodically modulated traveling waves (MTWs) as well as a branch of quasiperiodically modulated traveling waves (QPMTWs) arise. These transitions are accompanied by the development of different spatial and temporal symmetries including period doublings and period halvings. We also observe the apparently chaotic temporal behavior of a disordered cellul...

  5. Emergence of linguistic-like structures in one-dimensional cellular automata

    Science.gov (United States)

    Bertacchini, Francesca; Bilotta, Eleonora; Caldarola, Fabio; Pantano, Pietro; Bustamante, Leonardo Renteria

    2016-10-01

    In this paper we give a summary of some empirical investigations which show high analogies between Cellular Automata and linguistic structures. In particular we show as coupling regular domains of Cellular Automata we find complex emerging structures similar to combination of words, phonemes and morphemes in natural languages.

  6. Cellular structures using U_q-tilting modules

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina; Tubbenhauer, Daniel

    We use the theory of Uq-tilting modules to construct cellular bases for centralizer algebras. Our methods are quite general and work for any quantum group Uq attached to a Cartan matrix and include the non semi-simple cases for q being a root of unity and ground fields of positive characteristic...

  7. Interface Pattern Selection Criterion for Cellular Structures in Directional Solidification

    Science.gov (United States)

    Trivedi, R.; Tewari, S. N.; Kurtze, D.

    1999-01-01

    The aim of this investigation is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. We shall first address scientific concepts that are crucial in the selection of interface patterns. Next, the results of ground-based experimental studies in the Al-4.0 wt % Cu system will be described. Both experimental studies and theoretical calculations will be presented to establish the need for microgravity experiments.

  8. "Parking-garage" structures in nuclear astrophysics and cellular biophysics

    Science.gov (United States)

    Berry, D. K.; Caplan, M. E.; Horowitz, C. J.; Huber, Greg; Schneider, A. S.

    2016-11-01

    A striking shape was recently observed for the endoplasmic reticulum, a cellular organelle consisting of stacked sheets connected by helical ramps [Terasaki et al., Cell 154, 285 (2013), 10.1016/j.cell.2013.06.031]. This shape is interesting both for its biological function, to synthesize proteins using an increased surface area for ribosome factories, and its geometric properties that may be insensitive to details of the microscopic interactions. In the present work, we find very similar shapes in our molecular dynamics simulations of the nuclear pasta phases of dense nuclear matter that are expected deep in the crust of neutron stars. There are dramatic differences between nuclear pasta and terrestrial cell biology. Nuclear pasta is 14 orders of magnitude denser than the aqueous environs of the cell nucleus and involves strong interactions between protons and neutrons, while cellular-scale biology is dominated by the entropy of water and complex assemblies of biomolecules. Nonetheless, the very similar geometry suggests both systems may have similar coarse-grained dynamics and that the shapes are indeed determined by geometrical considerations, independent of microscopic details. Many of our simulations self-assemble into flat sheets connected by helical ramps. These ramps may impact the thermal and electrical conductivities, viscosity, shear modulus, and breaking strain of neutron star crust. The interaction we use, with Coulomb frustration, may provide a simple model system that reproduces many biologically important shapes.

  9. Adaptive cellular structures and devices with internal features for enhanced structural performance

    Science.gov (United States)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  10. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    Science.gov (United States)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  11. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  12. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    Science.gov (United States)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-05-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials.

  13. Quantitative analysis of cellular metabolic dissipative, self-organized structures

    OpenAIRE

    Ildefonso Martínez de la Fuente

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the ...

  14. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking.

    Science.gov (United States)

    Li, Jianchao; Lu, Qing; Zhang, Mingjie

    2016-08-01

    Unconventional myosins are a superfamily of actin-based molecular motors playing diverse roles including cellular trafficking, mechanical supports, force sensing and transmission, etc. The variable neck and tail domains of unconventional myosins function to bind to specific cargoes including proteins and lipid vesicles and thus are largely responsible for the diverse cellular functions of myosins in vivo. In addition, the tail regions, together with their cognate cargoes, can regulate activities of the motor heads. This review outlines the advances made in recent years on cargo recognition and cargo binding-induced regulation of the activity of several unconventional myosins including myosin-I, V, VI and X in cellular trafficking. We approach this topic by describing a series of high-resolution structures of the neck and tail domains of these unconventional myosins either alone or in complex with their specific cargoes, and by discussing potential implications of these structural studies on cellular trafficking of these myosin motors.

  15. Tensegrity II. How structural networks influence cellular information processing networks

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  16. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme

    Science.gov (United States)

    Shen, Yang; Shen, Hua; Liu, Kai-Xin; Chen, Pu; Zhang, De-Liang

    2016-11-01

    The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space-time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed. Project supported by the National Natural Science Foundation of China (Grant Nos. 10732010 and 10972010).

  17. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme

    KAUST Repository

    Shen, Yang

    2016-11-01

    The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed.

  18. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing is rapidly developing and gaining popularity for direct metal fabrication systems like selective laser melting (SLM). The technology has shown significant improvement for high-quality fabrication of lightweight design-efficient structures such as conformal cooling channels...... in injection molding tools and lattice structures. This research examines the effect of cellular lattice structures on the strength of workpieces additively manufactured from ultra high-strength steel powder. Two commercial SLM machines are used to fabricate cellular samples based on four architectures— solid...

  19. Thermal stability of the cellular structure of an austenitic alloy after selective laser melting

    Science.gov (United States)

    Bazaleeva, K. O.; Tsvetkova, E. V.; Balakirev, E. V.; Yadroitsev, I. A.; Smurov, I. Yu.

    2016-05-01

    The thermal stability of the cellular structure of an austenitic Fe-17% Cr-12% Ni-2% Mo-1% Mn-0.7% Si-0.02% C alloy produced by selective laser melting in the temperature range 20-1200°C is investigated. Metallographic analysis, transmission electron microscopy, and scanning electron microscopy show that structural changes in the alloy begin at 600-700°C and are fully completed at ~1150°C. Differential scanning calorimetry of the alloy with a cellular structure reveals three exothermic processes occurring upon annealing within the temperature ranges 450-650, 800-1000, and 1050-1200°C.

  20. Analysis of information gain and Kolmogorov complexity for structural evaluation of cellular automata configurations

    Science.gov (United States)

    Javaheri Javid, Mohammad Ali; Blackwell, Tim; Zimmer, Robert; Majid al-Rifaie, Mohammad

    2016-04-01

    Shannon entropy fails to discriminate structurally different patterns in two-dimensional images. We have adapted information gain measure and Kolmogorov complexity to overcome the shortcomings of entropy as a measure of image structure. The measures are customised to robustly quantify the complexity of images resulting from multi-state cellular automata (CA). Experiments with a two-dimensional multi-state cellular automaton demonstrate that these measures are able to predict some of the structural characteristics, symmetry and orientation of CA generated patterns.

  1. Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting.

    Science.gov (United States)

    Bartolomeu, F; Sampaio, M; Carvalho, O; Pinto, E; Alves, N; Gomes, J R; Silva, F S; Miranda, G

    2017-05-01

    Additive manufacturing (AM) technologies enable the fabrication of innovative structures with complex geometries not easily manufactured by traditional processes. Regarding metallic cellular structures with tailored/customized mechanical and wear performance aiming to biomedical applications, Selective Laser Melting (SLM) is a remarkable solution for their production. Focusing on prosthesis and implants, in addition to a suitable Young's modulus it is important to assess the friction response and wear resistance of these cellular structures in a natural environment. In this sense, five cellular Ti6Al4V structures with different open-cell sizes (100-500µm) were designed and produced by SLM. These structures were tribologicaly tested against alumina using a reciprocating sliding ball-on-plate tribometer. Samples were submerged in Phosphate Buffered Saline (PBS) fluid at 37°C, in order to mimic in some extent the human body environment. The results showed that friction and wear performance of Ti6Al4V cellular structures is influenced by the structure open-cell size. The higher wear resistance was obtained for structures with 100µm designed open-cell size due to the higher apparent area of contact to support tribological loading.

  2. Phase-field simulation of formation of cellular dendrites and fine cellular structures at high growth velocities during directional solidification of Ti56Al44 alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xin-zhong; GUO Jing-jie; SU Yan-qing; WU Shi-ping; FU Heng-zhi

    2005-01-01

    A phase-field model whose free energy of the solidification system derived from the Calphad thermodynamic modeling of phase diagram was used to simulate formation of cellular dendrites and fine cellular structures of Ti56Al44 alloy during directional solidification at high growth velocities. The liquid-solid phase transition of L→β was chosen. The dynamics of breakdown of initially planar interfaces into cellular dendrites and fine cellular structures were shown firstly at two growth velocities. Then the unidirectional free growths of two initial nucleations evolving to fine cellular dendrites were investigated. The tip splitting phenomenon is observed and the negative temperature gradient in the liquid represents its supercooling directional solidification. The simulation results show the realistic evolution of interfaces and microstructures and they agree with experimental one.

  3. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Science.gov (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell.

  4. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging...

  5. Simulation of the Crashing of Sandwich Structures under Impact Loads by Movable Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    HUANG De-wu; HUANG Hai; SONG Yi; A I Dmitriev; E V Shilko; S G Psakhie

    2005-01-01

    Movable cellular automata (MCA) method is applied in the analysis of dynamic characters of ceramic armor composite structures under impact loading. As a new approach, MCA is different from the traditional numerical methods such as the finite element method and boundary element method. Based on the theory of particle mechanics, MCA is applied as a powerful tool in solving specific structural analysis of materials loss and penetrating damages. In this paper the method is used to study responses of multi-layered ceramic plates as a base of armor structures under impact loading, thus assisting further investigations in the crashing process and to improve ceramic armor structures.

  6. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    Science.gov (United States)

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.

  7. Use of Lightweight Cellular Mats to Reduce the Settlement of Structure on Soft Soil

    Science.gov (United States)

    Ganasan, R.; Lim, A. J. M. S.; Wijeyesekera, D. C.

    2016-07-01

    Construction of structures on soft soils gives rise to some difficulties in Malaysia and other country especially in settlement both in short and long term. The focus of this research is to minimize the differential and non-uniform settlement on peat soil with the use of an innovative cellular mat. The behaviour and performance of the lightweight geo-material (in block form) is critically investigated and in particular the use as a fill in embankment on soft ground. Hemic peat soil, sponge and innovative cellular mat will be used as the main material in this study. The monitoring in settlement behavior from this part of research will be done as laboratory testing only. The uneven settlement in this problem was uniquely monitored photographically using spot markers. In the end of the research, it is seen that the innovative cellular mat has reduce the excessive and differential settlement up to 50% compare to flexible and rigid foundations. This had improve the stiffness of soils as well as the porous contain in cellular structure which help in allowing water/moisture to flow through in or out thus resulting in prevent the condition of floating.

  8. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wenhu [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Wang, Cheng [Beijing Institute of Technology, Beijing 100081 (China); Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-15

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.

  9. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E

    2006-02-01

    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  10. Rapid construction of mechanically- confined multi- cellular structures using dendrimeric intercellular linker.

    Science.gov (United States)

    Mo, Xuejun; Li, Qiushi; Yi Lui, Lena Wai; Zheng, Baixue; Kang, Chiang Huen; Nugraha, Bramasta; Yue, Zhilian; Jia, Rui Rui; Fu, Hong Xia; Choudhury, Deepak; Arooz, Talha; Yan, Jie; Lim, Chwee Teck; Shen, Shali; Hong Tan, Choon; Yu, Hanry

    2010-10-01

    Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications.

  11. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    Science.gov (United States)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional

  12. The influence of cellular structures on flow stress of high strength components manufactured using SLM

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing has shown significant improvement in material and machines for high-quality solid freeform fabrication processes such as selective laser melting (SLM). In particular, manufacturing lattice structures using the SLM procedure is of interest. This research examines the effect...... of cellular materials on compression strength. The specimens are manufactured additively using industrial 3D printing systems from high-strength alloy. The material has the right mechanical properties for manufacturing tool components. This includes samples with solid and lattice structures. The Compression...

  13. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    Science.gov (United States)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  14. Characterization of 316L Steel Cellular Dodecahedron Structures Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Konda Gokuldoss Prashanth

    2016-10-01

    Full Text Available The compression behavior of different 316L steel cellular dodecahedron structures with different density values were studied. The 316L steel structures produced using the selective laser melting process has four different geometries: single unit cells with and without the addition of base plates beneath and on top, and sandwich structures with multiple unit cells with different unit cell sizes. The relation between the relative compressive strength and the relative density was compared using different Gibson-Ashby models and with other published reports. The different aspects of the deformation and the mechanical properties were evaluated and the deformation at distinct loading levels was recorded. Finite element method (FEM simulations were carried out with the defined structures and the mechanical testing results were compared. The calculated theory, simulation estimation, and the observed experimental results are in good agreement.

  15. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    Directory of Open Access Journals (Sweden)

    Chávez Francisco P

    2010-01-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.

  16. Simple and Flexible Self-Reproducing Structures in Asynchronous Cellular Automata and Their Dynamics

    Science.gov (United States)

    Huang, Xin; Lee, Jia; Yang, Rui-Long; Zhu, Qing-Sheng

    2013-03-01

    Self-reproduction on asynchronous cellular automata (ACAs) has attracted wide attention due to the evident artifacts induced by synchronous updating. Asynchronous updating, which allows cells to undergo transitions independently at random times, might be more compatible with the natural processes occurring at micro-scale, but the dark side of the coin is the increment in the complexity of an ACA in order to accomplish stable self-reproduction. This paper proposes a novel model of self-timed cellular automata (STCAs), a special type of ACAs, where unsheathed loops are able to duplicate themselves reliably in parallel. The removal of sheath cannot only allow various loops with more flexible and compact structures to replicate themselves, but also reduce the number of cell states of the STCA as compared to the previous model adopting sheathed loops [Y. Takada, T. Isokawa, F. Peper and N. Matsui, Physica D227, 26 (2007)]. The lack of sheath, on the other hand, often tends to cause much more complicated interactions among loops, when all of them struggle independently to stretch out their constructing arms at the same time. In particular, such intense collisions may even cause the emergence of a mess of twisted constructing arms in the cellular space. By using a simple and natural method, our self-reproducing loops (SRLs) are able to retract their arms successively, thereby disentangling from the mess successfully.

  17. Directed self-assembly of large scaffold-free multi-cellular honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Tejavibulya, Nalin; Youssef, Jacquelyn; Bao, Brian; Ferruccio, Toni-Marie; Morgan, Jeffrey R, E-mail: Jeffrey_Morgan@Brown.edu [Department of Molecular Pharmacology, Physiology and Biotechnology, Center for Biomedical Engineering, Brown University, G-B 393, Biomed Center, 171 Meeting St, Providence, RI 02912 (United States)

    2011-09-15

    A significant challenge to the field of biofabrication is the rapid construction of large three-dimensional (3D) living tissues and organs. Multi-cellular spheroids have been used as building blocks. In this paper, we create large multi-cellular honeycomb building blocks using directed self-assembly, whereby cell-to-cell adhesion, in the context of the shape and obstacles of a micro-mold, drives the formation of a 3D structure. Computer-aided design, rapid prototyping and replica molding were used to fabricate honeycomb-shaped micro-molds. Nonadhesive hydrogels cast from these micro-molds were equilibrated in the cell culture medium and seeded with two types of mammalian cells. The cells settled into the honeycomb recess were unable to attach to the nonadhesive hydrogel and so cell-to-cell adhesion drove the self-assembly of a large multi-cellular honeycomb within 24 h. Distinct morphological changes occurred to the honeycomb and its cells indicating the presence of significant cell-mediated tension. Unlike the spheroid, whose size is constrained by a critical diffusion distance needed to maintain cell viability, the overall size of the honeycomb is not limited. The rapid production of the honeycomb building unit, with its multiple rings of high-density cells and open lumen spaces, offers interesting new possibilities for biofabrication strategies.

  18. Cardiac troponin and tropomyosin: structural and cellular perspectives to unveil the Hypertrophic Cardiomyopathy phenotype

    Directory of Open Access Journals (Sweden)

    Mayra de A. Marques

    2016-09-01

    Full Text Available Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1,400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the disease of the sarcomere. The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53, seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We

  19. Structural, cellular and molecular aspects of immune privilege in the testis

    Directory of Open Access Journals (Sweden)

    Nan eLi

    2012-06-01

    Full Text Available The testis presents a special immunological environment, considering its property of immune privilege that tolerates allo- and auto-antigens. Testicular immune privilege was once believed to be mainly based on the sequestration of antigens from the immune system by the blood-testis barrier in the seminiferous epithelium. Substantial evidence supports the view that the combination of physical structure, testicular cells, and cytokines controls immune responses in the testis to preserve the structural and functional integrity of testicular immune privilege. Both systemic immune tolerance and local immunosuppression help maintain the immune privilege status. Constitutive expression of anti-inflammatory factors in testicular cells is critical for local immunosuppression. However, the testis locally generates an efficient innate immune system against pathogens. Disruption of these mechanisms may lead to orchitis and impair fertility. This review article highlights the current understanding of structural, cellular and molecular mechanisms underlying the unique immune environment of the testis, particularly its immune privilege status.

  20. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM.

    Science.gov (United States)

    Hashiguchi, Takao; Ose, Toyoyuki; Kubota, Marie; Maita, Nobuo; Kamishikiryo, Jun; Maenaka, Katsumi; Yanagi, Yusuke

    2011-02-01

    Measles virus, a major cause of childhood morbidity and mortality worldwide, predominantly infects immune cells using signaling lymphocyte activation molecule (SLAM) as a cellular receptor. Here we present crystal structures of measles virus hemagglutinin (MV-H), the receptor-binding glycoprotein, in complex with SLAM. The MV-H head domain binds to a β-sheet of the membrane-distal ectodomain of SLAM using the side of its β-propeller fold. This is distinct from attachment proteins of other paramyxoviruses that bind receptors using the top of their β-propeller. The structure provides templates for antiviral drug design, an explanation for the effectiveness of the measles virus vaccine, and a model of the homophilic SLAM-SLAM interaction involved in immune modulations. Notably, the crystal structures obtained show two forms of the MV-H-SLAM tetrameric assembly (dimer of dimers), which may have implications for the mechanism of fusion triggering.

  1. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    Science.gov (United States)

    Karamooz Ravari, M. R.; Nasr Esfahani, S.; Taheri Andani, M.; Kadkhodaei, M.; Ghaei, A.; Karaca, H.; Elahinia, M.

    2016-02-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress-strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure.

  2. Cuttlebone-like V2O5 Nanofibre Scaffolds – Advances in Structuring Cellular Solids

    Science.gov (United States)

    Knöller, Andrea; Runčevski, Tomče; Dinnebier, Robert E.; Bill, Joachim; Burghard, Zaklina

    2017-02-01

    The synthesis of ceramic materials combining high porosity and permeability with good mechanical stability is challenging, as optimising the latter requires compromises regarding the first two properties. Nonetheless, significant progress can be made in this direction by taking advantage of the structural design principles evolved by nature. Natural cellular solids achieve good mechanical stability via a defined hierarchical organisation of the building blocks they are composed of. Here, we report the first synthetic, ceramic-based scaffold whose architecture closely mimics that of cuttlebone –a structural biomaterial whose porosity exceeds that of most other natural cellular solids, whilst preserving an excellent mechanical strength. The nanostructured, single-component scaffold, obtained by ice-templated assembly of V2O5 nanofibres, features a highly sophisticated and elaborate architecture of equally spaced lamellas, which are regularly connected by pillars as lamella support. It displays an unprecedented porosity of 99.8 %, complemented by an enhanced mechanical stability. This novel bioinspired, functional material not only displays mechanical characteristics similar to natural cuttlebone, but the multifunctionality of the V2O5 nanofibres also renders possible applications, including catalysts, sensors and electrodes for energy storage.

  3. Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2)

    Energy Technology Data Exchange (ETDEWEB)

    McDonough,M.; Li, V.; Flashman, E.; Chowdhury, R.; Mohr, C.; Lienard, B.; Zondlo, J.; Oldham, N.; Clifton, I.; et al.

    2006-01-01

    Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-{alpha} subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 Angstroms resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded {beta}-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.

  4. Structure and Cellular Roles of the RMI Core Complex from the Bloom Syndrome Dissolvasome

    Energy Technology Data Exchange (ETDEWEB)

    Hoadley, Kelly A.; Xu, Dongyi; Xue, Yutong; Satyshur, Kenneth A.; Wang, Weidong; Keck, James L. (NIH); (UW-MED)

    2010-11-11

    BLM, the protein product of the gene mutated in Bloom syndrome, is one of five human RecQ helicases. It functions to separate double Holliday junction DNA without genetic exchange as a component of the dissolvasome, which also includes topoisomerase III{alpha} and the RMI (RecQ-mediated genome instability) subcomplex (RMI1 and RMI2). We describe the crystal structure of the RMI core complex, comprising RMI2 and the C-terminal OB domain of RMI1. The overall RMI core structure strongly resembles two-thirds of the trimerization core of the eukaryotic single-stranded DNA-binding protein, Replication Protein A. Immunoprecipitation experiments with RMI2 variants confirm key interactions that stabilize the RMI core interface. Disruption of this interface leads to a dramatic increase in cellular sister chromatid exchange events similar to that seen in BLM-deficient cells. The RMI core interface is therefore crucial for BLM dissolvasome assembly and may have additional cellular roles as a docking hub for other proteins.

  5. Structure and cellular roles of the RMI core complex from the bloom syndrome dissolvasome.

    Science.gov (United States)

    Hoadley, Kelly A; Xu, Dongyi; Xue, Yutong; Satyshur, Kenneth A; Wang, Weidong; Keck, James L

    2010-09-08

    BLM, the protein product of the gene mutated in Bloom syndrome, is one of five human RecQ helicases. It functions to separate double Holliday junction DNA without genetic exchange as a component of the "dissolvasome," which also includes topoisomerase IIIα and the RMI (RecQ-mediated genome instability) subcomplex (RMI1 and RMI2). We describe the crystal structure of the RMI core complex, comprising RMI2 and the C-terminal OB domain of RMI1. The overall RMI core structure strongly resembles two-thirds of the trimerization core of the eukaryotic single-stranded DNA-binding protein, Replication Protein A. Immunoprecipitation experiments with RMI2 variants confirm key interactions that stabilize the RMI core interface. Disruption of this interface leads to a dramatic increase in cellular sister chromatid exchange events similar to that seen in BLM-deficient cells. The RMI core interface is therefore crucial for BLM dissolvasome assembly and may have additional cellular roles as a docking hub for other proteins.

  6. Asymmetric segregation of damaged cellular components in spatially structured multicellular organisms.

    Directory of Open Access Journals (Sweden)

    Charlotte Strandkvist

    Full Text Available The asymmetric distribution of damaged cellular components has been observed in species ranging from fission yeast to humans. To study the potential advantages of damage segregation, we have developed a mathematical model describing ageing mammalian tissue, that is, a multicellular system of somatic cells that do not rejuvenate at cell division. To illustrate the applicability of the model, we specifically consider damage incurred by mutations to mitochondrial DNA, which are thought to be implicated in the mammalian ageing process. We show analytically that the asymmetric distribution of damaged cellular components reduces the overall damage level and increases the longevity of the cell population. Motivated by the experimental reports of damage segregation in human embryonic stem cells, dividing symmetrically with respect to cell-fate, we extend the model to consider spatially structured systems of cells. Imposing spatial structure reduces, but does not eliminate, the advantage of asymmetric division over symmetric division. The results suggest that damage partitioning could be a common strategy for reducing the accumulation of damage in a wider range of cell types than previously thought.

  7. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    Energy Technology Data Exchange (ETDEWEB)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G. (LNLS)

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  8. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.

    Science.gov (United States)

    Jin, Yifei; Compaan, Ashley; Bhattacharjee, Tapomoy; Huang, Yong

    2016-06-03

    Freeform fabrication of soft structures has been of great interest in recent years. In particular, it is viewed as a critical step toward the grand vision of organ printing--the on-demand design and fabrication of three-dimensional (3D) human organ constructs for implantation and regenerative medicine. The objective of this study is to develop a novel granular gel support material-enabled, two-step gelation-based 'printing-then-gelation' approach to fabricate 3D alginate structures using filament extrusion. Specifically, a granular Carbopol microgel bath holds the ungelled alginate structure being extruded, avoiding the instantaneous gelation of each printed layer as well as resultant surface tension-induced nozzle clogging. Since Carbopol microgels react with multivalent cations, which are needed for alginate crosslinking, gelatin is introduced as a sacrificial material to make an alginate and gelatin bioink for extrusion, which gels thermally (step-one gelation) to initially stabilize the printed structure for removal from Carbopol. Then gelatin is melted and diffused away while alginate is ionically crosslinked in a 37 °C calcium chloride bath (step-two gelation), resulting in an alginate structure. The proposed 'printing-then-gelation' approach works for alginate structure fabrication, and it is also applicable for the printing of cellular constructs and other similar homogeneous soft structures using a two-step or even multi-step approach. The main conclusions are: (1) 0.8% (w/v) Carbopol bath with a neutral pH value may be most suitable for soft structure printing; (2) it is most effective to use a 0.9% (w/v) NaCl solution to facilitate the removal of residual Carbopol; and (3) alginate structures fabricated using the proposed approach demonstrate better mechanical properties than those fabricated using the conventional 'gelation-while-printing' approach.

  9. A structural basis for cellular uptake of GST-fold proteins.

    Directory of Open Access Journals (Sweden)

    Melanie J Morris

    Full Text Available It has recently emerged that glutathione transferase enzymes (GSTs and other structurally related molecules can be translocated from the external medium into many different cell types. In this study we aim to explore in detail, the structural features that govern cell translocation and by dissecting the human GST enzyme GSTM2-2 we quantatively demonstrate that the α-helical C-terminal domain (GST-C is responsible for this property. Attempts to further examine the constituent helices within GST-C resulted in a reduction in cell translocation efficiency, indicating that the intrinsic GST-C domain structure is necessary for maximal cell translocation capacity. In particular, it was noted that the α-6 helix of GST-C plays a stabilising role in the fold of this domain. By destabilising the conformation of GST-C, an increase in cell translocation efficiency of up to ∼2-fold was observed. The structural stability profiles of these protein constructs have been investigated by circular dichroism and differential scanning fluorimetry measurements and found to impact upon their cell translocation efficiency. These experiments suggest that the globular, helical domain in the 'GST-fold' structural motif plays a role in influencing cellular uptake, and that changes that affect the conformational stability of GST-C can significantly influence cell translocation efficiency.

  10. PACS—Realization of an adaptive concept using pressure actuated cellular structures

    Science.gov (United States)

    Gramüller, B.; Boblenz, J.; Hühne, C.

    2014-10-01

    A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.

  11. Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images

    Directory of Open Access Journals (Sweden)

    Paul Grégory

    2010-07-01

    Full Text Available Abstract Background Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas object-based methods emphasize detection power. Results We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis. This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical framework involving spatial point processes. In this framework, interactions are understood as position co-dependencies in the observed localization patterns. The framework is based on a model of effective pairwise interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that the classical co-localization measure typically under-exploits the information contained in our data. Conclusions We establish a connection between co-localization and spatial interaction of sub-cellular structures by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-neighbor distance

  12. A study on the cellular structure during stress solicitation induced by BioMEMS.

    Science.gov (United States)

    Fior, Raffaella; Maggiolino, Stefano; Codan, Barbara; Lazzarino, Marco; Sbaizero, Orfeo

    2011-01-01

    The investigation of single cells is a topic in continuous evolution. The complexity of the cellular matrix, the huge variety of cells, the interaction of one cell with the other are all factors that must be taken into consideration in the study of the cellular structure and mechanics. In this project, we developed different types of bioMEMS for cell's stretching, both transparent devices based on silicon nitride and non-transparent silicon based. While the use of silicon devices is limited to reflection microscopes, transparent bioMEMS can be used with transmission and reflection microscopes but can also be easily coupled with other tools such as patch clamp analyzers or atomic force microscope. This improvement will open brand new possibilities in the biological investigation field. We used these two BioMEMS to stretch a single cell in a controlled way and, as a first investigation, we focused on its morphology. We noticed that during a controlled stretch, cells react to the applied deformation. A hysteretic behavior on the ratio between area and perimeter has been highlighted.

  13. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    Science.gov (United States)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  14. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures

    Science.gov (United States)

    Splinter, Daniël; Razafsky, David S.; Schlager, Max A.; Serra-Marques, Andrea; Grigoriev, Ilya; Demmers, Jeroen; Keijzer, Nanda; Jiang, Kai; Poser, Ina; Hyman, Anthony A.; Hoogenraad, Casper C.; King, Stephen J.; Akhmanova, Anna

    2012-01-01

    Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors. PMID:22956769

  15. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.

    Science.gov (United States)

    Löschberger, Anna; Niehörster, Thomas; Sauer, Markus

    2014-05-01

    Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods.

  16. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence

    Directory of Open Access Journals (Sweden)

    Ryosuke eOhsawa

    2013-07-01

    Full Text Available It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships among non-coding RNA transcription, maintenance of genomic stability, chromatin structure and adult stem cell senescence. DNA damage-induced non-coding RNAs transcribed in the vicinity of the DNA break regulate recruitment of the DNA damage machinery and DNA repair efficiency. We will discuss the correlation between non-coding RNAs and DNA damage repair efficiency and the potential role of changing chromatin structures around double-strand break sites. On the other hand, induction of non-coding RNA transcription from the repetitive Alu elements occurs during human stem cell aging and hinders efficient DNA repair causing entry into senescence. We will discuss how this fine balance between transcription and genomic instability may be regulated by the dramatic changes to chromatin structure that accompany cellular senescence.

  17. Finiteness due to cellular structure of R[sup N] I. Quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, A.A. (Inst. of Theoretical Physics, Univ. of Nijmegen (Netherlands)); Zoupanos, G. (Dept. of Physics, National Technical Univ., Athens (Greece))

    1994-04-01

    We construct a cellular space which has as a continuous limit the Euclidean space R[sup N]. We consider quantum mechanics on this cellular space and we examine in particular an harmonic oscillator and a free particle on the cellular R[sup 1], R[sup 2] respectively. In both cases we find that the energy spectrum is bounded from above. (orig.)

  18. High resolution simulations of energy absorption in dynamically loaded cellular structures

    Science.gov (United States)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.

    2017-03-01

    Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.

  19. In silico analyses of dystrophin Dp40 cellular distribution, nuclear export signals and structure modeling

    Directory of Open Access Journals (Sweden)

    Alejandro Martínez-Herrera

    2015-09-01

    Full Text Available Dystrophin Dp40 is the shortest protein encoded by the DMD (Duchenne muscular dystrophy gene. This protein is unique since it lacks the C-terminal end of dystrophins. In this data article, we describe the subcellular localization, nuclear export signals and the three-dimensional structure modeling of putative Dp40 proteins using bioinformatics tools. The Dp40 wild type protein was predicted as a cytoplasmic protein while the Dp40n4 was predicted to be nuclear. Changes L93P and L170P are involved in the nuclear localization of Dp40n4 protein. A close analysis of Dp40 protein scored that amino acids 93LEQEHNNLV101 and 168LLLHDSIQI176 could function as NES sequences and the scores are lost in Dp40n4. In addition, the changes L93/170P modify the tertiary structure of putative Dp40 mutants. The analysis showed that changes of residues 93 and 170 from leucine to proline allow the nuclear localization of Dp40 proteins. The data described here are related to the research article entitled “EF-hand domains are involved in the differential cellular distribution of dystrophin Dp40” (J. Aragón et al. Neurosci. Lett. 600 (2015 115–120 [1].

  20. Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy.

    Science.gov (United States)

    Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei

    2014-05-01

    In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM.

  1. Modulating cellular recombination potential through alterations in RecA structure and regulation.

    Science.gov (United States)

    Bakhlanova, Irina V; Dudkina, Alexandra V; Baitin, Dima M; Knight, Kendall L; Cox, Michael M; Lanzov, Vladislav A

    2010-12-01

    The wild-type Escherichia coli RecA protein is a recombinase platform with unrealized recombination potential. We have explored the factors affecting recombination during conjugation with a quantitative assay. Regulatory proteins that affect RecA function have the capacity to increase or decrease recombination frequencies by factors up to sixfold. Autoinhibition by the RecA C-terminus can affect recombination frequency by factors up to fourfold. The greatest changes in recombination frequency measured here are brought about by point mutations in the recA gene. RecA variants can increase recombination frequencies by more than 50-fold. The RecA protein thus possesses an inherently broad functional range. The RecA protein of E. coli (EcRecA) is not optimized for recombination function. Instead, much of the recombination potential of EcRecA is structurally suppressed, probably reflecting cellular requirements. One point mutation in EcRecA with a particularly dramatic effect on recombination frequency, D112R, exhibits an enhanced capacity to load onto SSB-coated ssDNA, overcome the effects of regulatory proteins such as PsiB and RecX, and to pair homologous DNAs. Comparisons of key RecA protein mutants reveal two components to RecA recombination function - filament formation and the inherent DNA pairing activity of the formed filaments.

  2. Cellular automata segmentation of the boundary between the compacta of vertebral bodies and surrounding structures

    Science.gov (United States)

    Egger, Jan; Nimsky, Christopher

    2016-03-01

    Due to the aging population, spinal diseases get more and more common nowadays; e.g., lifetime risk of osteoporotic fracture is 40% for white women and 13% for white men in the United States. Thus the numbers of surgical spinal procedures are also increasing with the aging population and precise diagnosis plays a vital role in reducing complication and recurrence of symptoms. Spinal imaging of vertebral column is a tedious process subjected to interpretation errors. In this contribution, we aim to reduce time and error for vertebral interpretation by applying and studying the GrowCut - algorithm for boundary segmentation between vertebral body compacta and surrounding structures. GrowCut is a competitive region growing algorithm using cellular automata. For our study, vertebral T2-weighted Magnetic Resonance Imaging (MRI) scans were first manually outlined by neurosurgeons. Then, the vertebral bodies were segmented in the medical images by a GrowCut-trained physician using the semi-automated GrowCut-algorithm. Afterwards, results of both segmentation processes were compared using the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD) which yielded to a DSC of 82.99+/-5.03% and a HD of 18.91+/-7.2 voxel, respectively. In addition, the times have been measured during the manual and the GrowCut segmentations, showing that a GrowCutsegmentation - with an average time of less than six minutes (5.77+/-0.73) - is significantly shorter than a pure manual outlining.

  3. Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Chunlei, E-mail: c.qiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Yue, Sheng [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Adkins, Nicholas J.E.; Ward, Mark; Hassanin, Hany [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lee, Peter D., E-mail: peter.lee@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Withers, Philip J., E-mail: p.j.withers@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Attallah, Moataz M., E-mail: m.m.attallah@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-03-25

    AlSi10Mg cellular lattice structures have been fabricated by selective laser melting (SLM) using a range of laser scanning speeds and powers. The as-fabricated strut size, morphology and internal porosity were investigated using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray microtomography (micro-CT) and correlated to the compressive properties of the structure. Strut diameter was found to increase monotonically with laser power while the porosity was largest at intermediate powers. Laser scanning speed was found to thicken the struts only at slow rates while the porosity was largest at intermediate speeds. High speed imaging showed the melt pool to be larger at high laser powers. Further the melt pool shape was found to vary cyclically over time, steadily growing before becoming increasingly instable and irregularly shaped before abruptly falling in size due to splashing of molten materials and the process repeating. Upon compressive loading, lattice deformation was homogeneous prior to the peak stress before falling sharply due to the creation of a (one strut wide) shear band at around 45° to the compression axis. The specific yield strength expressed as the yield stress/(yield stress of the aluminium × relative density) is not independent of processing conditions, suggesting that further improvements in properties can be achieved by process optimisation. Lattice struts failed near nodes by a mixture of ductile and brittle fracture.

  4. Structural Development, Cellular Differentiation and Proliferation of the Respiratory Epithelium in the Bovine Fetal Lung.

    Science.gov (United States)

    Drozdowska, J; Cousens, C; Finlayson, J; Collie, D; Dagleish, M P

    2016-01-01

    Fetal bovine lung samples of 11 different gestational ages were assigned to a classical developmental stage based on histological morphology. Immunohistochemistry was used to characterize the morphology of forming airways, proliferation rate of airway epithelium and the presence of epithelial cell types (i.e. ciliated cells, club cells, neuroepithelial cells (NECs) and type II pneumocytes). Typical structural organization of pseudoglandular (84-98 days gestational age [DGA]), canalicular (154-168 DGA) and alveolar (224-266 DGA) stages was recognized. In addition, transitional pseudoglandular-canalicular (112-126 DGA) and canalicular-saccular (182 DGA) morphologies were present. The embryonic stage was not observed. A significantly (P epithelium, on average 5.5% and 4.4% in bronchi and bronchioles, respectively, was present in the transitional pseudoglandular-canalicular phase (112-126 DGA) compared with all other phases, while from 8 weeks before term (224-266 DGA) proliferation had almost ceased. The first epithelial cells identified by specific marker proteins in the earliest samples available for study (84 DGA) were ciliated cells and NECs. Club cells were present initially at 112 DGA and type II pneumocytes at 224 DGA. At the latest time points (224-226 DGA) these latter cell types were still present at a much lower percentage compared with adult cattle. This study characterized bovine fetal lung development by histological morphology and cellular composition of the respiratory epithelium and suggests that the apparent structural anatomical maturity of the bovine lung at term is not matched by functional maturity of the respiratory epithelium.

  5. Benzothiophene inhibitors of MK2. Part 1: structure-activity relationships, assessments of selectivity and cellular potency.

    Science.gov (United States)

    Anderson, David R; Meyers, Marvin J; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Long, Scott A; Pierce, Betsy S; Mahoney, Matthew W; Mourey, Robert J

    2009-08-15

    Identification of potent benzothiophene inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK2), structure-activity relationship (SAR) studies, selectivity assessments against CDK2, cellular potency and mechanism of action are presented. Crystallographic data provide a rationale for the observed MK2 potency as well as selectivity over CDK2 for this class of inhibitors.

  6. Sub-cellular structure studied by combined atomic force-fluorescence microscopy

    Science.gov (United States)

    Trache, Andreea

    2009-03-01

    A novel experimental technique that integrates atomic force microscopy (AFM) with fluorescence imaging was used to study the role of extracellular matrix proteins in cellular organization. To understand the mechanism by which living cells sense mechanical forces, and how they respond and adapt to their environment, we developed a new technology able to investigate cellular behavior at sub-cellular level that integrates an AFM with total internal reflection fluorescence (TIRF) microscopy and fast-spinning disk (FSD) confocal microscopy. Live smooth muscle cells exhibited differences in focal adhesions and actin pattern depending on the extracellular matrix used for substrate coating. Data obtained by using the AFM-optical imaging integrated technique offer novel quantitative information that allows understanding the fundamental processes of cellular reorganization in response to extracellular matrix modulation. The integrated microscope presented here is broadly applicable across a wide range of molecular dynamic studies in any adherent live cells.

  7. Manifestation of the shape-memory effect in polyetherurethane cellular plastics, fabric composites, and sandwich structures under microgravity

    Science.gov (United States)

    Babaevskii, P. G.; Kozlov, N. A.; Agapov, I. G.; Reznichenko, G. M.; Churilo, N. V.; Churilo, I. V.

    2016-09-01

    The results of experiments that were performed to test the feasibility of creating sandwich structures (consisting of thin-layer sheaths of polymer composites and a cellular polymer core) with the shapememory effect as models of the transformable components of space structures have been given. The data obtained indicate that samples of sandwich structures under microgravity conditions on board the International Space Station have recovered their shape to almost the same degree as under terrestrial conditions, which makes it possible to recommend them for creating components of transformable space structures on their basis.

  8. Cellular parameters for track structure modelling of radiation hazard in space

    Science.gov (United States)

    Hollmark, M.; Lind, B.; Gudowska, I.; Waligorski, M.

    Based on irradiation with 45 MeV/u N and B ions and with Co-60 gamma rays, track structure cellular parameters have been fitted for V 79-379A Chinese hamster lung fibroblasts and for human melanoma cells (AA wtp53). These sets of parameters will be used to develop a calculation of radiation hazard in deep space, based on the system for evaluating, summing and reporting occupational exposures proposed in 1967 by subcommittee of the NCRP, but never issued as an NCRP report. The key concepts of this system were: i) expression of the risk from all radiation exposures relative to that from a whole-body exposure to Co-60 radiation; ii) relating the risk from any exposure to that of the standard (Co-60) radiation through an "effectiveness factor" (ef), a product of sub-factors representing radiation quality, body region irradiated, and depth of penetration of radiation; the product of absorbed dose by ef being termed the "exposure record unit" (eru); iii) development of ef values and a cumulative eru record for external and internal emitters. Application of this concept should provide a better description of the Gy -equivalent presently in use by NASA for evaluating risk in deep space than the equivalent dose, following ICRP-60 recommendations. Dose and charged particle fluence levels encountered in space, particularly after Solar Particle Events, require that deterministic rather than stochastic effects be considered. Also, synergistic effects due to simultaneous multiple charged particle transfers, may have to be considered. Thus, models applicable in radiotherapy, where the Gy -equivalent is also applied, in conjunction with transport calculations performed using, e.g. the ADAM and EVA phantoms, along the concepts of the 1967 NCRP system, may be more appropriate for evaluating the radiation hazard from external fields with a large flux and a major high-LET component.

  9. X-ray structural studies of the entire extra-cellular region of the Ser/Thr kinase PrkC from Staphylococcus aureus

    OpenAIRE

    Ruggiero, Alessia; Squeglia, Flavia; Marasco, Daniela; Marchetti, Roberta; Molinaro, Antonio; Berisio, Rita

    2011-01-01

    Abstract Bacterial Ser/Thr kinases modulate a wide number of cellular processes. PrkC kinase from human pathogen Staphylococcus aureus was also shown to induce germination of Bacillus subtilis spores, in response to cell-wall muropeptides. The presence of muropeptides in the bacterial extra-cellular milieu is a strong signal that growing conditions are promising. We report here the x-ray structure of the entire extra-cellular region of PrkC from Staphylococcus aureus. This structur...

  10. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  11. Effects of cellular structure and cell wall components on water holding capacity of mushrooms

    NARCIS (Netherlands)

    Paudel, Ekaraj; Boom, Remko M.; Haaren, van Els; Siccama, Joanne; Sman, van der Ruud G.M.

    2016-01-01

    In a sequel of papers we have investigated effects of different physical contributions to the water holding capacity of foods by considering the common white button mushroom (Agaricus bisporus). In the current paper of our sequel, we consider individual contributions of the cellular phase to wate

  12. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures

    NARCIS (Netherlands)

    D. Splinter (Daniël); D.S. Razafsky (David); M.A. Schlager (Max); A. Serra-Marques (Andrea); I. Grigoriev (Ilya); J.A.A. Demmers (Jeroen); N. Keijzer (Nanda); K. Jiang (Kai); S. Poser; A. Hyman (Anthony); C.C. Hoogenraad (Casper); S.J. King (Stephen); A.S. Akhmanova (Anna)

    2012-01-01

    textabstractCytoplasmic dynein is the major microtubule minus-end-directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein-dynactin interaction are poorly understood. In this study, we focus on dynein-dynactin recruitment to cargo by the

  13. Chromatin structure and cellular radiosensitivity : A comparison of two human tumour cell lines

    NARCIS (Netherlands)

    Woudstra, EC; Roesink, JM; Rosemann, M; Brunsting, JF; Driessen, C; Orta, T; Konings, AWT; Peacock, JH; Kampinga, HH

    1996-01-01

    The role of variation in susceptibility to DNA damage induction was studied as a determinant for cellular radiosensitivity. Comparison of the radiosensitive HX142 and radioresistant RT112 cell lines previously revealed higher susceptibility to X-ray-induced DNA damage in the sensitive cell line usin

  14. Applications of the Cellular Automata Paradigm in Structural Analysis and Design

    NARCIS (Netherlands)

    Abdalla, M.M.

    2004-01-01

    Recent is een techniek ontstaan voor de aanpak van gecombineerde automatische analyse en ontwerp van een- of meerdimensionale elastische systemen in een omgeving van meervoudig parallel rekenen. De aanpak is gebaseerd op het paradigma van âcellular automata (CA)â. De implementatie van deze techniek

  15. Low Density Nanocellular Polymers Based on PMMA Produced by Gas Dissolution Foaming: Fabrication and Cellular Structure Characterization

    Directory of Open Access Journals (Sweden)

    Judith Martín-de León

    2016-07-01

    Full Text Available This paper describes the processing conditions needed to produce low density nanocellular polymers based on polymethylmethacrylate (PMMA with relative densities between 0.45 and 0.25, cell sizes between 200 and 250 nm and cell densities higher than 1014 cells/cm3. To produce these nanocellular polymers, the foaming parameters of the gas dissolution foaming technique using CO2 as blowing agent have been optimized. Taking into account previous works, the amount of CO2 uptake was maintained constant (31% by weight for all the materials. Foaming parameters were modified between 40 °C and 110 °C for the foaming temperature and from 1 to 5 min for the foaming time. Foaming temperatures in the range of 80 to 100 °C and foaming times of 2 min allow for production of nanocellular polymers with relative densities as low as 0.25. Cellular structure has been studied in-depth to obtain the processing-cellular structure relationship. In addition, it has been proved that the glass transition temperature depends on the cellular structure. This effect is associated with a confinement of the polymer in the cell walls, and is one of the key reasons for the improved properties of nanocellular polymers.

  16. RETRACTED: The Nonlinear Compressive Response and Deformation of an Auxetic Cellular Structure under In-Plane Loading

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-01-01

    Full Text Available At the request of the Author, the following article Zhang, W, Hou, W, Hu, Ping and Ma, Z (2014 The Nonlinear Compressive Response and Deformation of an Auxetic Cellular Structure under In-Plane Loading Advances in Mechanical Engineering published 17 November 2014. doi: 10.1155/2014/214681has been retracted due to errors discovered by the authors. On Page 3, the definition of component force in Equation 4 is incorrect. (2 On Page 4, the definition of component force in Equation 11 is incorrect. Moreover this equation should not have parameterM(length of cell wall, because a mistake was made in the process of calculation. Because of the above reasons, the conclusion obtained from the mechanical model is incorrect and should instead state that the Elastic Buckling and Plastic Collapse are both yield modes of this structure (3 On Page 5, the FEA model used in this article is not appropriate, because the deformation of single cell is not homogeneous, which means that the geometrical non-linear effect on single cell model is greater. So in the actual whole structure we may not obtain the results that were described in Page 6 Paragraph 2. (4 The data in figures 8 (page 6 and 9 (page 7 is incorrect and the values of effective Young’s modulus and plateau stress are much larger than reasonable values. The definition of effective stress is wrong in the FEA model, which means the effective stress should be calculated by the total width of cell instead of length of horizontal cell wall. For example, in Figure 8, the plateau stress can reach 140Mpa, this is not reasonable because there are many holes in this cellular structure, and its mechanical properties should be much lower than material properties of cell wall. The reasonable plateau stress should be around 2Mpa. The authors takes responsibility for these errors and regret the publication of invalid results. The nonlinear compressive response and deformation of an auxetic cellular structure that has

  17. Materials Research Society, Symposium Proceedings, Volume 521. Porous and Cellular Materials for Structural Applications

    Science.gov (United States)

    2007-11-02

    blowing agent at 680°C. After stirring, the molten material is cured to expand and fill up the mold for about 15 minutes. Then, the foamed molten...closed cell cellular solids. A "perfect" model is first discussed and shown to predict the behavior of PVC foams well. However, this model over...variations (Section VI), and non-uniform cell shapes (Section VII). Fig. 1. Micro graphs of Divinycell [7] HI30 expanded PVC (left) and Alporas [8

  18. Structural elucidation and cellular antioxidant activity evaluation of major antioxidant phenolics in lychee pulp.

    Science.gov (United States)

    Su, Dongxiao; Ti, Huihui; Zhang, Ruifen; Zhang, Mingwei; Wei, Zhengchen; Deng, Yuanyuan; Guo, Jinxin

    2014-09-01

    Lychee pulp contains phenolic compounds that are strong antioxidants, but the identities of the major antioxidants present are unknown. In the present study, the major contributors to the antioxidant activity of fresh lychee pulp were identified and their cellular antioxidant activities were investigated. Aqueous acetone extracts of lychee pulp were fractionated on polyamide resin, and those fractions with the largest antioxidant and radical scavenging activities were selected using cellular antioxidant activity and oxygen radical absorbance capacity assays. Three compounds that were major contributors to the antioxidant activity in these fractions were obtained by reverse-phase preparative HPLC and identified as quercetin 3-O-rutinoside-7-O-α-L-rhamnosidase (quercetin 3-rut-7-rha), quercetin 3-O-rutinoside (rutin) and (-)-epicatechin using NMR spectroscopy, HMBC, and ESI-MS spectrometry. The concentration of quercetin 3-rut-7-rha was 17.25mg per 100g of lychee pulp fresh weight. This is the first report of the identification and cellular antioxidant activity of quercetin 3-rut-7-rha from lychee pulp.

  19. Cellular Energy Absorbing TRIP-Steel/Mg-PSZ Composite: Honeycomb Structures Fabricated by a New Extrusion Powder Technology

    Directory of Open Access Journals (Sweden)

    Ulrich Martin

    2010-01-01

    Full Text Available Lightweight linear cellular composite materials on basis of austenite stainless TRIP- (TRansformation Induced Plasticity- steel as matrix with reinforcements of MgO partially stabilized zirconia (Mg-PSZ are described. Two-dimensional cellular materials for structural applications are conventionally produced by sheet expansion or corrugation processes. The presented composites are fabricated by a modified ceramic extrusion powder technology. Characterization of the microstructure in as-received and deformed conditions was carried out by optical and scanning electron microscopy. Magnetic balance measurements and electron backscatter diffraction (EBSD were used to identify the deformation-induced martensite evolution in the cell wall material. The honeycomb composite samples exhibit an increased strain hardening up to a certain engineering compressive strain and an extraordinary high specific energy absorption per unit mass and unit volume, respectively. Based on improved property-to-weight ratio such linear cellular structures will be of interest as crash absorbers or stiffened core materials for aerospace, railway, or automotive applications.

  20. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments

    DEFF Research Database (Denmark)

    Ravenschlag, K.; Sahm, K.; Knoblauch, C.;

    2000-01-01

    The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburg-fjorden, Svalbard) a-as characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes...... that FISH and rRNA slot blot hybridization gave comparable results. Furthermore, a combination of the two methods allowed us to calculate specific cellular rRNA contents with respect to localization in the sediment profile. The rRNA contents of Desulfosarcina-Desulfococcus cells were highest in the first 5...... mm of the sediment (0.9 and 1.4 fg, respectively) and decreased steeply with depth, indicating that maximal metabolic activity occurred close to the surface, Based on SRB cell numbers, cellular sulfate reduction rates were calculated. The rates were highest in the surface layer (0.14 fmol cell(-1...

  1. Sulfolobus Turreted Icosahedral Virus c92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures

    DEFF Research Database (Denmark)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan;

    2011-01-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system...... described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene...... disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures....

  2. Sulfolobus turreted icosahedral virus c92 protein responsible for the formation of pyramid-like cellular lysis structures.

    Science.gov (United States)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan; She, Qunxin; Young, Mark J

    2011-07-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.

  3. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  4. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment

    Science.gov (United States)

    Yamashita, Hiroko; Kato, Takuma; Oba, Makoto; Misawa, Takashi; Hattori, Takayuki; Ohoka, Nobumichi; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2016-01-01

    Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1–5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-ProNH2)3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-ProGu)3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-ProGu)2-(l-Arg)4-l-ProGu-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-ProGu)3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-ProNH2 and l-ProGu), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-ProGu exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-ProGu-containing peptide 3 may be a useful candidate as a gene delivery carrier. PMID:27609319

  5. Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio

    Science.gov (United States)

    Li, Dong; Yin, Jianhua; Dong, Liang; Lakes, Roderic S.

    2017-02-01

    Two-dimensional hierarchical re-entrant honeycomb structures were designed and the mechanical behaviors of the structures were studied using a finite element method. Hierarchical re-entrant structure of order n (n ≥ 1) was constructed by replacing each vertex of a lower order (n - 1) hierarchical re-entrant structure with a smaller re-entrant hexagon with identical strut aspect ratio. The Poisson’s ratio and energy absorption capacity of re-entrant structures of different hierarchical orders were studied under different compression velocities. The results showed that the Poisson’s ratio of the first and second order hierarchical structures can reach -1.36 and -1.33 with appropriate aspect ratio, 13.8% and 12.1% lower than that of the zeroth order hierarchical structure. The energy absorption capacity of the three models increased with an increasing compression velocity; the second order hierarchical structure exhibited the highest rate of increase in energy absorption capacity with an increasing compression velocity. The plateau stresses of the first and second order hierarchical structures were slightly lower than that of the zeroth order hierarchical structure; however the second order hierarchical structure exhibited the highest energy absorption capacity at high compression velocity (60 m s-1).

  6. Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens.

    Science.gov (United States)

    Bertazzo, Sergio; Maidment, Susannah C R; Kallepitis, Charalambos; Fearn, Sarah; Stevens, Molly M; Xie, Hai-nan

    2015-06-09

    Exceptionally preserved organic remains are known throughout the vertebrate fossil record, and recently, evidence has emerged that such soft tissue might contain original components. We examined samples from eight Cretaceous dinosaur bones using nano-analytical techniques; the bones are not exceptionally preserved and show no external indication of soft tissue. In one sample, we observe structures consistent with endogenous collagen fibre remains displaying ∼ 67 nm banding, indicating the possible preservation of the original quaternary structure. Using ToF-SIMS, we identify amino-acid fragments typical of collagen fibrils. Furthermore, we observe structures consistent with putative erythrocyte remains that exhibit mass spectra similar to emu whole blood. Using advanced material characterization approaches, we find that these putative biological structures can be well preserved over geological timescales, and their preservation is more common than previously thought. The preservation of protein over geological timescales offers the opportunity to investigate relationships, physiology and behaviour of long extinct animals.

  7. A comparison between track-structure, condensed-history Monte Carlo simulations and MIRD cellular S-values

    Science.gov (United States)

    Tajik-Mansoury, M. A.; Rajabi, H.; Mazdarani, H.

    2017-03-01

    The S-value is a standard measure in cellular dosimetry. S-values are calculated by applying analytical methods or by Monte Carlo simulation. In Monte Carlo simulation, particles are either tracked individually event-by-event or close events are condensed and processed collectively in different steps. Both of these methods have been employed for estimation of cellular S-values, but there is no consistency between the published results. In the present paper, we used the Geant4-DNA track-structure physics model as the reference to estimate the cellular S-values. We compared the results with the corresponding values obtained from the following three condensed-history physics models of Geant4: Penelope, Livermore and standard. The geometry and source were exactly the same in all the simulations. We utilized mono-energetic electrons with an initial kinetic energy in the range 1–700 keV as the source of radiation. We also compared our results with the MIRD S-values. We first drew an overall comparison between different data series and then compared the dependence of results on the energy of particles and the size of scoring compartments. The overall comparison indicated a very good linear correlation (R 2  >  91%) and small bias (3%) between the results of the track-structure model and the condensed-history physics model. The bias between MIRD and the results of Monte Carlo track-structure simulation was considerable (‑8%). However, the point-by-point comparison revealed differences of up to 28% between the condensed-history and the track-structure MC codes for self-absorption S-values in the 10–50 keV energy range. For the cross-absorption S-values, the difference was up to 34%. In this energy range, the difference between the MIRD S-values and the Geant4-DNA results was up to 68%. Our findings suggest that the consistency/inconsistency of the results obtained with different MC simulations depends on the size of the scoring volumes, the energy of the

  8. Cellular Dynamics Drives the Emergence of Supracellular Structure in the Cyanobacterium, Phormidium sp. KS

    Directory of Open Access Journals (Sweden)

    Naoki Sato

    2014-11-01

    Full Text Available Motile filamentous cyanobacteria, such as Oscillatoria, Phormidium and Arthrospira, are ubiquitous in terrestrial and aquatic environments. As noted by Nägeli in 1860, many of them form complex three-dimensional or two-dimensional structures, such as biofilm, weed-like thalli, bundles of filaments and spirals, which we call supracellular structures. In all of these structures, individual filaments incessantly move back and forth. The structures are, therefore, macroscopic, dynamic structures that are continuously changing their microscopic arrangement of filaments. In the present study, we analyzed quantitatively the movement of individual filaments of Phormidium sp. KS grown on agar plates. Junctional pores, which have been proposed to drive cell movement by mucilage/slime secretion, were found to align on both sides of each septum. The velocity of movement was highest just after the reversal of direction and, then, attenuated exponentially to a final value before the next reversal of direction. This kinetics is compatible with the “slime gun” model. A higher agar concentration restricts the movement more severely and, thus, resulted in more spiral formation. The spiral is a robust form compatible with non-homogeneous movements of different parts of a long filament. We propose a model of spiral formation based on the microscopic movement of filaments.

  9. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean

    2017-01-01

    Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574

  10. Multigrid Implementation of Cellular Automata for Topology Optimisation of Continuum Structures with Design Dependent loads

    NARCIS (Netherlands)

    Zakhama, R.

    2009-01-01

    Topology optimisation of continuum structures has become mature enough to be often applied in industry and continues to attract the attention of researchers and software companies in various engineering fields. Traditionally, most available algorithms for solving topology optimisation problems are b

  11. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, T W; Kjaer, M; Mackey, A L

    2011-01-01

    . Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross...

  12. Auxetic shape memory alloy cellular structures for deployable satellite antennas: design, manufacture and testing

    Directory of Open Access Journals (Sweden)

    Di Maio D.

    2010-06-01

    Full Text Available We describe the production development and experimental tests related to an hybrid honeycomb-truss made of shape memory alloy (Ni48Ti46Cu6, and used as a demonstrator for a deployable antenna in deep-space missions. Specific emphasis is placed on the modal analysis techniques used to test the lightweight SMA structure.

  13. Constraint-based Hybrid Cellular Automaton Topology Optimization for Advanced Lightweight Blast Resistant Structure Development

    Science.gov (United States)

    2011-11-01

    the desired model. 20 5. References 1. Goetz, J. C.; Tan, H.; Renaud, J. E.; Tovar , A. Structural Topology Optimization for Blast Mitigation...Stander, N. A Topology Optimization Tool for LS-DYNA Users: LS- OPT/Topology. The 7th European LS-DYNA Conference, 2009. 10. Tovar , A.; Patel, N

  14. A TEM study on pre—excystment cellular structures of Euplotes encysticus

    Institute of Scientific and Technical Information of China (English)

    GUTUKANG; JUNMEIXU

    1995-01-01

    Right before the excystment of an Euplotes encysticus sawtooth-like folds appeared among the pellicle plasmalemma,the inner and outer alveolar membranes were still sticking together,and were not distinguishable.Microtubular layers already formed at the sites beneath the dorsal cortical pellicle corresponding to vegetative cells,but they still proceed to be organized on the ventral structures.Cristae,highly-tangled with tubular-type structures,appeared on the mitochondria,and were morphologically similar to that of vegetative cells.In the cortical ciliatures,such as ciliary shafts,kinetosomes,surrounding fibrillar cirral baskets,and attached structures of ciliatures,etc.,they are different from those in resting cysts which are degenerated or lost.All the ciliature microtubules of ciliary shafts are of the 9+2 pattern,but the microtubule-like structure aggregates at tripletmicrotubule centers of many kinetosmes,are still under various stages of differentiation.Microtubules beneath the kinetosomal rows are of a developmentally elongated stage;crowded chromatins of various shapes and sizes are found in macronucleus,but there are no nuclear pores (formed by nuclear membrane as in resting cysts) on the nuclear membrane where these chromatins attached.

  15. Structural Aberrations of Cellular Sialic Acids and TheirFunctions in Cancer Metastases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sialic acids (neuraminic acids) are a special series of 9-carbon ring negatively charged carbohydrates, which has been found to be selectively changed in malignant cells from structures (both synthesis and structure modifications) to functions (up and down regulation in cells). Sialic acids, in single forms or conjugates, have been systematically studied both in lab and in clinics by GC, GCMS, NMR, HPTLC, HPLC and other modern analytical means. Sialic acids and related conjugates are predicted to be used in cancer diagnosis, cancer prognostic forecasting, designing of cancer chemotherapy regimens, uncovering carcinogenetic processes and neoplasm metastasis. Tumor cell regulative systems and pathways are correlated with sialic acids, which can be applied to prognostic evaluation of cancer patients, and antimetastatic chemotherapy by sialic acid derivatives and analogues. Searching for new biological characteristics of sialic acids in cells have also been extensively studied these days. In this paper, main stream discoveries and advancements are provided , also discussions of possible mechanisms and hypotheses are invoked.

  16. Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures

    Science.gov (United States)

    Chandrasekharan, N.; Thompson, L. L.

    2016-04-01

    The limitations posed by batteries have compelled the need to investigate energy harvesting methods to power small electronic devices that require very low operational power. Vibration based energy harvesting methods with piezoelectric transduction in particular has been shown to possess potential towards energy harvesters replacing batteries. Current piezoelectric energy harvesters exhibit considerably lower power to weight ratio or specific power when compared to batteries the harvesters seek to replace. To attain the goal of battery-less self-sustainable device operation the power to weight ratio gap between piezoelectric energy harvesters and batteries need to be bridged. In this paper the potential of integrating lightweight honeycomb structures with existing piezoelectric device configurations (bimorph) towards achieving higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of conventional bimorph with honeycomb structures of the same material results in a significant increase in power to weight ratio of the piezoelectric harvester. At higher driving frequency ranges it is shown that unlike the traditional piezoelectric bimorph with solid continuous substrate, the honeycomb substrate bimorph can preserve optimum global design parameters through manipulation of honeycomb unit cell parameters. Increased operating lifetime and design flexibility of the honeycomb core piezoelectric bimorph is demonstrated as unit cell parameters of the honeycomb structures can be manipulated to alter mass and stiffness properties of the substrate, resulting in unit cell parameter significantly influencing power generation.

  17. Cellular and molecular mechanisms activating the cell death processes by chalcones: Critical structural effects.

    Science.gov (United States)

    Champelovier, Pierre; Chauchet, Xavier; Hazane-Puch, Florence; Vergnaud, Sabrina; Garrel, Catherine; Laporte, François; Boutonnat, Jean; Boumendjel, Ahcène

    2013-12-01

    Chalcones are naturally occurring compounds with diverse pharmacological activities. Chalcones derive from the common structure: 1,3-diphenylpropenone. The present study aims to better understand the mechanistic pathways triggering chalcones anticancer effects and providing evidences that minor structural difference could lead to important difference in mechanistic effect. We selected two recently investigated chalcones (A and B) and investigated them on glioblastoma cell lines. It was found that chalcone A induced an apoptotic process (type I PCD), via the activation of caspase-3, -8 and -9. Chalcone A also increased CDK1/cyclin B ratios and decreased the mitochondrial transmembrane potential (ΔΨm). Chalcone B induced an autophagic cell death process (type II PCD), ROS-related but independent of both caspases and protein synthesis. Both chalcones increased Bax/Bcl2 ratios and decreased Ki67 and CD71 antigen expressions. The present investigation reveals that despite the close structure of chalcones A and B, significant differences in mechanism of effect were found.

  18. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates.

    Science.gov (United States)

    Lavrov, Andrey I; Kosevich, Igor A

    2016-02-01

    Sponges (phylum Porifera) are one of the most ancient extant multicellular animals and can provide valuable insights into origin and early evolution of Metazoa. High plasticity of cell differentiations and anatomical structure is characteristic feature of sponges. Present study deals with sponge cell reaggregation after dissociation as the most outstanding case of sponge plasticity. Dynamic of cell reaggregation and structure of multicellular aggregates of three demosponge species (Halichondria panicea (Pallas, 1766), Haliclona aquaeductus (Sсhmidt, 1862), and Halisarca dujardinii Johnston, 1842) were studied. Sponge tissue dissociation was performed mechanically. Resulting cell suspensions were cultured at 8-10°C for at least 5 days. Structure of multicellular aggregates was studied by light, transmission and scanning electron microscopy. Studied species share common stages of cell reaggregation-primary multicellular aggregates, early-stage primmorphs and primmorphs, but the rate of reaggregation varies considerably among species. Only cells of H. dujardinii are able to reconstruct functional and viable sponge after primmorphs formation. Sponge reconstruction in this species occurs due to active cell locomotion. Development of H. aquaeductus and H. panicea cells ceases at the stages of early primmorphs and primmorphs, respectively. Development of aggregates of these species is most likely arrested due to immobility of the majority of cells inside them. However, the inability of certain sponge species to reconstruct functional and viable individuals during cell reaggregation may be not a permanent species-specific characteristic, but depends on various factors, including the stage of the life cycle and experimental conditions.

  19. Impact of network structure and cellular response on spike time correlations.

    Directory of Open Access Journals (Sweden)

    James Trousdale

    Full Text Available Novel experimental techniques reveal the simultaneous activity of larger and larger numbers of neurons. As a result there is increasing interest in the structure of cooperative--or correlated--activity in neural populations, and in the possible impact of such correlations on the neural code. A fundamental theoretical challenge is to understand how the architecture of network connectivity along with the dynamical properties of single cells shape the magnitude and timescale of correlations. We provide a general approach to this problem by extending prior techniques based on linear response theory. We consider networks of general integrate-and-fire cells with arbitrary architecture, and provide explicit expressions for the approximate cross-correlation between constituent cells. These correlations depend strongly on the operating point (input mean and variance of the neurons, even when connectivity is fixed. Moreover, the approximations admit an expansion in powers of the matrices that describe the network architecture. This expansion can be readily interpreted in terms of paths between different cells. We apply our results to large excitatory-inhibitory networks, and demonstrate first how precise balance--or lack thereof--between the strengths and timescales of excitatory and inhibitory synapses is reflected in the overall correlation structure of the network. We then derive explicit expressions for the average correlation structure in randomly connected networks. These expressions help to identify the important factors that shape coordinated neural activity in such networks.

  20. Imaging the fine-scale structure of the cellular actin cytoskeleton by Single Particle Tracking and Atomic Force Microscopy

    Science.gov (United States)

    Mustata, Gina-Mirela

    It has been proposed that diffusion in the plasma membrane of eukaryotic cells it is compartmentalized due to the interaction with the underlying actin-based membrane skeleton that comes into close proximity to the lipid bilayer. The cytoskeleton is a dynamic structure that maintains cell shape, enables cell motion, and plays important roles in both intra-cellular transport and cellular division. We show here the evidence of plasma membrane compartmentalization using Single Particle Tracking (SPT) and Atomic Force Microscopy (AFM) imaging. SPT of Quantum dot labeled lipid in the plasma membrane of live normal rat kidney cells show compartments ranging from 325 nm to 391 nm depending on the sampling time. Using AFM imaging of live NRK cell in the presence of phalloidin, the membrane compartmentalization it is visible with the average size of the compartments of 325 +/- 10 nm (the main peak is centered at 260 nm). Further, the underlying membrane skeleton in fixed cells was directly imaged after partial removal of the plasma membrane to reveal size of the membrane skeleton meshwork of 339 +/- 10 nm. A new method of measuring the characteristics of the actin meshwork was proposed. Probing the local compliance of the plasma membrane through the deflection of a soft AFM cantilever we can expect that the stiffness of the membrane will be higher at locations directly above a cortical actin. This new method provided information about the structure of the skeletal meshwork of neuronal cell body predicting an average compartment size of about 132 nm. This was confirmed through SPT of QD-lipid incorporated into the neuronal cell membrane.

  1. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong (Yale); (VA); (UCSD)

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  2. Structure of cellular ESCRT-III spirals and their relationship to HIV budding.

    Science.gov (United States)

    Cashikar, Anil G; Shim, Soomin; Roth, Robyn; Maldazys, Michael R; Heuser, John E; Hanson, Phyllis I

    2014-05-30

    The ESCRT machinery along with the AAA+ ATPase Vps4 drive membrane scission for trafficking into multivesicular bodies in the endocytic pathway and for the topologically related processes of viral budding and cytokinesis, but how they accomplish this remains unclear. Using deep-etch electron microscopy, we find that endogenous ESCRT-III filaments stabilized by depleting cells of Vps4 create uniform membrane-deforming conical spirals which are assemblies of specific ESCRT-III heteropolymers. To explore functional roles for ESCRT-III filaments, we examine HIV-1 Gag-mediated budding of virus-like particles and find that depleting Vps4 traps ESCRT-III filaments around nascent Gag assemblies. Interpolating between the observed structures suggests a new role for Vps4 in separating ESCRT-III from Gag or other cargo to allow centripetal growth of a neck constricting ESCRT-III spiral.

  3. Design, synthesis, biochemical studies, cellular characterization, and structure-based computational studies of small molecules targeting the urokinase receptor.

    Science.gov (United States)

    Wang, Fang; Eric Knabe, W; Li, Liwei; Jo, Inha; Mani, Timmy; Roehm, Hartmut; Oh, Kyungsoo; Li, Jing; Khanna, May; Meroueh, Samy O

    2012-08-01

    The urokinase receptor (uPAR) serves as a docking site to the serine protease urokinase-type plasminogen activator (uPA) to promote extracellular matrix (ECM) degradation and tumor invasion and metastasis. Previously, we had reported a small molecule inhibitor of the uPAR·uPA interaction that emerged from structure-based virtual screening. Here, we measure the affinity of a large number of derivatives from commercial sources. Synthesis of additional compounds was carried out to probe the role of various groups on the parent compound. Extensive structure-based computational studies suggested a binding mode for these compounds that led to a structure-activity relationship study. Cellular studies in non-small cell lung cancer (NSCLC) cell lines that include A549, H460 and H1299 showed that compounds blocked invasion, migration and adhesion. The effects on invasion of active compounds were consistent with their inhibition of uPA and MMP proteolytic activity. These compounds showed weak cytotoxicity consistent with the confined role of uPAR to metastasis.

  4. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments.

    Science.gov (United States)

    Shah, Furqan A

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F(-)) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F(-) ions may be incorporated into the glass in the form of calcium fluoride (CaF2) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F(-) incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential.

  5. A bulk metal/ceramic composite material with a cellular structure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhankui; YAO Kefu; LI Jingfeng

    2006-01-01

    A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) technique. The as-prepared material consists of Al90Mn9Ce1 alloy cell and closed Al2O3 ceramic cell wall. The diameter of the cells is about 20―40 μm, while a thickness of the cell wall is about 1―2 μm. The ultimate compressive strength of the as-sintered materials is about 514 MPa, while its fracture strain is up to about 0.65 %. This composite material might possess good anti-corrosion, thermal endurance and other potential properties due to its unique microstructure. The result shows that the Al90Mn9Ce1/Al2O3 composite powders can be sintered by spark plasma sintering technique despite the large difference in their sintering temperature. This work offers a way of designing and preparing metal/ceramic composite material with functional property.

  6. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties.

    Science.gov (United States)

    Hesaraki, Saeed; Ebadzadeh, Touraj; Ahmadzadeh-Asl, Shaghayegh

    2010-07-01

    In this study, bioceramic nanocomposites were synthesized by sintering compacted bodies of hydroxyapatite (HA) mixed with 5 or 15 wt% nanosilicon carbide at 1,100 or 1,200 degrees C in a reducing atmosphere. Pure hydroxyapatite was also prepared for comparison. Phase compositions, structural and physical properties of the composites were studied using appropriate techniques. Some in vitro biological properties of the composites were also investigated by using newrat calvaria osteoblastic cells. X-ray diffraction analysis indicated that tricalcium phosphate (TCP) comprising negligible alpha-TCP and considerable beta-TCP were formed in composites during sintering meanwhile hydroxyapatite and silicon carbide (SiC) were also existed in the composition. Based on the results, that composite made of 5 wt% nanosilicon carbide exhibited higher bending strength, fracture toughness and bulk density than pure HA and composite with 15 wt% silicon carbide. The scanning electron microscopy coupled with energy dispersive X-ray analysis revealed that the addition of nanosilicon carbide suppressed the grain growth and yielded a feature of island-type clusters consisting of blistered calcium phosphate (HA and TCP) and SiC grains. Also, in this study, better proliferation rate and alkaline phosphatase activity were observed for the osteoblastic cells seeded on top of the composites compared to pure HA. Overall, the results indicated that the composite of 95 wt% hydroxyapatite and 5 wt% SiC exhibited better mechanical and biological properties than pure HA and further addition of SiC failed strength and toughness.

  7. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Furqan A., E-mail: furqan.ali.shah@biomaterials.gu.se

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F{sup −}) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F{sup −} ions may be incorporated into the glass in the form of calcium fluoride (CaF{sub 2}) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F{sup −} incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. - Highlights: • Fluoride ions form charged CaF{sup +} species rather than Si–F bonds. • Fluoride incorporation lowers glass transition and crystallisation temperatures. • Oxynitride and oxyfluoronitride glasses with superior mechanical properties • Mixed-alkali and alkali-free compositions with better processing characteristics.

  8. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function.

    Directory of Open Access Journals (Sweden)

    Lia R Edmunds

    Full Text Available The c-Myc (Myc oncoprotein and AMP-activated protein kinase (AMPK regulate glycolysis and oxidative phosphorylation (Oxphos although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT and ampk-/- (KO murine embryo fibroblasts (MEFs. KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions.

  9. Cellular immunostimulation by CpG-sequence-coated DNA origami structures.

    Science.gov (United States)

    Schüller, Verena J; Heidegger, Simon; Sandholzer, Nadja; Nickels, Philipp C; Suhartha, Nina A; Endres, Stefan; Bourquin, Carole; Liedl, Tim

    2011-12-27

    To investigate the potential of DNA origami constructs as programmable and noncytotoxic immunostimulants, we tested the immune responses induced by hollow 30-helix DNA origami tubes covered with up to 62 cytosine-phosphate-guanine (CpG) sequences in freshly isolated spleen cells. Unmethylated CpG sequences that are highly specific for bacterial DNA are recognized by a specialized receptor of the innate immune system localized in the endosome, the Toll-like receptor 9 (TLR9). When incubated with oligonucleotides containing CpGs, immune cells are stimulated through TLR9 to produce and secrete cytokine mediators such as interleukin-6 (IL-6) and interleukin-12p70 (IL-12p70), a process associated with the initiation of an immune response. In our studies, the DNA origami tube built from an 8634 nt long variant of the commonly used single-stranded DNA origami scaffold M13mp18 and 227 staple oligonucleotides decorated with 62 CpG-containing oligonucleotides triggered a strong immune response, characterized by cytokine production and immune cell activation, which was entirely dependent on TLR9 stimulation. Such decorated origami tubes also triggered higher immunostimulation than equal amounts of CpG oligonucleotides associated with a standard carrier system such as Lipofectamine. In the absence of CpG oligonucleotides, cytokine production induced by the origami tubes was low and was not related to TLR9 recognition. Fluorescent microscopy revealed localization of CpG-containing DNA origami structures in the endosome. The DNA constructs showed in contrast to Lipofectamine no detectable toxicity and did not affect the viability of splenocytes. We thus demonstrate that DNA origami constructs represent a delivery system for CpG oligonucleotides that is both efficient and nontoxic.

  10. Common links in the structure and cellular localization of Rhizobium chitolipooligosaccharides and general Rhizobium membrane phospholipid and glycolipid components.

    Science.gov (United States)

    Cedergren, R A; Lee, J; Ross, K L; Hollingsworth, R I

    1995-04-04

    Several common links between the structural chemistry of the chitolipooligosaccharides of Rhizobium and the general rhizobial membrane lipid and lipopolysaccharide chemistry of these bacteria have been uncovered. Aspects of common chemistry include sulfation, methylation, and the position and extent of fatty acyl chain unsaturation. We find that bacteria which are known to synthesize sulfated chitolipooligosaccharides (such as Rhizobium meliloti strains and the broad-host-range Rhizobium species strain NGR234) also have sulfated lipopolysaccharides. Their common origins of sulfation have been demonstrated by using mutants which are known to be impaired in sulfating their chitolipooligosaccharides. In such cases, there is a corresponding diminution or complete lack of sulfation of the lipopolysaccharides. The structural diversity of the fatty acids observed in the chitolipooligosaccharides is also observed in the other membrane lipids. For instance, the doubly unsaturated fatty acids which are known to be predominant components of R. meliloti chitolipooligosaccharides were also found in the usual phospholipids and glycolipids. Also, the known functionalization of the chitolipooligosaccharides of R. sp. NGR234 by O- and N-methylation was also reflected in the lipopolysaccharide of this organism. The common structural features of chitolipooligosaccharides and membrane components are consistent with a substantial degree of biosynthetic overlap and a large degree of cellular, spatial overlap between these molecules. The latter aspect is clearly demonstrated here since we show that the chitolipooligosaccharides are, in fact, normal membrane components of Rhizobium. This increases the importance of understanding the role of the bacterial cell surface chemistry in the Rhizobium/legume symbiosis and developing a comprehensive understanding of the highly integrated membrane lipid and glycolipid chemistry of Rhizobium.

  11. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  12. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  13. Structure of modified [epsilon]-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailong; Li, Ji; Shi, Ke; Huang, Qingrong (Rutgers)

    2015-10-15

    The micelle structure of octenyl succinic anhydride modified {var_epsilon}-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide {var_epsilon}-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24-26 {angstrom} in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268-308 {angstrom}. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. The results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities.

  14. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  15. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  16. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    Science.gov (United States)

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes.

  17. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  18. Analysis by numerical calculations of the depth and dynamics of the penetration of ordered cellular structure made by casting from AlSi10Mg eutectic alloy

    Directory of Open Access Journals (Sweden)

    M. Małysza

    2011-07-01

    Full Text Available Owing to high plastic deformability while maintaining stress values constant and relatively low, ordered cellular structures arecharacterised by excellent properties and the ability to dissipate the impact energy. Due to the low weight, structures of this type can beused, among others, for different parts of motor vehicles. For tests, a trapezoidal ordered cellular structure of 50.8 x 50.8 x 25.4 (mmoverall dimensions was selected. It was made as an investment casting from AlSi9Mg eutectic alloy by the method of Rapid Prototyping(RP. During FEM computations using an Abaqus programme, it was assumed that the material is isotropic and exhibits the features of anelastic – plastic body, introducing to calculations the, listed in a table, values of the stress-strain curve obtained in tensile tests performedon a MTS testing machine (10T. The computations used Johnson - Cook model, which is usually sufficiently accurate when modelling thephenomena of penetration of an element by an object of high initial velocity. The performed numerical calculations allowed identification

  19. Product structure metrics as an indicator of demand-supply chain efficiency : case study in the cellular network industry

    OpenAIRE

    Kaski, Timo

    2002-01-01

    Product structure affects demand-supply chain performance, this is almost self-evident. But how to develop better product structures? Which design alternative is the best among several options? Markets define the number of product variants needed. Therefore, limiting product variations is not a feasible solution. This research made an effort to develop a method to guide product structure development and to quantify comparison of alternative design implementations. The study aimed at reducing ...

  20. Characterization of the microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy.

    Science.gov (United States)

    Liu, Na; Yu, Peiqiang

    2010-07-14

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic information and the nutrient value of barley grain, although significant differences in biodegradation kinetics were observed. In conclusion, the studies demonstrated the potential of ultraspatially resolved synchrotron based technology (SFTIRM) to reveal the structural and chemical makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue.

  1. On the quasi-one dimensional structure of the cellular detonation in a two-dimensional duct

    Science.gov (United States)

    Uyeda, C. M.; Kurosaka, M.; Ferrante, A.

    2015-11-01

    We performed numerical simulations of cellular detonations in a 2D duct to establish the validity of the one-dimensional ZND model. The detonation was simulated by solving the Euler equations with a WENO-TCD numerical method using adaptive mesh refinement and a detailed chemical reaction mechanism. The results show that the properties of the ZND model of a 2H2-O2-7Ar reaction are very close to the results of the simulations initiated using three different methods for the area-averaged properties and the properties of particles tracked along their pathlines. Disagreements between the particle properties and the ZND model are greatest near the detonation front where the transverse wave and Mach stem introduce larger jumps in the flow properties than the ZND model predicts. The particle pathlines also exhibit a quasi one-dimensional motion downstream from the detonation front which is supported by the quick decay in the particles' velocity ratio of the vertical to horizontal velocity components, in the reference frame attached to the detonation front. These findings show the quasi one-dimensional nature of 2D detonations and the applicability of the ZND model.

  2. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Science.gov (United States)

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  3. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Esther Peña-Soler

    Full Text Available In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA. Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  4. Structural Analysis and Mutant Growth Properties Reveal Distinctive Enzymatic and Cellular Roles for the Three Major L-Alanine Transaminases of Escherichia coli

    Science.gov (United States)

    López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J.; Quintana, Juan F.; Rudd, Kenneth E.; Coll, Miquel; Vega, M. Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5′-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation. PMID:25014014

  5. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  6. Structural basis for the recognition of cellular mRNA export factor REF by herpes viral proteins HSV-1 ICP27 and HVS ORF57.

    Science.gov (United States)

    Tunnicliffe, Richard B; Hautbergue, Guillaume M; Kalra, Priti; Jackson, Brian R; Whitehouse, Adrian; Wilson, Stuart A; Golovanov, Alexander P

    2011-01-06

    The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR. Despite the absence of any obvious sequence similarity, both viral proteins bind on the same site of the folded RRM domain of REF, via short but specific recognition sites. The regions of ICP27 and ORF57 involved in binding by REF have been mapped as residues 104-112 and 103-120, respectively. We have identified the pattern of residues critical for REF/Aly recognition, common to both ICP27 and ORF57. The importance of the key amino acid residues within these binding sites was confirmed by site-directed mutagenesis. The functional significance of the ORF57-REF/Aly interaction was also probed using an ex vivo cytoplasmic viral mRNA accumulation assay and this revealed that mutants that reduce the protein-protein interaction dramatically decrease the ability of ORF57 to mediate the nuclear export of intronless viral mRNA. Together these data precisely map amino acid residues responsible for the direct interactions between viral adaptors and cellular REF/Aly and provide the first molecular details of how herpes viruses access the cellular mRNA export pathway.

  7. In-vivo and label-free imaging of cellular and tissue structures in mouse ear skin by using second- and third-harmonic generation microscopy

    Science.gov (United States)

    Lee, Eung Jang; Kim, Boram; Ahn, Hong-Gyu; Park, Seung-Han; Cheong, Eunji; Lee, Sangyoup

    2015-02-01

    A video-rate multimodal microscope, which can obtain second- and third- harmonic generation (SHG and THG) images simultaneously, is developed for investigating cellular and tissue structures in mouse ear skin. By utilizing in-vivo video-rate epi-detected SHG and THG microscopy, we successfully demonstrate that combined images of subcutaneous cellular components and peripheral nerve fibers, together with the collagen fiber, in the mouse ear pinna can be obtained without employing fluorescent probes. We also show that the flow of red blood cells and the diameter change of arteriole-like blood vessels can be visualized with femtosecond laser pulses with a wavelength of 1036 nm. In particular, the epi-THG contrast images of the blood-vessel walls display clearly the difference between the arteriole-like and the venule capillary-like blood-vessel types. We should emphasize that our newly-developed microscope system has a unique feature in that it can produce simultaneous in-vivo label-free SHG and THG images in contrast to the conventional confocal and two-photon microscopes.

  8. Detection of cis- and trans-acting factors in DNA structure-induced genetic instability using in silico and cellular approaches

    Directory of Open Access Journals (Sweden)

    Guliang Wang

    2016-08-01

    Full Text Available Sequences that can adopt alternative DNA structures (i.e. non-B DNA are very abundant in mammalian genomes, and recent studies have revealed many important biological functions of non-B DNA structures in chromatin remodeling, DNA replication, transcription, and genetic instability. Here, we provide results from an in-silico web-based search engine coupled with cell-based experiments to characterize the roles of non-B DNA conformations in genetic instability in eukaryotes. The purpose of this article is to illustrate strategies that can be used to identify and interrogate the biological roles of non-B DNA structures, particularly on genetic instability. We have included unpublished data using a short H-DNA-forming sequence from the human c-MYC promoter region as an example, and identified two different mechanisms of H-DNA-induced genetic instability in yeast and mammalian cells: a DNA replication-related model of mutagenesis; and a replication-independent cleavage model. Further, we identified candidate proteins involved in H-DNA-induced genetic instability by using a yeast genetic screen. A combination of in silico and cellular methods, as described here, should provide further insight into the contributions of non-B DNA structures in biological functions, genetic evolution, and disease development.

  9. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  10. STRUCTURAL ADAPTATIONS OF CELLULAR WALLS OF AQUATIC PLANTS TO THE ACTION OF IONS OF ZINC AND LEAD

    Directory of Open Access Journals (Sweden)

    Grubinko V.V.

    2012-11-01

    Full Text Available Main specific and nonspecific cells responses and membrane structures participation in formation of cells resistance in stress conditions, caused by heavy metals (chlorella, waterweed, duckweed in toxic concentrations are analyzed. The cell membranes participation in adaptation to toxicants (formation of growths, multiplication, fluidization, forming of aquaporin, apoptosis, which are first exposed to stressors, is discussed. Found specific and nonspecific reactions in membrane formation are proposed to use as biomarkers of toxicity.

  11. Cellular microRNA miR-181b inhibits replication of mink enteritis virus by repression of non-structural protein 1 translation.

    Science.gov (United States)

    Sun, Jia-zeng; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Li, Zhili; Yi, Bao; Mao, Yaping; Hou, Qiang; Liu, Weiquan

    2013-01-01

    Mink enteritis virus (MEV) is one of the most important viral pathogens in the mink industry. Recent studies have showed that microRNAs (miRNAs), small noncoding RNAs of length ranging from 18-23 nucleotides (nt) participate in host-pathogen interaction networks; however, whether or not miRNAs are involved in MEV infection has not been reported. Our study revealed that miRNA miR-181b inhibited replication of MEV in the feline kidney (F81) cell line by targeting the MEV non-structural protein 1 (NS1) messenger RNA (mRNA) coding region, resulting in NS1 translational repression, while MEV infection reduced miR-181b expression. This is the first description of cellular miRNAs modulating MEV infection in F81 cells, providing further insight into the mechanisms of viral infection, and may be useful in development of naturally-occurring miRNAs antiviral strategies.

  12. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth.

    Directory of Open Access Journals (Sweden)

    Steven M Yellon

    Full Text Available A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone, or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term.

  13. [Comparative characteristics of cellular composition of the lymphoid structure of various regions of the human intestine in early childhood].

    Science.gov (United States)

    Aminova, G G; Grigorenko, D E; Rusina, A K

    1997-01-01

    Using microscopic methods and statistic analysis lymphoid structures of large and small intestine walls and appendix were studied in 4-7 years children. The highest cell reproductive activity was detected in duodenal walls being slightly lower in appendix and group lymphoid vessels. The highest ratio of plasma cells was found in duodenum, ileal lymphoid patches and cecum, where the index was 7-fold higher than index of appendix and ileum. Lamina propria of intestinal mucosa is characterized by small fraction of mitotically dividing cells and undifferentiated cell forms, especially in cecum walls. However, the latter shows the greatest percentage of plasma cells.

  14. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    Science.gov (United States)

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery.

  15. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  16. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure

    Directory of Open Access Journals (Sweden)

    Maria Luisa eGuerriero

    2014-10-01

    Full Text Available Rhythmic behavior is essential for plants; for example, daily (circadian rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-hour day/night cycle.Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks.Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less studied.

  17. X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein.

    Science.gov (United States)

    Verdaguer, Nuria; Fita, Ignacio; Reithmayer, Manuela; Moser, Rosita; Blaas, Dieter

    2004-05-01

    Although many viral receptors have been identified, the ways in which they interact with their cognate viruses are not understood at the molecular level. We have determined the X-ray structure of a complex between calcium-containing modules of the very low-density lipoprotein receptor and the minor group human rhinovirus HRV2. The receptor binds close to the icosahedral five-fold vertex, with only one module per virus protomer. The binding face of this module is defined by acidic calcium-chelating residues and, in particular, by an exposed tryptophan that is highly conserved. The attachment site on the virus involves only residues from VP1, particularly a lysine strictly conserved in all minor group HRVs. The disposition of the attached ligand-binding repeats around the five-fold axis, together with the proximity of the N- and C-terminal ends of adjacent modules, suggests that more than one repeat in a single receptor molecule might attach simultaneously.

  18. Finite element analysis and cellular studies on advanced, controlled porous structures with subsurface continuity in bio-implantable titanium alloys.

    Science.gov (United States)

    Lambert, P; Ankem, S; Wyatt, Z; Ferlin, K M; Fisher, J

    2014-01-01

    Highly-porous metallic implant onlay materials (specifically those containing surface pores that intersect beneath the onlay surface) have been investigated recently for their potential to reduce bone resorption and to improve the overall stability of the implant. In the current study, sub-surface interconnectivity of high-aspect-ratio pores was created directly in the substrate of an implant material using wire electrical discharge machining (EDM). This technique was used to produce intersecting pores with diameters of 180-250 μm on a clinically relevant implant material—commercially pure (CP) Grade 4 Ti—with a very high degree of control over pore morphology. These pores resulted in no significant microstructural modification to the surrounding Ti, and the inner pore surfaces could be thermally oxidized to produce a microrough, bioactive TiO2 layer. Finite element analysis of Ti models containing these EDM-attainable intersecting pore geometries suggested they produce higher bone/implant interface strengths and lower susceptibility to stress shielding of the surrounding bone as compared with models containing simpler surface geometries. In vitro experiments using mesenchymal stem cells (MSCs) demonstrated mineralized tissue ingrowth of ∼ 300 μm into EDM-produced pores. This amount of ingrowth is expected to allow for full interlocking of mineralized tissue and implant given the proper pore structure design.

  19. Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers.

    Science.gov (United States)

    Donkuru, McDonald; Michel, Deborah; Awad, Hanan; Katselis, George; El-Aneed, Anas

    2016-05-13

    Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds.

  20. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies proposes to develop a unique structural cellular core material to improve mechanical performance, reduce platform weight and lower...

  1. Simultaneous structure-activity studies and arming of natural products by C-H amination reveal cellular targets of eupalmerin acetate

    Science.gov (United States)

    Li, Jing; Cisar, Justin S.; Zhou, Cong-Ying; Vera, Brunilda; Williams, Howard; Rodríguez, Abimael D.; Cravatt, Benjamin F.; Romo, Daniel

    2013-06-01

    Natural products have a venerable history of, and enduring potential for the discovery of useful biological activity. To fully exploit this, the development of chemical methodology that can functionalize unique sites within these complex structures is highly desirable. Here, we describe the use of rhodium(II)-catalysed C-H amination reactions developed by Du Bois to carry out simultaneous structure-activity relationship studies and arming (alkynylation) of natural products at ‘unfunctionalized’ positions. Allylic and benzylic C-H bonds in the natural products undergo amination while olefins undergo aziridination, and tertiary amine-containing natural products are converted to amidines by a C-H amination-oxidation sequence or to hydrazine sulfamate zwitterions by an unusual N-amination. The alkynylated derivatives are ready for conversion into cellular probes that can be used for mechanism-of-action studies. Chemo- and site-selectivity was studied with a diverse library of natural products. For one of these—the marine-derived anticancer diterpene, eupalmerin acetate—quantitative proteome profiling led to the identification of several protein targets in HL-60 cells, suggesting a polypharmacological mode of action.

  2. Multiscale approach to description of deformation and fracture of brittle media with hierarchical porous structure on the basis of movable cellular automaton method

    Directory of Open Access Journals (Sweden)

    S. G. Psakhie

    2013-04-01

    Full Text Available An approach to multiscale description of deformation and fracture of brittle porous materials on the basis of movable cellular automaton method was proposed. The material characterized by pore size distribution function having two maxima was considered. The core of the proposed approach consists in finding the automaton effective response function by means of direct numerical simulation of representative volume of the porous material. A hierarchical two-scale model of mechanical behavior of ceramics under compression and shear loading was developed. Zirconia based ceramics with pore size greater than the average grain size was considered. At the first scale of the model only small pores (corresponding to the first maximum of the pore size distribution function were taking into account explicitly (by removing automata from the initial structure. The representative volume and effective elastic properties of the porous material at this scale were evaluated. At the second scale of the model, big pores were taking into account explicitly, the parameters of the matrix corresponded to the ones determined at the first scale. Simulation results showed that the proposed multiscale model allows qualitatively and quantitatively correct describing of deformation and fracture of brittle material with hierarchical porous structure.

  3. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  4. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures

    Science.gov (United States)

    Patrussi, Laura; Baldari, Cosima T.

    2016-01-01

    ABSTRACT Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures. PMID:26587735

  5. Cellular microRNA miR-181b inhibits replication of mink enteritis virus by repression of non-structural protein 1 translation.

    Directory of Open Access Journals (Sweden)

    Jia-zeng Sun

    Full Text Available Mink enteritis virus (MEV is one of the most important viral pathogens in the mink industry. Recent studies have showed that microRNAs (miRNAs, small noncoding RNAs of length ranging from 18-23 nucleotides (nt participate in host-pathogen interaction networks; however, whether or not miRNAs are involved in MEV infection has not been reported. Our study revealed that miRNA miR-181b inhibited replication of MEV in the feline kidney (F81 cell line by targeting the MEV non-structural protein 1 (NS1 messenger RNA (mRNA coding region, resulting in NS1 translational repression, while MEV infection reduced miR-181b expression. This is the first description of cellular miRNAs modulating MEV infection in F81 cells, providing further insight into the mechanisms of viral infection, and may be useful in development of naturally-occurring miRNAs antiviral strategies.

  6. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.

    Science.gov (United States)

    Marcano-Velázquez, Joan G; Batey, Robert T

    2015-02-13

    Riboswitches are a broadly distributed form of RNA-based gene regulation in Bacteria and, more rarely, Archaea and Eukarya. Most often found in the 5'-leader sequence of bacterial mRNAs, they are generally composed of two functional domains: a receptor (aptamer) domain that binds an effector molecule and a regulatory domain (or expression platform) that instructs the expression machinery. One of the most studied riboswitches is the Bacillus subtilis adenine-responsive pbuE riboswitch, which regulates gene expression at the transcriptional level, up-regulating expression in response to increased intracellular effector concentrations. In this work, we analyzed sequence and structural elements that contribute to efficient ligand-dependent regulatory activity in a co-transcriptional and cellular context. Unexpectedly, we found that the P1 helix, which acts as the antitermination element of the switch in this RNA, supported ligand-dependent activation of a reporter gene over a broad spectrum of lengths from 3 to 10 bp. This same trend was also observed using a minimal in vitro single-turnover transcription assay, revealing that this behavior is intrinsic to the RNA sequence. We also found that the sequences at the distal tip of the terminator not directly involved in alternative secondary structure formation are highly important for efficient regulation. These data strongly support a model in which the switch is highly localized to the P1 helix adjacent to the ligand-binding pocket that likely presents a local kinetic block to invasion of the aptamer by the terminator.

  7. High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat.

    Science.gov (United States)

    Salin, Pascal; Manrique, Christine; Forni, Claude; Kerkerian-Le Goff, Lydia

    2002-06-15

    High-frequency stimulation (HFS) of the subthalamic nucleus (STN) is now recognized as an effective treatment for advanced Parkinson's disease, but the molecular basis of its effects remains unknown. This study examined the effects of unilateral STN HFS (2 hr of continuous stimulation) in intact and hemiparkinsonian awake rats on STN neuron metabolic activity and on neurotransmitter-related gene expression in the basal ganglia, by means of in situ hybridization histochemistry and immunocytochemistry. In both intact and hemiparkinsonian rats, this stimulation was found to induce c-fos protein expression but to decrease cytochrome oxidase subunit I mRNA levels in STN neurons. STN HFS did not affect the dopamine lesion-mediated overexpression of enkephalin mRNA or the decrease in substance P in the ipsilateral striatum. The lesion-induced increases in intraneuronal glutamate decarboxylase 67 kDa isoform (GAD67) mRNA levels on the lesion side were reversed by STN HFS in the substantia nigra, partially antagonized in the entopeduncular nucleus but unaffected in the globus pallidus. The stimulation did not affect neuropeptide or GAD67 mRNA levels in the side contralateral to the dopamine lesion or in intact animals. These data furnish the first evidence that STN HFS decreases the metabolic activity of STN neurons and antagonizes dopamine lesion-mediated cellular defects in the basal ganglia output structures. They provide molecular substrate to the therapeutic effects of this stimulation consistent with the current hypothesis that HFS blocks STN neuron activity. However, the differential impact of STN HFS on the effects of dopamine lesion among structures receiving direct STN inputs suggests that this stimulation may not cause simply interruption of STN outflow.

  8. Mathematical Modeling of Cellular Metabolism.

    Science.gov (United States)

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  9. Glycopattern analysis and structure of the egg extra-cellular matrix in the Apennine yellow-bellied toad, Bombina pachypus (Anura: Bombinatoridae

    Directory of Open Access Journals (Sweden)

    Giovanni Scillitani

    2011-07-01

    Full Text Available We studied the glycopatterns and ultrastructure of the extra-cellular matrix (ECM of the egg of theApennine yellow-bellied toad Bombina pachypus, by light and electron microscopy in order to determine structure,chemical composition and function. Histochemical techniques in light microscopy included PAS and AlcianBlue pH 2.5 and 1.0, performed also after b-elimination. Lectin-binding was tested with nine lectins (AAA,ConA, DBA, HPA, LTA, PNA, SBA, UEA-I, WGA. An inner fertilization envelope (FE and five jelly layers(J1–J5 were observed, differing in histochemical staining, lectin binding and ultrastructure. Most glycans wereO-linked, with many glucosamylated and fucosylated residues. The fertilization envelope presented a perivitellinespace and a fertilization layer, with mostly neutral glycans. The jelly layers consisted of fibers and granules,whose number and orientation differed between layers. Fibers were densely packed in J1 and J4 layers,whereas a looser arrangement was observed in the other layers. Jelly-layer glycans were mostly acidic and particularlyabundant in the J1 and J4 layers. In the J1, J2 and J5 layers, neutral, N-linked glycans were also observed.Mannosylated and/or glucosylated as well as galactosyl/galactosaminylated residues were more abundant in theouter layers. Many microorganisms were observed in the J5 layer. We believe that, apart from their functions inthe fertilization process, acidic and fucosylated glycans could act as a barrier against pathogen penetration.

  10. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.

    2007-01-01

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  11. Cellular fiber–reinforced concrete

    OpenAIRE

    Isachenko S.; Kodzoev M.

    2016-01-01

    Methods disperse reinforcement of concrete matrix using polypropylene, glass, basalt and metal fibers allows to make the construction of complex configuration, solve the problem of frost products. Dispersed reinforcement reduces the overall weight of the structures. The fiber replaces the secondary reinforcement, reducing the volume of use of structural steel reinforcement. Cellular Fiber concretes are characterized by high-performance properties, especially increased bending strength and...

  12. Structures and short linear motif of disordered transcription factor regions provide clues to the interactome of the cellular hub Radical-Induced Cell Death1

    DEFF Research Database (Denmark)

    O'Shea, Charlotte; Staby, Lasse; Bendsen, Sidsel Krogh;

    2017-01-01

    point to larger networks of interactions, such as with proteins that serve as hubs for essential cellular functions. The stress-associated plant protein Radical-Induced Cell Death1 (RCD1) is one such hub, interacting with many transcription factors via their flexible IDRs. To identify the SLiM bound...

  13. 中小企业单元组织的信息结构及创新机制%SMEs’ Cellular Organizations and their Information Structures and Innovation Mechanisms

    Institute of Scientific and Technical Information of China (English)

    刘群慧; 张建林

    2012-01-01

    Information structure is an important issue of corporate governance structure.Different information structures generate different governance mechanisms,which lead to different governance efficiency.The cellular organization is an effective collaborative innovation form for small & medium enterprises(SMEs),and its information structure is closely related to innovation mechanisms.Based on the definition discussion of SMEs’ cellular organization,this paper analyzes the organizational information structure and the innovation mechanisms corresponding to the variety information structure.%信息结构是分析组织治理问题的核心,不同的信息结构会产生相应的治理机制,从而形成不同的治理效率。单元组织模式作为一种中小企业协作创新的有效组织形式,其所表现出来的信息结构与组织的创新机制密切相关。从探讨中小企业单元组织内涵入手,分析单元组织内部成员企业间存在的主要信息结构,能够揭示基于不同信息结构的创新机制。

  14. Cellular bioluminescence imaging.

    Science.gov (United States)

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  15. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  16. Reversibly assembled cellular composite materials.

    Science.gov (United States)

    Cheung, Kenneth C; Gershenfeld, Neil

    2013-09-13

    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  17. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    Science.gov (United States)

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.

  18. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  19. Cellular blue naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    2001-01-01

    Full Text Available A 31-year-old man had asymptomatic, stationary, 1.5X2 cm, shiny, smooth, dark blue nodule on dorsum of right hand since 12-14 years. In addition he had developed extensive eruption of yellow to orange papulonodular lesions on extensors of limbs and buttocks since one and half months. Investigations confirmed that yellow papules were xanthomatosis and he had associated diabetes mellitus and hyperlipidaemia. Biopsy of blue nodule confirmed the clinical diagnosis of cellular blue naevus. Cellular blue naevus is rare and its association with xanthomatosis and diabetes mellitus were interesting features of above patients which is being reported for its rarity.

  20. Combined structural, biochemical and cellular evidence demonstrates that both FGDF motifs in alphavirus nsP3 are required for efficient replication.

    Science.gov (United States)

    Schulte, Tim; Liu, Lifeng; Panas, Marc D; Thaa, Bastian; Dickson, Nicole; Götte, Benjamin; Achour, Adnane; McInerney, Gerald M

    2016-07-01

    Recent findings have highlighted the role of the Old World alphavirus non-structural protein 3 (nsP3) as a host defence modulator that functions by disrupting stress granules, subcellular phase-dense RNA/protein structures formed upon environmental stress. This disruption mechanism was largely explained through nsP3-mediated recruitment of the host G3BP protein via two tandem FGDF motifs. Here, we present the 1.9 Å resolution crystal structure of the NTF2-like domain of G3BP-1 in complex with a 25-residue peptide derived from Semliki Forest virus nsP3 (nsP3-25). The structure reveals a poly-complex of G3BP-1 dimers interconnected through the FGDF motifs in nsP3-25. Although in vitro and in vivo binding studies revealed a hierarchical interaction of the two FGDF motifs with G3BP-1, viral growth curves clearly demonstrated that two intact FGDF motifs are required for efficient viral replication. Chikungunya virus nsP3 also binds G3BP dimers via a hierarchical interaction, which was found to be critical for viral replication. These results highlight a conserved molecular mechanism in host cell modulation.

  1. Cellular rehabilitation of photobiomodulation

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Yuan, Jian-Qin; Wang, Yan-Fang; Xu, Xiao-Yang; Liu, Song-Hao

    2007-05-01

    Homeostasis is a term that refers to constancy in a system. A cell in homeostasis normally functions. There are two kinds of processes in the internal environment and external environment of a cell, the pathogenic processes (PP) which disrupts the old homeostasis (OH), and the sanogenetic processes (SP) which restores OH or establishes a new homeostasis (NH). Photobiomodualtion (PBM), the cell-specific effects of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems, is a kind of modulation on PP or SP so that there is no PBM on a cell in homeostasis. There are two kinds of pathways mediating PBM, the membrane endogenetic chromophores mediating pathways which often act through reactive oxygen species, and membrane proteins mediating pathways which often enhance cellular SP so that it might be called cellular rehabilitation. The cellular rehabilitation of PBM will be discussed in this paper. It is concluded that PBM might modulate the disruption of cellular homeostasis induced by pathogenic factors such as toxin until OH has been restored or NH has been established, but can not change homeostatic processes from one to another one.

  2. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  3. Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity: synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation.

    Science.gov (United States)

    Maga, Giovanni; Falchi, Federico; Radi, Marco; Botta, Lorenzo; Casaluce, Gianni; Bernardini, Martina; Irannejad, Hamid; Manetti, Fabrizio; Garbelli, Anna; Samuele, Alberta; Zanoli, Samantha; Esté, José A; Gonzalez, Emmanuel; Zucca, Elisa; Paolucci, Stefania; Baldanti, Fausto; De Rijck, Jan; Debyser, Zeger; Botta, Maurizio

    2011-08-01

    A hit optimization protocol applied to the first nonnucleoside inhibitor of the ATPase activity of human DEAD-box RNA helicase DDX3 led to the design and synthesis of second-generation rhodanine derivatives with better inhibitory activity toward cellular DDX3 and HIV-1 replication. Additional DDX3 inhibitors were identified among triazine compounds. Biological data were rationalized in terms of structure-activity relationships and docking simulations. Antiviral activity and cytotoxicity of selected DDX3 inhibitors are reported and discussed. A thorough analysis confirmed human DDX3 as a valid anti-HIV target. The compounds described herein represent a significant advance in the pursuit of novel drugs that target HIV-1 host cofactors.

  4. Using NMR to Identify Structural Features of Lin28-Regulated miRNAs and mRNAs and as a Tool for Comparing Differences in Cellular Metabolism

    OpenAIRE

    O'Day, Elizabeth Mary

    2013-01-01

    Part 1 of this thesis seeks to identify shared structural features of Lin28-regulated miRNAs and mRNAs. Lin28 is an evolutionarily conserved, RNA binding protein, highly expressed in stem cells and poorly differentiated cancers, that inhibits differentiation and helps maintain stem cell properties. Lin28 binds to both the loops of let-7 precursors to block let-7 biogenesis and to Lin28 responsive elements (LREs) in mRNAs either to enhance or inhibit translation. Lin28 RNA binding properties a...

  5. A Heterogeneous Cellular Automata Model with Age Structure for HIV Transmission%具有年龄结构的异质元胞自动机HIV传播模型

    Institute of Scientific and Technical Information of China (English)

    王仲君; 张莉丽

    2014-01-01

    年龄结构影响群体发病率,将群体年龄分为5个阶段,建立扩展的异质元胞自动机模型,研究艾滋病在高发区及普通地区的传播行为。模型中,元胞具有不同的年龄,传染强度依状态改变,结合邻域内个体间致病性接触行为建立邻域元胞影响力函数,改进状态更新规则。仿真结果发现,个体的致病性接触行为、人群密度、元胞影响半径对艾滋病的传播速度及群体感染率具有一定影响,而个体年龄结构则在一定程度上影响群体感染分布情况。%According to statistics , age structure has an effect on the incidence of AIDS .The group can be divided into five categories with different incubations based on different ages .An expanded heterogeneous cellular automata model was built and then HIV transmission in area of high and average infection rate were respectively simulated .In this model , the cellular has dif-ferent ages;the intensity of infection changes with cell state .The influence function of neighborhood considering of the pathogenic contact behavior between neighborhoods was built to improve the rule of status updates .The simulation shows that pathogenic con-tact behavior , crowd density , and radius of influence have certain influences on the spread of HIV transmission; and the age structure has a certain influence on the outbreak of AIDS .

  6. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  7. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  8. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae

    Science.gov (United States)

    Bengtson, Stefan; Sallstedt, Therese; Belivanova, Veneta; Whitehouse, Martin

    2017-01-01

    The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, “cell fountains,” and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years. PMID:28291791

  9. Screening of cellular proteins that interact with the classical swine fever virus non-structural protein 5A by yeast two-hybrid analysis

    Indian Academy of Sciences (India)

    Chengcheng Zhang; Lei He; Kai Kang; Heng Chen; Lei Xu; Yanming Zhang

    2014-03-01

    Classical swine fever virus (CSFV), the pathogen of classical swine fever (CSF), causes severe hemorrhagic fever and vascular necrosis in domestic pigs and wild boar. A large number of evidence has proven that non-structural 5A (NS5A) is not only a very important part of viral replication complex, but also can regulate host cell’s function; however, the underlying mechanisms remain poorly understood. In the current study, aiming to find more clues in understanding the molecular mechanisms of CSFV NS5A’s function, the yeast two-hybrid (Y2H) system was adopted to screen for CSFV NS5A interactive proteins in the cDNA library of the swine umbilical vein endothelial cell (SUVEC). Alignment with the NCBI database revealed 16 interactive proteins: DDX5, PSMC3, NAV1, PHF5A, GNB2L1, CSDE1, HSPA8, BRMS1, PPP2R3C, AIP, TMED10, POLR1C, TMEM70, METAP2, CHORDC1 and COPS6. These proteins are mostly related to gene transcription, protein folding, protein degradation and metabolism. The interactions detected by the Y2H system should be considered as preliminary results. Since identifying novel pathways and host targets, which play essential roles during infection, may provide potential targets for therapeutic development. The finding of proteins obtained from the SUVEC cDNA library that interact with the CSFV NS5A protein provide valuable information for better understanding the interactions between this viral protein and the host target proteins.

  10. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD.

    Directory of Open Access Journals (Sweden)

    Wenxin Ma

    Full Text Available BACKGROUND: Age-related macular degeneration (AMD is a leading cause of legal blindness in the elderly in the industrialized word. While the immune system in the retina is likely to be important in AMD pathogenesis, the cell biology underlying the disease is incompletely understood. Clinical and basic science studies have implicated alterations in the retinal pigment epithelium (RPE layer as a locus of early change. Also, retinal microglia, the resident immune cells of the retina, have been observed to translocate from their normal position in the inner retina to accumulate in the subretinal space close to the RPE layer in AMD eyes and in animal models of AMD. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined the effects of retinal microglia on RPE cells using 1 an in vitro model where activated retinal microglia are co-cultured with primary RPE cells, and 2 an in vivo mouse model where retinal microglia are transplanted into the subretinal space. We found that retinal microglia induced in RPE cells 1 changes in RPE structure and distribution, 2 increased expression and secretion of pro-inflammatory, chemotactic, and pro-angiogenic molecules, and 3 increased extent of in vivo choroidal neovascularization in the subretinal space. CONCLUSIONS/SIGNIFICANCE: These findings share similarities with important pathological features found in AMD and suggest the relevance of microglia-RPE interactions in AMD pathogenesis. We speculate that the migration of retinal microglia into the subretinal space in early stages of the disease induces significant changes in RPE cells that perpetuate further microglial accumulation, increase inflammation in the outer retina, and fosters an environment conducive for the formation of neovascular changes responsible for much of vision loss in advanced AMD.

  11. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular...

  12. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  13. Numerical investigation on evolution of cylindrical cellular detonation

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; JIANG Zong-lin; HU Zong-min; HAN Gui-lai

    2008-01-01

    Cylindrical cellular detonation is numerically investigated by solving twodimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh.The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction.Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas.Split of cellular structures shows different features in the near-field and far-field from the initiation zone.Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation.Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.

  14. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  15. Thermomechanical characterisation of cellular rubber

    Science.gov (United States)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-09-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  16. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Lehrer, Gus; Zhang, Ruibin

    2015-01-01

    structure are described in terms of certain Temperley–Lieb-like diagrams. We also prove general results that relate endomorphism algebras of specialisations to specialisations of the endomorphism algebras. When ζ is a root of unity of order bigger than d we consider the Uζ-module structure...... we independently recover the weight multiplicities of indecomposable tilting modules for Uζ(sl2) from the decomposition numbers of the endomorphism algebras, which are known through cellular theory....

  17. Cell biology of the future: Nanometer-scale cellular cartography.

    Science.gov (United States)

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities.

  18. Cellular-based sea level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.

    , and cellular modem are mounted on the top portion of this structure. The pressure sensor and the logger are continuously powered on, and their electrical current consumption is 30 and 15 mA respectively. The cellular modem consumes 15 mA and 250 mA during... standby and data transmission modes, respectively. The pressure sensor located below the low-tide level measures the hydrostatic pressure of the overlying water layer. An indigenously designed and developed microprocessor-based data logger interrogates...

  19. Infrared image enhancement using Cellular Automata

    Science.gov (United States)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2016-05-01

    Image enhancement is a crucial technique for infrared images. The clear image details are important for improving the quality of infrared images in computer vision. In this paper, we propose a new enhancement method based on two priors via Cellular Automata. First, we directly learn the gradient distribution prior from the images via Cellular Automata. Second, considering the importance of image details, we propose a new gradient distribution error to encode the structure information via Cellular Automata. Finally, an iterative method is applied to remap the original image based on two priors, further improving the quality of enhanced image. Our method is simple in implementation, easy to understand, extensible to accommodate other vision tasks, and produces more accurate results. Experiments show that the proposed method performs better than other methods using qualitative and quantitative measures.

  20. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.

    Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...... is equivalent to knowledge of the weight multiplicities of the tilting modules for $\\U_{\\zeta}(\\fsl_2)$. In the final section we independently determine the weight multiplicities of indecomposable tilting modules for $U_\\zeta(\\fsl_2)$ and the decomposition numbers of the endomorphism algebras. We indicate how...

  1. Complexity, dynamic cellular network, and tumorigenesis.

    Science.gov (United States)

    Waliszewski, P

    1997-01-01

    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  2. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  3. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  4. Engineering Cellular Metabolism.

    Science.gov (United States)

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.

  5. Fluorescopic evaluation of protein-lipid relations in cellular signalling.

    NARCIS (Netherlands)

    Pap, E.H.W.

    1994-01-01

    IntroductionCellular communication is partly mediated through the modulation of protein activity, structure and dynamics by lipids. In contrast to the biochemical aspects of lipid signalling, relatively little is known about the physical properties of the "signal" lipids (lipids involved in cellular

  6. New palladium(II) and platinum(II) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2'-bipyridine and 2,2'-dipyridylamine: synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Samli, Hale; Harrison, William T A; Buyukgungor, Orhan

    2015-04-21

    Novel palladium(ii) and platinum(ii) complexes of 5,5-diethylbarbiturate (barb) with 2-phenylpyridine (Hppy), 2,2'-bipyridine (bpy) and 2,2'-dipyridylamine (dpya) have been prepared and characterized by elemental analysis, IR, UV-Vis, NMR and ESI-MS. Single-crystal diffraction measurements show that complex consists of binuclear [Pd2(μ-barb-κN,O)2(ppy-κN,C)2] moieties, while complexes are mononuclear, [M(barb-κN)2(L-κN,N')] (L = bpy or dpya). has a composition of [Pt(dpya-κN,N')2][Ag(barb-κN)2]2·4H2O and was assumed to have a structure of [Pt(barb-κN)(Hppy-κN)(ppy-κN,C)]·3H2O. The complexes were found to exhibit significant DNA binding affinity by a non-covalent binding mode, in accordance with molecular docking studies. In addition, complexes and displayed strong binding with supercoiled pUC19 plasmid DNA. Cellular uptake studies were performed to assess the subcellular localization of the selected complexes. A moderate radical scavenging activity of and was confirmed by DPPH and ABTS tests. Complexes , , and showed selectivity against HT-29 (colon) cell line.

  7. Limiting Impact Force Due to Yielding and Buckling of the Plates and Internal Structural Frame at the Bow of a Barge during Its Head-on Impact with a Bullnose or Cellular Structure

    Science.gov (United States)

    2009-08-01

    Crushing damage of barge headlog ................................................................................. 37 Tables Table 3.1. Three design load...types of structures as the geometry of the contact area is the same for both.) The photograph on the cover of this report shows a badly damaged barge...structural concept can be explained as follows. Because of the elastoplastic and limiting strain material characteristics of steel combined with the

  8. Construction and structural analysis of integrated cellular network of Corynebacterium glutamicum%谷氨酸棒状杆菌集成细胞网络的构建与结构分析

    Institute of Scientific and Technical Information of China (English)

    姜金国; 宋理富; 郑平; 贾士儒; 孙际宾

    2012-01-01

    Corynebacterium glutamicum is one of the most important traditional industrial microorganisms and receiving more and more attention towards a novel cellular factory due to the recently rapid development in genomics aad genetic operation toolboxes for Corynebacterium. However, compared to other model organisms such as Escherichia coli, there were few studies on its metabolic regulation, especially a genome-scale integrated cellular network model currently missing for Corynebacterium, which hindered the systematic study of Corynebacterium glutamicum and large-scale rational design and optimization for strains. Here, by gathering relevant information from a number of public databases, we successfully constructed an integrated cellular network, which was composed of 1 384 reactions, 1 276 metabolites, 88 transcriptional factors and 999 pairs of transcriptional regulatory relationships. The transcriptional regulatory sub-network could be arranged into five layers and the metabolic sub-network presented a clear bow-tie structure. We proposed a new method to extract complex metabolic and regulatory sub-network for product-orientated study taking lysine biosynthesis as an example. The metabolic and regulatory sub-network extracted by our method was more close to the real functional network than the simplex biochemical pathways. The results would be greatly helpful for understanding the high-yielding biomechanism for amino acids and the re-design of the industrial strains.%谷氨酸棒状杆菌是一种重要的传统工业微生物,其基因组学和分子遗传操作工具的快速发展使得谷氨酸棒状杆菌具备了作为新型细胞工厂的潜力.但是,相对于大肠杆菌等模式生物,对于棒杆菌的代谢调控研究较少,特别是目前还缺乏谷氨酸棒状杆菌集成细胞网络的研究,这一现状阻碍了谷氨酸棒状杆菌的系统生物学研究和大规模菌种理性设计优化.文中综合应用公共数据库、文献数据库资源,

  9. Développement d'une approche couplée Automates Cellulaires – Eléments Finis pour la modélisation du développement des structures de grains en soudage TIG A coupled Cellular Automaton – Finite Element approach for the modelling of grain structure development in TIG welding

    Directory of Open Access Journals (Sweden)

    Chen Shijia

    2013-11-01

    Full Text Available Dans le domaine du soudage, les propriétés finales du cordon sont fortement liées à la structure de grains développée au cours des procédés de fusion / resolidification. La maîtrise des propriétés de l'assemblage final passe ainsi par une amélioration de la connaissance de sa structure de ce domaine. Dans cet objectif, un modèle couplé Automates Cellulaires – Eléments Finis est proposé pour simuler le développement, en volume, de cette structure, dans le cadre du soudage TIG. Ce modèle est appliqué au soudage d'acier Duplex 2202 et l'évolution de la structure de grains selon les paramètres procédés est discutée. In the welding area, the final properties of the weld bead are mainly induced by the grain structure developed during the melting and solidification steps. The mastery of the properties of the joining will be achieved with a better knowledge of the developed grain structure. A 3D coupled Cellular Automaton – Finite Element model is proposed in order to simulate the grains development in TIG process. This model is applied to the welding of a duplex stainless steel grade. The grain structure evolution is discussed for the various process parameters.

  10. Cellular neurothekeoma with melanocytosis.

    Science.gov (United States)

    Wu, Ren-Chin; Hsieh, Yi-Yueh; Chang, Yi-Chin; Kuo, Tseng-Tong

    2008-02-01

    Cellular neurothekeoma (CNT) is a benign dermal tumor mainly affecting the head and neck and the upper extremities. It is characterized histologically by interconnecting fascicles of plump spindle or epithelioid cells with ample cytoplasm infiltrating in the reticular dermis. The histogenesis of CNT has been controversial, although it is generally regarded as an immature counterpart of classic/myxoid neurothekeoma, a tumor with nerve sheath differentiation. Two rare cases of CNT containing melanin-laden cells were described. Immunohistochemical study with NKI/C3, vimentin, epithelial membrane antigen, smooth muscle antigen, CD34, factor XIIIa, collagen type IV, S100 protein and HMB-45 was performed. Both cases showed typical growth pattern of CNT with interconnecting fascicles of epithelioid cells infiltrating in collagenous stroma. One of the nodules contained areas exhibiting atypical cytological features. Melanin-laden epithelioid or dendritic cells were diffusely scattered throughout one nodule, and focally present in the peripheral portion of the other nodule. Both nodules were strongly immunoreactive to NKI/C3 and vimentin, but negative to all the other markers employed. CNT harboring melanin-laden cells may pose diagnostic problems because of their close resemblance to nevomelanocytic lesions and other dermal mesenchymal tumors. These peculiar cases may also provide further clues to the histogenesis of CNT.

  11. A cellular glass substrate solar concentrator

    Science.gov (United States)

    Bedard, R.; Bell, D.

    1980-01-01

    The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.

  12. WD40 proteins propel cellular networks.

    Science.gov (United States)

    Stirnimann, Christian U; Petsalaki, Evangelia; Russell, Robert B; Müller, Christoph W

    2010-10-01

    Recent findings indicate that WD40 domains play central roles in biological processes by acting as hubs in cellular networks; however, they have been studied less intensely than other common domains, such as the kinase, PDZ or SH3 domains. As suggested by various interactome studies, they are among the most promiscuous interactors. Structural studies suggest that this property stems from their ability, as scaffolds, to interact with diverse proteins, peptides or nucleic acids using multiple surfaces or modes of interaction. A general scaffolding role is supported by the fact that no WD40 domain has been found with intrinsic enzymatic activity despite often being part of large molecular machines. We discuss the WD40 domain distributions in protein networks and structures of WD40-containing assemblies to demonstrate their versatility in mediating critical cellular functions.

  13. Free fall and cellular automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2016-03-01

    Full Text Available Three reasonable hypotheses lead to the thesis that physical phenomena can be described and simulated with cellular automata. In this work, we attempt to describe the motion of a particle upon which a constant force is applied, with a cellular automaton, in Newtonian physics, in Special Relativity, and in General Relativity. The results are very different for these three theories.

  14. About Strongly Universal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Maurice Margenstern

    2013-09-01

    Full Text Available In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

  15. Reactive Programming of Cellular Automata

    OpenAIRE

    Boussinot, Frédéric

    2004-01-01

    Implementation of cellular automata using reactive programming gives a way to code cell behaviors in an abstract and modular way. Multiprocessing also becomes possible. The paper describes the implementation of cellular automata with the reactive programming language LOFT, a thread-based extension of C. Self replicating loops considered in artificial life are coded to show the interest of the approach.

  16. An ultrasonic investigation of the effect of voids on the mechanical properties of bread dough and the role of gas cells in determining the cellular structure of freeze- dried breadcrumb

    Science.gov (United States)

    Elmehdi, Hussein Mohamed

    dough was proofed for various times. Ultrasonic velocity and amplitude decrease with increasing φ. The experimental data were found to be in reasonable agreement with theoretical models for the elasticity of isotropic cellular foams and tortuosity. The effects of anisotropy in breadcrumb structure were studied by compressing samples uniaxially, thereby transforming the shape of the air cells from approximately spherical to elongated ellipsoids. Ultrasonic measurements were taken in the directions parallel and perpendicular to the strain. These results indicated that the path by which sound propagates is critical. The data were interpreted using the same two theoretical models, taking into account anisotropy effects. The tortuosity model was able to interpret the void fraction dependence of the velocity along the two orthogonal directions, thus giving a way of relating changes in ultrasonic velocity to changes in breadcrumb structure. This thesis demonstrates the potential for using ultrasound as a non-destructive, cheap and accurate tool for studying the effect of voids (and their expansion) on dough properties. These ultrasonic techniques can also be used to investigate the effect of air cells on the structural integrity of breadcrumb and hence be a useful tool for quantitatively assessing bread quality.

  17. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  18. Cellular systems biology profiling applied to cellular models of disease.

    Science.gov (United States)

    Giuliano, Kenneth A; Premkumar, Daniel R; Strock, Christopher J; Johnston, Patricia; Taylor, Lansing

    2009-11-01

    Building cellular models of disease based on the approach of Cellular Systems Biology (CSB) has the potential to improve the process of creating drugs as part of the continuum from early drug discovery through drug development and clinical trials and diagnostics. This paper focuses on the application of CSB to early drug discovery. We discuss the integration of protein-protein interaction biosensors with other multiplexed, functional biomarkers as an example in using CSB to optimize the identification of quality lead series compounds.

  19. OBSERVACIONES HISTOLÓGICAS DE ESTRUCTURAS CELULARES ASOCIADAS A Spongospora subterranea f sp. subterranea EN PAPA HISTOLOGY OBSERVATIONS OF CELLULAR STRUCTURES ASSOCIATED TO Spongospora subterranea f sp. subterranea IN POTATO

    Directory of Open Access Journals (Sweden)

    Liliana Hoyos Carvajal

    2009-12-01

    Full Text Available Spongospora subterranea (Wallroth Lagerheim f. sp. subterranea Tomlinson, agente causal de la sarna polvosa de la papa, es un parásito obligado el cual por sus características biológicas y reproductivas, posee una gran capacidad de sobrevivencia e infección no solo en su principal hospedero, sino también en diversas especies silvestres. El objetivo de este estudio fue realizar observaciones de estructuras celulares asociadas a S. subterranea f. sp. subterranea en plantas de papa en diferentes estados fenológicos naturalmente infectadas por el patógeno, sintomáticas o asintomáticas. Para este propósito se realizaron observaciones al microscopio de luz haciendo tinción de estos tejidos con azul de tripano, mediante lo cual fue posible identificar todas las fases de S. subterranea en las plantas analizadas. Lo anterior demuestra que en los tejidos radicales de papa, no siempre la presencia de agallas es indicativo de la infección, aun plantas asintomáticas pueden ser portadores de estructuras del protozoo; además, algunas estructuras asociadas a S. subterranea como plasmodios o células únicas, son de ocurrencia común y coinciden con las mencionadas frecuentemente en la literatura también en hospederos silvestres, lo que lleva a proponer la hipótesis de que este es un microorganismo común en suelos, que causa disturbios importantes puntualmente en cultivos de papa y cuyas estrategias de control deben orientarse el conocimiento de la ecología de las interacciones del protozoo, sus hospederos y el suelo.Spongospora subterranea (Wallroth Lagerheim f. sp. subterranea Tomlinson, is the causal agent of powdery scab in potato and is an obligate parasite, because the biological and reproductive characteristic, it has a great survival and infection capacity in both, natural and wilds host which, can belong in different ecosystems and climatic conditions. The goal in this study was to make observations of cellular associate structures to

  20. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  1. [Division of regulatory cellular systems (Lvov)].

    Science.gov (United States)

    Kusen', S I

    1995-01-01

    Two departments of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine were founded in 1969 in Lviv. These were: the Department of Biochemistry of Cell Differentiation headed by Professor S. I. Kusen and Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds headed by Professor G. M. Shavlovsky. The Lviv Division of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine with Professor S. I. Kusen as its chief, was founded in 1974 on the basis of these departments and the Laboratory of Modelling of Regulatory Cellular Systems headed by Professor M. P. Derkach. The above mentioned laboratory which was not the structural unit obtained the status of Structural Laboratory of Cellular Biophysics in 1982 and was headed by O. A. Goida, Candidate of biological sciences. From 1983 the Laboratory of Correcting Therapy of Malignant Tumors and Hemoblastoses at the Institute of Molecular Biology and Genetics, Academy of Sciences of Ukraine (Chief--S. V. Ivasivka, Candidate of medical sciences) was included in the structure of the Division. That Laboratory was soon transformed into the Department of Carbohydrate Metabolism Regulation headed by Professor I. D. Holovatsky. In 1988 this Department was renamed into the Department of Glycoprotein Biochemistry and headed by M. D. Lutsik, Doctor of biological sciences. In 1982 one more Laboratory of Biochemical Genetics was founded at the Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds, in 1988 it was transformed into the Department of Biochemical Genetics (Chief--Professor A. A. Sibirny). In 1989 the Laboratory of Anion Transport was taken from A. V. Palladin Institute of Biochemistry, Academy of Sciences of Ukraine to Lviv Division of this Institute. This laboratory was headed by Professor M. M. Veliky. One more reorganization in the Division structure took place in 1994. The Department of

  2. Quantum features of natural cellular automata

    Science.gov (United States)

    Elze, Hans-Thomas

    2016-03-01

    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schrödinger equation. This includes corresponding conservation laws. The class of “natural” Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, “deformed” quantum mechanical models with a finite discreteness scale l are obtained, which for l → 0 reproduce familiar continuum results. We have recently demonstrated that such automata can form “multipartite” systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce the essential quantum effects of interference and entanglement.

  3. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  4. Quantum features of natural cellular automata

    CERN Document Server

    Elze, Hans-Thomas

    2016-01-01

    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schroedinger equation. This includes corresponding conservation laws. The class of "natural" Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, "deformed" quantum mechanical models with a finite discreteness scale $l$ are obtained, which for $l\\rightarrow 0$ reproduce familiar continuum results. We have recently demonstrated that such automata can form "multipartite" systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce...

  5. A Course in Cellular Bioengineering.

    Science.gov (United States)

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  6. Physics of Cellular Movements

    Science.gov (United States)

    Sackmann, Erich; Keber, Felix; Heinrich, Doris

    2010-04-01

    The survival of cells depends on perpetual active motions, including (a) bending excitations of the soft cell envelopes, (b) the bidirectional transport of materials and organelles between the cell center and the periphery, and (c) the ongoing restructuring of the intracellular macromolecular scaffolds mediating global cell changes associated with cell adhesion locomotion and phagocytosis. Central questions addressed are the following: How can this bustling motion of extremely complex soft structures be characterized and measured? What are the major driving forces? Further topics include (a) the active dynamic control of global shape changes by the interactive coupling of the aster-like soft scaffold of microtubules and the network of actin filaments associated with the cell envelope (the actin cortex) and (b) the generation of propulsion forces by solitary actin gelation waves propagating within the actin cortex.

  7. Energy Landscape of Cellular Networks

    Science.gov (United States)

    Wang, Jin

    2008-03-01

    Cellular Networks are in general quite robust and perform their biological functions against the environmental perturbations. Progresses have been made from experimental global screenings, topological and engineering studies. However, there are so far few studies of why the network should be robust and perform biological functions from global physical perspectives. In this work, we will explore the global properties of the network from physical perspectives. The aim of this work is to develop a conceptual framework and quantitative physical methods to study the global nature of the cellular network. The main conclusion of this presentation is that we uncovered the underlying energy landscape for several small cellular networks such as MAPK signal transduction network and gene regulatory networks, from the experimentally measured or inferred inherent chemical reaction rates. The underlying dynamics of these networks can show bi-stable as well as oscillatory behavior. The global shapes of the energy landscapes of the underlying cellular networks we have studied are robust against perturbations of the kinetic rates and environmental disturbances through noise. We derived a quantitative criterion for robustness of the network function from the underlying landscape. It provides a natural explanation of the robustness and stability of the network for performing biological functions. We believe the robust landscape is a global universal property for cellular networks. We believe the robust landscape is a quantitative realization of Darwinian principle of natural selection at the cellular network level. It may provide a novel algorithm for optimizing the network connections, which is crucial for the cellular network design and synthetic biology. Our approach is general and can be applied to other cellular networks.

  8. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... redox pool than glutathione. Accordingly, protein thiols are likely to be directly involved in the cellular defense against oxidative stress....

  9. Minimal model for complex dynamics in cellular processes.

    Science.gov (United States)

    Suguna, C; Chowdhury, K K; Sinha, S

    1999-11-01

    Cellular functions are controlled and coordinated by the complex circuitry of biochemical pathways regulated by genetic and metabolic feedback processes. This paper aims to show, with the help of a minimal model of a regulated biochemical pathway, that the common nonlinearities and control structures present in biomolecular interactions are capable of eliciting a variety of functional dynamics, such as homeostasis, periodic, complex, and chaotic oscillations, including transients, that are observed in various cellular processes.

  10. Lightweight 3D cellular composites inspired by balsa.

    Science.gov (United States)

    Malek, Sardar; Raney, Jordan; Lewis, Jennifer; Gibson, Lorna

    2017-02-13

    Additive manufacturing technologies offer new ways to fabricate cellular materials with composite cell walls, mimicking the structure and mechanical properties of woods. However, materials limitations and a lack of design tools have confined the usefulness of 3D printed cellular materials. We develop new carbon fiber reinforced, epoxy inks for 3D printing which result in printed materials with longitudinal Young's modulus up to 57 GPa (exceeding the longitudinal modulus of wood cell wall material). To guide the design of hierarchical cellular materials, we developed a parameterized, multi-scale, finite element model. Computational homogenization based on finite element simulations at multiple length scales is employed to obtain the elastic properties of the material at multiple length scales. Parameters affecting the elastic response of cellular composites, such as the volume fraction, orientation distribution, and aspect ratio of fibers within the cell walls as well as the cell geometry and relative density are included in the model. To validate the model, experiments are conducted on both solid carbon fiber/epoxy composites and cellular structures made from them, showing excellent agreement with model predictions, both at the cell-wall and at the cellular-structure levels. Using the model, cellular structures are designed and experimentally shown to achieve a specific stiffness nearly as high as that observed in balsa wood. The good agreement between the multi-scale model predictions and experimental data provides confidence in the practical utility of this model as a tool for designing novel 3D cellular composites with unprecedented specific elastic properties.

  11. Simulation of effect of fault structure heterogeneity on seismicity using cellular automata model%断层结构非均匀性对地震活动性影响的细胞自动机模拟

    Institute of Scientific and Technical Information of China (English)

    李锰; 杨峰

    2011-01-01

    A 2-D cellular automata fault model with 81×81 cells was constructed to test its seismicity performance. In a series of tests 4 kinds of fault strength heterogeneity and 6 different strength geometrical distributions were taken. With the model simulation we analyzed how the fault structure heterogeneity affects macroscopic fault failure behavior and generated seismic sequence type. The results show that with increasing degree of heterogeneity the macroscopic deformation and fracture process present from brittle to plastic behavior, and produce 3 different types of seismic sequence, I.e. , main shock type, foreshock-main shock-aftershock type and swarm type. In the same time, with increasing fault strength heterogeneity the fracture size distribution more regularly follows the G-R relation. Besides, temporarily the events occur in a certain random process, that is, small events appear randomly, medium size events occur in clusters and large ones emerge quasi-periodically. The event clustering and quasi-periodic occurrences become less significant with the fault heterogeneity increasing. It is also found that the randomness of structural geometric variation may affect characteristics of seismic sequences, but the difference in randomness becomes weaker as degree of heterogeneity increases.%基于断层强度分布的非均匀性,构建了由81×81个细胞单元组成的4种不同匀质度及其各自6种不同随机构型共计24个非均匀二维单断层模型样本,并通过设计的细胞自动机模拟程序,在保持其它模拟参数不变的条件下对它们进行了模拟试验.研究结果表明,随着断层结构非匀质度的增加,其宏观变形破坏行为由相对脆性向塑性变化;地震序列类型依次表现出主震型、前震-主震-余震型和震群型;震级分布表现出非均匀性依次减小;地震发生在时间上表现为一种确定性的随机过程,即小震随机、中强地震丛集和大震准周期的特点.此

  12. [Cellular and molecular mechanisms of memory].

    Science.gov (United States)

    Laroche, Serge

    2010-01-01

    A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and morphological remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. Today, it is generally accepted that one key neurobiological mechanism underlying the formation of memories reside in activity-driven modifications of synaptic strength and structural remodelling of neural networks activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation, a long-lasting activity-dependent form of synaptic strengthening, opened a new chapter in the study of the neurobiological substrate of memory in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity and memory formation are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of neuronal gene programs is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.

  13. HDACi: cellular effects, opportunities for restorative dentistry.

    LENUS (Irish Health Repository)

    Duncan, H F

    2011-12-01

    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  14. Classifying cellular automata using grossone

    Science.gov (United States)

    D'Alotto, Louis

    2016-10-01

    This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [7] - [12]), to the development and classification of one and two-dimensional cellular automata. By the application of grossone, new and more precise nonarchimedean metrics on the space of definition for one and two-dimensional cellular automata are established. These new metrics allow us to do computations with infinitesimals. Hence configurations in the domain space of cellular automata can be infinitesimally close (but not equal). That is, they can agree at infinitely many places. Using the new metrics, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of cellular automaton maps, can now be computed and hence a classification scheme developed based on this computation.

  15. Prognosis of Different Cellular Generations

    Directory of Open Access Journals (Sweden)

    Preetish Ranjan

    2013-04-01

    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  16. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were synthesized from...

  17. Cellular models for Parkinson's disease.

    Science.gov (United States)

    Falkenburger, Björn H; Saridaki, Theodora; Dinter, Elisabeth

    2016-10-01

    Developing new therapeutic strategies for Parkinson's disease requires cellular models. Current models reproduce the two most salient changes found in the brains of patients with Parkinson's disease: The degeneration of dopaminergic neurons and the existence of protein aggregates consisting mainly of α-synuclein. Cultured cells offer many advantages over studying Parkinson's disease directly in patients or in animal models. At the same time, the choice of a specific cellular model entails the requirement to focus on one aspect of the disease while ignoring others. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types the aspects of Parkinson's disease they model along with technical advantages and disadvantages. It might also be helpful for researchers from other fields consulting literature on cellular models of Parkinson's disease. Important models for the study of dopaminergic neuron degeneration include Lund human mesencephalic cells and primary neurons, and a case is made for the use of non-dopaminergic cells to model pathogenesis of non-motor symptoms of Parkinson's disease. With regard to α-synuclein aggregates, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. Cellular models reproduce the two most salient changes of Parkinson's disease, the degeneration of dopaminergic neurons and the existence of α-synuclein aggregates. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types and treatments the aspects of Parkinson's disease they model along with technical advantages and disadvantages. Furthermore, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. This article is part of a special issue on Parkinson disease.

  18. Cellular basis of Alzheimer's disease.

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-12-01

    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  19. Thermo-fluid behaviour of periodic cellular metals

    CERN Document Server

    Lu, Tian Jian; Wen, Ting

    2013-01-01

    Thermo-Fluid Behaviour of Periodic Cellular Metals introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach.  The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi’an Jiaotong University, Xi’an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering o...

  20. Empirical study on entropy models of cellular manufacturing systems

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Zhang; Renbin Xiao

    2009-01-01

    From the theoretical point of view,the states of manufacturing resources can be monitored and assessed through the amount of information needed to describe their technological structure and operational state.The amount of information needed to describe cellular manufacturing systems is investigated by two measures:the structural entropy and the operational entropy.Based on the Shannon entropy,the models of the structural entropy and the operational entropy of cellular manufacturing systems are developed,and the cognizance of the states of manufacturing resources is also illustrated.Scheduling is introduced to measure the entropy models of cellular manufacturing systems,and the feasible concepts of maximum schedule horizon and schedule adherence are advanced to quantitatively evaluate the effectiveness of schedules.Finally,an example is used to demonstrate the validity of the proposed methodology.

  1. On Cellular MIMO Channel Capacity

    Science.gov (United States)

    Adachi, Koichi; Adachi, Fumiyuki; Nakagawa, Masao

    To increase the transmission rate without bandwidth expansion, the multiple-input multiple-output (MIMO) technique has recently been attracting much attention. The MIMO channel capacity in a cellular system is affected by the interference from neighboring co-channel cells. In this paper, we introduce the cellular channel capacity and evaluate its outage capacity, taking into account the frequency-reuse factor, path loss exponent, standard deviation of shadowing loss, and transmission power of a base station (BS). Furthermore, we compare the cellular MIMO downlink channel capacity with those of other multi-antenna transmission techniques such as single-input multiple-output (SIMO) and space-time block coded multiple-input single-output (STBC-MISO). We show that the optimum frequency-reuse factor F that maximizes 10%-outage capacity is 3 and both 50%- and 90%-outage capacities is 1 irrespective of the type of multi-antenna transmission technique, where q%-outage capacity is defined as the channel capacity that gives an outage probability of q%. We also show that the cellular MIMO channel capacity is always higher than those of SIMO and STBC-MISO.

  2. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, MQT; Stürup, Stefan; Lambert, Ian H.;

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-...

  3. EFFECTIVENESS OF CELLULAR INJECTION MOLDING PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2013-06-01

    Full Text Available In a study of cellular injection, molding process uses polyvinylchloride PVC. Polymers modified with introducing blowing agents into them in the Laboratory of the Department of Technologies and Materiase of Technical University of Kosice. For technological reasons, blowing agents have a form of granules. In the experiment, the content of the blowing agent (0–2,0 % by mass fed into the processed polymer was adopted as a variable factor. In the studies presented in the article, the chemical blowing agents occurring in the granulated form with a diameter of 1.2 to 1.4 mm were used. The view of the technological line for cellular injection molding and injection mold cavity with injection moldings are shown in Figure 1. The results of the determination of selected properties of injection molded parts for various polymeric materials, obtained with different content of blowing agents, are shown in Figures 4-7. Microscopic examination of cross-sectional structure of the moldings were obtained using the author's position image analysis of porous structure. Based on analysis of photographs taken (Figures 7, 8, 9 it was found that the coating containing 1.0% of blowing agents is a clearly visible solid outer layer and uniform distribution of pores and their sizes are similar.

  4. Glycosylation regulates prestin cellular activity.

    Science.gov (United States)

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  5. Stochastic Nature in Cellular Processes

    Institute of Scientific and Technical Information of China (English)

    刘波; 刘圣君; 王祺; 晏世伟; 耿轶钊; SAKATA Fumihiko; GAO Xing-Fa

    2011-01-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  6. Identification of Nonstationary Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    AndrewI.Adamatzky

    1992-01-01

    The principal feature of nonstationary cellular automata(NCA) is that a local transitiol rule of each cell is changed at each time step depending on neighborhood configuration at previous time step.The identification problem for NCA is extraction of local transition rules and the establishment of mechanism for changing these rules using sequence of NCA configurations.We present serial and parallel algorithms for identification of NCA.

  7. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    OpenAIRE

    Popescu, O.; Sumanovski, L. T.; I. Checiu; Elisabeta Popescu; G. N. Misevic

    1999-01-01

    Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals) have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of...

  8. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    Directory of Open Access Journals (Sweden)

    O.Popescu

    1999-01-01

    Full Text Available Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of isolated and purified glyconectins revealed the presence of specific carbohydrate structures, acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight containing fucose, glucuronic or galacturonic acids, and sulfate groups, originally found in sponges and sea urchin embryos, may represent a new class of carbohydrate carcino-embryonal antigens in mice and humans. Such interactions between biological macromolecules are usually investigated by kinetic binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance, and other spectroscopic analyses. However, these methods do not supply a direct estimation of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Recently, we have introduced atomic force microscopy to quantify the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion proteoglycans is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. As a model, we selected the glyconectin 1, a cell adhesion proteoglycan isolated from the marine sponge Microciona prolifera. This glyconectin mediates in vivo cell recognition and aggregation via homophilic, species-specific, polyvalent, and calcium ion-dependent carbohydrate-carbohydrate interactions. Under physiological conditions, an adhesive force of up to 400 piconewtons

  9. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  10. Progress of cellular dedifferentiation research

    Institute of Scientific and Technical Information of China (English)

    LIU Hu-xian; HU Da-hai; JIA Chi-yu; FU Xiao-bing

    2006-01-01

    Differentiation, the stepwise specialization of cells, and transdifferentiation, the apparent switching of one cell type into another, capture much of the stem cell spotlight. But dedifferentiation, the developmental reversal of a cell before it reinvents itself, is an important process too. In multicellular organisms, cellular dedifferentiation is the major process underlying totipotency, regeneration and formation of new stem cell lineages. In humans,dedifferentiation is often associated with carcinogenesis.The study of cellular dedifferentiation in animals,particularly early events related to cell fate-switch and determination, is limited by the lack of a suitable,convenient experimental system. The classic example of dedifferentiation is limb and tail regeneration in urodele amphibians, such as salamanders. Recently, several investigators have shown that certain mammalian cell types can be induced to dedifferentiate to progenitor cells when stimulated with the appropriate signals or materials. These discoveries open the possibility that researchers might enhance the endogenous regenerative capacity of mammals by inducing cellular dedifferentiation in vivo.

  11. Pickering Emulsion-Based Marbles for Cellular Capsules

    Directory of Open Access Journals (Sweden)

    Guangzhao Zhang

    2016-07-01

    Full Text Available The biodegradable cellular capsule, being prepared from simple vaporization of liquid marbles, is an ideal vehicle for the potential application of drug encapsulation and release. This paper reports the fabrication of cellular capsules via facile vaporization of Pickering emulsion marbles in an ambient atmosphere. Stable Pickering emulsion (water in oil was prepared while utilizing dichloromethane (containing poly(l-lactic acid and partially hydrophobic silica particles as oil phase and stabilizing agents respectively. Then, the Pickering emulsion marbles were formed by dropping emulsion into a petri dish containing silica particles with a syringe followed by rolling. The cellular capsules were finally obtained after the complete vaporization of both oil and water phases. The technique of scanning electron microscope (SEM was employed to research the microstructure and surface morphology of the prepared capsules and the results showed the cellular structure as expected. An in vitro drug release test was implemented which showed a sustained release property of the prepared cellular capsules. In addition, the use of biodegradable poly(l-lactic acid and the biocompatible silica particles also made the fabricated cellular capsules of great potential in the application of sustained drug release.

  12. The role of actin networks in cellular mechanosensing

    Science.gov (United States)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  13. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  14. Characteristics of cellular composition of periodontal pockets

    Science.gov (United States)

    Hasiuk, Petro; Hasiuk, Nataliya; Kindiy, Dmytro; Ivanchyshyn, Victoriya; Kalashnikov, Dmytro; Zubchenko, Sergiy

    2016-01-01

    Purpose The development of inflammatory periodontal disease in young people is an urgent problem of today's periodontology, and requires a development of new methods that would give an opportunity not only to diagnose but also for prognosis of periodontitis course in a given patients contingent. Results Cellular structure of periodontal pockets is presented by hematogenous and epithelial cells. Our results are confirmed by previous studies, and show that the penetration of periodontal pathogens leads to formation in periodontal tissue of a highly active complex compounds—cytokines that are able to modify the activity of neutrophils and reduce their specific antibacterial properties. Cytokines not only adversely affect the periodontal tissues, but also cause further activation of cells that synthesized them, and inhibit tissue repair and process of resynthesis of connective tissue by fibroblasts. Conclusion Neutrophilic granulocytes present in each of the types of smear types, but their functional status and quantitative composition is different. The results of our cytological study confirmed the results of immunohistochemical studies, and show that in generalized periodontitis, an inflammatory cellular elements with disorganized epithelial cells and connective tissue of the gums and periodontium, and bacteria form specific types of infiltration in periodontal tissues. PMID:28180007

  15. Impact Performance of 3D Integrated Cellular Woven Composite Panel

    Institute of Scientific and Technical Information of China (English)

    TIAN Wei; ZHU Cheng-yan

    2006-01-01

    This paper studied the impact resistance of 3D integrated cellular woven composite panel under persudo-static impact,comprised the test result with property of typical 3D woven composites, analyzed some parameters that maybe affect composites' impact resistance and at last used SEM to observe the damage process and mechanism of samples. The result shows that the impact resistance of 3D integrated cellular woven composites is much better than the performance of typical 3D woven composites; it is an active method to improve the impact resistance of composites that developing preform with cellular on the basis of typical 3D woven structure; for different 3D integrated cellular woven structure, the value of absorbed-energy is incrensing with the hollow percentage; tiny deformation will not emerge on samples until the acting force gets to 85% of the maximum;similar with typical 3D woven composites, the delaminated phenomenon of 3D integrated cellular woven composites is also unapparent during impact process.

  16. Biological Effects of Electromagnetic Fields on Cellular Growth

    Science.gov (United States)

    Eftekhari, Beheshte; Wilson, James; Masood, Samina

    2012-10-01

    The interaction of organisms with environmental magnetic fields at the cellular level is well documented, yet not fully understood. We review the existing experimental results to understand the physics behind the effects of ambient magnetic fields on the growth, metabolism, and proliferation of in vitro cell cultures. Emphasis is placed on identifying the underlying physical principles responsible for alterations to cell structure and behavior.

  17. Cellular immune responses to HIV

    Science.gov (United States)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  18. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in rat...... pancreatic alpha-cells and somatotrophs. We found a pharmacological dissociation between the actions on KATP channels and exocytosis and suggest that compounds that, unlike repaglinide, have direct stimulatory effects on exocytosis in somatotrophs and alpha- and beta-cells, such as sulphonylureas...

  19. Game of Life Cellular Automata

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  20. Cellular automata a parallel model

    CERN Document Server

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  1. ING proteins in cellular senescence.

    Science.gov (United States)

    Menéndez, Camino; Abad, María; Gómez-Cabello, Daniel; Moreno, Alberto; Palmero, Ignacio

    2009-05-01

    Cellular senescence is an effective anti-tumor barrier that acts by restraining the uncontrolled proliferation of cells carrying potentially oncogenic alterations. ING proteins are putative tumor suppressor proteins functionally linked to the p53 pathway and to chromatin regulation. ING proteins exert their tumor-protective action through different types of responses. Here, we review the evidence on the participation of ING proteins, mainly ING1 and ING2, in the implementation of the senescent response. The currently available data support an important role of ING proteins as regulators of senescence, in connection with the p53 pathway and chromatin organization.

  2. Cellular Analogs of Operant Behavior.

    Science.gov (United States)

    1992-07-31

    ing of single units can be demonstrated, does such a cellular subset of neighboring pyramidal cells and interneurons as well as process contribute...excite dopamine neurons by -hyperpolarization of local interneurons . J. Neurosci. 12:483-488; 1992. Kosterlitz, H. W. Biosynthesis of morphine in the...II 197 1 1 ocation preltereite iindiis- HOIdlod VA. artdo \\M I . \\.ill I ’’’’i i R i l’)89) ( pioid mediationl lserilI1 reintoree-Cd bK amlphetcamine

  3. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  4. Multipartite cellular automata and the superposition principle

    Science.gov (United States)

    Elze, Hans-Thomas

    2016-05-01

    Cellular automata (CA) can show well known features of quantum mechanics (QM), such as a linear updating rule that resembles a discretized form of the Schrödinger equation together with its conservation laws. Surprisingly, a whole class of “natural” Hamiltonian CA, which are based entirely on integer-valued variables and couplings and derived from an action principle, can be mapped reversibly to continuum models with the help of sampling theory. This results in “deformed” quantum mechanical models with a finite discreteness scale l, which for l→0 reproduce the familiar continuum limit. Presently, we show, in particular, how such automata can form “multipartite” systems consistently with the tensor product structures of non-relativistic many-body QM, while maintaining the linearity of dynamics. Consequently, the superposition principle is fully operative already on the level of these primordial discrete deterministic automata, including the essential quantum effects of interference and entanglement.

  5. Bioceramics for osteogenesis, molecular and cellular advances.

    Science.gov (United States)

    Demirkiran, Hande

    2012-01-01

    The remarkable need for bone tissue replacement in clinical situations, its limited availability and some major drawbacks of autologous (from the patient) and allogeneic (from a donor) bone grafts are driving researchers to search for alternative approaches for bone repair. In order to develop an appropriate bone substitute, one should understand bone structure and properties and its growth, which will guide researchers to select the optimal conditions for tissue culture and implantation. It's well accepted that bioceramics are excellent candidates as bone replacement with osteogenesis, osteoinduction and osteoconduction capacity. Therefore, the molecular and cellular interactions that take place at the surface of bioceramics and their relevance in osteogenesis excites many researchers to delve deeper into this line of research.

  6. Finite Field Arithmetic Architecture Based on Cellular Array

    Directory of Open Access Journals (Sweden)

    Kee-Won Kim

    2015-05-01

    Full Text Available Recently, various finite field arithmetic structures are introduced for VLSI circuit implementation on cryptosystems and error correcting codes. In this study, we present an efficient finite field arithmetic architecture based on cellular semi-systolic array for Montgomery multiplication by choosing a proper Montgomery factor which is highly suitable for the design on parallel structures. Therefore, our architecture has reduced a time complexity by 50% compared to typical architecture.

  7. Simple Cellular Automata-Based Linear Models for the Shrinking Generator

    CERN Document Server

    Fúster-Sabater, Amparo

    2010-01-01

    Structural properties of two well-known families of keystream generators, Shrinking Generators and Cellular Automata, have been analyzed. Emphasis is on the equivalence of the binary sequences obtained from both kinds of generators. In fact, Shrinking Generators (SG) can be identified with a subset of linear Cellular Automata (mainly rule 90, rule 150 or a hybrid combination of both rules). The linearity of these cellular models can be advantageously used in the cryptanalysis of those keystream generators.

  8. CATALAN NUMBERS, DYCK LANGUAGE AND TIME SERIES OF ELEMENTARY CELLULAR AUTOMATON OF RULE 56

    Institute of Scientific and Technical Information of China (English)

    QIN Dakang; XIE Huimin

    2005-01-01

    A new approach to study the evolution complexity of cellular automata is proposed and explained thoroughly by an example of elementary cellular automaton of rule 56. Using the tools of distinct excluded blocks, computational search and symbolic dynamics, the mathematical structure underlying the time series generated from the elementary cellular automaton of rule 56 is analyzed and its complexity is determined, in which the Dyck language and Catalan numbers emerge naturally.

  9. NUMERICAL SIMULATION OF CELLULAR/DENDRITIC PRIMARY SPACING

    Institute of Scientific and Technical Information of China (English)

    W.Q.Zhang; L.Xiao

    2004-01-01

    A numerical model has been established to calculate the primary spacing of cellular or dendritic structure with fluid flow considered. The computing results show that the primary spacing depends on the growing velocity, the temperature gradient on the interface and fluid flow. There is a critical growing velocity for the cell-dendrite transition, which has a relationship with the temperature gradient: Rcr=(3-4)×10-9GT. Fluid flow leads to an increase of the primary spacing for dendritic growth but a decrease for cellular growth,resulting in an instability on the interface.

  10. Nonsynchronous updating in the multiverse of cellular automata

    Science.gov (United States)

    Reia, Sandro M.; Kinouchi, Osame

    2015-04-01

    In this paper we study updating effects on cellular automata rule space. We consider a subset of 6144 order-3 automata from the space of 262144 bidimensional outer-totalistic rules. We compare synchronous to asynchronous and sequential updatings. Focusing on two automata, we discuss how update changes destroy typical structures of these rules. Besides, we show that the first-order phase transition in the multiverse of synchronous cellular automata, revealed with the use of a recently introduced control parameter, seems to be robust not only to changes in update schema but also to different initial densities.

  11. MODERNIZATION OF TECHNOLOGICAL LINE FOR CELLULAR EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2014-06-01

    As part of the modernization of the cellular extrusion technology the extrusion head was designed and made. During the designing and modeling of the head the Auto CAD programe was used. After the prototyping the extrusion head was tested. In the article specification of cellular extrusion process of thermoplastics was presented. In the research, the endothermal chemical blowing agents in amount 1,0% by mass were used. The quantity of used blowing agent has a direct influence on density and structure of the extruded product of modified polymers. However, these properties have further influence on porosity, impact strength, hardness, tensile strength and another.

  12. Melanoma screening with cellular phones.

    Directory of Open Access Journals (Sweden)

    Cesare Massone

    Full Text Available BACKGROUND: Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria. Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. CONCLUSIONS/SIGNIFICANCE: The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  13. Cellular functions of the microprocessor.

    Science.gov (United States)

    Macias, Sara; Cordiner, Ross A; Cáceres, Javier F

    2013-08-01

    The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.

  14. Cellular automata modelling of SEIRS

    Institute of Scientific and Technical Information of China (English)

    Liu Quan-Xing; Jin Zhen

    2005-01-01

    In this paper the SEIRS epidemic spread is analysed, and a two-dimensional probability cellular automata model for SEIRS is presented. Each cellular automation cell represents a part of the population that may be found in one of five states of individuals: susceptible, exposed (or latency), infected, immunized (or recovered) and death. Here studied are the effects of two cases on the epidemic spread. i.e. the effects of non-segregation and segregation on the latency and the infected of population. The conclusion is reached that the epidemic will persist in the case of non-segregation but it will decrease in the case of segregation. The proposed model can serve as a basis for the development of algorithms to simulate real epidemics based on real data. Last we find the density series of the exposed and the infected will fluctuate near a positive equilibrium point, when the constant for the immunized is less than its corresponding constant τ0. Our theoretical results are verified by numerical simulations.

  15. Characterization of cellular titanium for biomedical applications

    Science.gov (United States)

    Hrabe, Nikolas Wilson

    By controlling structural features (relative density, pore size, strut size) of cellular titanium (also known as porous titanium), the mechanical properties can be optimized to reduce the effects of stress shielding currently observed in load-bearing bone replacement implants. Thermal gravimetric analysis of a sacrificial scaffold system lead to important processing modifications in an attempt to meet chemistry requirements for surgical grade titanium not met in previous work. Despite these modifications chemistry did not meet requirements for carbon, nitrogen, or oxygen. Commercially pure titanium (CPTi) porous structures were made over a range of relative densities using laser engineered net shaping (LENS). From monotonic compression tests, yield strength and elastic modulus in the range of bone were achieved but did not scale with relative density as predicted by the Gibson-Ashby analytical model. Compression-compression fatigue resistance was high, as no failures were observed for test stresses up to 133% yield strength, which is thought to be influenced by the dense exterior shell of the samples. Structures were also fabricated over a range of relative densities using selective electron beam melting (SEBM or EBM), and structural, mechanical, and in-vitro properties were measured for three materials (as-built Ti-6A1-4V, Ti-6A1-4V after hot isostatic pressing (HIPing), and as-built CPTi). For structures of all three materials, yield strength and elastic modulus was within the range for bone. Numerical modeling results suggested cell shape and sintered particles on strut surfaces affect the scaling of elastic modulus with relative density and lead to the observed difference from the Gibson-Ashby model. Normalized fatigue strengths at 106 cycles ranged from 0.150.25 for as-built Ti-6A1-4V structures, which is lower than expected. Results for HIPed Ti-6A1-4V structures and CPTi structures suggest that stress concentrations from closed porosity within struts as well

  16. Green Cellular Network Deployment To Reduce RF Pollution

    CERN Document Server

    Katiyar, Sumit; Agrawal, N K

    2012-01-01

    As the mobile telecommunication systems are growing tremendously all over the world, the numbers of handheld and base stations are also rapidly growing and it became very popular to see these base stations distributed everywhere in the neighborhood and on roof tops which has caused a considerable amount of panic to the public in Palestine concerning wither the radiated electromagnetic fields from these base stations may cause any health effect or hazard. Recently UP High Court in India ordered for removal of BTS towers from residential area, it has created panic among cellular communication network designers too. Green cellular networks could be a solution for the above problem. This paper deals with green cellular networks with the help of multi-layer overlaid hierarchical structure (macro / micro / pico / femto cells). Macrocell for area coverage, micro for pedestrian and a slow moving traffic while pico for indoor use and femto for individual high capacity users. This could be the answer of the problem of ...

  17. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...... including [Cbl-OH2](+), [{Co}-CN-{cis-PtCl(NH3)2}](+), [{Re}-{Co}-CN-{cis-PtCl(NH3)2}](+), and [{Co}-CN-{trans-Pt(Cyt)(NH3)2}](2+) (Cyt = cytarabin) was high compared to neutral B12, which implied the existence of an additional internalization pathway for charged B12 vitamin analogs. The affinities...

  18. Discrete geodesics and cellular automata

    CERN Document Server

    Arrighi, Pablo

    2015-01-01

    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  19. Cellular compartmentalization of secondary metabolism

    Directory of Open Access Journals (Sweden)

    H. Corby eKistler

    2015-02-01

    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  20. Is transmission electron microscopy (TEM) a promising approach for qualitative and quantitative investigations of polymyxin B and miconazole interactions with cellular and subcellular structures of Staphylococcus pseudintermedius, Escherichia coli, Pseudomonas aeruginosa and Malassezia pachydermatis?

    Science.gov (United States)

    Voget, Michael; Lorenz, Dorothea; Lieber-Tenorio, Elisabeth; Hauck, Ruediger; Meyer, Michael; Cieslicki, Michael

    2015-12-31

    Antimicrobial therapy using a combination of polymyxin B and miconazole is effective against the main bacterial pathogens associated with otitis externa in dogs, and a synergistic effect of both drugs has been shown previously. The objective of the present investigation was to visualize ultrastructural changes after exposure of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pseudintermedius and Malassezia pachydermatis to polymyxin B and miconazole by transmission electron microscopic (TEM). For this, cultures of E. coli, P. aeruginosa, S. pseudintermedius and M. pachydermatis were exposed to polymyxin B and miconazole, alone or in combination for 24 h. Ultrastructural changes were observed most frequently in the cell envelope of the four microorganisms. Exposure to polymyxin B seemed to cause more damage than miconazole within the range of concentrations applied. Treatment resulted in changes of the cell size: in E. coli, cell size increased significantly after treatment with either compound alone; in P. aeruginosa, cell size decreased significantly after treatment with polymyxin B and with miconazole; exposure of S. pseudintermedius to miconazole caused a decrease in cell size; in M. pachydermatis, cell size increased significantly after treatment with polymyxin B.; in E.coli, S. pseudintermedius and M. pachydermatis, cell size changed highly significant, in P. aeruginosa significantly after exposure to the combination of both compounds. In conclusion, by using a different approach than previous investigations, this study confirmed a clear combinatory effect of polymyxin B and miconazole against the tested microorganisms involved in canine otitis externa. It is the first time that visualization technologies were applied to compare the effect of single drugs to their combinatory effects on cellular and subcellular entities of selected bacterial and yeast species.

  1. Structure and Function of Human Carcinoembryonic Antigen-related Cellular Adhesion Molecule 1%人体癌胚抗原相关细胞黏附分子1的结构与功能

    Institute of Scientific and Technical Information of China (English)

    叶秋芳

    2012-01-01

    人癌胚抗原相关细胞黏附分子1(CEACAMl)是广泛表达于中性粒细胞、巨噬细胞、内皮细胞、上皮细胞及淋巴细胞表面的Ⅰ型跨膜糖蛋白,属癌胚抗原家族免疫球蛋白超家族分子,胞膜外区有Ig样结构域,CEACAM1-L型具有两个免疫受体酪氨酸抑制性基序,其生物学功能包括免疫调节、促进血管形成、调节血管重构、参与细胞凋亡调控、促进腺体管腔形成及调控胰岛素的清除,同时CEACAM1也是致病微生物的黏着受体.%Human carcinoembryonic antigen-related cellular adhesion molenile l( CEACAM1 )is a member of the carcinoembryonir antigen iamily(CEA )whirh is a type I-transmembrane glycoprotein broadly expressed on the surface oi cells including: macrophages, neutrophilic granulocyte, lymphocyte, epithelial, and endothelial cells. It is an adhesion molecule oi immunoglobulin superfamily. The extiacellulai' domain oi CEACAM 1 contains IgG-like stmctuie. The long form oi CEACAM1 protein has two immunoieceptoi tinosine-based inhibitoiy motiis( ITIMs )that have crucial roles in immu no-regulation, vascular neogenesis, vascular remolding, cell apoptosis regulation, gland lumen formation and insulin clearance. CEACAM1 is also a receptor for pathogenic bacteria and viruses.

  2. Fundamental Limits to Cellular Sensing

    Science.gov (United States)

    ten Wolde, Pieter Rein; Becker, Nils B.; Ouldridge, Thomas E.; Mugler, Andrew

    2016-03-01

    In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at low concentrations. The signaling networks that transmit the information on the ligand concentration from the receptors into the cell have to filter this receptor input noise as much as possible. These networks, however, are also intrinsically stochastic in nature, which means that they will also add noise to the transmitted signal. In this review, we will first discuss how the diffusive transport and binding of ligand to the receptor sets the receptor correlation time, which is the timescale over which fluctuations in the state of the receptor, arising from the stochastic receptor-ligand binding, decay. We then describe how downstream signaling pathways integrate these receptor-state fluctuations, and how the number of receptors, the receptor correlation time, and the effective integration time set by the downstream network, together impose a fundamental limit on the precision of sensing. We then discuss how cells can remove the receptor input noise while simultaneously suppressing the intrinsic noise in the signaling network. We describe why this mechanism of time integration requires three classes (groups) of resources—receptors and their integration time, readout molecules, energy—and how each resource class sets a fundamental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation, the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy protocols typically considered in the computational literature, explaining why cellular sensing systems can never reach the Landauer limit on the optimal trade

  3. Oxidative stress action in cellular aging

    Directory of Open Access Journals (Sweden)

    Monique Cristine de Oliveira

    2010-12-01

    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  4. Seeing cellular sialidase transform sugars

    OpenAIRE

    Fukuda, Minoru; Bao, Xingfeng

    2008-01-01

    Cell-surface carbohydrates are synthesized in a step-wise fashion, yielding products with unique capping structures. A recent study has shown that carbohydrates at the cell surface can be further remodeled by an endogenous glycosidase to alter the carbohydrate structure, thus generating a new function.

  5. Noise Reduction Potential of Cellular Metals

    Directory of Open Access Journals (Sweden)

    Björn Hinze

    2012-06-01

    Full Text Available Rising numbers of flights and aircrafts cause increasing aircraft noise, resulting in the development of various approaches to change this trend. One approach is the application of metallic liners in the hot gas path of aero-engines. At temperatures of up to 600 °C only metallic or ceramic structures can be used. Due to fatigue loading and the notch effect of the pores, mechanical properties of porous metals are superior to the ones of ceramic structures. Consequently, cellular metals like metallic foams, sintered metals, or sintered metal felts are most promising materials. However, acoustic absorption depends highly on pore morphology and porosity. Therefore, both parameters must be characterized precisely to analyze the correlation between morphology and noise reduction performance. The objective of this study is to analyze the relationship between pore morphology and acoustic absorption performance. The absorber materials are characterized using image processing based on two dimensional microscopy images. The sound absorption properties are measured using an impedance tube. Finally, the correlation of acoustic behavior, pore morphology, and porosity is outlined.

  6. A sub-cellular viscoelastic model for cell population mechanics.

    Directory of Open Access Journals (Sweden)

    Yousef Jamali

    Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the

  7. Intrinsic Simulations between Stochastic Cellular Automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2012-08-01

    Full Text Available The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in a unifying and composable manner. Armed with this formalism, we extend the notion of intrinsic simulation between deterministic cellular automata, to the non-deterministic and stochastic settings. We then provide explicit tools to prove or disprove the existence of such a simulation between two stochastic cellular automata, even though the intrinsic simulation relation is shown to be undecidable in dimension two and higher. The key result behind this is the caracterization of equality of stochastic global maps by the existence of a coupling between the random sources. We then prove that there is a universal non-deterministic cellular automaton, but no universal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal partial universality.

  8. THE RELATIONSHIPS OF THREE ELEMENTARY CELLULAR AUTOMATA

    Institute of Scientific and Technical Information of China (English)

    Zhisong JIANG

    2006-01-01

    Limit language complexity of cellular automata which is first posed by S. Wolfram has become a new branch of cellular automata. In this paper, we obtain two interesting relationships between elementary cellular automata of rules 126, 146(182) and 18, and prove that if the limit language of rule 18 is not regular, nor are the limit languages of rules 126 and 146(182).

  9. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  10. Efficiency of cellular information processing

    CERN Document Server

    Barato, Andre C; Seifert, Udo

    2014-01-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the E. coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium i...

  11. The origins of cellular life.

    Science.gov (United States)

    Schrum, Jason P; Zhu, Ting F; Szostak, Jack W

    2010-09-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.

  12. The cellular toxicity of aluminium.

    Science.gov (United States)

    Exley, C; Birchall, J D

    1992-11-07

    Aluminium is a serious environmental toxicant and is inimical to biota. Omnipresent, it is linked with a number of disorders in man including Alzheimer's disease, Parkinson's dementia and osteomalacia. Evidence supporting aluminium as an aetiological agent in such disorders is not conclusive and suffers principally from a lack of consensus with respect to aluminium's toxic mode of action. Obligatory to the elucidation of toxic mechanisms is an understanding of the biological availability of aluminium. This describes the fate of and response to aluminium in any biological system and is thus an important influence of the toxicity of aluminium. A general theme in much aluminium toxicity is an accelerated cell death. Herein mechanisms are described to account for cell death from both acute and chronic aluminium challenges. Aluminium associations with both extracellular surfaces and intracellular ligands are implicated. The cellular response to aluminium is found to be biphasic having both stimulatory and inhibitory components. In either case the disruption of second messenger systems is observed and GTPase cycles are potential target sites. Specific ligands for aluminium at these sites are unknown though are likely to be proteins upon which oxygen-based functional groups are orientated to give exceptionally strong binding with the free aluminium ion.

  13. Integration of mobile satellite and cellular systems

    Science.gov (United States)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  14. Estrutura e celularidade de meniscos frescos de coelhos (Oryctolagus cuniculus preservados em glicerina Structure and cellularity of the fresh menisci (Oryctolagus cuniculus of rabbits and the menisci preserved in glycerin

    Directory of Open Access Journals (Sweden)

    Liana M. Vilela

    2010-04-01

    Full Text Available No presente estudo foi avaliada a arquitetura tecidual, a população celular, assim como a integridade e a distribuição dos tipos celulares em meniscos frescos de coelhos e preservados em glicerina 98%. Foram analisados meniscos mediais de coelhos recém abatidos, que foram distribuídos em três grupos: o grupo MF (n=7, composto por meniscos frescos, correspondeu ao grupo controle; o grupo MG (n=7, composto por meniscos preservados em glicerina 98%, por 30 dias, e o grupo MR (n=7, por meniscos preservados em glicerina 98% e reidratados em NaCl 0,9%, por 12 horas. Em todos os meniscos foram identificados e quantificados os diferentes tipos celulares: fibroblastos/fibrócitos e condrócitos. A população celular foi estatisticamente semelhante nos três grupos de meniscos, sendo que os meniscos preservados, grupos MG e MR, apresentaram menor intensidade de coloração e retração das fibras colágenas, diminuição de volume e maior intensidade de coloração dos núcleos (condensação da cromatina, em relação aos meniscos frescos (MF, caracterizando o fenômeno de lise celular. A matriz fibrocartilaginosa dos meniscos preservados revelou- se bem preservada mantendo a arquitetura tecidual dos meniscos. Conclui-se que a glicerina 98% é uma opção de meio de preservação para meniscos objetivando aloenxerto, com matriz colágena desvitalizada.In the present study was evaluated the tissue architecture, the percentage of cellular population, as well as viability and distribution of cells in fresh menisci of rabbits and preserved in 98% glycerin. Were analyzed medial menisci of rabbits freshly slaughtered, which were distributed into three groups: the MF group (n=7, composed of fresh menisci, corresponded to the control group; the MG group (n=7, composed by menisci preserved in 98% glycerin, for 30 days, and the MR group (n=7 by menisci preserved in 98% glycerin and rehydrated in NaCl 0.9% for 12 hours. In all menisci were identified and

  15. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  16. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

    DEFF Research Database (Denmark)

    Villumsen, Bine H; Danielsen, Jannie R; Povlsen, Lou;

    2013-01-01

    Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock...

  17. Combinatorial Contextualization of Peptidic Epitopes for Enhanced Cellular Immunity

    Science.gov (United States)

    Ito, Masaki; Hayashi, Kazumi; Adachi, Eru; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2014-01-01

    Invocation of cellular immunity by epitopic peptides remains largely dependent on empirically developed protocols, such as interfusion of aluminum salts or emulsification using terpenoids and surfactants. To explore novel vaccine formulation, epitopic peptide motifs were co-programmed with structural motifs to produce artificial antigens using our “motif-programming” approach. As a proof of concept, we used an ovalbumin (OVA) system and prepared an artificial protein library by combinatorially polymerizing MHC class I and II sequences from OVA along with a sequence that tends to form secondary structures. The purified endotoxin-free proteins were then examined for their ability to activate OVA-specific T-cell hybridoma cells after being processed within dendritic cells. One clone, F37A (containing three MHC I and two MHC II OVA epitopes), possessed a greater ability to evoke cellular immunity than the native OVA or the other artificial antigens. The sensitivity profiles of drugs that interfered with the F37A uptake differed from those of the other artificial proteins and OVA, suggesting that alteration of the cross-presentation pathway is responsible for the enhanced immunogenicity. Moreover, F37A, but not an epitopic peptide, invoked cellular immunity when injected together with monophosphoryl lipid A (MPL), and retarded tumor growth in mice. Thus, an artificially synthesized protein antigen induced cellular immunity in vivo in the absence of incomplete Freund's adjuvant or aluminum salts. The method described here could be potentially used for developing vaccines for such intractable ailments as AIDS, malaria and cancer, ailments in which cellular immunity likely play a crucial role in prevention and treatment. PMID:25343355

  18. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  19. A quantum relativistic battle of the sexes cellular automaton

    Science.gov (United States)

    Alonso-Sanz, Ramón; Situ, Haozhen

    2017-02-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated battle of the sexes game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests. Despite the full range of quantum parameters initially accessible, they promptly converge into fairly stable configurations, that often show rich spatial structures in simulations with no negligible entanglement.

  20. Cellular neural networks for the stereo matching problem

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Zanela, A. [Rome Univ. `La Sapienza` (Italy). Dipt. di Fisica

    1997-03-01

    The applicability of the Cellular Neural Network (CNN) paradigm to the problem of recovering information on the tridimensional structure of the environment is investigated. The approach proposed is the stereo matching of video images. The starting point of this work is the Zhou-Chellappa neural network implementation for the same problem. The CNN based system we present here yields the same results as the previous approach, but without the many existing drawbacks.

  1. Variable entangling in a quantum prisoner's dilemma cellular automaton

    Science.gov (United States)

    Alonso-Sanz, Ramón

    2015-01-01

    The effect of variable entangling on the dynamics of a spatial quantum formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The effect of spatial structure is assessed when allowing the players to adopt quantum and classical strategies, both in the two- and three-parameter strategy spaces.

  2. Exploring the Possibilities of a Cellular Automata in Minecraft

    OpenAIRE

    Saunders, Stephen

    2014-01-01

    Complex systems are not always generated by complex individuals. Simple, cell-like individuals can produce sophisticated outcomes. Structures implementing this nature area called cellular automation. In this paper, we discuss the difficulties associated with the creation of one such automation in a pre-existing environment, in this case the game MineCraft. A subsequent study of the behavior of this automation is presented, using an objective information measure called set complexity.

  3. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  4. The virtual cell animation collection: tools for teaching molecular and cellular biology.

    Science.gov (United States)

    Reindl, Katie M; White, Alan R; Johnson, Christina; Vender, Bradley; Slator, Brian M; McClean, Phillip

    2015-04-01

    A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom.

  5. The Virtual Cell Animation Collection: Tools for Teaching Molecular and Cellular Biology

    Science.gov (United States)

    Reindl, Katie M.; White, Alan R.; Johnson, Christina; Vender, Bradley; Slator, Brian M.; McClean, Phillip

    2015-01-01

    A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom. PMID:25856580

  6. Recent development of cellular manufacturing systems

    Indian Academy of Sciences (India)

    P K Arora; A Haleem; M K Singh

    2013-06-01

    Cellular manufacturing system has been proved a vital approach for batch and job shop production systems. Group technology has been an essential tool for developing a cellular manufacturing system. The paper aims to discuss various cell formation techniques and highlights the significant research work done in past over the years and attempts to points out the gap in research.

  7. Cellular encoding for interactive evolutionary robotics

    NARCIS (Netherlands)

    Gruau, F.C.; Quatramaran, K.

    1996-01-01

    This work reports experiments in interactive evolutionary robotics. The goal is to evolve an Artificial Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using a cellular developmental process called cellular encoding. In a previous work similar experiments ha

  8. LMS filters for cellular CDMA overlay

    OpenAIRE

    1996-01-01

    This paper extends and complements previous research we have performed on the performance of nonadaptive narrowband suppression filters when used in cellular CDMA overlay situations. In this paper, an adaptive LMS filter is applied to cellular CDMA overlay situations in order to reject narrowband interference.

  9. From Cnn Dynamics to Cellular Wave Computers

    Science.gov (United States)

    Roska, Tamas

    2013-01-01

    Embedded in a historical overview, the development of the Cellular Wave Computing paradigm is presented, starting from the standard CNN dynamics. The theoretical aspects, the physical implementation, the innovation process, as well as the biological relevance are discussed in details. Finally, the latest developments, the physical versus virtual cellular machines, as well as some open questions are presented.

  10. The Universe as a Cellular System

    CERN Document Server

    Aragón-Calvo, Miguel A

    2014-01-01

    Cellular systems are observed everywhere in nature, from crystal domains in metals, soap froth and cucumber cells to the network of cosmological voids. Surprisingly, despite their disparate scale and origin all cellular systems follow certain scaling laws relating their geometry, topology and dynamics. Using a cosmological N-body simulation we found that the Cosmic Web, the largest known cellular system, follows the same scaling relations seen elsewhere in nature. Our results extend the validity of scaling relations in cellular systems by over 30 orders of magnitude in scale with respect to previous studies. The dynamics of cellular systems can be used to interpret local observations such as the local velocity anomaly as the result of a collapsing void in our cosmic backyard. Moreover, scaling relations depend on the curvature of space, providing an independent measure of geometry.

  11. The mammary cellular hierarchy and breast cancer.

    Science.gov (United States)

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  12. Biophysical Tools to Study Cellular Mechanotransduction

    Directory of Open Access Journals (Sweden)

    Ismaeel Muhamed

    2017-02-01

    Full Text Available The cell membrane is the interface that volumetrically isolates cellular components from the cell’s environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane’s bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na+, Ca2+, K+ channels. The membrane’s biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM, vascular endothelial (VE-cadherin, epithelial (E-cadherin, integrin embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.

  13. Myoblast fusion: Experimental systems and cellular mechanisms.

    Science.gov (United States)

    Schejter, Eyal D

    2016-12-01

    Fusion of myoblasts gives rise to the large, multi-nucleated muscle fibers that power and support organism motion and form. The mechanisms underlying this prominent form of cell-cell fusion have been investigated by a variety of experimental approaches, in several model systems. The purpose of this review is to describe and discuss recent progress in the field, as well as point out issues currently unresolved and worthy of further investigation. Following a description of several new experimental settings employed in the study of myoblast fusion, a series of topics relevant to the current understanding of the process are presented. These pertain to elements of three major cellular machineries- cell-adhesion, the actin-based cytoskeleton and membrane-associated elements- all of which play key roles in mediating myoblast fusion. Among the issues raised are the diversity of functions ascribed to different adhesion proteins (e.g. external cell apposition and internal recruitment of cytoskeleton regulators); functional significance of fusion-associated actin structures; and discussion of alternative mechanisms employing single or multiple fusion pore formation as the basis for muscle cell fusion.

  14. Characteristics of Cellular Structures and Growth Properties of Palmellococcus sp.Using Water Culture in Green House%不同生长发育期土壤绿藻——集球藻细胞形态结构研究

    Institute of Scientific and Technical Information of China (English)

    饶本强; 吴沛沛; 李敦海; 刘永定

    2011-01-01

    Palmellococcus Chod. Is a kind of green algae widely distributing in biological soil crusts and is able to accumulate red pigment (astaxanthin) and oil drops. So the alga has displayed especial physiological nature and potential value of application. Currently, studies on cellular structures and pigment accumulations of. Palmellococcus sp. Are relatively scarce. In this study, the morphology and structures of Palmellococcus sp. Are investigated by means of photo microscope and transmission electron microscope (TEM) under liquid culture in green house. The results show that the nutritive cells of Palmellococcus sp. Are able to turn into genital cells, and yield filial cells by means of cell discerption. The cellular structures of Palmellococcus sp. Present gradual changes during development process and the algae own typical structure characteristics of chlorophyta and chlorococcales. However, it indicated that cellular organs of Palmellococcus sp. Disintegrated and disappear at anaphase and senescence phase. Moreover, the nutritive cells of Palmellococcus sp. Are found to turn into reddish-brown thick-wall cells, and there are large quantity accumulations of lipid bodies and starches in cells of Palmellococcus sp. At anaphase of development. This means that lipid bodies are in special structure lying in the cells of Palmellococcus sp. The research maybe provid a significative finding for better understanding morphological changes and pigment accumulation of Palmellococcus sp. In normal culture condition, and simultaneously provid some experimental data for based and applied researches on the green alga.%集球藻是一种广泛分布于生物结皮中的土壤绿藻,能够积累红色素(如虾青素)和油滴,显示出其独特的生理特性和潜在的应用价值.目前对集球藻的细胞结构以及色素积累研究非常匮乏.本文报道应用光学显微镜和透射电境观察集球藻在温室液体培养条件下,细胞形态与超微结构变化.结

  15. A unique cellular scaling rule in the avian auditory system.

    Science.gov (United States)

    Corfield, Jeremy R; Long, Brendan; Krilow, Justin M; Wylie, Douglas R; Iwaniuk, Andrew N

    2016-06-01

    Although it is clear that neural structures scale with body size, the mechanisms of this relationship are not well understood. Several recent studies have shown that the relationship between neuron numbers and brain (or brain region) size are not only different across mammalian orders, but also across auditory and visual regions within the same brains. Among birds, similar cellular scaling rules have not been examined in any detail. Here, we examine the scaling of auditory structures in birds and show that the scaling rules that have been established in the mammalian auditory pathway do not necessarily apply to birds. In galliforms, neuronal densities decrease with increasing brain size, suggesting that auditory brainstem structures increase in size faster than neurons are added; smaller brains have relatively more neurons than larger brains. The cellular scaling rules that apply to auditory brainstem structures in galliforms are, therefore, different to that found in primate auditory pathway. It is likely that the factors driving this difference are associated with the anatomical specializations required for sound perception in birds, although there is a decoupling of neuron numbers in brain structures and hair cell numbers in the basilar papilla. This study provides significant insight into the allometric scaling of neural structures in birds and improves our understanding of the rules that govern neural scaling across vertebrates.

  16. The origin of cellular life

    Science.gov (United States)

    Ingber, D. E.

    2000-01-01

    This essay presents a scenario of the origin of life that is based on analysis of biological architecture and mechanical design at the microstructural level. My thesis is that the same architectural and energetic constraints that shape cells today also guided the evolution of the first cells and that the molecular scaffolds that support solid-phase biochemistry in modern cells represent living microfossils of past life forms. This concept emerged from the discovery that cells mechanically stabilize themselves using tensegrity architecture and that these same building rules guide hierarchical self-assembly at all size scales (Sci. Amer 278:48-57;1998). When combined with other fundamental design principles (e.g., energy minimization, topological constraints, structural hierarchies, autocatalytic sets, solid-state biochemistry), tensegrity provides a physical basis to explain how atomic and molecular elements progressively self-assembled to create hierarchical structures with increasingly complex functions, including living cells that can self-reproduce.

  17. Integrated Molecular and Cellular Biophysics

    CERN Document Server

    Raicu, Valerica

    2008-01-01

    This book integrates concepts and methods from physics, biology, biochemistry and physical chemistry into a standalone, unitary text of biophysics that aims to provide a quantitative description of structures and processes occurring in living matter. The book introduces graduate physics students and physicists interested in biophysics research to 'classical' as well as emerging areas of biophysics. The advanced undergraduate physics students and the life scientists are also invited to join in, by building on their knowledge of basic physics. Essential notions of biochemistry and biology are introduced, as necessary, throughout the book, while the reader's familiarity with basic knowledge of physics is assumed. Topics covered include interactions between biological molecules, physical chemistry of phospholipids association into bilayer membranes, DNA and protein structure and folding, passive and active electrical properties of the cell membrane, classical as well as fractal aspects of reaction kinetics and di...

  18. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    Science.gov (United States)

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.

  19. Cellular Cell Bifurcation of Cylindrical Detonations

    Institute of Scientific and Technical Information of China (English)

    HAN Gui-Lai; JIANG Zong-Lin; WANG Chun; ZHANG Fan

    2008-01-01

    Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

  20. Optimal Band Allocation for Cognitive Cellular Networks

    CERN Document Server

    Liu, Tingting

    2011-01-01

    FCC new regulation for cognitive use of the TV white space spectrum provides a new means for improving traditional cellular network performance. But it also introduces a number of technical challenges. This letter studies one of the challenges, that is, given the significant differences in the propagation property and the transmit power limitations between the cellular band and the TV white space, how to jointly utilize both bands such that the benefit from the TV white space for improving cellular network performance is maximized. Both analytical and simulation results are provided.

  1. Cryptographic primitives based on cellular transformations

    Directory of Open Access Journals (Sweden)

    B.V. Izotov

    2003-11-01

    Full Text Available Design of cryptographic primitives based on the concept of cellular automata (CA is likely to be a promising trend in cryptography. In this paper, the improved method performing data transformations by using invertible cyclic CAs (CCA is considered. Besides, the cellular operations (CO as a novel CAs application in the block ciphers are introduced. Proposed CCAs and COs, integrated under the name of cellular transformations (CT, suit well to be used in cryptographic algorithms oriented to fast software and cheap hardware implementation.

  2. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  3. On-Chip Detection of Cellular Activity

    Science.gov (United States)

    Almog, R.; Daniel, R.; Vernick, S.; Ron, A.; Ben-Yoav, H.; Shacham-Diamand, Y.

    The use of on-chip cellular activity monitoring for biological/chemical sensing is promising for environmental, medical and pharmaceutical applications. The miniaturization revolution in microelectronics is harnessed to provide on-chip detection of cellular activity, opening new horizons for miniature, fast, low cost and portable screening and monitoring devices. In this chapter we survey different on-chip cellular activity detection technologies based on electrochemical, bio-impedance and optical detection. Both prokaryotic and eukaryotic cell-on-chip technologies are mentioned and reviewed.

  4. Cellular Factors Required for Lassa Virus Budding

    OpenAIRE

    Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Yokosawa, Hideyoshi; Yasuda, Jiro

    2006-01-01

    It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicula...

  5. Parallelizing the Cellular Potts Model on graphics processing units

    Science.gov (United States)

    Tapia, José Juan; D'Souza, Roshan M.

    2011-04-01

    The Cellular Potts Model (CPM) is a lattice based modeling technique used for simulating cellular structures in computational biology. The computational complexity of the model means that current serial implementations restrict the size of simulation to a level well below biological relevance. Parallelization on computing clusters enables scaling the size of the simulation but marginally addresses computational speed due to the limited memory bandwidth between nodes. In this paper we present new data-parallel algorithms and data structures for simulating the Cellular Potts Model on graphics processing units. Our implementations handle most terms in the Hamiltonian, including cell-cell adhesion constraint, cell volume constraint, cell surface area constraint, and cell haptotaxis. We use fine level checkerboards with lock mechanisms using atomic operations to enable consistent updates while maintaining a high level of parallelism. A new data-parallel memory allocation algorithm has been developed to handle cell division. Tests show that our implementation enables simulations of >10 cells with lattice sizes of up to 256 3 on a single graphics card. Benchmarks show that our implementation runs ˜80× faster than serial implementations, and ˜5× faster than previous parallel implementations on computing clusters consisting of 25 nodes. The wide availability and economy of graphics cards mean that our techniques will enable simulation of realistically sized models at a fraction of the time and cost of previous implementations and are expected to greatly broaden the scope of CPM applications.

  6. R.F. Pollution Reduction in Cellular Communication

    CERN Document Server

    Katiyar, Sumit; Agrawal, N K

    2012-01-01

    R. F. pollution has been recognized as health hazard in India in the prevailing circumstances. There is lot of hue and cry against cellular towers installed in residential area. Recently high court in India has issued an order not to install towers in residential areas. For meeting the exponential demand of cellular communication in India this will be a set back for future growth. An appropriate solution has to be developed for meeting demand as well as RF pollution concern of the society. This paper deals with the installation of low power base stations in residential areas instead of high power macro cell base stations. Macro stations are proposed to be used for fast traffic, low power micro cell for a slow traffic / pedestrian and pico cell / femto cell for indoor use. These cells will be in hierarchical structure along with adaptive frequency allocation techniques and A-SDMA approach.

  7. Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments.

    Science.gov (United States)

    Ridge, Karen M; Shumaker, Dale; Robert, Amélie; Hookway, Caroline; Gelfand, Vladimir I; Janmey, Paul A; Lowery, Jason; Guo, Ming; Weitz, David A; Kuczmarski, Edward; Goldman, Robert D

    2016-01-01

    The type III intermediate filament protein vimentin was once thought to function mainly as a static structural protein in the cytoskeleton of cells of mesenchymal origin. Now, however, vimentin is known to form a dynamic, flexible network that plays an important role in a number of signaling pathways. Here, we describe various methods that have been developed to investigate the cellular functions of the vimentin protein and intermediate filament network, including chemical disruption, photoactivation and photoconversion, biolayer interferometry, soluble bead binding assay, three-dimensional substrate experiments, collagen gel contraction, optical-tweezer active microrheology, and force spectrum microscopy. Using these techniques, the contributions of vimentin to essential cellular processes can be probed in ever further detail.

  8. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jagyasi Bhushan

    2009-01-01

    Full Text Available Abstract Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  9. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deepthi Chander

    2009-01-01

    Full Text Available Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  10. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    Science.gov (United States)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  11. Bacterial Cellular Engineering by Genome Editing and Gene Silencing

    Directory of Open Access Journals (Sweden)

    Nobutaka Nakashima

    2014-02-01

    Full Text Available Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption, knock-in (insertion, and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering.

  12. Virus-encapsulated DNA origami nanostructures for cellular delivery.

    Science.gov (United States)

    Mikkilä, Joona; Eskelinen, Antti-Pekka; Niemelä, Elina H; Linko, Veikko; Frilander, Mikko J; Törmä, Päivi; Kostiainen, Mauri A

    2014-01-01

    DNA origami structures can be programmed into arbitrary shapes with nanometer scale precision, which opens up numerous attractive opportunities to engineer novel functional materials. One intriguing possibility is to use DNA origamis for fully tunable, targeted, and triggered drug delivery. In this work, we demonstrate the coating of DNA origami nanostructures with virus capsid proteins for enhancing cellular delivery. Our approach utilizes purified cowpea chlorotic mottle virus capsid proteins that can bind and self-assemble on the origami surface through electrostatic interactions and further pack the origami nanostructures inside the viral capsid. Confocal microscopy imaging and transfection studies with a human HEK293 cell line indicate that protein coating improves cellular attachment and delivery of origamis into the cells by 13-fold compared to bare DNA origamis. The presented method could readily find applications not only in sophisticated drug delivery applications but also in organizing intracellular reactions by origami-based templates.

  13. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions.

    Science.gov (United States)

    Heissler, Sarah M; Sellers, James R

    2016-08-01

    Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.

  14. Propriedades mecânicas e estrutura celular de melão desidratado osmoticamente em soluções de sacarose ou maltose, com adição de lactato de cálcio Mechanical properties and cellular structure of osmodehydrated melon in sucrose or maltose solutions with calcium lactate addition

    Directory of Open Access Journals (Sweden)

    Cristhiane Caroline Ferrari

    2011-08-01

    Full Text Available Objetivou-se, neste trabalho, estudar a influência do lactato de cálcio e do tipo de açúcar nas propriedades mecânicas e na estrutura celular de pedaços de melão desidratados osmoticamente. O processo foi conduzido por duas horas com agitação de 120 rpm e temperatura controlada (30º C, utilizando-se soluções desidratantes de sacarose ou maltose a 40ºBrix, contendo lactato de cálcio em concentrações de 0, 0,5, 1,0 e 1,5% (p/v. As amostras foram submetidas às determinações de perda de água, ganho de sólidos, incorporação de cálcio, propriedades mecânicas (tensão e deformação na ruptura e microscopia óptica. Os ensaios com maltose, em ação conjunta com o sal, promoveram uma maior perda de água e um menor ganho de sólidos. A adição de lactato de cálcio na solução osmótica de sacarose ou maltose resultou em maiores valores de tensão na ruptura para as frutas, sendo que tal aumento foi mais pronunciado nos ensaios com sacarose, devido à maior incorporação de cálcio observada nesses tratamentos. O lactato de cálcio mostrou-se eficiente na preservação da estrutura celular das amostras, quando utilizado em concentrações de até 1,0%. A maltose apresentou um maior efeito protetor na manutenção da funcionalidade da membrana celular, enquanto que o processo realizado apenas com soluções de sacarose, assim como os ensaios realizados com concentração de sal igual a 1,5% provocaram danos na parede celular e intensa plasmólise do citoplasma.The purpose of this work was to study the influence of calcium lactate and sugar type on mechanical properties and cellular structure of osmodehydrated melon pieces. The process was carried out for two hours under controlled temperature (30º C and agitation (120 rpm, using a 40ºBrix sucrose or maltose solution containing calcium lactate (0 to 2,0%. Samples were analyzed with respect to water loss, solids and calcium gain, mechanical properties (stress and strain at

  15. Effects of freque ncy radiation of 900MHz cellular phone on the liver structure and function of rats at different time points%不同时间900 MHz 手机频率辐射对 SD 雄鼠肝组织形态和功能的影响

    Institute of Scientific and Technical Information of China (English)

    罗亚萍; 李春香; 马惠荣; 栗晶晶; 李媛媛; 马雪莲; 宫志强

    2013-01-01

    Objective To investigate the influence of frequency radiation of 900 MHz cellular phone on the liver structure and function of rats at different time points .Methods Thirty adult male SD rats were randomly divided into three groups,control group,12-day radiation group and 18-day radiation group.The rats in control group did not receive radiation , the rats in radiation groups received frequency radiation from 900 MHz cellular phone for 12 days and 18 days (4h/d),respectively.Finally the serum levels of ALT and AST were detected and the changes of liver structure were observed by HE staining .Results As compared with those in control group,the serum levels of ALT and AST were not obviously changed in 12-day radiation group and 18-day radiation group .HE staining results showed that as compared with that in control group , hepatic lobules was clear , hepatocyte nuclear was partly atrophy or disappeared in 12-day radiation group ,and hepatic lobules structure was basically complete , hepatocyte was swelling and vacuolar degeneration appeared in part of cytoplasm in 18-day radiation group.Con-lc usion The frequency radiation of 900 MHz cellular phone can result in hepatic injury of rats ,with hepatocyte nu-clear atrophy , swelling and vacuolar degeneration , however , serum levels of ALT and AST are not obviously changed .%目的观察900 MHz手机频率辐射12 d、18 d对雄性SD大鼠肝组织形态和功能的影响。方法选育龄期SD雄鼠30只。将雄性大鼠按体重均衡的原则随机分为3组,正常组、12 d、18 d辐射组。正常组不接受辐射,辐射组分别接受900 MHz手机频率辐射连续12 d、18 d4 h/d,于辐射结束次晨处死。观察比较3组大鼠血清丙氨酸转氨酶( ALT)、门冬氨酸氨基转移酶( AST)及二者比值,雄鼠肝脏HE染色。结果与正常组比较,12 d和18 d辐射组血清ALT、AST无显著性改变;肝的HE染色结果显示:与正常组比较,12 d辐射组肝小叶结构基

  16. A Matrix Construction of Cellular Algebras

    Institute of Scientific and Technical Information of China (English)

    Dajing Xiang

    2005-01-01

    In this paper, we give a concrete method to construct cellular algebras from matrix algebras by specifying certain fixed matrices for the data of inflations. In particular,orthogonal matrices can be chosen for such data.

  17. Cellular Defect May Be Linked to Parkinson's

    Science.gov (United States)

    ... 160862.html Cellular Defect May Be Linked to Parkinson's: Study Abnormality might apply to all forms of ... that may be common to all forms of Parkinson's disease. The defect plays a major role in ...

  18. Integration of Mobil Satellite and Cellular Systems

    Science.gov (United States)

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  19. Cellular Automaton Modeling of Pattern Formation

    NARCIS (Netherlands)

    Boerlijst, M.C.

    2006-01-01

    Book review Andreas Deutsch and Sabine Dormann, Cellular Automaton Modeling of Biological Pattern Formation, Characterization, Applications, and Analysis, Birkhäuser (2005) ISBN 0-8176-4281-1 331pp..

  20. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies has developed, produced and tested, as part of the Phase-I SBIR, a new form of composite cellular core material, named Interply Core,...

  1. Densities and entropies in cellular automata

    CERN Document Server

    Guillon, Pierre

    2012-01-01

    Following work by Hochman and Meyerovitch on multidimensional SFT, we give computability-theoretic characterizations of the real numbers that can appear as the topological entropies of one-dimensional and two-dimensional cellular automata.

  2. On the Behavior Characteristics of Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-cai; ZHANG Jiang-ling; FENG Dan

    2005-01-01

    In this paper, the inherent relationships between the running regulations and behavior characteristics of cellular automata are presented; an imprecise taxonomy of such systems is put forward; the three extreme cases of stable systems are discussed; and the illogicalness of evolutional strategies of cellular automata is analyzed. The result is suitable for the emulation and prediction of behavior of discrete dynamics systems; especially it can be taken as an important analysis means of dynamic performance of complex networks.

  3. Sponging of Cellular Proteins by Viral RNAs

    OpenAIRE

    Charley, Phillida A.; Wilusz, Jeffrey

    2014-01-01

    Viral RNAs accumulate to high levels during infection and interact with a variety of cellular factors including miRNAs and RNA-binding proteins. Although many of these interactions exist to directly modulate replication, translation and decay of viral transcripts, evidence is emerging that abundant viral RNAs may in certain cases serve as a sponge to sequester host non coding RNAs and proteins. By effectively reducing the ability of cellular RNA binding proteins to regulate host cell gene exp...

  4. Polymersomes containing quantum dots for cellular imaging

    Directory of Open Access Journals (Sweden)

    Camblin M

    2014-05-01

    Full Text Available Marine Camblin,1 Pascal Detampel,1 Helene Kettiger,1 Dalin Wu,2 Vimalkumar Balasubramanian,1,* Jörg Huwyler1,*1Division of Pharmaceutical Technology, 2Department of Chemistry, University of Basel, Basel, Switzerland*These authors contributed equally to this workAbstract: Quantum dots (QDs are highly fluorescent and stable probes for cellular and molecular imaging. However, poor intracellular delivery, stability, and toxicity of QDs in biological compartments hamper their use in cellular imaging. To overcome these limitations, we developed a simple and effective method to load QDs into polymersomes (Ps made of poly(dimethylsiloxane-poly(2-methyloxazoline (PDMS-PMOXA diblock copolymers without compromising the characteristics of the QDs. These Ps showed no cellular toxicity and QDs were successfully incorporated into the aqueous compartment of the Ps as confirmed by transmission electron microscopy, fluorescence spectroscopy, and fluorescence correlation spectroscopy. Ps containing QDs showed colloidal stability over a period of 6 weeks if stored in phosphate-buffered saline (PBS at physiological pH (7.4. Efficient intracellular delivery of Ps containing QDs was achieved in human liver carcinoma cells (HepG2 and was visualized by confocal laser scanning microscopy (CLSM. Ps containing QDs showed a time- and concentration-dependent uptake in HepG2 cells and exhibited better intracellular stability than liposomes. Our results suggest that Ps containing QDs can be used as nanoprobes for cellular imaging.Keywords: quantum dots, polymersomes, cellular imaging, cellular uptake

  5. Cellular events and biomarkers of wound healing

    Directory of Open Access Journals (Sweden)

    Shah Jumaat Mohd. Yussof

    2012-01-01

    Full Text Available Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs and the tissue inhibitors of these metalloproteinases (TIMPs. MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.

  6. A multiscale theoretical model for diffusive mass transfer in cellular biological media.

    Science.gov (United States)

    Kapellos, George E; Alexiou, Terpsichori S; Payatakes, Alkiviades C

    2007-11-01

    An integrated methodology is developed for the theoretical analysis of solute transport and reaction in cellular biological media, such as tissues, microbial flocs, and biofilms. First, the method of local spatial averaging with a weight function is used to establish the equation which describes solute conservation at the cellular biological medium scale, starting with a continuum-based formulation of solute transport at finer spatial scales. Second, an effective-medium model is developed for the self-consistent calculation of the local diffusion coefficient in the cellular biological medium, including the effects of the structural heterogeneity of the extra-cellular space and the reversible adsorption to extra-cellular polymers. The final expression for the local effective diffusion coefficient is: D(Abeta)=lambda(beta)D(Aupsilon), where D(Aupsilon) is the diffusion coefficient in water, and lambda(beta) is a function of the composition and fundamental geometric and physicochemical system properties, including the size of solute molecules, the size of extra-cellular polymer fibers, and the mass permeability of the cell membrane. Furthermore, the analysis sheds some light on the function of the extra-cellular hydrogel as a diffusive barrier to solute molecules approaching the cell membrane, and its implications on the transport of chemotherapeutic agents within a cellular biological medium. Finally, the model predicts the qualitative trend as well as the quantitative variability of a large number of published experimental data on the diffusion coefficient of oxygen in cell-entrapping gels, microbial flocs, biofilms, and mammalian tissues.

  7. Topological Design of Cellular Phononic Band Gap Crystals

    Directory of Open Access Journals (Sweden)

    Yang Fan Li

    2016-03-01

    Full Text Available This paper systematically investigated the topological design of cellular phononic crystals with a maximized gap size between two adjacent bands. Considering that the obtained structures may sustain a certain amount of static loadings, it is desirable to ensure the optimized designs to have a relatively high stiffness. To tackle this issue, we conducted a multiple objective optimization to maximize band gap size and bulk or shear modulus simultaneously with a prescribed volume fraction of solid material so that the resulting structures can be lightweight, as well. In particular, we first conducted the finite element analysis of the phononic band gap crystals and then adapted a very efficient optimization procedure to resolve this problem based on bi-directional evolutionary structure optimization (BESO algorithm in conjunction with the homogenization method. A number of optimization results for maximizing band gaps with bulk and shear modulus constraints are presented for out-of-plane and in-plane modes. Numerical results showed that the optimized structures are similar to those obtained for composite case, except that additional slim connections are added in the cellular case to support the propagation of shear wave modes and meanwhile to satisfy the prescribed bulk or shear modulus constraints.

  8. Cellular and molecular neuronal plasticity.

    Science.gov (United States)

    Griesbach, Grace S; Hovda, David A

    2015-01-01

    The brain has the capability to adapt to function when tissue is compromised. This capability of adaptation paves the road to recovery and allows for rehabilitation after a traumatic brain injury (TBI). This chapter addresses neuroplasticity within the context of TBI. Here neuroplasticity is defined as changes in neuronal structure and function, including synaptic changes as well as modifications in neural pathways. First, the influence of TBI pathology on neuroplasticity is addressed. Here, proteins that are important in neuroplasticity are introduced and a description given of how these are affected in a temporal and severity-dependent manner. Secondly, given that we are becoming increasingly aware that the brain's response to injury is highly influenced by the environmental milieu, the manner in which behavioral manipulations have an effect on TBI-associated neuroplasticity is addressed. A description is given of how specific environmental qualities may facilitate or hinder neuroplasticity. Finally, the long-term effects of neuroplasticity and the relevance it has to rehabilitation are described.

  9. A Large Deformation Model for the Elastic Moduli of Two-dimensional Cellular Materials

    Institute of Scientific and Technical Information of China (English)

    HU Guoming; WAN Hui; ZHANG Youlin; BAO Wujun

    2006-01-01

    We developed a large deformation model for predicting the elastic moduli of two-dimensional cellular materials. This large deformation model was based on the large deflection of the inclined members of the cells of cellular materials. The deflection of the inclined member, the strain of the representative structure and the elastic moduli of two-dimensional cellular materials were expressed using incomplete elliptic integrals. The experimental results show that these elastic moduli are no longer constant at large deformation, but vary significantly with the strain. A comparison was made between this large deformation model and the small deformation model proposed by Gibson and Ashby.

  10. Structure of adenovirus bound to cellular receptor car

    Science.gov (United States)

    Freimuth, Paul I.

    2007-01-02

    Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.

  11. The coevolutionary roots of biochemistry and cellular organization challenge the RNA world paradigm.

    Science.gov (United States)

    Caetano-Anollés, Gustavo; Seufferheld, Manfredo J

    2013-01-01

    The origin and evolution of modern biochemistry and cellular structure is a complex problem that has puzzled scientists for almost a century. While comparative, functional and structural genomics has unraveled considerable complexity at the molecular level, there is very little understanding of the origin, evolution and structure of the molecules responsible for cellular or viral features in life. Recent efforts, however, have dissected the emergence of the very early molecules that populated primordial cells. Deep historical signal was retrieved from a census of molecular structures and functions in thousands of nucleic acid and protein structures and hundreds of genomes using powerful phylogenomic methods. Together with structural, chemical and cell biology considerations, this information reveals that modern biochemistry is the result of the gradual evolutionary appearance and accretion of molecular parts and molecules. These patterns comply with the principle of continuity and lead to molecular and cellular complexity. Here, we review findings and report possible origins of molecular and cellular structure, the early rise of lipid biosynthetic pathways and components of cytoskeletal microstructures, the piecemeal accumulation of domains in ATP synthase complexes and the origin and evolution of the ribosome. Phylogenomic studies suggest the last universal common ancestor of life, the 'urancestor', had already developed complex cellular structure and bioenergetics. Remarkably, our findings falsify the existence of an ancient RNA world. Instead they are compatible with gradually coevolving nucleic acids and proteins in interaction with increasingly complex cofactors, lipid membrane structures and other cellular components. This changes the perception we have of the rise of modern biochemistry and prompts further analysis of the emergence of biological complexity in an ever-expanding coevolving world of macromolecules.

  12. Model of Handover and Traffic Based on Cellular Geometry with Smart Antenna

    Directory of Open Access Journals (Sweden)

    Zufan Zhang

    2014-01-01

    Full Text Available Based on the application of smart antennas in cellular mobile communications, this paper introduces the impact of the width of the antenna beams playing on the dwell time probability density function in cellular geometry with smart antenna. The research results indicate that the smart cell structure can improve the dwell time of users within the cell and improve the traffic system performance.

  13. Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Siva Prasad Darla

    2014-01-01

    Full Text Available In the modern manufacturing environment, Cellular Manufacturing Systems (CMS have gained greater importance in job shop or batch-type production to gain economic advantage similar to those of mass production. Successful implementation of CMS highly depends on the determination of part families; machine cells and minimizing inter cellular movement. This study considers machine component grouping problems namely inter-cellular movement and cell load variation by developing a mathematical model and optimizing the solution using Genetic Algorithm to arrive at a cell formation to minimize the inter-cellular movement and cell load variation. The results are presented with a numerical example.

  14. The thorny path linking cellular senescence to organismalaging

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Christopher K.; Mian, Saira; Campisi, Judith

    2005-08-09

    Half a century is fast approaching since Hayflick and colleagues formally described the limited ability of normal human cells to proliferate in culture (Hayflick and Moorhead, 1961). This finding--that normal somatic cells, in contrast to cancer cells, cannot divide indefinitely--challenged the prevailing idea that cells from mortal multicellular organisms were intrinsically ''immortal'' (Carrell, 1912). It also spawned two hypotheses, essential elements of which persist today. The first held that the restricted proliferation of normal cells, now termed cellular senescence, suppresses cancer (Hayflick, 1965; Sager, 1991; Campisi, 2001). The second hypothesis, as explained in the article by Lorenzini et al., suggested that the limited proliferation of cells in culture recapitulated aspects of organismal aging (Hayflick, 1965; Martin, 1993). How well have these hypotheses weathered the ensuing decades? Before answering this question, we first consider current insights into the causes and consequences of cellular senescence. Like Lorenzini et al., we limit our discussion to mammals. We also focus on fibroblasts, the cell type studied by Lorenzini et al., but consider other types as well. We suggest that replicative capacity in culture is not a straightforward assessment, and that it correlates poorly with both longevity and body mass. We speculate this is due to the malleable and variable nature of replicative capacity, which renders it an indirect metric of qualitative and quantitative differences among cells to undergo senescence, a response that directly alters cellular phenotype and might indirectly alter tissue structure and function.

  15. Using RNA as Molecular Code for Programming Cellular Function.

    Science.gov (United States)

    Kushwaha, Manish; Rostain, William; Prakash, Satya; Duncan, John N; Jaramillo, Alfonso

    2016-08-19

    RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology.

  16. Synaptic and cellular profile of neurons in the lateral habenula.

    Directory of Open Access Journals (Sweden)

    Frank Julius Meye

    2013-12-01

    Full Text Available The lateral habenula (LHb is emerging as a crucial structure capable of conveying rewarding and aversive information. Recent evidence indicates that a rapid increase in the activity of LHb neurons drives negative states and avoidance. Furthermore, the hyperexcitability of neurons in the lateral habenula, especially those projecting to the midbrain, may represent an important cellular correlate for neuropsychiatric disorders like depression and drug addiction. Despite the recent insights regarding the implications of the LHb in the context of reward and aversion, the exact nature of the synaptic and cellular players regulating LHb neuronal functions remains largely unknown. Here we focus on the synaptic and cellular physiology of LHb neurons. First, we discuss the properties of excitatory transmission and the implications of glutamate receptors for long-term synaptic plasticity; second, we review the features of GABAergic transmission onto LHb neurons; and finally, we describe the contribution that neuromodulators such as dopamine and serotonin may have for LHb neuronal physiology. We relate these findings to the role that the LHb can play in processing aversive and rewarding stimuli, both in health and disease states.

  17. Wave dynamic processes in cellular detonation reflection from wedges

    Institute of Scientific and Technical Information of China (English)

    Zongmin Hu; Zonglin Jiang

    2007-01-01

    When the cell width of the incident deto-nation wave (IDW) is comparable to or larger than theMach stem height,self-similarity will fail during IDWreflection from a wedge surface.In this paper,the det-onation reflection from wedges is investigated for thewave dynamic processes occurring in the wave front,including transverse shock motion and detonation cellvariations behind the Mach stem.A detailed reactionmodel is implemented to simulate two-dimensional cel-lular detonations in stoichiometric mixtures of H2/O2diluted by Argon.The numerical results show that thetransverse waves,which cross the triple point trajec-tory of Mach reflection,travel along the Mach stem andreflect back from the wedge surface,control the size ofthe cells in the region swept by the Mach stem.It is theenergy carried by these transverse waves that sustainsthe triple-wave-collision with a higher frequency withinthe over-driven Mach stem.In some cases,local wavedynamic processes and wave structures play a dominantrole in determining the pattern of cellular record,lead-ing to the fact that the cellular patterns after the Machstem exhibit some peculiar modes.

  18. Hybrid Spectral Efficient Cellular Network Deployment to Reduce RF Pollution

    Science.gov (United States)

    Katiyar, Sumit; K. Jain, R.; K. Agrawal, N.

    2012-09-01

    As the mobile telecommunication systems are growing tremendously all over the world, the numbers of handheld and base stations are also rapidly growing and it became very popular to see these base stations distributed everywhere in the neighborhood and on roof tops which has caused a considerable amount of panic to the public in Palestine concerning wither the radiated electromagnetic fields from these base stations may cause any health effect or hazard. Recently UP High Court in India ordered for removal of BTS towers from residential area, it has created panic among cellular communication network designers too. Green cellular networks could be a solution for the above problem. This paper deals with green cellular networks with the help of multi-layer overlaid hierarchical structure (macro / micro / pico / femto cells). Macrocell for area coverage, micro for pedestrian and a slow moving traffic while pico for indoor use and femto for individual high capacity users. This could be the answer of the problem of energy conservation and enhancement of spectral density also.

  19. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-01

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  20. Design, analysis, and applications of cellular contact-aided compliant mechanisms

    Science.gov (United States)

    Mehta, Vipul

    A new class of compliant mechanisms utilizing the benefits of cellular geometry and contact are addressed in this work. The design, analysis, fabrication and testing of such structures for high-strain and high-strength applications is the focus of the present research. Cellular structures have relatively good strength-to-weight ratios. They also have a higher strain capability than solid structures. Contact during deformation reduces failure-causing bending stresses through stress relief, thereby enabling such cellular structures to be stretched more than the corresponding structures without contact. Both analytical and numerical models are developed to represent one specific mechanism. Several candidate materials are investigated for such mechanisms. Although the allowable strain of all these materials is small, the overall strain of the contact-aided cellular mechanisms is at least an order of magnitude greater than that of the constitutive material. Application of contact to different materials yields an improvement in the global strain capacity by more than 100% relative to cellular structures without contact. Experiments are conducted to validate the models, and good agreement is found. Size optimization is carried out to maximize the stress relief and the overall strain. Two main applications are considered in the present work. One application consists of a morphing aircraft skin for adaptive structures. Different material models such as linearly elastic and multi-linear elastic are examined. For linearly elastic materials, contact-induced stress-relief is advantageous and for nonlinear elastic materials, reduction of transverse deflection due to contact is useful. The proposed contact-aided skin structure is compared with a cellular skin without contact. The contact mechanism helps to increase the morphing capacity while decreasing the structural mass. Using contact-aided cellular mechanisms, the global strain capability is increased by as much as 37%. For a

  1. Improvement of Cellular Structure and Mechanical Properties for Foam Injection Molding PP/EPDM Blend with Mica%云母粉对注塑发泡PP/EPDM共混物泡孔结构和力学性能的改善

    Institute of Scientific and Technical Information of China (English)

    谢敏讷; 黄汉雄

    2011-01-01

    采用注塑发泡方法制备了质量比为75/25的聚丙烯/三元乙丙橡胶(PP/EPDM)共混物和质量比为75/25/7.5的PP/EPDM/云母粉复合材料制品,分析了两种制品泡孔结构和结晶性能的差异及其对制品力学性能的影响.结果表明:与共混物发泡制品相比,复合材料发泡制品的拉伸屈服强度、拉伸断裂强度、断裂伸长率和无缺口冲击强度分别提高约5%、48%、206%和22%,并呈现应变硬化现象.复合材料发泡制品的泡孔直径明显较小且分布较均匀,泡孔密度明显较大,结晶度较高,这些是使复合材料发泡制品具有较高力学性能的主要原因.%Foamed polypropylene/ethylene-propylene-diene monomer ( PP/EPDM, 75/25, w/w ) blend and PP/EPDM/mica composite (75/25/7.5, w/w) were prepared via injection molding. The difference in the cellular structure and crystallization properties of both foamed parts and its effect on their mechanical properties were studied. The results showed that comparing with the foamed blend part, the foamed composite part exhibited an increase of 5% , 48% , 206% , and 22% in tensile yield strength, tensile facture strength, elongation at break and un-notched impact strength, respectively. Moreover, strain hardening appeared for the latter part. These results were attributed much smaller and more uniform cellular diameters, much larger cell density, and higher crystallinity of the foamed composite parts.

  2. Studying Nuclear Receptor Complexes in the Cellular Environment.

    Science.gov (United States)

    Schaufele, Fred

    2016-01-01

    The ligand-regulated structure and biochemistry of nuclear receptor complexes are commonly determined by in vitro studies of isolated receptors, cofactors, and their fragments. However, in the living cell, the complexes that form are governed not just by the relative affinities of isolated cofactors for the receptor but also by the cell-specific sequestration or concentration of subsets of competing or cooperating cofactors, receptors, and other effectors into distinct subcellular domains and/or their temporary diversion into other cellular activities. Most methods developed to understand nuclear receptor function in the cellular environment involve the direct tagging of the nuclear receptor or its cofactors with fluorescent proteins (FPs) and the tracking of those FP-tagged factors by fluorescence microscopy. One of those approaches, Förster resonance energy transfer (FRET) microscopy, quantifies the transfer of energy from a higher energy "donor" FP to a lower energy "acceptor" FP attached to a single protein or to interacting proteins. The amount of FRET is influenced by the ligand-induced changes in the proximities and orientations of the FPs within the tagged nuclear receptor complexes, which is an indicator of the structure of the complexes, and by the kinetics of the interaction between FP-tagged factors. Here, we provide a guide for parsing information about the structure and biochemistry of nuclear receptor complexes from FRET measurements in living cells.

  3. Millimeter-Wave Evolution for 5G Cellular Networks

    Science.gov (United States)

    Sakaguchi, Kei; Tran, Gia Khanh; Shimodaira, Hidekazu; Nanba, Shinobu; Sakurai, Toshiaki; Takinami, Koji; Siaud, Isabelle; Strinati, Emilio Calvanese; Capone, Antonio; Karls, Ingolf; Arefi, Reza; Haustein, Thomas

    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.

  4. The ING tumor suppressors in cellular senescence and chromatin.

    Science.gov (United States)

    Ludwig, Susann; Klitzsch, Alexandra; Baniahmad, Aria

    2011-07-18

    The Inhibitor of Growth (ING) proteins represent a type II tumor suppressor family comprising five conserved genes, ING1 to ING5. While ING1, ING2 and ING3 proteins are stable components of the mSIN3a-HDAC complexes, the association of ING1, ING4 and ING5 with HAT protein complexes was also reported. Among these the ING1 and ING2 have been analyzed more deeply. Similar to other tumor suppressor factors the ING proteins are also involved in many cellular pathways linked to cancer and cell proliferation such as cell cycle regulation, cellular senescence, DNA repair, apoptosis, inhibition of angiogenesis and modulation of chromatin.A common structural feature of ING factors is the conserved plant homeodomain (PHD), which can bind directly to the histone mark trimethylated lysine of histone H3 (H3K4me3). PHD mutants lose the ability to undergo cellular senescence linking chromatin mark recognition with cellular senescence. ING1 and ING2 are localized in the cell nucleus and associated with chromatin modifying enzymes, linking tumor suppression directly to chromatin regulation. In line with this, the expression of ING1 in tumors is aberrant or identified point mutations are mostly localized in the PHD finger and affect histone binding. Interestingly, ING1 protein levels increase in replicative senescent cells, latter representing an efficient pathway to inhibit cancer proliferation. In association with this, suppression of p33ING1 expression prolongs replicative life span and is also sufficient to bypass oncogene-induced senescence. Recent analyses of ING1- and ING2-deficient mice confirm a tumor suppressive role of ING1 and ING2 and also indicate an essential role of ING2 in meiosis.Here we summarize the activity of ING1 and ING2 as tumor suppressors, chromatin factors and in development.

  5. Cellular interactions with tissue-engineered microenvironments and nanoparticles

    Science.gov (United States)

    Pan, Zhi

    Tissue-engineered hydrogels composed of intermolecularlly crosslinked hyaluronan (HA-DTPH) and fibronectin functional domains (FNfds) were applied as a physiological relevant ECM mimic with controlled mechanical and biochemical properties. Cellular interactions with this tissue-engineered environment, especially physical interactions (cellular traction forces), were quantitatively measured by using the digital image speckle correlation (DISC) technique and finite element method (FEM). By correlating with other cell functions such as cell morphology and migration, a comprehensive structure-function relationship between cells and their environments was identified. Furthermore, spatiotemporal redistribution of cellular traction stresses was time-lapse measured during cell migration to better understand the dynamics of cell mobility. The results suggest that the reinforcement of the traction stresses around the nucleus, as well as the relaxation of nuclear deformation, are critical steps during cell migration, serving as a speed regulator, which must be considered in any dynamic molecular reconstruction model of tissue cell migration. Besides single cell migration, en masse cell migration was studied by using agarose droplet migration assay. Cell density was demonstrated to be another important parameter to influence cell behaviors besides substrate properties. Findings from these studies will provide fundamental design criteria to develop novel and effective tissue-engineered constructs. Cellular interactions with rutile and anatase TiO2 nanoparticles were also studied. These particles can penetrate easily through the cell membrane and impair cell function, with the latter being more damaging. The exposure to nanoparticles was found to decrease cell area, cell proliferation, motility, and contractility. To prevent this, a dense grafted polymer brush coating was applied onto the nanoparticle surface. These modified nanoparticles failed to adhere to and penetrate

  6. Study of contact angle hysteresis using the Cellular Potts Model.

    Science.gov (United States)

    Mortazavi, Vahid; D'Souza, Roshan M; Nosonovsky, Michael

    2013-02-28

    We use the Cellular Potts Model (CPM) to study the contact angle (CA) hysteresis in multiphase (solid-liquid-vapour) systems. We simulate a droplet over the tilted patterned surface, and a bubble placed under the surface immersed in liquid. The difference between bubbles and droplets was discussed through their CA hysteresis. Dependency of CA hysteresis on the surface structure and other parameters was also investigated. This analysis allows decoupling of the 1D (pinning of the triple line) and 2D (adhesion hysteresis in the contact area) effects and provides new insight into the nature of CA hysteresis.

  7. Simulation of plant communities with a cellular automaton

    Energy Technology Data Exchange (ETDEWEB)

    Gassmann, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    With a modelling approach based on cellular automata, five observed types of plant development can be simulated. In addition, the proposed model shows a strong tendency towards the formation of patches and a high degree of dynamical and structural instability leading to limits of predictability for the asymptotic solution chosen by the system among several possible metastable patterns (multistability). Further, external fluctuations can be shown to have advantages for certain plant types. The presented model unifies the fundamental dichotomy in vegetation dynamics between determinism (understood as predictability) and disorder (chance effects) by showing the outcome of both classical theories as special cases. (author) 2 figs., 4 refs.

  8. Online isolation of defects in cellular nanocomputers

    Institute of Scientific and Technical Information of China (English)

    Teijiro Isokawa; Shin'ya Kowada; Ferdinand Peper; Naotake Kamiura; Nobuyuki Matsui

    2007-01-01

    Unreliability will be a major issue for computers built from components at nanometer scales.Thus,it's to be expected that such computers will need a high degree of defect-tolerance to overcome components' defects which have arisen during the process of manufacturing.This paper presents a novel approach to defect-tolerance that is especially geared towards nanocomputers based on asynchronous cellular automata.According to this approach,defective cells are detected and isolated by small configurations that move around randomly in cellular space.These configurations,called random flies,will attach to configurations that are static,which is typical for configurations that contain defective cells.On the other hand,dynamic configurations,like those that conduct computations,will not be isolated from the rest of the cellular space by the random flies,and will be able to continue their operations unaffectedly.

  9. Cellular Signaling in Health and Disease

    CERN Document Server

    Beckerman, Martin

    2009-01-01

    In today’s world, three great classes of non-infectious diseases – the metabolic syndromes (such as type 2 diabetes and atherosclerosis), the cancers, and the neurodegenerative disorders – have risen to the fore. These diseases, all associated with increasing age of an individual, have proven to be remarkably complex and difficult to treat. This is because, in large measure, when the cellular signaling pathways responsible for maintaining homeostasis and health of the body become dysregulated, they generate equally stable disease states. As a result the body may respond positively to a drug, but only for a while and then revert back to the disease state. Cellular Signaling in Health and Disease summarizes our current understanding of these regulatory networks in the healthy and diseased states, showing which molecular components might be prime targets for drug interventions. This is accomplished by presenting models that explain in mechanistic, molecular detail how a particular part of the cellular sign...

  10. Software-Defined Cellular Mobile Network Solutions

    Institute of Scientific and Technical Information of China (English)

    Jiandong Li; Peng Liu; Hongyan Li

    2014-01-01

    The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, pro-vides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solu-tions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only software-defined cellular network solutions and specifications in order to provide possible research directions.

  11. Asymptotic Behavior of Excitable Cellular Automata

    CERN Document Server

    Durrett, R; Durrett, Richard; Griffeath, David

    1993-01-01

    Abstract: We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the "shape" of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and som...

  12. Spin Echo Studies on Cellular Water

    CERN Document Server

    Chang, D C; Nichols, B L; Rorschach, H E

    2014-01-01

    Previous studies indicated that the physical state of cellular water could be significantly different from pure liquid water. To experimentally investigate this possibility, we conducted a series of spin-echo NMR measurements on water protons in rat skeletal muscle. Our result indicated that the spin-lattice relaxation time and the spin-spin relaxation time of cellular water protons are both significantly shorter than that of pure water (by 4.3-fold and 34-fold, respectively). Furthermore, the spin diffusion coefficient of water proton is almost 1/2 of that of pure water. These data suggest that cellular water is in a more ordered state in comparison to pure water.

  13. Cellular biosensing: chemical and genetic approaches.

    Science.gov (United States)

    Haruyama, Tetsuya

    2006-05-24

    Biosensors have been developed to determine the concentration of specific compounds in situ. They are already widely employed as a practical technology in the clinical and healthcare fields. Recently, another concept of biosensing has been receiving attention: biosensing for the evaluation of molecular potency. The development of this novel concept has been supported by the development of related technologies, as such as molecular design, molecular biology (genetic engineering) and cellular/tissular engineering. This review is addresses this new concept of biosensing and its application to the evaluation of the potency of chemicals in biological systems, in the field of cellular/tissular engineering. Cellular biosensing may provide information on both pharmaceutical and chemical safety, and on drug efficacy in vitro as a screening tool.

  14. Alleviate Cellular Congestion Through Opportunistic Trough Filling

    Directory of Open Access Journals (Sweden)

    Yichuan Wang

    2014-04-01

    Full Text Available The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly in both large and small time scales. To alleviate network congestion and improve network performance, we present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time as the performance metrics. Simulation results show promising performance improvement over the standard schemes. The work shed lights on addressing the pressing issue of cellular overload.

  15. Modeling of coupled differential equations for cellular chemical signaling pathways: Implications for assay protocols utilized in cellular engineering.

    Science.gov (United States)

    O'Clock, George D

    2016-08-01

    Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.

  16. Performance comparison of virtual cellular manufacturing with functional and cellular layouts in DRC settings

    NARCIS (Netherlands)

    Suresh, N.; Slomp, J.

    2005-01-01

    This study investigates the performance of virtual cellular manufacturing (VCM) systems, comparing them with functional layouts (FL) and traditional, physical cellular layout (CL), in a dual-resource-constrained (DRC) system context. VCM systems employ logical cells, retaining the process layouts of

  17. Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly.

    Science.gov (United States)

    Schiele, Nathan R; Koppes, Ryan A; Chrisey, Douglas B; Corr, David T

    2013-05-01

    Engineering strategies guided by developmental biology may enhance and accelerate in vitro tissue formation for tissue engineering and regenerative medicine applications. In this study, we looked toward embryonic tendon development as a model system to guide our soft tissue engineering approach. To direct cellular self-assembly, we utilized laser micromachined, differentially adherent growth channels lined with fibronectin. The micromachined growth channels directed human dermal fibroblast cells to form single cellular fibers, without the need for a provisional three-dimensional extracellular matrix or scaffold to establish a fiber structure. Therefore, the resulting tissue structure and mechanical characteristics were determined solely by the cells. Due to the self-assembly nature of this approach, the growing fibers exhibit some key aspects of embryonic tendon development, such as high cellularity, the rapid formation (within 24 h) of a highly organized and aligned cellular structure, and the expression of cadherin-11 (indicating direct cell-to-cell adhesions). To provide a dynamic mechanical environment, we have also developed and characterized a method to apply precise cyclic tensile strain to the cellular fibers as they develop. After an initial period of cellular fiber formation (24 h postseeding), cyclic strain was applied for 48 h, in 8-h intervals, with tensile strain increasing from 0.7% to 1.0%, and at a frequency of 0.5 Hz. Dynamic loading dramatically increased cellular fiber mechanical properties with a nearly twofold increase in both the linear region stiffness and maximum load at failure, thereby demonstrating a mechanism for enhancing cellular fiber formation and mechanical properties. Tissue engineering strategies, designed to capture key aspects of embryonic development, may provide unique insight into accelerated maturation of engineered replacement tissue, and offer significant advances for regenerative medicine applications in tendon

  18. Virtual networks in the cellular domain

    OpenAIRE

    Söderström, Gustav

    2003-01-01

     Data connectivity between cellular devices can be achieved in different ways. It is possible to enable full IPconnectivity in the cellular networks. However this connectivity is combined with a lot of issues such as security problems and the IPv4 address space being depleted. As a result of this many operators use Network Address Translation in their packet data networks, preventing users in different networks from being able to contact each other. Even if a transition to IPv6 takes place an...

  19. The cellular decision between apoptosis and autophagy

    Institute of Scientific and Technical Information of China (English)

    Yong-Jun Fan; Wei-Xing Zong

    2013-01-01

    Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis,respectively.While apoptosis fulfills its role through dismantling damaged or unwanted cells,autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules.Yet in some conditions,autophagy can lead to cell death.Apoptosis and autophagy can be stimulated by the same stresses.Emerging evidence indicates an interplay between the core proteins in both pathways,which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy.This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.

  20. Cellular basis of Alzheimer′s disease

    Directory of Open Access Journals (Sweden)

    Bali Jitin

    2010-10-01

    Full Text Available Alzheimer′s disease (AD is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  1. Cellular basis of Alzheimer’s disease

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-01-01

    Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD. PMID:21369424

  2. Refining cellular automata with routing constraints

    OpenAIRE

    Millo, Jean-Vivien; De Simone, Robert

    2012-01-01

    A cellular automaton (CA) is an infinite array of cells, each containing the same automaton. The dynamics of a CA is distributed over the cells where each computes its next state as a function of the previous states of its neighborhood. Thus, the transmission of such states between neighbors is considered as feasible directly, in no time. When considering the implementation of a cellular automaton on a many-cores System-on-Chip (SoC), this state transmission is no longer abstract and instanta...

  3. Cellular telephone use and cancer risk

    DEFF Research Database (Denmark)

    2006-01-01

    -up of a large nationwide cohort of 420,095 persons whose first cellular telephone subscription was between 1982 and 1995 and who were followed through 2002 for cancer incidence. Standardized incidence ratios (SIRs) were calculated by dividing the number of observed cancer cases in the cohort by the number....... The risk for smoking-related cancers was decreased among men (SIR = 0.88, 95% CI = 0.86 to 0.91) but increased among women (SIR = 1.11, 95% CI = 1.02 to 1.21). Additional data on income and smoking prevalence, primarily among men, indicated that cellular telephone users who started subscriptions in the mid...

  4. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...... insulation....

  5. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  6. Green Cellular - Optimizing the Cellular Network for Minimal Emission from Mobile Stations

    CERN Document Server

    Ezri, Doron

    2009-01-01

    Wireless systems, which include cellular phones, have become an essential part of the modern life. However the mounting evidence that cellular radiation might adversely affect the health of its users, leads to a growing concern among authorities and the general public. Radiating antennas in the proximity of the user, such as antennas of mobile phones are of special interest for this matter. In this paper we suggest a new architecture for wireless networks, aiming at minimal emission from mobile stations, without any additional radiation sources. The new architecture, dubbed Green Cellular, abandons the classical transceiver base station design and suggests the augmentation of transceiver base stations with receive only devices. These devices, dubbed Green Antennas, are not aiming at coverage extension but rather at minimizing the emission from mobile stations. We discuss the implications of the Green Cellular architecture on 3G and 4G cellular technologies. We conclude by showing that employing the Green Cell...

  7. A cellular automata model for simulating fed-batch penicillin fermentation process

    Institute of Scientific and Technical Information of China (English)

    Yu Naigong; Ruan Xiaogang

    2006-01-01

    A cellular automata model to simulate penicillin fed-batch fermentation process(CAPFM)was established in this study,based on a morphologically structured dynamic penicillin production model,that is in turn based on the growth mechanism of penicillin producing microorganisms and the characteristics of penicillin fed-batch fermentation.CAPFM uses the three-dimensional cellular automata as a growth space,and a Moore-type neighborhood as the cellular neighborhood.The transition roles of CAPFM are designed based on mechanical and structural kinetic models of penicillin batch-fed fermentation processes.Every cell of CAPFM represents a single or specific number of penicillin producing microorganisms,and has various state.The simulation experimental results show that CAPFM replicates the evolutionary behavior of penicillin batch-fed fermentation processes described by the structured penicillin production kinetic model accordingly.

  8. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  9. Experimental investigations and numerical simulations of notch effect in cellular plastic materials

    Science.gov (United States)

    Marsavina, L.; Linul, E.; Voiconi, T.; Negru, R.

    2016-04-01

    Cellular plastics are light weight structures with many applications in civil, aeronautical, automotive and mechanical engineering. Properties of cellular materials depend on the properties of the solid material, on the shape and dimensions of the cellular structure and on the relative density of the cellular material. Most of cellular plastic materials are crushing in compression and have a brittle behavior in tension. The effect of notches represents an important issue in such materials, taking into account that for packing applications for example, notches/holes should be introduced in the cellular material. This paper investigates the effect of notches in compression for three different densities 100, 145 and 300 kg/m3 polyurethane (PUR) foams. Experimental investigations were performed on rectangular blocks of 100×100×25 mm with 16, 28 and 40 mm central holes. The mechanism of damage was monitored with an IR camera FLIR A40M. Purpose of the numerical simulations was to calibrate a material model, based on compression test for un-notched specimens using the CRUSHABLE FOAM models implemented in ABAQUS SIMULIA. Then the material models were used to simulate the experimental tests on notched blocks. Good agreement was obtained for the load - displacement curves obtained experimentally and from simulation. Also the plastic deformation patterns observed experimentally by IR thermograpghy were obtained numerically using the CRUSHABLE FOAM material model.

  10. Cellular grafts in management of leucoderma

    Directory of Open Access Journals (Sweden)

    Mysore Venkataram

    2009-01-01

    Full Text Available Cellular grafting methods constitute important advances in the surgical management of leucoderma. Different methods such as noncultured epidermal suspensions, melanocyte cultures, and melanocyte-keratinocyte cultures have all been shown to be effective. This article reviews these methods.

  11. Cellular basis of memory for addiction.

    Science.gov (United States)

    Nestler, Eric J

    2013-12-01

    DESPITE THE IMPORTANCE OF NUMEROUS PSYCHOSOCIAL FACTORS, AT ITS CORE, DRUG ADDICTION INVOLVES A BIOLOGICAL PROCESS: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. Here, we review the types of molecular and cellular adaptations that occur in specific brain regions to mediate addiction-associated behavioral abnormalities. These include alterations in gene expression achieved in part via epigenetic mechanisms, plasticity in the neurophysiological functioning of neurons and synapses, and associated plasticity in neuronal and synaptic morphology mediated in part by altered neurotrophic factor signaling. Each of these types of drug-induced modifications can be viewed as a form of "cellular or molecular memory." Moreover, it is striking that most addiction-related forms of plasticity are very similar to the types of plasticity that have been associated with more classic forms of "behavioral memory," perhaps reflecting the finite repertoire of adaptive mechanisms available to neurons when faced with environmental challenges. Finally, addiction-related molecular and cellular adaptations involve most of the same brain regions that mediate more classic forms of memory, consistent with the view that abnormal memories are important drivers of addiction syndromes. The goal of these studies which aim to explicate the molecular and cellular basis of drug addiction is to eventually develop biologically based diagnostic tests, as well as more effective treatments for addiction disorders.

  12. Cellular Plasticity in Prostate Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Dima Y. Jadaan

    2015-01-01

    Full Text Available Purpose. Experimental data suggest that tumour cells can reversibly transition between epithelial and mesenchymal states (EMT and MET, a phenomenon known as cellular plasticity. The aim of this review was to appraise the clinical evidence for the role of cellular plasticity in prostate cancer (PC bone metastasis. Methods. An electronic search was performed using PubMed for studies that have examined the differential expression of epithelial, mesenchymal, and stem cell markers in human PC bone metastasis tissues. Results. The review included nineteen studies. More than 60% of the studies used ≤20 bone metastasis samples, and there were several sources of heterogeneity between studies. Overall, most stem cell markers analysed, except for CXCR4, were positively expressed in bone metastasis tissues, while the expression of EMT and MET markers was heterogeneous between and within samples. Several EMT and stemness markers that are involved in osteomimicry, such as Notch, Met receptor, and Wnt/β pathway, were highly expressed in bone metastases. Conclusions. Clinical findings support the role of cellular plasticity in PC bone metastasis and suggest that epithelial and mesenchymal states cannot be taken in isolation when targeting PC bone metastasis. The paper also highlights several challenges in the clinical detection of cellular plasticity.

  13. Corneal cellular proliferation and wound healing

    OpenAIRE

    Gan, Lisha

    2000-01-01

    Background. Cellular proliferation plays an important role in both physiological and pathological processes. Epithelial hyperplasia in the epithelium, excessive scar formation in retrocorneal membrane formation and neovascularization are examples of excessive proliferation of cornea cells. Lack of proliferative ability causes corneal degeneration. The degree of proliferative and metabolic activity will directly influence corneal transparency and very evidently refractive res...

  14. A Quantum Relativistic Prisoner's Dilemma Cellular Automaton

    Science.gov (United States)

    Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen

    2016-10-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.

  15. Recursive definition of global cellular-automata mappings

    DEFF Research Database (Denmark)

    Feldberg, Rasmus; Knudsen, Carsten; Rasmussen, Steen

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as...

  16. Influence of microgravity on cellular differentiation in root caps of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  17. Quantitative proteomics reveals cellular targets of celastrol.

    Directory of Open Access Journals (Sweden)

    Jakob Hansen

    Full Text Available Celastrol, a natural substance isolated from plant extracts used in traditional Chinese medicine, has been extensively investigated as a possible drug for treatment of cancer, autoimmune diseases, and protein misfolding disorders. Although studies focusing on celastrol's effects in specific cellular pathways have revealed a considerable number of targets in a diverse array of in vitro models there is an essential need for investigations that can provide a global view of its effects. To assess cellular effects of celastrol and to identify target proteins as biomarkers for monitoring treatment regimes, we performed large-scale quantitative proteomics in cultured human lymphoblastoid cells, a cell type that can be readily prepared from human blood samples. Celastrol substantially modified the proteome composition and 158 of the close to 1800 proteins with robust quantitation showed at least a 1.5 fold change in protein levels. Up-regulated proteins play key roles in cytoprotection with a prominent group involved in quality control and processing of proteins traversing the endoplasmic reticulum. Increased levels of proteins essential for the cellular protection against oxidative stress including heme oxygenase 1, several peroxiredoxins and thioredoxins as well as proteins involved in the control of iron homeostasis were also observed. Specific analysis of the mitochondrial proteome strongly indicated that the mitochondrial association of certain antioxidant defense and apoptosis-regulating proteins increased in cells exposed to celastrol. Analysis of selected mRNA transcripts showed that celastrol activated several different stress response pathways and dose response studies furthermore showed that continuous exposure to sub-micromolar concentrations of celastrol is associated with reduced cellular viability and proliferation. The extensive catalog of regulated proteins presented here identifies numerous cellular effects of celastrol and constitutes

  18. Cellular circadian clocks in mood disorders.

    Science.gov (United States)

    McCarthy, Michael J; Welsh, David K

    2012-10-01

    Bipolar disorder (BD) and major depressive disorder (MDD) are heritable neuropsychiatric disorders associated with disrupted circadian rhythms. The hypothesis that circadian clock dysfunction plays a causal role in these disorders has endured for decades but has been difficult to test and remains controversial. In the meantime, the discovery of clock genes and cellular clocks has revolutionized our understanding of circadian timing. Cellular circadian clocks are located in the suprachiasmatic nucleus (SCN), the brain's primary circadian pacemaker, but also throughout the brain and peripheral tissues. In BD and MDD patients, defects have been found in SCN-dependent rhythms of body temperature and melatonin release. However, these are imperfect and indirect indicators of SCN function. Moreover, the SCN may not be particularly relevant to mood regulation, whereas the lateral habenula, ventral tegmentum, and hippocampus, which also contain cellular clocks, have established roles in this regard. Dysfunction in these non-SCN clocks could contribute directly to the pathophysiology of BD/MDD. We hypothesize that circadian clock dysfunction in non-SCN clocks is a trait marker of mood disorders, encoded by pathological genetic variants. Because network features of the SCN render it uniquely resistant to perturbation, previous studies of SCN outputs in mood disorders patients may have failed to detect genetic defects affecting non-SCN clocks, which include not only mood-regulating neurons in the brain but also peripheral cells accessible in human subjects. Therefore, reporters of rhythmic clock gene expression in cells from patients or mouse models could provide a direct assay of the molecular gears of the clock, in cellular clocks that are likely to be more representative than the SCN of mood-regulating neurons in patients. This approach, informed by the new insights and tools of modern chronobiology, will allow a more definitive test of the role of cellular circadian clocks

  19. Oscillatory cellular patterns in three-dimensional directional solidification.

    Science.gov (United States)

    Tourret, D; Debierre, J-M; Song, Y; Mota, F L; Bergeon, N; Guérin, R; Trivedi, R; Billia, B; Karma, A

    2015-10-01

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted onboard the International Space Station have allowed us to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 min. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (i.e., low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exists, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both

  20. Pattern transformations in periodic cellular solids under external stimuli

    Science.gov (United States)

    Zhang, K.; Zhao, X. W.; Duan, H. L.; Karihaloo, B. L.; Wang, J.

    2011-04-01

    The structural patterns of periodic cellular materials play an important role in their properties. Here, we investigate how these patterns transform dramatically under external stimuli in simple periodic cellular structures that include a nanotube bundle and a millimeter-size plastic straw bundle. Under gradual hydrostatic straining up to 20%, the cross-section of the single walled carbon nanotube bundle undergoes several pattern transformations, while an amazing new hexagram pattern is triggered from the circular shape when the strain of 20% is applied suddenly in one step. Similar to the nanotube bundle, the circular plastic straw bundle is transformed into a hexagonal pattern on heating by conduction through a baseplate but into a hexagram pattern when heated by convection. Besides the well-known elastic buckling, we find other mechanisms of pattern transformation at different scales; these include the minimization of the surface energy at the macroscale or of the van der Waals energy at the nanoscale and the competition between the elastic energy of deformation and either the surface energy at the macroscale or the van der Waals energy at the nanoscale. The studies of the pattern transformations of periodic porous materials offer new insights into the fabrication of novel materials and devices with tailored properties.

  1. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  2. Biophysical responses upon the interaction of nanomaterials with cellular interfaces.

    Science.gov (United States)

    Wu, Yun-Long; Putcha, Nirupama; Ng, Kee Woei; Leong, David Tai; Lim, Chwee Teck; Loo, Say Chye Joachim; Chen, Xiaodong

    2013-03-19

    The explosion of study of nanomaterials in biological applications (the nano-bio interface) can be ascribed to nanomaterials' growing importance in diagnostics, therapeutics, theranostics (therapeutic diagnostics), and targeted modulation of cellular processes. However, a growing number of critics have raised concerns over the potential risks of nanomaterials to human health and safety. It is essential to understand nanomaterials' potential toxicity before they are tested in humans. These risks are complicated to unravel, however, because of the complexity of cells and their nanoscale macromolecular components, which enable cells to sense and respond to environmental cues, including nanomaterials. In this Account, we explore these risks from the perspective of the biophysical interactions between nanomaterials and cells. Biophysical responses to the uptake of nanomaterials can include conformational changes in biomolecules like DNA and proteins, and changes to the cellular membrane and the cytoskeleton. Changes to the latter two, in particular, can induce changes in cell elasticity, morphology, motility, adhesion, and invasion. This Account reviews what is known about cells' biophysical responses to the uptake of the most widely studied and used nanoparticles, such as carbon-based, metal, metal-oxide, and semiconductor nanomaterials. We postulate that the biophysical structure impairment induced by nanomaterials is one of the key causes of nanotoxicity. The disruption of cellular structures is affected by the size, shape, and chemical composition of nanomaterials, which are also determining factors of nanotoxicity. Currently, popular nanotoxicity characterizations, such as the MTT and lactate dehydrogenase (LDH) assays, only provide end-point results through chemical reactions. Focusing on biophysical structural changes induced by nanomaterials, possibly in real-time, could deepen our understanding of the normal and altered states of subcellular structures and

  3. Crack Propagation in Honeycomb Cellular Materials: A Computational Approach

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2012-02-01

    Full Text Available Computational models based on the finite element method and linear or nonlinear fracture mechanics are herein proposed to study the mechanical response of functionally designed cellular components. It is demonstrated that, via a suitable tailoring of the properties of interfaces present in the meso- and micro-structures, the tensile strength can be substantially increased as compared to that of a standard polycrystalline material. Moreover, numerical examples regarding the structural response of these components when subjected to loading conditions typical of cutting operations are provided. As a general trend, the occurrence of tortuous crack paths is highly favorable: stable crack propagation can be achieved in case of critical crack growth, whereas an increased fatigue life can be obtained for a sub-critical crack propagation.

  4. Molecular kinesis in cellular function and plasticity.

    Science.gov (United States)

    Tiedge, H; Bloom, F E; Richter, D

    2001-06-19

    Intracellular transport and localization of cellular components are essential for the functional organization and plasticity of eukaryotic cells. Although the elucidation of protein transport mechanisms has made impressive progress in recent years, intracellular transport of RNA remains less well understood. The National Academy of Sciences Colloquium on Molecular Kinesis in Cellular Function and Plasticity therefore was devised as an interdisciplinary platform for participants to discuss intracellular molecular transport from a variety of different perspectives. Topics covered at the meeting included RNA metabolism and transport, mechanisms of protein synthesis and localization, the formation of complex interactive protein ensembles, and the relevance of such mechanisms for activity-dependent regulation and synaptic plasticity in neurons. It was the overall objective of the colloquium to generate momentum and cohesion for the emerging research field of molecular kinesis.

  5. Designing beauty the art of cellular automata

    CERN Document Server

    Martínez, Genaro

    2016-01-01

    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  6. Cellular senescence and the aging brain.

    Science.gov (United States)

    Chinta, Shankar J; Woods, Georgia; Rane, Anand; Demaria, Marco; Campisi, Judith; Andersen, Julie K

    2015-08-01

    Cellular senescence is a potent anti-cancer mechanism that arrests the proliferation of mitotically competent cells to prevent malignant transformation. Senescent cells accumulate with age in a variety of human and mouse tissues where they express a complex 'senescence-associated secretory phenotype' (SASP). The SASP includes many pro-inflammatory cytokines, chemokines, growth factors and proteases that have the potential to cause or exacerbate age-related pathology, both degenerative and hyperplastic. While cellular senescence in peripheral tissues has recently been linked to a number of age-related pathologies, its involvement in brain aging is just beginning to be explored. Recent data generated by several laboratories suggest that both aging and age-related neurodegenerative diseases are accompanied by an increase in SASP-expressing senescent cells of non-neuronal origin in the brain. Moreover, this increase correlates with neurodegeneration. Senescent cells in the brain could therefore constitute novel therapeutic targets for treating age-related neuropathologies.

  7. Astrobiological Complexity with Probabilistic Cellular Automata

    CERN Document Server

    Vukotić, B

    2012-01-01

    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and ne...

  8. Cellular automata in image processing and geometry

    CERN Document Server

    Adamatzky, Andrew; Sun, Xianfang

    2014-01-01

    The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation. The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of mass...

  9. Prodrug Approach for Increasing Cellular Glutathione Levels

    Directory of Open Access Journals (Sweden)

    Ivana Cacciatore

    2010-03-01

    Full Text Available Reduced glutathione (GSH is the most abundant non-protein thiol in mammalian cells and the preferred substrate for several enzymes in xenobiotic metabolism and antioxidant defense. It plays an important role in many cellular processes, such as cell differentiation, proliferation and apoptosis. GSH deficiency has been observed in aging and in a wide range of pathologies, including neurodegenerative disorders and cystic fibrosis (CF, as well as in several viral infections. Use of GSH as a therapeutic agent is limited because of its unfavorable biochemical and pharmacokinetic properties. Several reports have provided evidence for the use of GSH prodrugs able to replenish intracellular GSH levels. This review discusses different strategies for increasing GSH levels by supplying reversible bioconjugates able to cross the cellular membrane more easily than GSH and to provide a source of thiols for GSH synthesis.

  10. Mobile node localization in cellular networks

    CERN Document Server

    Malik, Yasir; Abdulrazak, Bessam; Tariq, Usman; 10.5121/ijwmn.2011.3607

    2012-01-01

    Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In this paper, we are interested in outdoor localization particularly in cellular networks of mobile nodes and presented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time) and coordinate information of Base Transceiver Station (BTSs). To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  11. Mobile Node Localization in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yasir Malik

    2012-01-01

    Full Text Available Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In thispaper, we are interested in outdoor localization particularly in cellular networks of mobile nodes andpresented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time and coordinate information of Base Transceiver Station (BTSs. To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  12. A Modified Sensitive Driving Cellular Automaton Model

    Institute of Scientific and Technical Information of China (English)

    GE Hong-Xia; DAI Shi-Qiang; DONG Li-Yun; LEI Li

    2005-01-01

    A modified cellular automaton model for traffic flow on highway is proposed with a novel concept about the variable security gap. The concept is first introduced into the original Nagel-Schreckenberg model, which is called the non-sensitive driving cellular automaton model. And then it is incorporated with a sensitive driving NaSch model,in which the randomization brake is arranged before the deterministic deceleration. A parameter related to the variable security gap is determined through simulation. Comparison of the simulation results indicates that the variable security gap has different influence on the two models. The fundamental diagram obtained by simulation with the modified sensitive driving NaSch model shows that the maximumflow are in good agreement with the observed data, indicating that the presented model is more reasonable and realistic.

  13. Cellular Dynamics Revealed by Digital Holographic Microscopy☆

    KAUST Repository

    Marquet, P.

    2016-11-22

    Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.

  14. SELF-ORGANIZED CRITICALITY AND CELLULAR AUTOMATA

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2007-01-01

    Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.

  15. Comprehensive cellular-resolution atlas of the adult human brain.

    Science.gov (United States)

    Ding, Song-Lin; Royall, Joshua J; Sunkin, Susan M; Ng, Lydia; Facer, Benjamin A C; Lesnar, Phil; Guillozet-Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A; Koch, Christof; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Zielke, H Ronald; Hohmann, John G; Jones, Allan R; Bernard, Amy; Hawrylycz, Michael J; Hof, Patrick R; Fischl, Bruce; Lein, Ed S

    2016-11-01

    Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  16. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  17. Leiomyoma cellulare in postoperative material: clinical cases

    OpenAIRE

    2013-01-01

    Introduction: Leiomyoma in one of the most common benign endometrial cancers. Location of the myoma in the cervix and the area of the broad ligament of the uterus is rare. Leiomyoma cellulare (LC) occurs in about 5.0% of leiomyoma cases. Aim of the research: To determine the occurrence of LC among 294 cases of myomas as well as myomas and uterine endometriosis, found in postoperative examinations. Material and methods: Patients were qualified for the surgery based on a gynaecolog...

  18. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  19. Cognitive resource management for heterogeneous cellular networks

    CERN Document Server

    Liu, Yongkang

    2014-01-01

    This Springer Brief focuses on cognitive resource management in heterogeneous cellular networks (Het Net) with small cell deployment for the LTE-Advanced system. It introduces the Het Net features, presents practical approaches using cognitive radio technology in accommodating small cell data relay and optimizing resource allocation and examines the effectiveness of resource management among small cells given limited coordination bandwidth and wireless channel uncertainty. The authors introduce different network characteristics of small cell, investigate the mesh of small cell access points in

  20. Cellular immune findings in Lyme disease.

    Science.gov (United States)

    Sigal, L. H.; Moffat, C. M.; Steere, A. C.; Dwyer, J. M.

    1984-01-01

    From 1981 through 1983, we did the first testing of cellular immunity in Lyme disease. Active established Lyme disease was often associated with lymphopenia, less spontaneous suppressor cell activity than normal, and a heightened response of lymphocytes to phytohemagglutinin and Lyme spirochetal antigens. Thus, a major feature of the immune response during active disease seems to be a lessening of suppression, but it is not yet known whether this response plays a role in the pathophysiology of the disease. PMID:6240164

  1. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  2. Cellular Automation of Galactic Habitable Zone

    CERN Document Server

    Vukotic, Branislav

    2010-01-01

    We present a preliminary results of our Galactic Habitable Zone (GHZ) 2D probabilistic cellular automata models. The relevant time-scales (emergence of life, it's diversification and evolution influenced with the global risk function) are modeled as the probability matrix elements and are chosen in accordance with the Copernican principle to be well-represented by the data inferred from the Earth's fossil record. With Fermi's paradox as a main boundary condition the resulting histories of astrobiological landscape are discussed.

  3. pna - assisted cellular migration on patterned surfaces

    OpenAIRE

    2013-01-01

    ABSTRACT - The ability to control the cellular microenvironment, such as cell-substrate and cell-cell interactions at the micro- and nanoscale, is important for advances in several fields such as medicine and immunology, biochemistry, biomaterials, and tissue engineering. In order to undergo fundamental biological processes, most mammalian cells must adhere to the underlying extracellular matrix (ECM), eliciting cell adhesion and migration processes that are critical to embryogenesis, angioge...

  4. Introduction to Tissular and Cellular Engineering

    Institute of Scientific and Technical Information of China (English)

    JF; STOLTZ

    2005-01-01

    Most human tissues do not regenerate spontaneously, which is why cellular therapies and tissular engineering are promising alternatives. The principle is simple: cells are sampled in a patient and introduced in the damaged tissue or in a tridimentional porous support and cultivated in a bioreactor in which the physico-chemical and mechanical parameters are controlled. Once the tissues (or the cells) are mature they may be implanted. In parallel, the development of biotherapies with stem cells is a field of ...

  5. Cellular Kinetics of Perivascular MSC Precursors

    Directory of Open Access Journals (Sweden)

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  6. Cellular arsenic transport pathways in mammals.

    Science.gov (United States)

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.

  7. A Real Space Cellular Automaton Laboratory

    Science.gov (United States)

    Rozier, O.; Narteau, C.

    2013-12-01

    Investigations in geomorphology may benefit from computer modelling approaches that rely entirely on self-organization principles. In the vast majority of numerical models, instead, points in space are characterised by a variety of physical variables (e.g. sediment transport rate, velocity, temperature) recalculated over time according to some predetermined set of laws. However, there is not always a satisfactory theoretical framework from which we can quantify the overall dynamics of the system. For these reasons, we prefer to concentrate on interaction patterns using a basic cellular automaton modelling framework, the Real Space Cellular Automaton Laboratory (ReSCAL), a powerful and versatile generator of 3D stochastic models. The objective of this software suite released under a GNU license is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems. The models in ReSCAL are essentially constructed from a small number of discrete states distributed on a cellular grid. An elementary cell is a real-space representation of the physical environment and pairs of nearest neighbour cells are called doublets. Each individual physical process is associated with a set of doublet transitions and characteristic transition rates. Using a modular approach, we can simulate and combine a wide range of physical, chemical and/or anthropological processes. Here, we present different ingredients of ReSCAL leading to applications in geomorphology: dune morphodynamics and landscape evolution. We also discuss how ReSCAL can be applied and developed across many disciplines in natural and human sciences.

  8. Literature Review on Dynamic Cellular Manufacturing System

    Science.gov (United States)

    Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.

    2014-06-01

    In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.

  9. Coordination of autophagy with other cellular activities

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Zheng-hong QIN

    2013-01-01

    The cell biological phenomenon of autophagy has attracted increasing attention in recent years,partly as a consequence of the discovery of key components of its cellular machinery.Autophagy plays a crucial role in a myriad of cellular functions.Autophagy has its own regulatory mechanisms,but this process is not isolated.Autophagy is coordinated with other cellular activities to maintain cell homeostasis.Autophagy is critical for a range of human physiological processes.The multifunctional roles of autophagy are explained by its ability to interact with several key components of various cell pathways.In this review,we focus on the coordination between autophagy and other physiological processes,including the ubiquitin-proteasome system (UPS),energy homeostasis,aging,programmed cell death,the immune responses,microbial invasion and inflammation.The insights gained from investigating autophagic networks should increase our understanding of their roles in human diseases and their potential as targets for therapeutic intervention.

  10. Dynamic Channel Allocation in Sectored Cellular Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is known that dynamic channel assignment(DCA) strategy outperforms the fixed channel assignment(FCA) strategy in omni-directional antenna cellular systems. One of the most important methods used in DCA was channel borrowing. But with the emergence of cell sectorization and spatial division multiple access(SDMA) which are used to increase the capacity of cellular systems, the channel assignment faces a series of new problems. In this paper, a dynamic channel allocation scheme based on sectored cellular systems is proposed. By introducing intra-cell channel borrowing (borrowing channels from neighboring sectors) and inter-cell channel borrowing (borrowing channels from neighboring cells) methods, previous DCA strategies, including compact pattern based channel borrowing(CPCB) and greedy based dynamic channel assignment(GDCA) schemes proposed by the author, are improved significantly. The computer simulation shows that either intra-cell borrowing scheme or inter-cell borrowing scheme is efficient enough to uniform and non-uniform traffic service distributions.

  11. Sub-cellular force microscopy in single normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  12. A receptor for infectious and cellular prion protein

    Directory of Open Access Journals (Sweden)

    V.R. Martins

    1999-07-01

    Full Text Available Prions are an unconventional form of infectious agents composed only of protein and involved in transmissible spongiform encephalopathies in humans and animals. The infectious particle is composed by PrPsc which is an isoform of a normal cellular glycosyl-phosphatidylinositol (GPI anchored protein, PrPc, of unknown function. The two proteins differ only in conformation, PrPc is composed of 40% a helix while PrPsc has 60% ß-sheet and 20% a helix structure. The infection mechanism is trigged by interaction of PrPsc with cellular prion protein causing conversion of the latter's conformation. Therefore, the infection spreads because new PrPsc molecules are generated exponentially from the normal PrPc. The accumulation of insoluble PrPsc is probably one of the events that lead to neuronal death. Conflicting data in the literature showed that PrPc internalization is mediated either by clathrin-coated pits or by caveolae-like membranous domains. However, both pathways seem to require a third protein (a receptor or a prion-binding protein either to make the connection between the GPI-anchored molecule to clathrin or to convert PrPc into PrPsc. We have recently characterized a 66-kDa membrane receptor which binds PrPc in vitro and in vivo and mediates the neurotoxicity of a human prion peptide. Therefore, the receptor should have a role in the pathogenesis of prion-related diseases and in the normal cellular process. Further work is necessary to clarify the events triggered by the association of PrPc/PrPsc with the receptor.

  13. Size effects of effective Young's modulus for periodic cellular materials

    Institute of Scientific and Technical Information of China (English)

    DAI GaoMing; ZHANG WeiHong

    2009-01-01

    With the wide demands of cellular materials applications in aerospace and civil engineering, research effort sacrificed for this type of materials attains nowadays a higher level than ever before. This paper is focused on the prediction methods of effective Young's modulus for periodical cellular materials. Based on comprehensive studies of the existing homogenization method (HM), the G-A meso-me-chanice method (G-A MMM) and the stretching energy method (SEM) that are unable to reflect the size effect, we propose the bending energy method (BEM) for the first time, and a comparative study of these four methods is further made to show the generality and the capability of capturing the size effect of the BEM method. Meanwhile, the underlying characteristics of each method and their relations are clarified. To do this, the detailed finite element computing and existing experimental results of hex-agonal honeycombs from the literature are adopted as the standard of comparison for the above four methods. Stretch and bending models of periodical cellular materials are taken into account, respec-tively for the comparison of stretch and flexural displacements resulting from the above methods. We conclude that the BEM has the strong ability of both predicting the effective Young's modulus and re- vealing the size effect. Such a method is also able to predict well the variations of structural displace-ments in terms of the cell size under stretching and bending loads including the non-monotonous variations for the hexagonal cell. On the contrary, other three methods can only predict the limited re- sults whenever the cell size tends to be infinitely small.

  14. Therapeutic intervention at cellular quality control systems in Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Silva, Diana F F; Martins-Branco, Diogo; Santos, Daniel; Pimentel, Diana F Gomes; Cardoso, Sandra M

    2011-01-01

    Cellular homeostasis relies on quality control systems so that damaged biologic structures are either repaired or degraded and entirely replaced by newly formed proteins or even organelles. The clearance of dysfunctional cellular structures in long-lived postmitotic cells, like neurons, is essential to eliminate, per example, defective mitochondria, lipofuscin-loaded lysosomes and oxidized proteins. Short-lived proteins are degraded mainly by proteases and proteasomes whether most long-lived proteins and all organelles are digested by autophagy in the lysosomes. Recently, it an interplay was established between the ubiquitin-proteasome system and macroautophagy, so that both degradative mechanisms compensate for each other. In this article we describe each of these clearance systems and their contribution to neuronal quality control. We will highlight some of the findings that provide evidence for the dysfunction of these systems in Alzheimer's and Parkinson's diseases. Ultimately, we provide an outline on potential therapeutic interventions based on the modulation of cellular degradative systems.

  15. A robust cellular associative memory for pattern recognitions using composite trigonometric chaotic neuron models

    Directory of Open Access Journals (Sweden)

    Wimol San-Um

    2015-12-01

    Full Text Available This paper presents a robust cellular associative memory for pattern recognitions using composite trigonometric chaotic neuron models. Robust chaotic neurons are designed through a scan of positive Lyapunov Exponent (LE bifurcation structures, which indicate the quantitative measure of chaoticity for one-dimensional discrete-time dynamical systems. The proposed chaotic neuron model is a composite of sine and cosine chaotic maps, which are independent from the output activation function. Dynamics behaviors are demonstrated through bifurcation diagrams and LE-based bifurcation structures. An application to associative memories of binary patterns in Cellular Neural Networks (CNN topology is demonstrated using a signum output activation function. Examples of English alphabets are stored using symmetric auto-associative matrix of n-binary patterns. Simulation results have demonstrated that the cellular neural network can quickly and effectively restore the distorted pattern to expected information.

  16. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  17. Cellular Functions Regulated by Phosphorylation of EGFR on Tyr845

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sato

    2013-05-01

    Full Text Available The Src gene product (Src and the epidermal growth factor receptor (EGFR are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845 in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase. A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.

  18. Quantum cellular automata and free quantum field theory

    Science.gov (United States)

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-02-01

    In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.

  19. Asgard archaea illuminate the origin of eukaryotic cellular complexity.

    Science.gov (United States)

    Zaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F; Saw, Jimmy H; Bäckström, Disa; Juzokaite, Lina; Vancaester, Emmelien; Seitz, Kiley W; Anantharaman, Karthik; Starnawski, Piotr; Kjeldsen, Kasper U; Stott, Matthew B; Nunoura, Takuro; Banfield, Jillian F; Schramm, Andreas; Baker, Brett J; Spang, Anja; Ettema, Thijs J G

    2017-01-19

    The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.

  20. [Pain and emotional dysregulation: Cellular memory due to pain].

    Science.gov (United States)

    Narita, Minoru; Watanabe, Moe; Hamada, Yusuke; Tamura, Hideki; Ikegami, Daigo; Kuzumaki, Naoko; Igarashi, Katsuhide

    2015-08-01

    Genetic factors are involved in determinants for the risk of psychiatric disorders, and neurological and neurodegenerative diseases. Chronic pain stimuli and intense pain have effects at a cellular and/or gene expression level, and will eventually induce "cellular memory due to pain", which means that tissue damage, even if only transient, can elicit epigenetically abnormal transcription/translation and post-translational modification in related cells depending on the degree or kind of injury or associated conditions. Such cell memory/transformation due to pain can cause an abnormality in a fundamental intracellular response, such as a change in the three-dimensional structure of DNA, transcription, or translation. On the other hand, pain is a multidimensional experience with sensory-discriminative and motivational-affective components. Recent human brain imaging studies have examined differences in activity in the nucleus accumbens between controls and patients with chronic pain, and have revealed that the nucleus accumbens plays a role in predicting the value of a noxious stimulus and its offset, and in the consequent changes in the motivational state. In this review, we provide a very brief overview of a comprehensive understanding of chronic pain associated with emotional dysregulation due to transcriptional regulation, epigenetic modification and miRNA regulation.

  1. Cellular Responses to the Metal-Binding Properties of Metformin

    Science.gov (United States)

    Logie, Lisa; Harthill, Jean; Patel, Kashyap; Bacon, Sandra; Hamilton, D. Lee; Macrae, Katherine; McDougall, Gordon; Wang, Huan-Huan; Xue, Lin; Jiang, Hua; Sakamoto, Kei; Prescott, Alan R.; Rena, Graham

    2012-01-01

    In recent decades, the antihyperglycemic biguanide metformin has been used extensively in the treatment of type 2 diabetes, despite continuing uncertainty over its direct target. In this article, using two independent approaches, we demonstrate that cellular actions of metformin are disrupted by interference with its metal-binding properties, which have been known for over a century but little studied by biologists. We demonstrate that copper sequestration opposes known actions of metformin not only on AMP-activated protein kinase (AMPK)-dependent signaling, but also on S6 protein phosphorylation. Biguanide/metal interactions are stabilized by extensive π-electron delocalization and by investigating analogs of metformin; we provide evidence that this intrinsic property enables biguanides to regulate AMPK, glucose production, gluconeogenic gene expression, mitochondrial respiration, and mitochondrial copper binding. In contrast, regulation of S6 phosphorylation is prevented only by direct modification of the metal-liganding groups of the biguanide structure, supporting recent data that AMPK and S6 phosphorylation are regulated independently by biguanides. Additional studies with pioglitazone suggest that mitochondrial copper is targeted by both of these clinically important drugs. Together, these results suggest that cellular effects of biguanides depend on their metal-binding properties. This link may illuminate a better understanding of the molecular mechanisms enabling antihyperglycemic drug action. PMID:22492524

  2. Essential dynamics of the cellular retinol-binding protein - Evidence for ligand-induced conformational changes

    NARCIS (Netherlands)

    van Aalten, D.M.F.; Findlay, J.B.C.; Amadei, A; Berendsen, H.J.C.

    1995-01-01

    The cellular retinol-binding protein (CRBP) is an intracellular retinol carrier protein belonging to a family of hydrophobic ligand-binding proteins, It transports retinol to specific locations in the cell where, for instance, it is esterified for storage, Recently solved crystallographic structures

  3. Interplay between product characteristics, oral physiology and texture perception of cellular brittle foods

    NARCIS (Netherlands)

    Vliet, van T.; Primo Martin, C.

    2011-01-01

    Hard solid foods encompass a large variety of dry products as well as products with high water content. Most of these foods have a cellular structure, which is generally characterized by connected fairly rigid cell walls, enclosing a fluid material that may be liquid-like (fruit and vegetables) or a

  4. The Effect of Cellular Architecture on the Ductility and Strength of Metal Foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; Onck, P. R.; Brechet, YJM; Embury, JD; Onck, PR

    2009-01-01

    A multiscale finite element model has been developed to study the fracture behaviour of two-dimensional random Voronoi structures. The influence of materials parameters and cellular architecture on the damage initiation and accumulation has been analyzed. The effect of the solid material's strain ha

  5. Mapping of cellular iron using hyperspectral fluorescence imaging in a cellular model of Parkinson's disease

    Science.gov (United States)

    Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min

    2013-05-01

    Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.

  6. Scalable asynchronous execution of cellular automata

    Science.gov (United States)

    Folino, Gianluigi; Giordano, Andrea; Mastroianni, Carlo

    2016-10-01

    The performance and scalability of cellular automata, when executed on parallel/distributed machines, are limited by the necessity of synchronizing all the nodes at each time step, i.e., a node can execute only after the execution of the previous step at all the other nodes. However, these synchronization requirements can be relaxed: a node can execute one step after synchronizing only with the adjacent nodes. In this fashion, different nodes can execute different time steps. This can be a notable advantageous in many novel and increasingly popular applications of cellular automata, such as smart city applications, simulation of natural phenomena, etc., in which the execution times can be different and variable, due to the heterogeneity of machines and/or data and/or executed functions. Indeed, a longer execution time at a node does not slow down the execution at all the other nodes but only at the neighboring nodes. This is particularly advantageous when the nodes that act as bottlenecks vary during the application execution. The goal of the paper is to analyze the benefits that can be achieved with the described asynchronous implementation of cellular automata, when compared to the classical all-to-all synchronization pattern. The performance and scalability have been evaluated through a Petri net model, as this model is very useful to represent the synchronization barrier among nodes. We examined the usual case in which the territory is partitioned into a number of regions, and the computation associated with a region is assigned to a computing node. We considered both the cases of mono-dimensional and two-dimensional partitioning. The results show that the advantage obtained through the asynchronous execution, when compared to the all-to-all synchronous approach is notable, and it can be as large as 90% in terms of speedup.

  7. Cellular regulation of the dopamine transporter

    DEFF Research Database (Denmark)

    Eriksen, Jacob

    2010-01-01

    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. DAT and its trafficking...... in heterologous cells and in cultured DA neurons. DAT has been shown to be regulated by the dopamine D2 receptor (D2R), the primary target foranti-psychotics, through a direct interaction. D2R is among other places expressed as an autoreceptor in DA neurons. Transient over-expression of DAT with D2R in HEK293...

  8. Cellular automata models for synchronized traffic flow

    CERN Document Server

    Jiang Rui

    2003-01-01

    This paper presents a new cellular automata model for describing synchronized traffic flow. The fundamental diagrams, the spacetime plots and the 1 min average data have been analysed in detail. It is shown that the model can describe the outflow from the jams, the light synchronized flow as well as heavy synchronized flow with average speed greater than approximately 24 km h sup - sup 1. As for the synchronized flow with speed lower than 24 km h sup - sup 1 , it is unstable and will evolve into the coexistence of jams, free flow and light synchronized flow. This is consistent with the empirical findings (Kerner B S 1998 Phys. Rev. Lett. 81 3797).

  9. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    Science.gov (United States)

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.

    2016-02-01

    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  10. Cellular trafficking of nicotinic acetylcholine receptors

    Institute of Scientific and Technical Information of China (English)

    Paul A ST JOHN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.

  11. Cellular and physical mechanisms of branching morphogenesis

    Science.gov (United States)

    Varner, Victor D.; Nelson, Celeste M.

    2014-01-01

    Branching morphogenesis is the developmental program that builds the ramified epithelial trees of various organs, including the airways of the lung, the collecting ducts of the kidney, and the ducts of the mammary and salivary glands. Even though the final geometries of epithelial trees are distinct, the molecular signaling pathways that control branching morphogenesis appear to be conserved across organs and species. However, despite this molecular homology, recent advances in cell lineage analysis and real-time imaging have uncovered surprising differences in the mechanisms that build these diverse tissues. Here, we review these studies and discuss the cellular and physical mechanisms that can contribute to branching morphogenesis. PMID:25005470

  12. Cellular automata modelling of hantarvirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Karim, Mohamad Faisal [School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: faisal@usm.my; Md Ismail, Ahmad Izani [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: izani@cs.usm.my; Ching, Hoe Bee [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: Bee_Ching_Janice_Hoe@dell.com

    2009-09-15

    Hantaviruses are a group of viruses which have been identified as being responsible for the outbreak of diseases such as the hantavirus pulmonary syndrome. In an effort to understand the characteristics and dynamics of hantavirus infection, mathematical models based on differential equations have been developed and widely studied. However, such models neglect the local characteristics of the spreading process and do not include variable susceptibility of individuals. In this paper, we develop an alternative approach based on cellular automata to analyze and study the spatiotemporal patterns of hantavirus infection.

  13. Microwave components for cellular portable radiotelephone

    Science.gov (United States)

    Muraguchi, Masahiro; Aikawa, Masayoshi

    1995-09-01

    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  14. Cellular automata modeling of pedestrian's crossing dynamics

    Institute of Scientific and Technical Information of China (English)

    张晋; 王慧; 李平

    2004-01-01

    Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian's crossing dynamics.A conception of "stop point" is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk.The model can be easily extended,is very efficient for simulation of pedestrian's crossing dynamics,can be integrated into traffic simulation software,and has been proved feasible by simulation experiments.

  15. Coarse-grained cellular automaton for traffic systems

    CERN Document Server

    Krawczyk, Malgorzata J

    2012-01-01

    A coarse-grained cellular automaton is proposed to simulate traffic systems. There, cells represent road sections. A cell can be in two states: jammed or passable. Numerical calculations are performed for a piece of square lattice with open boundary conditions, for the same piece with some cells removed and for a map of a small city. The results indicate the presence of a phase transition in the parameter space, between two macroscopic phases: passable and jammed. The results are supplemented by exact calculations of the stationary probabilities of states for the related Kripke structure constructed for the traffic system. There, the symmetry-based reduction of the state space allows to partially reduce the computational limitations of the numerical method.

  16. Phenomenological study of a cellular material behaviour under dynamic loadings

    Science.gov (United States)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  17. The sub-cellular localization of Sulfolobus DNA replication.

    Science.gov (United States)

    Gristwood, Tamzin; Duggin, Iain G; Wagner, Michaela; Albers, Sonja V; Bell, Stephen D

    2012-07-01

    Analyses of the DNA replication-associated proteins of hyperthermophilic archaea have yielded considerable insight into the structure and biochemical function of these evolutionarily conserved factors. However, little is known about the regulation and progression of DNA replication in the context of archaeal cells. In the current work, we describe the generation of strains of Sulfolobus solfataricus and Sulfolobus acidocaldarius that allow the incorporation of nucleoside analogues during DNA replication. We employ this technology, in conjunction with immunolocalization analyses of replisomes, to investigate the sub-cellular localization of nascent DNA and replisomes. Our data reveal a peripheral localization of replisomes in the cell. Furthermore, while the two replication forks emerging from any one of the three replication origins in the Sulfolobus chromosome remain in close proximity, the three origin loci are separated.

  18. Reverse Engineering Cellular Networks with Information Theoretic Methods

    Directory of Open Access Journals (Sweden)

    Julio R. Banga

    2013-05-01

    Full Text Available Building mathematical models of cellular networks lies at the core of systems biology. It involves, among other tasks, the reconstruction of the structure of interactions between molecular components, which is known as network inference or reverse engineering. Information theory can help in the goal of extracting as much information as possible from the available data. A large number of methods founded on these concepts have been proposed in the literature, not only in biology journals, but in a wide range of areas. Their critical comparison is difficult due to the different focuses and the adoption of different terminologies. Here we attempt to review some of the existing information theoretic methodologies for network inference, and clarify their differences. While some of these methods have achieved notable success, many challenges remain, among which we can mention dealing with incomplete measurements, noisy data, counterintuitive behaviour emerging from nonlinear relations or feedback loops, and computational burden of dealing with large data sets.

  19. The Toothpick Sequence and Other Sequences from Cellular Automata

    CERN Document Server

    Applegate, David; Sloane, N J A

    2010-01-01

    A two-dimensional arrangement of toothpicks is constructed by the following iterative procedure. At stage 1, place a single toothpick of length 1 on a square grid, aligned with the y-axis. At each subsequent stage, for every exposed toothpick end, place an orthogonal toothpick centered at that end. The resulting structure has a fractal-like appearance. We will analyze the toothpick sequence, which gives the total number of toothpicks after n steps. We also study several related sequences that arise from enumerating active cells in cellular automata. Some unusual recurrences appear: a typical example is that instead of the Fibonacci recurrence, which we may write as a(2+i) = a(i) + a(i+1), we set n = 2^k+i (0 = 0} (1+x^{2^k-1}+2x^{2^k}) and variations thereof.

  20. A Computation in a Cellular Automaton Collider Rule 110

    CERN Document Server

    Martinez, Genaro J; McIntosh, Harold V

    2016-01-01

    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.

  1. Cellular Uptake of Tile-Assembled DNA Nanotubes

    Directory of Open Access Journals (Sweden)

    Samet Kocabey

    2014-12-01

    Full Text Available DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP-expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.

  2. Diabetes mellitus: channeling care through cellular discovery.

    Science.gov (United States)

    Maiese, Kenneth; Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling

    2010-02-01

    Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.

  3. Cellular traditional Chinese medicine on photobiomodulation

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Cheng, Lei; Liu, Jiang; Wang, Shuang-Xi; Xu, Xiao-Yang; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Although yin-yang is one of the basic models of traditional Chinese medicine (TCM) for TCM objects such as whole body, five zangs or six fus, they are widely used to discuss cellular processes in papers of famous journals such as Cell, Nature, or Science. In this paper, the concept of the degree of difficulty (DD) of a process was introduced to redefine yin and yang and extend the TCM yin-yang model to the DD yin-yang model so that we have the DD yin-yang inter-transformation, the DD yin-yang antagonism, the DD yin-yang interdependence and the DD yin ping yang mi, which and photobiomodulation (PBM) on cells are supported by each other. It was shown that healthy cells are in the DD yin ping yang mi so that there is no PBM, and there is PBM on non-healthy cells until the cells become healthy so that PBM can be called a cellular rehabilitation. The DD yin-yang inter-transformation holds for our biological information model of PBM. The DD yin-yang antagonism and the DD yin-yang interdependence also hold for a series of experimental studies such as the stimulation of DNA synthesis in HeLa cells after simultaneous irradiation with narrow-band red light and a wide-band cold light, or consecutive irradiation with blue and red light.

  4. Alpha-synuclein is a cellular ferrireductase.

    Directory of Open Access Journals (Sweden)

    Paul Davies

    Full Text Available α-synuclein (αS is a cellular protein mostly known for the association of its aggregated forms with a variety of diseases that include Parkinson's disease and Dementia with Lewy Bodies. While the role of αS in disease is well documented there is currently no agreement on the physiological function of the normal isoform of the protein. Here we provide strong evidence that αS is a cellular ferrireductase, responsible for reducing iron (III to bio available iron (II. The recombinant form of the protein has a V(Max of 2.72 nmols/min/mg and K(m 23 µM. This activity is also evident in lysates from neuronal cell lines overexpressing αS. This activity is dependent on copper bound to αS as a cofactor and NADH as an electron donor. Overexpression of α-synuclein by cells significantly increases the percentage of iron (II in cells. The common disease mutations associated with increased susceptibility to PD show no [corrected] differences in activity or iron (II levels. This discovery may well provide new therapeutic targets for PD and Lewy body dementias.

  5. Cellular and molecular approaches to memory storage.

    Science.gov (United States)

    Laroche, S

    2000-01-01

    There has been nearly a century of interest in the idea that information is stored in the brain as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, considerable progress has been made in understanding the cellular and molecular mechanisms underlying synaptic plasticity and in identifying the neural systems which express it. In parallel, the hypothesis that the mechanisms underlying synaptic plasticity are activated during learning and serve learning and memory has gained much empirical support. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. These advances are reviewed below.

  6. Filovirus tropism: Cellular molecules for viral entry

    Directory of Open Access Journals (Sweden)

    Ayato eTakada

    2012-02-01

    Full Text Available In human and nonhuman primates, filoviruses (Ebola and Marburg viruses cause severe hemorrhagic fever.Recently, other animals such as pigs and some species of fruit bats have also been shown to be susceptible to these viruses. While having a preference for some cell types such as hepatocytes, endothelial cells, dendritic cells, monocytes, and macrophages, filoviruses are known to be pantropic in infection of primates. The envelope glycoprotein (GP is responsible for both receptor binding and fusion of the virus envelope with the host cell membrane. It has been demonstrated that filovirus GP interacts with multiple molecules for entry into host cells, whereas none of the cellular molecules so far identified as a receptor/coreceptor fully explains filovirus tissue tropism and host range. Available data suggest that the mucin-like region (MLR on GP plays an important role in attachment to the preferred target cells, whose infection is likely involved in filovirus pathogenesis, whereas the MLR is not essential for the fundamental function of the GP in viral entry into cells in vitro. Further studies elucidating the mechanisms of cellular entry of filoviruses may shed light on the development of strategies for prophylaxis and treatment of Ebola and Marburg hemorrhagic fevers.

  7. Engineering Cellular Photocomposite Materials Using Convective Assembly

    Directory of Open Access Journals (Sweden)

    Orlin D. Velev

    2013-05-01

    Full Text Available Fabricating industrial-scale photoreactive composite materials containing living cells, requires a deposition strategy that unifies colloid science and cell biology. Convective assembly can rapidly deposit suspended particles, including whole cells and waterborne latex polymer particles into thin (<10 µm thick, organized films with engineered adhesion, composition, thickness, and particle packing. These highly ordered composites can stabilize the diverse functions of photosynthetic cells for use as biophotoabsorbers, as artificial leaves for hydrogen or oxygen evolution, carbon dioxide assimilation, and add self-cleaning capabilities for releasing or digesting surface contaminants. This paper reviews the non-biological convective assembly literature, with an emphasis on how the method can be modified to deposit living cells starting from a batch process to its current state as a continuous process capable of fabricating larger multi-layer biocomposite coatings from diverse particle suspensions. Further development of this method will help solve the challenges of engineering multi-layered cellular photocomposite materials with high reactivity, stability, and robustness by clarifying how process, substrate, and particle parameters affect coating microstructure. We also describe how these methods can be used to selectively immobilize photosynthetic cells to create biomimetic leaves and compare these biocomposite coatings to other cellular encapsulation systems.

  8. Travel Mode Detection Exploiting Cellular Network Data

    Directory of Open Access Journals (Sweden)

    Kalatian Arash

    2016-01-01

    Full Text Available There has been growing interest in exploiting cellular network data for transportation planning purposes in recent years. In this paper, we utilize these data for determining mode of travel in the city of Shiraz, Iran. Cellular data records -including location updates in 5minute time intervals- of 300,000 users from the city of Shiraz has been collected for 40 hours in three consecutive days in a cooperation with the major telecommunications service provider of the country. Depending on the density of mobile BTS’s in different zones of the city, the user location can be located within an average of 200 meters. Considering data filtering and smoothing, data preparation and converting them to comprehensible traces is a large portion of the work. A novel approach to identify stay locations is proposed and implemented in this paper. Origin-Destination matrices are then created based on trips detected, which shows acceptable consistency with current O-D matrices. Finally, Travel times for all trips of a user is estimated as the main attribute for clustering. Trips between same origin and destination zones are combined together in a group. Using K-means algorithm, records within each group are the portioned in two or three clusters, based on their travel speeds. Each cluster represents a certain mode of travel; walking, public transportation or driving a private car.

  9. CUSTOMER SATISFACTION MEASUREMENT TOWARDS IDEA CELLULAR

    Directory of Open Access Journals (Sweden)

    Yousef Mehdipour

    2013-05-01

    Full Text Available Measuring customer satisfaction provides an indication of how successful the organization is at providing products and/or services to the marketplace. Customer satisfaction is a collective outcome of perception, evaluation, and psychological reactions to the consumption experience with a product or service. This researcharticle investigated the attitude of Idea cellular customers to Idea services. All the customers of Idea cellular in Hyderabad city (Andhra Pradesh constituted the population. The sample of the study is 2000 customers that randomly selected. A questionnaire was developed and validated through pilot testing and administered to thesample for the collection of data. The researcher personally visited respondents, thus 100% data were collected.The collected data were tabulated and analyzed by SPSS. Results showed that majority of the respondents of Idea prefer post-paid service than to pre paid and largest segment of respondents are of idea then comes Cell one, Airtel and Vodafone. this study showed that most of the respondents need improvement in service. Majority of respondents gave an excellent rate for “Idea Cellular” services.

  10. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  11. Rhabdomyosarcoma: Advances in Molecular and Cellular Biology

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2015-01-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue malignancy in childhood and adolescence. The two major histological subtypes of RMS are alveolar RMS, driven by the fusion protein PAX3-FKHR or PAX7-FKHR, and embryonic RMS, which is usually genetically heterogeneous. The prognosis of RMS has improved in the past several decades due to multidisciplinary care. However, in recent years, the treatment of patients with metastatic or refractory RMS has reached a plateau. Thus, to improve the survival rate of RMS patients and their overall well-being, further understanding of the molecular and cellular biology of RMS and identification of novel therapeutic targets are imperative. In this review, we describe the most recent discoveries in the molecular and cellular biology of RMS, including alterations in oncogenic pathways, miRNA (miR, in vivo models, stem cells, and important signal transduction cascades implicated in the development and progression of RMS. Furthermore, we discuss novel potential targeted therapies that may improve the current treatment of RMS.

  12. Cellular receptors for plasminogen activators recent advances.

    Science.gov (United States)

    Ellis, V

    1997-10-01

    The generation of the broad-specificity protease plasmin by the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) is implicated in a variety of pathophysiological processes, including vascular fibrin dissolution, extracellular matrix degradation and remodeling, and cell migration. A mechanism for the regulation of plasmin generation is through binding of the plasminogen activators to specific cellular receptors: uPA to the glycolipid-anchored membrane protein urokinase-type plasminogen activator receptor (uPAR) and tPA to a number of putative binding sites. The uPA-uPAR complex can interact with a variety of ligands, including plasminogen, vitronectin, and integrins, indicating a multifunctional role for uPAR, regulating not only efficient and spatially restricted plasmin generation but also having the potential to modulate cell adhesion and signal transduction. The cellular binding of tPA, although less well characterized, also has the capacity to regulate plasmin generation and to play a significant role in vessel-wall biology. (Trends Cardiovasc Med 1997;7:227-234). © 1997, Elsevier Science Inc.

  13. Dynamics of active cellular response under stress

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  14. Cellular Auxin Homeostasis:Gatekeeping Is Housekeeping

    Institute of Scientific and Technical Information of China (English)

    Michel Ruiz Rosquete; Elke Barbez; Jürgen Kleine-Vehn

    2012-01-01

    The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle.The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport.Auxin metabolism and transport are both crucial for plant development;however,it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs.In this review,we provide a glance at very diverse topics of auxin biology,such as biosynthesis,conjugation,oxidation,and transport of auxin.This broad,but certainly superficial,overview highlights the mutual importance of auxin metabolism and transport.Moreover,it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis.Even though these processes have been so far only separately studied,we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport.Besides the integrative power of the global hormone signaling,we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.

  15. Cellular contractility requires ubiquitin mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Yuval Cinnamon

    Full Text Available BACKGROUND: Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA remains, a major missing link in understanding contractility. PRINCIPAL FINDINGS: We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation. CONCLUSIONS: Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis, either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING ubiquitin ligase and is required for cellular contractions.

  16. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  17. Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics.

    Science.gov (United States)

    Dahl, Kris Noel; Kalinowski, Agnieszka; Pekkan, Kerem

    2010-04-01

    Endothelial cells are stimulated by shear stress throughout the vasculature and respond with changes in gene expression and by morphological reorganization. Mechanical sensors of the cell are varied and include cell surface sensors that activate intracellular chemical signaling pathways. Here, possible mechanical sensors of the cell including reorganization of the cytoskeleton and the nucleus are discussed in relation to shear flow. A mutation in the nuclear structural protein lamin A, related to Hutchinson-Gilford progeria syndrome, is reviewed specifically as the mutation results in altered nuclear structure and stiffer nuclei; animal models also suggest significantly altered vascular structure. Nuclear and cellular deformation of endothelial cells in response to shear stress provides partial understanding of possible mechanical regulation in the microcirculation. Increasing sophistication of fluid flow simulations inside the vessel is also an emerging area relevant to the microcirculation as visualization in situ is difficult. This integrated approach to study--including medicine, molecular and cell biology, biophysics and engineering--provides a unique understanding of multi-scale interactions in the microcirculation.

  18. Improved cellular uptake of functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Antonelli, A.; Serafini, S.; Menotta, M.; Sfara, C.; Pierigé, F.; Giorgi, L.; Ambrosi, G.; Rossi, L.; Magnani, M.

    2010-10-01

    Single-walled carbon nanotubes (SWNTs) due to their unique structural and physicochemical properties, have been proposed as delivery systems for a variety of diagnostic and therapeutic agents. However, SWNTs have proven difficult to solubilize in aqueous solution, limiting their use in biological applications. In an attempt to improve SWNTs' solubility, biocompatibility, and to increase cell penetration we have thoroughly investigated the construction of carbon scaffolds coated with aliphatic carbon chains and phospholipids to obtain micelle-like structures. At first, oxidized SWNTs (2370 ± 30 nmol mg - 1 of SWNTs) were covalently coupled with an alcoholic chain (stearyl alcohol, C18H37OH; 816 nmol mg - 1 of SWNTs). Subsequently, SWNTs-COOC18H37 derivatives were coated with phosphatidylethanolamine (PE) or -serine (PS) phospholipids obtaining micelle-like structures. We found that cellular uptake of these constructs by phagocytic cells occurs via an endocytotic mechanism for constructs larger than 400 nm while occurs via diffusion through the cell membrane for constructs up to 400 nm. The material that enters the cell by phagocytosis is actively internalized by macrophages and localizes inside endocytotic vesicles. In contrast the material that enters the cells by diffusion is found in the cell cytosol. In conclusion, we have realized new biomimetic constructs based on alkylated SWNTs coated with phospholipids that are efficiently internalized by different cell types only if their size is lower than 400 nm. These constructs are not toxic to the cells and could now be explored as delivery systems for non-permeant cargoes.

  19. Benchmark study between FIDAP and a cellular automata code

    Science.gov (United States)

    Akau, R. L.; Stockman, H. W.

    A fluid flow benchmark exercise was conducted to compare results between a cellular automata code and FIDAP. Cellular automata codes are free from gridding constraints, and are generally used to model slow (Reynolds number approximately 1) flows around complex solid obstacles. However, the accuracy of cellular automata codes at higher Reynolds numbers, where inertial terms are significant, is not well-documented. In order to validate the cellular automata code, two fluids problems were investigated. For both problems, flow was assumed to be laminar, two-dimensional, isothermal, incompressible and periodic. Results showed that the cellular automata code simulated the overall behavior of the flow field.

  20. Maximum entropy, fractal dimension and lacunarity in quantification of cellular rejection in myocardial biopsy of patients submitted to heart transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Neves, L A [Universidade Estadual Paulista, IGCE, DEMAC, Rio Claro, SP (Brazil); Oliveira, F R; Peres, F A [Faculdade de Tecnologia de Sao Jose do Rio Preto, Sao Jose do Rio Preto, SP (Brazil); Moreira, R D; Moriel, A R; De Godoy, M F [Faculdade de Medicina de Sao Jose do Rio Preto, FAMERP, Sao Jose do Rio Preto, SP (Brazil); Murta Junior, L O, E-mail: laneves@rc.unesp.br [Universidade de Sao Paulo, FFCLRP, Depto Computacao e Matematica, Ribeirao Preto (Brazil)

    2011-03-01

    This paper presents a method for the quantification of cellular rejection in endomyocardial biopsies of patients submitted to heart transplant. The model is based on automatic multilevel thresholding, which employs histogram quantification techniques, histogram slope percentage analysis and the calculation of maximum entropy. The structures were quantified with the aid of the multi-scale fractal dimension and lacunarity for the identification of behavior patterns in myocardial cellular rejection in order to determine the most adequate treatment for each case.

  1. Integrated cellular network of transcription regulations and protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2010-03-01

    Full Text Available Abstract Background With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. Results In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. Conclusions We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology.

  2. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P R Anil [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Varma, H K [Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Kumary, T V [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India)

    2007-03-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  3. On the Influence of Selection Operators on Performances in Cellular Genetic Algorithms

    CERN Document Server

    Simoncini, David; Verel, Sébastien; Clergue, Manuel

    2008-01-01

    In this paper, we study the influence of the selective pressure on the performance of cellular genetic algorithms. Cellular genetic algorithms are genetic algorithms where the population is embedded on a toroidal grid. This structure makes the propagation of the best so far individual slow down, and allows to keep in the population potentially good solutions. We present two selective pressure reducing strategies in order to slow down even more the best solution propagation. We experiment these strategies on a hard optimization problem, the quadratic assignment problem, and we show that there is a value for of the control parameter for both which gives the best performance. This optimal value does not find explanation on only the selective pressure, measured either by take over time and diversity evolution. This study makes us conclude that we need other tools than the sole selective pressure measures to explain the performances of cellular genetic algorithms.

  4. Coverage probability of cellular networks using interference alignment under imperfect CSI

    Directory of Open Access Journals (Sweden)

    Raoul F. Guiazon

    2016-11-01

    Full Text Available Interference alignment (IA is well understood to approach the capacity of interference channels, and believed to be crucial in cellular networks in which the ability to control and exploit interference is key. However, the achievable performance of IA in cellular networks depends on the quality of channel state information (CSI and how effective IA is in practical settings is not known. This paper studies the use of IA to mitigate inter-cell interference of cellular networks under imperfect CSI conditions. Our analysis is based on stochastic geometry where the structure of the base station (BS locations is considered by a Poisson point process (PPP. Our main contribution is the coverage probability of the network and simulation results confirm the accuracy.

  5. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering.

    Science.gov (United States)

    Anil Kumar, P R; Varma, H K; Kumary, T V

    2007-03-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  6. Laboratory testing of a building envelope segment based on cellular concrete

    Science.gov (United States)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2016-07-01

    Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.

  7. The cellular composition of the human immune system is shaped by age and cohabitation.

    Science.gov (United States)

    Carr, Edward J; Dooley, James; Garcia-Perez, Josselyn E; Lagou, Vasiliki; Lee, James C; Wouters, Carine; Meyts, Isabelle; Goris, An; Boeckxstaens, Guy; Linterman, Michelle A; Liston, Adrian

    2016-04-01

    Detailed population-level description of the human immune system has recently become achievable. We used a 'systems-level' approach to establish a resource of cellular immune profiles of 670 healthy individuals. We report a high level of interindividual variation, with low longitudinal variation, at the level of cellular subset composition of the immune system. Despite the profound effects of antigen exposure on individual antigen-specific clones, the cellular subset structure proved highly elastic, with transient vaccination-induced changes followed by a return to the individual's unique baseline. Notably, the largest influence on immunological variation identified was cohabitation, with 50% less immunological variation between individuals who share an environment (as parents) than between people in the wider population. These results identify local environmental conditions as a key factor in shaping the human immune system.

  8. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    Science.gov (United States)

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying

  9. Quality of cellular attachment to various root-end filling materials

    Directory of Open Access Journals (Sweden)

    Ahmad S. AL-Hiyasat

    2012-02-01

    Full Text Available OBJECTIVES: This study investigated cellular attachment to 6 root-end filling materials as a measure of the biocompatibility of the materials. MATERIAL AND METHODS: Class I retrograde cavities were prepared in root slices and these cavities were filled with the test materials, and incubated with Balb/C 3T3 fibroblasts for 24 h. Root slices with the cavities left empty served as the controls. The root slices were then processed for scanning electron microscopy, and were viewed to assess the quality of cellular attachment by observing the shape of cells, spread, and membrane outline. RESULTS: The best cellular attachment was observed at MTA and Geristore surfaces: cells exhibited characteristic elongated fibroblastic morphology, with projections of lamellipodia, filopodia, blebs, and microvilli from their surfaces, reflecting good attachment to the material. Fibroblasts attached poorly to the surfaces of IRM, Super EBA, KetacFil and Retroplast. Furthermore, the cells did not attach well to the tooth structure next to IRM and Super EBA. CONCLUSIONS: The present study demonstrated a variation in cellular attachment to different root-end filling materials with the best cellular attachment to the surfaces of MTA and Geristore. IRM and Super EBA, Ketac Fil and Retroplast rendered poor attachment.

  10. Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1

    Institute of Scientific and Technical Information of China (English)

    Lin Bai; Xiaoli Deng; Juanjuan Li; Miao Wang; Qian Li; Wei An; Deli A; Yu-Sheng Cong

    2011-01-01

    Polymerase I and transcript release factor (PTRF, also known as Cavin-1) is an essential component in the biogenesis and function of caveolae. Here, we show that PTRF expression is increased in senescent human fibroblasts.Importantly, overexpression of PTRF induced features characteristic of cellular senescence, whereas reduced PTRF expression extended the cellular replicative lifespan. Interestingly, we found that PTRF localized primarily to the nuclei of young and quiescent WI-38 human fibroblasts, but translocated to the cytosol and plasma membrane during cellular senescence. Furthermore, electron microscopic analysis demonstrated an increased number of caveolar structures in senescent and PTRF-transfected WI-38 cells. Our data suggest that the role of PTRF in cellular senes cence is dependent on its targeting to caveolae and its interaction with caveolin-l, which appeared to be regulated by the phosphorylation of PTRF. Taken together, our findings identify PTRF as a novel regulator of cellular senescence that acts through the p53/p21 and caveolar pathways.

  11. Complex cellular responses to reactive oxygen species.

    Science.gov (United States)

    Temple, Mark D; Perrone, Gabriel G; Dawes, Ian W

    2005-06-01

    Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H(2)O(2). This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.

  12. Knowledge discovery for geographical cellular automata

    Institute of Scientific and Technical Information of China (English)

    LI Xia; Anthony Gar-On Yeh

    2005-01-01

    This paper proposes a new method for geographical simulation by applying data mining techniques to cellular automata. CA has strong capabilities in simulating complex systems. The core of CA is how to define transition rules. There are no good methods for defining these transition rules. They are usually defined by using heuristic methods and thus subject to uncertainties. Mathematical equations are used to represent transition rules implicitly and have limitations in capturing complex relationships. This paper demonstrates that the explicit transition rules of CA can be automatically reconstructed through the rule induction procedure of data mining. The proposed method can reduce the influences of individual knowledge and preferences in defining transition rules and generate more reliable simulation results. It can efficiently discover knowledge from a vast volume of spatial data.

  13. Exactly solvable cellular automaton traffic jam model.

    Science.gov (United States)

    Kearney, Michael J

    2006-12-01

    A detailed study is undertaken of the v{max}=1 limit of the cellular automaton traffic model proposed by Nagel and Paczuski [Phys. Rev. E 51, 2909 (1995)]. The model allows one to analyze the behavior of a traffic jam initiated in an otherwise freely flowing stream of traffic. By mapping onto a discrete-time queueing system, itself related to various problems encountered in lattice combinatorics, exact results are presented in relation to the jam lifetime, the maximum jam length, and the jam mass (the space-time cluster size or integrated vehicle waiting time), both in terms of the critical and the off-critical behavior. This sets existing scaling results in their natural context and also provides several other interesting results in addition.

  14. Simulating Complex Systems by Cellular Automata

    CERN Document Server

    Kroc, Jiri; Hoekstra, Alfons G

    2010-01-01

    Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on th...

  15. Inhibitors of the Cellular Trafficking of Ricin

    Directory of Open Access Journals (Sweden)

    Daniel Gillet

    2012-01-01

    Full Text Available Throughout the last decade, efforts to identify and develop effective inhibitors of the ricin toxin have focused on targeting its N-glycosidase activity. Alternatively, molecules disrupting intracellular trafficking have been shown to block ricin toxicity. Several research teams have recently developed high-throughput phenotypic screens for small molecules acting on the intracellular targets required for entry of ricin into cells. These screens have identified inhibitory compounds that can protect cells, and sometimes even animals against ricin. We review these newly discovered cellular inhibitors of ricin intoxication, discuss the advantages and drawbacks of chemical-genetics approaches, and address the issues to be resolved so that the therapeutic development of these small-molecule compounds can progress.

  16. Simulation of earthquakes with cellular automata

    Directory of Open Access Journals (Sweden)

    P. G. Akishin

    1998-01-01

    Full Text Available The relation between cellular automata (CA models of earthquakes and the Burridge–Knopoff (BK model is studied. It is shown that the CA proposed by P. Bak and C. Tang,although they have rather realistic power spectra, do not correspond to the BK model. We present a modification of the CA which establishes the correspondence with the BK model.An analytical method of studying the evolution of the BK-like CA is proposed. By this method a functional quadratic in stress release, which can be regarded as an analog of the event energy, is constructed. The distribution of seismic events with respect to this “energy” shows rather realistic behavior, even in two dimensions. Special attention is paid to two-dimensional automata; the physical restrictions on compression and shear stiffnesses are imposed.

  17. Partitioned quantum cellular automata are intrinsically universal

    CERN Document Server

    Arrighi, Pablo

    2010-01-01

    There have been several non-axiomatic approaches taken to define Quantum Cellular Automata (QCA). Partitioned QCA (PQCA) are the most canonical of these non-axiomatic definitions. In this work we show that any QCA can be put into the form of a PQCA. Our construction reconciles all the non-axiomatic definitions of QCA, showing that they can all simulate one another, and hence that they are all equivalent to the axiomatic definition. This is achieved by defining generalised n-dimensional intrinsic simulation, which brings the computer science based concepts of simulation and universality closer to theoretical physics. The result is not only an important simplification of the QCA model, it also plays a key role in the identification of a minimal n-dimensional intrinsically universal QCA.

  18. Particles and Patterns in Cellular Automata

    Energy Technology Data Exchange (ETDEWEB)

    Jen, E.; Das, R.; Beasley, C.E.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Our objective has been to develop tools for studying particle interactions in a class of dynamical systems characterized by discreteness, determinism, local interaction, and an inherently parallel form of evolution. These systems can be described by cellular automata (CA) and the behavior we studied has improved our understanding of the nature of patterns generated by CAs, their ability to perform global computations, and their relationship to continuous dynamical systems. We have also developed a rule-table mathematics that enables one to custom-design CA rule tables to generate patterns of specified types, or to perform specified computational tasks.

  19. Protein S-palmitoylation in cellular differentiation

    Science.gov (United States)

    Zhang, Mingzi M.

    2017-01-01

    Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein–protein and membrane–protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related enzymes that are associated with cellular differentiation and/or tissue development in yeasts, protozoa, mammals, plants and other model eukaryotes. PMID:28202682

  20. Mathematical analysis of complex cellular activity

    CERN Document Server

    Bertram, Richard; Teka, Wondimu; Vo, Theodore; Wechselberger, Martin; Kirk, Vivien; Sneyd, James

    2015-01-01

    This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Burst...