WorldWideScience

Sample records for cellular stress responses

  1. Sumo and the cellular stress response

    OpenAIRE

    Enserink, Jorrit M.

    2015-01-01

    The ubiquitin family member Sumo has important functions in many cellular processes including DNA repair, transcription and cell division. Numerous studies have shown that Sumo is essential for maintaining cell homeostasis when the cell encounters endogenous or environmental stress, such as osmotic stress, hypoxia, heat shock, genotoxic stress, and nutrient stress. Regulation of transcription is a key component of the Sumo stress response, and multiple mechanisms have been described by which ...

  2. Dynamics of active cellular response under stress

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  3. Cellular stress responses for monitoring and modulating ageing

    DEFF Research Database (Denmark)

    Demirovic, Dino; Schnebert, Sylvianne; Nizard, Carine;

    2013-01-01

    protectors and stimulators of homeodynamics, and create a kind of “gold-standard” for monitoring the efficacy of other potential antiageing and pro-survival natural and synthetic compounds. We have so far standardised an effective method for detecting all seven stress response pathways, by several......Cellular stress response is a crucial factor in maintaining efficient homeodynamics for survival, health and longevity. Both the immediate and delayed responses to external and internal stressors effectively determine the molecular biochemical and physiological stability in a dynamic...... and interactive manner. There are three main aspects of stress responses: (i) immediate stress response involving extra- and intra-cellular signaling during the period of disturbance and exposure to the stressors; (ii) delayed stress response involving sensors and modulators in the presence of stressors or after...

  4. Dynamical theory of active cellular response to external stress.

    Science.gov (United States)

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  5. Dynamical theory of active cellular response to external stress

    Science.gov (United States)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  6. Dynamic modeling of cellular response to DNA damage based on p53 stress response networks

    Institute of Scientific and Technical Information of China (English)

    Jinpeng Qi; Yongsheng Ding; Shihuang Shao

    2009-01-01

    Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MDM2 feedback loop, as well as toxins elimination triggered by p53 stress response networks. Especially, the model can predict the plausible outcomes of cellular response under different IR dose regimes.

  7. P53 family and cellular stress responses in cancer

    Directory of Open Access Journals (Sweden)

    Johanna ePflaum

    2014-10-01

    Full Text Available p53 is an important tumor suppressor gene, which is stimulated by cellular stress like ionizing radiation, hypoxia, carcinogens and oxidative stress. Upon activation p53 leads to cell cycle arrest and promotes DNA repair or induces apoptosis via several pathways. p63 and p73 are structural homologs of p53 that can act similarly to the protein but also hold functions distinct from p53. Today more than forty different isoforms of the p53 family members are known. They result from transcription via different promoters and alternative splicing. Some isoforms have carcinogenic properties and mediate resistance to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prognostic information in several malignant tumors. Furthermore, the p53 family constitutes a potential target for cancer therapy. Small molecules (e.g. Nutlins, RITA, PRIMA-1, and MIRA-1 among others have been objects of intense research interest in recent years. They restore pro-apoptotic wild-type p53 function and were shown to break chemotherapeutic resistance. Due to p53 family interactions small molecules also influence p63 and p73 activity. Thus, the members of the p53 family are key players in the cellular stress response in cancer and are expected to grow in importance as therapeutic targets.

  8. The cellular response to curvature-induced stress

    Science.gov (United States)

    Biton, Y. Y.; Safran, S. A.

    2009-12-01

    We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.

  9. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

    DEFF Research Database (Denmark)

    Villumsen, Bine H; Danielsen, Jannie R; Povlsen, Lou;

    2013-01-01

    Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock...

  10. A signature microRNA expression profile for the cellular response to thermal stress

    Science.gov (United States)

    Wilmink, Gerald J.; Roth, Caleb C.; Ketchum, Norma; Ibey, Bennett L.; Waterworth, Angela; Suarez, Maria; Roach, William P.

    2009-02-01

    Recently, an extensive layer of intra-cellular signals was discovered that was previously undetected by genetic radar. It is now known that this layer consists primarily of a class of short noncoding RNA species that are referred to as microRNAs (miRNAs). MiRNAs regulate protein synthesis at the post-transcriptional level, and studies have shown that they are involved in many fundamental cellular processes. In this study, we hypothesized that miRNAs may be involved in cellular stress response mechanisms, and that cells exposed to thermal stress may exhibit a signature miRNA expression profile indicative of their functional involvement in such mechanisms. To test our hypothesis, human dermal fibroblasts were exposed to an established hyperthermic protocol, and the ensuing miRNA expression levels were evaluated 4 hr post-exposure using microRNA microarray gene chips. The microarray data shows that 123 miRNAs were differentially expressed in cells exposed to thermal stress. We collectively refer to these miRNAs as thermalregulated microRNAs (TRMs). Since miRNA research is in its infancy, it is interesting to note that only 27 of the 123 TRMs are currently annotated in the Sanger miRNA registry. Prior to publication, we plan to submit the remaining novel 96 miRNA gene sequences for proper naming. Computational and thermodynamic modeling algorithms were employed to identify putative mRNA targets for the TRMs, and these studies predict that TRMs regulate the mRNA expression of various proteins that are involved in the cellular stress response. Future empirical studies will be conducted to validate these theoretical predictions, and to further examine the specific role that TRMs play in the cellular stress response.

  11. The CK1 family: contribution to cellular stress response and its role in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Uwe eKnippschild

    2014-05-01

    Full Text Available Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key regulatory proteins and signal integration molecules and is tightly connected to the regulation of β-catenin, p53- and MDM2-specific functions and degradation. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, effort has enormously increased (i to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review we summarize the current knowledge regarding the regulation, functions, and interactions of CK1 family members with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.

  12. [Regulatory role of mechanical stress response in cellular function: development of new drugs and tissue engineering].

    Science.gov (United States)

    Momose, Kazutaka; Matsuda, Takehisa; Oike, Masahiro; Obara, Kazuo; Laher, Ismail; Sugiura, Seiryo; Ohata, Hisayuki; Nakayama, Koichi

    2003-02-01

    The investigation of mechanotransduction in the cardiovascular system is essentially important for elucidating the cellular and molecular mechanisms involved in not only the maintenance of hemodynamic homeostasis but also etiology of cardiovascular diseases including arteriosclerosis. The present review summarizes the latest research performed by six academic groups, and presented at the 75th Annual Meeting of the Japanese Pharmacological Society. Technology of cellular biomechanics is also required for research and clinical application of a vascular hybrid tissue responding to pulsatile stress. 1) Vascular tissue engineering: Design of pulsatile stress-responsive scaffold and in vivo vascular wall reconstruction (T. Matsuda); 2) Cellular mechanisms of mechanosensitive calcium transients in vascular endothelium (M. Oike et al.); 3) Cross-talk of stimulation with fluid flow and lysophosphatidic acid in vascular endothelial cells (K. Momose et al.); 4) Mechanotransduction of vascular smooth muscles: Rate-dependent stretch-induced protein phosphorylations and contractile activation (K. Obara et al.); 5) Lipid mediators in vascular myogenic tone (I. Laher et al.); and 6) Caldiomyocyte regulates its mechanical output in response to mechanical load (S. Sugiura et al.).

  13. Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease.

    Science.gov (United States)

    Calabrese, Vittorio; Sultana, Rukhsana; Scapagnini, Giovanni; Guagliano, Eleonora; Sapienza, Maria; Bella, Rita; Kanski, Jaroslaw; Pennisi, Giovanni; Mancuso, Cesare; Stella, Anna Maria Giuffrida; Butterfield, D A

    2006-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with cognitive and memory decline, personality changes, and synapse loss. Increasing evidence indicates that factors such as oxidative and nitrosative stress, glutathione depletion, and impaired protein metabolism can interact in a vicious cycle, which is central to AD pathogenesis. In the present study, we demonstrate that brains of AD patients undergo oxidative changes classically associated with a strong induction of the so-called vitagenes, including the heat shock proteins (HSPs) heme oxygenase-1 (HO-1), HSP60, and HSP72, as well as thioredoxin reductase (TRXr). In inferior parietal brain of AD patients, a significant increase in the expression of HO-1 and TRXr was observed, whereas HO-2 expression was decreased, compared with controls. TRHr was not increased in AD cerebellum. Plasma GSH was decreased in AD patients, compared with the control group, and was associated with a significant increase in oxidative stress markers (i.e., GSSG, hydroxynonenal, protein carbonyl content, and nitrotyrosine). In AD lymphocytes, we observed an increased expression of inducible nitric oxide synthase, HO-1, Hsp72, HSP60, and TRXr. Our data support a role for nitrative stress in the pathogenesis of AD and indicate that the stress-responsive genes, such as HO-1 and TRXr, may represent important targets for novel cytoprotective strategies.

  14. Unraveling the cellular response to oxidative stress in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Hansen, Henning Gram

    , disulfide bonds are predominantly generated by the two isoforms of the ER oxidoreductin-1 (Ero1) family: Ero1α and Ero1β. Both enzymes oxidize the active-site cysteines in protein disulfide isomerases (PDIs), which in turn introduce disulfide bonds into newly synthesized proteins. Ero1 is re......-oxidized by molecular oxygen and this step generates hydrogen peroxide: a reactive oxygen species. Intramolecular disulfide bonds tightly regulate the oxidase activity of Ero1α. Whereas the regulatory mechanisms that regulate Ero1α activity are well understood, the overall cellular response to oxidative stress...

  15. Thioredoxin-dependent Redox Regulation of Cellular Signaling and Stress Response through Reversible Oxidation of Methionines

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Diana J.; Squier, Thomas C.

    2011-06-01

    Generation of reactive oxygen species (ROS) is a common feature of many forms of stress to which plants are exposed. Successful adaptation to changing environmental conditions requires sensitive sensors of ROS such as protein-bound methionines that are converted to their corresponding methionine sulfoxides, which in turn can influence cellular signaling pathways. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress response in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the sensitivity of individual methionines within plant and animal calmodulin to ROS, the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes.

  16. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Marcella Reale

    Full Text Available Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD, have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-, which were countered by compensatory changes in antioxidant catylase (CAT activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a

  17. Novel metastasis-related gene CIM functions in the regulation of multiple cellular stress-response pathways.

    Science.gov (United States)

    Yanagisawa, Kiyoshi; Konishi, Hiroyuki; Arima, Chinatsu; Tomida, Shuta; Takeuchi, Toshiyuki; Shimada, Yukako; Yatabe, Yasushi; Mitsudomi, Tetsuya; Osada, Hirotaka; Takahashi, Takashi

    2010-12-01

    Various stresses of the tumor microenvironment produced by insufficient nutrients, pH, and oxygen can contribute to the generation of altered metabolic and proliferative states that promote the survival of metastatic cells. Among many cellular stress-response pathways activated under such conditions are the hypoxia-inducible factor (HIF) pathway and the unfolded protein response (UPR), which is elicited as a response to endoplasmic reticulum (ER) stress. In this study, we report the identification of a novel cancer invasion and metastasis-related gene (hereafter referred to as CIM, also called ERLEC1), which influences both of these stress-response pathways to promote metastasis. CIM was identified by comparing the gene expression profile of a highly metastatic human lung cancer cell line with its weakly metastatic parental clone. We showed that CIM is critical for metastatic properties in this system. Proteomic approaches combined with bioinformatic analyses revealed that CIM has multifaceted roles in controlling the response to hypoxia and ER stress. Specifically, CIM sequestered OS-9 from the HIF-1α complex and PHD2, permitting HIF-1α accumulation by preventing its degradation. Ectopic expression of CIM in lung cancer cells increased their tolerance to hypoxia. CIM also modulated UPR through interaction with the key ER stress protein BiP, influencing cell proliferation under ER stress conditions. Our findings shed light on how tolerance to multiple cellular stresses at a metastatic site can be evoked by an integrated mechanism involving CIM, which can function to coordinate those responses in a manner that promotes metastatic cell survival. PMID:21118962

  18. MECANISMOS CELULARES EN RESPUESTA AL ESTRÉS:: SIRTUINAS Cellular mechanisms in response to stress: sirtuin

    Directory of Open Access Journals (Sweden)

    Nancy Paola Echeverri-Ruíz

    2010-07-01

    Full Text Available Desde hace algún tiempo se conoce el papel de la restricción calórica sobre la longevidad y la prevención de enfermedades crónicas, pero hasta hace poco los mecanismos celulares involucrados comienzan a ser elucidados. El estrés celular se podría definir como el estado en el que la célula no presenta las condiciones óptimas de supervivencia, siendo el oxidativo un tipo de estrés en el que se generan radicales libres nocivos para las estructuras celulares. La restricción calórica podría incrementar la resistencia celular a diferentes formas de estrés. Las sirtuinas, proteínas deacetilasas de histonas tipo III, están involucradas en la relación entre balance energético y transcripción génica, permitiendo que la célula responda a la restricción calórica y sobreviva a situaciones de estrés oxidativo. En esta relación las sirtuinas regulan genes de la familia FOXO, cMYC, hTERT, p53, entre otros. La activación o silenciamiento de estos genes es importante en los procesos de apoptosis, reparación y muerte celular.The role of caloric restriction on longevity and prevention of chronic diseases has been known for some time; recently, cellular mechanisms involved are beginning to be elucidated. Cellular stress could be defined as the state in which the cell does not present optimal survival conditions; oxidative stress is a type of stress in which free radicals harmful cell structures. Caloric restriction might increase cellular resistance to various forms of stress. Sirtuins, histone deacetylases type III proteins are involved in the relationship between energy balance and gene transcription, allowing cell to respond to caloric restriction and to survive to oxidative stress. In this relationship, sirtuins regulate FOXO family genes, cMYC, hTERT, p53, among others. Activation or silencing of those genes is important in the process of apoptosis, repair and cell death

  19. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    Directory of Open Access Journals (Sweden)

    Soriano-Carot María

    2012-02-01

    Full Text Available Abstract Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU, methylmetanosulfonate (MMS, phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt

  20. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors.

    Science.gov (United States)

    Vilgelm, Anna E; Washington, Mary K; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S; Zaika, Alexander I

    2010-03-01

    p53, p63, and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation, and other critical cellular processes. Here, we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family rather than p53 alone.

  1. Establishing cellular stress response profiles as biomarkers of homeodynamics, health, and hormesis

    DEFF Research Database (Denmark)

    Demirovic, Dino; Rattan, Suresh

    2013-01-01

    Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we dis...... of having adequate physical and mental independence of activities of daily living, by identifying a set of measurable parameters at the most fundamental level of biological organization....

  2. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4.

    Science.gov (United States)

    Huggins, Christopher J; Mayekar, Manasi K; Martin, Nancy; Saylor, Karen L; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C; Quiñones, Octavio A; Johnson, Peter F

    2015-12-14

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg(-/-) mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg(-/-) mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.

  3. Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis.

    Science.gov (United States)

    Demirovic, Dino; Rattan, Suresh I S

    2013-01-01

    Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we discuss the main intracellular SR pathways in human cells, and argue for the need to define and establish the immediate and delayed stress response profiles (SRP) during aging. Such SRP are required to be established at several age-points, which can be the molecular biomarkers of homeodynamic space and the health status of cells and organisms. SRP can also be useful for testing potential protectors and stimulators of homeodynamics, and can be a standard for monitoring the efficacy of potential pro-survival, health-promoting and aging-modulating conditions, food components and other compounds. An effective strategy, which makes use of SRP for achieving healthy aging and extending the healthspan, is that of strengthening the homeodynamics through repeated mild stress-induced hormesis by physical, biological and nutritional hormetins. Furthermore, SRP can also be the basis for defining health as a state of having adequate physical and mental independence of activities of daily living, by identifying a set of measurable parameters at the most fundamental level of biological organization.

  4. OSTEOPOROSIS AND ALZHEIMER PATHOLOGY: ROLE OF CELLULAR STRESS RESPONSE AND HORMETIC REDOX SIGNALING IN AGING AND BONE REMODELING

    Directory of Open Access Journals (Sweden)

    Vittorio eCalabrese

    2014-06-01

    Full Text Available Alzheimer’s disease (AD as well as osteoporosis are multifactorial progressive degenerative disorders characterized by low parenchymal density and microarchitectural deterioration of tissue. Though not referred to as one of the major complications of AD, osteoporosis and hip fracture are commonly observed in patients with AD, however, the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS are generally recognized as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-kB ligand (RANKL-dependent osteoclast differentiation, but they also have cytotoxic effects that include peroxidation of lipids and oxidative damage to proteins and DNA. ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways which regulate life span across species including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose–response, has the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Here we focus on possible signaling mechanisms involved in bone remodeling and activation of vitagenes resulting in enhanced defense against energy and stress resistance homeostasis dysruption with consequent impact on

  5. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    International Nuclear Information System (INIS)

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  6. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  7. 1. Morphological Implication on Cellular Response to Mechanical Stress in Bone.

    Science.gov (United States)

    Amizuka, Norio

    2016-08-01

    In bone, there are 3 distinct cell types: an osteoblast, a bone forming cell; an osteocyte embedded in bone matrix as a consequence of being differentiated from an osteoblast; and an osteoclast, a multinucleated giant cell responsible for bone resorption. Bone is always remodeled by replacing old bone with new bone (bone remodeling), by which bone can maintain its stiffness and flexibility. However, in an osteoporotic state, the disrupted balance between bone resorption and formation results in not only markedly reduced bone mass, but also in disorganized geometry of trabecules, which can often give rise to a bone fracture. Osteocytes located in their lacunae insert their fine cytoplasmic processes into narrow passageways referred to as osteocytic canaliculi. Neighboring osteocytes connect to each other by means of a gap junction in their cytoplasmic processes. Therefore, osteocytes and their lacunae/canaliculi appear to form functional syncytium called osteocytic lacunar canalicular system (OLCS). The geometrical distribution of OLCS is poorly arranged in immature bone, while it appears well-arranged distribution in mature bone (cortical bone), in which molecular transports and sensing mechanical stress seems to be efficient, and therefore, may be able to respond to mechanical stress. In this seminar, I will introduce our recent findings on the morphology and function of OLCS which may respond to mechanical stress. PMID:27441762

  8. Contrasting cellular stress responses of Baikalian and Palearctic amphipods upon exposure to humic substances: environmental implications.

    Science.gov (United States)

    Protopopova, Marina V; Pavlichenko, Vasiliy V; Menzel, Ralph; Putschew, Anke; Luckenbach, Till; Steinberg, Christian E W

    2014-12-01

    The species-rich, endemic amphipod fauna of Lake Baikal does not overlap with the common Palearctic fauna; however, the underlying mechanisms for this are poorly understood. Considering that Palearctic lakes have a higher relative input of natural organic compounds with a dominance of humic substances (HSs) than Lake Baikal, we addressed the question whether HSs are candidate factors that affect the different species compositions in these water bodies. We hypothesized that interspecies differences in stress defense might reveal that Baikalian amphipods are inferior to Palearctic amphipods in dealing with HS-mediated stress. In this study, two key mechanisms of general stress response were examined: heat-shock protein 70 (HSP70) and multixenobiotic resistance-associated transporters (ABCB1). The results of quantitative polymerase chain reaction (qPCR) showed that the basal levels (in 3-day acclimated animals) of hsp70 and abcb1 transcripts were lower in Baikalian species (Eulimnogammarus cyaneus, Eulimnogammarus verrucosus, Eulimnogammarus vittatus-the most typical littoral species) than in the Palearctic amphipod (Gammarus lacustris-the only Palearctic species distributed in the Baikalian region). In the amphipods, the stress response was induced using HSs at 10 mg L(-1) dissolved organic carbon, which was higher than in sampling sites of the studied species, but well within the range (3-10 mg L(-1)) in the surrounding water bodies populated by G. lacustris. The results of qPCR and western blotting (n = 5) showed that HS exposure led to increased hsp70/abcb1 transcripts and HSP70 protein levels in G. lacustris, whereas these transcript levels remained constant or decreased in the Baikalian species. The decreased level of stress transcripts is probably not able to confer an effective tolerance to Baikalian species against further environmental stressors in conditions with elevated HS levels. Thus, our results suggest a greater robustness of Palearctic amphipods and

  9. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.

    Science.gov (United States)

    Chou, Tzu-Yuan; Sun, Yung-Shin; Hou, Hsien-San; Wu, Shang-Ying; Zhu, Yun; Cheng, Ji-Yen; Lo, Kai-Yin

    2016-01-01

    Microfluidic devices are capable of creating a precise and controllable cellular micro-environment of pH, temperature, salt concentration, and other physical or chemical stimuli. They have been commonly used for in vitro cell studies by providing in vivo like surroundings. Especially, how cells response to chemical gradients, electrical fields, and shear stresses has drawn many interests since these phenomena are important in understanding cellular properties and functions. These microfluidic chips can be made of glass substrates, silicon wafers, polydimethylsiloxane (PDMS) polymers, polymethylmethacrylate (PMMA) substrates, or polyethyleneterephthalate (PET) substrates. Out of these materials, PMMA substrates are cheap and can be easily processed using laser ablation and writing. Although a few microfluidic devices have been designed and fabricated for generating multiple, coexisting chemical and electrical stimuli, none of them was considered efficient enough in reducing experimental repeats, particular for screening purposes. In this report, we describe our design and fabrication of two PMMA-based microfluidic chips for investigating cellular responses, in the production of reactive oxygen species and the migration, under single or coexisting chemical/electrical/shear stress stimuli. The first chip generates five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 in the culture regions, together with a shear stress gradient produced inside each of these areas. The second chip generates the same relative concentrations, but with five different electric field strengths created within each culture area. These devices not only provide cells with a precise, controllable micro-environment but also greatly increase the experimental throughput. PMID:27584698

  10. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    Directory of Open Access Journals (Sweden)

    Sara Landeras-Bueno

    2016-04-01

    Full Text Available Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection.

  11. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  12. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Antony M.; Odell, Adam F. [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Mughal, Nadeem A. [Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Issitt, Theo; Ulyatt, Clare; Walker, John H. [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Homer-Vanniasinkam, Shervanthi [Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Ponnambalam, Sreenivasan, E-mail: s.ponnambalam@leeds.ac.uk [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  13. Potential for cellular stress response to hepatic factor VIII expression from AAV vector

    Science.gov (United States)

    Zolotukhin, Irene; Markusic, David M; Palaschak, Brett; Hoffman, Brad E; Srikanthan, Meera A; Herzog, Roland W

    2016-01-01

    Hemophilia A and B are coagulation disorders resulting from the loss of functional coagulation factor VIII (FVIII) or factor IX proteins, respectively. Gene therapy for hemophilia with adeno-associated virus vectors has shown efficacy in hemophilia B patients. Although hemophilia A patients are more prevalent, the development of therapeutic adeno-associated virus vectors has been impeded by the size of the F8 cDNA and impaired secretion of FVIII protein. Further, it has been reported that over-expression of the FVIII protein induces endoplasmic reticulum stress and activates the unfolded protein response pathway both in vitro and in hepatocytes in vivo, presumably due to retention of misfolded FVIII protein within the endoplasmic reticulum. Engineering of the F8 transgene, including removal of the B domain (BDD-FVIII) and codon optimization, now allows for the generation of adeno-associated virus vectors capable of expressing therapeutic levels of FVIII. Here we sought to determine if the risks of inducing the unfolded protein response in murine hepatocytes extend to adeno-associated virus gene transfer. Although our data show a mild activation of unfolded protein response markers following F8 gene delivery at a certain vector dose in C57BL/6 mice, it was not augmented upon further elevated dosing, did not induce liver pathology or apoptosis, and did not impact FVIII immunogenicity. PMID:27738644

  14. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    Science.gov (United States)

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response.

  15. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    Science.gov (United States)

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response. PMID:24491563

  16. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  17. Oma1 Links Mitochondrial Protein Quality Control and TOR Signaling To Modulate Physiological Plasticity and Cellular Stress Responses.

    Science.gov (United States)

    Bohovych, Iryna; Kastora, Stavroula; Christianson, Sara; Topil, Danelle; Kim, Heejeong; Fangman, Teresa; Zhou, You J; Barrientos, Antoni; Lee, Jaekwon; Brown, Alistair J P; Khalimonchuk, Oleh

    2016-09-01

    A network of conserved proteases known as the intramitochondrial quality control (IMQC) system is central to mitochondrial protein homeostasis and cellular health. IMQC proteases also appear to participate in establishment of signaling cues for mitochondrion-to-nucleus communication. However, little is known about this process. Here, we show that in Saccharomyces cerevisiae, inactivation of the membrane-bound IMQC protease Oma1 interferes with oxidative-stress responses through enhanced production of reactive oxygen species (ROS) during logarithmic growth and reduced stress signaling via the TORC1-Rim15-Msn2/Msn4 axis. Pharmacological or genetic prevention of ROS accumulation in Oma1-deficient cells restores this defective TOR signaling. Additionally, inactivation of the Oma1 ortholog in the human fungal pathogen Candida albicans also alters TOR signaling and, unexpectedly, leads to increased resistance to neutrophil killing and virulence in the invertebrate animal model Galleria mellonella Our findings reveal a novel and evolutionarily conserved link between IMQC and TOR-mediated signaling that regulates physiological plasticity and pancellular oxidative-stress responses.

  18. Broad-spectrum anti-biofilm peptide that targets a cellular stress response.

    Directory of Open Access Journals (Sweden)

    César de la Fuente-Núñez

    2014-05-01

    Full Text Available Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (pppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (pppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (pppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (pppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (pppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (pppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (pppGpp and marks it for

  19. Physiological, cellular and biochemical thermal stress response of intertidal shrimps with different vertical distributions: Palaemon elegans and Palaemon serratus.

    Science.gov (United States)

    Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joana; Costa, Pedro M; Larguinho, Miguel; Vinagre, Catarina; Diniz, Mário S

    2015-05-01

    The ability to cope with high temperature variations is a critical factor in intertidal communities. Two species of intertidal rocky shore shrimps (Palaemon sp.) with different vertical distributions were collected from the Portuguese coast in order to test if they were differentially sensitive to thermal stress. Three distinct levels of biological organization (organismal, biochemical, and cellular) were surveyed. The shrimp were exposed to a constant rate of temperature increase of 1°C x h(-1), starting at 20°C until reaching the CTMax (critical thermal maximum). During heat stress, two biomarkers of protein damage were quantified in the muscle via enzyme-linked immunosorbent assays: heat shock proteins HSP70 (hsp70/hsc70) and total ubiquitin. Muscle histopathological alterations caused by temperature were also evaluated. CTMax values were not significantly different between the congeners (P. elegans 33.4 ± 0.5 °C; P. serratus 33.0 ± 0.5 °C). Biomarker levels did not increase along the temperature trial, but P. elegans (higher intertidal) showed higher amounts of HSP70 and total ubiquitin than P. serratus (lower intertidal). HSP70 and total ubiquitin levels showed a positive significant correlation in both species, suggesting that their association is important in thermal tolerance. Histopathological observations of muscle tissue in P. serratus showed no gross alterations due to temperature but did show localized atrophy of muscle fibers at CTMax. In P. elegans, alterations occurred at a larger scale, showing multiple foci of atrophic muscular fascicles caused by necrotic or autolytic processes. In conclusion, Palaemon congeners displayed different responses to stress at a cellular level, with P. elegans having greater biomarker levels and histopathological alterations. PMID:25582544

  20. Induction of multixenobiotic defense mechanisms in resistant Daphnia magna clones as a general cellular response to stress.

    Science.gov (United States)

    Jordão, Rita; Campos, Bruno; Lemos, Marco F L; Soares, Amadeu M V M; Tauler, Romà; Barata, Carlos

    2016-06-01

    Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transporters and of the stress protein hsp70 in clones selected to be genetically resistant to ABCB1 chemical substrates. Clones resistant to mitoxantrone, ivermectin and pentachlorophenol showed distinctive transcriptional responses of transporter protein coding genes and of putative transporter dye activities. Expression of hsp70 proteins also varied across resistant clones. Clones resistant to mitoxantrone and pentachlorophenol showed high constitutive levels of hsp70. Transcriptional levels of the abcb1 gene transporter and of putative dye transporter activity were also induced to a greater extent in the pentachlorophenol resistant clone. Observed higher dye transporter activities in individuals from clones resistant to mitoxantrone and ivermectin were unrelated with transcriptional levels of the studied four abcc and abcb1 transporter genes. These findings suggest that Abcb1 induction in D. magna may be a part of a general cellular stress response. PMID:27039215

  1. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity.

    Science.gov (United States)

    Calabrese, Vittorio; Cornelius, Carolin; Mancuso, Cesare; Pennisi, Giovanni; Calafato, Stella; Bellia, Francesco; Bates, Timothy E; Giuffrida Stella, Anna Maria; Schapira, Tony; Dinkova Kostova, Albena T; Rizzarelli, Enrico

    2008-12-01

    curcumin, acetyl-L-carnitine and carnosine have been demonstrated through the activation of these redox-sensitive intracellular pathways. Although the notion that stress proteins are neuroprotective is broadly accepted, still much work needs to be done in order to associate neuroprotection with specific pattern of stress responses. In this review the importance of vitagenes in the cellular stress response and the potential use of dietary antioxidants in the prevention and treatment of neurodegenerative disorders is discussed. PMID:18629638

  2. Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway.

    Science.gov (United States)

    Roncarati, Francesca; Sáez, Claudio A; Greco, Maria; Gledhill, Martha; Bitonti, Maria B; Brown, Murray T

    2015-02-01

    Some populations of brown seaweed species inhabit metal-polluted environments and can develop tolerance to metal stress, but the mechanisms by which this is accomplished are still to be elucidated. To address this, the responses of two strains of the model brown alga Ectocarpus siliculosus isolated from sites with different histories of metal contamination exposed to total copper (CuT) concentrations ranging between 0 and 2.4 μM for 10 days were investigated. The synthesis of the metal-chelator phytochelatin (PCs) and relative levels of transcripts encoding the enzymes γ-glutamylcysteine synthetase (γ-GCS), glutathione synthase (GS) and phytochelatin synthase (PCS) that participate in the PC biosynthetic pathway were measured, along with the effects on growth, and adsorption and uptake of Cu. Growth of strain LIA, from a pristine site in Scotland, was inhibited to a greater extent, and at lower concentrations, than that of Es524, isolated from a Cu-contaminated site in Chile. Concentrations of intra-cellular Cu were higher and the exchangeable fraction was lower in LIA than Es524, especially at the highest exposure levels. Total glutathione concentrations increased in both strains with Cu exposure, whereas total PCs levels were higher in Es524 than LIA; PC2 and PC3 were detected in Es524 but PC2 only was found in LIA. The greater production and levels of polymerisation of PCs in Es524 can be explained by the up-regulation of genes encoding for key enzymes involved in the synthesis of PCs. In Es524 there was an increase in the transcripts of γ-GCS, GS and PCS, particularly under high Cu exposure, whereas in LIA4 transcripts of γ-GCS1 increased only slightly, γ-GCS2 and GS decreased and PCS did not change. The consequences of higher intra-cellular concentrations of Cu, lower production of PCs, and lower expression of enzymes involved in GSH-PCs synthesis may be contributing to an induced oxidative stress condition in LIA, which explains, at least in part, the

  3. The master regulator of the cellular stress response (HSF1 is critical for orthopoxvirus infection.

    Directory of Open Access Journals (Sweden)

    Claire Marie Filone

    2014-02-01

    Full Text Available The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1, the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.

  4. Peroxynitrite and hydrogen peroxide elicit similar cellular stress responses mediated by the Ccp1 sensor protein.

    Science.gov (United States)

    Martins, Dorival; Bakas, Iolie; McIntosh, Kelly; English, Ann M

    2015-08-01

    Peroxynitrite [ONOO(H)] is an oxidant associated with deleterious effects in cells. Because it is an inorganic peroxide that reacts rapidly with peroxidases, we speculated that cells may respond to ONOO(H) and H2O2 challenge in a similar manner. We exposed yeast cells to SIN-1, a well-characterized ONOO(H) generator, and observed stimulation of catalase and peroxiredoxin (Prx) activities. Previously, we reported that H2O2 challenge increases these activities in wild-type cells and in cells producing the hyperactive mutant H2O2 sensor Ccp1(W191F) but not in Ccp1-knockout cells (ccp1Δ). We find here that the response of ccp1Δ and ccp1(W191F) cells to SIN-1 mirrors that to H2O2, identifying Ccp1 as a sensor of both peroxides. SIN-1 simultaneously releases (•)NO and O2(•-), which react to form ONOO(H), but exposure of the three strains separately to an (•)NO donor (spermine-NONOate) or an O2(•-) generator (paraquat) mainly depresses catalase or Prx activity, whereas co-challenge with the NONOate and paraquat stimulates these activities. Because Ccp1 appears to sense ONOO(H) in cells, we examined its reaction with ONOO(H) in vitro and found that peroxynitrous acid (ONOOH) rapidly (k2>10(6)M(-1)s(-1)) oxidizes purified Ccp1 to an intermediate with spectral and ferrocytochrome-oxidizing properties indistinguishable from those of its well-characterized compound I formed with H2O2. Importantly, the nitrite released from ONOOH is not oxidized to (•)NO2 by Ccp1(׳)s compound I, unlike peroxidases involved in immune defense. Overall, our results reveal that yeast cells mount a common antioxidant response to ONOO(H) and H2O2, with Ccp1 playing a pivotal role as an inorganic peroxide sensor. PMID:25881547

  5. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.

    Science.gov (United States)

    Kurutas, Ergul Belge

    2016-01-01

    Remarkable interest has risen in the idea that oxidative/nitrosative stress is mediated in the etiology of numerous human diseases. Oxidative/Nitrosative stress is the result of an disequilibrium in oxidant/antioxidant which reveals from continuous increase of Reactive Oxygen and Reactive Nitrogen Species production. The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. Products of lipid peroxidation have commonly been used as biomarkers of oxidative/nitrosative stress damage. Lipid peroxidation generates a variety of relatively stable decomposition end products, mainly α, β-unsaturated reactive aldehydes, such as malondialdehyde, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, which can be measured in plasma and urine as an indirect index of oxidative/nitrosative stress. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative/nitrosative stress or its consequences. They may act from directly scavenging free radicals to increasing antioxidative defences. Antioxidant deficiencies can develop as a result of decreased antioxidant intake, synthesis of endogenous enzymes or increased antioxidant utilization. Antioxidant supplementation has become an increasingly popular practice to maintain optimal body function. However, antoxidants exhibit pro-oxidant activity depending on the specific set of conditions. Of particular importance are their dosage and redox conditions in the cell. PMID:27456681

  6. tRNA modifications regulate translation during cellular stress

    OpenAIRE

    Gu, Chen; Thomas J Begley; Peter C. Dedon

    2014-01-01

    The regulation of gene expression in response to stress is an essential cellular protection mechanism. Recent advances in tRNA modification analysis and genome-based codon bias analytics have facilitated studies that lead to a novel model for translational control, with translation elongation dynamically regulated during stress responses. Stress-induced increases in specific anticodon wobble bases are required for the optimal translation of stress response transcripts that are significantly b...

  7. Defining the tipping point. A complex cellular life/death balance in corals in response to stress

    OpenAIRE

    Ainsworth T. D.; Wasmund K.; Ukani L.; Seneca F.; Yellowlees D.; Miller D; Leggat W.

    2011-01-01

    Apoptotic cell death has been implicated in coral bleaching but the molecules involved and the mechanisms by which apoptosis is regulated are only now being identified. In contrast the mechanisms underlying apoptosis in higher animals are relatively well understood. To better understand the response of corals to thermal stress, the expression of coral homologs of six key regulators of apoptosis was studied in Acropora aspera under conditions simulating those of a mass bleaching event. Signifi...

  8. Regulation of autophagy in oxygen-dependent cellular stress.

    Science.gov (United States)

    Ryter, Stefan W; Choi, Augustine M K

    2013-01-01

    Oxidative stress caused by supraphysiological production of reactive oxygen species (ROS), can cause cellular injury associated with protein and lipid oxidation, DNA damage, and mitochondrial dysfunction. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of cell survival or cell death pathways. Recent studies suggest that autophagy, a cellular homeostatic process that governs the turnover of damaged organelles and proteins, may represent a general cellular and tissue response to oxidative stress. The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy may play multifunctional roles in cellular adaptation to stress, by maintaining mitochondrial integrity, and removing damaged proteins. Additionally, autophagy may play important roles in the regulation of inflammation and immune function. Modulation of the autophagic pathway has been reported in cell culture models of oxidative stress, including altered states of oxygen tension (i.e., hypoxia, hyperoxia), and exposure to oxidants. Furthermore, proteins that regulate autophagy may be subject to redox regulation. The heme oxygenase- 1 (HO)-1 enzyme system may have a role in the regulation of autophagy. Recent studies suggest that carbon monoxide (CO), a reaction product of HO activity which can alter mitochondrial function, may induce autophagy in cultured epithelial cells. In conclusion, current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. PMID:23092322

  9. Cellular metabolic, stress, and histological response on exposure to acute toxicity of endosulfan in tilapia (Oreochromis mossambicus).

    Science.gov (United States)

    Kumar, Neeraj; Sharma, Rupam; Tripathi, Gayatri; Kumar, Kundan; Dalvi, Rishikesh S; Krishna, Gopal

    2016-01-01

    Endosulfan is one of the most hazardous organochlorines pesticides responsible for environmental pollution, as it is very persistent and shows bio-magnification. This study evaluated the impact of acute endosulfan toxicity on metabolic enzymes, lysozyme activities, heat shock protein (Hsp) 70 expression, and histopathology in Tilapia (Oreochromis mossambicus). Among the indicators that were induced in dose dependent manner were the enzymes of amino acid metabolism (serum alanine aminotransferase and aspartate aminotransferase), carbohydrate metabolism (serum lactate dehydrogenase), pentose phosphate pathway (Glucose-6-phosphate dehydrogenase) as well as lysozyme and Hsp70 in liver and gill, while liver and gill Isocitrate dehydrogenase (TCA cycle enzyme) and marker of general energetics (Total adenosine triphosphatase) were inhibited. Histopathological alterations in gill were clubbing of secondary gill lamellae, marked hyperplasia, complete loss of secondary lamellae and atrophy of primary gill filaments. Whereas in liver, swollen hepatocyte, and degeneration with loss of cellular boundaries were distinctly noticed. Overall results clearly demonstrated the unbalanced metabolism and damage of the vital organs like liver and gill in Tilapia due to acute endosulfan exposure.

  10. Cellular immune responses to HIV

    Science.gov (United States)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  11. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  12. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Falfushynska, Halina; Gnatyshyna, Lesya; Yurchak, Irina [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 46027, Kryvonosa Str. 2, Ternopil (Ukraine); Sokolova, Inna, E-mail: isokolov@uncc.edu [Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Stoliar, Oksana [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 46027, Kryvonosa Str. 2, Ternopil (Ukraine)

    2015-05-15

    Highlights: • Effects of nano-ZnO (n-ZnO) in combination with other stressors were studied. • At 18 °C, exposures to n-ZnO caused up-regulation of lysosomal cathepsin D. • Cellular responses to n-ZnO and Zn{sup 2+} were distinct. • Warming to 25 °C activated caspase-3 and abolished antioxidants response to n-ZnO. • Biological effects of n-ZnO in mussels are strongly modulated by other stressors. - Abstract: Nanoparticle toxicity is a growing concern in freshwater habitats. However, understanding of the nanoparticle effects on aquatic organisms is impeded by the lack of the studies of the nanoparticles effects in the environmentally relevant context of multiple stress exposures. Zinc oxide nanoparticles (n-ZnO) are widely used metal-based nanoparticles in electronics and personal care products that accumulate in aquatic environments from multiple non-point sources. In this study, we evaluated the effects of n-ZnO in a model organism, a mussel Unio tumidus, and the potential modulation of these effects by common co-occurring environmental stressors. Male U. tumidus were exposed for 14 days to n-ZnO (3.1 μM), Zn{sup 2+} (3.1 μM), Ca-channel blocker nifedipine (Nfd 10 μM), combinations of n-ZnO and Nfd or n-ZnO and thiocarbamate fungicide Tattoo (Ta, 91 μg L{sup −1}) at 18 °C, and n-ZnO at 25 °C (n-ZnO + t°). Total and metallothionein-bound Zn levels as well as levels of metallothioneins (MT), cellular stress responses and cytotoxicity biomarkers were assessed in the mussels. The key biomarkers that showed differential responses to different single and combined stressors in this study were activities of caspase-3 and lysosomal cathepsin D, as well as protein carbonyl content. At 18 °C, exposures to n-ZnO, organic pollutants and their combinations led to a prominent up-regulation of MT levels (by ∼30%) and oxidative stress response including up-regulation of superoxide dismutase activity, an increase in oxyradical production, and a 2–3-fold

  13. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants1[OPEN

    Science.gov (United States)

    Millar, A. Harvey

    2016-01-01

    Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, programmed cell death, and defense against pathogens have been attributed to ROS generated in plant mitochondria (mtROS). The shortcomings of the black box-idea of mtROS are discussed in the context of mechanistic considerations and the measurement of mtROS. The overall aim of this update is to better define our current understanding of mtROS and appraise their potential influence on cellular function in plants. Furthermore, directions for future research are provided, along with suggestions to increase reliability of mtROS measurements. PMID:27021189

  14. Oxidative stress action in cellular aging

    OpenAIRE

    Monique Cristine de Oliveira; João Paulo Ferreira Schoffen

    2010-01-01

    Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the fac...

  15. ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Katherine M. Aird

    2015-05-01

    Full Text Available Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor-suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in the cellular response to replication stress has been little explored. Here, we report that ataxia telangiectasia mutated (ATM plays a central role in regulating the cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of deoxyribonucleotide triphosphate (dNTP levels through both upregulation of the pentose phosphate pathway via increased glucose-6-phosphate dehydrogenase (G6PD activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence.

  16. Proteasome-Mediated Processing of Def1, a Critical Step in the Cellular Response to Transcription Stress

    OpenAIRE

    Wilson, Marcus D.; Harreman, Michelle; Taschner, Michael; Reid, James; Walker, Jane; Erdjument-Bromage, Hediye; Tempst, Paul; Svejstrup, Jesper Q.

    2013-01-01

    Summary DNA damage triggers polyubiquitylation and degradation of the largest subunit of RNA polymerase II (RNAPII), a “mechanism of last resort” employed during transcription stress. In yeast, this process is dependent on Def1 through a previously unresolved mechanism. Here, we report that Def1 becomes activated through ubiquitylation- and proteasome-dependent processing. Def1 processing results in the removal of a domain promoting cytoplasmic localization, resulting in nuclear accumulation ...

  17. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses...... include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review...... the responses of neurons to various physiological stressors at the molecular and cellular level....

  18. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses

    Science.gov (United States)

    Valadão, Ana L. C.; Aguiar, Renato S.; de Arruda, Luciana B.

    2016-01-01

    The Flaviviridae family comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile, Japanese Encephalitis viruses, and Hepatitis C Virus. Those are enveloped, single-stranded positive sense RNA viruses, which replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER) and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs), RIG-I-like receptors (RIG-I and MDA5) and RNA-dependent protein kinases (PKR), inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, unfolded protein response pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response. PMID:27610098

  19. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses.

    Science.gov (United States)

    Valadão, Ana L C; Aguiar, Renato S; de Arruda, Luciana B

    2016-01-01

    The Flaviviridae family comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile, Japanese Encephalitis viruses, and Hepatitis C Virus. Those are enveloped, single-stranded positive sense RNA viruses, which replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER) and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs), RIG-I-like receptors (RIG-I and MDA5) and RNA-dependent protein kinases (PKR), inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, unfolded protein response pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response. PMID:27610098

  20. Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase

    International Nuclear Information System (INIS)

    Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain

  1. Interplay between inflammation and cellular stress triggered by Flaviviridae viruses

    Directory of Open Access Journals (Sweden)

    Ana Luiza Chaves Valadão

    2016-08-01

    Full Text Available Flaviviruses, from Flaviviridae virus family, comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile and Japanese Encephalitis viruses. Those are enveloped, single-stranded positive sense RNA viruses, and replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs, RIG-I-like receptors (RIG-I and MDA5 and RNA-dependent protein kinases (PKR, inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, UPR pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response.

  2. Oxidative stress action in cellular aging

    Directory of Open Access Journals (Sweden)

    Monique Cristine de Oliveira

    2010-12-01

    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  3. Cellular responses to stress: comparison of a family of 71--73-kilodalton proteins rapidly synthesized in rat tissue slices and canavanine-treated cells in culture.

    Science.gov (United States)

    Hightower, L E; White, F P

    1981-08-01

    response to a variety of physical, chemical, and biological stimuli is discussed in terms of cellular responses to traumatic injury and metabolic stress.

  4. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria

    Energy Technology Data Exchange (ETDEWEB)

    Götze, Sandra [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Matoo, Omera B. [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Beniash, Elia [Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA (United States); Saborowski, Reinhard [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2014-04-01

    Highlights: • Elevated PCO₂ enhanced accumulation of Cu and Cd in the gills of mollusks. • The proteasome activities were affected by metals but robust to elevated PCO₂. • Exposure to Cd and Cu had opposite effects on the proteasome activity. • Combined exposure to Cu and elevated PCO₂ negatively affected energy status. - Abstract: Increased anthropogenic emission of CO₂ changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO₂ and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves—Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4–5 weeks to clean seawater (control) and to either 50 μg L⁻¹ Cu or 50 μg L⁻¹ Cd at one of three partial pressures of CO₂ PCO₂ ~395, ~800 and ~1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated PCO₂ enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated PCO₂, but PCO₂ modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome

  5. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria.

    Science.gov (United States)

    Götze, Sandra; Matoo, Omera B; Beniash, Elia; Saborowski, Reinhard; Sokolova, Inna M

    2014-04-01

    Increased anthropogenic emission of CO2 changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO2 and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves-Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4-5 weeks to clean seawater (control) and to either 50 μg L(-1) Cu or 50 μg L(-1) Cd at one of three partial pressures of CO2 ( [Formula: see text] ∼ 395, ∼ 800 and ∼ 1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated [Formula: see text] enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated [Formula: see text] , but [Formula: see text] modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome at all CO2 levels. In contrast, trypsin- and caspase-like activities of the oyster proteasome were slightly inhibited by Cd exposure in normocapnia but this inhibition was reversed at elevated [Formula: see text] . Cu exposure inhibited the chymotrypsin-like activity of the oyster proteasome regardless of the exposure [Formula: see text] . The effects of metal exposure on

  6. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  7. Neuronal responses to physiological stress

    Directory of Open Access Journals (Sweden)

    Konstantinos eKagias

    2012-10-01

    Full Text Available Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. Physiological stress can be divided into three different aspects: environmental stress, intrinsic developmental stress and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature and redox state for example, trigger molecular events that enable an organism to adapt, survive and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, which result from an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.

  8. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  9. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  10. Neuronal responses to physiological stress.

    Science.gov (United States)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  11. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J.;

    2015-01-01

    . We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other...

  12. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  13. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-01

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  14. Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level.

    Science.gov (United States)

    Kumar, Abhay; Prasad, M N V; Mohan Murali Achary, V; Panda, Brahma B

    2013-07-01

    Hydroponic experiments were performed with Talinum triangulare (Jacq.) Willd. focusing the root cellular biochemistry with special emphasis on DNA damage, structural, and elemental analyses in Pb(NO3)2 exposed with 0, 0.25, 0.5, 0.75, 1.0, and 1.25 mM for 7 days. Lead (Pb) increased reactive oxygen species production, lipid peroxidation, protein oxidation, cell death, and DNA damage and decreased the protein content in a dose-dependent manner. Likewise, a dose-dependent induction of antioxidative enzymes superoxide dismutase and catalase by Pb was evident. Ascorbate peroxidase on the other hand responded biphasically to Pb treatments by showing induction at low (0.25 and 0.50) and repression at high (0.75-1.25 mM) concentrations. The estimation of proline content also indicated a similar biphasic trend. Scanning electron microscope and energy-dispersive X-ray spectroscopy analysis showed that 1.25 mM Pb treatment resulted in ultrastructural modifications in roots and stem tissue that was marked by the change in the elemental profile. The findings pointed to the role of oxidative stress in the underlying Pb phytotoxicity and genotoxicity in T. triangulare. PMID:23263755

  15. Caspase-9 inhibitor Z-LEHD-FMK enhances the yield of in vitro produced buffalo (Bubalus bubalis) pre-implantation embryos and alters cellular stress response.

    Science.gov (United States)

    Mullani, N; Singh, M K; Sharma, A; Rameshbabu, K; Manik, R S; Palta, P; Singla, S K; Chauhan, M S

    2016-02-01

    The present investigation was done to study the effect of caspase-9 inhibitor Z-LEHD-FMK, on in vitro produced buffalo embryos. Z-LEHD-FMK is a cell-permeable, competitive and irreversible inhibitor of enzyme caspase-9, which helps in cell survival. Buffalo ovaries were collected from slaughterhouse and the oocytes were subjected to in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC). The culture medium was supplemented with Z-LEHD-FMK at different concentrations i.e. 0 μM (control), 10 μM, 20 μM, 30 μM and 50 μM during IVM and IVC respectively. After day-2 post-insemination, the cleavage rate was significantly higher (74.20 ± 5.87% at Pafore mentioned results we conclude that, Z-LEHD-FMK at 20 μM increased the cleavage and blastocyst rate of buffalo pre-implantation embryos also affecting the rate of apoptosis and cellular stress at various concentrations.

  16. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts

    DEFF Research Database (Denmark)

    Baraibar, Martin A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2011-01-01

    Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing...... are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways...

  17. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guan, Qiaoning; Haroon, Suraiya; Bravo, Diego González; Will, Jessica L; Gasch, Audrey P

    2012-10-01

    Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria "remembering" prior nutritional status and amoeba "learning" to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H(2)O(2). We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H(2)O(2) resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H(2)O(2) resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H(2)O(2) tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments. PMID:22851651

  18. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia.

    Science.gov (United States)

    Bouquet, Fanny; Ousset, Marielle; Biard, Denis; Fallone, Frédérique; Dauvillier, Stéphanie; Frit, Philippe; Salles, Bernard; Muller, Catherine

    2011-06-01

    DNA-dependent protein kinase (DNA-PK) is involved in DNA double-strand break (DSB) signalling and repair. We report that DNA-PK is activated by mild hypoxia conditions (0.1-1% O₂) as shown by (1) its autophosphorylation on Ser2056, and (2) its mobilisation from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. The recruitment of DNA-PK was not followed by activation and recruitment of the XRCC4-DNA-ligase-IV complex, suggesting that DSBs are not responsible for activation of DNA-PK. To unravel the mechanism of DNA-PK activation, we show that exposure of cells to trichostatin A, a histone deacetylase inhibitor, leads to DNA-PK autophosphorylation and relocalisation to DNA. Histone acetylation (mainly H3K14) is increased in hypoxic cells and treatment with anacardic acid, an inhibitor of histone acetyl transferase, prevented both histone modifications and DNA-PK activation in hypoxic conditions. Importantly, in using either silenced DNA-PK cells or cells exposed to a specific DNA-PK inhibitor (NU7026), we demonstrated that hypoxic DNA-PK activation positively regulates the key transcription factor HIF-1 and one subsequent target gene, GLUT1. Our results show that hypoxia initiates chromatin modification and consequently DNA-PK activation, which positively regulate cellular oxygen-sensing and oxygen-signalling pathways. PMID:21576354

  19. The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae.

    Science.gov (United States)

    Herrero, Óscar; Planelló, Rosario; Morcillo, Gloria

    2015-06-01

    Butyl benzyl phthalate (BBP) has been extensively used worldwide as a plasticizer in the polyvinyl chloride (PVC) industry and the manufacturing of many other products, and its presence in the aquatic environment is expected for decades. In the present study, the toxicity of BBP was investigated in Chironomus riparius aquatic larvae. The effects of acute 24-h and 48-h exposures to a wide range of BBP doses were evaluated at the molecular level by analysing changes in genes related to the stress response, the endocrine system, the energy metabolism, and detoxication pathways, as well as in the enzyme activity of glutathione S-transferase. BBP caused a dose and time-dependent toxicity in most of the selected biomarkers. 24-h exposures to high doses affected larval survival and lead to a significant response of several heat-shock genes (hsp70, hsp40, and hsp27), and to a clear endocrine disrupting effect by upregulating the ecdysone receptor gene (EcR). Longer treatments with low doses triggered a general repression of transcription and GST activity. Furthermore, delayed toxicity studies were specially relevant, since they allowed us to detect unpredictable toxic effects, not immediately manifested after contact with the phthalate. This study provides novel and interesting results on the toxic effects of BBP in C. riparius and highlights the suitability of this organism for ecotoxicological risk assessment, especially in aquatic ecosystems. PMID:25725395

  20. Sex differences in molecular and cellular substrates of stress

    OpenAIRE

    Bangasser, Debra A.; Valentino, Rita J.

    2012-01-01

    Women are twice as likely as men to suffer from stress-related psychiatric disorders, like unipolar depression and post-traumatic stress disorder. Although the underlying neural mechanisms are not well characterized, the pivotal role of stress in the onset and severity of these diseases has led to the idea that sex differences in stress responses account for this sex bias. Corticotropin-releasing factor (CRF) orchestrates stress responses by acting both as a neurohormone to initiate the hypot...

  1. Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress.

    Science.gov (United States)

    Aggarwal, Monika; Sommers, Joshua A; Shoemaker, Robert H; Brosh, Robert M

    2011-01-25

    Modulation of DNA repair proteins by small molecules has attracted great interest. An in vitro helicase activity screen was used to identify molecules that modulate DNA unwinding by Werner syndrome helicase (WRN), mutated in the premature aging disorder Werner syndrome. A small molecule from the National Cancer Institute Diversity Set designated NSC 19630 [1-(propoxymethyl)-maleimide] was identified that inhibited WRN helicase activity but did not affect other DNA helicases [Bloom syndrome (BLM), Fanconi anemia group J (FANCJ), RECQ1, RecQ, UvrD, or DnaB). Exposure of human cells to NSC 19630 dramatically impaired growth and proliferation, induced apoptosis in a WRN-dependent manner, and resulted in elevated γ-H2AX and proliferating cell nuclear antigen (PCNA) foci. NSC 19630 exposure led to delayed S-phase progression, consistent with the accumulation of stalled replication forks, and to DNA damage in a WRN-dependent manner. Exposure to NSC 19630 sensitized cancer cells to the G-quadruplex-binding compound telomestatin or a poly(ADP ribose) polymerase (PARP) inhibitor. Sublethal dosage of NSC 19630 and the chemotherapy drug topotecan acted synergistically to inhibit cell proliferation and induce DNA damage. The use of this WRN helicase inhibitor molecule may provide insight into the importance of WRN-mediated pathway(s) important for DNA repair and the replicational stress response. PMID:21220316

  2. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  3. Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast.

    Science.gov (United States)

    Navarro-Tapia, Elisabet; Nana, Rebeca K; Querol, Amparo; Pérez-Torrado, Roberto

    2016-01-01

    Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although, many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two S. cerevisiae strains, CECT10094, and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico) respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR) and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus, our data suggest that there

  4. Effect of cellular mobility on immune response

    Science.gov (United States)

    Pandey, R. B.; Mannion, R.; Ruskin, H. J.

    2000-08-01

    Mobility of cell types in our HIV immune response model is subject to an intrinsic mobility and an explicit directed mobility, which is governed by Pmob. We investigate how restricting the explicit mobility, while maintaining the innate mobility of a viral-infected cell, affects the model's results. We find that increasing the explicit mobility of the immune system cells leads to viral dominance for certain levels of viral mutation. We conclude that increasing immune system cellular mobility indirectly increases the virus’ inherent mobility.

  5. Stress responses and pre-eclampsia.

    Science.gov (United States)

    Redman, C W G

    2013-04-01

    Biological stress may affect individual cells, tissues or whole organisms, arising from disturbed homoeostasis of any cause. Stress is rarely localised. Because biological systems are closely integrated, it spreads to involve other systems. Stress responses are highly integrated and work to restore homoeostasis. Different response pathways overlap and interlink. If the responses fail or decompensate, distress ensues, of which the end-stage is death. Pre-eclampsia results from a series of biological stresses, possibly from conception, which become established by abnormal placentation and affect the mother, her foetus and her placenta. The stresses involve dialogue between mother and placenta. Even a normal placenta imposes substantial stress on maternal systems. When placental growth and perfusion is abnormal (poor placentation) then the placenta, particularly its outer trophoblast layer, becomes stressed - loosely denoted hypoxic damage or oxidative stress. Signals from the placenta spread the stress to the mother, who develops signs of pre-eclampsia. Cellular stress sensors initiate stress responses. Different stresses may trigger similar responses in specific cell types. The first cell response is reduced protein synthesis. However some synthetic pathways are spared or activated to produce stress signals. In relation to pre-eclampsia and the placenta, an excessive release of sFlt-1 a soluble decoy receptor for vascular endothelial growth factor (VEGF) is a trophoblast related stress signal. SFlt1 perturbs the angiogenic balance in the maternal circulation and is considered to cause many of the specific features of the maternal syndrome in pre-eclampsia. Three key points will be emphasised. First, multiple stressors, not simply hypoxia, stimulate the release of sFlt-1 from trophoblast. Second, sFlt-1 is only one of the group of stress signals delivered by trophoblast to the mother. Third, sFlt-1 is not the only trophoblast derived factor to perturb the maternal

  6. Chronic pain, perceived stress, and cellular aging: an exploratory study

    Directory of Open Access Journals (Sweden)

    Sibille Kimberly T

    2012-02-01

    Full Text Available Abstract Background Chronic pain conditions are characterized by significant individual variability complicating the identification of pathophysiological markers. Leukocyte telomere length (TL, a measure of cellular aging, is associated with age-related disease onset, psychosocial stress, and health-related functional decline. Psychosocial stress has been associated with the onset of chronic pain and chronic pain is experienced as a physical and psychosocial stressor. However, the utility of TL as a biological marker reflecting the burden of chronic pain and psychosocial stress has not yet been explored. Findings The relationship between chronic pain, stress, and TL was analyzed in 36 ethnically diverse, older adults, half of whom reported no chronic pain and the other half had chronic knee osteoarthritis (OA pain. Subjects completed a physical exam, radiographs, health history, and psychosocial questionnaires. Blood samples were collected and TL was measured by quantitative polymerase chain reaction (qPCR. Four groups were identified characterized by pain status and the Perceived Stress Scale scores: 1 no pain/low stress, 2 no pain/high stress, chronic pain/low stress, and 4 chronic pain/high stress. TL differed between the pain/stress groups (p = 0.01, controlling for relevant covariates. Specifically, the chronic pain/high stress group had significantly shorter TL compared to the no pain/low stress group. Age was negatively correlated with TL, particularly in the chronic pain/high stress group (p = 0.03. Conclusions Although preliminary in nature and based on a modest sample size, these findings indicate that cellular aging may be more pronounced in older adults experiencing high levels of perceived stress and chronic pain.

  7. The surgically induced stress response.

    Science.gov (United States)

    Finnerty, Celeste C; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A; Herndon, David N

    2013-09-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes that induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Burn injuries provide an extreme model of trauma induced stress responses that can be used to study the long-term effects of a prolonged stress response. Although the stress response to acute trauma evolved to confer improved chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246

  8. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the...

  9. Biotechnological Approaches to Study Plant Responses to Stress

    OpenAIRE

    Pérez-Clemente, Rosa M; Vicente Vives; Zandalinas, Sara I.; López-Climent, María F.; Valeria Muñoz; Aurelio Gómez-Cadenas

    2013-01-01

    Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upre...

  10. The Surgically Induced Stress Response

    OpenAIRE

    Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N

    2013-01-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress respo...

  11. The Surgically Induced Stress Response

    Science.gov (United States)

    Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N.

    2013-01-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Although the stress response to acute trauma evolved to improve chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246

  12. Engineered Nanomaterials Elicit Cellular Stress Responses

    Science.gov (United States)

    Engineered nanomaterials are being developed continuously and incorporated into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on toxicity endpoints without further investigating potential mechanisms or pathway...

  13. A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue

    Directory of Open Access Journals (Sweden)

    Drubin David

    2011-10-01

    Full Text Available Abstract Background Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans exposed to chronic levels of environmental stress, including inhaled cigarette smoke (CS. Systems biology data sets (e.g., transcriptomics, phosphoproteomics, metabolomics could enable comprehensive investigation of the biological impact of these stressors. However, detailed mechanistic networks are needed to determine which specific pathways are activated in response to different stressors and to drive the qualitative and eventually quantitative assessment of these data. A current limiting step in this process is the availability of detailed mechanistic networks that can be used as an analytical substrate. Results We have built a detailed network model that captures the biology underlying the physiological cellular response to endogenous and exogenous stressors in non-diseased mammalian pulmonary and cardiovascular cells. The contents of the network model reflect several diverse areas of signaling, including oxidative stress, hypoxia, shear stress, endoplasmic reticulum stress, and xenobiotic stress, that are elicited in response to common pulmonary and cardiovascular stressors. We then tested the ability of the network model to identify the mechanisms that are activated in response to CS, a broad inducer of cellular stress. Using transcriptomic data from the lungs of mice exposed to CS, the network model identified a robust increase in the oxidative stress response, largely mediated by the anti-oxidant NRF2 pathways, consistent with previous reports on the impact of CS exposure in the mammalian lung. Conclusions The results presented here describe the construction of a cellular stress

  14. Regulation of Stress Responses and Translational Control by Coronavirus

    Science.gov (United States)

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  15. Regulation of Stress Responses and Translational Control by Coronavirus

    Directory of Open Access Journals (Sweden)

    To Sing Fung

    2016-07-01

    Full Text Available Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.

  16. Cellular effects of swim stress in the dorsal raphe nucleus

    OpenAIRE

    Kirby, Lynn G.; Pan, Yu-Zhen; Freeman-Daniels, Emily; Rani, Shobha; Nunan, John D.; Akanwa, Adaure; Beck, Sheryl G

    2007-01-01

    Swim stress regulates forebrain 5-hydroxytryptamine (5-HT) release in a complex manner and its effects are initiated in the serotonergic dorsal raphe nucleus (DRN). The purpose of this study was to examine the effects of swim stress on the physiology of DRN neurons in conjunction with 5-HT immunohistochemistry. Basic membrane properties, 5-HT1A and 5-HT1B receptor-mediated responses and glutamatergic excitatory postsynaptic currents (EPSCs) were measured using whole-cell patch clamp technique...

  17. An overview of stress response proteomes in Listeria monocytogenes

    OpenAIRE

    Soni, K A; Nannapaneni, R; Tasara, T

    2011-01-01

    Listeria monocytogenes adapts to diverse stress conditions including cold, osmotic, heat, acid, and alkali stresses encountered during food processing and preservation which is a serious food safety threat. In this review, we have presented the major findings on this bacterium’s stress response proteomes to date along with the different approaches used for its proteomic analysis. The key proteome findings on cold, heat shock, salt, acid, alkaline and HHP stresses illustrate that the cellular ...

  18. Fluorosis Caused Cellular Apoptosis and Oxidative Stress of Rat Kidneys

    Institute of Scientific and Technical Information of China (English)

    SONG Yang; WANG Jin-cheng; XU Hui; DU Zhen-wu; ZHANG Gui-zhen; SELIM Hamid Abdu; LI Guang-sheng

    2013-01-01

    As the strongest electronegative element,fluorine can stimulate the production of superoxide radicals in cells.In view of the important roles of kidneys in bone metabolism,the authors analyzed the quantitative pathomorphological characteristics of renal damage and the potential cellular apoptosis and oxidative stress mechanisms in rats treated with excessive fluoride.Wistar rats were exposed to 50 mg F-(110.5 mg NaF)/L,100 mg F-(221.0 mg NaF)/Land 150 mg F (331.5 mg NaF)/L in drinking water for 70 and 140 d,respectively.Microscope with image analysis was used to quantitate pathomorphological changes in renal tissues of the rats.Reactive oxygen species(ROS),the cell cycle and apoptosis of renal cells were measured by flow cytometry and TUNEL technique(terminal deoxynucleotidyl transferase dUTP nick end labeling),respectively.The ion concentrations in serum and renal functional parameters were detected by automatic biochemical analyzer.Quantitative analysis results demonstrate the expanded Bowman's space of glomerulus and obvious dilatation of renal tubule.TUNEL technique revealed that NBT/BCIP (nitro blue tetrazoliurn/5-bromo-4-chloro-3′-indolylphosphate,p-toluidine salt)-staining positive apoptotic cells selectively located in medullocortical junction areas.The data suggest that renal damage in chronic fluorostic rats is associated with the cellular apoptosis and oxidative stress.

  19. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Kahkashan; Sil, Parames C., E-mail: parames@jcbose.ac.in

    2015-02-01

    The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks. Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus. - Highlights: • STZ induced cellular stress plays a vital role in pancreatic dysfunction. • Cellular stress causes inflammation, pancreatic islet cell death and diabetes. • Deregulation of Nrf-2

  20. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats

    International Nuclear Information System (INIS)

    The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks. Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus. - Highlights: • STZ induced cellular stress plays a vital role in pancreatic dysfunction. • Cellular stress causes inflammation, pancreatic islet cell death and diabetes. • Deregulation of Nrf-2

  1. Role of c-Abl in the DNA damage stress response

    Institute of Scientific and Technical Information of China (English)

    Yosef SHAUL; Merav BEN-YEHOYADA

    2005-01-01

    c-Abl has been implicated in many cellular processes including differentiation, division, adhesion, death, and stress response. c-Abl is a latent tyrosine kinase that becomes activated in response to numerous extra- and intra-cellular stimuli. Here we briefly review the current knowledge about c-Abl involvement in the DNA-damage stress response and its implication on cell physiology.

  2. Redox Sensitivities of Global Cellular Cysteine Residues under Reductive and Oxidative Stress.

    Science.gov (United States)

    Araki, Kazutaka; Kusano, Hidewo; Sasaki, Naoyuki; Tanaka, Riko; Hatta, Tomohisa; Fukui, Kazuhiko; Natsume, Tohru

    2016-08-01

    The protein cysteine residue is one of the amino acids most susceptible to oxidative modifications, frequently caused by oxidative stress. Several applications have enabled cysteine-targeted proteomics analysis with simultaneous detection and quantitation. In this study, we employed a quantitative approach using a set of iodoacetyl-based cysteine reactive isobaric tags (iodoTMT) and evaluated the transient cellular oxidation ratio of free and reversibly modified cysteine thiols under DTT and hydrogen peroxide (H2O2) treatments. DTT treatment (1 mM for 5 min) reduced most cysteine thiols, irrespective of their cellular localizations. It also caused some unique oxidative shifts, including for peroxiredoxin 2 (PRDX2), uroporphyrinogen decarboxylase (UROD), and thioredoxin (TXN), proteins reportedly affected by cellular reactive oxygen species production. Modest H2O2 treatment (50 μM for 5 min) did not cause global oxidations but instead had apparently reductive effects. Moreover, with H2O2, significant oxidative shifts were observed only in redox active proteins, like PRDX2, peroxiredoxin 1 (PRDX1), TXN, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Overall, our quantitative data illustrated both H2O2- and reduction-mediated cellular responses, whereby while redox homeostasis is maintained, highly reactive thiols can potentiate the specific, rapid cellular signaling to counteract acute redox stress.

  3. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  4. Involvement of oxygen reactive species in the cellular response of carcinoma cells to irradiation

    International Nuclear Information System (INIS)

    After a presentation of oxygen reactive species and their sources, the author describes the enzymatic and non-enzymatic anti-oxidative defenses, the physiological roles of oxygen reactive species, the oxidative stress, the water radiolysis, the anti-oxidative enzymes and the effects of ionizing radiations. The author then reports an investigation on the contribution of oxygen reactive species in the cellular response to irradiation, and an investigation on the influence of the breathing chain on the persistence of a radio-induced oxidative stress. He also reports a research on molecular mechanisms involved in the cellular radio-sensitivity

  5. Auxin response under osmotic stress.

    Science.gov (United States)

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment. PMID:27052306

  6. Auxin response under osmotic stress.

    Science.gov (United States)

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.

  7. Extracytoplasmic Stress Responses Induced by Antimicrobial Cationic Polyethylenimines

    OpenAIRE

    Lander, Blaine A.; Checchi, Kyle D.; Koplin, Stephen A.; Smith, Virginia F.; Domanski, Tammy L.; Isaac, Daniel D.; Lin, Shirley

    2012-01-01

    The ability of an antimicrobial, cationic polyethylenimine (PEI+) to induce the three known extracytoplasmic stress responses of Escherichia coli was quantified. Exposure of E. coli to PEI+ in solution revealed specific, concentration-dependent induction of the Cpx extracytoplasmic cellular stress response, ~2.0-2.5 fold at 320 μg/mL after 1.5 hours without significant induction of the σE or Bae stress responses. In comparison, exposure of E. coli to a non-antimicrobial polymer, polyethylene ...

  8. Combinatorial stress responses: direct coupling of two major stress responses in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Daniel R. Brown

    2014-09-01

    Full Text Available Nitrogen is an essential element for all life, and this is no different for the bacterial cell. Numerous cellular macromolecules contain nitrogen, including proteins, nucleic acids and cell wall components. In Escherichia coli and related bacteria, the nitrogen stress (Ntr response allows cells to rapidly sense and adapt to nitrogen limitation by scavenging for alternative nitrogen sources through the transcriptional activation of transport systems and catabolic and biosynthetic operons by the global transcriptional regulator NtrC. Nitrogen-starved bacterial cells also synthesize the (pppGpp effector molecules of a second global bacterial stress response - the stringent response. Recently, we showed that the transcription of relA, the gene which encodes the major (pppGpp synthetase in E. coli, is activated by NtrC during nitrogen starvation. Our results revealed that in E. coli and related bacteria, NtrC functions in combinatorial stress and serves to couple two major stress responses, the Ntr response and stringent response.

  9. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  10. Intraspecific variation in cellular and biochemical heat response strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae].

    Directory of Open Access Journals (Sweden)

    Sandra Troschinski

    Full Text Available Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70 was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group

  11. Modeling In Vitro Cellular Responses to Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dwaipayan Mukherjee

    2014-01-01

    Full Text Available Engineered nanoparticles (NPs have been widely demonstrated to induce toxic effects to various cell types. In vitro cell exposure systems have high potential for reliable, high throughput screening of nanoparticle toxicity, allowing focusing on particular pathways while excluding unwanted effects due to other cells or tissue dosimetry. The work presented here involves a detailed biologically based computational model of cellular interactions with NPs; it utilizes measurements performed in human cell culture systems in vitro, to develop a mechanistic mathematical model that can support analysis and prediction of in vivo effects of NPs. The model considers basic cellular mechanisms including proliferation, apoptosis, and production of cytokines in response to NPs. This new model is implemented for macrophages and parameterized using in vitro measurements of changes in cellular viability and mRNA levels of cytokines: TNF, IL-1b, IL-6, IL-8, and IL-10. The model includes in vitro cellular dosimetry due to nanoparticle transport and transformation. Furthermore, the model developed here optimizes the essential cellular parameters based on in vitro measurements, and provides a “stepping stone” for the development of more advanced in vivo models that will incorporate additional cellular and NP interactions.

  12. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  13. Cellular response of Campylobacter jejuni to trisodium phosphate

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Cohn, M. T.; Stabler, R. A.;

    2012-01-01

    The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal...

  14. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    Science.gov (United States)

    With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate t...

  15. Q fever in pregnant goats: humoral and cellular immune responses

    NARCIS (Netherlands)

    Roest, H.I.J.; Post, J.; Gelderen, van E.; Zijderveld, van F.G.; Rebel, J.M.J.

    2013-01-01

    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are

  16. CELLULAR RESPONSES TO DNA DAMAGE AND ONCOGENESIS BY THE p53 AND pRb/E2F PATHWAYS

    OpenAIRE

    Elza Ibrahim Auerkari; Ismu Suharsono Suwelo; Achmad Tjarta; Santoso Cornain; T. W. Rahardjo; Eto, K; Ikeda, M.A

    2015-01-01

    Cellular responses to stress including DNA damage, show multiple options involving the mechanisms of growth arrest. DNA repair and programmed cell death or apoptosis. Failures in these mechanisms can result in oncogenesis or accelerated senescence. Much of the response is coordinated by p53, a nuclear phosphoprotein with a central role in the defences against physical, chemical and pathogenic agents which challenge the DNA integrity. The p53 pathways for mobilising the cellular defences are l...

  17. Neuroendocrine system response modulates oxidative cellular damage in burn patients.

    Science.gov (United States)

    Xie, Xiao-Qi; Shinozawa, Yotaro; Sasaki, Junichi; Takuma, Kiyotsugu; Akaishi, Satoshi; Yamanouchi, Satoshi; Endo, Tomoyuki; Nomura, Ryosuke; Kobayashi, Michio; Kudo, Daisuke; Hojo, Nobuko

    2007-02-01

    Oxygen-derived free radicals play important roles in pathophysiological processes in critically ill patients, but the data characterizing relationships between radicals and neuroendocrine system response are sparse. To search the cue to reduce the oxidative cellular damage from the point of view of neuroendocrine system response, we studied the indicators of neuroendocrine and inflammatory responses excreted in urine in 14 burn patients (42.3 +/- 31.4 years old, and 32.3 +/- 27.6% burn of total body surface area [%TBSA]) during the first seven days post burn. The daily mean amounts of urinary excretion of 8-hydroxy-2'-deoxy-guanosine (8-OHdG), a marker of oxidative cellular damage, were above the upper limit of the standard value during the studied period. The total amount of urinary excretion of 8-OHdG in the first day post burn correlated with burn severity indices: %TBSA (r = 0.63, p = 0.021) and burn index (r = 0.70, p = 0.008). The daily urinary excretion of 8-OHdG correlated with the daily urinary excretion of norepinephrine and nitrite plus nitrate (NOx) during the studied period except day 2 post burn, and correlated with the daily urinary excretion of 17-hydroxycorticosteriod (17-OHCS) in days 2, 3, and 7 post burn. These data suggest that oxidative cellular damage correlates with burn severity and neuroendocrine system response modulates inflammation and oxidative cellular damage. Modulation of neuroendocrine system response and inflammation in the treatment in the early phase of burn may be useful to reduce the oxidative cellular damage and to prevent multiple organ failures in patients with extensive burn.

  18. Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response.

    Science.gov (United States)

    Kim, Hyun-Eui; Grant, Ana Rodrigues; Simic, Milos S; Kohnz, Rebecca A; Nomura, Daniel K; Durieux, Jenni; Riera, Celine E; Sanchez, Melissa; Kapernick, Erik; Wolff, Suzanne; Dillin, Andrew

    2016-09-01

    Defects in mitochondrial metabolism have been increasingly linked with age-onset protein-misfolding diseases such as Alzheimer's, Parkinson's, and Huntington's. In response to protein-folding stress, compartment-specific unfolded protein responses (UPRs) within the ER, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small-molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding. PMID:27610574

  19. Enhanced susceptibility of T lymphocytes to oxidative stress in the absence of the cellular prion protein.

    Science.gov (United States)

    Aude-Garcia, Catherine; Villiers, Christian; Candéias, Serge M; Garrel, Catherine; Bertrand, Caroline; Collin, Véronique; Marche, Patrice N; Jouvin-Marche, Evelyne

    2011-02-01

    The cellular prion glycoprotein (PrP(C)) is ubiquitously expressed but its physiologic functions remain enigmatic, particularly in the immune system. Here, we demonstrate in vitro and in vivo that PrP(C) is involved in T lymphocytes response to oxidative stress. By monitoring the intracellular level of reduced glutathione, we show that PrP(-/-) thymocytes display a higher susceptibility to H(2)O(2) exposure than PrP(+/+) cells. Furthermore, we find that in mice fed with a restricted diet, a regimen known to increase the intracellular level of ROS, PrP(-/-) thymocytes are more sensitive to oxidative stress. PrP(C) function appears to be specific for oxidative stress, since no significant differences are observed between PrP(-/-) and PrP(+/+) mice exposed to other kinds of stress. We also show a marked evolution of the redox status of T cells throughout differentiation in the thymus. Taken together, our results clearly ascribe to PrP(C) a protective function in thymocytes against oxidative stress.

  20. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress.

    Directory of Open Access Journals (Sweden)

    Clement T Y Chan

    2010-12-01

    Full Text Available Decades of study have revealed more than 100 ribonucleoside structures incorporated as post-transcriptional modifications mainly in tRNA and rRNA, yet the larger functional dynamics of this conserved system are unclear. To this end, we developed a highly precise mass spectrometric method to quantify tRNA modifications in Saccharomyces cerevisiae. Our approach revealed several novel biosynthetic pathways for RNA modifications and led to the discovery of signature changes in the spectrum of tRNA modifications in the damage response to mechanistically different toxicants. This is illustrated with the RNA modifications Cm, m(5C, and m(2 (2G, which increase following hydrogen peroxide exposure but decrease or are unaffected by exposure to methylmethane sulfonate, arsenite, and hypochlorite. Cytotoxic hypersensitivity to hydrogen peroxide is conferred by loss of enzymes catalyzing the formation of Cm, m(5C, and m(2 (2G, which demonstrates that tRNA modifications are critical features of the cellular stress response. The results of our study support a general model of dynamic control of tRNA modifications in cellular response pathways and add to the growing repertoire of mechanisms controlling translational responses in cells.

  1. The p53 Codon 72 Polymorphism Modifies the Cellular Response to Inflammatory Challenge in the Liver.

    Science.gov (United States)

    Leu, Julia I-Ju; Murphy, Maureen E; George, Donna L

    2013-01-01

    The p53 protein is a critical stress-response mediator and signal coordinator in cellular metabolism and environmental exposure to deleterious agents. In human populations, the p53 gene contains a common single nucleotide polymorphism (SNP) affecting codon 72 that determines whether a proline (P72) or an arginine (R72) is present at this amino acid position of the polypeptide. Previous studies carried out using human populations, mouse models, and cell culture analyses have provided evidence that this amino acid difference can alter p53 functional activities, and potentially also can affect clinical presentation of disease. The clinical presentation associated with many forms of liver disease is variable, but few of the responsible underlying genetic factors or molecular pathways have been identified. The aim of the present study was to investigate whether the p53 codon 72 polymorphism influences the cellular response to hepatic stresses. A humanized p53 knock-in (Hupki) mouse model was used to address this issue. Mice expressing either the P72 or R72 normal variation of p53 were given an acute-, intermittent- or a chronic challenge, associated with exposure to lipopolysaccharide, D-galactosamine, or a high-fat diet. The results reveal that the livers of the P72 and R72 mice exhibit notable differences in inflammatory and apoptotic response to these distinct forms of stress. Interestingly the influence of this polymorphism on the response to stress is context dependent, with P72 showing increased response to liver toxins (lipopolysaccharide and D-galactosamine), but R72 showing increased response to metabolic stress (high fat diet). When taken together, these data point to the p53 codon 72 polymorphism as an important molecular mediator of events contributing to hepatic inflammation and metabolic homeostasis.

  2. Hyperglycemic stress response in Crustacea

    Directory of Open Access Journals (Sweden)

    S Lorenzon

    2005-09-01

    Full Text Available Blood glucose level in crustaceans is controlled by the crustacean Hyperglycemic Hormone (cHH,released from the eyestalk neuroendocrine centres both under physiological and environmental stressconditions. Hyperglycemia is a typical response of many aquatic animals to pollutants and stress and,in crustaceans, increased circulating cHH and hyperglycemia are reported to result from exposure toseveral environmental stressors. Biogenic amines and enkephalin have been found to mediate therelease of several neurohormones from crustacean neuroendocrine tissue and a model of thecontrolling network is proposed.

  3. Enterovirus Control of Translation and RNA Granule Stress Responses

    Directory of Open Access Journals (Sweden)

    Richard E. Lloyd

    2016-03-01

    Full Text Available Enteroviruses such as poliovirus (PV and coxsackievirus B3 (CVB3 have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs and processing bodies (P-bodies, PBs, which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  4. Enterovirus Control of Translation and RNA Granule Stress Responses

    Science.gov (United States)

    Lloyd, Richard E.

    2016-01-01

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation. PMID:27043612

  5. Ubiquitin Metabolism Affects Cellular Response to Volatile Anesthetics in Yeast

    OpenAIRE

    Wolfe, Darren; Reiner, Thomas; Keeley, Jessica L.; Pizzini, Mark; Keil, Ralph L.

    1999-01-01

    To investigate the mechanism of action of volatile anesthetics, we are studying mutants of the yeast Saccharomyces cerevisiae that have altered sensitivity to isoflurane, a widely used clinical anesthetic. Several lines of evidence from these studies implicate a role for ubiquitin metabolism in cellular response to volatile anesthetics: (i) mutations in the ZZZ1 gene render cells resistant to isoflurane, and the ZZZ1 gene is identical to BUL1 (binds ubiquitin ligase), which appears to be invo...

  6. Extended abstracts: Microbeam Probes of Cellular Radiation Response [final report

    International Nuclear Information System (INIS)

    In July 1999, we organized the 4th International Workshop: Microbeam Probes of Cellular Radiation Response, held in Killiney Bay, Dublin, Ireland, on July 17-18. Roughly 75 scientists (about equal numbers of physicists and biologists) attended the workshop, the fourth in a bi-annual series. Extended abstracts from the meeting were published in the Radiation Research journal, vol. 153, iss. 2, pp. 220-238 (February 2000)(attached). All the objectives in the proposal were met

  7. Monitoring Plant Hormones During Stress Responses

    OpenAIRE

    Engelberth, Marie J.; Engelberth, Jurgen

    2009-01-01

    Plant hormones and related signaling compounds play an important role in the regulation of plant responses to various environmental stimuli and stresses. Among the most severe stresses are insect herbivory, pathogen infection, and drought stress. For each of these stresses a specific set of hormones and/or combinations thereof are known to fine-tune the responses, thereby ensuring the plant's survival. The major hormones involved in the regulation of these responses are jasmonic acid (JA), sa...

  8. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  9. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Ines Ben Rejeb

    2014-10-01

    Full Text Available Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. Such an interaction between both types of stress points to a crosstalk between their respective signaling pathways. This crosstalk may be synergistic and/or antagonistic and include among others the involvement of phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS. In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant’s resistance against pathogens. This review aims at giving an insight into cross-tolerance between abiotic and biotic stress, focusing on the molecular level and regulatory pathways.

  10. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    Science.gov (United States)

    Karamooz Ravari, M. R.; Nasr Esfahani, S.; Taheri Andani, M.; Kadkhodaei, M.; Ghaei, A.; Karaca, H.; Elahinia, M.

    2016-02-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress-strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure.

  11. Naringin abrogated radiation induced oxidative stress through modulation of redox regulated cellular signaling system

    International Nuclear Information System (INIS)

    Ionizing radiation is widely used as major diagnostic and therapeutic applications. However, the deleterious effects of ionizing radiation are due to generation of reactive oxygen species. The amounts of ionizing radiation that can be given to treat malignant tumours are often limited by toxicity in the surrounding normal tissues and organs. The aim of this study was to investigate the role of Naringin (NG), a natural flavonoid, present in many plant parts against radiation induced oxidative stress with an evidence based exploration of the mechanism involved. Isolated murine splenocyte were irradiated with γ radiation (6 Gy) along with/without different concentrations of NG (50 and 100 μM). Biochemical, immunoblot, flow cytometry and immunofluorescence study was subject to be performed to observe its molecular mechanisms of action. Pretreatment with NG significantly prevented the radiation induced intracellular ROS generation, therefore prevented cellular TBARS formation and development of cellular nitrite. NG showed the significant reduction in nuclear DNA damage with respect to irradiated splenocyte through inhibition of DNA-PKcs and p-γH2AX. It recovered radiation induced reduced cell viability through modulation of redox regulated cell signaling system. It resulted in significant inhibition of radiation induced G1/S phase cell cycle arrest mediated by modulation of p53 dependent p21/WAF1 expression followed by Cyclin E and CDK2 expression. NG was involved in blocking radiation induced p38 function; reversed radiation mediated differential stress response through inhibition of NF-κB pathway. It prevented p-IKKα/β, p-IκBα, p-p65, COX2 expression. It also reversed the radiation induced p38/NF-κB guided inflammatory development. Thus it down regulated radiation induced CRP, MCP-1, and iNOS2 gene expression. This novel role of naringin provides a basis for therapeutic applications in future against radiation induced molecular and cellular functional

  12. Oxidative Stress and Anxiety: Relationship and Cellular Pathways

    OpenAIRE

    Jaouad Bouayed; Hassan Rammal; Rachid Soulimani

    2009-01-01

    High O2 consumption, modest antioxidant defenses and a lipid-rich constitution make the brain highly vulnerable to redox imbalances. Oxidative damage in the brain causes nervous system impairment. Recently, oxidative stress has also been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal ...

  13. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.

    Science.gov (United States)

    Soliman, D E; Farid, H A; Hammad, R E; Gad, A M; Bartholomay, L C

    2016-03-01

    Mosquitoes transmit a variety of pathogens that have devastating consequences for global public and veterinary health. Despite their capacity to serve as vectors, these insects have a robust capacity to respond to invading organisms with strong cellular and humoral immune responses. In Egypt, Aedes caspius (Pallas, 1771) has been suspected to act as a bridge vector of Rift Valley Fever virus between animals and humans. Microscopic analysis of Ae. caspius hemolymph revealed the presence of phagocytic cells called granulocytes. We further evaluated cellular immune responses produced by Ae. caspius as a result of exposure to a Gram-negative, and Gram-positive bacterium, and to latex beads. After challenge, a rapid and strong phagocytic response against either a natural or synthetic invader was evident. Hemocyte integrity in bacteria-inoculated mosquitoes was not morphologically affected. The number of circulating granulocytes decreased with age, reducing the overall phagocytic capacity of mosquitoes over time. The magnitude and speed of the phagocytic response suggested that granulocytes act as an important force in the battle against foreign invaders, as has been characterized in other important mosquito vector species.

  14. Overexpression of factor VIII after AAV delivery is transiently associated with cellular stress in hemophilia A mice

    Science.gov (United States)

    Lange, Amy M; Altynova, Ekaterina S; Nguyen, Giang N; Sabatino, Denise E

    2016-01-01

    Factor VIII (FVIII) is a large glycoprotein that is challenging to express both in vitro and in vivo. Several studies suggest that high levels of FVIII expression can lead to cellular stress. After gene transfer, transgene expression is restricted to a subset of cells and the increased FVIII load per cell may impact activation of the unfolded protein response. We sought to determine whether increased FVIII expression in mice after adeno-associated viral liver gene transfer would affect the unfolded protein response and/or immune response to the transgene. The FVIII gene was delivered as B-domain deleted single chain or two chain (light and heavy chains) at a range of doses in hemophilia A mice. A correlation between FVIII expression and anti-FVIII antibody titers was observed. Analysis of key components of the unfolded protein response, binding immunoglobulin protein (BiP), and C/EBP homologous protein (CHOP), showed transient unfolded protein response activation in the single chain treated group expressing >200% of FVIII but not after two chain delivery. These studies suggest that supraphysiological single chain FVIII expression may increase the likelihood of a cellular stress response but does not alter liver function. These data are in agreement with the observed long-term expression of FVIII at therapeutic levels after adeno-associated viral delivery in hemophilia A dogs without evidence of cellular toxicity. PMID:27738645

  15. The Nucleolus Takes Control of Protein Trafficking Under Cellular Stress

    OpenAIRE

    Nalabothula, Narasimharao; Indig, Fred E.; Carrier, France

    2010-01-01

    The nucleolus is a highly dynamic nuclear substructure that was originally described as the site of ribosome biogenesis. The advent of proteomic analysis has now allowed the identification of over 4500 nucleolus associated proteins with only about 30% of them associated with ribogenesis (1). The great number of nucleolar proteins not associated with traditionally accepted nucleolar functions indicates a role for the nucleolus in other cellular functions such as mitosis, cell-cycle progression...

  16. Two Lactococcus lactis thioredoxin paralogues play different roles in responses to arsenate and oxidative stress

    DEFF Research Database (Denmark)

    Efler, Petr; Kilstrup, Mogens; Johnsen, Stig;

    2015-01-01

    Thioredoxin (Trx) maintains intracellular thiol groups in a reduced state and is involved in a wide range of cellular processes, including ribonucleotide reduction, sulphur assimilation, oxidative stress responses and arsenate detoxification. The industrially important lactic acid bacterium Lacto...

  17. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  18. Transgenerational response to stress in Arabidopsis thaliana

    OpenAIRE

    Boyko, Alex; Kovalchuk, Igor

    2010-01-01

    Plants exposed to stress pass the memory of exposure to stress to the progeny. Previously, we showed that the phenomenon of transgenerational memory of stress is of epigenetic nature and depends on the function of Dicer-like (DCL) 2 and DCL3 proteins. Here, we discuss a possible role of DNA methylation and function of small RNAs in establishing and maintaining transgenerational responses to stress. Our new data report that memory of stress is passed to the progeny predominantly through the fe...

  19. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress

    Directory of Open Access Journals (Sweden)

    Bross Peter

    2009-05-01

    Full Text Available Abstract Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

  20. Avian renal proximal tubule urate secretion is inhibited by cellular stress-induced AMP-activated protein kinase.

    Science.gov (United States)

    Bataille, Amy M; Maffeo, Carla L; Renfro, J Larry

    2011-06-01

    Urate is a potent antioxidant at high concentrations but it has also been associated with a wide variety of health risks. Plasma urate concentration is determined by ingestion, production, and urinary excretion; however, factors that regulate urate excretion remain uncertain. The objective of this study was to determine whether cellular stress, which has been shown to affect other renal transport properties, modulates urate secretion in the avian renal proximal tubule. Chick kidney proximal tubule epithelial cell primary culture monolayers were used to study the transepithelial transport of radiolabeled urate. This model allowed examination of the processes, such as multidrug resistance protein 4 (Mrp4, Abcc4), which subserve urate secretion in a functional, intact, homologous system. Our results show that the recently implicated urate efflux transporter, breast cancer resistance protein (ABCG2), does not significantly contribute to urate secretion in this system. Exposure to a high concentration of zinc for 6 h induced a cellular stress response and a striking decrease in transepithelial urate secretion. Acute exposure to zinc had no effect on transepithelial urate secretion or isolated membrane vesicle urate transport, suggesting involvement of a cellular stress adaptation. Activation of AMP-activated protein kinase (AMPK), a candidate modulator of ATP-dependent urate efflux, by 5'-aminoimidazole-4-carboxamide 1-β-d-ribo-furanoside caused a decrease in urate secretion similar to that seen with zinc-induced cellular stress. This effect was prevented with the AMPK inhibitor compound C. Notably, the decrease in urate secretion seen with zinc-induced cellular stress was also prevented by compound C, implicating AMPK in regulation of renal uric acid excretion. PMID:21429974

  1. HSV-I and the cellular DNA damage response

    OpenAIRE

    Smith, Samantha; Weller, Sandra K.

    2015-01-01

    Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic subunit levels were depleted i...

  2. Agreeableness, Extraversion, Stressor and Physiological Stress Response

    OpenAIRE

    Xiaoyuan Chu; Zhentao Ma; Yuan Li; Jing Han

    2015-01-01

    Based on the theoretical analysis, with first-hand data collection and using multiple regression models, this study explored the relationship between agreeableness, extraversion, stressor and stress response and figured out interactive effect of agreeableness, extraversion, and stressor on stress response. We draw on the following conclusions: (1) the interaction term of stressor (work) and agreeableness can negatively predict physiological stress response; (2) the interaction term of stresso...

  3. Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation

    Science.gov (United States)

    Kalies, Stefan; Keil, Sebastian; Sender, Sina; Hammer, Susanne C.; Antonopoulos, Georgios C.; Schomaker, Markus; Ripken, Tammo; Escobar, Hugo Murua; Meyer, Heiko; Heinemann, Dag

    2015-11-01

    Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle-mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle-mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle-mediated laser manipulation.

  4. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome.

    Science.gov (United States)

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  5. Neuronal responses to physiological stress

    OpenAIRE

    Konstantinos eKagias; Camilla eNehammer; Roger ePocock

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. Physiological stress can be divided into three different aspects: environmental stress, intrinsic developmental stress and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature and redox state for example, trigger molecular events that enable an organism to adapt, survive and reproduce...

  6. Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors.

    Directory of Open Access Journals (Sweden)

    Laura D Mydlarz

    Full Text Available BACKGROUND: Climate warming is causing environmental change making both marine and terrestrial organisms, and even humans, more susceptible to emerging diseases. Coral reefs are among the most impacted ecosystems by climate stress, and immunity of corals, the most ancient of metazoans, is poorly known. Although coral mortality due to infectious diseases and temperature-related stress is on the rise, the immune effector mechanisms that contribute to the resistance of corals to such events remain elusive. In the Caribbean sea fan corals (Anthozoa, Alcyonacea: Gorgoniidae, the cell-based immune defenses are granular acidophilic amoebocytes, which are known to be involved in wound repair and histocompatibility. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate for the first time in corals that these cells are involved in the organismal response to pathogenic and temperature stress. In sea fans with both naturally occurring infections and experimental inoculations with the fungal pathogen Aspergillus sydowii, an inflammatory response, characterized by a massive increase of amoebocytes, was evident near infections. Melanosomes were detected in amoebocytes adjacent to protective melanin bands in infected sea fans; neither was present in uninfected fans. In naturally infected sea fans a concurrent increase in prophenoloxidase activity was detected in infected tissues with dense amoebocytes. Sea fans sampled in the field during the 2005 Caribbean Bleaching Event (a once-in-hundred-year climate event responded to heat stress with a systemic increase in amoebocytes and amoebocyte densities were also increased by elevated temperature stress in lab experiments. CONCLUSIONS/SIGNIFICANCE: The observed amoebocyte responses indicate that sea fan corals use cellular defenses to combat fungal infection and temperature stress. The ability to mount an inflammatory response may be a contributing factor that allowed the survival of even infected sea fan corals during a

  7. Orientational Polarizability and Stress Response of Biological Cells

    Science.gov (United States)

    Safran, S. A.; de, R.; Zemel, A.

    We present a theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes random forces as well as forces that arise from the deformation of the matrix and those due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate both the static and high frequency limits of the orientational response in terms of the cellular polarizability. For systems in which the forces due to regulation and activity dominate the mechanical forces, we show that there is a non-linear dynamical response which, in the high frequency limit, causes the cell to orient nearly perpendicular to the direction of the applied stress.

  8. The effect of strength training on muscle cellular stress in prostate cancer patients on ADT

    Directory of Open Access Journals (Sweden)

    T S Nilsen

    2016-05-01

    Full Text Available Background Androgen deprivation therapy (ADT for prostate cancer (PCa is associated with several side effects, including loss of muscle mass. Muscle atrophy is associated with reduced mitochondrial function and increased muscle cellular stress that may be counteracted by strength training. Thus, the aim of this study was to investigate the effect of strength training on mitochondrial proteins and indicators of muscle cellular stress in PCa patients on ADT. Methods Men diagnosed with locally advanced PCa receiving ADT were randomised to a strength training group (STG (n=16 or a control group (CG (n=15 for 16 weeks. Muscle biopsies were collected pre- and post-intervention from the vastus lateralis muscle, and analysed for mitochondrial proteins (citrate synthase, cytochrome c oxidase subunit IV (COXIV, HSP60 and indicators of muscle cellular stress (heat shock protein (HSP 70, alpha B-crystallin, HSP27, free ubiquitin, and total ubiquitinated proteins using Western blot and ELISA. Results No significant intervention effects were observed in any of the mitochondrial proteins or indicators of muscle cellular stress. However, within-group analysis revealed that the level of HSP70 was reduced in the STG and a tendency towards a reduction in citrate synthase levels was observed in the CG. Levels of total ubiquitinated proteins were unchanged in both groups. Conclusion Although reduced HSP70 levels indicated reduced muscle cellular stress in the STG, the lack of an intervention effect precluded any clear conclusions.

  9. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    Science.gov (United States)

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  10. Neuronal Responses to Physiological Stress

    OpenAIRE

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition t...

  11. Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kho, Chang Won; Lee, Phil Young; Bae, Kwang-Hee; Kang, Sunghyun; Cho, Sayeon; Lee, Do Hee; Sun, Choong-Hyun; Yi, Gwan-Su; Park, Byoung Chul; Park, Sung Goo

    2008-02-01

    The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for H2O2-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3- dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, H2O2-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1. PMID:18309271

  12. Molecular and biochemical responses of Volvox carteri to oxidative stress

    Science.gov (United States)

    Lingappa, U.; Rankin-Gee, E. K.; Lera, M.; Bebour, B.; Marcu, O.

    2014-03-01

    Understanding the intracellular response to environmental stresses is a key aspect to understanding the limits of habitability for life as we know it. A wide range of relevant stressors, from heat shock to radiation, result in the intracellular production of reactive oxygen species (ROS). ROS are used physiologically as signaling molecules to cause changes in gene expression and metabolism. However, ROS, including superoxide (O2-) and peroxides, are also highly reactive molecules that cause oxidative damage to proteins, lipids and DNA. Here we studied stress response in the multicellular, eukaryotic green alga Volvox carteri, after exposure to heat shock conditions. We show that the ROS response to heat stress is paralleled by changes in photosynthetic metabolism, antioxidant enzyme activity and gene expression, and fluctuations in the elemental composition of cells. Metabolism, as measured by pulse amplitude modulated (PAM) fluorometry over two hours of heat stress, showed a linear decrease in the photosynthetic efficiency of Volvox. ROS quantification uncovered an increase in ROS in the culture medium, paralleled by a decrease in ROS within the Volvox colonies, suggesting an export mechanism is utilized to mitigate stress. Enzyme kinetics indicated an increase in superoxide dismutase (SOD) activity over the heat stress timecourse. Using X-ray fluorescence (XRF) at the Stanford Synchrotron Radiation Lightsource, we show that these changes coincide with cell-specific import/export and intracellular redistribution of transition elements and halides, suggesting that the cellular metallome is also engaged in mediating oxidative stress in Volvox.

  13. The cellular bases of antibody responses during dengue virus infection

    Directory of Open Access Journals (Sweden)

    Juan Carlos Yam-Puc

    2016-06-01

    Full Text Available Dengue virus (DENV is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell dependent processes, we know rather little about the (acute, chronic or memory B cell responses and the complex cellular mechanisms generating these Abs during DENV infections.This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events like the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation and germinal centers (GCs formation (the source of affinity-matured class-switched memory Abs, till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated.

  14. The Cellular Bases of Antibody Responses during Dengue Virus Infection

    Science.gov (United States)

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  15. The Cellular Bases of Antibody Responses during Dengue Virus Infection.

    Science.gov (United States)

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  16. Feedbacks and tipping points in organismal response to oxidative stress.

    Science.gov (United States)

    Klanjscek, Tin; Muller, Erik B; Nisbet, Roger M

    2016-09-01

    Biological feedbacks play a crucial role in determining effects of toxicants, radiation, and other environmental stressors on organisms. Focusing on reactive oxygen species (ROS) that are increasingly recognized as a crucial mediator of many stressor effects, we investigate how feedback strength affects the ability of organisms to control negative effects of exposure. We do this by developing a general theoretical framework for describing effects of a wide range of stressors and species. The framework accounts for positive and negative feedbacks representing cellular processes: (i) production of ROS due to metabolism and the stressor, (ii) ROS reactions with cellular compounds that cause damage, and (iii) cellular control of both ROS and damage. We suggest functional forms that capture generic properties of cellular control mechanisms constituting the feedbacks, assess stability of equilibrium states in the resulting models, and investigate tipping points at which cellular control breaks down causing unregulated increase of ROS and damage. Depending on the chosen functional forms, the models can have zero, one, or two positive steady states; except in one singular case, the steady state with lowest values of ROS and damage is locally stable. We found two types of tipping points: those induced by changes in the parameters (including the stressor intensity), and those induced by the history of exposure, i.e. ROS and damage levels. The relatively simple models effectively describe several patterns of cellular responses to stress, such as the covariation of ROS and damage, the break-down of cellular control leading to explosion of ROS and/or damage, increase in damage even when ROS is (near)-constant, and the effects of exposure history on the ability of the cell to handle additional stress. The models quantify dynamics of cellular control, and could therefore be used to estimate the metabolic costs of stress and help integrate them into models that use energetic

  17. Gene expression dynamics in the oxidative stress response of fission yeast

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil

    , is known to damage cellular components. In humans, redox imbalance is associated withaging, cancer, atherosclerosis, Alzheimer’s and Parkinson’s disease among others. Therefore, studies investigating the cellular mechanisms employed in response to oxidative stress have markedly increased in recent years...

  18. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    Science.gov (United States)

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  19. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    OpenAIRE

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths’ relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a measure assessing interpersonal stress responses; youth and caregivers completed semi-structured interviews assessing youths’ life stress and psychopatho...

  20. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  1. Stress Responses in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Frees, Dorte; Ingmer, Hanne

    2016-01-01

    Staphylococcus aures are prominent members of the normal flora of humans and animals, but are also a major cause of mild and severe infections. To persist and disseminate in the human host, and to survive in environmental settings, such as hospitals, S. aureus have developed a plethora of cellular...

  2. Cellular response to titanium discs coated with polyelectrolyte multilayer films

    Institute of Scientific and Technical Information of China (English)

    Jing Zhan; Qiao-jie Luo; Ying Huang; Xiao-dong Li

    2014-01-01

    The purpose of this study was to investigate the effects of polyelectrolyte multilayer (PEM) coatings on the biological behavior of titanium (Ti) substrates. Collagen typeΙ/hyaluronic acid (Col/HA) and chitosan/hyaluronic acid (Chi/HA) multilayer PEM coatings were in-troduced onto Ti substrates using layer-by-layer assembly. Contact angle instruments and quartz crystal microbalance were used for film characterization. The results obtained showed that both Col/HA and Chi/HA surfaces had high hydrophilicity and promoted cell adhesion in MC3T3-E1 pre-osteoblast and human gingival fibroblast cells. In addition, the synthesis of function-related proteins and gene expression levels in both MC3T3-E1 and fibroblast cells was higher for the Col/HA coating compared with the Chi/HA coating, indicating better cellu-lar response to the Col/HA coating.

  3. Mechanism of cellular response to nanoscale aggregates of small molecules

    Science.gov (United States)

    Kuang, Yi

    This dissertation research focused on the illustration of the molecular mechanism of cellular response to nanoscale aggregates formed by small molecules. There are five chapters in this dissertation. Chapter 1 summarizes the current research on the evaluation of cell response (i.e., biocompatibility/cytotoxicity) to small molecular hydrogelators. Chapter 2 describes an interesting phenomenon that supramolecular hydrogelators consisting of N-terminated dipeptides, which exhibit selective inhibitory effects against cancer cells. This study calls for the development of a new approach for identification of protein targets of the hydrogelators. Chapter 3 describes the evaluation of interactions between cytosol proteins of a mammalian cell line and morphologically different nanoscale molecular aggregates formed by small peptidic molecules. Chapter 4 describes the research on the mechanism of a type of molecular aggregates, which cluster short microtubules to prevent the growth of microtubule. This unprecedented mechanism of "self-assembly to interfere with self-organization " contributes to inhibiting growth of cancer cells in several mammalian cell based assays and a xenograft tumor mice model. At the end, Chapter 5 reports a novel supramolecular hydrogelator, which consists of fluorene and the pentapeptide epitope (TIGYG) of potassium ion (K+) channels, to self-assemble in water to form the tunable, hierarchical nanostructures dictated by the concentration of K+. In conclusion, this dissertation research demonstrates a new approach for investigating cellular target and molecular mechanism of self-assembled aggregates formed by small peptide derivatives based hydrogelators, which will make contribution to the development of supramolecular hydrogelators as biomaterials. Moreover, the differential cytotoxicity of molecular aggregates illustrated in this research promises a new direction for developing anti-cancer drug based on interactions between molecular aggregates and

  4. Chloroplast retrograde regulation of heat stress responses in plants

    Directory of Open Access Journals (Sweden)

    Ai-Zhen eSun

    2016-03-01

    Full Text Available It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the primary susceptible targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. In recent years several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS and organellar gene expression (OGE in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation and cellular coordination in plants.

  5. Nlrp3: an immune sensor of cellular stress and infection

    OpenAIRE

    Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi

    2010-01-01

    Innate immune cells rely on pathogen recognition receptors such as the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family to mount an appropriate immune response against microbial threats. The NLR protein Nlrp3 senses microbial ligands, endogenous danger signals and crystalline substances in the cytosol to trigger the assembly of a large caspase-1-activating protein complex termed the Nlrp3 inflammasome. Autoproteolytic maturation of caspase-1 zymogens in the Nlrp3...

  6. Robust network topologies for generating switch-like cellular responses.

    Directory of Open Access Journals (Sweden)

    Najaf A Shah

    2011-06-01

    Full Text Available Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior, we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting response profiles for both steepness (ultrasensitivity and extent of memory (bistability. Simulations were used to study purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets exhibiting ultrasensitivity or bistability. Results reveal that the distribution of network robustness is highly skewed, with the most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating ultrasensitivity (up to 28% and bistability (up to 18%; strikingly, a purely transcriptional framework is the most fragile in generating either ultrasensitive (up to 3% or bistable (up to 1% responses. The disparity in robustness among the network classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems, that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be useful in discovering new natural motifs and in designing robust synthetic gene networks.

  7. The Nrf2 Activator Vinylsulfone Reduces High Glucose-Induced Neural Tube Defects by Suppressing Cellular Stress and Apoptosis.

    Science.gov (United States)

    Dong, Daoyin; Reece, E Albert; Yang, Peixin

    2016-08-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is one of the primary pathways responsible for the cellular defense system against oxidative stress. Oxidative stress-induced apoptosis is a causal event in diabetic embryopathy. Thus, the Nrf2 pathway may play an important role in the induction of diabetic embryopathy. In the present study, we investigated the potentially protective effect of the Nrf2 activator, vinylsulfone, on high glucose-induced cellular stress, apoptosis, and neural tube defects (NTDs). Embryonic day 8.5 (E8.5) whole mouse embryos were cultured in normal (5 mmol/L) or high (16.7 mmol/L) glucose conditions, with or without vinylsulfone. At a concentration of 10 μmol/L, vinylsulfone had an inhibitory effect on high glucose-induced NTD formation, but it was not significant. At a concentration of 20 μmol/L, vinylsulfone significantly reduced high glucose-induced NTDs. In addition, 20 μmol/L vinylsulfone abrogated the high glucose-induced oxidative stress markers lipid hydroperoxide (LPO), 4-hydroxynonenal (4-HNE), and nitrotyrosine-modified proteins. The high glucose-induced endoplasmic reticulum (ER) stress biomarkers were also suppressed by 20 μmol/L vinylsulfone through the inhibition of phosphorylated protein kinase RNA-like ER kinase (PERK), inositol requiring protein 1α (IRE1a), eukaryotic initiation factor 2α (eIF2a), upregulated C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP), and x-box binding protein 1 (XBP1) messenger RNA splicing. Furthermore, 20 μmol/L vinylsulfone abolished caspase 3 and caspase 8 cleavage, markers of apoptosis, in embryos cultured under high glucose conditions. The Nrf2 activator, vinylsulfone, is protective against high glucose-induced cellular stress, caspase activation, and subsequent NTD formation. Our data suggest that vinylsulfone supplementation is a potential therapy for diabetes-associated neurodevelopmental defects. PMID:26802109

  8. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco;

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), ...

  9. Role of auxin-responsive genes in biotic stress responses

    OpenAIRE

    Ghanashyam, Challa; Jain, Mukesh

    2009-01-01

    Although the phytohormone auxin has been implicated primarily in developmental processes, some recent studies suggest its involvement in stress/defense responses as well. Recently, we identified auxin-responsive genes and reported their comprehensive transcript profiling during various stages of development and abiotic stress responses in crop plant rice. The analysis revealed tissue-specific and overlapping expression profiles of auxin-responsive genes during various stages of reproductive d...

  10. Identification of the cellular mechanisms undelying the contribution of stress and glucocorticoids to Alzheimer's disease pathology

    OpenAIRE

    Sotiropoulos, Ioannis

    2006-01-01

    Clinical evidence suggests the involvement of stress and glucocorticoids (GC) in the etiopathogenesis of Alzheimer’s disease (AD), a disease marked by severe memory impairments as well as alterations in mood and emotional state. The experiments described in this dissertation represent an attempt to establish the cellular mechanisms through which stress and GC may impact on the development of AD. These studies focused on the hippocampus and prefrontal cortex (PFC), brain areas that are severel...

  11. Stress responses from the endoplasmic reticulum in cancer

    Directory of Open Access Journals (Sweden)

    Hironori eKato

    2015-04-01

    Full Text Available The endoplasmic reticulum (ER is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR. The UPR also contributes to the regulation of various intracellular signalling pathways such as calcium signalling and lipid signalling. More recently, the mitochondria-associated ER membrane (MAM, which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signalling, inflammatory signalling, the autophagic response, and the UPR. Interestingly, in cancer, these signalling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signalling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.

  12. A Review on Hemeoxygenase-2: Focus on Cellular Protection and Oxygen Response

    Directory of Open Access Journals (Sweden)

    Jorge Muñoz-Sánchez

    2014-01-01

    Full Text Available Hemeoxygenase (HO system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia.

  13. Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress.

    Science.gov (United States)

    Janeczko, Anna; Oklešťková, Jana; Siwek, Agata; Dziurka, Michał; Pociecha, Ewa; Kocurek, Maciej; Novák, Ondřej

    2013-11-01

    Progesterone is a basic hormone that regulates the metabolism in mammals. The presence of this compound has also been found in certain plants. It is believed that progesterone can regulate growth processes and resistance to stress, however, its precise role in plants remains unknown. The research conducted in this study was aimed at analyzing the content of endogenous progesterone and its cellular binding sites in the leaves of spring wheat exposed to drought. Changes were studied in two cultivars of wheat - a cultivar sensitive to drought (Katoda) and tolerant cultivar (Monsun). Plants had undergone periodic droughts during the seedling stage or in the phase of heading. The occurrence of free progesterone as well as its conjugated forms was observed in wheat studied. The amount of progesterone ranged from 0.2 to 5.8pmolgFW(-1) and was dependent on the cultivar, age of the plants, stage of development and fluctuated as a result of the exposure to drought. Cv. Katoda responded to a water deficit by lowering the amount of progesterone and cv. Monsun by increasing its level. Progesterone in plants grown in limited water conditions occurred primarily in a free form. While in the optimal watering conditions, some of its pool was found in the form of conjugates. In the spring wheat the occurrence of binding sites for progesterone was detected in cell membranes, cytoplasm and nuclei in the range of 10-36fmol/mg of protein. The wheat cultivars tested, Monsun and Katoda, differ in their concentration of cellular binding sites for progesterone. This number varied in the individual fractions during different stages of plant development and due to the effect of drought stress. The number of binding sites for progesterone located in the membrane fraction of seedlings and flag leaves increased significantly under drought in the cv. Katoda (35-46%), but did not change in the cv. Monsun. Whereas the number of cytoplasmic progesterone binding sites increased during the drought in

  14. Broad MICA/B Expression in the Small Bowel Mucosa: A Link between Cellular Stress and Celiac Disease

    Science.gov (United States)

    Allegretti, Yessica L.; Bondar, Constanza; Guzman, Luciana; Cueto Rua, Eduardo; Chopita, Nestor; Fuertes, Mercedes; Zwirner, Norberto W.; Chirdo, Fernando G.

    2013-01-01

    The MICA/B genes (MHC class I chain related genes A and B) encode for non conventional class I HLA molecules which have no role in antigen presentation. MICA/B are up-regulated by different stress conditions such as heat-shock, oxidative stress, neoplasic transformation and viral infection. Particularly, MICA/B are expressed in enterocytes where they can mediate enterocyte apoptosis when recognised by the activating NKG2D receptor present on intraepithelial lymphocytes. This mechanism was suggested to play a major pathogenic role in active celiac disease (CD). Due to the importance of MICA/B in CD pathogenesis we studied their expression in duodenal tissue from CD patients. By immunofluorescence confocal microscopy and flow cytometry we established that MICA/B was mainly intracellularly located in enterocytes. In addition, we identified MICA/B+ T cells in both the intraepithelial and lamina propria compartments. We also found MICA/B+ B cells, plasma cells and some macrophages in the lamina propria. The pattern of MICA/B staining in mucosal tissue in severe enteropathy was similar to that found in in vitro models of cellular stress. In such models, MICA/B were located in stress granules that are associated to the oxidative and ER stress response observed in active CD enteropathy. Our results suggest that expression of MICA/B in the intestinal mucosa of CD patients is linked to disregulation of mucosa homeostasis in which the stress response plays an active role. PMID:24058482

  15. Process Control Minitoring by Stress Response

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Stahl, David A.

    2006-04-17

    Environmental contamination with a variety of pollutants hasprompted the development of effective bioremediation strategies. But howcan these processes be best monitored and controlled? One avenue underinvestigation is the development of stress response systems as tools foreffective and general process control. Although the microbial stressresponse has been the subject of intensive laboratory investigation, theenvironmental reflection of the laboratory response to specific stresseshas been little explored. However, it is only within an environmentalcontext, in which microorganisms are constantly exposed to multiplechanging environmental stresses, that there will be full understanding ofmicrobial adaptive resiliency. Knowledge of the stress response in theenvironment will facilitate the control of bioremediation and otherprocesses mediated by complex microbial communities.

  16. Semantic annotation of biological concepts interplaying microbial cellular responses

    Directory of Open Access Journals (Sweden)

    Carreira Rafael

    2011-11-01

    Full Text Available Abstract Background Automated extraction systems have become a time saving necessity in Systems Biology. Considerable human effort is needed to model, analyse and simulate biological networks. Thus, one of the challenges posed to Biomedical Text Mining tools is that of learning to recognise a wide variety of biological concepts with different functional roles to assist in these processes. Results Here, we present a novel corpus concerning the integrated cellular responses to nutrient starvation in the model-organism Escherichia coli. Our corpus is a unique resource in that it annotates biomedical concepts that play a functional role in expression, regulation and metabolism. Namely, it includes annotations for genetic information carriers (genes and DNA, RNA molecules, proteins (transcription factors, enzymes and transporters, small metabolites, physiological states and laboratory techniques. The corpus consists of 130 full-text papers with a total of 59043 annotations for 3649 different biomedical concepts; the two dominant classes are genes (highest number of unique concepts and compounds (most frequently annotated concepts, whereas other important cellular concepts such as proteins account for no more than 10% of the annotated concepts. Conclusions To the best of our knowledge, a corpus that details such a wide range of biological concepts has never been presented to the text mining community. The inter-annotator agreement statistics provide evidence of the importance of a consolidated background when dealing with such complex descriptions, the ambiguities naturally arising from the terminology and their impact for modelling purposes. Availability is granted for the full-text corpora of 130 freely accessible documents, the annotation scheme and the annotation guidelines. Also, we include a corpus of 340 abstracts.

  17. Relationship between cellular response models and biochemical mechanisms

    International Nuclear Information System (INIS)

    In most cellular response experiments, survival reflects the kinetics of a variety of damage and repair processes. Unfortunately, biochemical studies of molecular repair deal with mechanisms which cannot be readily correlated with these kinetic observations. The difference in these approaches sometimes leads to confusion over terms such as potentially-lethal and sublethal damage. These terms were introduced with operation definitions, derived from kinetic studies of cell survival, but some researchers have since attempted to associate them with specific biochemical mechanisms. Consequently, the terms are often used in totally different ways be different investigators. The use of carefully constructed models originating either out of assumptions based on mechanisms, or on kinetics, can be used to design experiments to eliminate some alternative kinetic schemes. In turn, some mechanisms may also be eliminated, resulting in a reduction in the number of mechanisms which must be investigated biochemically. One must take advantage of a wide range of specialized radiation procedures in order to accomplish this. Examples of the use of such specialized experimental designs, which have led to a more detailed understanding of the kinetics of both algal and mammalian cell responses, are discussed

  18. Epithelial-mesenchymal transition induces endoplasmic-reticulum-stress response in human colorectal tumor cells.

    Directory of Open Access Journals (Sweden)

    Evelyn Zeindl-Eberhart

    Full Text Available Tumor cells are stressed by unfavorable environmental conditions like hypoxia or starvation. Driven by the resulting cellular stress tumor cells undergo epithelial-mesenchymal transition. Additionally, cellular stress is accompanied by endoplasmic reticulum-stress which induces an unfolded protein response. It is unknown if epithelial-mesenchymal transition and endoplasmic reticulum-stress are occurring as independent parallel events or if an interrelationship exists between both of them. Here, we show that in colorectal cancer cells endoplasmic reticulum-stress depends on the induction of ZEB-1, which is a main factor of epithelial-mesenchymal transition. In the absence of ZEB-1 colorectal cancer cells cannot mount endoplasmic reticulum-stress as a reaction on cellular stress situations like hypoxia or starvation. Thus, our data suggest that there is a hierarchy in the development of cellular stress which starts with the presence of environmental stress that induces epithelial-mesenchymal transition which allows finally endoplasmic reticulum-stress. This finding highlights the central role of epithelial-mesenchymal transition during the process of tumorigenesis as epithelial-mesenchymal transition is also associated with chemoresistance and cancer stemness. Consequently, endoplasmic reticulum-stress might be a well suited target for chemotherapy of colorectal cancers.

  19. Distinctive behavioral and cellular responses to fluoxetine in the mouse model for Fragile X syndrome

    Directory of Open Access Journals (Sweden)

    Marko eUutela

    2014-05-01

    Full Text Available Fluoxetine is used as a therapeutic agent for autism spectrum disorder (ASD, including Fragile X syndrome (FXS. The treatment often associates with disruptive behaviors such as agitation and disinhibited behaviors in FXS. To identify mechanisms that increase the risk to poor treatment outcome, we investigated the behavioral and cellular effects of fluoxetine on adult Fmr1 knockout (KO mice, a mouse model for FXS. We found that fluoxetine reduced anxiety-like behavior of both wild type and Fmr1 KO mice seen as shortened latency to enter the center area in the open field test. In Fmr1 KO mice, fluoxetine normalized locomotor hyperactivity but abnormally increased exploratory activity. Reduced Brain-derived neurotrophic factor (BDNF and increased TrkB receptor expression levels in the hippocampus of Fmr1 KO mice associated with inappropriate coping responses under stressful condition and abolished antidepressant activity of fluoxetine. Fluoxetine response in the cell proliferation was also missing in the hippocampus of Fmr1 KO mice when compared with wild type controls. The postnatal expression of serotonin transporter was reduced in the thalamic nuclei of Fmr1 KO mice during the time of transient innervation of somatosensory neurons suggesting that developmental changes of serotonin transporter (SERT expression were involved in the differential cellular and behavioral responses to fluoxetine in wild type and Fmr1 mice. The results indicate that changes of BDNF/TrkB signaling contribute to differential behavioral responses to fluoxetine among individuals with ASD.

  20. A Computational Model of Cellular Response to Modulated Radiation Fields

    International Nuclear Information System (INIS)

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  1. Attenuation of replication stress-induced premature cellular senescence to assess anti-aging modalities.

    Science.gov (United States)

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-01-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21(WAF1) ) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents.

  2. Embryo as an active granular fluid: stress-coordinated cellular constriction chains

    Science.gov (United States)

    Gao, Guo-Jie Jason; Holcomb, Michael C.; Thomas, Jeffrey H.; Blawzdziewicz, Jerzy

    2016-10-01

    Mechanical stress plays an intricate role in gene expression in individual cells and sculpting of developing tissues. However, systematic methods of studying how mechanical stress and feedback help to harmonize cellular activities within a tissue have yet to be developed. Motivated by our observation of the cellular constriction chains (CCCs) during the initial phase of ventral furrow formation in the Drosophila melanogaster embryo, we propose an active granular fluid (AGF) model that provides valuable insights into cellular coordination in the apical constriction process. In our model, cells are treated as circular particles connected by a predefined force network, and they undergo a random constriction process in which the particle constriction probability P is a function of the stress exerted on the particle by its neighbors. We find that when P favors tensile stress, constricted particles tend to form chain-like structures. In contrast, constricted particles tend to form compact clusters when P favors compression. A remarkable similarity of constricted-particle chains and CCCs observed in vivo provides indirect evidence that tensile-stress feedback coordinates the apical constriction activity. Our particle-based AGF model will be useful in analyzing mechanical feedback effects in a wide variety of morphogenesis and organogenesis phenomena.

  3. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    Science.gov (United States)

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd. PMID:27417874

  4. Dynamic deformation and fragmentation response of maraging steel linear cellular alloy

    Science.gov (United States)

    Jakus, Adam E.; Fredenberg, David A.; McCoy, Tammy; Thadhani, Naresh; Cochran, Joe K.

    2012-03-01

    The dynamic deformation and fragmentation response of 25% dense 9-cell linear cellular alloy (LCA) made of unaged 250 maraging steel, fabricated using a direct reduction and extrusion technique, is investigated. Explicit finite element simulations were implemented using AUTODYN finite element code. The maraging steel properties were defined using a Johnson-Cook strength model with previously validated parameters. Rod-on-anvil impact tests were performed using the 7.6mm helium gas gun and the transient deformation and fragmentation response was recorded with highspeed imaging. Analysis of observed deformation states of specimens and finite element simulations reveal that in the case of the 9-cell LCA, dissipation of stress and strain occurs along the interior cell wells resulting in significant and ubiquitous buckling prior to confined fragmentation.

  5. Calculation of impulse responses with a cellular automata algorithm

    Science.gov (United States)

    Barjau, Ana

    2001-05-01

    The air columns in musical instruments usually have a predominant dimension and thus are very often modeled as 1D systems where uniparametric waves propagate. Different algorithms can be found in the literature to simulate this propagation. The more widely used are finite difference schemes and delay lines. A finite difference scheme (FD) is a numerical integration of a differential formulation (the wave equation), while delay lines (DL) use analytical exact solutions of the wave equation over finite lengths. A new and different approach is that of a cellular automaton (CA) scheme. The underlying philosophy is opposite those of FD and DL, as the starting point is not the wave equation. In a CA approach, the phenomenon to be studied is reduced to a few simple physical laws that are applied to a set of cells representing the physical system (in the present case, the propagation medium). In this paper, a CA will be proposed to obtain the impulse response of different bore geometries. The results will be compared to those obtained with other algorithms.

  6. Effects of toxic cellular stresses and divalent cations on the human P2X7 cell death receptor

    OpenAIRE

    Dutot, Mélody; Liang, Hong; Pauloin, Thierry; Brignole-Baudouin, Françoise; Baudouin, Christophe; Warnet, Jean-Michel; Rat, Patrice

    2008-01-01

    Purpose The purpose of this study was to investigate responses to toxic cellular stresses in different human ocular epithelia. Methods Reactivity with a specific anti-P2X7 antibody was studied using confocal fluorescence microscopy on conjunctival, corneal, lens, and retinal cell lines as well as using impression cytology on human ocular cells. Activation of the P2X7 receptor by selective agonists (ATP and benzoylbenzoyl-ATP) and inhibition by antagonists (oATP, KN-62, and PPADS) were evaluat...

  7. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress.

    Science.gov (United States)

    Hernández, Luis E; Sobrino-Plata, Juan; Montero-Palmero, M Belén; Carrasco-Gil, Sandra; Flores-Cáceres, M Laura; Ortega-Villasante, Cristina; Escobar, Carolina

    2015-05-01

    The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation.

  8. Reactive biomolecular divergence in genetically altered yeast cells and isolated mitochondria as measured by biocavity laser spectroscopy : a rapid diagnostic method for studying cellular responses to stress and disease.

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Michael P. (University of California, San Diego, CA); Gourley, Paul Lee; Copeland, Robert Guild; McDonald, Anthony Eugene; Hendricks, Judy K.; Naviaux, Robert K. (Univesity of California, San Diego, CA)

    2006-12-01

    We report an analysis of four strains of baker's yeast (Saccharomyces cerevisiae) using biocavity laser spectroscopy. The four strains are grouped in two pairs (wild type and altered), in which one strain differs genetically at a single locus, affecting mitochondrial function. In one pair, the wild-type rho+ and a rho0 strain differ by complete removal of mitochondrial DNA (mtDNA). In the second pair, the wild-type rho+ and a rho- strain differ by knock-out of the nuclear gene encoding Cox4, an essential subunit of cytochrome c oxidase. The biocavity laser is used to measure the biophysical optic parameter Deltalambda, a laser wavelength shift relating to the optical density of cell or mitochondria that uniquely reflects its size and biomolecular composition. As such, Deltalambda is a powerful parameter that rapidly interrogates the biomolecular state of single cells and mitochondria. Wild-type cells and mitochondria produce Gaussian-like distributions with a single peak. In contrast, mutant cells and mitochondria produce leptokurtotic distributions that are asymmetric and highly skewed to the right. These distribution changes could be self-consistently modeled with a single, log-normal distribution undergoing a thousand-fold increase in variance of biomolecular composition. These features reflect a new state of stressed or diseased cells that we call a reactive biomolecular divergence (RBD) that reflects the vital interdependence of mitochondria and the nucleus.

  9. CELLULAR RESPONSES TO DNA DAMAGE AND ONCOGENESIS BY THE p53 AND pRb/E2F PATHWAYS

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-07-01

    Full Text Available Cellular responses to stress including DNA damage, show multiple options involving the mechanisms of growth arrest. DNA repair and programmed cell death or apoptosis. Failures in these mechanisms can result in oncogenesis or accelerated senescence. Much of the response is coordinated by p53, a nuclear phosphoprotein with a central role in the defences against physical, chemical and pathogenic agents which challenge the DNA integrity. The p53 pathways for mobilising the cellular defences are linked to the pRB/E2D pathways regulating the cell cycle progression. This paper aims to review the current understanding on the networks and main molecular machinery of these processes. In addition, the implications on cellular decision making for the defences as well as revolutionary aspects of these mechanisms are discussed in brief.

  10. TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence.

    Science.gov (United States)

    Kretova, Miroslava; Sabova, Ludmila; Hodny, Zdenek; Bartek, Jiri; Kollarovic, Gabriel; Nelson, Buck D; Hubackova, Sona; Luciakova, Katarina

    2014-12-01

    Oxidative stress and persistent activation of DNA damage response (DDR) are causally involved in the development of cellular senescence, a phenomenon implicated in fundamental (patho)physiological processes such as aging, fetal development and tumorigenesis. Here, we report that adenine nucleotide translocase-2 (ANT2) is consistently down-regulated in all three major forms of cellular senescence: replicative, oncogene-induced and drug-induced, in both normal and cancerous human cells. We previously reported formation of novel NF1/Smad transcription repressor complexes in growth-arrested fibroblasts. Here we show that such complexes form in senescent cells. Mechanistically, binding of the NF1/Smad complexes to the NF1-dependent repressor elements in the ANT2 gene promoter repressed ANT2 expression. Etoposide-induced formation of these complexes and repression of ANT2 were relatively late events co-incident with production and secretion of, and dependent on, TGF-β. siRNA-mediated knock-down of ANT2 in proliferating cells resulted in increased levels of reactive oxygen species (ROS) and activation of the DDR. Knock-down of ANT2, together with etoposide treatment, further intensified ROS production and DNA damage signaling, leading to enhanced apoptosis. Together, our data show that TGF-β-mediated suppression of ANT2 through NF1/Smad4 complexes contributes to oxidative stress and DNA damage during induction of cellular senescence. PMID:25220407

  11. A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN

    Directory of Open Access Journals (Sweden)

    Abdelghani Mazouzi

    2016-04-01

    Full Text Available The cellular response to replication stress requires the DNA-damage-responsive kinase ATM and its cofactor ATMIN; however, the roles of this signaling pathway following replication stress are unclear. To identify the functions of ATM and ATMIN in response to replication stress, we utilized both transcriptomics and quantitative mass-spectrometry-based phosphoproteomics. We found that replication stress induced by aphidicolin triggered widespread changes in both gene expression and protein phosphorylation patterns. These changes gave rise to distinct early and late replication stress responses. Furthermore, our analysis revealed previously unknown targets of ATM and ATMIN downstream of replication stress. We demonstrate ATMIN-dependent phosphorylation of H2AX and of CRMP2, a protein previously implicated in Alzheimer’s disease but not in the DNA damage response. Overall, our dataset provides a comprehensive resource for discovering the cellular responses to replication stress and, potentially, associated pathologies.

  12. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  13. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

    Science.gov (United States)

    Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo

    2016-02-01

    In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide

  14. Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress.

    Science.gov (United States)

    Han, Yanping; Zhou, Dongsheng; Pang, Xin; Zhang, Ling; Song, Yajun; Tong, Zongzhong; Bao, Jingyue; Dai, Erhei; Wang, Jin; Guo, Zhaobiao; Zhai, Junhui; Du, Zongmin; Wang, Xiaoyi; Wang, Jian; Huang, Peitang; Yang, Ruifu

    2005-04-01

    DNA microarray was used as a tool to investigate genome-wide transcriptional responses of Yersinia pestis to hyperosmotic and high-salinity stress. Hyperosmotic stress specifically upregulated genes responsible for ABC-type transport and the cytoplasmic accumulation of certain polysaccharides, while high-salinity stress induced the transcription of genes encoding partition proteins and several global transcriptional regulators. Genes whose transcription was enhanced by both kinds of stress comprised those encoding osmoprotectant transport systems and a set of virulence determinants. The number of genes downregulated by the two kinds of stress was much lower than that of upregulated genes, suggesting that neither kind of stress severely depresses cellular processes in general. Many differentially regulated genes still exist whose functions remain unknown. Y. pestis recognized high-salinity and hyperosmotic stress as different kinds of environmental stimuli, and different mechanisms enabled acclimation to these two kinds of stress, although Y. pestis still executed common mechanisms to accommodate both types of stress.

  15. The Phosphorylation-Dependent Regulation of Mitochondrial Proteins in Stress Responses

    Directory of Open Access Journals (Sweden)

    Yusuke Kanamaru

    2012-01-01

    Full Text Available To maintain cellular homeostasis, cells are equipped with precise systems that trigger the appropriate stress responses. Mitochondria not only provide cellular energy but also integrate stress response signaling pathways, including those regulating cell death. Several lines of evidence suggest that the mitochondrial proteins that function in this process, such as Bcl-2 family proteins in apoptosis and phosphoglycerate mutase family member 5 (PGAM5 in necroptosis, are regulated by several kinases. It has also been suggested that the phosphorylation-dependent regulation of mitochondrial fission machinery, dynamin-related protein 1 (Drp1, facilitates appropriate cellular stress responses. However, mitochondria themselves are also damaged by various stresses. To avoid the deleterious effects exerted by damaged mitochondria, cells remove these mitochondria in a selective autophagic degradation process called mitophagy. Interestingly, several kinases, such as PTEN-induced putative kinase 1 (PINK1 in mammals and stress-responsive mitogen-activated protein (MAP kinases in yeast, have recently been shown to be involved in mitophagy. In this paper, we focus on the phosphorylation-dependent regulation of mitochondrial proteins and discuss the roles of this regulation in the mitochondrial and cellular stress responses.

  16. Ploidy influences cellular responses to gross chromosomal rearrangements in saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Lemoine Sophie

    2011-06-01

    Full Text Available Abstract Background Gross chromosomal rearrangements (GCRs such as aneuploidy are key factors in genome evolution as well as being common features of human cancer. Their role in tumour initiation and progression has not yet been completely elucidated and the effects of additional chromosomes in cancer cells are still unknown. Most previous studies in which Saccharomyces cerevisiae has been used as a model for cancer cells have been carried out in the haploid context. To obtain new insights on the role of ploidy, the cellular effects of GCRs were compared between the haploid and diploid contexts. Results A total number of 21 haploid and diploid S. cerevisiae strains carrying various types of GCRs (aneuploidies, nonreciprocal translocations, segmental duplications and deletions were studied with a view to determining the effects of ploidy on the cellular responses. Differences in colony and cell morphology as well as in the growth rates were observed between mutant and parental strains. These results suggest that cells are impaired physiologically in both contexts. We also investigated the variation in genomic expression in all the mutants. We observed that gene expression was significantly altered. The data obtained here clearly show that genes involved in energy metabolism, especially in the tricarboxylic acid cycle, are up-regulated in all these mutants. However, the genes involved in the composition of the ribosome or in RNA processing are down-regulated in diploids but up-regulated in haploids. Over-expression of genes involved in the regulation of the proteasome was found to occur only in haploid mutants. Conclusion The present comparisons between the cellular responses of strains carrying GCRs in different ploidy contexts bring to light two main findings. First, GCRs induce a general stress response in all studied mutants, regardless of their ploidy. Secondly, the ploidy context plays a crucial role in maintaining the stoichiometric balance

  17. Interferon-γ: biological function and application for study of cellular immune response

    Directory of Open Access Journals (Sweden)

    A. A. Lutckii

    2015-01-01

    Full Text Available Cellular immune response plays a central role in control of intracellular pathogens like viruses, some bacteria and parasites. Evaluation of presence, specificity and strength of cellular immune response can be done by investigation of reaction of immune cells to specific stimulus, like antigen. The major cellular reactions to antigen stimulation are production of cytokines, proliferation and cytotoxicity. This review is focused on interferon-gamma as one of the central Th1 cytokines: its biology, immunological role and application as marker of cellular immune response.

  18. Neuroendocrine Stress Response after Burn Trauma

    OpenAIRE

    Lindahl, Andreas

    2013-01-01

    Some aspects of the stress response during acute intensive care for severe burns are described and quantified by measuring hormonal and neuroendocrine patterns and relating these to organ function in the short term. This includes an assessment of whether there are markers for the severity of stress that are better than conventional descriptors of the severity of a burn in predicting failing organ function. P-CgA after a major burn injury is an independent and better predictor of organ dysfunc...

  19. Prenatal Stress Enhances Responsiveness to Cocaine

    OpenAIRE

    Kippin, Tod E.; Szumlinski, Karen K.; Kapasova, Zuzana; Rezner, Betsy; See, Ronald E.

    2007-01-01

    Early environmental events have profound influences on a wide range of adult behavior. In the current study, we assessed the influence of maternal stress during gestation on psychostimulant and neurochemical responsiveness to cocaine, cocaine self-administration, and reinstatement of cocaine-seeking in adult offspring. Pregnant, female Sprague–Dawley rats were subjected to either no treatment or to restraint stress three times per day for the last 7 days of gestation and cocaine-related behav...

  20. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Cindy, E-mail: c.gunawan@unsw.edu.au [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Sirimanoonphan, Aunchisa [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Teoh, Wey Yang [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Marquis, Christopher P., E-mail: c.marquis@unsw.edu.au [School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW (Australia); Amal, Rose [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2013-09-15

    Highlights: • Uptake of TiO{sub 2} solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO{sub 2} exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO{sub 2} and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO{sub 2} exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO{sub 2} stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO{sub 2} exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO{sub 2}/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials.

  1. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Highlights: • Uptake of TiO2 solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO2 exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO2 and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO2 exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO2 stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO2 exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO2/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials

  2. Early-life Stress Impacts the Developing Hippocampus and Primes Seizure Occurrence: cellular, molecular, and epigenetic mechanisms

    OpenAIRE

    Li-Tung eHuang

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures...

  3. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    OpenAIRE

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures...

  4. The role of nuclear factor κB in the cellular response to different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Kristina

    2013-04-11

    Radiation is currently one of the most important limiting factors for manned space flight. During such missions, there is a constant exposure to low doses of galactic cosmic radiation and in particular high-energy heavy ions. Together this is associated with an increased cancer risk which currently cannot be sufficiently reduced by shielding. As such, cellular radiation response needs to be further studied in order to improve risk estimation and develop appropriate countermeasures. It has been shown that exposure of human cells to accelerated heavy ions, in fluences that can be reached during long-term missions, leads to activation of the Nuclear Factor κB (NF-κB) pathway. Heavy ions with a linear energy transfer (LET) of 90 to 300 keV/μm were most effective in activating NF-κB. NF-κB as an important modulating factor in the cellular radiation response could improve cellular survival after heavy ion exposure, thereby influencing the cancer risk of astronauts. The NF-κB pathway may be a potential pharmacological target in the mitigation of radiation response during space missions; such as the prevention of massive cell death after high dose irradiation (acute effects), in addition to neoplastic cell transformation during chronic low-dose exposure (late effects). The aim of this work was to examine the role of NF-κB in the cellular response to space-relevant radiation. Firstly, NF-κB activation in human embryonic kidney cells (HEK) after exposure to different radiation qualities and quantities was investigated. Key elements of different NF-κB sub-pathways were chemically inhibited to analyze their role in NF-κB activation induced by low and high LET ionizing radiation. Finally a cell line, stably transfected with a plasmid coding for a short-hairpin RNA (shRNA) for a knockdown of the NF-κB subunit RelA, was established to assess the role of RelA in the cellular response to space-relevant radiation. The knockdown was verified on several levels and the cell

  5. The role of nuclear factor κB in the cellular response to different radiation qualities

    International Nuclear Information System (INIS)

    Radiation is currently one of the most important limiting factors for manned space flight. During such missions, there is a constant exposure to low doses of galactic cosmic radiation and in particular high-energy heavy ions. Together this is associated with an increased cancer risk which currently cannot be sufficiently reduced by shielding. As such, cellular radiation response needs to be further studied in order to improve risk estimation and develop appropriate countermeasures. It has been shown that exposure of human cells to accelerated heavy ions, in fluences that can be reached during long-term missions, leads to activation of the Nuclear Factor κB (NF-κB) pathway. Heavy ions with a linear energy transfer (LET) of 90 to 300 keV/μm were most effective in activating NF-κB. NF-κB as an important modulating factor in the cellular radiation response could improve cellular survival after heavy ion exposure, thereby influencing the cancer risk of astronauts. The NF-κB pathway may be a potential pharmacological target in the mitigation of radiation response during space missions; such as the prevention of massive cell death after high dose irradiation (acute effects), in addition to neoplastic cell transformation during chronic low-dose exposure (late effects). The aim of this work was to examine the role of NF-κB in the cellular response to space-relevant radiation. Firstly, NF-κB activation in human embryonic kidney cells (HEK) after exposure to different radiation qualities and quantities was investigated. Key elements of different NF-κB sub-pathways were chemically inhibited to analyze their role in NF-κB activation induced by low and high LET ionizing radiation. Finally a cell line, stably transfected with a plasmid coding for a short-hairpin RNA (shRNA) for a knockdown of the NF-κB subunit RelA, was established to assess the role of RelA in the cellular response to space-relevant radiation. The knockdown was verified on several levels and the cell

  6. Severe Injury Is Associated With Insulin Resistance, Endoplasmic Reticulum Stress Response, and Unfolded Protein Response

    Science.gov (United States)

    Jeschke, Marc G.; Finnerty, Celeste C.; Herndon, David N.; Song, Juquan; Boehning, Darren; Tompkins, Ronald G.; Baker, Henry V.; Gauglitz, Gerd G.

    2012-01-01

    Objective We determined whether postburn hyperglycemia and insulin resistance are associated with endoplasmic reticulum (ER) stress/unfolded protein response (UPR) activation leading to impaired insulin receptor signaling. Background Inflammation and cellular stress, hallmarks of severely burned and critically ill patients, have been causally linked to insulin resistance in type 2 diabetes via induction of ER stress and the UPR. Methods Twenty severely burned pediatric patients were compared with 36 nonburned children. Clinical markers, protein, and GeneChip analysis were used to identify transcriptional changes in ER stress and UPR and insulin resistance–related signaling cascades in peripheral blood leukocytes, fat, and muscle at admission and up to 466 days postburn. Results Burn-induced inflammatory and stress responses are accompanied by profound insulin resistance and hyperglycemia. Genomic and protein analysis revealed that burn injury was associated with alterations in the signaling pathways that affect insulin resistance, ER/sarcoplasmic reticulum stress, inflammation, and cell growth/apoptosis up to 466 days postburn. Conclusion Burn-induced insulin resistance is associated with persistent ER/sarcoplasmic reticulum stress/UPR and subsequent suppressed insulin receptor signaling over a prolonged period of time. PMID:22241293

  7. Endocannabinoids and the cardiovascular response to stress.

    Science.gov (United States)

    O'Sullivan, Saoirse E; Kendall, Patrick J; Kendall, David A

    2012-01-01

    Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS), resulting in cardiovascular responses. The endocannabinoid system (ECS), a ubiquitously expressed lipid signalling system, modulates both HPA and SNS activity. The purpose of this review is to explore the possible involvement/role of the ECS in the cardiovascular response to stress. The ECS has numerous cardiovascular effects including modulation of blood pressure, heart rate, the baroreflex, and direct vascular actions. It is also involved in a protective manner in response to stressors in cardiac preconditioning, and various stressors (for example, pain, orthostasis and social stress) increase plasma levels of endocannabinoids. Given the multitude of vascular effects of endocannabinoids, this is bound to have consequences. Beneficial effects of ECS upregulation could include cardioprotection, vasodilatation, CB(2)-mediated anti-inflammatory effects and activation of peroxisome proliferator-activated receptors. Negative effects of endocannabinoids could include mediation of the effects of glucocorticoids, CB(1)-mediated metabolic changes, and metabolism to vasoconstrictor products. It is also likely that there is a central role for the ECS in modulating cardiovascular activity via the HPA and SNS. However, much more work is required to fully integrate the role of the ECS in mediating many of the physiological responses to stress, including cardiovascular responses.

  8. Dysfunctional stress responses in chronic pain.

    Science.gov (United States)

    Woda, Alain; Picard, Pascale; Dutheil, Frédéric

    2016-09-01

    Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. PMID:27262345

  9. The Effect of Cellular Stress on T and B Cell Memory Pathways in Immunized and Unimmunized BALB/c Mice*

    Science.gov (United States)

    Wang, Yufei; Rahman, Durdana; Mistry, Mukesh; Lehner, Thomas

    2016-01-01

    Immunological memory is a fundamental function of vaccination. The antigenic breakdown products of the vaccine may not persist, and undefined tonic stimulation has been proposed to maintain the specific memory. We have suggested that cellular stress agents to which the immune cells are constantly exposed may be responsible for tonic stimulation. Here we have studied four stress agents: sodium arsenite, an oxidative agent; Gramicidin, eliciting K+ efflux and calcium influx; dithiocarbamate, a metal ionophore; and aluminum hydroxide (alum), an immunological adjuvant. The aims of this study are to extend these investigations to T and B cell responses of unimmunized and ovalbumin (OVA)-immunized BALB/c mice, and furthermore, to ascertain whether stress is involved in optimal expression of memory B cells, as demonstrated in CD4+ T cells. Examination of the homeostatic pathway defined by IL-15/IL-15R (IL-15 receptor) interaction and the inflammasome pathway defined by the IL-1-IL-1R interaction between dendritic cells (DC) and CD4+ T cells suggests that both pathways are involved in the development of optimal expression of CD4+CD45RO+ memory T cells in unimmunized and OVA-immunized BALB/c mice. Furthermore, significant direct correlation was found between CD4+CD44+ memory T cells and both IL-15 of the homeostatic and IL-1β of the inflammasome pathways. However, CD19+CD27+ memory B cells in vivo seem to utilize only the IL-15/IL-15R homeostatic pathway, although the proliferative responses are enhanced by the stress agents. Altogether, stress agents may up-regulate unimmunized and OVA-immunized CD4+CD44+ memory T cells by the homeostatic and inflammasome pathways. However, the CD19+CD27+ memory B cells utilize only the homeostatic pathway. PMID:27502276

  10. 2012 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 20-25, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Donohue

    2012-07-25

    The Gordon Research Conference on MICROBIAL STRESS RESPONSE was held at Mount Holyoke College, South Hadley, Massachusetts, July 15-20, 2012. The Conference was well-attended with 180 participants. The 2012 Microbial Stress Responses Gordon Research Conference will provide a forum for the open reporting of recent discoveries on the diverse mechanisms employed by microbes to respond to stress. Approaches range from analysis at the molecular level (how are signals perceived and transmitted to change gene expression or function) to cellular and microbial community responses. Gordon Research Conferences does not permit publication of meeting proceedings.

  11. Early-life Stress Impacts the Developing Hippocampus and Primes Seizure Occurrence: cellular, molecular, and epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Li-Tung eHuang

    2014-02-01

    Full Text Available Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed.

  12. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems

    Directory of Open Access Journals (Sweden)

    DINAKAR eCHALLABATHULA

    2016-02-01

    Full Text Available The present study reveals the importance of alternative oxidase (AOX pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 µmoles m-2 s-1 at 25 oC under a range of sorbitol concentrations from 0.4 M to 1.0M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 oC to 10 oC to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25 OC, the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation, under both hyper-osmotic (1.0 M sorbitol and sub-optimal temperature stress conditions (10 OC, while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG related to antioxidative system during hyper-osmotic stress. Nevertheless, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD and sub-optimal temperature (NADPH/NADP stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM, the observed changes in NaHCO3 dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(PH/NAD(P and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the

  13. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons.

    Science.gov (United States)

    Bartelt-Kirbach, Britta; Golenhofen, Nikola

    2014-01-01

    Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability.We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.

  14. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  15. Corporate Responsibility for Systemic Occupational Stress Prevention

    Directory of Open Access Journals (Sweden)

    R. Kasperczyk

    2014-09-01

    Full Text Available The purpose of this paper is twofold: to highlight the increased focus on corporate governance responsibility for managing employees’ psychological health, and to present an argument for a systemic approach to prevention of occupational stress. The paper commences with a brief description of the problem posed by occupational stress as a threat to organisational effectiveness. It then discusses the types of currently observed organisational responses to this issue and the extent to which they are shaped by beliefs about occupational stress. There are two fundamental approaches to dealing with work stress, one aimed at the individual and the other, at the organisation. The more comprehensive approaches have been increasingly reported to be more effective. The argument for a systemic approach to its prevention is then developed, in line with the risk management framework currently being adopted by Government jurisdictions governing Occupational Health and Safety in Australia and New Zealand. As the stress issue is now couched in health and safety terms, it is a moral and legal duty of the Board to satisfy itself that it is effectively addressed.

  16. Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system.

    Science.gov (United States)

    Vitlic, Ana; Lord, Janet M; Phillips, Anna C

    2014-06-01

    The immune response is essential for keeping an organism healthy and for defending it from different types of pathogens. It is a complex system that consists of a large number of components performing different functions. The adequate and controlled interaction between these components is necessary for a robust and strong immune response. There are, however, many factors that interfere with the way the immune response functions. Stress and ageing now consistently appear in the literature as factors that act upon the immune system in the way that is often damaging. This review focuses on the role of stress and ageing in altering the robustness of the immune response first separately, and then simultaneously, discussing the effects that emerge from their interplay. The special focus is on the psychological stress and the impact that it has at different levels, from the whole system to the individual molecules, resulting in consequences for physical health. PMID:24562499

  17. Cellular and subcellular oxidative stress parameters following severe spinal cord injury.

    Science.gov (United States)

    Visavadiya, Nishant P; Patel, Samir P; VanRooyen, Jenna L; Sullivan, Patrick G; Rabchevsky, Alexander G

    2016-08-01

    The present study undertook a comprehensive assessment of the acute biochemical oxidative stress parameters in both cellular and, notably, mitochondrial isolates following severe upper lumbar contusion spinal cord injury (SCI) in adult female Sprague Dawley rats. At 24h post-injury, spinal cord tissue homogenate and mitochondrial fractions were isolated concurrently and assessed for glutathione (GSH) content and production of nitric oxide (NO(•)), in addition to the presence of oxidative stress markers 3-nitrotyrosine (3-NT), protein carbonyl (PC), 4-hydroxynonenal (4-HNE) and lipid peroxidation (LPO). Moreover, we assessed production of superoxide (O2(•-)) and hydrogen peroxide (H2O2) in mitochondrial fractions. Quantitative biochemical analyses showed that compared to sham, SCI significantly lowered GSH content accompanied by increased NO(•) production in both cellular and mitochondrial fractions. SCI also resulted in increased O2(•-) and H2O2 levels in mitochondrial fractions. Western blot analysis further showed that reactive oxygen/nitrogen species (ROS/RNS) mediated PC and 3-NT production were significantly higher in both fractions after SCI. Conversely, neither 4-HNE levels nor LPO formation were increased at 24h after injury in either tissue homogenate or mitochondrial fractions. These results indicate that by 24h post-injury ROS-induced protein oxidation is more prominent compared to lipid oxidation, indicating a critical temporal distinction in secondary pathophysiology that is critical in designing therapeutic approaches to mitigate consequences of oxidative stress. PMID:26760911

  18. Cellular and molecular responses of E. fetida coelomocytes exposed to TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bigorgne, Emilie, E-mail: emilie.bigorgne@univ-lorraine.fr; Foucaud, Laurent [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France); Caillet, Celine [Universite de Lorraine-Laboratoire Environnement et Mineralurgie (LEM) CNRS UMR7569 (France); Giamberini, Laure; Nahmani, Johanne [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France); Thomas, Fabien [Universite de Lorraine-Laboratoire Environnement et Mineralurgie (LEM) CNRS UMR7569 (France); Rodius, Francois [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France)

    2012-07-15

    An in vitro approach using coelomocytes of Eisenia fetida was investigated to evaluate toxicity of TiO{sub 2} nanoparticles. Coelomocytes were exposed to well-dispersed suspension of small aggregates (130 nm) of TiO{sub 2} nanoparticles (1-25 {mu}g/ml) during 4, 12 and 24 h. Intracellular localisation suggested that the main route of uptake was endocytosis. Cellular responses showed that TiO{sub 2} nanoparticles were not cytotoxic and had no effect on phagocytosis at any of the four concentrations for each time tested. Concerning molecular responses, an increase of fetidin and metallothionein mRNA expression was observed starting from 4 h of exposure. In contrast, expression of coelomic cytolytic factor mRNA decreased for 10 and 25 {mu}g/ml after 4 h. Superoxide dismutase, catalase and glutathione-S-transferase expression were not modified suggesting that oxidative stress was not induced by TiO{sub 2} in our experimental conditions. This in vitro approach showed that TiO{sub 2} nanoparticles were taken up by coelomocytes and they could modify the molecular response of immune and detoxification system.

  19. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    Science.gov (United States)

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.

  20. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Directory of Open Access Journals (Sweden)

    C A Downs

    Full Text Available Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex, usually by expulsion or xenophagy (symbiophagy of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2 s(-1 PAR at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  1. Marine molluscs in environmental monitoring. I. Cellular and molecular responses

    Science.gov (United States)

    Bresler, Vladimir; Abelson, Avigdor; Fishelson, Lev; Feldstein, Tamar; Rosenfeld, Michael; Mokady, Ofer

    2003-10-01

    The study reported here is part of an ongoing effort to establish sensitive and reliable biomonitoring markers for probing the coastal marine environment. Here, we report comparative measurements of a range of histological, cellular and sub-cellular parameters in molluscs sampled in polluted and reference sites along the Mediterranean coast of Israel and in the northern tip of the Gulf of Aqaba, Red Sea. Available species enabled an examination of conditions in two environmental 'compartments': benthic (Donax trunculus) and intertidal (Brachidontes pharaonis, Patella caerulea) in the Mediterranean; pelagic (Pteria aegyptia) and intertidal (Cellana rota) in the Red Sea. The methodology used provides rapid results by combining specialized fluorescent probes and contact microscopy, by which all parameters are measured in unprocessed animal tissue. The research focused on three interconnected levels. First, antixenobiotic defence mechanisms aimed at keeping hazardous agents outside the cell. Paracellular permeability was 70-100% higher in polluted sites, and membrane pumps (MXRtr and SATOA) activity was up to 65% higher in polluted compared to reference sites. Second, intracellular defence mechanisms that act to minimize potential damage by agents having penetrated the first line of defence. Metallothionein expression and EROD activity were 160-520% higher in polluted sites, and lysosomal functional activity (as measured by neutral red accumulation) was 25-50% lower. Third, damage caused by agents not sufficiently eliminated by the above mechanisms (e.g. single-stranded DNA breaks, chromosome damage and other pathological alterations). At this level, the most striking differences were observed in the rate of micronuclei formation and DNA breaks (up to 150% and 400% higher in polluted sites, respectively). The different mollusc species used feature very similar trends between polluted and reference sites in all measured parameters. Concentrating on relatively basic

  2. Repair and mutagenesis in procaryotes as cellular responses to ambiental agents

    International Nuclear Information System (INIS)

    The correct and incorrect mechanisms of DNA repair are discussed, as well as the cellular responses induced by the DNA lesions; the reductone mollecular effects; the cellular interactions among irradiated populations of microorganisms and the utilization of microbial assays for the detection of oncogenic activities of chemicals. (M.A.)

  3. "Stress entropic load" as a transgenerational epigenetic response trigger.

    Science.gov (United States)

    Bienertová-Vašků, Julie; Nečesánek, Ivo; Novák, Jan; Vinklárek, Jan; Zlámal, Filip

    2014-03-01

    Epigenetic changes are generally based on the switching of alternative functional or structural states and result in the adaptation of cellular expression patterns during proliferation, differentiation or plastic changes in the adult organism, whereas some epigenetic information can be passed on other generations while other is not. Hence, the principal question is: why is some information reset or resolved during the meiosis process and other is passed from one generation to another, or, in other words: what "adaptation trigger" level initiates transgenerationally transmitted epigenome change? Hereto, we propose a theory which states that stress, or, more specifically, the energy cost of an individual's adaptation to stress, represents a viable candidate for the transgenerational transmission trigger of a given acquired trait. It has been reported recently that the higher lifetime entropy generation of a unit's body mass, the higher the entropy stress level (which is a measure of energy released by a unit's organ mass) and the irreversibility within the organ, resulting in faster organ degradation and consequent health problems for the entire biological system. We therefore suggest a new term: "stress entropic load" will reflect the actual energetic cost of an individual's adaptation and may be used to estimate the probability of inducing transgenerational response once characterized or measured.

  4. Genomic counter-stress changes induced by the relaxation response.

    Directory of Open Access Journals (Sweden)

    Jeffery A Dusek

    Full Text Available BACKGROUND: Mind-body practices that elicit the relaxation response (RR have been used worldwide for millennia to prevent and treat disease. The RR is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. It is believed to be the counterpart of the stress response that exhibits a distinct pattern of physiology and transcriptional profile. We hypothesized that RR elicitation results in characteristic gene expression changes that can be used to measure physiological responses elicited by the RR in an unbiased fashion. METHODS/PRINCIPAL FINDINGS: We assessed whole blood transcriptional profiles in 19 healthy, long-term practitioners of daily RR practice (group M, 19 healthy controls (group N(1, and 20 N(1 individuals who completed 8 weeks of RR training (group N(2. 2209 genes were differentially expressed in group M relative to group N(1 (p<0.05 and 1561 genes in group N(2 compared to group N(1 (p<0.05. Importantly, 433 (p<10(-10 of 2209 and 1561 differentially expressed genes were shared among long-term (M and short-term practitioners (N(2. Gene ontology and gene set enrichment analyses revealed significant alterations in cellular metabolism, oxidative phosphorylation, generation of reactive oxygen species and response to oxidative stress in long-term and short-term practitioners of daily RR practice that may counteract cellular damage related to chronic psychological stress. A significant number of genes and pathways were confirmed in an independent validation set containing 5 N(1 controls, 5 N(2 short-term and 6 M long-term practitioners. CONCLUSIONS/SIGNIFICANCE: This study provides the first compelling evidence that the RR elicits specific gene expression changes in short-term and long-term practitioners. Our results suggest consistent and constitutive changes in gene expression resulting from RR may relate to long term physiological effects. Our study may stimulate new

  5. Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesenchymal stem cells via Nrf2

    Science.gov (United States)

    Shin, Joo-Hyun; Jeon, Hyo-Jin; Park, Jihye; Chang, Mi-Sook

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have great therapeutic potential due to their high plasticity, immune privileged status and ease of preparation, as well as a lack of ethical barriers to their use. However, their ultimate usefulness is limited by cellular senescence occurring secondary to increased cellular levels of reactive oxygen species (ROS) during their propagation in culture. The underlying molecular mechanisms responsible for this process in hMSCs remain unclear. An antioxidant polyphenol epigallocatechin-3-gallate (EGCG) found in green tea, is known to activate nuclear factor-erythroid 2-related factor 2 (Nrf2), a master transcriptional regulator of antioxidant genes. Herein, we examined the EGCG-mediated antioxidant mechanism in hMSCs exposed to ROS which involves Nrf2 activation. The H2O2-exposed hMSCs showed cellular senescence with significantly increased protein levels of acetyl-p53 and p21 in comparison with the untreated hMSCs, and these effects were prevented by pre-treatment with EGCG. By contrast, in Nrf2-knockdown hMSCs, EGCG lost its antioxidant effect, exhibiting high levels of acetyl-p53 and p21 following EGCG pre-treatment and H2O2 exposure. This indicates that Nrf2 and p53/p21 may be involved in the anti-senescent effect of EGCG in hMSCs. Taken together, these findings indicate the important role of EGCG in preventing oxidative stress-induced cellular senescence in hMSCs through Nrf2 activation, which has applications for the massive production of more suitable hMSCs for cell-based therapy. PMID:27498709

  6. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress.

    Science.gov (United States)

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials. PMID:27409641

  7. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  8. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Science.gov (United States)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  9. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  10. Response of MICROTOX organisms to leachates of autoclaved cellular concrete

    Energy Technology Data Exchange (ETDEWEB)

    Latona, M.C.; Neufeld, R.D.; Hu, W.; Kelly, C.; Vallejo, L.E. [Univ. of Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering

    1997-08-01

    The MICROTOX bioassay, a toxicity test involving bioluminescent microorganisms, was conducted on aqueous leachates derived from a construction material made using coal fly ash as the key siliceous ingredient. The material is known as autoclaved cellular concrete (ACC). The test indicated an absence of toxic effects attributable to soluble species, which included the priority heavy metals in the filtered leachates. Toxic or inhibitive effects on the test bacteria were observed for the toxicity characteristic leaching procedure (TCLP) leachates, but this was probably due to acetic acid in the extractant rather than the solubilized metals. The ASTM (distilled-deionized water extractant) and simulated acid rain leachates, by comparison, produced a repeatable stimulative effect. Stimulation observed in the form of enhanced light output may be a manifestation of hormesis, a phenomenon reportedly caused by exposure to extremely low concentrations (part-per-billion range) of otherwise toxic agents such as heavy metals.

  11. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress

    Science.gov (United States)

    O’Meara, Teresa R.; Valaei, Seyedeh Fereshteh; Diezmann, Stephanie; Cowen, Leah E.

    2016-01-01

    Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90’s functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90

  12. Development of second generation peptides modulating cellular adiponectin receptor responses

    Directory of Open Access Journals (Sweden)

    Laszlo eOtvos

    2014-10-01

    Full Text Available The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC. In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399. The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400 was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400 at similar concentrations will be an important target validation tool to study adiponectin functions.

  13. Development of second generation peptides modulating cellular adiponectin receptor responses

    Science.gov (United States)

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  14. Stressed out? Associations between perceived and physiological stress responses in adolescents: The TRAILS study

    OpenAIRE

    Oldehinkel, Albertine J.; Ormel, Johan; Bosch, Nienke M.; Bouma, Esther M. C.; Van Roon, Arie M.; Rosmalen, Judith G. M.; Riese, Harriette

    2011-01-01

    Studies regarding the interrelation of perceived and physiological stress indices have shown diverging results. Using a population sample of adolescents (N=715, 50.9% girls, mean age 16.11 years, SD=0.59), we tested three hypotheses: (1) perceived responses during social stress covary with concurrent physiological stress responses; (2) high pretest levels of perceived stress predict large physiological responses; and (3) large physiological responses to social stress predict low posttest perc...

  15. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Science.gov (United States)

    Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  16. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Directory of Open Access Journals (Sweden)

    Xingsheng Hou

    Full Text Available FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7 and a flcA deletion mutant (Sp7-flcAΔ revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot. The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase, nitrogen metabolism (Glutamine synthetase and nitric oxide synthase, stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit and morphological transformation (transducer coupling protein. The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  17. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress.

    Science.gov (United States)

    Picard, Martin; McManus, Meagan J; Gray, Jason D; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K; Seifert, Erin L; McEwen, Bruce S; Wallace, Douglas C

    2015-12-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism's multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic-pituitary-adrenal axis, sympathetic adrenal-medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  18. Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response

    Directory of Open Access Journals (Sweden)

    Killeen S. Kirkconnell

    2016-06-01

    Full Text Available Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts. While some genes showed sustained induction or repression, other genes showed transient or delayed responses. Surprisingly, the dynamic patterns of induction and suppression of response genes showed a high degree of similarity, suggesting that these opposite outcomes are triggered by a common set of signals. As expected, early response genes such as those encoding components of the AP-1 transcription factor and those involved in the circadian clock were immediately but transiently induced. Surprisingly, transcription of important DNA damage response genes and histone genes were rapidly repressed. We also show that RNA polymerase II accelerates as it transcribes large genes and this was independent of whether the gene was induced or not. These results provide a unique genome-wide depiction of dynamic patterns of transcription of serum response genes and demonstrate the utility of Bru-seq to comprehensively capture rapid and dynamic changes of the nascent transcriptome.

  19. Neural and cardiovascular responses to emotional stress in humans

    OpenAIRE

    Carter, Jason R.; Durocher, John J.; Kern, Rosalie P.

    2008-01-01

    Sympathetic neural responses to mental stress are well documented but controversial, whereas sympathetic neural responses to emotional stress are unknown. The purpose of this study was to investigate neural and cardiovascular responses to emotional stress evoked by negative pictures and reexamine the relationship between muscle sympathetic nerve activity (MSNA) and perceived stress. Mean arterial pressure (MAP), heart rate (HR), MSNA, and perceived stress levels were recorded in 18 men during...

  20. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis.

    Directory of Open Access Journals (Sweden)

    Anita Ayer

    Full Text Available Maintenance of an optimal redox environment is critical for appropriate functioning of cellular processes and cell survival. Despite the importance of maintaining redox homeostasis, it is not clear how the optimal redox potential is sensed and set, and the processes that impact redox on a cellular/organellar level are poorly understood. The genetic bases of cellular redox homeostasis were investigated using a green fluorescent protein (GFP based redox probe, roGFP2 and a pH sensitive GFP-based probe, pHluorin. The use of roGFP2, in conjunction with pHluorin, enabled determination of pH-adjusted sub-cellular redox potential in a non-invasive and real-time manner. A genome-wide screen using both the non-essential and essential gene collections was carried out in Saccharomyces cerevisiae using cytosolic-roGFP2 to identify factors essential for maintenance of cytosolic redox state under steady-state conditions. 102 genes of diverse function were identified that are required for maintenance of cytosolic redox state. Mutations in these genes led to shifts in the half-cell glutathione redox potential by 75-10 mV. Interestingly, some specific oxidative stress-response processes were identified as over-represented in the data set. Further investigation of the role of oxidative stress-responsive systems in sub-cellular redox homeostasis was conducted using roGFP2 constructs targeted to the mitochondrial matrix and peroxisome and E(GSH was measured in cells in exponential and stationary phase. Analyses allowed for the identification of key redox systems on a sub-cellular level and the identification of novel genes involved in the regulation of cellular redox homeostasis.

  1. Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata

    KAUST Repository

    DeSalvo, MK

    2010-03-08

    The emergence of genomic tools for reef-building corals and symbiotic anemones comes at a time when alarming losses in coral cover are being observed worldwide. These tools hold great promise in elucidating novel and unforeseen cellular processes underlying the successful mutualism between corals and their dinoflagellate endosymbionts Symbiodinium spp. Since thermal stress triggers a breakdown in the symbiosis (coral bleaching), measuring the transcriptomic response to thermal stress-induced bleaching offers an extraordinary view of cellular processes that are specific to coral–algal symbioses. In the present study, we utilized a cDNA microarray containing 2059 genes of the threatened Caribbean elkhorn coral Acropora palmata to identify genes that are differentially expressed upon thermal stress. Fragments from replicate colonies were exposed to elevated temperature for 2 d, and samples were frozen for microarray analysis after 24 and 48 h. Totals of 204 and 104 genes were differentially expressed in samples that were collected 1 and 2 d after thermal stress, respectively. Analysis of the differentially expressed genes indicates a cellular stress response in A. palmata involving (1) growth arrest, (2) chaperone activity, (3) nucleic acid stabilization and repair, and (4) removal of damaged macromolecules. Other differentially expressed processes include sensory perception, metabolite transfer between host and endosymbiont, nitric oxide signaling, and modifications to the actin cytoskeleton and extracellular matrix. The results are compared with those from a previous coral microarray study of thermal stress in Montastraea faveolata, and point to an overall evolutionary conserved bleaching response in scleractinian corals.

  2. Nuclear and cytoplasmic signalling in the cellular response to ionising radiation

    International Nuclear Information System (INIS)

    DNA is the universal primary target for ionising radiation; however, the cellular response is highly diversified not only by differential DNA repair ability. The monitoring system for the ionising radiation-inflicted DNA damage consists of 3 apparently independently acting enzymes which are activated by DNA breaks: two protein kinases, ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase) and a poly(ADP-ribose) polymerase, PARP-1. These 3 enzymes are the source of alarm signals, which affect to various extents DNA repair, progression through the cell cycle and eventually the pathway to cell death. Their functions probably are partly overlapping. On the side of DNA repair their role consists in recruiting and/or activating the repair enzymes, as well as preventing illegitimate recombination of the damaged sites. A large part of the nuclear signalling pathway, including the integrating role of TP53 has been revealed. Two main signalling pathways start at the plasma membrane: the MAPK/ERK (mitogen and extracellular signal regulated protein kinase family) 'survival pathway' and the SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase) 'cell death pathway'. The balance between them is likely to determine the cell's fate. An additional important 'survival pathway' starts at the insulin-like growth factor type I receptor (IGF-IR), involves phosphoinositide- 3 kinase and Akt kinase and is targeted at inactivation of the pro-apoptotic BAD protein. Interestingly, over-expression of IGF-IR almost entirely abrogates the extreme radiation sensitivity of ataxia telangiectasia cells. When DNA break rejoining is impaired, the cell is unconditionally radiation sensitive. The fate of a repair-competent cell is determined by the time factor: the cell cycle arrest should be long enough to ensure the completion of repair. Incomplete repair or misrepair may be tolerated, when generation of the death signal is prevented. So, the character and timing

  3. Stress response and apoptosis in pro- and antiinflammatory macrophages.

    Science.gov (United States)

    Malyshev, I Yu; Kruglov, S V; Bakhtina, L Yu; Malysheva, E V; Zubin, M; Norkin, M

    2004-08-01

    We showed that stress response and apoptosis in macrophages depend on the phenotype of their secretory activity and specific biological and physical characteristics of the factor inducing stress-response or apoptosis.

  4. Characterization of humoral and cellular immune responses in patients with human papilloma virus

    International Nuclear Information System (INIS)

    A descriptive and cross-sectional study was carried out in 30 females infected with the human papilloma virus, attended in the office of Immunology of the Specialty Polyclinic belonging to 'Saturnino Lora' Provincial Clinical Surgical Teaching Hospital in Santiago de Cuba, from June 2009 to June 2010, in order to characterize them according to immune response. To evaluate the humoral and cellular immune response rosetting assay and quantification of immunoglobulins were used respectively. Women between 25-36 years of age (40 %) infected with this virus, especially those coming from urban areas, prevailed in the series, and a significant decrease of the cellular response as compared to the humoral response was evidenced

  5. Social Stress Engages Opioid Regulation of Locus Coeruleus Norepinephrine Neurons and Induces a State of Cellular and Physical Opiate Dependence

    OpenAIRE

    Chaijale, Nayla N.; Curtis, Andre L.; Wood, Susan K.; Zhang, Xiao-Yan; Bhatnagar, Seema; Reyes, Beverly AS; Van Bockstaele, Elisabeth J.; Valentino, Rita J.

    2013-01-01

    Stress is implicated in diverse psychiatric disorders including substance abuse. The locus coeruleus–norepinephrine (LC–NE) system is a major stress response system that is also a point of intersection between stress neuromediators and endogenous opioids and so may be a site at which stress can influence drug-taking behaviors. As social stress is a common stressor for humans, this study characterized the enduring impact of repeated social stress on LC neuronal activity. Rats were exposed to f...

  6. Immune responses to stress after stress management training in patients with rheumatoid arthritis

    OpenAIRE

    de Brouwer, Sabine JM; van Middendorp, Henriët; Kraaimaat, Floris W.; Radstake, Timothy RDJ; Joosten, Irma; Donders, A Rogier T; Eijsbouts, Agnes; Koulil, Saskia Spillekom-van; van Riel, Piet LCM; Evers, Andrea WM

    2013-01-01

    Introduction Psychological stress may alter immune function by activating physiological stress pathways. Building on our previous study, in which we report that stress management training led to an altered self-reported and cortisol response to psychological stress in patients with rheumatoid arthritis (RA), we explored the effects of this stress management intervention on the immune response to a psychological stress task in patients with RA. Methods In this study, 74 patients with RA, who w...

  7. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells

    DEFF Research Database (Denmark)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M;

    2015-01-01

    subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic...... analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular...

  8. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  9. The early stress responses in fish larvae.

    Science.gov (United States)

    Pederzoli, Aurora; Mola, Lucrezia

    2016-05-01

    During the life cycle of fish the larval stages are the most interesting and variable. Teleost larvae undergo a daily increase in adaptability and many organs differentiate and become active. These processes are concerted and require an early neuro-immune-endocrine integration. In larvae communication among the nervous, endocrine and immune systems utilizes several known signal molecule families which could be different from those of the adult fish. The immune-neuroendocrine system was studied in several fish species, among which in particular the sea bass (Dicentrarchus labrax), that is a species of great commercial interest, very important in aquaculture and thus highly studied. Indeed the immune system of this species is the best known among marine teleosts. In this review the data on main signal molecules of stress carried out on larvae of fish are considered and discussed. For sea bass active roles in the early immunological responses of some well-known molecules involved in the stress, such as ACTH, nitric oxide, CRF, HSP-70 and cortisol have been proposed. These molecules and/or their receptors are biologically active mainly in the gut before complete differentiation of gut-associated lymphoid tissue (GALT), probably acting in an autocrine/paracrine way. An intriguing idea emerges from all results of these researches; the molecules involved in stress responses, expressed in the adult cells of the hypothalamic-pituitary axis, during the larval life of fish are present in several other localizations, where they perform probably the same role. It may be hypothesized that the functions performed by hypothalamic-pituitary system are particularly important for the survival of the larva and therefore they comprises several other localizations of body. Indeed the larval stages of fish are very crucial phases that include many physiological changes and several possible stress both internal and environmental. PMID:26968620

  10. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sunyoung Hwang

    Full Text Available CosR (Campylobacter oxidative stress regulator; Cj0355c is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.

  11. The mucosal cellular response to infection with Ancylostoma ceylanicum

    OpenAIRE

    Alkazmi, L.M.M.; Dehlawi, M.S.; BEHNKE, J. M.

    2008-01-01

    Although hookworms are known to stimulate inflammatory responses in the intestinal mucosa of their hosts, there is little quantitative data on this aspect of infection. Here we report the results of experiments conducted in hamsters infected with Ancylostoma ceylanicum. Infection resulted in a marked increase in goblet cells in the intestinal mucosa, which was dependent on the number of adult worms present and was sustained as long as worms persisted (over 63 days) but returned to baseline le...

  12. Cannibalism stress response in Bacillus subtilis.

    Science.gov (United States)

    Höfler, Carolin; Heckmann, Judith; Fritsch, Anne; Popp, Philipp; Gebhard, Susanne; Fritz, Georg; Mascher, Thorsten

    2016-01-01

    When faced with carbon source limitation, the Gram-positive soil organism Bacillus subtilis initiates a survival strategy called sporulation, which leads to the formation of highly resistant endospores that allow B. subtilis to survive even long periods of starvation. In order to avoid commitment to this energy-demanding and irreversible process, B. subtilis employs another strategy called 'cannibalism' to delay sporulation as long as possible. Cannibalism involves the production and secretion of two cannibalism toxins, sporulation delaying protein (SDP) and sporulation killing factor (SKF), which are able to lyse sensitive siblings. The lysed cells are thought to then provide nutrients for the cannibals to slow down or even prevent them from entering sporulation. In this study, we uncovered the role of the cell envelope stress response (CESR), especially the Bce-like antimicrobial peptide detoxification modules, in the cannibalism stress response during the stationary phase. SDP and SKF specifically induce Bce-like systems and some extracytoplasmic function σ factors in stationary-phase cultures, but only the latter provide some degree of protection. A full Bce response is only triggered by mature toxins, and not by toxin precursors. Our study provides insights into the close relationship between stationary-phase survival and the CESR of B. subtilis. PMID:26364265

  13. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy

    Directory of Open Access Journals (Sweden)

    Ana-Belén eBlázquez

    2014-06-01

    Full Text Available The Flavivirus is a genus of RNA viruses that includes multiple long known human, animal and zoonotic pathogens such as Dengue virus, yellow fever virus, West Nile virus or Japanese encephalitis virus, as well as other less known viruses that represent potential threats for human and animal health such as Usutu or Zika viruses. Flavivirus replication is based on endoplasmic reticulum-derived structures. Membrane remodeling and accumulation of viral factors induce endoplasmic reticulum stress that results in activation of a cellular signaling response termed unfolded protein response (UPR, which can be modulated by the viruses for their own benefit. Concomitant with the activation of the UPR, an upregulation of the autophagic pathway in cells infected with different flaviviruses has also been described. This review addresses the current knowledge of the relationship between endoplasmic reticulum stress, UPR and autophagy in flavivirus-infected cells and the growing evidences for an involvement of these cellular pathways in the replication and pathogenesis of these viruses.

  14. The DNA damage checkpoint response to replication stress: A Game of Forks.

    Directory of Open Access Journals (Sweden)

    Rachel eJossen

    2013-03-01

    Full Text Available Conditions challenging replication fork progression, collectively referred to as replication stress, represent a major source of genomic instability and are associated to cancer onset. The replication checkpoint, a specialized branch of the DNA damage checkpoint, monitors fork problems and triggers a cellular response aimed at preserving genome integrity. Here, we review the mechanisms by which the replication checkpoint monitors and responds to replication stress, focusing on the checkpoint-mediated pathways contributing to protect replication fork integrity. We discuss how cells achieve checkpoint signaling inactivation once replication stress is overcome and how a failure to timely revert checkpoint-mediated changes in cellular physiology might impact on replication dynamics and genome integrity. We also highlight the checkpoint function as an anti-cancer barrier preventing cells malignant transformation following oncogene-induced replication stress.

  15. Temporal evolution of the Arabidopsis oxidative stress response.

    Science.gov (United States)

    Mahalingam, Ramamurthy; Shah, Nigam; Scrymgeour, Alexandra; Fedoroff, Nina

    2005-03-01

    We have carried out a detailed analysis of the changes in gene expression levels in Arabidopsis thaliana ecotype Columbia (Col-0) plants during and for 6 h after exposure to ozone (O3) at 350 parts per billion (ppb) for 6 h. This O3 exposure is sufficient to induce a marked transcriptional response and an oxidative burst, but not to cause substantial tissue damage in Col-0 wild-type plants and is within the range encountered in some major metropolitan areas. We have developed analytical and visualization tools to automate the identification of expression profile groups with common gene ontology (GO) annotations based on the sub-cellular localization and function of the proteins encoded by the genes, as well as to automate promoter analysis for such gene groups. We describe application of these methods to identify stress-induced genes whose transcript abundance is likely to be controlled by common regulatory mechanisms and summarized our findings in a temporal model of the stress response. PMID:15988565

  16. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells.

    Science.gov (United States)

    Kobashigawa, Shinko; Kashino, Genro; Mori, Hiromu; Watanabe, Masami

    2015-03-01

    Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation.

  17. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    Directory of Open Access Journals (Sweden)

    Arjun Sham

    Full Text Available Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20, encoding for a member of the caleosin (lipid surface protein family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research

  18. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells.

    Directory of Open Access Journals (Sweden)

    Li Ju

    Full Text Available The wide application of multi-walled carbon nanotubes (MWCNT has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml and short time period (24 h, MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS.

  19. Osmotic stress stimulates phosphorylation and cellular expression of heat shock proteins in rhesus macaque sperm.

    Science.gov (United States)

    Cole, Julie A; Meyers, Stuart A

    2011-01-01

    The cryosurvival of sperm requires cell signaling mechanisms to adapt to anisotonic conditions during the freezing and thawing process. Chaperone proteins heat shock protein 70 (HSP 70) and heat shock protein 90 (HSP 90; recently renamed HSPA and HSPC, respectively) facilitate some of these cell signaling events in somatic cells. Sperm were evaluated for their cellular expression and levels of phosphorylation of both HSP 70 and HSP 90 under anisotonic conditions as a potential model for cell signaling during the cryopreservation of macaque spermatozoa. In order to monitor the level of stress, the motility and viability parameters were evaluated at various time points. Cells were then either prepared for phosphoprotein enrichment or indirect immunocytochemistry. As controls, the phosphoserine, phosphothreonine, and phosphotyrosine levels were measured under capacitation and cryopreservation conditions and were compared with the phosphoprotein levels expressed under osmotic conditions. As expected, there was an increase in the level of tyrosine phosphorylation under capacitation and cryopreservation conditions. There was also a significant increase in the level of all phosphoproteins under hyperosmotic conditions. There was no change in the level of expression of HSP 70 or 90 under osmotic stress conditions as measured by Western blot. The enrichment of phosphoproteins followed by Western immunoblotting revealed an increase in the phosphorylation of HSP 70 but not HSP 90 under osmotic stress conditions. Indirect immunofluorescence localized HSP 70 to the postacrosomal region of sperm, and the level of membrane expression of HSP 70 was significantly affected by anisotonic conditions, as measured by flow cytometry. Taken together, these results suggest a differential role for HSP 70 and HSP 90 during osmotic stress conditions in rhesus macaque sperm. PMID:21088232

  20. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Barik, Sailen [Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science, Cleveland State University, Cleveland, OH (United States); Shevde, Lalita A. [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Samant, Rajeev S., E-mail: rsamant@usouthal.edu [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States)

    2012-06-10

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  1. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    International Nuclear Information System (INIS)

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  2. The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae

    OpenAIRE

    Krysan, Damian J.

    2009-01-01

    The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the cellular response to the accumulation of misfolded proteins in eukaryotes. Our group has demonstrated that cell wall stress activates UPR in yeast through signals transmitted by the cell wall integrity (CWI) mitogen-activated protein (MAP) kinase cascade. The UPR is required to maintain cell wall integrity; mutants lacking a functional UPR have defects in cell wall biosynthesis and are hypersensitive ...

  3. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  4. Effect of electromagnetic fields at 2.45 GHz on the levels of cellular stress proteins HSP-90 and 70 in the rat thyroid

    International Nuclear Information System (INIS)

    In this study we analyzed the cellular stress levels achieved by heat shock proteins (HSP) 90 and 70 in rat thyroid tissue after exposure to radio waves in TWG experimental system. Parallel measurements of body stress in animals by rectal temperature probes allow us to determine whether there is any interaction between temperature increases and cellular stress.

  5. Melanoma antigen-D2: A nucleolar protein undergoing delocalization during cell cycle and after cellular stress.

    Science.gov (United States)

    Pirlot, Céline; Thiry, Marc; Trussart, Charlotte; Di Valentin, Emmanuel; Piette, Jacques; Habraken, Yvette

    2016-04-01

    Melanoma antigen D2 (MAGE-D2) is recognized as a cancer diagnostic marker; however, it has poorly characterized functions. Here, we established its intracellular localization and shuttling during cell cycle progression and in response to cellular stress. In normal conditions, MAGE-D2 is present in the cytoplasm, nucleoplasm, and nucleoli. Within the latter, MAGE-D2 is mostly found in the granular and the dense fibrillar components, and it interacts with nucleolin. Transfection of MAGE-D2 deletion mutants demonstrated that Δ203-254 leads to confinement of MAGE-D2 to the cytoplasm, while Δ248-254 prevents its accumulation in nucleoli but still allows its presence in the nucleoplasm. Consequently, this short sequence belongs to a nucleolar localization signal. MAGE-D2 deletion does not alter the nucleolar organization or rRNA levels. However, its intracellular localization varies with the cell cycle in a different kinetic than nucleolin. After genotoxic and nucleolar stresses, MAGE-D2 is excluded from nucleoli and concentrates in the nucleoplasm. We demonstrated that its camptothecin-related delocalization results from two distinct events: a rapid nucleolar release and a slower phospho-ERK-dependent cytoplasm to nucleoplasm translocation, which results from an increased flux from the cytoplasm to nucleoplasm. In conclusion, MAGE-D2 is a dynamic protein whose shuttling properties could suggest a role in cell cycle regulation. PMID:26705694

  6. Quantitative Phosphoproteomic Analysis of Arabidopsis in Response to Salt and Hydrogen Peroxide Stresses

    Institute of Scientific and Technical Information of China (English)

    Yanmei Chen

    2012-01-01

    Salinity and oxidative stresses are major factors in affecting and limiting the productivity of agricultural crops.The study of biochemical and molecular responses of plants in response to those stresses is important for crop genetics and breeding.Extensive evidence shows that reversible protein phosphorylation plays a central role in mediating stress-regulated physiological responses,but little is known about its extent and function.Mass spectrometry provides a powerful tool for the in-depth analysis of systems biology.In this study,we performed a global quantitative analysis of the Arabidopsis phosphoproteomics in response to a time course of stress treatments using 15N-metabolic labeling and subcellular fractionation approaches.In total,we found 176 phosphoproteins showed to be regulated under stresses.Nine SnRK2 kinases identified to be differentially phosphorylated at multiple serine/threonine residues in their kinase domains following stress treatments,demonstrating different temporal phosphorylation induction of the various isoforms.K+ and Na+ transporters showed coordinated phosphorylation regulation under salt stress.In particular,nuclear proteins and protein kinases have high phosphorylation site occupancy in response to stress treatment.This suggests that the wide range of signaling and cellular processes that are modulated in this study.

  7. Modulation of early stress-related biomarkers in cytoplasm by the antioxidants silymarin and quercetin using a cellular model of acute arsenic poisoning.

    Science.gov (United States)

    Soria, Elio A; Eynard, Aldo R; Bongiovanni, Guillermina A

    2010-12-01

    Several pathologies (e.g. cancer and diabetes) are increased in arsenic-exposed populations, with oxidative stress being a major toxicological mechanism. Since the flavonoids silymarin (S) and quercetin (Q) are antioxidants and may protect cells, it would be valuable to develop a model which allows assessing the potential of xenobiotic against arsenic cytotoxicity in an efficient and rapid way. Thus, the oxidant production [e.g. reactive oxygen species and reactive nitrogen species (RNS)], the molecular parameters of biological response [e.g. plasma membrane composition, actin microfilaments and activated diphosphorilated c-Jun N-terminal kinase (JNK)] and cellular viability were determined in CHO-K1 cells treated with arsenite (As), S and Q. Arsenic caused loss of the cellular viability in a time-dependent manner. This effect was accompanied by a lipid hydroperoxide (LHP) formation, with no RNS induction or ganglioside content changes being found. Both flavonoids counteracted oxidative damage. Despite all treatments had unspecific responses on nitrite cellular release along the time, there was no relation between them and the cellular viability. Arsenic induced cytoplasmic microfilament rearrangement (tight perinuclear distribution with projections, stress fibres and pseudopodia) which was reversed by S. Also, activated JNK showed a similar distribution to actin. Contrarily, Q caused a dysmorphic granular pattern, thus behaving as a toxic agent. Summing up, toxic levels of arsenic disturb the redox homeostasis with LHP induction and early triggering of stress responses in cytoskeleton and cell signalling. Using the proposed model, only S showed to protect cells from arsenical cytotoxicity without own toxic properties. Thus, S might be considered for modulation of the human arsenic susceptibility.

  8. Job stress factors, stress response, and social support in association with insomnia of Japanese male workers.

    Science.gov (United States)

    Nishitani, Naoko; Sakakibara, Hisataka

    2010-01-01

    The aim of the present study was to examine the relation of insomnia with job stress factors, stress response, and social support. A self-completed questionnaire survey was conducted in 212 male Japanese workers at a synthetic fiber plant. With regard to insomnia, subjects were asked the first 5 of the 8 questions on the Athens Insomnia Scale (AIS). Job stress factors, stress response and social support were assessed using the Job Stress Questionnaire. Multiple regression analyses showed that psychological job stress factors of poor appropriateness of work and high qualitative workload were associated with insomnia. The psychological stress response of depression and physical stress responses were also related with insomnia. Depression was also related to appropriateness of work. The present results showed that insomnia was closely related with the psychological job stress factor of appropriateness of work and the psychological response of depression. These mutual relationships between insomnia and poor mental health need be investigated further. PMID:20424348

  9. Neuronatin is a stress-responsive protein of rod photoreceptors.

    Science.gov (United States)

    Shinde, Vishal; Pitale, Priyamvada M; Howse, Wayne; Gorbatyuk, Oleg; Gorbatyuk, Marina

    2016-07-22

    Neuronatin (NNAT) is a small transmembrane proteolipid that is highly expressed in the embryonic developing brain and several other peripheral tissues. This study is the first to provide evidence that NNAT is detected in the adult retina of various adult rod-dominant mammals, including wild-type (WT) rodents, transgenic rodents expressing mutant S334ter, P23H, or T17M rhodopsin, non-human primates, humans, and cone-dominant tree shrews. Immunohistochemical and quantitative real time polymerase chain reaction (qRT-PCR) analyses were applied to detect NNAT. Confocal microscopy analysis revealed that NNAT immunofluorescence is restricted to the outer segments (OSs) of photoreceptors without evidence of staining in other retinal cell types across all mammalian species. Moreover, in tree shrew retinas, we found NNAT to be co-localized with rhodopsin, indicating its predominant expression in rods. The rod-derived expression of NNAT was further confirmed by qRT-PCR in isolated rod photoreceptor cells. We also used these cells to mimic cellular stress in transgenic retinas by treating them with the endoplasmic reticulum stress inducer, tunicamycin. Thus, our data revealed accumulation of NNAT around the nucleus as compared to dispersed localization of NNAT within control cells. This distribution coincided with the partial intracellular mislocalization of NNAT to the outer nuclear layer observed in transgenic retinas. In addition, stressed retinas demonstrated an increase of NNAT mRNA and protein levels. Therefore, our study demonstrated that NNAT is a novel stress-responsive protein with a potential structural and/or functional role in adult mammalian retinas. PMID:27109921

  10. Differential response of hippocampal subregions to stress and learning.

    Directory of Open Access Journals (Sweden)

    Darby F Hawley

    Full Text Available The hippocampus has two functionally distinct subregions-the dorsal portion, primarily associated with spatial navigation, and the ventral portion, primarily associated with anxiety. In a prior study of chronic unpredictable stress (CUS in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the ventral. In the present study, we determined whether this adaptive plasticity in the dorsal subregion would confer CUS rats an advantage in a spatial task-the radial arm water maze (RAWM. RAWM exposure is both stressful and requires spatial navigation, and therefore places demands simultaneously upon both hippocampal subregions. Therefore, we used Western blotting to investigate differential expression of plasticity-associated proteins (brain derived neurotrophic factor [BDNF], proBDNF and postsynaptic density-95 [PSD-95] in the dorsal and ventral subregions following RAWM exposure. Lastly, we used unbiased stereology to compare the effects of CUS on proliferation, survival and neuronal differentiation of cells in the dorsal and ventral hippocampal subregions. We found that CUS and exposure to the RAWM both increased corticosterone, indicating that both are stressful; nevertheless, CUS animals had significantly better long-term spatial memory. We also observed a subregion-specific pattern of protein expression following RAWM, with proBDNF increased in the dorsal and decreased in the ventral subregion, while PSD-95 was selectively upregulated in the ventral. Finally, consistent with our previous study, we found that CUS most negatively affected neurogenesis in the ventral (compared to the dorsal subregion. Taken together, our data support a dual role for the hippocampus in stressful experiences, with the more resilient dorsal portion undergoing adaptive plasticity (perhaps to facilitate escape from or neutralization of the stressor, and the ventral portion involved in

  11. Adjuvant activity of peanut, cottonseed and rice oils on cellular and humoral response

    Directory of Open Access Journals (Sweden)

    Erika Freitas

    2013-04-01

    Full Text Available The potentiality of the usage of vegetable oils such as soybean, corn, olive, sesame, murici seed, rapeseed, linseed, rice and cashew nuts as adjuvant of the humoral and cellular immune response has been recently shown. In the present work, besides of evaluating the adjuvant action of peanut, cottonseed and rice oils on humoral and cellular immune responses against ovalbumin (OVA we also evaluated the protective immune response induced by Leishmania antigens. The peanut oil significantly increased the synthesis of anti-ovalbumin antibodies in the primary response, but it did not favor cellular response. Concerning mice immunized with L. amazonensis antigens emulsified with peanut oil exacerbated skin lesions and lymph node parasite load what suggests stimulation of the Th2 immune response and down regulation of Th1 response. The cottonseed oil was shown to have adjuvant effect to the humoral response, stimulating a secondary response and also favored the delayed-type hypersensitivity (DTH response to OVA. The rice oil stimulated a strong DTH reaction to OVA and enhanced the synthesis of antibodies after the third dose. Mice immunized with L. amazonensis antigens emulsified with rice oil or cotton seed oil were protected from developing skin lesions and lymph node parasite load. These results emphasize the interest and importance of the vegetable oils as tools in different procedures of immunization and their differential role in relation to the other adjuvant under usage.

  12. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    Organisms survive by maintaining equilibrium with their environment. The stress system is critical to this homeostasis. Glucocorticoids modulate the stress response at a molecular level by altering gene expression, transcription, and translation, among other pathways. The effect is the inhibition of the functions of inflammatory cells, predominantly mediated through inhibition of cytokines, such as IL-1, IL-6, and TNF-alpha. The central effectors of the stress response are the corticotrophin-releasing hormone (CRH) and locus coeruleus-norepinephrine (LC-NE)\\/sympathetic systems. The CRH system activates the stress response and is subject to modulation by cytokines, hormones, and neurotransmitters. Glucocorticoids also modulate the growth, reproductive and thyroid axes. Abnormalities of stress system activation have been shown in inflammatory diseases such as rheumatoid arthritis, as well as behavioural syndromes such as melancholic depression. These disorders are comparable to those seen in rats whose CRH system is genetically abnormal. Thus, the stress response is central to resistance to inflammatory and behavioural syndromes. In this review, we describe the response to stress at molecular, cellular, neuroendocrine and behavioural levels, and discuss the disease processes that result from a dysregulation of this response, as well as recent developments in their treatment.

  13. COPPER STRESS ON CELLULAR CONTENTS AND FATTY ACID PROFILES IN CHLORELLA SPECIES

    Directory of Open Access Journals (Sweden)

    G. Sibi

    2014-01-01

    Full Text Available Higher photosynthetic efficiency and biomass production with rapid growth makes microalgae as potential candidates over other energy crops in many applications. Heavy metals influence the production of secondary metabolites and lipd content of microalgae in particular. A study was conducted using six Chlorella species under heavy metal exposure to evaluate the copper stress on biomass, cellular and lipid contents. Preliminary growth studies indicated the growth tolerance levels of Chlorella in the presence of copper at 4.0 mg L-1 concentration. The total chlorophyll, protein and lipid content of the isolates were 1.7-3.45%, 0.43-0.70 mg g-1 and 0.02-0.11 mg g-1 respectively. Gas Chromatography-Mass Spectroscopy analysis revealed that the percent composition of fatty acids varied among the species studied and the major group of fatty acids were C16:0, C18:1 and C18:2. Highest percent of fatty acids were found in C. vulgaris, C. protothecoides and C. pyrenoidosa. Copper have an impact on Chlorella species where biomass content was directly proportional to the lipid productivity. The results reflects the fact that copper stress on Chlorella species as the evidence of lipid production in both qualitative and quantitative manner. In conclusion, Chlorella species can be used for the sustainable producion of renewable energy through copper stress and removal of copper from aqueous solutions.

  14. Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions.

    Science.gov (United States)

    Diaz-Hidalgo, Laura; Altuntas, Sara; Rossin, Federica; D'Eletto, Manuela; Marsella, Claudia; Farrace, Maria Grazia; Falasca, Laura; Antonioli, Manuela; Fimia, Gian Maria; Piacentini, Mauro

    2016-08-01

    Numerous studies are revealing a role of exosomes in intercellular communication, and growing evidence indicates an important function for these vesicles in the progression and pathogenesis of cancer and neurodegenerative diseases. However, the biogenesis process of exosomes is still unclear. Tissue transglutaminase (TG2) is a multifunctional enzyme with different subcellular localizations. Particularly, under stressful conditions, the enzyme has been also detected in the extracellular matrix, but the mechanism(s) by which TG2 is released outside the cells requires further investigation. Therefore, the goal of the present study was to determine whether exosomes might be a vehicle for TG2 to reach the extracellular space, and whether TG2 could be involved in exosomes biogenesis. To address this issue, we isolated and characterized exosomes derived from cells either expressing or not TG2, under stressful conditions (i.e. proteasome impairment or expressing a mutated form of huntingtin (mHtt) containing 84 polyglutamine repeats). Our results show that TG2 is present in the exosomes only upon proteasome blockade, a condition in which TG2 interacts with TSG101 and ALIX, two key proteins involved in exosome biogenesis. Interestingly, we found that TG2 favours the assembly of a protein complex including mHtt, ALIX, TSG101 and BAG3, a co-chaperone involved in the clearance of mHtt. The formation of this complex is paralleled by the selective recruitment of mHtt and BAG3 in the exosomes derived from TG2 proficient cells only. Overall, our data indicate that TG2 is an important player in the biogenesis of exosomes controlling the selectivity of their cargo under stressful cellular conditions. In addition, these vesicles represent the way by which cells can release TG2 into the extracellular space under proteostasis impairment. PMID:27169926

  15. Hydration state controls stress responsiveness and social behavior

    OpenAIRE

    Krause, Eric G.; de Kloet, Annette D.; Flak, Jonathan N.; Smeltzer, Michael D.; Solomon, Matia B.; Evanson, Nathan K.; Woods, Stephen C; Sakai, Randall R.; Herman, James P.

    2011-01-01

    Life stress frequently occurs within the context of homeostatic challenge, requiring integration of physiological and psychological need into appropriate hormonal, cardiovascular and behavioral responses. To test neural mechanisms underlying stress integration within the context of homeostatic adversity, we evaluated the impact of a pronounced physiological (hypernatremia) challenge on hypothalamic-pituitary-adrenal (HPA), cardiovascular and behavioral responses to an acute psychogenic stress...

  16. Gene Expression Responses to FUS, EWS, and TAF15 Reduction and Stress Granule Sequestration Analyses Identifies FET-Protein Non-Redundant Functions

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Luo, Yonglun; Bolund, Lars;

    2012-01-01

    The FET family of proteins is composed of FUS/TLS, EWS/EWSR1, and TAF15 and possesses RNA- and DNA-binding capacities. The FET-proteins are involved in transcriptional regulation and RNA processing, and FET-gene deregulation is associated with development of cancer and protein granule formations...... in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and trinucleotide repeat expansion diseases. We here describe a comparative characterization of FET-protein localization and gene regulatory functions. We show that FUS and TAF15 locate to cellular stress granules to a larger extend than EWS....... FET-proteins have no major importance for stress granule formation and cellular stress responses, indicating that FET-protein stress granule association most likely is a downstream response to cellular stress. Gene expression analyses showed that the cellular response towards FUS and TAF15 reduction...

  17. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Directory of Open Access Journals (Sweden)

    Maša Ždralević

    2012-01-01

    Full Text Available Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.

  18. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents

    OpenAIRE

    Massimo A Hilliard; Apicella, Alfonso J; Kerr, Rex; Suzuki, Hiroshi; Bazzicalupo, Paolo; Schafer, William R.

    2005-01-01

    ASH sensory neurons are required in Caenorhabditis elegans for a wide range of avoidance behaviors in response to chemical repellents, high osmotic solutions and nose touch. The ASH neurons are therefore hypothesized to be polymodal nociceptive neurons. To understand the nature of polymodal sensory response and adaptation at the cellular level, we expressed the calcium indicator protein cameleon in ASH and analyzed intracellular Ca2+ responses following stimulation with chemical repellents, o...

  19. What is stress?: dose-response effects in commonly used in vitro stress assays

    OpenAIRE

    Claeys, Hannes; Van Landeghem, Sofie; Dubois, Marieke; Maleux, Katrien; Inzé, Dirk

    2014-01-01

    In vitro stress assays are commonly used to study the responses of plants to abiotic stress and to assess stress tolerance. A literature review reveals that most studies use very high stress levels and measure criteria such as germination, plant survival, or the development of visual symptoms such as bleaching. However, we show that these parameters are indicators of very severe stress, and such studies thus only provide incomplete information about stress sensitivity in Arabidopsis (Arabidop...

  20. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    OpenAIRE

    de Brouwer, Sabine J. M.; Kraaimaat, Floris W.; Sweep, Fred C. G. J.; Donders, Rogier T.; Agnes Eijsbouts; Saskia van Koulil; van Riel, Piet L C M; Evers, Andrea W. M.

    2011-01-01

    BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA). METHODS: Seventy-four patients with RA, who were randomly assigned to either a control group or a group that received short-term stress management training, performed a standardized psychosocial stress task (Trier Socia...

  1. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  2. Adaptive translation as a mechanism of stress response and adaptation

    OpenAIRE

    Pan, Tao

    2013-01-01

    The composition of the cellular proteome is commonly thought to strictly adhere to the genetic code. However, accumulating evidence indicates that cells also regulate the synthesis of mutant protein molecules that deviate from the genetic code. Production of mutant proteins varies in amounts and specificity and generally occurs when cells are stressed or undergo environmental adaptation. The deliberate synthesis of protein mutants suggests that some of these proteins can be useful in cellular...

  3. The product of the cph oncogene is a truncated, nucleotide-binding protein that enhances cellular survival to stress.

    Science.gov (United States)

    Velasco, J A; Avila, M A; Notario, V

    1999-01-21

    Cph was isolated from neoplastic Syrian hamster embryo fibroblasts initiated by 3-methylcholanthrene (MCA), and was shown to be a single copy gene in the hamster genome, conserved from yeast to human cells, expressed in fetal cells and most adult tissues, and acting synergistically with H-ras in the transformation of murine NIH3T3 fibroblasts. We have now isolated Syrian hamster full-length cDNAs for the cph oncogene and proto-oncogene. Nucleotide sequence analysis revealed that cph was activated in MCA-treated cells by a point-mutational deletion at codon 214, which caused a shift in the normal open reading frame (ORF) and brought a translation termination codon 33 amino acids downstream. While proto-cph encodes a protein (pcph) of 469 amino acids, cph encodes a truncated protein (cph) of 246 amino acids with a new, hydrophobic C-terminus. Similar mechanisms activated cph in other MCA-treated Syrian hamster cells. The cph and proto-cph proteins have partial sequence homology with two protein families: GDP/GTP exchange factors and nucleotide phosphohydrolases. In vitro translated, gel-purified cph proteins did not catalyze nucleotide exchange for H-ras, but were able to bind nucleotide phosphates, in particular ribonucleotide diphosphates such as UDP and GDP. Steady-state levels of cph mRNA increased 6.7-fold in hamster neoplastic cells, relative to a 2.2-fold increase in normal cells, when they were subjected to a nutritional stress such as serum deprivation. Moreover, cph-transformed NIH3T3 cells showed increased survival to various forms of stress (serum starvation, hyperthermia, ionizing radiation), strongly suggesting that cph participates in cellular mechanisms of response to stress. PMID:9989819

  4. The Yin-Yang of DNA Damage Response: Roles in Tumorigenesis and Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    2013-01-01

    Full Text Available Senescent cells are relatively stable, lacking proliferation capacity yet retaining metabolic activity. In contrast, cancer cells are rather invasive and devastating, with uncontrolled proliferative capacity and resistance to cell death signals. Although tumorigenesis and cellular senescence are seemingly opposite pathological events, they are actually driven by a unified mechanism: DNA damage. Integrity of the DNA damage response (DDR network can impose a tumorigenesis barrier by navigating abnormal cells to cellular senescence. Compromise of DDR, possibly due to the inactivation of DDR components, may prevent cellular senescence but at the expense of tumor formation. Here we provide an overview of the fundamental role of DDR in tumorigenesis and cellular senescence, under the light of the Yin-Yang concept of Chinese philosophy. Emphasis is placed on discussing DDR outcome in the light of in vivo models. This information is critical as it can help make better decisions for clinical treatments of cancer patients.

  5. Understanding the responses of rice to environmental stress using proteomics.

    Science.gov (United States)

    Singh, Raksha; Jwa, Nam-Soo

    2013-11-01

    Diverse abiotic and biotic stresses have marked effects on plant growth and productivity. To combat such stresses, plants have evolved complex but not well understood responses. Common effects upon perception of environmental stress are differential expression of the plant proteome and the synthesis of novel regulatory proteins for protection from and acclimation to stress conditions. Plants respond differently in terms of activation of stress-responsive signaling pathways depending upon the type and nature of the stresses to which they are exposed. Progress in proteomics and systems biology approaches has made it possible to identify the novel proteins and their interactions that function in abiotic stress responses. This will enable elucidation of the functions of individual proteins and their roles in signaling networks. Proteomic analysis of the responses to various stress conditions is performed most commonly using 2D gel electrophoresis and high-throughput identification by LC-MS/MS. Because of recent developments in proteomics techniques, numerous proteomics studies of rice under abiotic stress conditions have been performed. In this review, proteomics studies addressing rice responses to the major environmental stresses--including cold, heat, drought, salt, heavy metals, minerals, UV radiation, and ozone--are discussed. Unique or common protein responses to these stress conditions are summarized and interpreted according to their possible physiological responses in each stress. Additionally, proteomics studies on various plant systems under various abiotic stress conditions are compared to provide deeper understanding of specific and common proteome responses in rice and other plant systems, which will further contribute to the identification of abiotic stress tolerance factor at protein level. Functional analysis of stress-responsive proteins will provide new research objectives with the aim of achieving stable crop productivity in the face of the

  6. Darinaparsin is a multivalent chemotherapeutic which induces incomplete stress response with disruption of microtubules and Shh signaling.

    Directory of Open Access Journals (Sweden)

    Twila A Mason

    Full Text Available Chemotherapeutics and other pharmaceuticals are common sources of cellular stress. Darinaparsin (ZIO-101 is a novel organic arsenical under evaluation as a cancer chemotherapeutic, but the drug's precise mechanism of action is unclear. Stress granule formation is an important cellular stress response, but the mechanisms of formation, maintenance, and dispersal of RNA-containing granules are not fully understood. During stress, small, diffuse granules initially form throughout the cytoplasm. These granules then coalesce near the nucleus into larger granules that disperse once the cellular stress is removed. Complete stress granule formation is dependent upon microtubules. Human cervical cancer (HeLa cells, pre-treated with nocodazole for microtubule depolymerization, formed only small, diffuse stress granules upon sodium arsenite treatment. Darinaparsin, as a single agent, also induced the formation of small, diffuse stress granules, an effect similar to that of the combination of nocodazole with sodium arsenite. Darinaparsin inhibited the polymerization of microtubules both in vivo and in vitro. Interestingly, upon removal of darinaparsin, the small, diffuse stress granules completed formation with coalescence in the perinuclear region prior to disassembly. These results indicate that RNA stress granules must complete formation prior to disassembly, and completion of stress granule formation is dependent upon microtubules. Finally, treatment of cells with darinaparsin led to a reduction in Sonic hedgehog (Shh stimulated activation of Gli1 and a loss of primary cilia. Therefore, darinaparsin represents a unique multivalent chemotherapeutic acting on stress induction, microtubule polymerization, and Shh signaling.

  7. Stress responses in probiotic Lactobacillus casei.

    Science.gov (United States)

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics.

  8. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Cuypers, Ann [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Horemans, Nele [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Remans, Tony; Opdenakker, Kelly; Smeets, Karen [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Bello, Daniel Martinez [Hasselt University, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Agoralaan Building D, 3590 Diepenbeek (Belgium); Havaux, Michel [Commissariat a l' Energie Atomique (CEA)/Cadarache, Direction des Sciences du Vivant, Departement d' Ecophysiologie Vegetale et de Microbiologie, Laboratoire d' Ecophysiologie de la Photosynthese, 13108 Saint-Paul-lez-Durance (France); Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2011-06-15

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 {mu}M uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 {mu}M uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress

  9. Genomic instability and cellular stress in organ biopsies and peripheral blood lymphocytes from patients with colorectal cancer and predisposing pathologies

    Science.gov (United States)

    Lombardi, Sara; Fuoco, Ilenia; di Fluri, Giorgia; Costa, Francesco; Ricchiuti, Angelo; Biondi, Graziano; Nardini, Vincenzo; Scarpato, Roberto

    2015-01-01

    Inflammatory bowel disease (IBD) and polyps, are common colorectal pathologies in western society and are risk factors for development of colorectal cancer (CRC). Genomic instability is a cancer hallmark and is connected to changes in chromosomal structure, often caused by double strand break formation (DSB), and aneuploidy. Cellular stress, may contribute to genomic instability. In colorectal biopsies and peripheral blood lymphocytes of patients with IBD, polyps and CRC, we evaluated 1) genomic instability using the γH2AX assay as marker of DSB and micronuclei in mononuclear lymphocytes kept under cytodieresis inhibition, and 2) cellular stress through expression and cellular localization of glutathione-S-transferase omega 1 (GSTO1). Colon biopsies showed γH2AX increase starting from polyps, while lymphocytes already from IBD. Micronuclei frequency began to rise in lymphocytes of subjects with polyps, suggesting a systemic genomic instability condition. Colorectal tissues lost GSTO1 expression but increased nuclear localization with pathology progression. Lymphocytes did not change GSTO1 expression and localization until CRC formation, where enzyme expression was increased. We propose that the growing genomic instability found in our patients is connected with the alteration of cellular environment. Evaluation of genomic damage and cellular stress in colorectal pathologies may facilitate prevention and management of CRC. PMID:26046795

  10. Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale.

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Dunphy, Darren Robert; Ashley, Carlee E. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Lopez, DeAnna (University of New Mexico, Albuquerque, NM); Simpson, Regina Lynn; Tallant, David Robert; Burckel, David Bruce; Baca, Helen Kennicott (University of New Mexico, Albuquerque, NM); Carnes, Eric C. (University of New Mexico, Albuquerque, NM); Singh, Seema

    2006-01-01

    Our discovery that the introduction of living cells (Saccharomyces cerevisiae) alters dramatically the evaporation driven self-assembly of lipid-silica nanostructures suggested the formation of novel bio/nano interfaces useful for cellular interrogation at the nanoscale. This one year ''out of the box'' LDRD focused on the localization of metallic and semi-conducting nanocrystals at the fluid, lipid-rich interface between S. cerevisiae and the surrounding phospholipid-templated silica nanostructure with the primary goal of creating Surface Enhanced Raman Spectroscopy (SERS)-active nanostructures and platforms for cellular integration into electrode arrays. Such structures are of interest for probing cellular responses to the onset of disease, understanding of cell-cell communication, and the development of cell-based bio-sensors. As SERS is known to be sensitive to the size and shape of metallic (principally gold and silver) nanocrystals, various sizes and shapes of nanocrystals were synthesized, functionalized and localized at the cellular surface by our ''cell-directed assembly'' approach. Laser scanning confocal microscopy, SEM, and in situ grazing incidence small angle x-ray scattering (GISAXS) experiments were performed to study metallic nanocrystal localization. Preliminary Raman spectroscopy studies were conducted to test for SERS activity. Interferometric lithography was used to construct high aspect ratio cylindrical holes on patterned gold substrates and electro-deposition experiments were performed in a preliminary attempt to create electrode arrays. A new printing procedure was also developed for cellular integration into nanostructured platforms that avoids solvent exposure and may mitigate osmotic stress. Using a different approach, substrates comprised of self-assembled nanoparticles in a phospholipid templated silica film were also developed. When printed on top of these substrates, the cells integrate

  11. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    Science.gov (United States)

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  12. The plant heat stress transcription factors (HSFs: structure, regulation and function in response to abiotic stresses

    Directory of Open Access Journals (Sweden)

    Meng eGuo

    2016-02-01

    Full Text Available Abiotic stresses such as high temperature, salinity and drought adversely affect the survival, growth and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs, including heat stress transcription factors (HSFs. HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps. In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  13. Epigenetic regulation of stress responses in plants

    OpenAIRE

    Chinnusamy, Viswanathan; Zhu, Jian-Kang

    2009-01-01

    Gene expression driven by developmental and stress cues often depends on nucleosome histone post-translational modifications and sometimes on DNA methylation. A number of studies have shown that these DNA and histone modifications play a key role in gene expression and plant development under stress. Most of these stress-induced modifications are reset to the basal level once the stress is relieved, while some of the modifications may be stable, that is, may be carried forward as ‘stress memo...

  14. Swim stress differentially blocks CRF receptor mediated responses in dorsal raphe nucleus.

    Science.gov (United States)

    Lamy, Christophe M; Beck, Sheryl G

    2010-10-01

    Modulation of the serotonergic (5-HT) neurotransmitter system arising from the dorsal raphe nucleus (DR) is thought to support the behavioral effects of swim stress, i.e., immobility. In vivo pharmacological and anatomical studies suggest that corticotropin-releasing factor (CRF) and γ-aminobutyric acid (GABA) synaptic transmission closely interact to set the response of the DR to swim stress. To investigate the cellular basis of these physiological mechanisms the effects of ovine CRF (oCRF) on GABA(A)-dependent miniature inhibitory postsynaptic currents (mIPSCs) in 5-HT and non-5-HT DR neurons in acute mesencephalic slices obtained from rats either naïve or 24h after a 15 min swim stress session were tested. In this study, the effect of swim stress alone was to decrease the holding current, i.e., hyperpolarize the neuron, and to increase the amplitude and charge of mIPSCs recorded from non-5-HT neurons. Ovine CRF (10 nM) induced an increase in mIPSC frequency in 5-HT neurons recorded from naïve rats, an effect that was suppressed by swim stress. The inward current elicited by oCRF in both 5-HT and non-5-HT neurons was also blocked by swim stress. Ovine CRF increased mIPSCs amplitude and charge in both 5-HT and non-5-HT neurons, but this effect was not modified by swim stress. In concert with our previous findings that swim stress decreased input resistance, action potential threshold and action potential duration and increased glutamatergic synaptic activity the overall primary effect of swim stress is to increase the excitability of 5-HT neurons. These data provide a mechanism at the cellular level for the immobility induced by swim stress and identifies critical components of the raphe circuitry responsible for the altered output of 5-HT neurons induced by swim stress.

  15. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    Science.gov (United States)

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  16. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yeh, Y.C. [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Wang, L.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Ting, C.T.; Lee, W.L. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Lee, H.W. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, K.Y. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan (China); Wu, A. [College of Biological Science, University of California, Davis (United States); Su, C.S. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Liu, T.J., E-mail: trliu@vghtc.gov.tw [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  17. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust

    NARCIS (Netherlands)

    Zarcone, M.C.; Duistermaat, E.; Schadewijk, A. van; Jedynksa, A.D.; Hiemstra, P.S.; Kooter, I.M.

    2016-01-01

    Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am J Physiol Lung Cell Mol Physiol 311: L111–L123, 2016. First published May 17, 2016; doi:10.1152/ajplung.00064.2016.—Diesel emissions are the main source of air pollution in urban areas, and diese

  18. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells.

    Science.gov (United States)

    Park, Eun-Jung; Lee, Ah Young; Chang, Seung-Hee; Yu, Kyeong-Nam; Kim, Jae-Ho; Cho, Myung-Haing

    2014-01-01

    Abnormal accumulation of fatty acids triggers the harmful cellular response called lipotoxicity. In this study, we investigated the cellular response following accumulation of oleic acid (OA), a monounsaturated fatty acid, in human Chang liver cells. OA droplets were distributed freely in the cytoplasm and/or degraded within lysosomes. OA exposure increased ATP production and concomitantly dilated mitochondria. At 24h after OA exposure, cell viability decreased slightly and was coupled with a reduction in mitochondrial Ca(2+) concentration, the alteration in cell viability was also associated with the generation of reactive oxygen species and changes in the cell cycle. Moreover, OA treatment increased the expression of autophagy- and apoptotic cell death-related proteins in a dose-dependent manner. Furthermore, we investigated the role of p53, a tumor suppressor protein, in the cellular response elicited by OA accumulation. OA-induced changes in cell viability and ATP production were rescued to control levels when cells were pretreated with pifithrin-alpha (PTA), a p53 inhibitor. By contrast, the expressions of LC3-II and perilipin, proteins required for lipophagy, were down-regulated by PTA pretreatment. Taken together, our results suggest that p53 plays a key role in the cellular response elicited by OA accumulation in Chang liver cells.

  19. Neurovascular responses to mental stress in prehypertensive humans

    OpenAIRE

    Schwartz, Christopher E.; Durocher, John J.; Carter, Jason R.

    2010-01-01

    Neurovascular responses to mental stress have been linked to several cardiovascular diseases, including hypertension. Mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), and forearm vascular responses to mental stress are well documented in normotensive (NT) subjects, but responses in prehypertensive (PHT) subjects remain unclear. We tested the hypothesis that PHT would elicit a more dramatic increase of MAP during mental stress via augmented MSNA and blunted forearm vascu...

  20. Plasma transcortin influences endocrine and behavioral stress responses in mice

    OpenAIRE

    Richard, Elodie M.; Helbling, Jean-Christophe; Tridon, Claudine; Desmedt, Aline; Minni, Amandine; Cador, Martine; Pourtau, Line; Konsman, Jan Peter; Mormède, Pierre; Moisan, Marie-Pierre

    2010-01-01

    Glucocorticoids are released after hypothalamus-pituitary-adrenal axis stimulation by stress and act both in the periphery and in the brain to bring about adaptive responses that are essential for life. Dysregulation of the stress response can precipitate psychiatric diseases, in particular depression. Recent genetic studies have suggested that the glucocorticoid carrier transcortin, also called corticosteroid-binding globulin (CBG), may have an important role in stress response. We have inve...

  1. Roles of Hsp70s in Stress Responses of Microorganisms, Plants, and Animals

    Directory of Open Access Journals (Sweden)

    Anmin Yu

    2015-01-01

    Full Text Available Hsp70s (heat shock protein 70s are a class of molecular chaperones that are highly conserved and ubiquitous in organisms ranging from microorganisms to plants and humans. Most research on Hsp70s has focused on the mechanisms of their functions as molecular chaperones, but recently, studies on stress responses are coming to the forefront. Hsp70s play key roles in cellular development and protecting living organisms from environmental stresses such as heat, drought, salinity, acidity, and cold. Moreover, functions of human Hsp70s are related to diseases including neurological disorders, cancer, and virus infection. In this review, we provide an overview of the specific roles of Hsp70s in response to stress, particularly abiotic stress, in all living organisms.

  2. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells.

    Science.gov (United States)

    Lantto, Tiina A; Laakso, Into; Dorman, H J Damien; Mauriala, Timo; Hiltunen, Raimo; Kõks, Sulev; Raasmaja, Atso

    2016-01-01

    Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds. PMID:27420050

  3. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Tiina A. Lantto

    2016-07-01

    Full Text Available Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L. on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds.

  4. Gestational Zinc Deficiency Impairs Humoral and Cellular Immune Responses to Hepatitis B Vaccination in Offspring Mice

    OpenAIRE

    Ning Zhao; Xuelian Wang; Ying Zhang; Qiuhong Gu; Fen Huang; Wei Zheng; Zhiwei Li

    2013-01-01

    BACKGROUND: Gestational zinc deficiency has been confirmed to impair the infant immune function. However, knowledge about effects of maternal mild zinc deficiency during pregnancy on hepatitis B vaccine responsiveness in offspring is limited. In this report, we aimed to examine how maternal zinc deficiency during pregnancy influences humoral and cellular immune responses to hepatitis B vaccination in offspring of BALB/c mice. METHODOLOGY/PRINCIPAL FINDINGS: From day 1 of pregnancy upon delive...

  5. SEX DIFFERENCES AND ESTROGEN MODULATION OF THE CELLULAR IMMUNE RESPONSE AFTER INJURY

    OpenAIRE

    Bird, Melanie D.; Karavitis, John; Kovacs, Elizabeth J

    2008-01-01

    Cell-mediated immunity is extremely important for resolution of infection and for proper healing from injury. However, the cellular immune response is dysregulated following injuries such as burn and hemorrhage. Sex hormones are known to regulate immunity, and a well-documented dichotomy exists in the immune response to injury between the sexes. This disparity is caused by differences in immune cell activation, infiltration, and cytokine production during and after injury. Estrogen and testos...

  6. Recognition of chemical compounds in contaminated water using time-dependent multiple dose cellular responses

    Energy Technology Data Exchange (ETDEWEB)

    Pan, T.H., E-mail: thpan@ujs.edu.cn [School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada); Huang, B., E-mail: biao.huang@ualberta.ca [Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada); Xing, J.Z., E-mail: jzxing@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2 (Canada); Zhang, W.P., E-mail: weiping.zhang@gov.ab.ca [Alberta Health and Wellness, Edmonton, Alberta T5J 1S6 (Canada); Gabos, S., E-mail: stephan.gabos@gov.ab.ca [Alberta Health and Wellness, Edmonton, Alberta T5J 1S6 (Canada); Chen, J., E-mail: jchen@ece.ualberta.ca [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2S2 (Canada)

    2012-04-29

    Highlights: Black-Right-Pointing-Pointer Dose- and time-dependent cellular responses are used to evaluate the cytotoxicity. Black-Right-Pointing-Pointer The CI can reflect the cell number, cell viability, morphological change, etc. Black-Right-Pointing-Pointer The CSVID can capture the dynamic information after cells exposed to toxins. Black-Right-Pointing-Pointer The multi-class classification can distinguish the compounds using multi-doses. Black-Right-Pointing-Pointer The majority vote strategy (fingerprint) can improve the classification accuracy. - Abstract: An early determination of toxicant compounds of water contaminations can gain critical time to protect citizens' health and save substantial amounts of medical costs. To determine toxins in real time, a multi-dose classification algorithm using cellular state variable identification (CSVID) is developed in this paper. First, the dynamic cytotoxicity response profiles of living cells are measured using a real-time cell electronic sensing (RT-CES) system. Changes in cell number expressed as cell index (CI) are recorded on-line as time series. Then CSVID, which reflects the cell killing, cell lysis and certain cellular pathological changes, is extracted from those dynamic cellular responses. Finally, a support vector machine (SVM) algorithm based on CSVID is employed to classify chemical compounds and determine their analogous cellular response pathway. In order to increase the classification accuracy, a majority vote of the class labels is also proposed. Several validation studies demonstrate that CSVID-based classification algorithm has great potential in distinguishing the cytotoxicity response of the cells in the presence of toxins.

  7. Transcriptomic responses to low temperature stress in the Manila clam, Ruditapes philippinarum.

    Science.gov (United States)

    Nie, Hongtao; Jiang, Liwen; Huo, Zhongming; Liu, Lianhui; Yang, Feng; Yan, Xiwu

    2016-08-01

    The Manila clam, Ruditapes philippinarum, is an economically important shellfish in marine aquaculture, with a broad thermal tolerance. The ability to cope with cold stress is quite important for the survival of aquatic species under natural conditions. A cold-tolerant clam that can survive the winter at temperatures below 0 °C might extend our understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of the Manila clam to cold stress (-1 °C) was characterized using RNA sequencing. The transcriptomes of a cold-treatment (O) group of clams, which survived under cold stress, and the control group (OC2), which was not subjected to cold stress, were sequenced with the Illumina HiSeq platform. In all, 148,593 unigenes were generated. Compared with the unigene expression profile of the control group, 1760 unigenes were up regulated and 2147 unigenes were down regulated in the O group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, mitochondrial metabolism, cellular component organization or biogenesis, and energy production processes were the most highly enriched pathways among the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following biological functions in the cold-tolerant Manila clam: signal response to cold stress, antioxidant response, cell proliferation, and energy production. PMID:27288255

  8. Transcriptomic responses to low temperature stress in the Manila clam, Ruditapes philippinarum.

    Science.gov (United States)

    Nie, Hongtao; Jiang, Liwen; Huo, Zhongming; Liu, Lianhui; Yang, Feng; Yan, Xiwu

    2016-08-01

    The Manila clam, Ruditapes philippinarum, is an economically important shellfish in marine aquaculture, with a broad thermal tolerance. The ability to cope with cold stress is quite important for the survival of aquatic species under natural conditions. A cold-tolerant clam that can survive the winter at temperatures below 0 °C might extend our understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of the Manila clam to cold stress (-1 °C) was characterized using RNA sequencing. The transcriptomes of a cold-treatment (O) group of clams, which survived under cold stress, and the control group (OC2), which was not subjected to cold stress, were sequenced with the Illumina HiSeq platform. In all, 148,593 unigenes were generated. Compared with the unigene expression profile of the control group, 1760 unigenes were up regulated and 2147 unigenes were down regulated in the O group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, mitochondrial metabolism, cellular component organization or biogenesis, and energy production processes were the most highly enriched pathways among the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following biological functions in the cold-tolerant Manila clam: signal response to cold stress, antioxidant response, cell proliferation, and energy production.

  9. Global functional analyses of cellular responses to pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Kao

    2011-03-01

    Full Text Available Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs. PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK pathways, one (p38 studied in detail and the other (JNK not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

  10. Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast.

    Science.gov (United States)

    Molin, Mikael; Renault, Jean-Philippe; Lagniel, Gilles; Pin, Serge; Toledano, Michel; Labarre, Jean

    2007-07-01

    Repair of DNA damage is fundamental for cellular tolerance to ionizing radiation (IR) and many IR-induced DNA lesions are thought to occur as a result of oxidative stress. We investigated the physiological effects of IR in Saccharomyces cerevisiae by performing protein expression profiles in cells exposed to electron pulse irradiation. Transient induction of several antioxidant enzymes in wild-type cells, but not in cells lacking the oxidative stress regulator Yap1, indicated that IR exposure causes cellular oxidative stress. Yap1 activation involved oxidation to the intramolecular disulfide bond, a signature of activation by peroxide, and was dependent on the Yap1 peroxide sensor Orp1/Gpx3. H(2)O(2) was produced in the culture medium of irradiated cells and was both necessary and sufficient for IR-induced Yap1 activation. When IR was performed in the presence of N(2)O, obviating H(2)O(2) production and increasing hydroxyl radical ((*)OH) production, the Yap1 response was lost, indicating that Yap1 was unable to respond to (*)OH or (*)OH-induced damage. However, the Yap1 response to IR did not seem to be a primary determinant of cellular IR tolerance. Altogether, these data provide a molecular demonstration that cells experience in vivo peroxide stress during IR and indicate that the H(2)O(2) produced cannot account for IR toxicity. PMID:17561102

  11. Origins of asymmetric stress-strain response in phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sehitoglu, H.; Gall, K. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  12. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  13. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-Induced DNA Damages in Confluent Human Fibroblasts

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2016-01-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 µg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by foci and pattern counting of phosphorylated histone protein H2AX (?-H2AX). The cells on the ISS showed modestly increased average foci counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profile of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in ?-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not significantly affect

  14. Immune responses to stress in rheumatoid arthritis and psoriasis

    NARCIS (Netherlands)

    Brouwer, S.J. dr; Middendorp, H. van; Stormink, C.; Kraaimaat, F.W.; Joosten, I.; Radstake, T.R.; Jong, E.M. de; Schalkwijk, J.; Donders, A.R.; Eijsbouts, A.M.M.; Kerkhof, P.C.M. van de; Riel, P.L.C.M. van; Evers, A.W.

    2014-01-01

    OBJECTIVE: Stress is one of the factors that may exacerbate the progression of chronic inflammatory diseases such as RA and psoriasis. We exploratively compared the effects of acute stress on levels of circulating cytokines involved in disease progression and/or the stress response in patients with

  15. The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus

    Science.gov (United States)

    Zhang, Feng; Xu, Gaopo; Geng, Longpo; Lu, Xiaoyan; Yang, Kunlong; Yuan, Jun; Nie, Xinyi; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    This study focused on AflSkn7, which is a stress response regulator in the aflatoxin-producing Aspergillus flavus. The ΔAflSkn7 mutants exhibited partially defective conidial formation and a complete inability to generate sclerotia, indicating AflSkn7 affects A. flavus asexual and sexual development. The mutants tolerated osmotic stress but were partially susceptible to the effects of cell wall stress. Additionally, the ΔAflSkn7 mutants were especially sensitive to oxidative stress. These observations confirmed that AflSkn7 influences oxidative stress responses rather than osmotic stress responses. Additionally, AflSkn7 was observed to increase aflatoxin biosynthesis and seed infection rates. These results indicate AflSkn7 affects A. flavus morphological development, stress response, aflatoxin production, and pathogenicity. The results of this study may facilitate the development of new methods to manage A. flavus infections. PMID:27399770

  16. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-09-01

    Full Text Available Silver nanoparticles (AgNPs have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with

  17. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    Science.gov (United States)

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  18. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model.

    Science.gov (United States)

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  19. Immunologic Monitoring of Cellular Responses by Dendritic/Tumor Cell Fusion Vaccines

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    2011-01-01

    Full Text Available Although dendritic cell (DC- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell.

  20. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Cattaneo, Paola; Berezin, Vladimir;

    2009-01-01

    different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various...... effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting...... in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor...

  1. Cellular response within the periodontal ligament on application of orthodontic forces

    Directory of Open Access Journals (Sweden)

    Nazeer Ahmed Meeran

    2013-01-01

    Full Text Available During application of controlled orthodontic force on teeth, remodeling of the periodontal ligament (PDL and the alveolar bone takes place. Orthodontic forces induce a multifaceted bone remodeling response. Osteoclasts responsible for bone resorption are mainly derived from the macrophages and osteoblasts are produced by proliferations of the cells of the periodontal ligament. Orthodontic force produces local alterations in vascularity, as well as cellular and extracellular matrix reorganization, leading to the synthesis and release of various neurotransmitters, cytokines, growth factors, colony-stimulating factors, and metabolites of arachidonic acid. Although many studies have been reported in the orthodontic and related scientific literature, research is constantly being done in this field resulting in numerous current updates in the biology of tooth movement, in response to orthodontic force. Therefore, the aim of this review is to describe the mechanical and biological processes taking place at the cellular level during orthodontic tooth movement.

  2. In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures

    International Nuclear Information System (INIS)

    The objective of the present work was to evaluate the in vitro cellular response to hydroxyapatite (HA) scaffolds with oriented pore architectures. Hydroxyapatite scaffolds with approximately the same porosity (65-70%) but two different oriented microstructures, described as 'columnar' (pore diameter = 90-110 μm) and 'lamellar' (pore width = 20-30 μm), were prepared by unidirectional freezing of suspensions. The response of murine MLO-A5 cells, an osteogenic cell line, to these scaffolds was evaluated using assays of MTT hydrolysis, alkaline phosphatase (ALP) activity, and alizarin red staining. While the cellular response to both groups of scaffolds was better than control wells, the columnar scaffolds with the larger pore width provided the most favorable substrate for cell proliferation and function. These results indicate that HA scaffolds with the columnar microstructure could be used for bone repair applications in vivo.

  3. Function of Membrane Rafts in Viral Lifecycles and Host Cellular Response

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    2011-01-01

    Full Text Available Membrane rafts are small (10–200 nm sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process and the late stage (assembly, budding, and release processes of virus particles. In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.

  4. Gene Expression Profile Changes and Cellular Responses to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Rohde, Larry; Wu, Honglu

    2016-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. In addition, DNA in space can be damaged by toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage affects the accuracy of the radiation risk assessment for astronauts and the mutation rate in microorganisms. Although possible synergistic effects of space radiation and microgravity have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on cellular responses to DNA damage, confluent human fibroblast cells (AG1522) flown on the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB). Damages in the DNA were quantified by immunofluorescence staining for ?-H2AX, which showed similar percentages of different types of stained cells between flight and ground. However, there was a slight shift in the distribution of the ?-H2AX foci number in the flown cells with countable foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. A microarray analysis of gene expressions in response to bleomycin treatment was also performed. Comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. Similar responses at the RNA level between different gravity conditions were also observed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly

  5. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; van Dorsselaer, Alain; Rabilloud, Thierry

    2014-05-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate

  6. Relation between stress-precipitated seizures and the stress response in childhood epilepsy.

    Science.gov (United States)

    van Campen, Jolien S; Jansen, Floor E; Pet, Milou A; Otte, Willem M; Hillegers, Manon H J; Joels, Marian; Braun, Kees P J

    2015-08-01

    The majority of patients with epilepsy report that seizures are sometimes triggered or provoked. Stress is the most frequently self-reported seizure-precipitant. The mechanisms underlying stress-sensitivity of seizures are currently unresolved. We hypothesized that stress-sensitivity of seizures relates to alteration of the stress response, which could affect neuronal excitability and hence trigger seizures. To study this, children with epilepsy between 6 and 17 years of age and healthy controls, with similar age, sex and intelligence, were exposed to a standardized acute psychosocial stressor (the Trier Social Stress Test for Children), during which salivary cortisol and sympathetic parameters were measured. Beforehand, the relation between stress and seizures in children with epilepsy was assessed by (i) a retrospective questionnaire; and (ii) a prospective 6-week diary on stress and seizure occurrence. Sixty-four children with epilepsy and 40 control subjects were included in the study. Of all children with epilepsy, 49% reported that seizures were precipitated by acute stress. Diary analysis showed a positive association between acute stress and seizures in 62% of children who experienced at least one seizure during the diary period. The acute social stress test was completed by 56 children with epilepsy and 37 control subjects. Children with sensitivity of seizures for acute stress, either determined by the questionnaire or by the prospective diary, showed a blunted cortisol response to stress compared with patients without acute stress-precipitated seizures and healthy controls (questionnaire-based F = 2.74, P = 0.018; diary-based F = 4.40, P = 0.007). No baseline differences in cortisol were observed, nor differences in sympathetic stress response. The relation between acute stress-sensitivity of seizures and the cortisol response to stress remained significant in multivariable analysis (β = -0.30, P = 0.03). Other variables associated with the acute stress

  7. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Sabine J M de Brouwer

    Full Text Available BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA. METHODS: Seventy-four patients with RA, who were randomly assigned to either a control group or a group that received short-term stress management training, performed a standardized psychosocial stress task (Trier Social Stress Test; TSST 1 week after the stress management training and at a 9-week follow-up. Psychological and physical functioning, and the acute psychophysiological response to the stress test were assessed. RESULTS: Patients in the intervention group showed significantly lower psychological distress levels of anxiety after the training than did the controls. While there were no between-group differences in stress-induced tension levels, and autonomic (α-amylase or endocrine (cortisol responses to the stress test 1 week after the intervention, levels of stress-induced tension and cortisol were significantly lower in the intervention group at the 9-week follow-up. Overall, the response to the intervention was particularly evident in a subgroup of patients with a psychological risk profile. CONCLUSION: A relatively short stress management intervention can improve psychological functioning and influences the psychophysiological response to stress in patients with RA, particularly those psychologically at risk. These findings might help understand how stress can affect health and the role of individual differences in stress responsiveness. TRIAL REGISTRATION: TrialRegister.nl NTR1193.

  8. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  9. Beller Lectureship Talk: Active response of biological cells to mechanical stress

    Science.gov (United States)

    Safran, Samuel

    2009-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.

  10. Stress in university students and cardiovascular response to academic stressors

    OpenAIRE

    Guimarães, Teresa; Silva, Ana Patrícia; Monteiro, Iolanda; Gomes, Rui

    2014-01-01

    Introduction: University students are frequently exposed to events that can cause stress and anxiety, producing elevated cardiovascular responses. Repeated exposure to academic stress has implications to students’ success and well-being and may contribute to the development of long-term health problems. Objective: To identify stress levels and coping strategies in university students and assess the impact of stress experience in heart rate variability (HRV). Methods: 17 university students, 1...

  11. Proteomic studies of drought stress response in Fabaceae

    OpenAIRE

    Zadražnik, Tanja; Jelka ŠUŠTAR-VOZLIČ

    2015-01-01

    Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role...

  12. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    Energy Technology Data Exchange (ETDEWEB)

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  13. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.;

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout......Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  14. Context and strain-dependent behavioral response to stress

    OpenAIRE

    Baum Amber E; Ahmadiyeh Nasim; Andrus Brian M; Dennis Kristen; Nosek Katarzyna; Woods Leah; Redei Eva E

    2008-01-01

    Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344) and Wistar Kyoto (WKY) rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelt...

  15. TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules

    NARCIS (Netherlands)

    Jevtov, Irena; Zacharogianni, Margarita; van Oorschot, Marinke M.; van Zadelhoff, Guus; Aguilera-Gomez, Angelica; Vuillez, Igor; Braakman, Ineke; Hafen, Ernst; Stocker, Hugo; Rabouille, Catherine

    2015-01-01

    The kinase TORis found in two complexes, TORC1,which is involved in growth control, and TORC2, whose roles are less well defined. Here, we asked whether TORC2 has a role in sustaining cellular stress. We show that TORC2 inhibition in Drosophila melanogaster leads to a reduced tolerance to heat stres

  16. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response

    Institute of Scientific and Technical Information of China (English)

    Gan WANG; Alan DOMBKOWSKI; Lynn CHUANG; Xiao Xin S XU

    2004-01-01

    Recognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPCdefective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change≥1.5).The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.

  17. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  18. Effects of orthostasis on endocrine responses to psychosocial stress.

    Science.gov (United States)

    Nater, Urs M; Ditzen, Beate; Strahler, Jana; Ehlert, Ulrike

    2013-12-01

    Standardized psychological procedures have been designed to induce physiological stress responses. However, the impact of standing (orthostasis) on the physiological reaction after psychological stress remains unclear. The purpose of the current analysis was to examine and quantify the relative contribution of orthostasis to the physiological stress response by comparing a "standing with stress" to a "standing without stress" condition. We investigated the effect of standing with and without stress on responses of the sympathetic-adrenomedullary (SAM) system and the hypothalamic-pituitary-adrenal (HPA) axis using a standardized psychosocial stress protocol (Trier Social Stress Test) and a non-stress condition in a repeated measures design. Subjects (N=30) were exposed to both conditions in randomized order and had to maintain a standing, upright position for 10minutes. In the "standing with stress" condition, significant increases in repeatedly assessed plasma norepinephrine (NE) and epinephrine (EP), as well as in saliva cortisol were found, while in the "standing without stress" condition, no significant changes in plasma epinephrine and saliva cortisol were observed. Calculations of the relative contribution of orthostasis to physiological stress responses revealed that 25.61% of the NE increase, 82.94% of the EP increase, and 68.91% of the cortisol increase, could be attributed to psychosocial stress adjusted for the effects of orthostasis and basal endocrine output. Although these results are indicative for a marked endocrine reaction that is caused by psychosocial stress alone, our findings show that the contribution of orthostasis must be taken into account when interpreting endocrine data collected in a psychosocial stress test.

  19. Neocortex and allocortex respond differentially to cellular stress in vitro and aging in vivo.

    Directory of Open Access Journals (Sweden)

    Jessica M Posimo

    Full Text Available In Parkinson's and Alzheimer's diseases, the allocortex accumulates aggregated proteins such as synuclein and tau well before neocortex. We present a new high-throughput model of this topographic difference by microdissecting neocortex and allocortex from the postnatal rat and treating them in parallel fashion with toxins. Allocortical cultures were more vulnerable to low concentrations of the proteasome inhibitors MG132 and PSI but not the oxidative poison H2O2. The proteasome appeared to be more impaired in allocortex because MG132 raised ubiquitin-conjugated proteins and lowered proteasome activity in allocortex more than neocortex. Allocortex cultures were more vulnerable to MG132 despite greater MG132-induced rises in heat shock protein 70, heme oxygenase 1, and catalase. Proteasome subunits PA700 and PA28 were also higher in allocortex cultures, suggesting compensatory adaptations to greater proteasome impairment. Glutathione and ceruloplasmin were not robustly MG132-responsive and were basally higher in neocortical cultures. Notably, neocortex cultures became as vulnerable to MG132 as allocortex when glutathione synthesis or autophagic defenses were inhibited. Conversely, the glutathione precursor N-acetyl cysteine rendered allocortex resilient to MG132. Glutathione and ceruloplasmin levels were then examined in vivo as a function of age because aging is a natural model of proteasome inhibition and oxidative stress. Allocortical glutathione levels rose linearly with age but were similar to neocortex in whole tissue lysates. In contrast, ceruloplasmin levels were strikingly higher in neocortex at all ages and rose linearly until middle age. PA28 levels rose with age and were higher in allocortex in vivo, also paralleling in vitro data. These neo- and allocortical differences have implications for the many studies that treat the telencephalic mantle as a single unit. Our observations suggest that the topographic progression of protein

  20. Deranged Bioenergetics and Defective Redox Capacity in T Lymphocytes and Neutrophils Are Related to Cellular Dysfunction and Increased Oxidative Stress in Patients with Active Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Ko-Jen Li

    2012-01-01

    Full Text Available Urinary excretion of N-benzoyl-glycyl-Nε-(hexanonyllysine, a biomarker of oxidative stress, was higher in 26 patients with active systemic lupus erythematosus (SLE than in 11 non-SLE patients with connective tissue diseases and in 14 healthy volunteers. We hypothesized that increased oxidative stress in active SLE might be attributable to deranged bioenergetics, defective reduction-oxidation (redox capacity, or other factors. We demonstrated that, compared to normal cells, T lymphocytes (T and polymorphonuclear neutrophils (PMN of active SLE showed defective expression of facilitative glucose transporters GLUT-3 and GLUT-6, which led to increased intracellular basal lactate and decreased ATP production. In addition, the redox capacity, including intracellular GSH levels and the enzyme activity of glutathione peroxidase (GSH-Px and γ-glutamyl-transpeptidase (GGT, was decreased in SLE-T. Compared to normal cells, SLE-PMN showed decreased intracellular GSH levels, and GGT enzyme activity was found in SLE-PMN and enhanced expression of CD53, a coprecipitating molecule for GGT. We conclude that deranged cellular bioenergetics and defective redox capacity in T and PMN are responsible for cellular immune dysfunction and are related to increased oxidative stress in active SLE patients.

  1. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both pschizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia.

  2. Patterns of biological effects of electromagnetic terahertz waves at frequencies of active cellular metabolites of post stressed changes in hemostasis

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available There had been studied the influence of electromagnetic waves at terahertz frequencies of active cellular metabolites (nitric oxide 150.176-150.664 GHz and 129.0 GHz atmospheric oxygen on the changed parameters of homeostasis in experimental animals. It is shown that in the 15 minute exposure mode terahertz waves at frequencies of nitric oxide 150.176-150.664 GHz observed partial recovery of the changed parameters of homeostasis in stressed animals, and at 30 minute mode, the impact of these waves there is complete recovery of homeostatic parameters of male rats in a state of acute and prolonged immobilization stress.

  3. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection.

    Science.gov (United States)

    Yang, Hairu; Kronhamn, Jesper; Ekström, Jens-Ola; Korkut, Gül Gizem; Hultmark, Dan

    2015-12-01

    The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.

  4. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    Science.gov (United States)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  5. Cytokine, antibody and proliferative cellular responses elicited by Taenia solium calreticulin upon experimental infection in hamsters.

    Science.gov (United States)

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis.

  6. Switch from cap- to factorless IRES-dependent 0 and +1 frame translation during cellular stress and dicistrovirus infection.

    Directory of Open Access Journals (Sweden)

    Qing S Wang

    Full Text Available Internal ribosome entry sites (IRES are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A "stop-go" peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.

  7. Lymphocyte responses to stress in postpartum women: relationship to vagal tone.

    Science.gov (United States)

    Redwine, L S; Altemus, M; Leong, Y M; Carter, C S

    2001-04-01

    Although women spend their lives in various phases of the reproductive cycle, including menstrual, pregnancy, postpartum, lactation and menopause, few studies have examined immune responses to stress in women as a function of events associated with reproduction. The objective of this study was to evaluate differential effects of breastfeeding (n = 16), bottlefeeding (n = 10) and non-postpartum (n = 10) status on lymphocyte responses to stressful tasks (public speaking and mental arithmetic). To measure cellular immune responses, lymphocyte proliferation to plant lectins, poke weed mitogen (PWM) and phytohemagglutinin (PHA) were used. The autonomic measures, heart rate, vagal tone, blood pressure and the hormones of the HPA axis, ACTH and cortisol, were measured and their possible roles in mediating lymphocyte proliferation responses were examined. Recently parturient women who were breastfeeding or bottlefeeding had attenuated stress-induced change in lymphocyte responses to PWM compared with non-postpartum women, tested in the follicular phase of their cycle (P < 0.05). Also, lymphocyte responses to PHA were higher in the breastfeeding group compared with non-postpartum controls (P < 0.05). Regression analyses revealed that an index of cardiac vagal tone, but not other autonomic or endocrine measures, was positively predictive of lymphocyte proliferation to PWM. To summarize, these findings suggest that lactation and parturition can influence lymphocyte proliferation and that activity in the vagal system may influence lymphocyte responses to stress. PMID:11166487

  8. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    OpenAIRE

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested o...

  9. Humoral and Cellular Immune Responses to Yersinia pestis Infection in Long-Term Recovered Plague Patients

    OpenAIRE

    Li, Bei; Du, Chunhong; Zhou, Lei; Bi, Yujing; Wang, Xiaoyi; Wen, Li; Guo, Zhaobiao; Song, Zhizhong; Yang, Ruifu

    2012-01-01

    Plague is one of the most dangerous diseases and is caused by Yersinia pestis. Effective vaccine development requires understanding of immune protective mechanisms against the bacterium in humans. In this study, the humoral and memory cellular immune responses in plague patients (n = 65) recovered from Y. pestis infection during the past 16 years were investigated using a protein microarray and an enzyme-linked immunosorbent spot assay (ELISpot). The seroprevalence to the F1 antigen in all re...

  10. Molecular Mechanism of Rice in Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    E Zhi-guo; ZHANG Li-jing; WANG Lei

    2011-01-01

    Rice is moderately sensitive to salinity,and the response to salt stress is a complex process,including the perception and transduction of salt stress signal,the activation of specific transcriptional factors and the expression of downstream stress-responsive genes.The functions of Na+ transporters which are involved in the maintenance and reconstruction of the ion homeostasis,transcriptional regulators and osmotic regulation genes were reviewed.Salt tolerance of plants are enhanced by Na+ vacuolar compartmentation or efflux or high levels of osmoprotectants accumulation in cytoplasm.%Rice is moderately sensitive to salinity,and the response to salt stress is a complex process,including the perception and transduction of salt stress signal,the activation of specific transcriptional factors and the expression of downstream stress-respon

  11. Transgenic strains of the nematode C. elegans in biomonitoring and toxicology: effects of captan and related compounds on the stress response.

    Science.gov (United States)

    Jones, D; Stringham, E G; Babich, S L; Candido, E P

    1996-05-17

    The fungicide, captan, induces a cellular stress response in the soil nematode Caenorhabditis elegans. Transgenic C, elegans, which produce beta-galactosidase as a surrogate stress protein, reveal that captan-induced stress is localized mainly to muscle cells of the pharynx. The stress response is elicited by captan concentrations above 5 ppm and occurs within five hours of the initial exposure to the fungicide. Higher concentrations of captan, up to the solubility limit, increase the intensity of the response. Adult nematodes are significantly more sensitive to captan than are larvae. Captan also inhibits feeding in C. elegans, and nematodes exposed to captan rapidly cease muscular contractions in the pharynx. Stress induction and feeding inhibition are also caused by the related fungicides, captafol and folpet, but not by the parent compounds, phthalimide and tetrahydrophthalimide. The inhibition of feeding caused by compounds which elicit the cellular stress response may be an important survival mechanism for C, elegans.

  12. Stress-specific response of the p53-Mdm2 feedback loop

    Directory of Open Access Journals (Sweden)

    Jensen Mogens H

    2010-07-01

    Full Text Available Abstract Background The p53 signalling pathway has hundreds of inputs and outputs. It can trigger cellular senescence, cell-cycle arrest and apoptosis in response to diverse stress conditions, including DNA damage, hypoxia and nutrient deprivation. Signals from all these inputs are channeled through a single node, the transcription factor p53. Yet, the pathway is flexible enough to produce different downstream gene expression patterns in response to different stresses. Results We construct a mathematical model of the negative feedback loop involving p53 and its inhibitor, Mdm2, at the core of this pathway, and use it to examine the effect of different stresses that trigger p53. In response to DNA damage, hypoxia, etc., the model exhibits a wide variety of specific output behaviour - steady states with low or high levels of p53 and Mdm2, as well as spiky oscillations with low or high average p53 levels. Conclusions We show that even a simple negative feedback loop is capable of exhibiting the kind of flexible stress-specific response observed in the p53 system. Further, our model provides a framework for predicting the differences in p53 response to different stresses and single nucleotide polymorphisms.

  13. Inhibiting the NF-kappaB pathway to assess its function in the cellular response to space radiation

    Science.gov (United States)

    Koch, Kristina; Baumstark-Khan, Christa; Hellweg, Christine; Testard, Isabelle; Reitz, Guenther

    2012-07-01

    Radiation is regarded as one of the limiting factors for space missions. Therefore the cellular radiation response needs to be studied in order to estimate risks and to develop appropriate countermeasures. Exposure of human cells to ionizing radiation can provoke cell cycle arrest, leading to cellular senescence or premature differentiation, and different types of cell death. Previous heavy ion experiments have shown that the Nuclear Factor κB (NF-κB) pathway is activated by fluences that can be reached during long-term missions and thereby NF-κB was identified as an important modulating factor in the cellular radiation response. It could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts. The classical and the genotoxic stress induced NF-κB pathway result in nuclear translocation of the p65/p50 dimer. Both pathways might contribute to the cellular radiation response. Chemical inhibitors were tested to suppress the NF-κB pathway in recombinant HEK-pNF-κB-d2EGFP/Neo cells. The efficacy and cytotoxicity of the inhibitors targeting different elements of the NF-κB pathway were analyzed and found mostly inappropriate as inhibitors were partly cytotoxic or unspecific. Alternatively a functional knock-out of RelA (p65) was used to identify the contribution of the NF-κB pathway to different cellular outcomes. Small hairpin RNA constructs (shRNA) were transfected into the HEK-pNF-κB-d2EGFP/Neo cell line. Their functionality was assessed by quantitative Reverse Transcriptase real-time PCR (qRT-PCR) to verify that the RelA mRNA amount was reduced by more than 80% in the knock-down cells The original cell line had been stably transfected with a reporter system to monitor NF-κB activation by measuring destabilized Enhanced Green Fluorescent Protein (d2EGFP)-expression. It was shown that after 18 hours d2EGFP reaches its highest expression level after activation of NF-κB and can be measured by FACS analysis

  14. Transcriptional Analysis of Normal Human Fibroblast Responses to Microgravity Stress

    Institute of Scientific and Technical Information of China (English)

    Yongqing Liu; Eugenia Wang

    2008-01-01

    To understand the molecular mechanism (s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the space flown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several G1-phase cell cycle traverse genes. Other genes showing up regulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.

  15. Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress

    OpenAIRE

    Carvalho-Netto, Eduardo F.; Myers, Brent; Jones, Kenneth; Solomon, Matia B.; Herman, James P.

    2011-01-01

    Increased stress responsiveness is implicated in the etiology of mood and anxiety disorders, including depression and post-traumatic stress disorder. Additionally, stress-related affective disorders have a higher incidence in women than men. Chronic stress in rodents produces numerous neuromorphological changes in a variety of limbic brain regions. Here, we examined the sex-dependent differences in presynaptic innervation of the paraventricular nucleus of the hypothalamus (PVN), prefrontal co...

  16. Stem cell function and stress response are controlled by protein synthesis.

    Science.gov (United States)

    Blanco, Sandra; Bandiera, Roberto; Popis, Martyna; Hussain, Shobbir; Lombard, Patrick; Aleksic, Jelena; Sajini, Abdulrahim; Tanna, Hinal; Cortés-Garrido, Rosana; Gkatza, Nikoletta; Dietmann, Sabine; Frye, Michaela

    2016-06-16

    Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here we show that mouse skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumorigenesis. Mechanistically, we show that inhibition of post-transcriptional cytosine-5 methylation locks tumour-initiating cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour. PMID:27306184

  17. Stem cell function and stress response are controlled by protein synthesis.

    Science.gov (United States)

    Blanco, Sandra; Bandiera, Roberto; Popis, Martyna; Hussain, Shobbir; Lombard, Patrick; Aleksic, Jelena; Sajini, Abdulrahim; Tanna, Hinal; Cortés-Garrido, Rosana; Gkatza, Nikoletta; Dietmann, Sabine; Frye, Michaela

    2016-06-15

    Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here we show that mouse skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumorigenesis. Mechanistically, we show that inhibition of post-transcriptional cytosine-5 methylation locks tumour-initiating cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour.

  18. Neuroscience of opiates for addiction medicine: From stress-responsive systems to behavior.

    Science.gov (United States)

    Zhou, Yan; Leri, Francesco

    2016-01-01

    Opiate addiction, similarly to addiction to other psychoactive drugs, is chronic relapsing brain disease caused by drug-induced short-term and long-term neuroadaptations at the molecular, cellular, and behavioral levels. Preclinical research in laboratory animals has found important interactions between opiate exposure and stress-responsive systems. In this review, we will discuss the dysregulation of several stress-responsive systems in opiate addiction: vasopressin and its receptor system, endogenous opioid systems (including proopiomelanocortin/mu opioid receptor and dynorphin/kappa opioid receptor), orexin and its receptor system, and the hypothalamic-pituitary-adrenal axis. A more complete understanding of how opiates alter these stress systems, through further laboratory-based studies, is required to identify novel and effective pharmacological targets for the long-term treatment of heroin addiction.

  19. Molecular mechanisms of the plant heat stress response

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China); Zhu, Cheng, E-mail: pzhch@cjlu.edu.cn [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  20. Cellular responses to Rhipicephalus microplus infestations in pre-sensitised cattle with differing phenotypes of infestation.

    Science.gov (United States)

    Marufu, Munyaradzi C; Dzama, Kennedy; Chimonyo, Michael

    2014-02-01

    The blue tick, Rhipicephalus microplus, threatens cattle production in most tropical and subtropical areas of the world. Delayed skin hypersensitivity reactions are thought to cause Nguni cattle to be more resistant to R. microplus than Bonsmara cattle yet the cellular mechanisms responsible for these differences have not been classified. Tick counts and inflammatory cell infiltrates in skin biopsies from feeding sites of adult R. microplus ticks were determined in 9-month-old Nguni and Bonsmara heifers to determine the cellular mechanisms responsible for tick immunity. Nguni heifers (1.7 ± 0.03) had lower (P tick counts than the Bonsmaras (2.0 ± 0.03). Parasitized sites in Nguni heifers had higher counts of basophils, mast and mononuclear cells than those in the Bonsmara heifers. Conversely, parasitized sites in Nguni heifers had lower neutrophil and eosinophil counts than those in the Bonsmara heifers. Tick count was negatively correlated with basophil and mast cell counts and positively correlated with eosinophil counts in both breeds. In the Bonsmara breed, tick count was positively correlated with mononuclear cell counts. Cellular responses to adult R. microplus infestations were different and correlated with differences in tick resistance in Nguni and Bonsmara cattle breeds. It is essential to further characterise the molecular composition of the inflammatory infiltrate elicited by adult R. microplus infestation to fully comprehend immunity to ticks in cattle. PMID:24057115

  1. Cellular responses and cytokine profiles in Ascaris lumbricoides and Trichuris trichiura infected patients.

    Science.gov (United States)

    Geiger, Stefan M; Massara, Cristiano L; Bethony, Jeffrey; Soboslay, Peter T; Carvalho, Omar S; Corrêa-Oliveira, Rodrigo

    2002-01-01

    The impact of intestinal helminth infection, i.e. Ascaris lumbricoides and Trichuris trichiura, on cellular responsiveness and cytokine production was investigated in young adults. Ascaris-specific cellular responsiveness was higher in parasite-free endemic controls than in patients infected with T. trichiura, or A. lumbricoides, or patients co-infected with both parasites. Also, mitogen-induced tumour necrosis factor (TNF)-alpha, interleukin (IL)-12 and interferon (IFN)-gamma secretion by peripheral blood mononuclear cells (PBMC) was higher in negative endemic controls than in infected individuals. Ascaris antigen-specific production of TNF-alpha, IL-12 and IFN-gamma was low in singly Ascaris as well as in co-infected patients, whereas secretion of IL-10 and IL-13 was elevated and similarly high in all patient groups. The detection of Trichuris-specific and Ascaris-specific IgG4 revealed significantly higher serum antibody levels in Trichuris or Ascaris patients when compared to endemic controls (P Trichuris patients with a high parasite load presented reduced cellular reactivity and lower type 1 TNF-alpha, IFN-gamma and IL-12 responses when compared with endemic controls, whereas type 2 IL-10 and IL-13 productions were similar in all groups from the endemic area. The former may support parasite persistence, whereas substantial type 2 cytokine release may promote protective immunity, suggesting an adaptation of the host to control the parasite burden while minimizing immune-mediated host self-damage.

  2. In vivo and in vitro cellular response to PEG-based hydrogels for wound repair

    Science.gov (United States)

    Waldeck, Heather

    Biomaterials are continuously being explored as a means to support, improve, or influence wound healing processes. Understanding the determining factors controlling the host response to biomaterials is crucial in developing strategies to employ materials for biomedical uses. In order to evaluate the host response to poly(ethylene glycol) (PEG)-based hydrogels, both in vivo and in vitro studies were performed to determine its efficacy as a dermal wound treatment and to investigate the mechanisms controlling cell-material interaction, respectively. The results of an in vivo study using a full thickness wound in a rat model demonstrated that both soluble and immobilized bioactive factors could be incorporated into a PEG-based semi-interpenetrating network (sIPN) to enhance the rate and the quality of dermal wound healing. To gain a better understanding of the results observed in vivo, in vitro studies were then conducted to examine the dynamics and mechanisms of the cell-material interaction. Degradation of the sIPN was explored as an influential factor in both mediating cellular response and controlling solute transport from the material. As degradation through gelatin dissolution could be influenced by simple alterations to the material formulation, these results provide facile guidelines to control the delivery of high molecular weight compounds. Further investigation of the cellular response to PEG-based biomaterials focused on key factors influencing cell-material interaction. Specifically, the role of the beta1 integrin subunit and several serum proteins (TGF-aalpha, IL-1beta and PDGF-BB) in mediating cellular response was explored. As cell-material interactions are based on commonly occurring interfaces between cells and molecules of the native extracellular environment, these studies provided insight into the mechanisms controlling the observed cellular response. Finally, the inflammatory response of primary monocytes to biomaterials was examined. Monocytes

  3. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance

    Science.gov (United States)

    Hoque, Tahsina S.; Hossain, Mohammad A.; Mostofa, Mohammad G.; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2016-01-01

    The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses. PMID:27679640

  4. Post-stress rumination predicts HPA axis responses to repeated acute stress.

    Science.gov (United States)

    Gianferante, Danielle; Thoma, Myriam V; Hanlin, Luke; Chen, Xuejie; Breines, Juliana G; Zoccola, Peggy M; Rohleder, Nicolas

    2014-11-01

    Failure of the hypothalamus-pituitary-adrenal (HPA) axis to habituate to repeated stress exposure is related with adverse health outcomes, but our knowledge of predictors of non-habituation is limited. Rumination, defined as repetitive and unwanted past-centered negative thinking, is related with exaggerated HPA axis stress responses and poor health outcomes. The aim of this study was to test whether post-stress rumination was related with non-habituation of cortisol to repeated stress exposure. Twenty-seven participants (n=13 females) were exposed to the Trier Social Stress Test (TSST) twice on consecutive afternoons. Post-stress rumination was measured after the first TSST, and HPA axis responses were assessed by measuring salivary cortisol 1 min before, and 1, 10, 20, 60, and 120 min after both TSSTs. Stress exposure induced HPA axis activation on both days, and this activation showed habituation indicated by lower responses to the second TSST (F=3.7, p=0.015). Post-stress rumination after the first TSST was associated with greater cortisol reactivity after the initial stress test (r=0.45, pHPA axis responses. This finding implicates rumination as one possible mechanism mediating maladaptive stress response patterns, and it might also offer a pathway through which rumination might lead to negative health outcomes.

  5. Involvement of Histone Modifications in Plant Abiotic Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Lianyu Yuan; Xuncheng Liu; Ming Luo; Songguang Yang; Keqiang Wu

    2013-01-01

    As sessile organisms, plants encounter various environmental stimuli including abiotic stresses during their lifecycle. To survive under adverse conditions, plants have evolved intricate mechanisms to perceive external signals and respond accordingly. Responses to various stresses largely depend on the plant capacity to modulate the transcriptome rapidly and specifically. A number of studies have shown that the molecular mechanisms driving the responses of plants to environmental stresses often depend on nucleosome histone post-translational modifications including histone acetylation, methylation, ubiquitination, and phosphorylation. The combined effects of these modifications play an essential role in the regulation of stress responsive gene expression. In this review, we highlight our current understanding of the epigenetic mechanisms of histone modifications and their roles in plant abiotic stress response.

  6. Application of laser postionization secondary neutral mass spectrometry/time-of-flight secondary ion mass spectrometry in nanotoxicology: visualization of nanosilver in human macrophages and cellular responses.

    Science.gov (United States)

    Haase, Andrea; Arlinghaus, Heinrich F; Tentschert, Jutta; Jungnickel, Harald; Graf, Philipp; Mantion, Alexandre; Draude, Felix; Galla, Sebastian; Plendl, Johanna; Goetz, Mario E; Masic, Admir; Meier, Wolfgang; Thünemann, Andreas F; Taubert, Andreas; Luch, Andreas

    2011-04-26

    Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible. PMID:21456612

  7. Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response

    International Nuclear Information System (INIS)

    Nanograined/ultrafine-grained (NG/UFG) metals provide surfaces that are different from conventional coarse-grained polycrystalline metals because of the high fraction of grain boundaries. In the context of osseointegration of metal implants, grooving of nanograins/ultrafine grains by electrochemical grooving is a potential approach to increase the biomechanical interlocking and anchorage with consequent enhancement of cellular response. The primary objective of the research described here is to advance science and technology of metal implants by making a relative comparison of osteoblast response of grain boundary grooved and planar NG/UFG surfaces. The NG/UFG substrates were obtained using an ingenious concept of controlled phase reversion and the grain boundaries were electrochemically treated to induce grooving of large fraction of grain boundaries of NG/UFG substrate. Experiments on the effect of grooving of grain boundaries of NG/UFG metal indicated that cell attachment, proliferation, viability, morphology, and spread are favorably modulated and significantly different from planar (non-grooved) NG/UFG substrates. Furthermore, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on electrochemically grooved NG/UFG substrate. These observations are indicative of accelerated response of cell-substrate interaction and activity. The differences in the cellular response of planar and grain boundary grooved NG/UFG surface are attributed to favorable surface topography that accelerates the cellular activity.

  8. Nitric Oxide Signaling in Plant Responses to Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    Weihua Qiao; LiuMin Fan

    2008-01-01

    Nitric oxide (NO) plays important roles in diverse physiological processes In plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  9. The conserved SKN-1/Nrf2 stress response pathway regulates synaptic function in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Trisha A Staab

    2013-03-01

    Full Text Available The Nrf family of transcription factors plays a critical role in mediating adaptive responses to cellular stress and defends against neurodegeneration, aging, and cancer. Here, we report a novel role for the Caenorhabditis elegans Nrf homolog SKN-1 in regulating synaptic transmission at neuromuscular junctions (NMJs. Activation of SKN-1, either by acute pharmacological treatment with the mitochondrial toxin sodium arsenite or by mutations that cause constitutive SKN-1 activation, results in defects in neuromuscular function. Additionally, elimination of the conserved WD40 repeat protein WDR-23, a principal negative regulator of SKN-1, results in impaired locomotion and synaptic vesicle and neuropeptide release from cholinergic motor axons. Mutations that abolish skn-1 activity restore normal neuromuscular function to wdr-23 mutants and animals treated with toxin. We show that negative regulation of SKN-1 by WDR-23 in the intestine, but not at neuromuscular junctions, is necessary and sufficient for proper neuromuscular function. WDR-23 isoforms differentially localize to the outer membranes of mitochondria and to nuclei, and the effects of WDR-23 on neuromuscular function are dependent on its interaction with cullin E3 ubiquitin ligase. Finally, whole-transcriptome RNA sequencing of wdr-23 mutants reveals an increase in the expression of known SKN-1/Nrf2-regulated stress-response genes, as well as neurotransmission genes not previously implicated in SKN-1/Nrf2 responses. Together, our results indicate that SKN-1/Nrf2 activation may be a mechanism through which cellular stress, detected in one tissue, affects cellular function of a distal tissue through endocrine signaling. These results provide insight into how SKN-1/Nrf2 might protect the nervous system from damage in response to oxidative stress.

  10. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  11. Inhibition of TGFbeta1 Signaling Attenutates ATM Activity inResponse to Genotoxic Stress

    Energy Technology Data Exchange (ETDEWEB)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam B.; Lavin, Martin J.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-09-15

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta}1 (TGF{beta}), which is activated by radiation, is a potent and pleiotropic mediator of physiological and pathological processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}1 null murine epithelial cells or human epithelial cells treated with a small molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17 and p53, reduced {gamma}H2AX radiation-induced foci, and increased radiosensitivity compared to TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM that directs epithelial cell stress responses, cell fate and tissue integrity. Thus, TGF{beta}1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  12. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630.

    Directory of Open Access Journals (Sweden)

    Nigel G Ternan

    Full Text Available Clostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41 °C versus 37 °C in C. difficile strain 630 and identified 341 differentially expressed genes encompassing multiple cellular functional categories. While the transcriptome was relatively resilient to the applied heat stress, we noted upregulation of classical heat shock genes including the groEL and dnaK operons in addition to other stress-responsive genes. Interestingly, the flagellin gene (fliC was downregulated, yet genes encoding the cell-wall associated flagellar components were upregulated suggesting that while motility may be reduced, adherence--to mucus or epithelial cells--could be enhanced during infection. We also observed that a number of phage associated genes were downregulated, as were genes associated with the conjugative transposon Tn5397 including a group II intron, thus highlighting a potential decrease in retromobility during heat stress. These data suggest that maintenance of lysogeny and genome wide stabilisation of mobile elements could be a global response to heat stress in this pathogen.

  13. Hormonal Regulation of Response to Oxidative Stress in Insects-An Update.

    Science.gov (United States)

    Kodrík, Dalibor; Bednářová, Andrea; Zemanová, Milada; Krishnan, Natraj

    2015-10-27

    Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH's role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers-disturbed by the stressors-after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3',5'-monophosphate pathways in the presence of extra and intra-cellular Ca(2+) stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed.

  14. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again

    LENUS (Irish Health Repository)

    2011-08-30

    Abstract Before a probiotic bacterium can even begin to fulfill its biological role, it must survive a battery of environmental stresses imposed during food processing and passage through the gastrointestinal tract (GIT). Food processing stresses include extremes in temperature, as well as osmotic, oxidative and food matrix stresses. Passage through the GIT is a hazardous journey for any bacteria with deleterious lows in pH encountered in the stomach to the detergent-like properties of bile in the duodenum. However, bacteria are equipped with an array of defense mechanisms to counteract intracellular damage or to enhance the robustness of the cell to withstand lethal external environments. Understanding these mechanisms in probiotic bacteria and indeed other bacterial groups has resulted in the development of a molecular toolbox to augment the technological and gastrointestinal performance of probiotics. This has been greatly aided by studies which examine the global cellular responses to stress highlighting distinct regulatory networks and which also identify novel mechanisms used by cells to cope with hazardous environments. This review highlights the latest studies which have exploited the bacterial stress response with a view to producing next-generation probiotic cultures and highlights the significance of studies which view the global bacterial stress response from an integrative systems biology perspective.

  15. Extracellular signal-regulated kinase-2 within the ventral tegmental area regulates responses to stress.

    Science.gov (United States)

    Iñiguez, Sergio D; Vialou, Vincent; Warren, Brandon L; Cao, Jun-Li; Alcantara, Lyonna F; Davis, Lindsey C; Manojlovic, Zarko; Neve, Rachael L; Russo, Scott J; Han, Ming-Hu; Nestler, Eric J; Bolaños-Guzmán, Carlos A

    2010-06-01

    Neurotrophic factors and their signaling pathways have been implicated in the neurobiological adaptations in response to stress and the regulation of mood-related behaviors. A candidate signaling molecule implicated in mediating these cellular responses is the extracellular signal-regulated kinase (ERK1/2), although its functional role in mood regulation remains to be fully elucidated. Here we show that acute (1 d) or chronic (4 weeks) exposure to unpredictable stress increases phosphorylation of ERK1/2 and of two downstream targets (ribosomal S6 kinase and mitogen- and stress-activated protein kinase 1) within the ventral tegmental area (VTA), an important substrate for motivated behavior and mood regulation. Using herpes simplex virus-mediated gene transfer to assess the functional significance of this ERK induction, we show that overexpressing ERK2 within the VTA increases susceptibility to stress as measured in the forced swim test, responses to unconditioned nociceptive stimuli, and elevated plus maze in Sprague Dawley male rats, and in the tail suspension test and chronic social defeat stress procedure in C57BL/6 male mice. In contrast, blocking ERK2 activity in the VTA produces stress-resistant behavioral responses in these same assays and also blocks a chronic stress-induced reduction in sucrose preference. The effects induced by ERK2 blockade were accompanied by decreases in the firing frequency of VTA dopamine neurons, an important electrophysiological hallmark of resilient-like behavior. Together, these results strongly implicate a role for ERK2 signaling in the VTA as a key modulator of responsiveness to stress and mood-related behaviors. PMID:20519540

  16. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory.

    Science.gov (United States)

    Nguyen, Duy; Rieu, Ivo; Mariani, Celestina; van Dam, Nicole M

    2016-08-01

    Adaptive plant responses to specific abiotic stresses or biotic agents are fine-tuned by a network of hormonal signaling cascades, including abscisic acid (ABA), ethylene, jasmonic acid (JA) and salicylic acid. Moreover, hormonal cross-talk modulates plant responses to abiotic stresses and defenses against insect herbivores when they occur simultaneously. How such interactions affect plant responses under multiple stresses, however, is less understood, even though this may frequently occur in natural environments. Here, we review our current knowledge on how hormonal signaling regulates abiotic stress responses and defenses against insects, and discuss the few recent studies that attempted to dissect hormonal interactions occurring under simultaneous abiotic stress and herbivory. Based on this we hypothesize that drought stress enhances insect resistance due to synergistic interactions between JA and ABA signaling. Responses to flooding or waterlogging involve ethylene signaling, which likely reduces plant resistance to chewing herbivores due to its negative cross-talk with JA. However, the outcome of interactions between biotic and abiotic stress signaling is often plant and/or insect species-dependent and cannot simply be predicted based on general knowledge on the involvement of signaling pathways in single stress responses. More experimental data on non-model plant and insect species are needed to reveal general patterns and better understand the molecular mechanisms allowing plants to optimize their responses in complex environments. PMID:27095445

  17. Regulation of dopamine system responsivity and its adaptive and pathological response to stress

    OpenAIRE

    Belujon, Pauline; Grace, Anthony A.

    2015-01-01

    Although, historically, the norepinephrine system has attracted the majority of attention in the study of the stress response, the dopamine system has also been consistently implicated. It has long been established that stress plays a crucial role in the pathogenesis of psychiatric disorders. However, the neurobiological mechanisms that mediate the stress response and its effect in psychiatric diseases are not well understood. The dopamine system can play distinct roles in stress and psychiat...

  18. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance.

    Science.gov (United States)

    Koevoets, Iko T; Venema, Jan Henk; Elzenga, J Theo M; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  19. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Science.gov (United States)

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  20. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    Science.gov (United States)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  1. Stress Response and Translation Control in Rotavirus Infection.

    Science.gov (United States)

    López, Susana; Oceguera, Alfonso; Sandoval-Jaime, Carlos

    2016-01-01

    The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle. PMID:27338442

  2. Stress Response and Translation Control in Rotavirus Infection

    Directory of Open Access Journals (Sweden)

    Susana López

    2016-06-01

    Full Text Available The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle.

  3. Stress Response and Translation Control in Rotavirus Infection

    Science.gov (United States)

    López, Susana; Oceguera, Alfonso; Sandoval-Jaime, Carlos

    2016-01-01

    The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle. PMID:27338442

  4. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    Directory of Open Access Journals (Sweden)

    Daniel A. Rappolee

    2012-12-01

    Full Text Available Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  5. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    Science.gov (United States)

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  6. Piezoelectric two-layer stacks of cellular polypropylene ferroelectrets: transducer response at audio and ultrasound frequencies.

    Science.gov (United States)

    Wegener, Michael; Bergweiler, Steffen; Wirges, Werner; Pucher, Andreas; Tuncer, Enis; Gerhard-Multhaupt, Reimund

    2005-09-01

    Piezoelectric cellular polypropylene films, so-called ferroelectrets, are assembled in a stack with two active transducer layers. The stack is characterized with respect to its linear and quadratic response in a frequency range from 1 kHz to 80 kHz. A relatively smooth frequency response in the sound-pressure level is found for the individual layers as well as for both layers driven in phase. The piezoelectric response of the two-layer stack is twice the response of an individual layer over a rather broad frequency range. Furthermore, the influence of the preparation conditions on the resonance frequency and the effect of the quadratic distortion on the radiated sound are investigated both for the individual transducer films in the stack and for the stack system as a whole. PMID:16285459

  7. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    Science.gov (United States)

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths' relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a…

  8. ATF4 is involved in the regulation of simulated microgravity induced integrated stress response

    Science.gov (United States)

    Li, Yingxian; Li, Qi; Wang, Xiaogang; Sun, Qiao; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Objective: Many important metabolic and signaling pathways have been identified as being affected by microgravity, thereby altering cellular functions such as proliferation, differentiation, maturation and cell survival. It has been demonstrated that microgravity could induce all kinds of stress response such as endoplasmic reticulum stress and oxidative stress et al. ATF4 belongs to the ATF/CREB family of basic region leucine zipper transcription factors. ATF4 is induced by stress signals including anoxia/hypoxia, ER stress, amino acid deprivation and oxidative stress. ATF4 regulates the expression of genes involved in oxidative stress, amino acid synthesis, differentiation, metastasis and angiogenesis. The aim of this study was to examine the changes of ATF4 under microgravity, and to investigate the role of ATF4 in microgravity induced stress. MethodsMEF cells were cultured in clinostat to simulate microgravity. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to examine mRNA and protein levels of ATF4 expression under simulated microgravity in MEF cells. ROS levels were measured with the use of the fluorescent signal H2DCF-DA. GFP-XBP1 stably transfected cell lines was used to detect the extent of ER stress under microgravity by the intensity of GFP. Dual luciferase reporter assay was used to detect the activity of ATF4. Co-immunoprecipitation was performed to analyze protein interaction. Results: ATF4 protein levels in MEF cells increased under simulated microgravity. However, ATF4 mRNA levels were consistent. XBP1 splicing can be induced due to ER stress caused by simulated microgravity. At the same time, ROS levels were also increased. Increased ATF4 could promote the expression of CHOP, which is responsible for cell apoptosis. ATF4 also play an important role in cellular anti-oxidant stress. In ATF4 -/-MEF cells, the ROS levels after H2O2 treatment were obviously higher than that of wild type cells. HDAC4 was

  9. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure

    International Nuclear Information System (INIS)

    Thermal stress can have a profound impact on the physiological responses that are elicited following environmental toxicant exposure. The efficacy by which toxicants enter the body is directly influenced by thermoregulatory effector responses that are evoked in response to high ambient temperatures. In mammals, the thermoregulatory response to heat stress consists of an increase in skin blood flow and moistening of the skin surface to dissipate core heat to the environment. These physiological responses may exacerbate chemical toxicity due to increased permeability of the skin, which facilitates the cutaneous absorption of many environmental toxicants. The core temperature responses that are elicited in response to high ambient temperatures, toxicant exposure or both can also have a profound impact on the ability of an organism to survive the insult. In small rodents, the thermoregulatory response to thermal stress and many environmental toxicants (such as organophosphate compounds) is often biphasic in nature, consisting initially of a regulated reduction in core temperature (i.e., hypothermia) followed by fever. Hypothermia is an important thermoregulatory survival strategy that is used by small rodents to diminish the effect of severe environmental insults on tissue homeostasis. The protective effect of hypothermia is realized by its effects on chemical toxicity as molecular and cellular processes, such as lipid peroxidation and the formation of reactive oxygen species, are minimized at reduced core temperatures. The beneficial effects of fever are unknown under these conditions. Perspective is provided on the applicability of data obtained in rodent models to the human condition

  10. Thermoregulatory responses to environmental toxicants: the interaction of thermal stress and toxicant exposure.

    Science.gov (United States)

    Leon, Lisa R

    2008-11-15

    Thermal stress can have a profound impact on the physiological responses that are elicited following environmental toxicant exposure. The efficacy by which toxicants enter the body is directly influenced by thermoregulatory effector responses that are evoked in response to high ambient temperatures. In mammals, the thermoregulatory response to heat stress consists of an increase in skin blood flow and moistening of the skin surface to dissipate core heat to the environment. These physiological responses may exacerbate chemical toxicity due to increased permeability of the skin, which facilitates the cutaneous absorption of many environmental toxicants. The core temperature responses that are elicited in response to high ambient temperatures, toxicant exposure or both can also have a profound impact on the ability of an organism to survive the insult. In small rodents, the thermoregulatory response to thermal stress and many environmental toxicants (such as organophosphate compounds) is often biphasic in nature, consisting initially of a regulated reduction in core temperature (i.e., hypothermia) followed by fever. Hypothermia is an important thermoregulatory survival strategy that is used by small rodents to diminish the effect of severe environmental insults on tissue homeostasis. The protective effect of hypothermia is realized by its effects on chemical toxicity as molecular and cellular processes, such as lipid peroxidation and the formation of reactive oxygen species, are minimized at reduced core temperatures. The beneficial effects of fever are unknown under these conditions. Perspective is provided on the applicability of data obtained in rodent models to the human condition.

  11. Antioxidant responses of wheat plants under stress

    Directory of Open Access Journals (Sweden)

    Andréia Caverzan

    2016-03-01

    Full Text Available Abstract Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L., which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS, which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2 signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.

  12. Identifying Functional Mechanisms of Gene and Protein Regulatory Networks in Response to a Broader Range of Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Li

    2010-01-01

    Full Text Available Cellular responses to sudden environmental stresses or physiological changes provide living organisms with the opportunity for final survival and further development. Therefore, it is an important topic to understand protective mechanisms against environmental stresses from the viewpoint of gene and protein networks. We propose two coupled nonlinear stochastic dynamic models to reconstruct stress-activated gene and protein regulatory networks via microarray data in response to environmental stresses. According to the reconstructed gene/protein networks, some possible mutual interactions, feedforward and feedback loops are found for accelerating response and filtering noises in these signaling pathways. A bow-tie core network is also identified to coordinate mutual interactions and feedforward loops, feedback inhibitions, feedback activations, and cross talks to cope efficiently with a broader range of environmental stresses with limited proteins and pathways.

  13. Modeling of time-dose-LET effects in the cellular response to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Lisa Antje

    2015-07-20

    This work is dedicated to the elucidation of time-dose- and if applicable linear energy transfer (LET) effects in the cellular response to ion or photon radiation. In particular, the common concept of the Local Effect Model (LEM) and the Giant Loop Binary Lesion (GLOBLE) model, which explains cell survival probabilities on the hand of clustering of double-strand breaks (DSB) in micrometer-sized sub-structural units of the DNA, was investigated with regard to temporal aspects. In previous studies with the LEM and GLOBLE model, it has been demonstrated that the definition of two lesion classes, characterized by single or multiple DSB in a DNA giant loop, with two repair fidelities is adequate to comprehensively describe the dose dependence of the cellular response to instantaneous photon irradiation or ion irradiation with varying LET. Furthermore, with the GLOBLE model for photon radiation, it has been shown that the assignment of two repair time scales to the two lesion classes allows to adequately reproduce time-dose effects after photon irradiation with an arbitrary constant dose-rate. In this work, the results of four projects that strengthen the mechanistic consistency and the practical applicability of the LEM and GLOBLE model will be presented. First, it was found that the GLOBLE model is applicable to describe time-dose effects in the cellular response to two split photon doses and in the occurrence of deterministic radiation effects. Second, in a comparison of ten models for the temporal course of DSB rejoining, it was revealed that a bi-exponential approach, as suggested by the LEM and GLOBLE model, finds a relatively large support by 61 experimental data sets. Third, in a comparison of four kinetic photon cell survival models that was based on fits to 13 dose-rate experiments, it was shown that the GLOBLE model performs well with respect to e.g. accuracy, parsimony, reliability and other factors that characterize a good approach. Last but not least, the

  14. Effects of regional analgesia on stress responses to pediatric surgery.

    Science.gov (United States)

    Wolf, Andrew R

    2012-01-01

    Invasive surgery induces a combination of local response to tissue injury and generalized activation of systemic metabolic and hormonal pathways via afferent nerve pathways and the central nervous system. The local inflammatory responses and the parallel neurohumoral responses are not isolated but linked through complex signaling networks, some of which remain poorly understood. The magnitude of the response is broadly related to the site of injury (greater in regions with visceral pain afferents such as abdomen and thorax) and the extent of the trauma. The changes include alterations in metabolic, hormonal, inflammatory, and immune systems that can be collectively termed the stress response. Integral to the stress responses are the effects of nociceptive afferent stimuli on systemic and pulmonary vascular resistance, heart rate, and blood pressure, which are a combination of efferent autonomic response and catecholamine release via the adrenal medulla. Therefore, pain responses, cardiovascular responses, and stress responses need to be considered as different aspects of a combined bodily reaction to surgery and trauma. It is important at the outset to understand that not all components of the stress response are suppressed together and that this is important when discussing different analgesic modalities (i.e. opioids vs regional anesthesia). For example, in terms of the use of fentanyl in the infant, the dose required to provide analgesia (1-5 mcg·kg(-1)) is less than that required for hemodynamic stability in response to stimuli (5-10 mcg·kg(-1)) (1) and that this in turn is less than that required to suppress most aspects of the stress response (25-50 mcg·kg(-1)) (2). In contrast to this considerable dose dependency, central local anesthetic blocks allow blockade of the afferent and efferent sympathetic pathways at relatively low doses resulting in profound suppression of hemodynamic and stress responses to surgery. PMID:21999144

  15. Cross talk between H2O2 and interacting signal molecules under plant stress response

    Directory of Open Access Journals (Sweden)

    Ina eSaxena

    2016-04-01

    Full Text Available It is well established that oxidative stress is an important cause of cellular damage. During stress condition plants have evolved regulatory mechanism to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of ROS, which is subsequently converted to H2O2. H2O2 is continuously produced as the by-product of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 acts as a key regulator of many biological processes because H2O2 has been identified as an important second messenger in signal transduction networks. In this review we discuss potential roles of H2O2 and other signaling molecule during various stress responses.

  16. Modulation of immune responses in stress by Yoga

    OpenAIRE

    Arora Sarika; Bhattacharjee Jayashree

    2008-01-01

    Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary syste...

  17. Sympathetic neural responses to mental stress during acute simulated microgravity

    OpenAIRE

    Durocher, John J.; Schwartz, Christopher E.; Carter, Jason R.

    2009-01-01

    Neural and cardiovascular responses to mental stress and acute 6° head-down tilt (HDT) were examined separately and combined. We hypothesized sympathoexcitation during mental stress, sympathoinhibition during HDT, and an additive neural interaction during combined mental stress and HDT. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded in 16 healthy subjects (8 men, 8 women) in the supine position during three randomized trials: 1) menta...

  18. Acute Stress Reduces Reward Responsiveness: Implications for Depression

    OpenAIRE

    Bogdan, Ryan; Pizzagalli, Diego

    2006-01-01

    Background: Stress, one of the strongest risk factors for depression, has been linked to "anbedonic" behavior and dysfunctional reward-related neural circuitry in preclinical models. Methods: To test if acute stress reduces reward responsiveness (i.e., the ability to modulate behavior as a function of past reward), a signal-detection task coupled with a differential reinforcement schedule was utilized. Eighty female participants completed the task under both a stress condition, either threat-...

  19. The Teenage Brain: The Stress Response and the Adolescent Brain

    OpenAIRE

    Romeo, Russell D.

    2013-01-01

    Adolescence is a time of many psychosocial and physiological changes. One such change is how an individual responds to stressors. Specifically, adolescence is marked by significant shifts in hypothalamic-pituitary-adrenal (HPA) axis reactivity, resulting in heightened stress-induced hormonal responses. It is presently unclear what mediates these changes in stress reactivity and what impacts they may have on an adolescent individual. However, stress-sensitive limbic and corti...

  20. Habitual Response to Stress in Recovering Adolescent Anorexic Patients

    Science.gov (United States)

    Miller, Samantha P.; Erickson, Sarah J.; Branom, Christina; Steiner, Hans

    2009-01-01

    Objective: Although previous research has investigated the stress response in acutely anorexic patients, there is currently little research addressing this response in recovering adolescent anorexic girls. Therefore, this study investigated partially and fully weight-restored anorexic adolescent girls' psychological and physiological response to a…

  1. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsu, Naofumi, E-mail: nohtsu@mail.kitami-it.ac.jp [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Kozuka, Taro; Hirano, Mitsuhiro [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Arai, Hirofumi [Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan)

    2015-09-15

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO{sub 2} layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH{sub 4}){sub 2}O·5B{sub 2}O{sub 3}, (NH{sub 4}){sub 2}SO{sub 4}, or (NH{sub 4}){sub 3}PO{sub 4}, after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO{sub 2}), while incorporation from electrolyte was only observed for (NH{sub 4}){sub 3}PO{sub 4}. Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO{sub 2} formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials.

  2. Transition between immune and disease states in a cellular automaton model of clonal immune response

    CERN Document Server

    Bezzi, M; Ruffo, S; Seiden, P E; Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-01-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infectious virus and cytotoxic T lymphocytes (cellular response). The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connect...

  3. A candidate DNA vaccine elicits HCV specific humoral and cellular immune responses

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; Ye Ye; You-Hua Xie; Yu-Ying Kong; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To investigate the immunogenicity of candidate DNA vaccine against hepatitis C virus (HCV) delivered by two plasmids expressing HCV envelope protein 1 (E1) and envelope protein 2 (E2) antigens respectively and to study the effect of CpG adjuvant on this candidate vaccine.METHODS: Recombinant plasmids expressing HCV E1 and E2 antigens respectively were used to simultaneously inoculate mice with or without CpG adjuvant. Antisera were then collected and titers of anti-HCV antibodies were analyzed by ELISA. One month after the last injection, animals were sacrificed to prepare single-cell suspension of splenocytes.These cells were subjected to HCVantigen specific proliferation assays and cytokine secretion assays to evaluate the cellular immune responses of the vaccinated animals.RESULTS: Antibody responses to HCV E1 and E2 antigens were detected in vaccinated animals. Animals receiving CpG adjuvant had slightly lower titers of anti-HCV antibodies in the sera, while the splenocytes from these animals showed higher HCV-antigen specific proliferation. Analysis of cytokine secretion from the splenocytes was consistent with the above results. While no antigen-specific IL-4 secretion was detected for all vaccinated animals, HCV antigen-specific INF-γ secretion was detected for the splenocytes of vaccinated animals. CpG adjuvant enhanced the secretion of INF-γ but did not change the profile of IL-4 secretion.CONCLUSION: Vaccination of mice with plasmids encoding HCV E1 and E2 antigens induces humoral and cellular immune responses. CpG adjuvant significantly enhances the cellular immune response.

  4. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    Directory of Open Access Journals (Sweden)

    Renata eToth

    2015-10-01

    Full Text Available Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as C. parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response towards this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi’s virulence by detecting altered innate cellular responses.In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host pathogen interactions.

  5. A novel role of c-FLIP protein in regulation of ER stress response.

    Science.gov (United States)

    Conti, Silvia; Petrungaro, Simonetta; Marini, Elettra Sara; Masciarelli, Silvia; Tomaipitinca, Luana; Filippini, Antonio; Giampietri, Claudia; Ziparo, Elio

    2016-09-01

    Cellular-Flice-like inhibitory protein (c-FLIP) is an apoptosis modulator known to inhibit the extrinsic apoptotic pathway thus blocking Caspase-8 processing in the Death Inducing Signalling Complex (DISC). We previously demonstrated that c-FLIP localizes at the endoplasmic reticulum (ER) and that c-FLIP-deficient mouse embryonic fibroblasts (MEFs) display an enlarged ER morphology. In the present study, we have addressed the consequences of c-FLIP ablation in the ER stress response by investigating the effects of pharmacologically-induced ER stress in Wild Type (WT) and c-FLIP-/- MEFs. Surprisingly, c-FLIP-/- MEFs were found to be strikingly more resistant than WT MEFs to ER stress-mediated apoptosis. Analysis of Unfolded Protein Response (UPR) pathways revealed that Pancreatic ER Kinase (PERK) and Inositol-Requiring Enzyme 1 (IRE1) branch signalling is compromised in c-FLIP-/- cells when compared with WT cells. We found that c-FLIP modulates the PERK pathway by interfering with the activity of the serine threonine kinase AKT. Indeed, c-FLIP-/- MEFs display higher levels of active AKT than WT MEFs upon ER stress, while treatment with a specific AKT inhibitor of c-FLIP-/- MEFs subjected to ER stress restores the PERK but not the IRE1 pathway. Importantly, the AKT inhibitor or dominant negative AKT transfection sensitizes c-FLIP-/- cells to ER stress-induced cell death while the expression of a constitutively active AKT reduces WT cells sensitivity to ER stress-induced death. Thus, our results demonstrate that c-FLIP modulation of AKT activity is crucial in controlling PERK signalling and sensitivity to ER stress, and highlight c-FLIP as a novel molecular player in PERK and IRE1-mediated ER stress response.

  6. Quantification of Bacillus cereus stress responses

    NARCIS (Netherlands)

    Besten, den H.M.W.

    2010-01-01

    The microbial stability and safety of minimally processed foods is controlled by a deliberate combination of preservation hurdles. However, this preservation strategy is challenged by the ability of spoilage bacteria and food-borne pathogens to adapt to stressing environments providing cell robustne

  7. Acute Stress Response in Critically Ill Children

    NARCIS (Netherlands)

    M. den Brinker (Marieke)

    2006-01-01

    textabstractThe understanding of the endocrine changes in critically ill children is important, as it provides insights in the pathophysiology of the acute stress in children and its differences compared with adults. Furthermore, it delineates prognostic factors for survival and supports the rati

  8. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  9. Personality, Stressful Life Events, and Treatment Response in Major Depression

    Science.gov (United States)

    Bulmash, Eric; Harkness, Kate L.; Stewart, Jeremy G.; Bagby, R. Michael

    2009-01-01

    The current study examined whether the personality traits of self-criticism or dependency moderated the effect of stressful life events on treatment response. Depressed outpatients (N = 113) were randomized to 16 weeks of cognitive-behavioral therapy, interpersonal psychotherapy, or antidepressant medication (ADM). Stressful life events were…

  10. Quorum Sensing Enhances the Stress Response in Vibrio cholerae▿

    OpenAIRE

    Joelsson, Adam; Kan, Biao; Jun ZHU

    2007-01-01

    Vibrio cholerae lives in aquatic environments and causes cholera. Here, we show that quorum sensing enhances V. cholerae viability under certain stress conditions by upregulating the expression of RpoS, and this regulation acts through HapR, suggesting that a quorum-sensing-enhanced stress response plays a role in V. cholerae environmental survival.

  11. Traumatic Experience in Infancy: How Responses to Stress Affect Development

    Science.gov (United States)

    Witten, Molly Romer

    2010-01-01

    Responses to traumatic stress during the earliest years of life can change quickly and can be difficult to identify because of the young child's rapid rate of development. The symptoms of traumatic stress will depend on the child's developmental level and individual coping styles, as well as the quality and nature of the child's most important…

  12. The psychophysiological stress response in psoriasis and rheumatoid arthritis

    NARCIS (Netherlands)

    Brouwer, S.J.M. de; Middendorp, H. van; Stormink, C.; Kraaimaat, F.W.; Sweep, F.C.; Jong, E.M.G.J. de; Schalkwijk, J.; Eijsbouts, A.M.M.; Donders, A.R.T.; Kerkhof, P.C.M. van de; Riel, P.L.C.M. van; Evers, A.W.M.

    2014-01-01

    BACKGROUND: Psychosocial stress can be a risk factor for the maintenance and exacerbation of chronic inflammatory diseases, such as psoriasis and rheumatoid arthritis (RA). OBJECTIVES: To gain insight into the specificity of the psychophysiological stress response during chronic inflammation, we ass

  13. Differentiating anticipatory from reactive cortisol responses to psychosocial stress

    NARCIS (Netherlands)

    Engert, V.; Efanov, S.I.; Duchesne, A.; Vogel, S.; Corbo, V.; Pruessner, J.C.

    2013-01-01

    Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no "bes

  14. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  15. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms

    OpenAIRE

    Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa

    2015-01-01

    In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this rev...

  16. Cellular and molecular responses of E. fetida cœlomocytes exposed to TiO2 nanoparticles

    International Nuclear Information System (INIS)

    An in vitro approach using cœlomocytes of Eisenia fetida was investigated to evaluate toxicity of TiO2 nanoparticles. Cœlomocytes were exposed to well-dispersed suspension of small aggregates (130 nm) of TiO2 nanoparticles (1–25 μg/ml) during 4, 12 and 24 h. Intracellular localisation suggested that the main route of uptake was endocytosis. Cellular responses showed that TiO2 nanoparticles were not cytotoxic and had no effect on phagocytosis at any of the four concentrations for each time tested. Concerning molecular responses, an increase of fetidin and metallothionein mRNA expression was observed starting from 4 h of exposure. In contrast, expression of coelomic cytolytic factor mRNA decreased for 10 and 25 μg/ml after 4 h. Superoxide dismutase, catalase and glutathione-S-transferase expression were not modified suggesting that oxidative stress was not induced by TiO2 in our experimental conditions. This in vitro approach showed that TiO2 nanoparticles were taken up by cœlomocytes and they could modify the molecular response of immune and detoxification system.

  17. [The effect of stressor experiences and optimism upon stress responses].

    Science.gov (United States)

    Tonan, K; Sonoda, A

    1994-10-01

    The present studies investigated whether or not optimism/pessimism is a cognitive mediator of future depression for people who have experienced many negative life events. Subjects were administered optimism scales, stress response scales at Time 1. They then completed the stressor scale and stress response scales at Time 2, about six weeks later. The results showed the interaction of stressor experiences and optimistic diathesis: Subjects who have higher stressor experiences and higher stable and global explanatory style for negative events showed higher depressive responses. Other indices of optimistic diathesis--Life Orientation, Cognitive Style, and Internality dimension of Attributional Style--did not produce this interaction effect. Moreover, this interaction did not appear in the psychological stress response other than depression. These results were consistent with diathesis-stress model of depression. PMID:7861687

  18. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Lian-Xing Zhang; Li-Feng Zhao; An-Shi Zhang; Xiao-Guang Chen; Cun-Shuan Xu

    2006-01-01

    AIM: To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level.METHODS: Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array.RESULTS: A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from G0-G1(4-6 h after PH), cell proliferation (6-66 h after PH),cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity,these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total upand down-regulated expression times were 419 and 274,respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns,they were classified into 21 types, showing the activities were diverse and complicated during LR.CONCLUSION: Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.

  19. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    OpenAIRE

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; John E Fauth; Richmond, Robert H.; Ariel Kushmaro; Gibb, Stuart W.; Yossi Loya; Ostrander, Gary K.; Esti Kramarsky-Winter

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chlo...

  20. Stability analysis of Reynolds stress response functional candidates

    Energy Technology Data Exchange (ETDEWEB)

    Dafinger, M.; Hallatschek, K. [Max-Planck-Institute for Plasma Physics, EURATOM-IPP Association, Garching (Germany); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2013-04-15

    Complete information on the behavior of zonal flows in turbulence systems is coded in the turbulent stress response to the respective flow pattern. We show that turbulence stress response functionals containing only the linear first order wavenumber dependence on the flow pattern result in unstable structures up to the system size. A minimal augmentation to reproduce the flow patterns observed in turbulence simulations is discussed.

  1. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women.

    Science.gov (United States)

    Lupis, Sarah B; Lerman, Michelle; Wolf, Jutta M

    2014-11-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6±1.7 yr) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p>.23). Increases in self-reported fear predicted blunted cortisol responses in men (β=0.41, p=.04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β=0.67 p=.004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β=0.51, p=.033; β=0.46, p=.066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p>.23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health-promoting ways of

  2. STIFDB2: An Updated Version of Plant Stress-Responsive TranscrIption Factor DataBase with Additional Stress Signals, Stress-Responsive Transcription Factor Binding Sites and Stress-Responsive Genes in Arabidopsis and Rice

    OpenAIRE

    Naika, Mahantesha; Shameer, Khader; Mathew, Oommen K; Gowda, Ramanjini; Sowdhamini, Ramanathan

    2013-01-01

    Understanding the principles of abiotic and biotic stress responses, tolerance and adaptation remains important in plant physiology research to develop better varieties of crop plants. Better understanding of plant stress response mechanisms and application of knowledge derived from integrated experimental and bioinformatics approaches are gaining importance. Earlier, we showed that compiling a database of stress-responsive transcription factors and their corresponding target binding sites in...

  3. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  4. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.

    Science.gov (United States)

    Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla

    2016-09-01

    Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016. PMID:25589422

  5. Low-stress and high-stress singing have contrasting effects on glucocorticoid response

    Directory of Open Access Journals (Sweden)

    Daisy eFancourt

    2015-09-01

    Full Text Available Performing music in public is widely recognised as a potentially stress-inducing activity. However, despite the interest in music performance as an acute psychosocial stressor, there has been relatively little research on the effects of public performance on the endocrine system. This study examined the impact of singing in a low-stress performance situation and a high-stress live concert on levels of glucocorticoids (cortisol and cortisone in 15 professional singers. The results showed a significant decrease in both cortisol and cortisone across the low-stress condition, suggesting that singing in itself is a stress-reducing (and possibly health-promoting activity, but significant increases across the high-stress condition. This is the first study to demonstrate that singing affects glucocorticoid responses and that these responses are modulated by the conditions of performance.

  6. Genome wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations

    Directory of Open Access Journals (Sweden)

    Hilal eTaymaz-Nikerel

    2016-02-01

    Full Text Available Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to changing conditions. Genome wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short- and long- term. This review focuses on response of yeast cells to diverse stress inducing perturbations including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, as well as to genetic interventions such as deletion and over-expression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.

  7. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  8. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, M P; Guo, S; Kalinin, S V; Jesse, S [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 (United States); Reukov, V V; Thompson, G L; Vertegel, A A, E-mail: sergei2@ornl.go [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)

    2009-10-07

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  9. Cellular immune responses in the lungs of pigs infected in utero with PRRSV: An immunohistochemical study

    DEFF Research Database (Denmark)

    Tingstedt, Jens Erik; Nielsen, Jens

    2004-01-01

    The cellular response in the lungs of pigs transplacentally infected with porcine reproductive and respiratory syndrome virus (PRRSV) was examined by immunohistochemistry. Double staining for the T-cell marker antigen CD3 and PRRSV demonstrated that the appearance and distribution of T-cells homing...... to the lungs of infected pigs correlated well with the presence and location of virus-infected cells. Single stainings showed that cells positive for the CD2 and CD8 antigen were almost as numerous in pneumonic lesions as CD3 positive cells whereas cells expressing the CD4 antigen were rare. The morphology...

  10. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure.

    Science.gov (United States)

    Habauzit, Denis; Le Quément, Catherine; Zhadobov, Maxim; Martin, Catherine; Aubry, Marc; Sauleau, Ronan; Le Dréan, Yves

    2014-01-01

    Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW) will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2), led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed). Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed). By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.

  11. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure.

    Directory of Open Access Journals (Sweden)

    Denis Habauzit

    Full Text Available Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2, led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed. Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed. By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.

  12. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    International Nuclear Information System (INIS)

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites

  13. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.

  14. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  15. Sex differences in the stress response in SD rats.

    Science.gov (United States)

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. PMID:25687843

  16. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    2014-04-18

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  17. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-induced DNA Damages in Confluent Human Fibroblasts

    Science.gov (United States)

    Lu, Tao; Wu, Honglu; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Wong, Michael

    2016-07-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 mg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by focus pattern and focus number counting of phosphorylated histone protein H2AX (γg-H2AX). The cells on the ISS showed modestly increased average focus counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profiles of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in γg-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not

  18. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Glacy Jaqueline da Silva

    2014-01-01

    Full Text Available Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses.

  19. Cellular and humoral immune responses to Borrelia burgdorferi antigens in patients with culture-positive early Lyme disease.

    Science.gov (United States)

    Vaz, A; Glickstein, L; Field, J A; McHugh, G; Sikand, V K; Damle, N; Steere, A C

    2001-12-01

    We determined cellular and humoral immune responses to Borrelia burgdorferi lysate and to recombinant flagellin (FlaB), OspC, and OspA in acute- and convalescent-phase samples from 39 culture-positive patients with erythema migrans and in 20 healthy control subjects. During the acute illness, a median of 4 days after the onset of erythema migrans, 51% of the patients had proliferative cellular responses and 72% had antibody responses to at least one of the borrelial antigens tested. During convalescence, at the conclusion of antibiotic therapy, 64% of the patients had proliferative cellular reactivity and 95% had antibody reactivity with at least one of the spirochetal antigens tested. In both acute- and convalescent-phase samples, cellular immune responses were found as frequently to OspA as to OspC and FlaB. Although antibody responses were also frequently seen to OspC and FlaB, only a few patients had marginal antibody reactivity with OspA. The percentage of patients with proliferative responses was similar in those with clinical evidence of localized or disseminated infection, whereas humoral reactivity was found more often in those with disseminated disease. We conclude that cellular and humoral responses to B. burgdorferi antigens are often found among patients with early Lyme disease. In contrast with the other antigens tested, cellular but not humoral reactivity was often found with OspA.

  20. [Metabolic response to trauma and stress].

    Science.gov (United States)

    Omerbegović, Meldijana; Durić, Amira; Muratović, Nusreta; Mulalić, Lejla; Hamzanija, Emina

    2003-01-01

    Trauma, surgery, burns and infection are accompanied with catabolic response which is characterized by enhanced protelysis, enhanced excretion of nitrogen, neoglucogenesis and resistance of peripheral tissues to insulin. This catabolic response is mediated through neural pathways and neuroendocrine axis. The purpose of this response is restoration of adequate perfusion and oxygenation and releasing of energy and substrates for the tissues, organs and systems which functions are essential for the survival. Metabolic response to injury and severe infection leads to decomposition of skeletal muscle proteins to amino acids, intensive liver gluconcogenesis from lactate, glycerol and alanin with enhanced oxidation of aminoacids. These substrates are necessary for synthesis of various mediators of protein or lipid nature, which are important for the defense and tissue regeneration. The changes result in negative balance of nitrogen, loss of body weight, and lower plasma concentration of all aminoacids. Patients who were unable to develop this hypercatabolic response have poor prognosis, and the patients with hypercatabolic response rapidly lose their body cell mass and without metabolic and nutritive support have more complications and higher mortality. Although neoglucogenesis, proteolysis and lipolysis are resistant to exogenous nutrients, metabolic support in critical illness improves the chances for survival until the healing of the disease. Casual therapy in such conditions is elimination of "stressors" which maintain abnormal endocrine and metabolic response. Adequate oxygenation, hemostasis, infection control and control of extracellular compartment expansion and low flows, are essential for the efficacy of nutritive support and that is the only way to convalescence and wound healing. PMID:15017867

  1. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response

    OpenAIRE

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an i...

  2. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses.

    Science.gov (United States)

    Feng, Wei; Lindner, Heike; Robbins, Neil E; Dinneny, José R

    2016-08-01

    Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes. PMID:27503468

  3. Crop and medicinal plants proteomics in response to salt stress

    Directory of Open Access Journals (Sweden)

    Keyvan eAghaei

    2013-01-01

    Full Text Available Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects.

  4. Stressed out? Associations between perceived and physiological stress responses in adolescents : The TRAILS study

    NARCIS (Netherlands)

    Oldehinkel, Albertine J.; Ormel, Johan; Bosch, Nienke M.; Bouma, Esther M. C.; Van Roon, Arie M.; Rosmalen, Judith G. M.; Riese, Harriette

    2011-01-01

    Studies regarding the interrelation of perceived and physiological stress indices have shown diverging results. Using a population sample of adolescents (N=715, 50.9% girls, mean age 16.11 years, SD=0.59), we tested three hypotheses: (1) perceived responses during social stress covary with concurren

  5. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Maryam Yazdanian

    2015-01-01

    Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine immunization.

  6. Hemodynamic responses to mental stress during salt loading

    DEFF Research Database (Denmark)

    Gefke, Maria; Christensen, Niels Juel; Bech, Per;

    2016-01-01

    PURPOSE: The purpose was to examine whether prolonged moderate stress associated with a student exam would increase the blood pressure response to a salt load in young healthy normotensive individuals. METHODS: Ten healthy young subjects were examined at two different occasions in random order (i......) during preparation for a medical exam (prolonged stress) and (ii) outside the exam period (low stress). All subjects consumed a controlled diet for 3 days with low- or high-salt content in randomized order. The subjective stress was measured by Spielberger's State-Trait Anxiety Inventory-Scale, SCL...... Symptom Checklist for stress and the Visual Analogue Scale. On each level of stress, 24-h ambulatory blood pressure and cardiac output (CO) were measured. Furthermore, plasma norepinephrine (NE), epinephrine (E) and plasma renin activity (PRA) were measured. RESULTS: Twenty-four-hour ABP, 24-h heart rate...

  7. Plant transcriptomics and responses to environmental stress: an overview

    Indian Academy of Sciences (India)

    Sameen Ruqia Imadi; Alvina Gul Kazi; Mohammad Abass Ahanger; Salih Gucel; Parvaiz Ahmad

    2015-09-01

    Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant’s response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.

  8. Time course transcriptome changes in Shewanella algae in response to salt stress.

    Directory of Open Access Journals (Sweden)

    Xiuping Fu

    Full Text Available Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms.

  9. the response of plants to drought stress

    Directory of Open Access Journals (Sweden)

    Rys Magdalena

    2015-08-01

    a wider spectrum of compounds scattering the radiation in the leaves tested, and their subsequent comparative analysis. The impact of drought on metabolism of soybean was clearly visible on spectra and confirmed using cluster analysis. The technical problem of the influence of leaf water content on measurements, which appeared in studies, will be discussed. To conclude, FT-Raman spectroscopy may be a good complement to other non-invasive methods, e.g., fluorescent methods, in assessing the stress-induced damage of crops.

  10. Involvement of endoplasmic reticulum stress response in orofacial inflammatory pain.

    Science.gov (United States)

    Yang, Eun Sun; Bae, Jin Young; Kim, Tae Heon; Kim, Yun Sook; Suk, Kyoungho; Bae, Yong Chul

    2014-12-01

    Endoplasmic reticulum (ER) stress is involved in many neurological diseases and inflammatory responses. Inflammatory mediators induce neuronal damage and trigger the neuropathic or inflammatory pain. But there is very little data on the role of the ER stress response in pain mechanisms. In this study, we explored whether the ER stress response is involved in orofacial inflammatory pain by using a complete Freund's adjuvant (CFA)-injected rat model. The thermal pain hypersensitivity increased significantly after CFA injection. We found that the protein and mRNA levels of ER stress response genes, GRP78/Bip and p-eIF2α, increased significantly in trigeminal ganglion (TG) of CFA-injected rats compared to control animals. In immunofluorescence analysis, a significant increase of GRP78 and p-eIF2α immunopositive neurons was observed in CFA-injected TG compared to control TG. When we administered an ER stress modulator, salubrinal, CFA-induced thermal pain hypersensitivity was temporally reduced. Thus, our study suggests that ER stress responses in TG neurons contribute to CFA-induced inflammatory pain, and may comprise an important molecular mechanism underlying the orofacial inflammatory pain pathway. PMID:25548537

  11. Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus.

    Science.gov (United States)

    Ebrahimi Khaksefidi, Reyhaneh; Mirlohi, Shirin; Khalaji, Fahimeh; Fakhari, Zahra; Shiran, Behrouz; Fallahi, Hossein; Rafiei, Fariba; Budak, Hikmet; Ebrahimie, Esmaeil

    2015-01-01

    Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner. PMID:26442054

  12. Contrasting urban and rural heat stress responses to climate change

    Science.gov (United States)

    Fischer, E. M.; Oleson, K. W.; Lawrence, D. M.

    2012-02-01

    Hot temperatures in combination with high humidity cause human discomfort and may increase morbidity and mortality. A global climate model with an embedded urban model is used to explore the urban-rural contrast in the wet-bulb globe temperature, a heat stress index accounting for temperature and humidity. Wet-bulb globe temperatures are calculated at each model time step to resolve the heat stress diurnal cycle. The model simulates substantially higher heat stress in urban areas compared to neighbouring rural areas. Urban humidity deficit only weakly offsets the enhanced heat stress due to the large night-time urban heat island. The urban-rural contrast in heat stress is most pronounced at night and over mid-latitudes and subtropics. During heatwaves, the urban heat stress amplification is particularly pronounced. Heat stress strongly increases with doubled CO2 concentrations over both urban and rural surfaces. The tropics experience the greatest increase in number of high-heat-stress nights, despite a relatively weak ˜2°C warming. Given the lack of a distinct annual cycle and high relative humidity, the modest tropical warming leads to exceedance of the present-day record levels during more than half of the year in tropical regions, where adaptive capacity is often low. While the absolute urban and rural heat stress response to 2 × CO2 is similar, the occurrence of nights with extremely high heat stress increases more in cities than surrounding rural areas.

  13. Expression and cellular distribution of ubiquitin in response to injury in the developing spinal cord of Monodelphis domestica

    DEFF Research Database (Denmark)

    Noor, Natassya M; Møllgård, Kjeld; Wheaton, Benjamin J;

    2013-01-01

    Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to pos...... changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets....

  14. Do Cells Sense Stress or Strain? Measurement of Cellular Orientation Can Provide a Clue☆

    OpenAIRE

    De, Rumi; Zemel, Assaf; Safran, Samuel A.

    2008-01-01

    We predict theoretically the steady-state orientation of cells subject to dynamical stresses that vary more quickly than the cell relaxation time. We show that the orientation is a strong function of the Poisson's ratio, ν, of the matrix when cell activity is governed by the matrix strain; if cell activity is governed by the matrix stress, the orientation depends only weakly on ν. These results can be used to differentiate systems in which the strain or the stress determine the setpoint for t...

  15. Cellular biomarker responses of limpets (Mollusca as measure of sensitivity to cadmiumcontamination

    Directory of Open Access Journals (Sweden)

    Koot Reinecke

    2008-09-01

    Full Text Available Due to the availability and chemical nature of some heavy metals, sub-lethal toxicant levels may persist in the ocean waters and may cause physiological problems and toxicity in invertebrates and other marine organisms. Although studies of metal concentrations in False Bay showed relatively low mean concentrations of Cd, invertebrates such as molluscs, crustaceans and many other groups are able to accumulate high levels of heavy metals in their tissues and still survive in the heaviest polluted areas. They can accumulate numerous pollutants from natural waters in quantities that are many orders of magnitude higher than background levels. Bioaccumulation ofcadmium in intertidal species could cause stress which may be measurable at the cellular level. A variety of limpet species that may serve as suitable ecotoxicological monitoring species occur in abundance on rocky shores along the South African coastline. The aim of this study was to obtain sensitivity data which could contribute to the selection of a suitable monitoring species and the eventual establishment of a species sensitivity distribution model (SSD with a biomarker responseas endpoint. The limpets Cymbula oculus, Scutellastra longicosta, Cymbula granatina and Scutellastragranularis as well as water samples were collected at two localities in False Bay, South Africa. Analysis of water and biological samples were done by atomic absorption spectrometry. Exposures were done to three different sublethal concentrations of cadmium in the laboratory in static flow tanks over three days. There was a moderate increase in cadmium body concentrations over time. Results obtained at three exposure concentrations showed no significant differences in metal concentrations between the different C. oculus samples. Significant differences were obtained between the control and the exposure groups for each exposure time except between the control and the 1mg/L CdCl2 exposure group after 24 and 72 hours of

  16. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Pan, Chongle [ORNL; Tschaplinski, Timothy J [ORNL; Hurst, Gregory {Greg} B [ORNL; Engle, Nancy L [ORNL; Zhou, Wen [University of Georgia, Athens, GA; Dam, Phuongan [ORNL; Xu, Ying [University of Georgia, Athens, GA; Dice, Lezlee T [ORNL; Davison, Brian H [ORNL; Brown, Steven D [ORNL

    2013-01-01

    Zymomonas mobilis ZM4 is a capable ethanogenic bacterium with high ethanol productivity and high level of ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of ethanol stress response have not been elucidated fully. In this study, ethanol stress responses were investigated using systems biology tools. Medium supplementation with an initial 47.3 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. Metabolomic profiling showed that ethanol-treated ZM4 cells accumulated greater amounts of glycerol during the entire fermentation process, which may indicate an important role for this metabolite. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 56% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. There were fewer genes significantly differentially expressed in the exponential phase compared to that of stationary phase and early stationary phase. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Correlations among the transcriptomics, proteomics and metabolism were examined and among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. This systems biology study elucidates key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to

  17. Biosorption and biodegradation of pyrene by Brevibacillus brevis and cellular responses to pyrene treatment.

    Science.gov (United States)

    Liao, Liping; Chen, Shuona; Peng, Hui; Yin, Hua; Ye, Jinshao; Liu, Zehua; Dang, Zhi; Liu, Zhichen

    2015-05-01

    Biodegradation has been proposed as an effective approach to remove pyrene, however, the information regarding cellular responses to pyrene treatment is limited thus far. In this study, the biodegradation and biosorption of pyrene by Brevibacillus brevis, along with cellular responses caused by pollutant were investigated by means of flow cytometry assay and scanning electron microscopy. The experimental results showed that pyrene was initially adsorbed by B. brevis and subsequently transported and intracellularly degraded. During this process, pyrene removal was primarily dependent on biodegradation. Cell invagination and cell surface corrugation occurred due to pyrene exposure. Nevertheless, cell regrowth after 96h treatment was observed, and the proportion of necrotic cell was only 2.8% after pyrene exposure for 120h, confirming that B. brevis could utilize pyrene as a sole carbon source for growth. The removal and biodegradation amount of pyrene (1mg/L) at 168h were 0.75 and 0.69mg/L, respectively, and the biosorption amount by inactivated cells was 0.41mg/L at this time.

  18. Nanoporous polyelectrolyte vaccine microcarriers. A formulation platform for enhancing humoral and cellular immune responses.

    Science.gov (United States)

    De Koker, Stefaan; Fierens, Kaat; Dierendonck, Marijke; De Rycke, Riet; Lambrecht, Bart N; Grooten, Johan; Remon, Jean Paul; De Geest, Bruno G

    2014-12-10

    In this paper we report on the design, characterization and immuno-biological evaluation of nanoporous polyelectrolyte microparticles as vaccine carrier. Relative to soluble antigen, formulation of antigen as a sub-10 μm particle can strongly enhance antigen-specific cellular immune responses. The latter is crucial to confer protective immunity against intracellular pathogens and for anti-cancer vaccines. However, a major bottleneck in microparticulate vaccine formulation is the development of generic strategies that afford antigen encapsulation under benign and scalable conditions. Our strategy is based on spray drying of a dilute aqueous solution of antigen, oppositely charged polyelectrolytes and mannitol as a pore-forming component. The obtained solid microparticles can be redispersed in aqueous medium, leading to leaching out of the mannitol, thereby creating a highly porous internal structure. This porous structure enhances enzymatic processing of encapsulated proteins. After optimizing the conditions to process these microparticles we demonstrate that they strongly enhance cross-presentation in vitro by dendritic cells to CD8 T cells. In vivo experiments in mice confirm that this vaccine formulation technology is capable of enhancing cellular immune responses.

  19. Trichothiodystrophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light

    International Nuclear Information System (INIS)

    Trichothiodystrophy (TTD) is an autosomal recessive disorder characterized by brittle hair with reduced sulfur content, ichthyosis, peculiar face, and mental and physical retardation. Some patients are photosensitive. A previous study by Stefanini et al. showed that cells from four photosensitive patients with TTD had a molecular defect in DNA repair, which was not complemented by cells from xeroderma pigmentosum, complementation group D. In a detailed molecular and cellular study of the effects of UV light on cells cultured from three further TTD patients who did not exhibit photosensitivity we have found an array of different responses. In cells from the first patient, survival, excision repair, and DNA and RNA synthesis following UV irradiation were all normal, whereas in cells from the second patient all these responses were similar to those of excision-defective xeroderma pigmentosum (group D) cells. With the third patient, cell survival measured by colony-forming ability was normal following UV irradiation, even though repair synthesis was only 50% of normal and RNA synthesis was severely reduced. The excision-repair defect in these cells was not complemented by other TTD cell strains. These cellular characteristics of patient 3 have not been described previously for any other cell line. The normal survival may be attributed to the finding that the deficiency in excision-repair is confined to early times after irradiation. Our results pose a number of questions about the relationship between the molecular defect in DNA repair and the clinical symptoms of xeroderma pigmentosum and TTD

  20. Cellular Response to a Novel Fetal Acellular Collagen Matrix: Implications for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Robert C. Rennert

    2013-01-01

    Full Text Available Introduction. PriMatrix (TEI Biosciences Inc., Boston, MA, USA is a novel acellular collagen matrix derived from fetal bovine dermis that is designed for use in partial- and full-thickness wounds. This study analyzes the cellular response to PriMatrix in vivo, as well as the ability of this matrix to facilitate normal tissue regeneration. Methods. Five by five mm squares of rehydrated PriMatrix were implanted in a subcutaneous fashion on the dorsum of wild-type mice. Implant site tissue was harvested for histology, immunohistochemistry (IHC, and flow cytometric analyses at multiple time points until day 28. Results. PriMatrix implants were found to go through a biological progression initiated by a transient infiltrate of inflammatory cells, followed by mesenchymal cell recruitment and vascular development. IHC analysis revealed that the majority of the implanted fetal dermal collagen fibers persisted through day 28 but underwent remodeling and cellular repopulation to form tissue with a density and morphology consistent with healthy dermis. Conclusions. PriMatrix implants undergo progressive in vivo remodeling, facilitating the regeneration of histologically normal tissue through a mild inflammatory and progenitor cell response. Regeneration of normal tissue is especially important in a wound environment, and these findings warrant further investigation of PriMatrix in this setting.

  1. Cellular responses to low dose heavy-ion exposure in human cell

    International Nuclear Information System (INIS)

    The human lymphoblastoid cell line TK6 was used to study the cellular responses after low-dose (100, 200, 500 mGy) or high-dose (3 Gy) of X rays, C (22 keV.μm-1) and Fe (1000 keV.μm-1) ion exposures, p53 protein induction in individual cells was determined by indirect immunofluorescence staining. Cell-cycle progression after heavy-ion exposure was determined by using a laser scanning cytometer. A characteristic pattern of cell-cycle progression was observed with 3 Gy exposure of Fe ions but not with 100 mGy. Similarly such a pattern with 100 mGy C ion exposure did not match that with 3 Gy. The proportion of p53-induced cells is proportional to the probability of cell being hit by a primary heavy ion. The observed low-dose effect can be reflected in the probability of a hit, although detailed nature about their energy deposition must be considered for more precise estimation of such an effect. New detection methodology must be developed for identification of heavy-ion specific cellular responses. (author)

  2. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Belli, M.; Tabocchini, M.A. [Istituto Superiore di Sanita, Rome (Italy). Physics Lab.; Sapora, O. [Istituto Superiore di Sanita, Rome (Italy). Comparative Toxicology Lab.

    2002-12-01

    DNA repair systems and cell cycle checkpoints closely co-operate in the attempt of maintaining the genomic integrity of cells damaged by ionizing radiation. DNA double-strand breaks (DSB) are considered as the most biologically important radiation-induced damage. Their spatial distribution and association with other types of damage depend on radiation quality. It is believed these features affect damage reparability, thus explaining the higher efficiency for cellular effects of densely ionizing radiation with respect to {gamma}-rays. DSB repair systems identified in mammalian cells are homologous recombination (HR), single-strand annealing (SSA) and non-homologous end-joining (NHEJ). Some enzymes may participate in more than one of these repair systems. DNA damage also triggers biochemical signals activating checkpoints responsible for delay in cell cycle progression that allows more time for repair. Those at G1/S and S phases prevent replication of damaged DNA and those at G2/M phase prevent segregation of changed chromosomes. Individuals with lack or alterations of genes involved in DNA DSB repair and cell cycle checkpoints exhibit syndromes characterized by genome instability and predisposition to cancer. Information reviewed in this paper on the basic mechanisms of cellular response to ionizing radiation indicates their importance for a number of issues relevant to protection of astronauts from space radiation. (author)

  3. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Cheevadhanarak Supapon

    2009-09-01

    Full Text Available Abstract The present study examined the changes in protein expression in Spirulina platensis upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

  4. Protein tyrosine phosphatase is possibly involved in cellular signal transduction and the regulation of ABA accumulation in response to water deficit in Maize L. coleoptile

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Water deficit-induced ABA accumulation is an ideal model or "stimulus-response" system to investigate cellular stress signaling in plant cells, using such a model the cellular stress signaling triggered by water deficit was investigated in Maize L. coleoptile. Water deficit-induced ABA accumulation was sensitively blocked by NaVO3, a potent inhibitor both to plasma membrane H+-ATPase (PM-H+- ATPase) and protein tyrosine phosphatase (PTPase). However, while PM- H+-ATPase activity was unaffected under water deficit and PM- H+-ATPase activator did not induce an ABA accumulation instead of water deficit, water deficit induced an increase in the protein phosphatase activity, and furthermore, ABA accumulation was inhibited by PAO, a specific inhibitor of PTPase. These results indicate that protein phosphtases may be involved in the cellular signaling in response to water deficit. Further studies identified at least four species of protein phosphtase as assayed by using pNPP as substrate, among which one component was especially sensitive to NaVO3. The NaVO3-sensitive enzyme was purified and finally showed a protein band about 66 kD on SDS/PAGE. The purified enzyme showed a great activity to some specific PTPase substrates at pH 6.0. In addition to NaVO3, the enzyme was also sensitive to some other PTPase inhibitors such as Zn2+ and MO33+, but not to Ca2+ and Mg2+, indicating that it might be a protein tyrosine phosphatase. Interestingly, the purified enzyme could be deactivated by some reducing agent DTT, which was previously proved to be an inhibitor of water deficit-induced ABA accumulation. This result further proved that PTPase might be involved in the cellular signaling of ABA accumulation in response to water deficit.

  5. Mechanistic insights into aging, cell cycle progression, and stress response

    Directory of Open Access Journals (Sweden)

    Troy Anthony Alan Harkness

    2012-06-01

    Full Text Available The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomyces cerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC, an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox transcription factor family also regulate stress responses. The yeast Fox orthologues Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell cycle regulation with stress responses.

  6. Gene Response to Salt Stress in Populus euphratica

    Institute of Scientific and Technical Information of China (English)

    Shen Xin; Thomas Teichmenn; Wang Yiqin; Bai Genben; Yu Guangjun; Wang Shasheng

    2003-01-01

    Through construction of a subtracted cDNA library and library screening, a number of salt-induced cDNA fragmentshave been cloned from Populus euphratica. Based on the results of DNA sequencing and Northern analysis, the gene response ofPopulus euphratica to salt stress is discussed. It is indicated that in response to salt treatment the transcription level for some genes ofPopulus euphratica increases by about 1.5 times and significant difference between the responses to osmotic stress and to ion stresshas been observed in gene activity.

  7. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  8. Polychlorinated biphenyl quinone induces endoplasmic reticulum stress, unfolded protein response, and calcium release.

    Science.gov (United States)

    Xu, Demei; Su, Chuanyang; Song, Xiufang; Shi, Qiong; Fu, Juanli; Hu, Lihua; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-06-15

    Organisms are able to respond to environmental insult to maintain cellular homeostasis, which include the activation of a wide range of cellular adaptive responses with tightly controlled mechanisms. The endoplasmic reticulum (ER) is an organelle responsible for protein folding and calcium storage. ER stress leads to the accumulation of unfolded proteins in the ER lumen. To be against or respond to this effect, cells have a comprehensive signaling system, called unfolded protein response (UPR), to restore homeostasis and normal ER function or activate the cell death program. Therefore, it is critical to understand how environmental insult regulates the ingredients of ER stress and UPR signalings. Previously, we have demonstrated that polychlorinated biphenyl (PCB) quinone caused oxidative stress, cytotoxicity, genotoxicity, and apoptosis in HepG2 cells. Here, we investigated the role of a PCB quinone, PCB29-pQ on ER stress, UPR, and calcium release. PCB29-pQ markedly increased the hallmark genes of ER stress, namely, glucose-regulated protein 78 (GRP78), GRP94, and C/EBP homologous protein (CHOP) on both protein and mRNA levels in HepG2 cells. We also confirmed PCB29-pQ induced ER morphological defects by using transmission electron microscopy. Moreover, PCB29-pQ induced intracellular calcium accumulation and calpain activity, which were significantly inhibited by the pretreatment of BAPTA-AM (Ca(2+) chelator). These results were correlated with the outcome that PCB29-pQ induces ER stress-related apoptosis through caspase family gene 12, while salubrinal and Z-ATAD-FMK (a specific inhibitor of caspase 12) partially ameliorated this effect, respectively. N-Acetyl-l-cysteine (NAC) scavenged ROS formation and consequently alleviated PCB29-pQ-induced expression of ER stress-related genes. In conclusion, our result demonstrated for the first time that PCB quinone leads to ROS-dependent induction of ER stress, and UPR and calcium release in HepG2 cells, and the

  9. Keratins Are Altered in Intestinal Disease-Related Stress Responses

    Science.gov (United States)

    Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  10. Keratins Are Altered in Intestinal Disease-Related Stress Responses.

    Science.gov (United States)

    Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  11. Cellular Stress Induces a Protective Sleep-like State in C. elegans

    OpenAIRE

    Hill, Andrew J.; Mansfield, Richard; Lopez, Jessie MNG; Raizen, David M.; Van Buskirk, Cheryl

    2014-01-01

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms[1, 2]. Despite its conservation throughout phylogeny the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain[3, 4], and more generalized cellular functions such as energy conserv...

  12. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    Full Text Available BACKGROUND: Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability. PRINCIPAL FINDINGS: Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity. CONCLUSIONS: H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  13. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    Science.gov (United States)

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  14. Responses of marine plankton to pollutant stress

    DEFF Research Database (Denmark)

    Hjorth, M.

    The thesis analyses effects of pollutants on natural plankton communities on the basis of three independent mesocosm experiments and a series of laboratory experiments performed in Denmark and Greenland. The work focus on integrating functional and structural measures of community responses to...

  15. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses.

    Science.gov (United States)

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death. PMID:27672389

  16. The anaphase-promoting complex or cyclosome supports cell survival in response to endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Meifan Chen

    Full Text Available The anaphase-promoting complex or cyclosome (APC/C is a multi-subunit ubiquitin ligase that regulates exit from mitosis and G1 phase of the cell cycle. Although the regulation and function of APC/C(Cdh1 in the unperturbed cell cycle is well studied, little is known of its role in non-genotoxic stress responses. Here, we demonstrate the role of APC/C(Cdh1 (APC/C activated by Cdh1 protein in cellular protection from endoplasmic reticulum (ER stress. Activation of APC/C(Cdh1 under ER stress conditions is evidenced by Cdh1-dependent degradation of its substrates. Importantly, the activity of APC/C(Cdh1 maintains the ER stress checkpoint, as depletion of Cdh1 by RNAi impairs cell cycle arrest and accelerates cell death following ER stress. Our findings identify APC/C(Cdh1 as a regulator of cell cycle checkpoint and cell survival in response to proteotoxic insults.

  17. Contribution of Proteomic Studies Towards Understanding Plant Heavy Metal Stress Response

    Directory of Open Access Journals (Sweden)

    Zahed eHossain

    2013-01-01

    Full Text Available Modulation of plant proteome composition is an inevitable process to cope with the environmental challenges including heavy metal stress. Soil and water contaminated with hazardous metals not only cause permanent and irreversible health problems, but also result substantial reduction in crop yields. In course of time, plants have evolved complex mechanisms to regulate the uptake, mobilization and intracellular concentration of metal ions to alleviate the stress damages. Since, the functional translated portion of the genome plays an essential role in plant stress response, proteomic studies provide us a finer picture of protein networks and metabolic pathways primarily involved in cellular detoxification and tolerance mechanism. In the present review, an attempt is made to present the state of the art of recent development in proteomic techniques and significant contributions made so far for better understanding the complex mechanism of plant metal stress acclimation. Role of metal stress related proteins involved in antioxidant defense system and primary metabolism is critically reviewed to get a bird’s-eye view on the different strategies of plants to detoxify heavy metals. In addition to the advantages and disadvantages of different proteomic methodologies, future applications of proteome study of subcellular organelles are also discussed to get the new insights into the plant cell response to heavy metals.

  18. Effects of acclimation temperature and cadmium exposure on cellular energy budgets in the marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses.

    Science.gov (United States)

    Cherkasov, Anton S; Biswas, Pradip K; Ridings, Daisy M; Ringwood, Amy H; Sokolova, Inna M

    2006-04-01

    In order to understand the role of metabolic regulation in environmental stress tolerance, a comprehensive analysis of demand-side effects (i.e. changes in energy demands for basal maintenance) and supply-side effects (i.e. metabolic capacity to provide ATP to cover the energy demand) of environmental stressors is required. We have studied the effects of temperature (12, 20 and 28 degrees C) and exposure to a trace metal, cadmium (50 microg l(-1)), on the cellular energy budget of a model marine poikilotherm, Crassostrea virginica (eastern oysters), using oxygen demand for ATP turnover, protein synthesis, mitochondrial proton leak and non-mitochondrial respiration in isolated gill and hepatopancreas cells as demand-side endpoints and mitochondrial oxidation capacity, abundance and fractional volume as supply-side endpoints. Cadmium exposure and high acclimation temperatures resulted in a strong increase of oxygen demand in gill and hepatopancreas cells of oysters. Cd-induced increases in cellular energy demand were significant at 12 and 20 degrees C but not at 28 degrees C, possibly indicating a metabolic capacity limitation at the highest temperature. Elevated cellular demand in cells from Cd-exposed oysters was associated with a 2-6-fold increase in protein synthesis and, at cold acclimation temperatures, with a 1.5-fold elevated mitochondrial proton leak. Cellular aerobic capacity, as indicated by mitochondrial oxidation capacity, abundance and volume, did not increase in parallel to compensate for the elevated energy demand. Mitochondrial oxidation capacity was reduced in 28 degrees C-acclimated oysters, and mitochondrial abundance decreased in Cd-exposed oysters, with a stronger decrease (by 20-24%) in warm-acclimated oysters compared with cold-acclimated ones (by 8-13%). These data provide a mechanistic basis for synergism between temperature and cadmium stress on metabolism of marine poikilotherms. Exposure to combined temperature and cadmium stress may

  19. Influence of drought stress on cellular ultrastructure and antioxidant system in tea cultivars with different drought sensitivities.

    Science.gov (United States)

    Das, Akan; Mukhopadhyay, Mainaak; Sarkar, Bipasa; Saha, Dipanwita; Mondal, Tapan K

    2015-07-01

    Drought is the major yield-limiting abiotic factor of tea cultivation. In the present study, influence of drought stress on cellular ultrastructure and antioxidants was studied