WorldWideScience

Sample records for cellular redox status

  1. Cellular redox status influences both cytotoxic and NF-kappa B activation in natural killer cells.

    Science.gov (United States)

    Valle Blázquez, M; Luque, I; Collantes, E; Aranda, E; Solana, R; Peña, J; Muñoz, E

    1997-01-01

    The role of cellular redox status in both cytotoxic activity and NF-kappa B activation in natural killer (NK) cells was investigated. The results indicate that stimulation of NK cells, either freshly isolated from peripheral blood lymphocytes (PBL) or long-term cultured NK clones, with specific cell targets results in an increased binding activity of NF-kappa B and AP-1 transcription factors measured by gel retardation. Pretreatment of NK cells with the antioxidant pyrrolidine dithiocarbarmate (PDTC) leads to the inhibition of NF-kappa B activation but the AP-1 binding to DNA was superinduced. The inhibition of NF-kappa B by PDTC paralleled with an inhibition of spontaneous cytotoxicity mediated by NK cells. Moreover, the inhibitors of serine proteases, N-alpha-tosyl-L-lysine chloromethyl ketone and N-alpha-tosyl-L-phenylalanine chloromethyl ketone, also blocked the cytolytic activity of NK cells against the sensitive target K562. In contrast, NK activity was not affected by pretreatment of the effector cells with the proteasome inhibitor N-acetyl-leu-leu-norleucinal which selectively inhibits NF-kappa B activation. Altogether, these results support the hypothesis that the activation of NK cells involved transcriptional and post-transcriptional events, and that reactive intermediates may play an important role in the molecular processes related with the generation of a cytotoxic response by NK cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9155655

  2. Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum.

    Science.gov (United States)

    Zhou, Jun; Sun, Aizhen; Xing, Da

    2013-08-01

    Sclerotinia sclerotiorum can initially suppress host oxidative burst to aid infection establishment, but later promotes reactive oxygen species (ROS) generation as proliferation advances. Here, it was shown that the cellular redox status can be modulated by thiamine to protect Arabidopsis thaliana against Sclerotinia at the early stages of infection. The initial inhibition of host ROS generation by Sclerotinia-secreted oxalate could effectively be alleviated by thiamine. Thiamine pre-treatment and subsequent wild-type Sclerotinia invasion induced an increase of ascorbate peroxidase activity concomitant with decreased ascorbate/dehydroascorbate ratios, which led to the cellular transition towards oxidative status in infected tissues. Particularly, it was observed that wild-type Sclerotinia, but not oxalate-deficient A2 mutant, could suppress the activity of NADPH oxidase (NOX), which might be an important mechanism underlying the early inhibition of ROS burst. Nevertheless, thiamine pre-treatment followed by wild-type Sclerotinia infection promoted NOX-derived ROS accumulation. Further studies showed that cytosolic Ca(2+) and staurosporine-sensitive protein kinase(s) participated in thiamine-induced activation of NOX. Moreover, thiamine-induced tissue defence responses including callose/lignin deposition and stomatal closure were closely correlated with NOX-derived ROS generation. Additionally, studies with Brassica species indicated that the regulation of thiamine is largely conserved upon Sclerotinia infection. Collectively, it was concluded that thiamine reverses the initial reducing status through activating NOX-dependent ROS signalling to perturb the disease progress of Sclerotinia.

  3. Pattern-oriented Agent-based Monte Carlo simulation of Cellular Redox Environment

    DEFF Research Database (Denmark)

    Tang, Jiaowei; Holcombe, Mike; Boonen, Harrie C.M.

    , that there is a connection between extracellular and intracellular redox [2], whereas others oppose this view [3]. In general however, these experiments lack insight into the dynamics, complex network of reactions and transportation through cell membrane of redox. Therefore, current experimental results reveal......Research suggests that cellular redox environment could affect the phenotype and function of cells through a complex reaction network[1]. In cells, redox status is mainly regulated by several redox couples, such as Glutathione/glutathione disulfide (GSH/GSSG), Cysteine/ Cystine (CYS...... but a snapshot, or average of true dynamics. What is more, it can be more complex if the dynamics of redox in different intracellular compartments is included [4]. Furthermore, heterogeneous spatial and temporal distribution of reactants and enzymes, diffusion rate and import direction of chemical source [5...

  4. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  5. Interplay between cellular redox oscillations and circadian clocks.

    Science.gov (United States)

    Rey, G; Reddy, A B

    2015-09-01

    The circadian clock is a cellular timekeeping mechanism that helps organisms from bacteria to humans to organize their behaviour and physiology around the solar cycle. Current models for circadian timekeeping incorporate transcriptional/translational feedback loop mechanisms in the predominant model systems. However, recent evidence suggests that non-transcriptional oscillations such as metabolic and redox cycles may play a fundamental role in circadian timekeeping. Peroxiredoxins, an antioxidant protein family, undergo rhythmic oxidation on the circadian time scale in a variety of species, including bacteria, insects and mammals, but also in red blood cells, a naturally occurring, non-transcriptional system. The profound interconnectivity between circadian and redox pathways strongly suggests that a conserved timekeeping mechanism based on redox cycles could be integral to generating circadian rhythms. © 2015 John Wiley & Sons Ltd.

  6. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ayer, Anita; Sanwald, Julia; Pillay, Bethany A; Meyer, Andreas J; Perrone, Gabriel G; Dawes, Ian W

    2013-01-01

    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+)/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+)/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.

  7. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Anita Ayer

    Full Text Available Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+/2GSH and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.

  8. Reduced cellular redox status induces 4-hydroxynonenal-mediated caspase 3 activation leading to erythrocyte death during chronic arsenic exposure in rats.

    Science.gov (United States)

    Biswas, Debabrata; Sen, Gargi; Biswas, Tuli

    2010-05-01

    Chronic exposure to arsenic in rats led to gradual accumulation of the toxicant in erythrocytes causing oxidative stress in these cells. 4-Hydroxynonenal (4-HNE), a major aldehyde product of lipid peroxidation, contributed significantly to the cytopathological events observed during oxidative stress in the erythrocytes of exposed rats. 4-HNE triggered death signal cascade that was initiated with the formation of HNE-protein adducts in cytosol. HNE-protein adduct formation resulted in depletion of cytosolic antioxidants followed by increased generation of ROS. Results showed accumulation of hydrogen peroxide (H(2)O(2)) from the early stages of arsenic exposure, while superoxide (O(2)(*-)) and hydroxyl radical ((*)OH) also contributed to the oxidative stress during longer period of exposure. Suppression of antioxidant system coupled with increased generation of ROS eventually led to activation of caspase 3 during arsenic exposure. Attenuation of HNE-mediated activation of caspase 3 in presence of N-acetylcysteine (NAC) indicated the involvement of GSH in the process. Prevention of HNE-mediated degradation of membrane proteins in presence of Z-DEVD-FMK identified caspase 3 as the principal mediator of HNE-induced cellular damage during arsenic exposure. Degradation of band 3 followed by its aggregation on the red cell surface promoted immunologic recognition of redistributed band 3 by autologous IgG with subsequent attachment of C3b. Finally, the formation of C3b-IgG-band 3 immune complex accelerated the elimination of affected cells from circulation and led to the decline of erythrocyte life span during chronic arsenic toxicity. Copyright 2008 Elsevier Inc. All rights reserved.

  9. Mitochondria targeting by environmental stressors: Implications for redox cellular signaling.

    Science.gov (United States)

    Blajszczak, Chuck; Bonini, Marcelo G

    2017-11-01

    Mitochondria are cellular powerhouses as well as metabolic and signaling hubs regulating diverse cellular functions, from basic physiology to phenotypic fate determination. It is widely accepted that reactive oxygen species (ROS) generated in mitochondria participate in the regulation of cellular signaling, and that some mitochondria chronically operate at a high ROS baseline. However, it is not completely understood how mitochondria adapt to persistently high ROS states and to environmental stressors that disturb the redox balance. Here we will review some of the current concepts regarding how mitochondria resist oxidative damage, how they are replaced when excessive oxidative damage compromises function, and the effect of environmental toxicants (i.e. heavy metals) on the regulation of mitochondrial ROS (mtROS) production and subsequent impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.

    Science.gov (United States)

    Putker, Marrit; O'Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

  11. Salt stress affects the redox status of Arabidopsis root meristems

    Directory of Open Access Journals (Sweden)

    Keni eJiang

    2016-02-01

    Full Text Available We report the redox status (profiles for specific populations of cells that comprise the Arabidopsis root tip. For recently germinated, 3-5-day-old seedlings we show that the region of the root tip with the most reduced redox status includes the root cap initials, the quiescent center and the most distal portion of the proximal meristem, and coincides with (overlays the region of the auxin maximum. As one moves basally, further into the proximal meristem, and depending on the growth conditions, the redox status becomes more oxidized, with a 5-10 mV difference in redox potential between the two borders delimiting the proximal meristem. At the point on the root axis at which cells of the proximal meristem cease division and enter the transition zone, the redox potential levels off and remains more or less unchanged throughout the transition zone. As cells leave the transition zone and enter the zone of elongation the redox potentials become more oxidized. Treating roots with salt (50, 100 and 150 mM NaCl results in marked changes in root meristem structure and development, and is preceded by changes in the redox profile, which flattens, and initially becomes more oxidized, with pronounced changes in the redox potentials of the root cap, the root cap initials and the quiescent center. Roots exposed to relatively mild levels of salt (< 100 mM are able to re-establish a normal, pre-salt treatment redox profile 3-6 days after exposure to salt. Coincident with the salt-associated changes in redox profiles are changes in the distribution of auxin transporters (AUX1, PIN1/2, which become more diffuse in their localization. We conclude that salt stress affects root meristem maintenance, in part, through changes in redox and auxin transport.

  12. Direct determination of the redox status of cysteine residues in proteins in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Satoshi [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Tatenaka, Yuki; Ohuchi, Yuya [Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202 (Japan); Hisabori, Toru, E-mail: thisabor@res.titech.ac.jp [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan)

    2015-01-02

    Highlights: • A new DNA-maleimide which is cleaved by UV irradiation, DNA-PCMal, was developed. • DNA-PCMal can be used like DNA-Mal to analyze the redox state of cysteine residues. • It is useful for detecting the thiol redox status of a protein in vivo by Western blotting method. • Thus, DNA-PCMal can be a powerful tool for redox proteomics analysis. - Abstract: The redox states of proteins in cells are key factors in many cellular processes. To determine the redox status of cysteinyl thiol groups in proteins in vivo, we developed a new maleimide reagent, a photocleavable maleimide-conjugated single stranded DNA (DNA-PCMal). The DNA moiety of DNA-PCMal is easily removed by UV-irradiation, allowing DNA-PCMal to be used in Western blotting applications. Thereby the state of thiol groups in intracellular proteins can be directly evaluated. This new maleimide compound can provide information concerning redox proteins in vivo, which is important for our understanding of redox networks in the cell.

  13. Redox homeostasis and cellular stress response in aging and neurodegeneration.

    Science.gov (United States)

    Calabrese, Vittorio; Cornelius, Carolin; Mancuso, Cesare; Lentile, Riccardo; Stella, A M Giuffrida; Butterfield, D Allan

    2010-01-01

    Decreased expression and/or activity of antioxidant proteins leads to oxidative stress, accelerated aging, and neurodegeneration. While overwhelming levels and uncontrolled/dysregulated actions of reactive oxygen species (ROS) lead to deleterious effects, tighter regulation of those plays an important role in cell signaling. Mutations causing protein misfolding and the overload of toxic products derived from the free radical oxidation of polyunsaturated fatty acids, cholesterol, and glucose contribute to the disruption of the cellular redox homeostasis. Collectively or individually, these effects create pro-oxidant conditions in cells. Oxidative stress can induce neuronal damage, modulate intracellular signaling, and can ultimately lead to neuronal death by apoptosis or necrosis. Emerging evidence indicates that homocysteine (Hcy), a non-protein amino acid naturally present in the plasma, is implicated as a risk factor for numerous diseases. In particular, increased levels of circulating Hcy have been recognized as an independent risk factor for the development of vascular disease(s). Recent findings emphasize a relationship between elevated Hcy levels and neurodegeneration, which can be observed in Alzheimer's and Parkinson's diseases. An integrated response exists in the brain to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are controlled by several genes termed "vitagenes." Among these, the heat-shock proteins (HSPs) form a highly conserved system that is responsible for the preservation and repair of the correct protein conformation. Recent studies have shown that the heat-shock response (HSR) contributes to cytoprotection in a number of human diseases including inflammation, cancer, aging, and neurodegenerative disorders. Given the broad cytoprotective properties of the HSR, interest mounts currently among investigators toward discovering and developing

  14. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2017-07-28

    The nicotinamide adenine dinucleotide (NAD(+))/reduced NAD(+) (NADH) and NADP(+)/reduced NADP(+) (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD(+)-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD(+) precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 00, 000-000.

  15. Carnosinase levels in aging brain: redox state induction and cellular stress response.

    Science.gov (United States)

    Bellia, Francesco; Calabrese, Vittorio; Guarino, Francesca; Cavallaro, Monia; Cornelius, Carolin; De Pinto, Vito; Rizzarelli, Enrico

    2009-11-01

    Carnosinase is a dipeptidase found almost exclusively in brain and serum. Its natural substrate carnosine, present at high concentration in the brain, has been proposed as an antioxidant in vivo. We investigated the role of carnosinase in brain aging to establish a possible correlation with age-related changes in cellular stress response and redox status. In addition, a stable HeLa cell line expressing recombinant human serum carnosinase CN1 was established. The enzyme was purified from transfected cells, and specific antibodies were produced against it. Brain expression of CN1, Hsp72, heme oxygenase-1, and thioredoxin reductase increased with age, with a maximal induction in hippocampus and substantia nigra, followed by cerebellum, cortex, septum, and striatum. Hsps induction was associated with significant changes in total SH groups, GSH redox state, carbonyls, and HNE levels. A positive correlation between decrease in GSH and increase in Hsp72 expression was observed in all brain regions examined during aging. Increased carnosinase activity in the brain can lead to decreased carnosine levels and GSH/GSSG ratio. These results, consistent with the current notion that oxidative stress and cellular damage are characteristic hallmarks of the aging process, sustain the critical role of cellular stress-response mechanisms as possible targets for novel antiaging strategies.

  16. Exogenous antioxidants—Double-edged swords in cellular redox state

    Science.gov (United States)

    Bohn, Torsten

    2010-01-01

    The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects. PMID:20972369

  17. Nrf2 and Redox Status in Prediabetic and Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Angélica S. Jiménez-Osorio

    2014-11-01

    Full Text Available The redox status associated with nuclear factor erythroid 2-related factor-2 (Nrf2 was evaluated in prediabetic and diabetic subjects. Total antioxidant status (TAS in plasma and erythrocytes, glutathione (GSH and malondialdehyde (MDA content and activity of antioxidant enzymes were measured as redox status markers in 259 controls, 111 prediabetics and 186 diabetic type 2 subjects. Nrf2 was measured in nuclear extract fractions from peripheral blood mononuclear cells (PBMC. Nrf2 levels were lower in prediabetic and diabetic patients. TAS, GSH and activity of glutamate cysteine ligase were lower in diabetic subjects. An increase of MDA and superoxide dismutase activity was found in diabetic subjects. These results suggest that low levels of Nrf2 are involved in the development of oxidative stress and redox status disbalance in diabetic patients.

  18. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1

    Directory of Open Access Journals (Sweden)

    Koji Aoyama

    2015-05-01

    Full Text Available Reactive oxygen species (ROS are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1 plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.

  19. Plumbagin Modulates Leukemia Cell Redox Status

    Directory of Open Access Journals (Sweden)

    François Gaascht

    2014-07-01

    Full Text Available Plumbagin is a plant naphtoquinone exerting anti-cancer properties including apoptotic cell death induction and generation of reactive oxygen species (ROS. The aim of this study was to elucidate parameters explaining the differential leukemia cell sensitivity towards this compound. Among several leukemia cell lines, U937 monocytic leukemia cells appeared more sensitive to plumbagin treatment in terms of cytotoxicity and level of apoptotic cell death compared to more resistant Raji Burkitt lymphoma cells. Moreover, U937 cells exhibited a ten-fold higher ROS production compared to Raji. Neither differential incorporation, nor efflux of plumbagin was detected. Pre-treatment with thiol-containing antioxidants prevented ROS production and subsequent induction of cell death by apoptosis whereas non-thiol-containing antioxidants remained ineffective in both cellular models. We conclude that the anticancer potential of plumbagin is driven by pro-oxidant activities related to the cellular thiolstat.

  20. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Putt, David A.; Zhong, Qing; Lash, Lawrence H., E-mail: l.h.lash@wayne.edu

    2012-01-15

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox status in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter.

  1. Arabidopsis redox status in response to caterpillar herbivory

    Directory of Open Access Journals (Sweden)

    Jamuna ePaudel

    2013-05-01

    Full Text Available Plant responses to insect herbivory are regulated through complex, hormone-mediated interactions. Some caterpillar species have evolved strategies to manipulate this system by inducing specific pathways that suppress plant defense responses. Effectors in the labial saliva (LS secretions of Spodoptera exigua caterpillars are believed to induce the salicylic acid (SA pathway to interfere with the jasmonic acid (JA defense pathway; however, the mechanism underlying this subversion is unknown. Since Noctuid caterpillar LS contains enzymes that may affect cellular redox balance, this study investigated rapid changes in cellular redox metabolites within 45 min after herbivory. Caterpillar LS is involved in suppressing the increase in oxidative stress that was observed in plants fed upon by caterpillars with impaired LS secretions. To further understand the link between cellular redox balance and plant defense responses, marker genes of SA, JA and ethylene (ET pathways were compared in wildtype, the glutathione-compromised pad2-1 mutant and the tga2/5/6 triple mutant plants. AtPR1 and AtPDF1.2 showed LS-dependent expression that was alleviated in the pad2-1 and tga2/5/6 triple mutants. In comparison, the ET-dependent genes ERF1 expression showed LS-associated changes in both wildtype and pad2-1 mutant plants and the ORA 59 marker AtHEL had increased expression in response to herbivory, but a LS-dependent difference was not noted. These data support the model that there are SA/NPR1-, glutathione-dependent and ET-, glutathione-independent mechanisms leading to LS-associated suppression of plant induced defences.

  2. Monitoring Dynamic Cellular Redox Homeostasis Using Fluorescence-Switchable Graphene Quantum Dots.

    Science.gov (United States)

    Li, Nan; Than, Aung; Sun, Chencheng; Tian, Jingqi; Chen, Jie; Pu, Kanyi; Dong, Xiaochen; Chen, Peng

    2016-12-27

    Monitoring cellular redox homeostasis is critical to the understanding of many physiological functions ranging from immune reactions to metabolism, as well as to the understanding of pathological development ranging from tumorigenesis to aging. Nevertheless, there is currently a lack of appropriate probes for this ambition, which should be reversibly, sensitively, and promptly responsive to a wide range of physiological oxidants and reductants. In this work, a redox-sensitive fluorescence-switchable probe is designed based on graphene quantum dots (GQDs) functionalized with a chelated redox Fe2+/Fe3+ couple. The underlying mechanism is investigated and discussed. The high sensitivity and fast response are attributable to the fact that the GQD's photoluminescence is highly sensitive to photon-induced electron transfer because of its ultrasmall size and associated prominent quantum confinement effect. Also taking advantages of GQDs' excellent photostability, biocompatibility, and readiness for cell uptake, our reversibly tunable fluorescence probe is employed to monitor in real time the triggered dynamic change of the intracellular redox state. This addition to the limited arsenal of available redox probes shall be useful to the still poorly understood redox biology, as well as for monitoring environment or chemical processes involving redox reactions.

  3. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    Science.gov (United States)

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Kidney donors and kidney transplants have abnormal aminothiol redox status, and are at increased risk of oxidative stress and reduced redox buffer capacity.

    Science.gov (United States)

    Apeland, Terje; Holdaas, Hallvard; Mansoor, Mohammad A

    2014-04-01

    Living kidney donors have been part of a successful kidney transplant programme in Norway for almost 50 years. Glomerular filtration rates (GFRs) have tended to remain stable at about 70% of pre-donation levels. Plasma total homocysteine (Hcy) has an inverse relationship to kidney function, and previous reports indicate elevated levels of Hcy in kidney donors. We wanted to examine the most important plasma aminothiols in kidney donors, i.e. Hcy, cysteine (Cys) and cysteinylglycine (CG) with their redox species. The aminothiol redox-system appears to be an integral part of the extracellular antioxidant defence system in the body. Plasma concentrations of total Hcy were obtained in 82 previous kidney donors, 82 healthy controls and 26 kidney transplants with stable and good kidney function. In a subset of 30 kidney donors, 30 matched controls and 12 kidney transplants plasma samples were analysed for Hcy, Cys, CG and their redox species. There were no differences between groups for B-vitamin status. Kidney donors and kidney transplants had elevated plasma concentrations of total Hcy, Cys and CG. The plasma levels of reduced Hcy species were high - with a high reduced/oxidized ratio. The plasma levels of reduced Cys species were low - with a low reduced/oxidized ratio. Previous kidney donors have abnormal plasma aminothiol redox status. The present findings indicate that donors may have increased risk of oxidative stress with low redox buffer capacity and disturbed cellular redox-dependent signalling pathways. Similar observations were made in the kidney transplants. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. Electrochemical aptasensor of cellular prion protein based on modified polypyrrole with redox dendrimers.

    Science.gov (United States)

    Miodek, A; Castillo, G; Hianik, T; Korri-Youssoufi, H

    2014-06-15

    This work consists of the development of an electrochemical aptasensor based on polyprrole modified with redox dendrimers, able to detect human cellular prions PrP(C) with high sensitivity. The gold surface was modified by conductive polypyrrole film coupled to polyamidoamine dendrimers of fourth generation (PAMAM G4) and ferrocenyl group as redox marker. The aptamers were immobilized on the surface via biotin/streptavidin chemistry. Electrochemical signal was detected by ferrocenyl group incorporated between dendrimers and aptamers layers. We demonstrated that the interaction between aptamer and prion protein led to variation in electrochemical signal of the ferrocenyl group. The kinetics parameters (diffusion coefficient D and heterogeneous constant transfer ket) calculated from electrochemical signals demonstrate that the variation in redox signal results from the lower diffusion process of ions during redox reaction after prion interaction due to bulk effect of larger protein. The association of redox dendrimers with conducting polypyrrole leads to high sensitivity of PrP(C) determination with detection limit of 0.8 pM, which is three orders of magnitude lower, compared to flat ferrocene-functionalized polypyrrole. Detection of PrP(C) in spiked blood plasma has been achieved and demonstrated a recovery up to 90%. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy

    Directory of Open Access Journals (Sweden)

    Barbara Marengo

    2016-01-01

    Full Text Available Reactive oxygen species (ROS and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.

  7. A Regulatory Role of NAD Redox Status on Flavin Cofactor Homeostasis in S. cerevisiae Mitochondria

    Directory of Open Access Journals (Sweden)

    Teresa Anna Giancaspero

    2013-01-01

    Full Text Available Flavin adenine dinucleotide (FAD and nicotinamide adenine dinucleotide (NAD are two redox cofactors of pivotal importance for mitochondrial functionality and cellular redox balance. Despite their relevance, the mechanism by which intramitochondrial NAD(H and FAD levels are maintained remains quite unclear in Saccharomyces cerevisiae. We investigated here the ability of isolated mitochondria to degrade externally added FAD and NAD (in both its reduced and oxidized forms. A set of kinetic experiments demonstrated that mitochondrial FAD and NAD(H destroying enzymes are different from each other and from the already characterized NUDIX hydrolases. We studied here, in some detail, FAD pyrophosphatase (EC 3.6.1.18, which is inhibited by NAD+ and NADH according to a noncompetitive inhibition, with Ki values that differ from each other by an order of magnitude. These findings, together with the ability of mitochondrial FAD pyrophosphatase to metabolize endogenous FAD, presumably deriving from mitochondrial holoflavoproteins destined to degradation, allow for proposing a novel possible role of mitochondrial NAD redox status in regulating FAD homeostasis and/or flavoprotein degradation in S. cerevisiae.

  8. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise

    Directory of Open Access Journals (Sweden)

    Farnaz Seifi-skishahr

    2016-01-01

    Full Text Available Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT, moderately trained (MT, and untrained (UT groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG, cysteine/cystine (Cys/CySS, and GSH/GSSG ratio in red blood cells (RBCs were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p=0.001 and Cys/CySS (p=0.005 were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p=0.860, while RBCs GSH/GSSG showed significant reduction (p=0.003 and elevation (p=0.007 in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases.

  9. Different effects of two cyclic chalcone analogues on redox status of Jurkat T cells.

    Science.gov (United States)

    Rozmer, Zsuzsanna; Berki, Tímea; Maász, Gábor; Perjési, Pál

    2014-12-01

    Chalcones are intermediary compounds of the biosynthetic pathway of the naturally flavonoids. Previous studies have demonstrated that chalcones and their conformationally rigid cyclic analogues have tumour cell cytotoxic and chemopreventive effects. It has been shown that equitoxic doses of the two cyclic chalcone analogues (E)-2-(4'-methoxybenzylidene)-(2) and (E)-2-(4'-methylbenzylidene)-1-benzosuberone (3) have different effect on cell cycle progress of the investigated Jurkat cells. It was also found that the compounds affect the cellular thiol status of the treated cells and show intrinsic (non-enzyme-catalyzed) reactivity towards GSH under cell-free conditions. In order to gain new insights into the cytotoxic mechanism of the compounds, effects on the redox status and glutathione level of Jurkat cells were investigated. Detection of intracellular ROS level in Jurkat cells exposed to 2 and 3 was performed using the dichlorofluorescein-assay. Compound 2 did not influence ROS activity either on 1 or 4h exposure; in contrast, chalcone 3 showed to reduce ROS level at both timepoints. The two compounds had different effects on cellular glutathione status as well. Compound 2 significantly increased the oxidized glutathione (GSSG) level showing an interference with the cellular antioxidant defence. On the contrary, chalcone 3 enhanced the reduced glutathione level, indicating enhanced cellular antioxidant activity. To investigate the chalcone-GSH conjugation reactions under cellular conditions, a combination of a RP-HPLC method with electrospray ionization mass spectrometry (ESI-MS) was performed. Chalcone-GSH adducts could not be observed either in the cell supernatant or the cell sediment after deproteinization. The investigations provide further details of dual - cytotoxic and chemopreventive - effects of the cyclic chalcone analogues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Redox-based Epigenetic status in Drug Addiction: Potential mediator of drug-induced gene priming phenomenon and use of metabolic intervention for symptomatic treatment in drug addiction.

    Directory of Open Access Journals (Sweden)

    Malav Suchin Trivedi

    2015-01-01

    Full Text Available Alcohol and other drugs of abuse, including psychostimulants and opioids, can induce epigenetic changes: a contributing factor for drug addiction, tolerance and associated withdrawal symptoms. DNA methylation is the major epigenetic mechanism and it is one of more than 200 methylation reactions supported by methyl donor S-adenosylmethionine (SAM. The levels of SAM are controlled by cellular redox status via the folate and vitamin B12-dependent enzyme methionine synthase (MS, for example; under oxidative conditions MS is inhibited, diverting its substrate homocysteine (HCY to the transsulfuration pathway. Alcohol, dopamine and morphine, can alter intracellular levels of glutathione (GSH-based cellular redox status, subsequently affecting S-adenosylmethionine (SAM levels and DNA methylation status. In this discussion, we compile this and other existing evidence in a coherent manner to present a novel hypothesis implicating the involvement of redox-based epigenetic changes in drug addiction. Next, we also discuss how gene priming phenomenon can contribute to maintenance of redox and methylation status homeostasis under various stimuli including drugs of abuse. Lastly, based on our hypothesis and some preliminary evidence, we discuss a mechanistic explanation for use of metabolic interventions / redox-replenishers as symptomatic treatment of alcohol addiction and associated withdrawal symptoms. Hence, the current review article strengthens the hypothesis that neuronal metabolism has a critical bidirectional coupling with epigenetic changes in drug addiction and we support this claim via exemplifying the link between redox-based metabolic changes and resultant epigenetic consequences under the effect of drugs of abuse.

  11. Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention.

    Science.gov (United States)

    Trivedi, Malav S; Deth, Richard

    2014-01-01

    Alcohol and other drugs of abuse, including psychostimulants and opioids, can induce epigenetic changes: a contributing factor for drug addiction, tolerance, and associated withdrawal symptoms. DNA methylation is a major epigenetic mechanism and it is one of more than 200 methylation reactions supported by methyl donor S-adenosylmethionine (SAM). Levels of SAM are controlled by cellular redox status via the folate and vitamin B12-dependent enzyme methionine synthase (MS). For example, under oxidative conditions MS is inhibited, diverting its substrate homocysteine (HCY) to the trans sulfuration pathway. Alcohol, dopamine, and morphine, can alter intracellular levels of glutathione (GSH)-based cellular redox status, subsequently affecting SAM levels and DNA methylation status. Here, existing evidence is presented in a coherent manner to propose a novel hypothesis implicating the involvement of redox-based epigenetic changes in drug addiction. Further, we discuss how a "gene priming" phenomenon can contribute to the maintenance of redox and methylation status homeostasis under various stimuli including drugs of abuse. Additionally, a new mechanistic rationale for the use of metabolic interventions/redox-replenishers as symptomatic treatment of alcohol and other drug addiction and associated withdrawal symptoms is also provided. Hence, the current review article strengthens the hypothesis that neuronal metabolism has a critical bidirectional coupling with epigenetic changes in drug addiction exemplified by the link between redox-based metabolic changes and resultant epigenetic consequences under the effect of drugs of abuse.

  12. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis

    NARCIS (Netherlands)

    Ayer, A.; Fellermeier, S.; Fife, C.; Li, S.S.; Smits, G.; Meyer, A.J.; Dawes, I.W.; Perrone, G.G.

    2012-01-01

    Maintenance of an optimal redox environment is critical for appropriate functioning of cellular processes and cell survival. Despite the importance of maintaining redox homeostasis, it is not clear how the optimal redox potential is sensed and set, and the processes that impact redox on a

  13. Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin.

    Science.gov (United States)

    Muller, Michael

    2006-12-01

    Pseudomonas aeruginosa is an important nosocomial pathogen that can cause acute and chronic infection, particularly of the respiratory system. Pyocyanin is a major P. aeruginosa virulence factor that displays redox activity and induces oxidative stress in cellular systems. The effect of pyocyanin on replicating human pulmonary epithelial (A549) cells was investigated. Cells were exposed to pyocyanin for 24 h and their subsequent growth and development were followed for 7 days. Pyocyanin (5-10 microM) arrested cell growth and resulted in the development of a morphological phenotype consistent with cellular senescence, that is, an enlarged and flattened appearance. The senescent nature of these cells was supported by positive staining for increased lysosomal content and senescence-associated beta-galactosidase activity. All cells treated with pyocyanin (10 microM) converted to the senescent phenotype, which remained stable for up to 7 days. Exposure to pyocyanin at 25 microM or greater resulted in cell death due to apoptosis. A549 cells exposed to pyocyanin generated hydrogen peroxide in a dose-dependent manner and the senescence-inducing effect of pyocyanin was inhibited by the antioxidant, glutathione, suggesting the involvement of reactive oxygen species. The induction of premature cellular senescence by redox-active bacterial toxins may be a hitherto unrecognized aspect of infection pathology and a limiting factor in the tissue repair response to infection.

  14. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Science.gov (United States)

    2011-01-01

    Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective

  15. Metformin Alleviates Altered Erythrocyte Redox Status During Aging in Rats.

    Science.gov (United States)

    Garg, Geetika; Singh, Sandeep; Singh, Abhishek Kumar; Rizvi, Syed Ibrahim

    2017-02-01

    Metformin, a biguanide drug commonly used to treat type 2 diabetes, has been noted to function as a caloric restriction mimetic. Its antidiabetic effect notwithstanding, metformin is currently being considered an antiaging drug candidate, although the molecular mechanisms have not yet been unequivocally established. This study aims to examine whether short-term metformin treatment can provide protective effects against oxidative stress in young and old-age rats. Young (age 4 months) and old (age 24 months) male Wistar rats were treated with metformin (300 mg/kg b.w.) for 4 weeks. At the end of the treatment period, an array of biomarkers of oxidative stress were evaluated, including plasma antioxidant capacity measured in terms of ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), lipid peroxidation (MDA), reduced glutathione (GSH), total plasma thiol (SH), plasma membrane redox system (PMRS), protein carbonyl (PCO), advanced oxidation protein products (AOPPs), and advanced glycation end products (AGEs) in control and experimental groups. Metformin treatment resulted in an increase in FRAP, GSH, SH, and PMRS activities in both age groups compared to respective controls. On the other hand, treated groups exhibited significant reductions in ROS, MDA, PCO, AOPP, and AGE level. Save for FRAP and protein carbonyl, the effect of metformin on all other parameters was more pronounced in old-aged rats. Metformin caused a significant increase in the PMRS activity in young rats, however, the effect was less pronounced in old rats. These findings provide evidence with respect to restoration of antioxidant status in aged rats after short-term metformin treatment. The findings substantiate the putative antiaging role of metformin.

  16. The changes in redox status of ascorbate in stem tissue cells during Scots pine tree growth

    Directory of Open Access Journals (Sweden)

    G. F. Antonova

    2017-02-01

    Full Text Available The contents of ascorbate (AsA and dehydroascorbate (DHA and their ratio, showing cellular redox state of AsA, were studied in the cells of the separate tissues at different levels of Pinus sylvestris L. stem during early- and latewood formation. Morphological status of the cells in the tissues and the content of soluble carbohydrates were also estimated. The cellular redox potential of AsA has been found to depend on the type of tissue, cell development degree, the level of stem and the type of forming wood. The content of AsA and AsA/DHA ratio in the cells of non-conducting phloem along the stem were higher than in mature xylem and less during earlywood than latewood formation. The cells of conducting phloem and forming xylem, as the principal tissues taking part in annual ring wood formation, differed in the content of acids in the course of early and late xylem formation. Along the stem, the content of AsA decreased in conducting phloem cells and increased in the cells of forming xylem during both early- and latewood formation. The AsA/DHA of conducting phloem during earlywood formation was greatest below the stem and diminished to the top of the tree, while in the course of latewood development it was similar at all levels. In forming xylem AsA/DHA increased to the top of tree during the early xylem formation and decreased in late xylem that indicates the differences in oxidation-reduction reactions into the cells of two type of forming wood. The data are discussed according to morphological development of cells and the content of carbohydrates.

  17. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Parhamifar, Ladan; Lange, Marina Krarup

    2015-01-01

    Polyethylenimines (PEIs) are among the most efficient polycationic non-viral transfectants. PEI architecture and size not only modulate transfection efficiency, but also cytotoxicity. However, the underlying mechanisms of PEI-induced multifaceted cell damage and death are largely unknown. Here, we...... demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis...... that ultimately modulate cell death. In comparison to linear PEI, the branched architectures induced greater plasma membrane destabilization and were more detrimental to glycolytic activity and OXPHOS capacity as well as being a more potent inhibitor of the cytochrome c oxidase. Accordingly, the branched...

  18. Predicting groundwater redox status on a regional scale using linear discriminant analysis.

    Science.gov (United States)

    Close, M E; Abraham, P; Humphries, B; Lilburne, L; Cuthill, T; Wilson, S

    2016-08-01

    Reducing conditions are necessary for denitrification, thus the groundwater redox status can be used to identify subsurface zones where potentially significant nitrate reduction can occur. Groundwater chemistry in two contrasting regions of New Zealand was classified with respect to redox status and related to mappable factors, such as geology, topography and soil characteristics using discriminant analysis. Redox assignment was carried out for water sampled from 568 and 2223 wells in the Waikato and Canterbury regions, respectively. For the Waikato region 64% of wells sampled indicated oxic conditions in the water; 18% indicated reduced conditions and 18% had attributes indicating both reducing and oxic conditions termed "mixed". In Canterbury 84% of wells indicated oxic conditions; 10% were mixed; and only 5% indicated reduced conditions. The analysis was performed over three different well depths, 100m. For both regions, the percentage of oxidised groundwater decreased with increasing well depth. Linear discriminant analysis was used to develop models to differentiate between the three redox states. Models were derived for each depth and region using 67% of the data, and then subsequently validated on the remaining 33%. The average agreement between predicted and measured redox status was 63% and 70% for the Waikato and Canterbury regions, respectively. The models were incorporated into GIS and the prediction of redox status was extended over the whole region, excluding mountainous land. This knowledge improves spatial prediction of reduced groundwater zones, and therefore, when combined with groundwater flow paths, improves estimates of denitrification. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status.

    Directory of Open Access Journals (Sweden)

    Gregory M Enns

    Full Text Available Mitochondrial disorders are associated with decreased energy production and redox imbalance. Glutathione plays a central role in redox signaling and protecting cells from oxidative damage. In order to understand the consequences of mitochondrial dysfunction on in vivo redox status, and to determine how this varies by mitochondrial disease subtype and clinical severity, we used a sensitive tandem mass spectrometry assay to precisely quantify whole blood reduced (GSH and oxidized (GSSG glutathione levels in a large cohort of mitochondrial disorder patients. Glutathione redox potential was calculated using the Nernst equation. Compared to healthy controls (n = 59, mitochondrial disease patients (n = 58 as a group showed significant redox imbalance (redox potential -251 mV ± 9.7, p<0.0001 with an increased level of oxidation by ∼ 9 mV compared to controls (-260 mV ± 6.4. Underlying this abnormality were significantly lower whole blood GSH levels (p = 0.0008 and GSH/GSSG ratio (p = 0.0002, and significantly higher GSSG levels (p<0.0001 in mitochondrial disease patients compared to controls. Redox potential was significantly more oxidized in all mitochondrial disease subgroups including Leigh syndrome (n = 15, electron transport chain abnormalities (n = 10, mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (n = 8, mtDNA deletion syndrome (n = 7, mtDNA depletion syndrome (n = 7, and miscellaneous other mitochondrial disorders (n = 11. Patients hospitalized in metabolic crisis (n = 7 showed the greatest degree of redox imbalance at -242 mV ± 7. Peripheral whole blood GSH and GSSG levels are promising biomarkers of mitochondrial dysfunction, and may give insights into the contribution of oxidative stress to the pathophysiology of the various mitochondrial disorders. In particular, evaluation of redox potential may be useful in monitoring of clinical status or response to redox-modulating therapies in clinical trials.

  20. Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways

    NARCIS (Netherlands)

    Gringhuis, Sonja I.; Papendrecht-van der Voort, Ellen A. M.; Leow, Angela; Nivine Levarht, E. W.; Breedveld, Ferdinand C.; Verweij, Cornelis L.

    2002-01-01

    The integral membrane protein linker for activation of T cells (LAT) is a central adapter protein in the T-cell receptor (TCR)-mediated signaling pathways. The cellular localization of LAT is extremely sensitive to intracellular redox balance alterations. Reduced intracellular levels of the

  1. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    Science.gov (United States)

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  2. [Cellular phones and cancer: current status].

    Science.gov (United States)

    Colonna, Anne

    2005-07-01

    Evaluation of the impact of new technologies on the human body is essential in order to impose regulations to limit health risks. The appearance and evolution of cellular phones have been one of the fastest in the history of innovation. Research reported worldwide has tried to evaluate any potential link between adverse health effects and the mobile phone and its broadcasting stations. This article gives an overview of current research knowledge on the impact of radiofrequency waves on health. Epidemiologic, cellular and animal studies have been carried out, but none of them have reached definitive conclusions. Although some biological effects on cell culture have been observed, their link with human cancer development is far from established. Most of the animal studies show negative results. Epidemiologic studies lack a sufficient perspective to be able to evaluate the effect of evolving technologies used today. High levels of concern by the public have urged mobile phone operators, manufacturers and governmental authorities to finance a number of scientific projects aimed at defining adapted and effective regulations.

  3. Special Issue: Redox Active Natural Products and Their Interaction with Cellular Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Claus Jacob

    2014-11-01

    Full Text Available During the last decade, research into natural products has experienced a certain renaissance. The urgent need for more and more effective antibiotics in medicine, the demand for ecologically friendly plant protectants in agriculture, “natural” cosmetics and the issue of a sustainable and healthy nutrition in an ageing society have fuelled research into Nature’s treasure chest of “green gold”. Here, redox active secondary metabolites from plants, fungi, bacteria and other (micro-organisms often have been at the forefront of the most interesting developments. These agents provide powerful means to interfere with many, probably most cellular signaling pathways in humans, animals and lower organisms, and therefore can be used to protect, i.e., in form of antioxidants, and to frighten off or even kill, i.e., in form of repellants, antibiotics, fungicides and selective, often catalytic “sensor/effector” anticancer agents. Interestingly, whilst natural product research dates back many decades, in some cases even centuries, and compounds such as allicin and various flavonoids have been investigated thoroughly in the past, it has only recently become possible to investigate their precise interactions and mode(s of action inside living cells. Here, fluorescent staining and labelling on the one side, and appropriate detection, either qualitatively under the microscope or quantitatively in flow cytometers and plate readers, on the other, enable researchers to obtain the various pieces of information necessary to construct a fairly complete puzzle of how such compounds act and interact in living cells. Complemented by the more traditional activity assays and Western Blots, and increasingly joined by techniques such as proteomics, chemogenetic screening and mRNA profiling, these cell based bioanalytical techniques form a powerful platform for “intracellular diagnostics”. In the case of redox active compounds, especially of Reactive Sulfur

  4. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status.

    Science.gov (United States)

    Trivedi, Malav S; Holger, Dana; Bui, Anh Tuyet; Craddock, Travis J A; Tartar, Jaime L

    2017-01-01

    Sleep is critical for repair as well as the rejuvenation processes in the body and many of these functions are regulated via underlying cellular metabolic homeostasis. Changes in sleep pattern are reported to alter such metabolic function resulting in altered disease susceptibility or behavior. Here, we measured the extent to which overnight total sleep deprivation (SD) in young adult humans can influence systemic (plasma-derived) redox-metabolism including the major antioxidant, glutathione as well as DNA methylation levels. Nineteen participants (n = 19, μ age = 21, SD = 3.09) underwent morning testing before and after overnight total SD. Biochemical measures before and after SD revealed that glutathione, ATP, cysteine, and homocysteine levels were significantly reduced following one night of sleep deprivation (all p's sleep deprivation (maintaining wakefulness) uses up metabolic reserves, we observed that morning cortisol levels were blunted after sleep deprivation. There were no significant correlations between self-reported or actigraphy-measured sleep and the biochemical measurements, strongly indicating that prior sleep behavior did not have any direct influence on the biochemical measures taken at baseline or after sleep deprivation. Results from the current investigation supports the previous literature implicating the induction of oxidative stress and ATP depletion with sleep deprivation. Furthermore, such altered antioxidant status can also induce downstream epigenetic changes. Although we did not measure the specific genes that were altered under the influence of such sleep deprivation, such epigenetic changes could potentially contribute towards disease predisposition.

  5. Redox-based Epigenetic status in Drug Addiction: Potential mediator of drug-induced gene priming phenomenon and use of metabolic intervention for symptomatic treatment in drug addiction.

    OpenAIRE

    Malav Suchin Trivedi; Richard eDeth

    2015-01-01

    Alcohol and other drugs of abuse, including psychostimulants and opioids, can induce epigenetic changes: a contributing factor for drug addiction, tolerance and associated withdrawal symptoms. DNA methylation is the major epigenetic mechanism and it is one of more than 200 methylation reactions supported by methyl donor S-adenosylmethionine (SAM). The levels of SAM are controlled by cellular redox status via the folate and vitamin B12-dependent enzyme methionine synthase (MS), for example; un...

  6. Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention

    OpenAIRE

    Trivedi, Malav S.; Deth, Richard

    2015-01-01

    Alcohol and other drugs of abuse, including psychostimulants and opioids, can induce epigenetic changes: a contributing factor for drug addiction, tolerance, and associated withdrawal symptoms. DNA methylation is a major epigenetic mechanism and it is one of more than 200 methylation reactions supported by methyl donor S-adenosylmethionine (SAM). Levels of SAM are controlled by cellular redox status via the folate and vitamin B12-dependent enzyme methionine synthase (MS). For example, under o...

  7. Model-driven intracellular redox status modulation for increasing isobutanol production in Escherichia coli.

    Science.gov (United States)

    Liu, Jiao; Qi, Haishan; Wang, Cheng; Wen, Jianping

    2015-01-01

    Few strains have been found to produce isobutanol naturally. For building a high performance isobutanol-producing strain, rebalancing redox status of the cell was very crucial through systematic investigation of redox cofactors metabolism. Then, the metabolic model provided a powerful tool for the rational modulation of the redox status. Firstly, a starting isobutanol-producing E. coli strain LA02 was engineered with only 2.7 g/L isobutanol produced. Then, the genome-scale metabolic modeling was specially carried out for the redox cofactor metabolism of the strain LA02 by combining flux balance analysis and minimization of metabolic adjustment, and the GAPD reaction catalyzed by the glyceraldehyde-3-phosphate dehydrogenase was predicted as the key target for redox status improvement. Under guidance of the metabolic model prediction, a gapN-encoding NADP(+) dependent glyceraldehyde-3-phosphate dehydrogenase pathway was constructed and then fine-tuned using five constitutive promoters. The best strain LA09 was obtained with the strongest promoter BBa_J23100. The NADPH/NADP + ratios of strain LA09 reached 0.67 at exponential phase and 0.64 at stationary phase. The redox modulations resulted in the decrease production of ethanol and lactate by 17.5 and 51.7% to 1.32 and 6.08 g/L, respectively. Therefore, the isobutanol titer was increased by 221% to 8.68 g/L. This research has achieved rational redox status improvement of isobutanol-producing strain under guidance of the prediction and modeling of the genome-scale metabolic model of isobutanol-producing E. coli strain with the aid of synthetic promoters. Therefore, the production of isobutanol was dramatically increased by 2.21-fold from 2.7 to 8.68 g/L. Moreover, the developed model-driven method special for redox cofactor metabolism was of very helpful to the redox status modulation of other bio-products.

  8. EFFECT OF THIOPROPANOL ON AMINO ACID TURNOVER AND REDOX STATUS IN ALLOXAN DIABETIC RAT LIVER

    Directory of Open Access Journals (Sweden)

    Vickram

    2016-07-01

    Full Text Available BACKGROUND Decreased cellular thiol levels seen in diabetes mellitus (DM may be in part attributed to increased free radical generation. The free radical mediated oxidative stress has been implicated in the pathogenesis of DM and its complications. The relative deficiency or non-availability of insulin in DM affects the metabolism of biomolecules, specifically the carbohydrate metabolism. The insulin-mimicking actions of various thiols have been studied. In our previous study, we have documented that 3-mercapto- 1-propanol (Thiopropanol, a low molecular weight thiol, at the dosage employed has increased glucose utilisation in alloxandiabetic rat liver tissue probably by favouring utilisation of glucose through glycolysis and HMP pathway. It is known that insulin inhibits gluconeogenesis by inhibiting the key enzymes of the same and by controlling the channelling of amino acids for the glucose biosynthesis through gluconeogenic pathway. A study was undertaken to assess the effects of thiopropanol (TP on amino acid turnover and the redox status in alloxan diabetic rat liver. METHODS Male albino rats weighing 150-250 g were used. Diabetes was induced using alloxan monohydrate. Rats were divided into normal and diabetic groups. Levels of amino acid nitrogen (AAN, alanine, total thiol (-SH groups, TBARS (Thiobarbituric acid reactive substances, and activities of alanine transaminase (ALT and aspartate transaminase (AST were estimated in liver specimens of normal, control-alloxan diabetic and TP-exposed-alloxan-diabetic rats. RESULTS The results showed a significant increase (p<0.001 in AAN levels, alanine levels, and total -SH groups concentration; and a significant decrease (p<0.001 in TBARS levels, ALT and AST activities in TP-exposed-alloxan diabetic liver slices as compared to control-alloxan diabetic liver slices. CONCLUSIONS Hence, it may be concluded that TP, at the concentration employed, inhibits gluconeogenesis from amino acids probably by

  9. Intestinal Redox Status of Major Intracellular Thiols in a Rat Model of Chronic Alcohol Consumption

    Science.gov (United States)

    Tian, Junqiang; Brown, Lou Ann S.; Jones, Dean P.; Levin, Marc S.; Wang, Lihua; Rubin, Deborah C.; Ziegler, Thomas R.

    2011-01-01

    Background Alcohol consumption is associated with oxidative stress in multiple tissues in vivo, yet the effect of chronic alcohol intake on intestinal redox state has received little attention. In this study, we investigated the redox status of 2 major intracellular redox regulating couples: glutathione (GSH)/glutathione disulfide (GSSG) and cysteine (Cys)/cystine (CySS) in a rat model of chronic alcohol ingestion. Methods Sprague-Dawley rats were fed the liquid Lieber-DeCarli diet consisting of 36% ethanol of total calories for 6 weeks. Control rats were pair-fed with an isocaloric, ethanol-free liquid diet. Defined mucosal samples from the jejunum, ileum, and colon were obtained and analyzed by high-performance liquid chromatography (HPLC) for GSH and Cys pool redox status. Mucosal free malondialdehyde (MDA) was measured as an indicator of lipid peroxidation. Results In the ethanol-fed rats, Cys and mixed disulfide (GSH-Cys) were significantly decreased in all 3 segments of intestinal mucosa. Free MDA was increased in jejunal but not in ileal or colonic mucosa. Chronic ethanol ingestion significantly increased mucosal GSH concentration in association with a more reducing GSH/GSSG redox potential in the jejunum, but these indices were unchanged in the ileum. In the colon, chronic ethanol ingestion increased oxidant stress as suggested by decreased GSH and oxidized GSH/GSSG redox potential. Conclusions Chronic alcohol intake differentially alters the mucosal redox status in proximal to distal intestinal segments in rats. Such changes may reflect different adaptability of these intestinal segments to the oxidative stress challenge induced by chronic ethanol ingestion. PMID:19597188

  10. Inflammatory cytokines and plasma redox status responses in hypertensive subjects after heat exposure

    Directory of Open Access Journals (Sweden)

    S.F. Fonseca

    2016-03-01

    Full Text Available Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H and 8 normotensive (N subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively. They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity. Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS levels and ferric reducing ability of plasma (FRAP. Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05, although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1 and lower TBARS (P<0.01 and FRAP (P<0.05 levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors, present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.

  11. The role of redox status on chemokine expression in acute pancreatitis

    OpenAIRE

    Yubero, S.; Ramudo, L.; Manso, M.A.; De Dios, I.

    2009-01-01

    The role of redox status on chemokine expression in acute pancreatitis correspondance: Corresponding author. Departamento Fisiologia y Farmacologia. Edificio Departamental Campus Miguel de Unamuno 37007 Salamanca Spain. Fax: +34 923 294673. (De Dios, I.) (De Dios, I.) Department of Physiology and Pharmacology. University of Salamanca. 37007 Salamanca. Spain--> - (Yubero, S.) Department of Physiology and Pharmacology. ...

  12. Limited role for the bilirubin-biliverdin redox amplification cycle in the cellular antioxidant protection by biliverdin reductase.

    Science.gov (United States)

    Maghzal, Ghassan J; Leck, Meng-Choo; Collinson, Emma; Li, Cheng; Stocker, Roland

    2009-10-23

    In mammalian cells, heme is degraded by heme oxygenase to biliverdin, which is then reduced to bilirubin by biliverdin reductase (BVR). Both bile pigments have reducing properties, and bilirubin is now generally considered to be a potent antioxidant, yet it remains unclear how it protects cells against oxidative damage. A presently popular explanation for the antioxidant function of bilirubin is a redox cycle in which bilirubin is oxidized to biliverdin and then recycled by BVR. Here, we reexamined this putative BVR-mediated redox cycle. We observed that lipid peroxidation-mediated oxidation of bilirubin in chloroform, a model of cell membrane-bound bilirubin, did not yield biliverdin, a prerequisite for the putative redox cycle. Similarly, H(2)O(2) did not oxidize albumin-bound bilirubin to biliverdin, and in vitro oxidation of albumin or ligandin-bound bilirubin by peroxyl radicals gave modest yields of biliverdin. In addition, decreasing cellular BVR protein and activity in HeLa cells using RNA interference did not alter H(2)O(2)-mediated cell death, just as BVR overexpression failed to enhance protection of these cells against H(2)O(2)-mediated damage, irrespective of whether bilirubin or biliverdin were added to the cells as substrate for the putative redox cycle. Similarly, transformation of human BVR into hmx1 (heme oxygenase) mutant yeast did not provide protection against H(2)O(2) toxicity above that seen in hmx1 mutant yeast expressing human heme oxygenase-1. Together, these results argue against the BVR-mediated redox cycle playing a general or important role as cellular antioxidant defense mechanism.

  13. Limited Role for the Bilirubin-Biliverdin Redox Amplification Cycle in the Cellular Antioxidant Protection by Biliverdin Reductase*

    Science.gov (United States)

    Maghzal, Ghassan J.; Leck, Meng-Choo; Collinson, Emma; Li, Cheng; Stocker, Roland

    2009-01-01

    In mammalian cells, heme is degraded by heme oxygenase to biliverdin, which is then reduced to bilirubin by biliverdin reductase (BVR). Both bile pigments have reducing properties, and bilirubin is now generally considered to be a potent antioxidant, yet it remains unclear how it protects cells against oxidative damage. A presently popular explanation for the antioxidant function of bilirubin is a redox cycle in which bilirubin is oxidized to biliverdin and then recycled by BVR. Here, we reexamined this putative BVR-mediated redox cycle. We observed that lipid peroxidation-mediated oxidation of bilirubin in chloroform, a model of cell membrane-bound bilirubin, did not yield biliverdin, a prerequisite for the putative redox cycle. Similarly, H2O2 did not oxidize albumin-bound bilirubin to biliverdin, and in vitro oxidation of albumin or ligandin-bound bilirubin by peroxyl radicals gave modest yields of biliverdin. In addition, decreasing cellular BVR protein and activity in HeLa cells using RNA interference did not alter H2O2-mediated cell death, just as BVR overexpression failed to enhance protection of these cells against H2O2-mediated damage, irrespective of whether bilirubin or biliverdin were added to the cells as substrate for the putative redox cycle. Similarly, transformation of human BVR into hmx1 (heme oxygenase) mutant yeast did not provide protection against H2O2 toxicity above that seen in hmx1 mutant yeast expressing human heme oxygenase-1. Together, these results argue against the BVR-mediated redox cycle playing a general or important role as cellular antioxidant defense mechanism. PMID:19690164

  14. N-Acetyl Cysteine Protects against Methamphetamine-Induced Dopaminergic Neurodegeneration via Modulation of Redox Status and Autophagy in Dopaminergic Cells

    Directory of Open Access Journals (Sweden)

    Prashanth Chandramani Shivalingappa

    2012-01-01

    Full Text Available Methamphetamine- (MA- induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells. The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC. Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT and 4-hydroxynonenal (4-HNE. Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.

  15. Cell type specific redox status is responsible for diverse electromagnetic field effects.

    Science.gov (United States)

    Simkó, Myrtill

    2007-01-01

    Epidemiologic and experimental research on the potential carcinogenic effects of extremely low frequency electromagnetic fields (ELF-EMF) has been performed for a long time. Epidemiologic studies regarding ELF-EMF-exposure have focused primarily on leukaemia development due to residential sources in children and adults, and from occupational exposure in adults, but also on other kinds of cancer. Genotoxic investigations of EMF have shown contradictory results, a biological mechanism is still lacking that can explain the link between cancer development and ELF-EMF-exposure. Recent laboratory research has attempted to show general biological effects, and such that could be related to cancer development and/or promotion. Metabolic processes which generate oxidants and antioxidants can be influenced by environmental factors, such as ELF-EMF. Increased ELF-EMF exposure can modify the activity of the organism by reactive oxygen species leading to oxidative stress. It is well established that free radicals can interact with DNA resulting in single strand breaks. DNA damage could become a site of mutation, a key step to carcinogenesis. Furthermore, different cell types react differently to the same stimulus, because of their cell type specific redox status. The modulation of cellular redox balance by the enhancement of oxidative intermediates, or the inhibition or reduction of antioxidants, is discussed in this review. An additional aspect of free radicals is their function to influence other illnesses such as Parkinson's and Alzheimer's diseases. On the other hand, modulation of antioxidants by ELF-EMF can lower the intracellular defence activity promoting the development of DNA damage. It has also been demonstrated that low levels of reactive oxygen species trigger intracellular signals that involve the transcription of genes and leading to responses including cell proliferation and apoptosis. In this review, a general overview is given about oxidative stress, as well as

  16. Redox proteomics screening cellular factors associated with oxidative stress in hepatocarcinogenesis.

    Science.gov (United States)

    Zhou, Li; Wen, Ji; Huang, Zhao; Nice, Edouard C; Huang, Canhua; Zhang, Haiyuan; Li, Qifu

    2017-03-01

    Liver cancer is a major global health problem being the sixth most common cancer and the third cause of cancer-related death, with hepatocellular carcinoma (HCC) representing more than 90% of primary liver cancers. Mounting evidence suggests that, compared with their normal counterparts, many types of cancer cell have increased levels of ROS. Therefore, cancer cells need to combat high levels of ROS, especially at early stages of tumor development. Recent studies have revealed that ROS-mediated regulation of redox-sensitive proteins (redox sensors) is involved in the pathogenesis and/or progression of many human diseases, including cancer. Unraveling the altered functions of redox sensors and the underlying mechanisms in hepatocarcinogenesis is critical for the development of novel cancer therapeutics. For this reason, redox proteomics has been developed for the high-throughput screening of redox sensors, which will benefit the development of novel therapeutic strategies for the treatment of HCC. In this review, we will briefly introduce several novel redox proteomics techniques that are currently available to study various oxidative modifications in hepatocarcinogenesis and summarize the most important discoveries in the study of redox processes related to the development and progression of HCC. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation

    Directory of Open Access Journals (Sweden)

    Sébastien Sart

    2015-01-01

    Full Text Available Reactive oxygen species (ROS have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs and pluripotent stem cells (PSCs, this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.

  18. Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Krzykawska-Serda, Martyna; Maggio, Matthew C.; Tseytlin, Mark; Eaton, Gareth R.; Eaton, Sandra S.; Rosen, Gerald M.; Kao, Joseph P. Y.; Halpern, Howard J.

    2017-03-01

    Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with L-buthionine sulfoximine (BSO) markedly altered the kinetic images.

  19. Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process.

    Science.gov (United States)

    Perluigi, M; Di Domenico, F; Giorgi, A; Schininà, M E; Coccia, R; Cini, C; Bellia, F; Cambria, M T; Cornelius, C; Butterfield, D A; Calabrese, V

    2010-12-01

    Increasing evidence supports the notion that increased oxidative stress is a fundamental cause in the aging process and in neurodegenerative diseases. As a result, a decline in cognitive function is generally associated with brain aging. Reactive oxygen species (ROS) are highly reactive intermediates, which can modify proteins, nucleic acids, and polyunsaturated fatty acids, leading to neuronal damage. Because proteins are major components of biological systems and play key roles in a variety of cellular functions, oxidative damage to proteins represents a primary event observed in aging and age-related neurodegenerative disorders. In the present study, with a redox proteomics approach, we identified mitochondrial oxidatively modified proteins as a function of brain aging, specifically in those brain regions, such as cortex and hippocampus, that are commonly affected by the aging process. In all brain regions examined, many of the identified proteins were energy-related, such as pyruvate kinase, ATP synthase, aldolase, creatine kinase, and α-enolase. These alterations were associated with significant changes in both cytosolic and mitochondrial redox status in all brain regions analyzed. Our finding is in line with current literature postulating that free radical damage and decreased energy production are characteristic hallmarks of the aging process. In additon, our results further contribute to identifying common pathological pathways involved both in aging and in neurodegenerative disease development. Copyright © 2010 Wiley-Liss, Inc.

  20. Iron Supplementation Effects on Redox Status following Aseptic Skeletal Muscle Trauma in Adults and Children

    Directory of Open Access Journals (Sweden)

    Chariklia K. Deli

    2017-01-01

    Full Text Available Exercise-induced skeletal muscle microtrauma is characterized by loss of muscle cell integrity, marked aseptic inflammatory response, and oxidative stress. We examined if iron supplementation would alter redox status after eccentric exercise. In a randomized, double blind crossover study, that was conducted in two cycles, healthy adults (n=14 and children (n=11 received daily either 37 mg of elemental iron or placebo for 3 weeks prior to and up to 72 h after an acute eccentric exercise bout. Blood was drawn at baseline, before exercise, and 72 h after exercise for the assessment of iron status, creatine kinase activity (CK, and redox status. Iron supplementation at rest increased iron concentration and transferrin saturation (p<0.01. In adults, CK activity increased at 72 h after exercise, while no changes occurred in children. Iron supplementation increased TBARS at 72 h after exercise in both adults and children; no changes occurred under placebo condition. Eccentric exercise decreased bilirubin concentration at 72 h in all groups. Iron supplementation can alter redox responses after muscle-damaging exercise in both adults and children. This could be of great importance not only for healthy exercising individuals, but also in clinical conditions which are characterized by skeletal muscle injury and inflammation, yet iron supplementation is crucial for maintaining iron homeostasis. This study was registered at Clinicaltrials.gov Identifier: NCT02374619.

  1. Interaction of porcine circovirus type 2 replication with intracellular redox status in vitro.

    Science.gov (United States)

    Chen, Xingxiang; Ren, Fei; Hesketh, John; Shi, Xiuli; Li, Junxian; Gan, Fang; Hu, Zhihua; Huang, Kehe

    2013-01-01

    Redox status influences replication of some viruses but its effect on porcine circovirus type 2 (PCV2), the primary causative agent of the emerging swine disease post-weaning multisystemic wasting syndrome is not known. The interaction of PCV2 replication with intracellular redox status in PK15 cells was examined in this study. Intracellular glutathione (GSH) was measured spectrophotometrically by reaction with 5, 5'-dithiobis (2-nitrobenzoic acid). Total superoxide dismutase activity (SOD) was assayed by inhibition of oxyamine oxidation by the xanthine oxidase system. Malondialdehyde (MDA) was assayed spectrophotometrically using the thiobarbituric acid reaction. Both quantification of PCV2 DNA by real-time polymerase chain reaction and indirect immunofluorescence of PCV2-infected cells were used to evaluate the replication of PCV2. Both GSH and SOD decreased significantly at 48 hours after PCV2 infection, whereas MDA concentration increased significantly after 48 hour post-infection. Furthermore, PCV2 replication in PK15 cells was significantly impaired after the elevation of intracellular GSH through treatment with the antioxidant N-acetyl-l-cysteine (NAC), a precursor in GSH synthesis. In contrast, PCV2 replication in PK15 cells was enhanced after reduction of GSH levels through H2O2-mediated oxidation. In addition, NAC treatment blocked the increase of virus replication induced by H2O2. This study suggests that PCV2 infection induces oxidative stress and that intracellular redox status influences PCV2 replication in PK15 cells.

  2. Redox-Relevant Aspects of the Extracellular Matrix and Its Cellular Contacts via Integrins

    Science.gov (United States)

    de Rezende, Flávia Figueiredo

    2014-01-01

    Abstract Significance: The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. Recent Advances: ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. Critical Issues: In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. Future Directions: Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders. Antioxid. Redox Signal. 20, 1977–1993. PMID:24040997

  3. Effect of Alprazolam on Redox Status in Renal Transplantation Donors and Recipients.

    Science.gov (United States)

    Güner Can, Meltem; Ilgaz Koçyiğit, Özgen; Aksu, Uğur; Özer, Ali; Toraman, Fevzi

    2017-06-09

    BACKGROUND Benzodiazepines are the most popular premedication drugs thought to act through the GABA/benzodiazepine receptor complex and alprazolam is one of the most potent benzodiazepines that have a quick onset. While there is a growing body of evidence supporting alprazolam in the amelioration of redox status in animals, no study has been performed concerning its antioxidant activity in humans. The purpose of this investigation was to determine the effect of alprazolam on redox status. MATERIAL AND METHODS This study was a four-group randomized controlled trial. Participants were recruited from Acibadem University Acibadem International Hospital and included a convenience sample of 82 donors and recipients undergoing renal transplantation. Patients were randomly divided into four groups. While donors and recipients in experimental groups (G1 and G3) were administered alprazolam 0.5 mg orally one hour before the operation, those in control groups (G2 and G4) were not. Serum advanced oxidative protein products, total thiol, free hemoglobin, ischemic modified albumin, and sialic acid levels at different time points were measured to evaluate the redox status. RESULTS All oxidative stress parameters were higher in the alprazolam premedication groups (G1, G3) at all time points than in the control groups (G2, G4). Basal values of oxidative parameters (at time point T1) in patients with CKD (G3, G4) were lower than in healthy donors (G1, G2). CONCLUSIONS Alprazolam premedication in donors and end-stage renal failure patients undergoing renal transplantation does not improve redox homeostasis but further experimental studies are needed.

  4. Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana.

    Science.gov (United States)

    Vishwakarma, Abhaypratap; Bashyam, Leena; Senthilkumaran, Balasubramanian; Scheibe, Renate; Padmasree, Kollipara

    2014-08-01

    As plants are sessile, they often face high light (HL) stress that causes damage of the photosynthetic machinery leading to decreased photosynthesis. The importance of alternative oxidase (AOX) in optimizing photosynthesis is well documented. In the present study, the role of AOX in sustaining photosynthesis under HL was studied using AOX1a knockout mutants (aox1a) of Arabidopsis thaliana. Under growth light (GL; 50 μmol photons m(-2) s(-1)) conditions, aox1a plants did not show any changes in photosynthetic parameters, NAD(P)/H redox ratios, or respiratory O2 uptake when compared to wild-type (WT). Upon exposure to HL (700 μmol photons m(-2) s(-1)), respiratory rates did not vary between WT and aox1a. But, photosynthetic parameters related to photosystem II (PSII) and NaHCO3 dependent O2 evolution decreased, while the P700 reduction state increased in aox1a compared to WT. Further, under HL, the redox state of cellular NAD(P)/H pools increased with concomitant rise in reactive oxygen species (ROS) and malondialdehyde (MDA) content in aox1a compared to WT. In presence of HL, the transcript levels of several genes related to antioxidant, malate-oxaloacetate (malate-OAA) shuttle, photorespiratory and respiratory enzymes was higher in aox1a compared to WT. Taken together, these results demonstrate that under HL, in spite of significant increase in transcript levels of several genes mentioned above to maintain cellular redox homeostasis and minimize ROS production, Arabidopsis plants deficient in AOX1a were unable to sustain photosynthesis as is the case in WT plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Surface display of roGFP for monitoring redox status of extracellular microenvironments in Shewanella oneidensis biofilms.

    Science.gov (United States)

    Sivakumar, Krishnakumar; Mukherjee, Manisha; Cheng, Hsin-I; Zhang, Yingdan; Ji, Lianghui; Cao, Bin

    2015-03-01

    Biofilms are the most ubiquitous and resilient form of microbial life on earth. One most important feature of a biofilm is the presence of a self-produced matrix, which creates highly heterogeneous and dynamic microenvironments within biofilms. Redox status in biofilm microenvironments plays a critical role in biofilm development and function. However, there is a lack of non-intrusive tools to quantify extracellular redox status of microenvironments within a biofilm matrix. In this study, using Shewanella oneidensis as a model organism, we demonstrated a novel approach to monitor extracellular redox status in biofilm microenvironments. Specifically, we displayed a redox sensitive fluorescence protein roGFP onto the cell surface of S. oneidensis by fusing it to the C-terminus of BpfA, a large surface protein, and used the surface displayed roGFP as a sensor to quantify the extracellular redox status in the matrix of S. oneidensis biofilms. The fusion of roGFP into BpfA has no negative impacts on cell growth and biofilm formation. Upon exposure to oxidizing agents such as H2 O2 , Ag(+) , and SeO3 (2-) , S. oneidensis BpfA-roGFP cells exhibited a characteristic fluorescence of roGFP. Proteinase treatment assay and super-resolution structured illumination microscopy confirmed the surface localization of BpfA-roGFP. We further used the surface displayed roGFP monitored the extracellular redox status in the matrix at different depths of a biofilm exposed to H2 O2 . This study provides a novel approach to non-invasively monitor extracellular redox status in microenvironments within biofilms, which can be used to understand redox responses of biofilms to environmental perturbations. © 2014 Wiley Periodicals, Inc.

  6. Overview of the Role of Vanillin on Redox Status and Cancer Development

    Directory of Open Access Journals (Sweden)

    Daniel Pereira Bezerra

    2016-01-01

    Full Text Available Bioactive natural products play critical roles in modern drug development, especially anticancer agents. It has been widely reported that various pharmacological activities of such compounds are related to their antioxidant properties. Vanillin is a natural substance widely found in many plant species and often used in beverages, foods, cosmetics, and pharmaceutical products. Antioxidant and anticancer potential have been described for this compound. Considering the importance of vanillin in the area of human health and food and pharmaceuticals sectors, in this review, we discuss the role of vanillin on redox status and its potential contribution to the prevention and the treatment of cancer.

  7. 20S proteasome activity is modified via S-glutathionylation based on intracellular redox status of the yeast Saccharomyces cerevisiae: implications for the degradation of oxidized proteins.

    Science.gov (United States)

    Demasi, Marilene; Hand, Adrian; Ohara, Erina; Oliveira, Cristiano L P; Bicev, Renata N; Bertoncini, Clelia A; Netto, Luis E S

    2014-09-01

    Protein S-glutathionylation is a post-translational modification that controls many cellular pathways. Recently, we demonstrated that the α5-subunit of the 20S proteasome is S-glutathionylated in yeast cells grown to the stationary phase in rich medium containing glucose, stimulating 20S core gate opening and increasing the degradation of oxidized proteins. In the present study, we evaluated the correlation between proteasomal S-glutathionylation and the intracellular redox status. The redox status was controlled by growing yeast cells in distinct carbon sources which induced respiratory (glycerol/ethanol) or fermentative (glucose) metabolism. Cells grown under glycerol/ethanol displayed higher reductive power when compared to cells grown under glucose. When purified from cells grown in glucose, 20S proteasome α5-subunit exhibited an intense anti-glutathione labeling. A higher frequency of the open catalytic chamber gate was observed in the S-glutathionylated preparations as demonstrated by transmission electron microscopy. Therefore, cells that had been grown in glucose displayed an increased ability to degrade oxidized proteins. The results of the present study suggest that 20S proteasomal S-glutathionylation is a relevant adaptive response to oxidative stress that is capable to sense the intracellular redox environment, leading to the removal of oxidized proteins via a process that is not dependent upon ubiquitylation and ATP consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status.

    Directory of Open Access Journals (Sweden)

    Natália P Nogueira

    Full Text Available Trypanosoma cruzi proliferate and differentiate inside different compartments of triatomines gut that is the first environment encountered by T. cruzi. Due to its complex life cycle, the parasite is constantly exposed to reactive oxygen species (ROS. We tested the influence of the pro-oxidant molecules H2O2 and the superoxide generator, Paraquat, as well as, metabolism products of the vector, with distinct redox status, in the proliferation and metacyclogenesis. These molecules are heme, hemozoin and urate. We also tested the antioxidants NAC and GSH. Heme induced the proliferation of epimastigotes and impaired the metacyclogenesis. β-hematin, did not affect epimastigote proliferation but decreased parasite differentiation. Conversely, we show that urate, GSH and NAC dramatically impaired epimastigote proliferation and during metacyclogenesis, NAC and urate induced a significant increment of trypomastigotes and decreased the percentage of epimastigotes. We also quantified the parasite loads in the anterior and posterior midguts and in the rectum of the vector by qPCR. The treatment with the antioxidants increased the parasite loads in all midgut sections analyzed. In vivo, the group of vectors fed with reduced molecules showed an increment of trypomastigotes and decreased epimastigotes when analyzed by differential counting. Heme stimulated proliferation by increasing the cell number in the S and G2/M phases, whereas NAC arrested epimastigotes in G1 phase. NAC greatly increased the percentage of trypomastigotes. Taken together, these data show a shift in the triatomine gut microenvironment caused by the redox status may also influence T. cruzi biology inside the vector. In this scenario, oxidants act to turn on epimastigote proliferation while antioxidants seem to switch the cycle towards metacyclogenesis. This is a new insight that defines a key role for redox metabolism in governing the parasitic life cycle.

  9. The Redox Status of Cancer Cells Supports Mechanisms behind the Warburg Effect

    Directory of Open Access Journals (Sweden)

    Jorgelindo da Veiga Moreira

    2016-10-01

    Full Text Available To better understand the energetic status of proliferating cells, we have measured the intracellular pH (pHi and concentrations of key metabolites, such as adenosine triphosphate (ATP, nicotinamide adenine dinucleotide (NAD, and nicotinamide adenine dinucleotide phosphate (NADP in normal and cancer cells, extracted from fresh human colon tissues. Cells were sorted by elutriation and segregated in different phases of the cell cycle (G0/G1/S/G2/M in order to study their redox (NAD, NADP and bioenergetic (ATP, pHi status. Our results show that the average ATP concentration over the cell cycle is higher and the pHi is globally more acidic in normal proliferating cells. The NAD+/NADH and NADP+/NADPH redox ratios are, respectively, five times and ten times higher in cancer cells compared to the normal cell population. These energetic differences in normal and cancer cells may explain the well-described mechanisms behind the Warburg effect. Oscillations in ATP concentration, pHi, NAD+/NADH, and NADP+/NADPH ratios over one cell cycle are reported and the hypothesis addressed. We also investigated the mitochondrial membrane potential (MMP of human and mice normal and cancer cell lines. A drastic decrease of the MMP is reported in cancer cell lines compared to their normal counterparts. Altogether, these results strongly support the high throughput aerobic glycolysis, or Warburg effect, observed in cancer cells.

  10. Redox Status, Procoagulant Activity, and Metabolome of Fresh Frozen Plasma in Glucose 6-Phosphate Dehydrogenase Deficiency

    Directory of Open Access Journals (Sweden)

    Vassilis L. Tzounakas

    2018-02-01

    toward a different redox, lipid metabolism, and EV profile in the G6PD− FFP units. Certain FFP-needed patients may be at greatest benefit of receiving FFP intrinsically endowed by both procoagulant and antioxidant activities. However, the clinical outcome of G6PD− FFP transfusion would likely be affected by various other factors, including the signaling potential of the differentially expressed metabolites and EVs, the degree of G6PD−, the redox status in the recipient, the amount of FFP units transfused, and probably, the storage interval of the FFP, which deserve further investigation by future studies.

  11. Effects of exogenous vitamins A, C, and E and NADH supplementation on proliferation, cytokines release, and cell redox status of lymphocytes from healthy aged subjects.

    Science.gov (United States)

    Bouamama, Samia; Merzouk, Hafida; Medjdoub, Amel; Merzouk-Saidi, Amel; Merzouk, Sid Ahmed

    2017-06-01

    Aging is an inevitable biological event that is associated with immune alterations. These alterations are related to increased cellular oxidative stress and micronutrient deficiency. Antioxidant supplementation could improve these age-related abnormalities. The aim of this study was to determine in vitro effects of vitamin A, vitamin C, vitamin E, and nicotinamide adenine dinucleotide (NADH) on T cell proliferation, cytokine release, and cell redox status in the elderly compared with young adults. Peripheral blood lymphocytes were isolated using a density gradient of Histopaque. They were cultured in vitro and stimulated with concanavalin A in the presence or absence of vitamins. Cell proliferation was determined by conducting MTT assays, and based on interleukin-2 and interleukin-4 secretions. Cell oxidant/antioxidant balance was assessed by assaying reduced glutathione (GSH), malondialdehyde, carbonyl protein levels, and catalase activity. The present study demonstrated that T-lymphocyte proliferation was decreased with aging and was associated with cytokine secretion alterations, GSH depletion, and intracellular oxidative stress. In the elderly, vitamin C, vitamin E, and NADH significantly improved lymphocyte proliferation and mitigated cellular oxidative stress, whereas vitamin A did not affect cell proliferation or cell redox status. In conclusion, vitamin C, vitamin E, and NADH supplementation improved T-lymphocytes response in the elderly, and could contribute to the prevention of age-related immune alterations. Consumption of food items containing these vitamins is recommended, and further investigation is necessary to evaluate the effect of vitamin supplementation in vivo.

  12. Monitoring the physiological status in bioprocesses on the cellular level.

    Science.gov (United States)

    Schuster, K C

    2000-01-01

    The trend in bioprocess monitoring and control is towards strategies which are based on the physiological status of the organism in the bioprocess. This requires that the measured process variables should be biologically meaningful in order to apply them in physiologically based control strategies. The on-line monitoring equipment available today mostly derives information on the physiological status indirectly, from external variables outside the cells. The complementary approach reviewed here is to analyse the microbial cells directly, in order to obtain information on the internal variables inside the cells. This overview covers methods for analysis of whole cells (as a population or as a single cell), for groups of cellular components, and for specific compounds which serve as markers for a certain physiological status. Physico-chemical separation methods (chromatography, electrophoresis) and reactive analysis can be used to analyse elemental and macromolecular composition of cells. Spectroscopic methods (mass, dielectric, nuclear magnetic, infrared, and Raman) have only recently been applied to such complex multicomponent mixtures such as microbial cells. Spectroscopy and chemical separation methods produce large amounts of data, which can often be used in the best way by applying chemometrics. Some of the methods can yield information not just on the average of the microbial cell population, but also on the distribution of sub-populations. The suitability of the methods for on-line coupling to the bioprocess is discussed. Others not suitable for on-line coupling can be established in routine off-line analysis procedures. The information gained by the methods discussed can mainly be used to establish better knowledge of the basis for monitoring and control strategies. Some are also applicable in real-time monitoring and control.

  13. Cellular Zinc and Redox Buffering Capacity of Metallothionein/Thionein in Health and Disease

    OpenAIRE

    Maret, Wolfgang; Krężel, Artur

    2007-01-01

    Zinc is involved in virtually all aspects of cellular and molecular biology as a catalytic, structural, and regulatory cofactor in over 1000 proteins. Zinc binding to proteins requires an adequate supply of zinc and intact molecular mechanisms for redistributing zinc ions to make them available at the right time and location. Several dozen gene products participate in this process, in which interactions between zinc and sulfur donors determine the mobility of zinc and establish coupling betwe...

  14. Effects of PPARγ Agonist Pioglitazone on Redox-Sensitive Cellular Signaling in Young Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Ima Dovinová

    2013-01-01

    Full Text Available PPARγ receptor plays an important role in oxidative stress response. Its agonists can influence vascular contractility in experimental hypertension. Our study was focused on the effects of a PPARγ agonist pioglitazone (PIO on blood pressure regulation, vasoactivity of vessels, and redox-sensitive signaling at the central (brainstem, BS and peripheral (left ventricle, LV levels in young prehypertensive rats. 5-week-old SHR were treated either with PIO (10 mg/kg/day, 2 weeks or with saline using gastric gavage. Administration of PIO significantly slowed down blood pressure increase and improved lipid profile and aortic relaxation after insulin stimulation. A significant increase in PPARγ expression was found only in BS, not in LV. PIO treatment did not influence NOS changes, but had tissue-dependent effect on SOD regulation and increased SOD activity, observed in LV. The treatment with PIO differentially affected also the levels of other intracellular signaling components: Akt kinase increased in the the BS, while β-catenin level was down-regulated in the BS and up-regulated in the LV. We found that the lowering of blood pressure in young SHR can be connected with insulin sensitivity of vessels and that β-catenin and SOD levels are important agents mediating PIO effects in the BS and LV.

  15. Effects of the antioxidant Pycnogenol on cellular redox systems in U1285 human lung carcinoma cells.

    Science.gov (United States)

    Gandin, Valentina; Nyström, Christina; Rundlöf, Anna-Klara; Jönsson-Videsäter, Kerstin; Schönlau, Frank; Hörkkö, Jarmo; Björnstedt, Mikael; Fernandes, Aristi P

    2009-01-01

    Pycnogenol, which is extracted from the bark of French maritime pine, has been shown to have antioxidant and free radical scavenging activities. Thioredoxin reductase (TrxR), glutathione peroxidase (GPx) and glutathione reductase (GR) are three central redox enzymes that are active in endogenous defence against oxidative stress in the cell. Treatment of cells with Pycnogenol decreased the activity of both TrxR and GPx in cells by more than 50%, but GR was not affected. As previously reported, both enzymes were induced after treatment with hydrogen peroxide and selenite. The presence of Pycnogenol efficiently decreased selenite-mediated reactive oxygen species (ROS) production. Addition of Pycnogenol after selenite treatment reduced the mRNA expression and activity of TrxR to basal levels. In contrast, the GPx activity was completely unaffected. The discrepancy between TrxR and GPx regulation may indicate that transcription of TrxR is induced primarily by oxidative stress. As TrxR is induced in various pathological conditions, including tumours and inflammatory conditions, decreased activity mediated by a non-toxic agent such as Pycnogenol may be of great value.

  16. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.

    Science.gov (United States)

    Heppner, David E; Janssen-Heininger, Yvonne M W; van der Vliet, Albert

    2017-02-15

    The reversible oxidation of protein cysteine residues is well recognized as an important regulatory mechanism in redox-dependent cell signaling. Cysteine oxidation is diverse in nature and involves various post-translational modifications (sulfenic acids, disulfides, etc.) and the specific functional or structural impact of these specific oxidative events is still poorly understood. The proximal product of protein cysteine oxidation by biological reactive oxygen species (ROS) is sulfenic acid (Cys-SOH), and experimental evidence is accruing for the formation of Cys-SOH as intermediate in protein cysteine oxidation in various biological settings. However, the plausibility of protein Cys-SH oxidation by ROS has often been put in question because of slow reaction kinetics compared to more favorable reactions with abundant thiol-based reductants such as peroxiredoxins (Prx) or glutathione (GSH). This commentary aims to address this controversy by highlighting the unique physical properties in cells that may restrict ROS diffusion and allow otherwise less favorable cysteine oxidation of proteins. Some limitations of analytical tools to assess Cys-SOH are also discussed. We conclude that formation of Cys-SOH in biological systems cannot always be predicted based on kinetic analyses in homogenous solution, and may be facilitated by unique structural and physical properties of Cys-containing proteins within e.g. signaling complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling.

    Science.gov (United States)

    Álvarez, Lucía; Bianco, Christopher L; Toscano, John P; Lin, Joseph; Akaike, Takaaki; Fukuto, Jon M

    2017-10-01

    For >20 years, physiological signaling associated with the endogenous generation of hydrogen sulfide (H 2 S) has been of significant interest. Despite its presumed importance, the biochemical mechanisms associated with its actions have not been elucidated. Recent Advances: Recently it has been found that H 2 S-related or derived species are highly prevalent in mammalian systems and that these species may be responsible for some, if not the majority, of the biological actions attributed to H 2 S. One of the most prevalent and intriguing species are hydropersulfides (RSSH), which can be present at significant levels. Indeed, it appears that H 2 S and RSSH are intimately linked in biological systems and likely to be mutually inclusive. The fact that H 2 S and polysulfides such as RSSH are present simultaneously means that the biological actions previously assigned to H 2 S can be instead because of the presence of RSSH (or other polysulfides). Thus, it remains possible that hydropersulfides are the biological effectors, and H 2 S serves, to a certain extent, as a marker for persulfides and polysulfides. Addressing this possibility will to a large extent be based on the chemistry of these species. Currently, it is known that persulfides possess unique and novel chemical properties that may explain their biological prevalence. However, significantly more work will be required to establish the possible physiological roles of these species. Moreover, an understanding of the regulation of their biosynthesis and degradation will become important topics in piecing together their biology. Antioxid. Redox Signal. 00, 000-000.

  18. Influence of Moxifloxacin on Hepatic Redox Status and Plasma Biomarkers of Hepatotoxicity and Nephrotoxicity in Rat

    Directory of Open Access Journals (Sweden)

    Ayokanmi Ore

    2015-01-01

    Full Text Available Moxifloxacin is a broad spectrum fluoroquinolone antibacterial agent. We examined the hepatic redox status and plasma biomarkers of nephrotoxicity and hepatotoxicity in rat following administration of moxifloxacin (MXF. Twenty-four Wistar rats, 180–200 g, were randomized into four groups (I–IV. Animals in group I (control received 1 mL of distilled water, while animals in groups II, III, and IV received 1 mL each of MXF equivalent to 4 mg/kg b.w., 8 mg/kg b.w., and 16 mg/kg b.w., respectively. After seven days, plasma urea, bilirubin, and creatinine were significantly (P<0.05 elevated in the MXF-treated animals. Activities of alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase were significantly increased in the plasma of MXF-treated animals compared to control. Also plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides increased significantly in the MXF-treated groups relative to control. Moreover, MXF triggered a significant decrease in hepatic catalase, superoxide dismutase, and glutathione-S transferase activities. Likewise, MXF caused a decrease in the hepatic levels of glutathione and vitamin C. A significant increase in hepatic MDA content was also observed in the MXF-treated animals relative to control. Overall, our data suggest that the half-therapeutic, therapeutic, and twice the therapeutic dose of MXF induced nephrotoxicity, hepatotoxicity, and altered hepatic redox balance in rats.

  19. RNA Exosome Complex-Mediated Control of Redox Status in Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Maria Skamagki

    2017-10-01

    Full Text Available The RNA exosome complex targets AU-rich element (ARE-containing mRNAs in eukaryotic cells. We identified a transcription factor, ZSCAN10, which binds to the promoters of multiple RNA exosome complex subunits in pluripotent stem cells to maintain subunit gene expression. We discovered that induced pluripotent stem cell clones generated from aged tissue donors (A-iPSC show poor expression of ZSCAN10, leading to poor RNA exosome complex expression, and a subsequent elevation in ARE-containing RNAs, including glutathione peroxidase 2 (Gpx2. Excess GPX2 leads to excess glutathione-mediated reactive oxygen species scavenging activity that blunts the DNA damage response and apoptosis. Expression of ZSCAN10 in A-iPSC recovers RNA exosome gene expression, the DNA damage response, and apoptosis. These findings reveal the central role of ZSCAN10 and the RNA exosome complex in maintaining pluripotent stem cell redox status to support a normal DNA damage response.

  20. Factors that affect leaf extracellular ascorbic acid content and redox status

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O.; Fiscus, E.L. [North Carolina State Univ., United States dept. og Agriculture-Agricultural Research Service and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2003-01-01

    Leaf ascorbic acid content and redox status were compared in ozone-tolerant (Provider) and ozone-sensitive (S156) genotypes of snap bean (Phaseolus vulgaris L.). Plants were grown in pots for 24 days under charcoal-filtered air (CF) conditions in open-top field chambers and then maintained as CF controls (29 nmol mol{sup 1} ozone) or exposed to elevated ozone (71 nmol mol{sup 1} ozone). Following a 10-day treatment, mature leaves of the same age were harvested early in the morning (06:00-08:00 h) or in the afternoon (13:00-15:00 h) for analysis of ascorbic acid (AA) and dehydroascorbic acid (DHA). Vacuum infiltration methods were used to separate leaf AA into apoplast and symplast fractions. The total ascorbate content [AA + DHA] of leaf tissue averaged 28% higher in Provider relative to S156, and Provider exhibited a greater capacity to maintain [AA + DHA] content under ozone stress. Apoplast [AA + DHA] content was 2-fold higher in tolerant Provider (360 nmol g{sup 1} FW maximum) relative to sensitive S156 (160 nmol g1 FW maximum) regardless of sampling period or treatment, supporting the hypothesis that extracellular AA is a factor in ozone tolerance. Apoplast [AA + DHA] levels were significantly higher in the afternoon than early morning for both genotypes, evidence for short-term regulation of extracellular ascorbate content. Total leaf ascorbate was primarily reduced with AA/[AA + DHA] ratios of 0.81-0.90. In contrast, apoplast AA/[AA + DHA] ratios were 0.01-0.60 and depended on genotype and ozone treatment. Provider exhibited a greater capacity to maintain extracellular AA/[AA + DHA] ratios under ozone stress, suggesting that ozone tolerance is associated with apoplast ascorbate redox status. (au)

  1. [Glutathione redox system, immune status, antioxidant enzymes and metabolism of purine nucleotides in hypothyroidism].

    Science.gov (United States)

    Tapbergenov, S O; Sovetov, B S; Bekbosynova, R B; Bolysbekova, S M

    2015-01-01

    The immune status, components of the glutathione redox system, the activity of antioxidant enzymes and metabolism of purine nucleotides have been investigated in animals with experimental hypothyroidism. On day 8 after an increase in the number of leukocytes, lymphocytes, T-helpers and T-suppressors as well as increased number of B-lymphocytes was found in blood of thyroidectomized rats. This was accompanied by decreased activity of adenosine deaminase (AD), AMP-deaminase (AMPD), and 5'-nucleotidase (5'N) in blood, but the ratio of enzyme activity AD/AMPD increased. These changes in the activity of enzymes, involved in purine catabolism can be regarded as increased functional relationships between T and B lymphocytes in hypothyroidism. The functional changes of immune system cells were accompanied by increased activity of glutathione peroxidase (GPx), a decrease in the activity of superoxide dismutase (SOD), glutathione reductase (GR) and the ratio GH/GPx. Thyroidectomized rats had increased amounts of total, oxidized (GSSG) and reduced glutathione (GSH), but the ratio GSH/GSSG decerased as compared with control animals. In the liver, hypothyroidism resulted in activation of SOD, GPx, decreased activity of GR and decreased ratio GR/GPx. At the same time, the levels of total, oxidized, and reduced glutathione increased, but the ratio GSH/GSSG as well as activities of enzymes involved in purine nucleotide metabolism ratio (and their ratio 5'N/AD + AMPD) decreased. All these data suggest a functional relationship of the glutathione redox system not only with antioxidant enzymes, but also activity of enzymes involved purine nucleotide metabolism and immune status.

  2. Effect of short-term ketogenic diet on redox status of human blood.

    Science.gov (United States)

    Nazarewicz, Rafal R; Ziolkowski, Wieslaw; Vaccaro, Patrick S; Ghafourifar, Pedram

    2007-12-01

    The present study investigated the effect of a ketogenic diet on the blood redox status of healthy female subjects. Twenty healthy females with mean body mass index of 21.45 +/- 2.05 kg/m(2) were provided a low-carbohydrate (55 +/- 6 g; 13% total energy), high-fat (138 +/- 16 g; 74% total energy), calorie-restricted (-465 +/- 115 kcal/d) diet. The followings were tested prior to and after 14 days consumption of the diet: Whole body, body weight and total body fat; blood, complete blood count, red blood cells, white blood cells, hemoglobin, and hematocrit; plasma, 3-beta-hydroxybutyrate, total antioxidative status, and uric acid; red blood cells, total sulfhydryl content, malondialdehyde, superoxide dismutase activity, and catalase activity. After 14 days, weight loss was significant whereas no changes were detected in body fat. No alterations were observed in blood count or morphology. 3-beta-hydroxybutyrate, total antioxidative status, uric acid, and sulfhydryl content were significantly increased. There were no alterations in malondialdehyde, or superoxide dismutase or catalase activity. The present study demonstrates that 14 days of a ketogenic diet elevates blood antioxidative capacity and does not induce oxidative stress in healthy subjects.

  3. Lipid profile and redox status in high performance rhythmic female teenagers gymnasts.

    Science.gov (United States)

    Guerra, A; Rego, C; Laires, M J; Castro, E M; Silva, D; Monteiro, C; Silva, Z; Lebre, E; Bicho, M

    2001-12-01

    The aim of the present study is to evaluate the lipid profile and some parameters of oxi-redox status in a group of teenage female athletes. All gymnasts of the Portuguese National Team of Rhythmic (n=20) were included in the study. A group of untrained healthy female adolescents, matched for age, was also included (n=28). Auxology, nutritional status and body composition were evaluated as well as biological parameters, dietary and training habits. Statistics included descriptive analysis, t-Student and Mann-Whitney for comparative study, and Pearson and Spearman correlations, according to variable distribution. Chronological age was 14.3+/-1.7 and 14.6+/-1,7 years, respectively for gymnasts and untrained adolescents. Gymnasts showed lower body mass index (pgymnasts, compared to untrained. Red blood cell's enzymes studied were higher for transmembrane NADH reductase of ferricyanide (TMR), (pgymnasts (76.3+/-20.3 microM/l versus 35+/-21.7 microM/l), (pgymnasts and untrained, between LDL-TBARS and LDL-cholesterol (r=0.674, pgymnasts. The authors conclude that the practice of intense physical exercise in rhythmic gymnasts induces a compromise of nutritional status and unbalanced food habits. The intensive exercise also induces not only a protective lipid profile, but also a higher lipid peroxidation. Further prospective studies are important to evaluate the influence of intensive training on atherosclerosis development.

  4. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch

    Directory of Open Access Journals (Sweden)

    David Ross

    2017-08-01

    Full Text Available NQO1 is one of the two major quinone reductases in mammalian systems. It is highly inducible and plays multiple roles in cellular adaptation to stress. A prevalent polymorphic form of NQO1 results in an absence of NQO1 protein and activity so it is important to elucidate the specific cellular functions of NQO1. Established roles of NQO1 include its ability to prevent certain quinones from one electron redox cycling but its role in quinone detoxification is dependent on the redox stability of the hydroquinone generated by two-electron reduction. Other documented roles of NQO1 include its ability to function as a component of the plasma membrane redox system generating antioxidant forms of ubiquinone and vitamin E and at high levels, as a direct superoxide reductase. Emerging roles of NQO1 include its function as an efficient intracellular generator of NAD+ for enzymes including PARP and sirtuins which has gained particular attention with respect to metabolic syndrome. NQO1 interacts with a growing list of proteins, including intrinsically disordered proteins, protecting them from 20S proteasomal degradation. The interactions of NQO1 also extend to mRNA. Recent identification of NQO1 as a mRNA binding protein have been investigated in more detail using SERPIN1A1 (which encodes the serine protease inhibitor α-1-antitrypsin as a target mRNA and indicate a role of NQO1 in control of translation of α-1-antitrypsin, an important modulator of COPD and obesity related metabolic syndrome. NQO1 undergoes structural changes and alterations in its ability to bind other proteins as a result of the cellular reduced/oxidized pyridine nucleotide ratio. This suggests NQO1 may act as a cellular redox switch potentially altering its interactions with other proteins and mRNA as a result of the prevailing redox environment.

  5. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Goran Bačić

    2016-08-01

    Full Text Available Free radicals, particularly reactive oxygen species (ROS, are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes.

  6. Disulfiram moderately restores impaired hepatic redox status of rats subchronically exposed to cadmium.

    Science.gov (United States)

    Begic, Aida; Djuric, Ana; Ninkovic, Milica; Stevanovic, Ivana; Djurdjevic, Dragan; Pavlovic, Milos; Jelic, Katarina; Pantelic, Ana; Zebic, Goran; Dejanovic, Bratislav; Stanojevic, Ivan; Vojvodic, Danilo; Milosavljevic, Petar; Djukic, Mirjana; Saso, Luciano

    2017-12-01

    Examination of cadmium (Cd) toxicity and disulfiram (DSF) effect on liver was focused on oxidative stress (OS), bioelements status, morphological and functional changes. Male Wistar rats were intraperitoneally treated with 1 mg CdCl2/kg BW/day; orally with 178.5 mg DSF/kg BW/day for 1, 3, 10 and 21 days; and co-exposed from 22nd to 42nd day. The co-exposure nearly restored previously suppressed total superoxide dismutase (SOD), catalase (CAT) and increased glutathione peroxidase (GPx) activities; increased previously reduced glutathione reductase (GR) and total glutathione-S-transferase (GST) activities; reduced previously increased superoxide anion radical (O2(·-)) and malondialdehyde (MDA) levels; increased zinc (Zn) and iron (Fe), and decreased copper (Cu) (yet above control value), while magnesium (Mg) was not affected; and decreased serum alanine aminotransferases (ALT) levels. Histopathological examination showed signs of inflammation process as previously demonstrated by exposure to Cd. Overall, we ascertained partial liver redox status improvement, compared with the formerly Cd-induced impact.

  7. Subacute alcohol and/or disulfiram intake affects bioelements and redox status in rat testes.

    Science.gov (United States)

    Djuric, Ana; Begic, Aida; Gobeljic, Borko; Pantelic, Ana; Zebic, Goran; Stevanovic, Ivana; Djurdjevic, Dragan; Ninkovic, Milica; Prokic, Vera; Stanojevic, Ivan; Vojvodic, Danilo; Djukic, Mirjana

    2017-07-01

    The aim of the study was to investigate if alcohol and disulfiram (DSF) individually and in combination affect bioelements' and red-ox homeostasis in testes of the exposed rats. The animals were divided into groups according to the duration of treatments (21 and/or 42 days): C21/C42 groups (controls); OL21 and OL22-42 groups (0.5 mL olive oil intake); A1-21 groups (3 mL 20% ethanol intake); DSF1-21 groups (178.5 mg DSF/kg/day intake); and A21+DSF22-42 groups (the DSF ingestion followed previous 21 days' treatment with alcohol). The measured parameters in testes included metals: zinc (Zn), copper (Cu), iron (Fe), magnesium (Mg) and selenium (Se); as well as oxidative stress (OS) parameters: superoxide anion radical (O2(•-)), glutathione reduced (GSH) and oxidized (GSSG), malondialdehyde (MDA), hydrogen peroxide (H2O2) decomposition and activities of total superoxide dismutase (tSOD), glutathione-S-transferase (GST) and glutathione reductase (GR). Metal status was changed in all experimental groups (Fe rose, Zn fell, while Cu increased in A21+DSF24-32 groups). Development of OS was demonstrated in A1-21 groups, but not in DSF1-21 groups. In A21+DSF22-42 groups, OS was partially reduced compared to A groups (A1-21>MDA>C; A1-21red-ox homeostasis in rat testes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Moderate exercise training and chronic caloric restriction modulate redox status in rat hippocampus.

    Science.gov (United States)

    Santin, Katiane; da Rocha, Ricardo Fagundes; Cechetti, Fernanda; Quincozes-Santos, André; de Souza, Daniela Fraga; Nardin, Patrícia; Rodrigues, Letícia; Leite, Marina Concli; Moreira, José Cláudio Fonseca; Salbego, Christianne Gazzana; Gonçalves, Carlos Alberto

    2011-11-03

    Physical activity has been related to antioxidant adaptations, which is associated with health benefits, including those to the nervous system. Additionally, available data suggest exercise and a caloric restriction regimen may reduce both the incidence and severity of neurological disorders. Therefore, our aim was to compare hippocampal redox status and glial parameters among sedentary, trained, caloric-restricted sedentary and caloric-restricted trained rats. Forty male adult rats were divided into 4 groups: ad libitum-fed sedentary (AS), ad libitum-fed exercise training (AE), calorie-restricted sedentary (RS) and calorie-restricted exercise training (RE). The caloric restriction (decrease of 30% in food intake) and exercise training (moderate in a treadmill) were carried out for 3 months. Thereafter hippocampus was surgically removed, and then redox and glial parameters were assessed. Increases in reduced glutathione (GSH) levels and total antioxidant reactivity (TAR) were observed in AE, RS and RE. The nitrite/nitrate levels decreased only in RE. We found a decrease in carbonyl content in AE, RS and RE, while no modifications were detected in thiobarbituric acid reactive substances (TBARS). Total reactive antioxidant potential (TRAP), superoxide dismutase (SOD) activity, S100B and glial fibrilary acid protein (GFAP) content did not change, but caloric restriction was able to increase glutamine synthetase (GS) activity in RS and glutamate uptake in RS and RE. Exercise training, caloric restriction and both combined can decrease oxidative damage in the hippocampus, possibly involving modulation of astroglial function, and could be used as a strategy for the prevention of neurodegenerative diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The effect of exercise-induced hypoxemia on blood redox status in well-trained rowers.

    Science.gov (United States)

    Kyparos, Antonios; Riganas, Christos; Nikolaidis, Michalis G; Sampanis, Michalis; Koskolou, Maria D; Grivas, Gerasimos V; Kouretas, Dimitrios; Vrabas, Ioannis S

    2012-06-01

    Exercise-induced arterial hypoxemia (EIAH), characterized by decline in arterial oxyhemoglobin saturation (SaO(2)), is a common phenomenon in endurance athletes. Acute intensive exercise is associated with the generation of reactive species that may result in redox status disturbances and oxidation of cell macromolecules. The purpose of the present study was to investigate whether EIAH augments oxidative stress as determined in blood plasma and erythrocytes in well-trained male rowers after a 2,000-m rowing ergometer race. Initially, athletes were assigned into either the normoxemic (n = 9, SaO(2) >92%, [Formula: see text]: 62.0 ± 1.9 ml kg(-1) min(-1)) or hypoxemic (n = 12, SaO(2) <92%, [Formula: see text]: 60.5 ± 2.2 ml kg(-1 )min(-1), mean ± SEM) group, following an incremental [Formula: see text] test on a wind resistance braked rowing ergometer. On a separate day the rowers performed a 2,000-m all-out effort on the same rowing ergometer. Following an overnight fast, blood samples were drawn from an antecubital vein before and immediately after the termination of the 2,000-m all-out effort and analyzed for selective oxidative stress markers. In both the normoxemic (SaO(2): 94.1 ± 0.9%) and hypoxemic (SaO(2): 88.6 ± 2.4%) rowers similar and significant exercise increase in serum thiobarbituric acid-reactive substances, protein carbonyls, catalase and total antioxidant capacity concentration were observed post-2,000 m all-out effort. Exercise significantly increased the oxidized glutathione concentration and decreased the ratio of reduced (GSH)-to-oxidized (GSSG) glutathione in the normoxemic group only, whereas the reduced form of glutathione remained unaffected in either groups. The increased oxidation of GSH to GSSG in erythrocytes of normoxemic individuals suggest that erythrocyte redox status may be affected by the oxygen saturation degree of hemoglobin. Our findings indicate that exercise-induced hypoxemia did not further affect the increased blood

  10. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    Science.gov (United States)

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  11. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Ricardo Pariona-Llanos

    Full Text Available Glyceraldehyde 3-phosphate dehydrogenase (GAPDH is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH. We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA.

  12. Redox Status of β2GPI in Different Stages of Diabetic Angiopathy

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2016-01-01

    Full Text Available We explored the redox status of beta 2 glycoprotein I (β2GPI in different stages of diabetic angiopathy. Type 2 diabetes mellitus (T2DM had a significantly lower proportion of reduced β2GPI as compared to healthy controls (p0.05. The mild-A-stenosis group and mild-diabetic retinopathy (DR groups had higher proportion of reduced β2GPI than their severely affected counterparts. The mild-slow nerve conduction velocity (NCVS group had higher proportion of reduced β2GPI than normal nerve conduction velocity (NCVN group and severe-NCVS groups. The proportion of reduced β2GPI was in positive correlation with 24 h urine microalbumin and total urine protein, and the proportion of reduced β2GPI was in negative correlation with serum and skin advanced glycation end products (AGEs. Taken together, our data implicate that the proportion of reduced β2GPI increased in the early stage of angiopathy and decreased with the aggravation of angiopathy.

  13. Late-onset running biphasically improves redox balance, energy- and methylglyoxal-related status, as well as SIRT1 expression in mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Stefano Falone

    Full Text Available Despite the active research in this field, molecular mechanisms underlying exercise-induced beneficial effects on brain physiology and functions are still matter of debate, especially with regard to biological processes activated by regular exercise affecting the onset and progression of hippocampal aging in individuals unfamiliar with habitual physical activity. Since such responses seem to be mediated by changes in antioxidative, antiglycative and metabolic status, a possible exercise-induced coordinated response involving redox, methylglyoxal- and sirtuin-related molecular networks may be hypothesized. In this study, hippocampi of CD1 mice undergoing the transition from mature to middle age were analyzed for redox-related profile, oxidative and methylglyoxal-dependent damage patterns, energy metabolism, sirtuin1 and glyoxalase1 expression after a 2- or 4-mo treadmill running program. Our findings suggested that the 4-mo regular running lowered the chance of dicarbonyl and oxidative stress, activated mitochondrial catabolism and preserved sirtuin1-related neuroprotection. Surprisingly, the same cellular pathways were negatively affected by the first 2 months of exercise, thus showing an interesting biphasic response. In conclusion, the duration of exercise caused a profound shift in the response to regular running within the rodent hippocampus in a time-dependent fashion. This research revealed important details of the interaction between exercise and mammal hippocampus during the transition from mature to middle age, and this might help to develop non-pharmacological approaches aimed at retarding brain senescence, even in individuals unfamiliar with habitual exercise.

  14. Deranged Bioenergetics and Defective Redox Capacity in T Lymphocytes and Neutrophils Are Related to Cellular Dysfunction and Increased Oxidative Stress in Patients with Active Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Ko-Jen Li

    2012-01-01

    Full Text Available Urinary excretion of N-benzoyl-glycyl-Nε-(hexanonyllysine, a biomarker of oxidative stress, was higher in 26 patients with active systemic lupus erythematosus (SLE than in 11 non-SLE patients with connective tissue diseases and in 14 healthy volunteers. We hypothesized that increased oxidative stress in active SLE might be attributable to deranged bioenergetics, defective reduction-oxidation (redox capacity, or other factors. We demonstrated that, compared to normal cells, T lymphocytes (T and polymorphonuclear neutrophils (PMN of active SLE showed defective expression of facilitative glucose transporters GLUT-3 and GLUT-6, which led to increased intracellular basal lactate and decreased ATP production. In addition, the redox capacity, including intracellular GSH levels and the enzyme activity of glutathione peroxidase (GSH-Px and γ-glutamyl-transpeptidase (GGT, was decreased in SLE-T. Compared to normal cells, SLE-PMN showed decreased intracellular GSH levels, and GGT enzyme activity was found in SLE-PMN and enhanced expression of CD53, a coprecipitating molecule for GGT. We conclude that deranged cellular bioenergetics and defective redox capacity in T and PMN are responsible for cellular immune dysfunction and are related to increased oxidative stress in active SLE patients.

  15. Dietary flavonoids advance timing of moult but do not affect redox status of juvenile blackbirds (Turdus merula).

    Science.gov (United States)

    Cecere, Jacopo G; Caprioli, Manuela; Carnevali, Chiara; Colombo, Graziano; Dalle-Donne, Isabella; Mancuso, Elisa; Milzani, Aldo; Parolini, Marco; Portanova, Antea; Saino, Nicola; Serra, Lorenzo; Rubolini, Diego

    2016-10-01

    Flavonoids are the most abundant plant polyphenols, widely occurring in fruits and berries, and show a strong antioxidant activity in vitro Studies of avian species feeding on berries suggest that dietary flavonoids have health-promoting effects and may enhance the expression of melanin-based plumage traits. These effects are probably mediated by the antioxidant activity of flavonoids. However, the effect of dietary flavonoids on oxidative status has never been investigated in any bird species. We analysed the effects of dietary flavonoids on blood non-enzymatic antioxidants and protein oxidative damage of juvenile European blackbirds (Turdus merula). In addition, we analysed the effects of flavonoid-enriched diet on body condition and on the timing of moult from juvenile to adult plumage. Dietary flavonoids did not significantly affect redox status but significantly advanced the onset of moult, hastening plumage development. Moulting birds showed higher protein oxidative damage compared with those that had not yet started moulting. The probability of initiating moult after 40 days of dietary treatment was higher for birds with low circulating levels of oxidizing agents and high glutathione concentration. The metabolization of flavonoids could have altered their redox potential, resulting in no net effects on redox status. However, flavonoid consumption before and during moult may contribute to enhance plumage development. Moreover, our findings suggest that moulting feathers may result in redox imbalance. Given their effect on moult and growth of melanin-rich feathers, fruit flavonoids may have contributed to shape plant fruiting time in relation to fruit consumption preferences by birds. © 2016. Published by The Company of Biologists Ltd.

  16. The Influence of Different Types of Physical Activity on The Redox Status of Scuba Divers

    Directory of Open Access Journals (Sweden)

    Radojevic-Popovic Radmila

    2017-03-01

    Full Text Available The effect of scuba diving on ROS production and oxidative stress compared to that of other recreational activities is still poorly understood. The aim of this study was to assess the influence of different types of physical activity on the redox status of scuba divers by testing the pro- and anti-oxidative parameters immediately before and after different types of physical load. The prevalence study included 10 professional police divers. All examinees were male, 32 ± 5.1 years of age, well-trained, and with a minimum of five to a maximum of 20 years of diving experience. The study was divided into three experimental protocols: 1 an exercise test (at atmospheric pressure, 2 an at sea dive (30 meters for 30 minutes, and 3 a dive into river current (10 meters for 30 minutes. Immediately before and after the load test of the divers at atmospheric pressure and immediately before and after the dive, blood samples were taken to determine the values of the following pro-oxidant markers: O2−, H2O2, NO2− and TBARS, as well as antioxidant enzymes (SOD and CAT. A comparison of the results before and after physical activity for all three protocols revealed a significant increase in values for NO2−, O2−, H2O2 and CAT after physical activity. It can be concluded that the values of all oxidative stress markers depend on the season of the year in which the research is conducted or on the frequency of dives and degree of physical exertion during this period of the year.

  17. Current status of solid-state lithium batteries employing solid redox polymerization cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Visco, S.J.; Doeff, M.M.; De Jonghe, L.C.

    1991-03-01

    The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to non-aqueous liquid electrolytes implies low power densities for solid-state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10{sup {minus}4} (ohm cm){sup {minus}1} at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid-state batteries in the realm of practical devices, it is clear that solid-state batteries using such polymeric separators will be thin-film devices. Fortunately, thin-film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost- competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin-film solid-state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes. 7 refs., 7 figs.

  18. Cataract induction by administration of nitroglycerin in cardiac patients through imbalance in redox status

    Directory of Open Access Journals (Sweden)

    El-Gharabawy RM

    2016-09-01

    Full Text Available Rehab M El-Gharabawy,1,2 Amira S Ahmed,1,3 Amal H Al-Najjar4 1Pharmacology and Toxicology Department, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia; 2Pharmacology and Toxicology Department, College of Pharmacy, Tanta University, Tanta, 3Hormone Department, National Research Center, Giza, Egypt; 4Pharmacy Services Department, Security Forces Hospital, Riyadh, Kingdom of Saudi Arabia Purpose: The objective of this study was to evaluate the role of nitroglycerin in the pathogenesis of cataract.Design: Prospective study.Patient and methods: This study was performed in adults from tertiary Saudi Arabian hospitals (34 males and 26 females in each group, aged from 40 to 60 years, who were divided into four groups with an equal number of subjects (control group, cardiac group, idiopathic cataract group, and a group of cardiac patients using nitroglycerin and with cataracts. Fasting glucose concentrations, blood glycated hemoglobin levels, lipid profiles, and levels of nitrite, conjugated dienes (CD, thiobarbituric acid reactive substances (TBARS, superoxide dismutase (SOD, and reduced glutathione (GSH were determined.Results: Treatment of cardiac patients with nitroglycerin produced an imbalance in their systemic redox status, leading to the development of cataracts, which was reflected by a significant increase in the levels of nitrite, CD, and TBARS and a significant decrease in SOD activity and GSH, compared with idiopathic cataract patients. The results of correlation studies and multiple regression analysis revealed a significant positive correlation between different biochemical parameters (GSH, SOD, TBARS, CD, and nitrite in the blood and lens in both idiopathic cataract patients and cardiac patients treated with nitroglycerin.Conclusion: The study points to the relative and predictive effects of nitric oxide derived from nitroglycerin in the development of cataract in the presence of the oxidative stress induced by

  19. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Thorsen, Michael; Kielland-Brandt, Morten C

    2007-01-01

    -glutamyl-cysteine synthetase) and, particularly, GLR1 (glutathione reductase) are required for survival on DPS. DPS is uniquely thiol-specific, and we found that the cellular mechanisms for DPS detoxification differ substantially from that of the commonly used thiol oxidant diamide. In contrast to this oxidant, the full...... antioxidant pools of glutathione (GSH) and thioredoxin are required for resistance to DPS. We found that DPS-sensitive mutants display increases in the disulfide form of GSH (GSSG) during DPS exposure that roughly correlate with their more oxidizing GSH redox potential in the cytosol and their degree of DPS...

  20. Chloroplast Redox Status Modulates Genome-Wide Plant Responses during the Non-host Interaction of Tobacco with the Hemibiotrophic Bacterium Xanthomonas campestris pv. vesicatoria

    Directory of Open Access Journals (Sweden)

    Juan J. Pierella Karlusich

    2017-07-01

    Full Text Available Non-host resistance is the most ample and durable form of plant resistance against pathogen infection. It includes induction of defense-associated genes, massive metabolic reprogramming, and in many instances, a form of localized cell death (LCD at the site of infection, purportedly designed to limit the spread of biotrophic and hemibiotrophic microorganisms. Reactive oxygen species (ROS have been proposed to act as signals for LCD orchestration. They are produced in various cellular compartments including chloroplasts, mitochondria and apoplast. We have previously reported that down-regulation of ROS build-up in chloroplasts by expression of a plastid-targeted flavodoxin (Fld suppressed LCD in tobacco leaves inoculated with the non-host bacterium Xanthomonas campestris pv. vesicatoria (Xcv, while other defensive responses were unaffected, suggesting that chloroplast ROS and/or redox status play a major role in the progress of LCD. To better understand these effects, we compare here the transcriptomic alterations caused by Xcv inoculation on leaves of Fld-expressing tobacco plants and their wild-type siblings. About 29% of leaf-expressed genes were affected by Xcv and/or Fld. Surprisingly, 5.8% of them (1,111 genes were regulated by Fld in the absence of infection, presumably representing pathways responsive to chloroplast ROS production and/or redox status during normal growth conditions. While the majority (∼75% of pathogen-responsive genes were not affected by Fld, many Xcv responses were exacerbated, attenuated, or regulated in opposite direction by expression of this protein. Particularly interesting was a group of 384 genes displaying Xcv responses that were already triggered by Fld in the absence of infection, suggesting that the transgenic plants had a larger and more diversified suite of constitutive defenses against the attacking microorganism compared to the wild type. Fld modulated many genes involved in pathogenesis, signal

  1. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans

    Science.gov (United States)

    Smolders, Arne; Back, Patricia; De Henau, Sasha

    2016-01-01

    Abstract Significance: Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. Recent Advances: The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. Critical Issues: Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. Future Directions: We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577–592. PMID:27306519

  2. Renal antioxidant enzymes and glutathione redox status in leptin-induced hypertension.

    Science.gov (United States)

    Bełtowski, Jerzy; Jamroz-Wiśniewska, Anna; Wójcicka, Grazyna; Lowicka, Ewelina; Wojtak, Andrzej

    2008-12-01

    Previously, we have demonstrated that leptin increases blood pressure (BP) in the rats through two oxidative stress-dependent mechanisms: stimulation of extracellular signal-regulated kinases (ERK) by H(2)O(2) and scavenging of nitric oxide (NO) by superoxide (O(2-.)). Herein, we examined if renal glutathione system and antioxidant enzymes determine the mechanism of prohypertensive effect of leptin. Leptin administered at 0.5 mg/kg/day for 4 or 8 days increased BP and renal Na(+),K(+)-ATPase activity and reduced fractional sodium excretion; these effects were prevented by NADPH oxidase inhibitor, apocynin. Superoxide scavenger, tempol, abolished the effect of leptin on BP and renal Na(+) pump in rats receiving leptin for 8 days, whereas ERK inhibitor, PD98059, was effective in animals treated with leptin for 4 days. Leptin administered for 4 days decreased glutathione (GSH) and increased glutathione disulfide (GSSG) in the kidney. In animals receiving leptin for 8 days GSH returned to normal level, which was accompanied by up-regulation of gamma-glutamylcysteine synthetase (gamma-GCS), a rate-limiting enzyme of the GSH biosynthetic pathway. In addition, superoxide dismutase (SOD) activity was decreased, whereas glutathione peroxidase (GPx) was increased in rats receiving leptin for 8 days. Cotreatment with gamma-GCS inhibitor, buthionine sulfoximine (BSO), accelerated, whereas GSH precursor, N-acetylcysteine (NAC), attenuated leptin-induced changes in gamma-GCS, SOD, and GPx. In addition, coadministration of BSO changed the mechanism of BP elevation from H(2)O(2)-ERK to (O(2-.))-NO dependent in animals receiving leptin for 4 days, whereas NAC had the opposite effect in rats treated with leptin for 8 days. These results suggest that initial change in GSH redox status induces decrease in SOD/GPx ratio, which results in greater amount of (O)2-.)) versus H(2)O(2) in later phase of leptin treatment, thus shifting the mechanism of BP elevation from H(2)O(2)-ERK to (O(2

  3. Materials and Systems for Organic Redox Flow Batteries: Status and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Pan, Wenxiao [Department; Duan, Wentao [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Hollas, Aaron [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Yang, Zheng [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Li, Bin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Nie, Zimin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Liu, Jun [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Reed, David [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Wang, Wei [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Sprenkle, Vincent [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States

    2017-08-14

    Redox flow batteries are propitious stationary energy storage technologies with exceptional scalability and flexibility to improve the stability, efficiency and sustainability of our power grid. The redox-active materials are the central component to RFBs for achieving high energy density and good cyclability. Traditional inorganic-based materials encounter critical technical and economic limitations such as low solubility, inferior electrochemical activity, and high cost. Redox-active organic materials (ROMs) are promising alternative “green” candidates to push the boundaries of energy storage because of the significant advantages of molecular diversity, structural tailorability, and natural abundance. Here the recent development of a variety of ROM families and associated battery designs in both aqueous and nonaqueous electrolytes are reviewed. Moreover, the critical challenges and potential research opportunities for developing practically relevant organic flow batteries are discussed.

  4. Effect of Multicomponent Training on Blood Pressure, Nitric Oxide, Redox Status, and Physical Fitness in Older Adult Women: Influence of Endothelial Nitric Oxide Synthase (NOS3 Haplotypes

    Directory of Open Access Journals (Sweden)

    Atila Alexandre Trapé

    2017-01-01

    Full Text Available The purpose of this study was to verify the influence of the genotype or haplotype (interaction of the NOS3 polymorphisms [-786T>C, 894G>T (Glu298Asp, and intron 4b/a] on the response to multicomponent training (various capacities and motor skills on blood pressure (BP, nitrite concentration, redox status, and physical fitness in older adult women. The sample consisted of 52 participants, who underwent body mass index and BP assessments. Physical fitness was evaluated by six-minute walk, elbow flexion, and sit and stand up tests. Plasma/blood samples were used to evaluate redox status, nitrite concentration, and genotyping. Associations were observed between isolated polymorphisms and the response of decreased systolic and diastolic BP and increased nitrite concentration and antioxidant activity. In the haplotype analysis, the group composed of ancestral alleles (H1 was the only one to present improvement in all variables studied (decrease in systolic and diastolic BP, improvement in nitrite concentration, redox status, and physical fitness, while the group composed of variant alleles (H8 only demonstrated improvement in some variables of redox status and physical fitness. These findings suggest that NOS3 polymorphisms and physical training are important interacting variables to consider in evaluating redox status, nitric oxide availability and production, and BP control.

  5. Effect of Multicomponent Training on Blood Pressure, Nitric Oxide, Redox Status, and Physical Fitness in Older Adult Women: Influence of Endothelial Nitric Oxide Synthase (NOS3) Haplotypes

    Science.gov (United States)

    Lizzi, Elisangela Aparecida da Silva; Gonçalves, Thiago Correa Porto; Rodrigues, Jhennyfer Aline Lima; Tavares, Simone Sakagute; Lacchini, Riccardo; Pinheiro, Lucas Cezar; Ferreira, Graziele Cristina; Jacomini, André Mourão; Bueno Júnior, Carlos Roberto

    2017-01-01

    The purpose of this study was to verify the influence of the genotype or haplotype (interaction) of the NOS3 polymorphisms [-786T>C, 894G>T (Glu298Asp), and intron 4b/a] on the response to multicomponent training (various capacities and motor skills) on blood pressure (BP), nitrite concentration, redox status, and physical fitness in older adult women. The sample consisted of 52 participants, who underwent body mass index and BP assessments. Physical fitness was evaluated by six-minute walk, elbow flexion, and sit and stand up tests. Plasma/blood samples were used to evaluate redox status, nitrite concentration, and genotyping. Associations were observed between isolated polymorphisms and the response of decreased systolic and diastolic BP and increased nitrite concentration and antioxidant activity. In the haplotype analysis, the group composed of ancestral alleles (H1) was the only one to present improvement in all variables studied (decrease in systolic and diastolic BP, improvement in nitrite concentration, redox status, and physical fitness), while the group composed of variant alleles (H8) only demonstrated improvement in some variables of redox status and physical fitness. These findings suggest that NOS3 polymorphisms and physical training are important interacting variables to consider in evaluating redox status, nitric oxide availability and production, and BP control. PMID:29104725

  6. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Vishwakarma, Abhaypratap; Tetali, Sarada Devi; Selinski, Jennifer; Scheibe, Renate; Padmasree, Kollipara

    2015-09-01

    The importance of the alternative oxidase (AOX) pathway, particularly AOX1A, in optimizing photosynthesis during de-etiolation, under elevated CO2, low temperature, high light or combined light and drought stress is well documented. In the present study, the role of AOX1A in optimizing photosynthesis was investigated when electron transport through the cytochrome c oxidase (COX) pathway was restricted at complex III. Leaf discs of wild-type (WT) and aox1a knock-out mutants of Arabidopsis thaliana were treated with antimycin A (AA) under growth-light conditions. To identify the impact of AOX1A deficiency in optimizing photosynthesis, respiratory O2 uptake and photosynthesis-related parameters were measured along with changes in redox couples, reactive oxygen species (ROS), lipid peroxidation and expression levels of genes related to respiration, the malate valve and the antioxidative system. In the absence of AA, aox1a knock-out mutants did not show any difference in physiological, biochemical or molecular parameters compared with WT. However, after AA treatment, aox1a plants showed a significant reduction in both respiratory O2 uptake and NaHCO3-dependent O2 evolution. Chlorophyll fluorescence and P700 studies revealed that in contrast to WT, aox1a knock-out plants were incapable of maintaining electron flow in the chloroplastic electron transport chain, and thereby inefficient heat dissipation (low non-photochemical quenching) was observed. Furthermore, aox1a mutants exhibited significant disturbances in cellular redox couples of NAD(P)H and ascorbate (Asc) and consequently accumulation of ROS and malondialdehyde (MDA) content. By contrast, WT plants showed a significant increase in transcript levels of CSD1, CAT1, sAPX, COX15 and AOX1A in contrast to aox1a mutants. These results suggest that AOX1A plays a significant role in sustaining the chloroplastic redox state and energization to optimize photosynthesis by regulating cellular redox homeostasis and ROS

  7. Redox Mediators for Li-O2 Batteries: Status and Perspectives.

    Science.gov (United States)

    Park, Jin-Bum; Lee, Seon Hwa; Jung, Hun-Gi; Aurbach, Doron; Sun, Yang-Kook

    2018-01-01

    Li-O2 batteries have received much attention due to their extremely large theoretical energy density. However, the high overpotentials required for charging Li-O2 batteries lower their energy efficiency and degrade the electrolytes and carbon electrodes. This problem is one of the main obstacles in developing practical Li-O2 batteries. To solve this problem, it is important to facilitate the oxidation of Li2 O2 upon charging by using effective electrocatalysis. Using solid catalysts is not too effective for oxidizing the electronically isolating Li-peroxide layers. In turn, for soluble catalysts, red-ox mediators (RMs) are homogeneously dissolved in the electrolyte solutions and can effectively oxidize all of the Li2 O2 precipitated during discharge. RMs can decompose solid Li2 O2 species no matter their size, morphology, or thickness and thus dramatically increase energy efficiency. However, some negative side effects, such as the shuttle reactions of RMs and deterioration of the Li-metal occur. Therefore, it is necessary to study the activity and stability of RMs in Li-O2 batteries in detail. Herein, recent studies related to redox mediators are reviewed and the mechanisms of redox reactions are illustrated. The development opportunities of RMs for this important battery technology are discussed and future directions are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Maintenance of Macrophage Redox Status by ChREBP Limits Inflammation and Apoptosis and Protects against Advanced Atherosclerotic Lesion Formation

    Directory of Open Access Journals (Sweden)

    Vincent Sarrazy

    2015-10-01

    Full Text Available Enhanced glucose utilization can be visualized in atherosclerotic lesions and may reflect a high glycolytic rate in lesional macrophages, but its causative role in plaque progression remains unclear. We observe that the activity of the carbohydrate-responsive element binding protein ChREBP is rapidly downregulated upon TLR4 activation in macrophages. ChREBP inactivation refocuses cellular metabolism to a high redox state favoring enhanced inflammatory responses after TLR4 activation and increased cell death after TLR4 activation or oxidized LDL loading. Targeted deletion of ChREBP in bone marrow cells resulted in accelerated atherosclerosis progression in Ldlr−/− mice with increased monocytosis, lesional macrophage accumulation, and plaque necrosis. Thus, ChREBP-dependent macrophage metabolic reprogramming hinders plaque progression and establishes a causative role for leukocyte glucose metabolism in atherosclerosis.

  9. Determination of Glutathione and Its Redox Status in Isolated Vacuoles of Red Beetroot Cells

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2016-02-01

    Full Text Available The glutathione of the red beetroot vacuoles (Beta vulgaris L. was measured using three well-known methods: the spectrofluorimetric method with orthophthalic aldehyde (OPT; the spectrophotometric method with 5.5'-dithiobis-2-nitrobenzoic acid (DTNB; the high-performance liquid chromatography (HPLC. The content of reduced (GSH and oxidized glutathione (GSSG differed depending on the research method. With OPT the concentration of glutathione was: GSH – 0.059 µmol /mg protein; GSSG – 0.019 µmol/mg protein and total glutathione (GSHtotal – 0.097 µmol/mg protein. In the case of determining with DTNB the concentration of glutathione was: GSH – 0.091 µmol/mg protein; GSSG – 0.031 µmol/mg protein; GSHtotal – 0.153 µmol/mg protein. HPLC-defined concentration of glutathione was lower: GSH – 0.039 µmol/mg protein; GSSG – 0.007 µmol/mg protein; GSHtotal – 0.053 µmol/mg protein. Redox ratio of GSH/GSSG was also dependent on the method of determination: with OPT – 3.11; with DTNB – 2.96 and HPLC – 5.57. Redox ratio of glutathione in vacuoles was much lower than the tissue extracts of red beetroot, which, depending on the method of determination, was: 7.23, 7.16 and 9.22. The results showed the vacuoles of red beetroot parenchyma cells contain glutathione. Despite the low value of the redox ratio GSH/GSSG, in vacuoles the pool of reduced glutathione prevailed over the pool of oxidized glutathione.

  10. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox...... PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  11. Effects of commonly consumed fruit juices and carbohydrates on redox status and anticancer biomarkers in female rats

    DEFF Research Database (Denmark)

    Breinholt, Vibeke M.; Nielsen, Salka E.; Knuthsen, Pia

    2003-01-01

    the average carbohydrate levels in the employed fruit juices. None of the fruit juices were found to affect the activities of antioxidant enzymes in red blood cells or hepatic glutathione S-transferase. Hepatic quinone reductase activity, on the other hand, was significantly increased by grape-fruit juice....../kg of diet. However, no effects were observed on hepatic glutathione S-transferase or quinone reductase activities, plasma redox status, or the activity of red blood cell antioxidant enzymes. Overall, the results of the present study suggest that commonly consumed fruit juices can alter lipid and protein...... oxidation biomarkers in the blood as well as hepatic quinone reductase activity, and that quercetin may not be the major active principle. The observation that natural carbohydrates are capable of mediating oxidative stress in vivo warrants further studies due to the central role refined and unrefined...

  12. Effects of Spirulina on the functions and redox status of auditory system in senescence-accelerated prone-8 mice.

    Directory of Open Access Journals (Sweden)

    Yin-Ching Chan

    Full Text Available To our knowledge, the effects of Spirulina platensis water extract (SP on hearing function have not yet been reported. This study investigated the effects of SP on the function and redox status of the auditory system. Auditory brainstem responses and redox status were compared between two groups of 3-month-old senescence-accelerated prone-8 (SAMP8 mice: the control group was fed a normal diet, and the experimental group was fed a normal diet with oral supplementation of SP for 6 weeks. Compared with the control group, the experimental group had significantly lower hearing thresholds according to auditory brainstem responses measured using click sounds and 8-kHz tone burst sound stimulation at the end of this study. The experimental group had a shorter I-III interval of auditory brainstem responses with 16-kHz tone burst stimulation than the control group that was of borderline significance. Additionally, the experimental group had significantly higher mRNA expression of the superoxide dismutase and catalase genes in the cochlea and brainstem and significantly higher mRNA expression of the glutathione peroxidase gene in the cochlea. Further, the experimental group had significantly lower malondialdehyde levels in the cochlea and brainstem than the control group. However, tumor necrosis factor-α mRNA expression was not significantly different between the control and experimental groups. SP could decrease hearing degeneration in senescence-accelerated prone-8 mice possibly by increasing superoxide dismutase, catalase, and glutathione peroxidase gene expression and decreasing damage from oxidative stress in the cochlea and brainstem.

  13. The decay of Redox-stress Response Capacity is a substantive characteristic of aging: Revising the redox theory of aging.

    Science.gov (United States)

    Meng, Jiao; Lv, Zhenyu; Qiao, Xinhua; Li, Xiaopeng; Li, Yazi; Zhang, Yuying; Chen, Chang

    2017-04-01

    Aging is tightly associated with redox events. The free radical theory of aging indicates that redox imbalance may be an important factor in the aging process. Most studies about redox and aging focused on the static status of oxidative stress levels, there has been little research investigating differential responses to redox challenge during aging. In this study, we used Caenorhabditis elegans and human fibroblasts as models to compare differential responses to oxidative stress challenge in young and old individuals. In response to paraquat stress, young individuals generated more ROS and activated signaling pathways including p-ERK, p-AKT and p-AMPKα/β. After the initial response, young individuals then promoted NRF2 translocation and induced additional antioxidant enzymes and higher expression of phase II enzymes, including SOD, CAT, GPX, HO-1, GSTP-1and others, to maintain redox homeostasis. Moreover, young individuals also demonstrated a better ability to degrade damaged proteins by up-regulating the expression of chaperones and improving proteasome activity. Based on these data, we propose a new concept "Redox-stress Response Capacity (RRC)", which suggests cells or organisms are capable of generating dynamic redox responses to activate cellular signaling and maintain cellular homeostasis. The decay of RRC is the substantive characteristic of aging, which gives a new understand of the redox theory of aging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.

    Science.gov (United States)

    Harris, Craig; Shuster, Daniel Z; Roman Gomez, Rosaicela; Sant, Karilyn E; Reed, Matthew S; Pohl, Jan; Hansen, Jason M

    2013-10-01

    Developmental signals that control growth and differentiation are regulated by environmental factors that generate reactive oxygen species (ROS) and alter steady-state redox environments in tissues and fluids. Protein thiols are selectively oxidized and reduced in distinct spatial and temporal patterns in conjunction with changes in glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox potentials (E(h)) to regulate developmental signaling. The purpose of this study was to measure compartment-specific thiol redox status in cultured organogenesis-stage rat conceptuses and to evaluate the impact of thiol oxidation on the redox proteome. The visceral yolk sac (VYS) has the highest initial (0 h) total intracellular GSH (GSH+2GSSG) concentration (5.5 mM) and the lowest Eh (-223 mV) as determined by HPLC analysis. Total embryo (EMB) GSH concentrations ranged lower (3.2 mM) and were only slightly more oxidized than the VYS. Total GSH concentrations in yolk sac fluid (YSF) and amniotic fluid (AF) are >500-fold lower than in tissues and are highly oxidized (YSF E(h)=-121 mV and AF E(h)=-49 mV). Steady-state total Cys concentrations (Cys+2CySS) were significantly lower than GSH in tissues but were otherwise equal in VYS and EMB near 0.5 mM. On gestational day 11, total GSH and Cys concentrations in EMB and VYS increase significantly over the 6h time course while E(h) remains relatively constant. The Eh (GSH/GSSG) in YSF and AF become more reduced over time while E(h) (Cys/CySS) become more oxidized. Addition of L-buthionine-S,R-sulfoximine (BS0) to selectively inhibit GSH synthesis and mimic the effects of some GSH-depleting environmental chemicals significantly decreased VYS and EMB GSH and Cys concentrations and increased Eh over the 6h exposure period, showing a greater overall oxidation. In the YSF, BSO caused a significant increase in total Cys concentrations to 1.7 mM but did not significantly change the E(h) for Cys/CySS. A significant net

  15. EFFECT OF THIOPROPANOL ON AMINO ACID TURNOVER AND REDOX STATUS IN ALLOXAN DIABETIC RAT LIVER

    OpenAIRE

    Vickram; Divya Dattaprasad; Kashinath Rattihalli Thirumalarao

    2016-01-01

    BACKGROUND Decreased cellular thiol levels seen in diabetes mellitus (DM) may be in part attributed to increased free radical generation. The free radical mediated oxidative stress has been implicated in the pathogenesis of DM and its complications. The relative deficiency or non-availability of insulin in DM affects the metabolism of biomolecules, specifically the carbohydrate metabolism. The insulin-mimicking actions of various thiols have been studied. In our previous study, we...

  16. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer's disease pathogenesis.

    Science.gov (United States)

    Trovato, A; Siracusa, R; Di Paola, R; Scuto, M; Ontario, M L; Bua, Ornella; Di Mauro, Paola; Toscano, M A; Petralia, C C T; Maiolino, L; Serra, A; Cuzzocrea, S; Calabrese, Vittorio

    2016-01-01

    There has been a recent upsurge of interest in complementary medicine, especially dietary supplements and foods functional in delaying the onset of age-associated neurodegenerative diseases. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as antitumor, antioxidant, antiviral, antibacterial and hepatoprotective agent also capable to stimulate host immune responses. Here we provide evidence of neuroprotective action of Hericium Herinaceus when administered orally to rat. Expression of Lipoxin A4 (LXA4) was measured in different brain regions after oral administration of a biomass Hericium preparation, given for 3 month. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, Heme oxygenase -1 and Thioredoxin. In the brain of rats receiving Hericium, maximum induction of LXA4 was observed in cortex, and hippocampus followed by substantia Nigra, striatum and cerebellum. Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is a fundamental cause in neurodegenerative diseases. As prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and Lipoxin A4. Emerging interest is now focussing on molecules capable of activating the vitagene system as novel therapeutic target to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. LXA4 is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. In addition, Hsp system is emerging as key pathway for modulation to prevent neuronal dysfunction, caused by protein misfolding. Conceivably, activation of

  17. Nuclear thiol redox systems in plants.

    Science.gov (United States)

    Delorme-Hinoux, Valérie; Bangash, Sajid A K; Meyer, Andreas J; Reichheld, Jean-Philippe

    2016-02-01

    Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. 'Venus trapped, Mars transits': Cu and Fe redox chemistry, cellular topography and in situ ligand binding in terrestrial isopod hepatopancreas.

    Science.gov (United States)

    Kille, P; Morgan, A J; Powell, K; Mosselmans, J F W; Hart, D; Gunning, P; Hayes, A; Scarborough, D; McDonald, I; Charnock, J M

    2016-03-01

    Woodlice efficiently sequester copper (Cu) in 'cuprosomes' within hepatopancreatic 'S' cells. Binuclear 'B' cells in the hepatopancreas form iron (Fe) deposits; these cells apparently undergo an apocrine secretory diurnal cycle linked to nocturnal feeding. Synchrotron-based µ-focus X-ray spectroscopy undertaken on thin sections was used to characterize the ligands binding Cu and Fe in S and B cells of Oniscus asellus (Isopoda). Main findings were: (i) morphometry confirmed a diurnal B-cell apocrine cycle; (ii) X-ray fluorescence (XRF) mapping indicated that Cu was co-distributed with sulfur (mainly in S cells), and Fe was co-distributed with phosphate (mainly in B cells); (iii) XRF mapping revealed an intimate morphological relationship between the basal regions of adjacent S and B cells; (iv) molecular modelling and Fourier transform analyses indicated that Cu in the reduced Cu(+) state is mainly coordinated to thiol-rich ligands (Cu-S bond length 2.3 Å) in both cell types, while Fe in the oxidized Fe(3+) state is predominantly oxygen coordinated (estimated Fe-O bond length of approx. 2 Å), with an outer shell of Fe scatterers at approximately 3.05 Å; and (v) no significant differences occur in Cu or Fe speciation at key nodes in the apocrine cycle. Findings imply that S and B cells form integrated unit-pairs; a functional role for secretions from these cellular units in the digestion of recalcitrant dietary components is hypothesized. © 2016 The Authors.

  19. Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization.

    Science.gov (United States)

    Chen, Weiqiang; Huang, Nien-Tsu; Li, Xiang; Yu, Zeta Tak For; Kurabayashi, Katsuo; Fu, Jianping

    2013-01-01

    Rapid, accurate, and quantitative characterization of immune status of patients is of utmost importance for disease diagnosis and prognosis, evaluating efficacy of immunotherapeutics and tailoring drug treatments. Immune status of patients is often dynamic and patient-specific, and such complex heterogeneity has made accurate, real-time measurements of patient immune status challenging in the clinical setting. Recent advances in microfluidics have demonstrated promising applications of the technology for immune monitoring with minimum sample requirements and rapid functional immunophenotyping capability. This review will highlight recent developments of microfluidic platforms that can perform rapid and accurate cellular functional assays on patient immune cells. We will also discuss the future potential of integrated microfluidics to perform rapid, accurate, and sensitive cellular functional assays at a single-cell resolution on different types or subpopulations of immune cells, to provide an unprecedented level of information depth on the distribution of immune cell functionalities. We envision that such microfluidic immunophenotyping tools will allow for comprehensive and systems-level immunomonitoring, unlocking the potential to transform experimental clinical immunology into an information-rich science.

  20. [Redox Status of Extremophilic Yeast Yarrowia Lipolytica During Adaptation to pH-Stress].

    Science.gov (United States)

    Sekova, V Y; Gessler, N N; Isakova, E P; Antipov, A N; Dergacheva, D I; Deryabina, Y I; Trubnikova, E V

    2015-01-01

    In this study we investigated the activities of antioxidant enzymes (superoxide dismutases (SODs) and catalases (CATs)) and the ROS level in cells of Yarrowia lipolytica yeasts grown in a medium with different pH values (4.5, 5.5 and 9.0). It was shown that an increase in the cellular ROS level took place under both acid and alkaline conditions. The growth under extreme conditions was accompanied by a significant increase of SOD activity (by 2.5 times in the acid medium and by 4 times in the alkaline medium), but catalase activity did not change. A study of the electrophoretic profile of catalases showed the presence of three isoforms differing in inhibitor resistance. The electrophoretic profiles of SODs and their inhibitory analysis revealed there are two other isoforms, probably of mitochondrial origin, in addition to Cu and Zn SOD. The role of SOD in pH-adaptation of extremophilic Y. lipolytica yeasts is discussed.

  1. Plastid-Localized Glutathione Reductase2–Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance[C][W

    Science.gov (United States)

    Yu, Xin; Pasternak, Taras; Eiblmeier, Monika; Ditengou, Franck; Kochersperger, Philip; Sun, Jiaqiang; Wang, Hui; Rennenberg, Heinz; Teale, William; Paponov, Ivan; Zhou, Wenkun; Li, Chuanyou; Li, Xugang; Palme, Klaus

    2013-01-01

    Glutathione is involved in thiol redox signaling and acts as a major redox buffer against reactive oxygen species, helping to maintain a reducing environment in vivo. Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) into reduced glutathione (GSH). The Arabidopsis thaliana genome encodes two GRs: GR1 and GR2. Whereas the cytosolic/peroxisomal GR1 is not crucial for plant development, we show here that the plastid-localized GR2 is essential for root growth and root apical meristem (RAM) maintenance. We identify a GR2 mutant, miao, that displays strong inhibition of root growth and severe defects in the RAM, with GR activity being reduced to ∼50%. miao accumulates high levels of GSSG and exhibits increased glutathione oxidation. The exogenous application of GSH or the thiol-reducing agent DTT can rescue the root phenotype of miao, demonstrating that the RAM defects in miao are triggered by glutathione oxidation. Our in silico analysis of public microarray data shows that auxin and glutathione redox signaling generally act independently at the transcriptional level. We propose that glutathione redox status is essential for RAM maintenance through both auxin/PLETHORA (PLT)-dependent and auxin/PLT-independent redox signaling pathways. PMID:24249834

  2. Whey Protein Concentrate Renders MDA-MB-231 Cells Sensitive to Rapamycin by Altering Cellular Redox State and Activating GSK3β/mTOR Signaling.

    Science.gov (United States)

    Cheng, Shih-Hsuan; Tseng, Yang-Ming; Wu, Szu-Hsien; Tsai, Shih-Meng; Tsai, Li-Yu

    2017-11-21

    Whey protein concentrate (WPC) is an amino acid-rich supplement that has been shown to increase cellular antioxidant capacity. Mammalian target of rapamycin (mTOR) is a crucial regulator of signaling in mammalian cells, and serves as a therapeutic target for triple-negative breast cancer (TNBC). This study was designed to investigate the effect of combining WPC with rapamycin on MDA-MB-231 human breast cancer cells. These cells were found to be insensitive to rapamycin and exhibited higher glutathione (GSH) and reactive oxygen species levels than non-tumorigenic MCF-10A cells. However, for MDA-MB-231 cells, the half maximal inhibitory concentration of rapamycin was lower when this drug was administered in combination with WPC than when used alone. Furthermore, combining WPC with rapamycin depleted GSH levels and reduced Nrf2 nuclear accumulation. In addition, WPC activated GSK3β/mTOR signaling, and GSK3β appeared to be involved in the WPC-mediated Nrf2 reduction and mTOR activation. In conclusion, WPC induced rapamycin sensitivity in MDA-MB-231 cells by altering their redox state and activating GSK3β/mTOR signaling. These results not only suggest a novel therapeutic approach for breast cancer treatment, but also provide insight into the critical pathways affecting the resistance to mTOR inhibition observed in a subgroup of TNBC patients.

  3. Effectiveness of methylcobalamin and folinic Acid treatment on adaptive behavior in children with autistic disorder is related to glutathione redox status.

    Science.gov (United States)

    Frye, Richard E; Melnyk, Stepan; Fuchs, George; Reid, Tyra; Jernigan, Stefanie; Pavliv, Oleksandra; Hubanks, Amanda; Gaylor, David W; Walters, Laura; James, S Jill

    2013-01-01

    Treatments targeting metabolic abnormalities in children with autism are limited. Previously we reported that a nutritional treatment significantly improved glutathione metabolism in children with autistic disorder. In this study we evaluated changes in adaptive behaviors in this cohort and determined whether such changes are related to changes in glutathione metabolism. Thirty-seven children diagnosed with autistic disorder and abnormal glutathione and methylation metabolism were treated with twice weekly 75 µg/Kg methylcobalamin and twice daily 400 µg folinic acid for 3 months in an open-label fashion. The Vineland Adaptive Behavior Scale (VABS) and glutathione redox metabolites were measured at baseline and at the end of the treatment period. Over the treatment period, all VABS subscales significantly improved with an average effect size of 0.59, and an average improvement in skills of 7.7 months. A greater improvement in glutathione redox status was associated with a greater improvement in expressive communication, personal and domestic daily living skills, and interpersonal, play-leisure, and coping social skills. Age, gender, and history of regression did not influence treatment response. The significant behavioral improvements observed and the relationship between these improvements to glutathione redox status suggest that nutritional interventions targeting redox metabolism may benefit some children with autism.

  4. Effectiveness of Methylcobalamin and Folinic Acid Treatment on Adaptive Behavior in Children with Autistic Disorder Is Related to Glutathione Redox Status

    Directory of Open Access Journals (Sweden)

    Richard E. Frye

    2013-01-01

    Full Text Available Treatments targeting metabolic abnormalities in children with autism are limited. Previously we reported that a nutritional treatment significantly improved glutathione metabolism in children with autistic disorder. In this study we evaluated changes in adaptive behaviors in this cohort and determined whether such changes are related to changes in glutathione metabolism. Thirty-seven children diagnosed with autistic disorder and abnormal glutathione and methylation metabolism were treated with twice weekly 75 µg/Kg methylcobalamin and twice daily 400 µg folinic acid for 3 months in an open-label fashion. The Vineland Adaptive Behavior Scale (VABS and glutathione redox metabolites were measured at baseline and at the end of the treatment period. Over the treatment period, all VABS subscales significantly improved with an average effect size of 0.59, and an average improvement in skills of 7.7 months. A greater improvement in glutathione redox status was associated with a greater improvement in expressive communication, personal and domestic daily living skills, and interpersonal, play-leisure, and coping social skills. Age, gender, and history of regression did not influence treatment response. The significant behavioral improvements observed and the relationship between these improvements to glutathione redox status suggest that nutritional interventions targeting redox metabolism may benefit some children with autism.

  5. Organophosphate pesticides-induced changes in the redox status of rat tissues and protective effects of antioxidant vitamins.

    Science.gov (United States)

    Mishra, Vibhuti; Srivastava, Nalini

    2015-04-01

    Organophosphates (OPs) pesticides are among the most toxic synthetic chemicals purposefully added in the environment. The common use of OP insecticides in public health and agriculture results in an environmental pollution and a number of acute and chronic poisoning events. Present study was aimed to evaluate the potential of monocrotophos and quinalphos to effect the redox status and glutathione (GSH) homeostasis in rat tissues and find out whether antioxidant vitamins have some protection on the pesticide-induced alterations. The results showed that these pesticides alone or in combination, caused decrease in the levels of GSH and the corresponding increase in the levels of GSSG, decreasing the GSH/GSSG ratio. The results also showed that NADPH/NADP(+) and NADH/NAD(+) ratios were decreased in the liver and brain of rats on exposure with mococrotophos, quinalphos, and their mixture. These pesticides, alone or in combination, caused alterations in the activities of GSH reductase and glucose-6-phosphate dehydrogenase in the rat tissues. However, the expression of the GSH recycling enzymes did not show significant alterations as compared to control. From the results, it can be concluded that these pesticides generate oxidative stress but their effects were not synergistic when given together and prior feeding of antioxidant vitamins tend to reduce the toxicities of these pesticides. Copyright © 2013 Wiley Periodicals, Inc.

  6. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  7. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Effects of an Olive Fruit Polyphenol-Enriched Yogurt on Body Composition, Blood Redox Status, Physiological and Metabolic Parameters and Yogurt Microflora

    OpenAIRE

    Kalliopi Georgakouli; Anastasios Mpesios; Demetrios Kouretas; Konstantinos Petrotos; Chrysanthi Mitsagga; Ioannis Giavasis; Athanasios Z. Jamurtas

    2016-01-01

    In the present study we investigated the effects of an olive polyphenol-enriched yogurt on yogurt microflora, as well as hematological, physiological and metabolic parameters, blood redox status and body composition. In a randomized double-blind, crossover design, 16 (6 men, 10 women) nonsmoking volunteers with non-declared pathology consumed either 400 g of olive fruit polyphenol-enriched yogurt with 50 mg of encapsulated olive polyphenols (experimental condition—EC) or 400 g of plain yogurt...

  9. Moderate ethanol ingestion, redox status, and cardiovascular system in the rat.

    Science.gov (United States)

    Martin, Carmen Gonzalez; Agapito, Victoria Vega; Obeso, Ana; Prieto-Lloret, Jesus; Bustamante, Rosa; Castañeda, Javier; Agapito, Teresa; Gonzalez, Constancio

    2011-06-01

    Moderate intake of alcoholic beverages decreases the incidence of cardiovascular pathologies, but it is in dispute if cardioprotective effects are due to ethanol, to polyphenolic compounds present in beverages or to a combination of both. In humans, effects of high, moderate, and low doses of alcoholic beverages are widely studied, but effects of pure alcohol remain unclear. On the other hand, experiments with laboratory animals are centered on high toxicological doses of ethanol but not on low doses. In the present study, we have aimed to mimic in the rat the pattern of alcohol intake in Mediterranean population. Alcohol ingestion is spread along the day and not always related to solid food consumption. We tried to define the beneficial and harmful effects of pure ethanol ingestion without polyphenol's influence. Experimental rats were given 1% ethanol in their drinking water for 30 days, resulting in a daily ingestion of 0.27 mL of ethanol/rat/d. Ethanol ingestion did not cause deleterious effects on the general status of the animals, but it decreased cholesterol, triglycerides, and catecholamine stores' rate of utilization in peripheral sympathetic system. Moreover, ethanol lowered pulmonary arterial pressure and did not alter systemic arterial pressure. In the liver, the reduced glutathione/oxidized glutathione ratio was augmented and lipid peroxide, superoxide dismutase, and glutathione peroxidase activities were decreased. However, catalase activity was unaltered. Liver cytochrome P4502E1 distribution and protein level and activity were unchanged by ethanol ingestion. Data indicate a lack of harmful effects and underscore a set of potentially beneficial effects of this dose of ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Oxidative stress in mammalian cells impinges on the cysteines redox state of human XRCC3 protein and on its cellular localization.

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Girard

    Full Text Available In vertebrates, XRCC3 is one of the five Rad51 paralogs that plays a central role in homologous recombination (HR, a key pathway for maintaining genomic stability. While investigating the potential role of human XRCC3 (hXRCC3 in the inhibition of DNA replication induced by UVA radiation, we discovered that hXRCC3 cysteine residues are oxidized following photosensitization by UVA. Our in silico prediction of the hXRCC3 structure suggests that 6 out of 8 cysteines are potentially accessible to the solvent and therefore potentially exposed to ROS attack. By non-reducing SDS-PAGE we show that many different oxidants induce hXRCC3 oxidation that is monitored in Chinese hamster ovarian (CHO cells by increased electrophoretic mobility of the protein and in human cells by a slight decrease of its immunodetection. In both cell types, hXRCC3 oxidation was reversed in few minutes by cellular reducing systems. Depletion of intracellular glutathione prevents hXRCC3 oxidation only after UVA exposure though depending on the type of photosensitizer. In addition, we show that hXRCC3 expressed in CHO cells localizes both in the cytoplasm and in the nucleus. Mutating all hXRCC3 cysteines to serines (XR3/S protein does not affect the subcellular localization of the protein even after exposure to camptothecin (CPT, which typically induces DNA damages that require HR to be repaired. However, cells expressing mutated XR3/S protein are sensitive to CPT, thus highlighting a defect of the mutant protein in HR. In marked contrast to CPT treatment, oxidative stress induces relocalization at the chromatin fraction of both wild-type and mutated protein, even though survival is not affected. Collectively, our results demonstrate that the DNA repair protein hXRCC3 is a target of ROS induced by environmental factors and raise the possibility that the redox environment might participate in regulating the HR pathway.

  11. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1(G93A) ALS rat model.

    Science.gov (United States)

    Stamenković, Stefan; Pavićević, Aleksandra; Mojović, Miloš; Popović-Bijelić, Ana; Selaković, Vesna; Andjus, Pavle; Bačić, Goran

    2017-07-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1(G93A) ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1(G93A) rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of

  12. Long-term sulphur starvation of Arabidopsis thaliana modifies mitochondrial ultrastructure and activity and changes tissue energy and redox status.

    Science.gov (United States)

    Ostaszewska, Monika; Juszczuk, Izabela M; Kołodziejek, Izabella; Rychter, Anna M

    2014-04-15

    Sulphur, as a constituent of amino acids (cysteine and methionine), iron-sulphur clusters, proteins, membrane sulpholipids, glutathione, glucosinolates, coenzymes, and auxin precursors, is essential for plant growth and development. Absence or low sulphur concentration in the soil results in severe growth retardation. Arabidopsis thaliana plants grown hydroponically for nine weeks on Knop nutrient medium without sulphur showed morphological symptoms of sulphur deficiency. The purpose of our study was to investigate changes that mitochondria undergo and the role of the highly branched respiratory chain in survival during sulphur deficiency stress. Ultrastructure analysis of leaf mesophyll cells of sulphur-deficient Arabidopsis showed heterogeneity of mitochondria; some of them were not altered, but the majority had swollen morphology. Dilated mitochondria displayed a lower matrix density and fewer cristae compared to control mitochondria. Disintegration of the inner and outer membranes of some mitochondria from the leaves of sulphur-deficient plants was observed. On the contrary, chloroplast ultrastructure was not affected. Sulphur deficiency changed the respiratory activity of tissues and isolated mitochondria; Complex I and IV capacities and phosphorylation rates were lower, but external NAD(P)H dehydrogenase activity increased. Higher external NAD(P)H dehydrogenase activity corresponded to increased cell redox level with doubled NADH/NAD ratio in the leaf and root tissues. Sulphur deficiency modified energy status in the tissues of Arabidopsis plants. The total concentration of adenylates (expressed as ATP+ADP), measured in the light, was lower in the leaves and roots of sulphur-deficient plants than in the controls, which was mainly due to the severely decreased ATP levels. We show that the changes in mitochondrial ultrastructure are compensated by the modifications in respiratory chain activity. Although mitochondria of Arabidopsis tissues are affected by

  13. Phosphatidylcholine formation by LPCAT1 is regulated by Ca2+ and the redox status of the cell

    Directory of Open Access Journals (Sweden)

    Soupene Eric

    2012-06-01

    Full Text Available Abstract Background Unsaturated fatty acids are susceptible to oxidation and damaged chains are removed from glycerophospholipids by phospholipase A2. De-acylated lipids are then re-acylated by lysophospholipid acyltransferase enzymes such as LPCAT1 which catalyses the formation of phosphatidylcholine (PC from lysoPC and long-chain acyl-CoA. Results Activity of LPCAT1 is inhibited by Ca2+, and a Ca2+-binding motif of the EF-hand type, EFh-1, was identified in the carboxyl-terminal domain of the protein. The residues Asp-392 and Glu-403 define the loop of the hairpin structure formed by EFh-1. Substitution of D392 and E403 to alanine rendered an enzyme insensitive to Ca2+, which established that Ca2+ binding to that region negatively regulates the activity of the acyltransferase amino-terminal domain. Residue Cys-211 of the conserved motif III is not essential for catalysis and not sufficient for sensitivity to treatment by sulfhydryl-modifier agents. Among the several active cysteine-substitution mutants of LPCAT1 generated, we identified one to be resistant to treatment by sulfhydryl-alkylating and sulfhydryl-oxidizer agents. Conclusion Mutant forms of LPCAT1 that are not inhibited by Ca2+ and sulfhydryl-alkylating and –oxidizing agents will provide a better understanding of the physiological function of a mechanism that places the formation of PC, and the disposal of the bioactive species lysoPC, under the control of the redox status and Ca2+ concentration of the cell.

  14. Current Status of Immunomodulatory and Cellular Therapies in Preclinical and Clinical Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Preeti Chhabra

    2011-01-01

    Full Text Available Clinical islet transplantation is a -cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the -cells regenerative capacity of stem cells.

  15. [Effects of arginine enriched enteral nutrition on nutritional status and cellular immunity in burn patients].

    Science.gov (United States)

    Guo, Guang-Hua; Xu, Cheng; Bai, Xiang-Jun; Zhan, Jian-Hua; Zhang, Hong-Yan; Zhang, Zhi-An; Wang, Yan-Xia; Fang, Fang; Li, Guo-Hui

    2009-06-01

    To investigate the effects of arginine enriched enteral nutrition (EN) on nutritional status and cellular immunity of severely burned patients. Randomized, single blind, parallel and positive control investigation was employed in the study. Thirty severely burned patients were divided into enteral immune nutrition (EIN) group and EN group. Sixteen patients in EIN group received enteral nutrition enriched with arginine, while the other 14 patients in EN group received standard enteral nutrition. Nutritional support was continued for 14 days. Gastrointestinal reaction of patients in 2 groups was observed. Fasting venous blood was drawn from patients of both groups before receiving nutrition treatment and on the morning of 7th, 14th day of treatment. Level of serum protein, hepatic function parameters, renal function parameters, fasting-blood glucose, and subpopulations of T lymphocytes in peripheral blood were determined. (1) Incidence of gastrointestinal side effect in EIN group (25.0%) was close to that of EN group (21.4% , P > 0.05). (2) Compared with pre-treatment days, levels of prealbumin and transferrin in serum of patients in 2 groups on 7th and 14th post-treatment days were significantly increased (P renal function, and fasting-blood glucose between pre-treatment and post-treatment periods in both groups (P > 0.05). (4) The ratio of CD4(+), CD8(+) on 14th day of treatment in EIN group was close to that of pretreatment level. In EN group, cell percentage of CD4(+) significantly decreased, while that of CD8(+) significantly increased (P nutrition can effectively improve nutritional status and cellular immune function of burn patients.

  16. Redox-regulated transcription in plants: Emerging concepts

    Directory of Open Access Journals (Sweden)

    Jehad Shaikhali

    2017-09-01

    Full Text Available In plants, different stimuli, both internal and external, activate production of reactive oxygen species (ROS. Photosynthesis is considered as high rate redox-metabolic process with rapid transients including light/photon capture, electron fluxes, and redox potentials that can generate ROS; thus, regulatory systems are required to minimize ROS production. Despite their potential for causing harmful oxidations, it is now accepted that redox homeostasis mechanisms that maintain the intracellular reducing environment make it possible to use ROS as powerful signaling molecules within and between cells. Redox and ROS information from the chloroplasts is a fine-tuning mechanism both inside the chloroplast and as retrograde signal to the cytosol and nucleus to control processes such as gene expression/transcription and translation. Wide repertoires of downstream target genes expression (activation/repression is regulated by transcription factors. In many cases, transcription factors function through various mechanisms that affect their subcellular localization and or activity. Some post-translational modifications (PTMs known to regulate the functional state of transcription factors are phosphorylation, acetylation, and SUMOylation, ubiquitylation and disulfide formation. Recently, oxPTMs, targeted in redox proteomics, can provide the bases to study redox regulation of low abundant nuclear proteins. This review summarizes the recent advances on how cellular redox status can regulate transcription factor activity, the implications of this regulation for plant growth and development, and by which plants respond to environmental/abiotic stresses.

  17. Treatment of chronic hemodialysis patients with low-dose fenofibrate effectively reduces plasma lipids and affects plasma redox status

    Directory of Open Access Journals (Sweden)

    Makówka Agnieszka

    2012-07-01

    Full Text Available Abstract Dyslipidemia is common in chronic hemodialysis patients and its underlying mechanism is complex. Hemodialysis causes an imbalance between antioxidants and production of reactive oxygen species, which induces the oxidative stress and thereby may lead to accelerated atherosclerosis. Statins have been found to be little effective in end-stage kidney disease and other lipid-lowering therapies have been only scarcely studied. The study aimed to assess the effect of low-dose fenofibrate therapy on plasma lipids and redox status in long-term hemodialysis patients with mild hypertriglyceridemia. Twenty seven chronic hemodialysis patients without any lipid-lowering therapy were included in a double-blind crossover, placebo-controlled study. The patients were randomized into two groups and were given a sequence of either 100 mg of fenofibrate per each hemodialysis day for 4 weeks or placebo with a week-long wash-out period between treatment periods. Plasma lipids, high sensitive C-reactive protein (CRP, urea, creatinine, electrolytes, phosphocreatine kinase (CK, GOT, GPT and plasma thiols (total and free glutathione, homocysteine, cysteine and cysteinylglycine were measured at baseline and after each of the study periods. Plasma aminothiols were measured by reversed phase HPLC with thiol derivatization with 2-chloro-1-methylquinolinium tetrafluoroborate. Fenofibrate therapy caused a significant decrease of total serum cholesterol, LDL cholesterol and triglycerides and an increase of HDL cholesterol. The treatment was well tolerated with no side-effects but there was a small but significant increase of CK not exceeding the upper limit of normal range. There were no changes of serum CRP, potassium, urea, and creatinine and liver enzymes during the treatment. Neither total nor total free cysteinylglycine and cysteine changed during the study but both total and free glutathione increased during the therapy with fenofibrate and the same was observed

  18. Thiol Redox Transitions in Cell Signaling: a Lesson from N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Tiziana Parasassi

    2010-01-01

    Full Text Available The functional status of cells is under the control of external stimuli affecting the function of critical proteins and eventually gene expression. Signal sensing and transduction by messengers to specific effectors operate by post-translational modification of proteins, among which thiol redox switches play a fundamental role that is just beginning to be understood. The maintenance of the redox status is, indeed, crucial for cellular homeostasis and its dysregulation towards a more oxidized intracellular environment is associated with aberrant proliferation, ultimately related to diseases such as cancer, cardiovascular disease, and diabetes. Redox transitions occur in sensitive cysteine residues of regulatory proteins relevant to signaling, their evolution to metastable disulfides accounting for the functional redox switch. N-acetylcysteine (NAC is a thiol-containing compound that is able to interfere with redox transitions of thiols and, thus, in principle, able to modulate redox signaling. We here review the redox chemistry of NAC, then screen possible mechanisms to explain the effects observed in NAC-treated normal and cancer cells; such effects involve a modification of global gene expression, thus of functions and morphology, with a leitmotif of a switch from proliferation to terminal differentiation. The regulation of thiol redox transitions in cell signaling is, therefore, proposed as a new tool, holding promise not only for a deeper explanation of mechanisms, but indeed for innovative pharmacological interventions.

  19. Regulation of trace elements and redox status in striatum of adult rats by long-term aerobic exercise depends on iron uptakes.

    Science.gov (United States)

    Wu, Hua-Bo; Xiao, De-Sheng

    2017-03-06

    We investigated the effects of aerobic exercise (AE) on trace element contents and redox status in the striatum of rats with different diet iron. Weaned female rats were randomly fed with iron-adequate diet (IAD), iron-deficient diet (IDD), and iron-overloaded diet (IOD). After feeding their respective diet for 1 month, the rats fed with same diet were divided into swimming and maintaining sedentary (S) group. After 3 months, the non-heme iron (NHI), Mn, Cu, and Zn in the striatum were measured. Meanwhile, malonaldehyde acid (MDA), total superoxide dismutase activity, hydroxyl radical scavenging activity, and total antioxidant capacity were also analyzed. As compared with respective S rats, Mn, Cu, and Zn contents were significantly decreased in IDDE, but no significantly changes could be seen in IADE or IODE. A negative correlation of NHI with Cu contents in IDDE and positive correlations of NHI with Cu, or Zn contents in IADE, or with Mn or Cu contents in IODE were observed. In addition, striatum MDA was significantly decreased and anti-oxidative variables were increased in IODE compared to IODS. Our results suggest that the modification of trace elements and redox status in the striatum of rats caused by AE depends on dietary iron contents and that AE may also regulate the metabolic relationship of iron storage with other trace elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of cisplatin on lipid peroxidation and the glutathione redox status in the liver of male rats: The protective role of selenium

    Directory of Open Access Journals (Sweden)

    Trbojević Ivana S.

    2010-01-01

    Full Text Available The role of oxidative stress in cisplatin (CP toxicity and its prevention by pretreatment with selenium (Se was investigated. Male Wistar albino rats were injected with a single dose of cisplatin (7.5 mg CP/kg b.m., i.p. and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p. alone or in combination. The results suggest that CP intoxication induces oxidative stress and alters the glutathione redox status: reduced glutathione (GSH, oxidized glutathione (GSSG and the GSH/GSSG ratio (GSH RI, resulting in increased lipid peroxidation (LPO in rat liver. The pretreatment with selenium prior to CP treatment showed a protective effect against the toxic influence of CP on peroxidation of the membrane lipids and an altering of the glutathione redox status in the liver of rats. From our results we conclude that selenium functions as a potent antioxidant and suggest that it can control CP-induced hepatotoxicity in rats.

  1. Oligo-carrageenan kappa-induced reducing redox status and increase in TRR/TRX activities promote activation and reprogramming of terpenoid metabolism in Eucalyptus trees.

    Science.gov (United States)

    González, Alberto; Gutiérrez-Cutiño, Marlen; Moenne, Alejandra

    2014-06-05

    In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR)/thioredoxin(TRX) system induced by oligo-carrageenan (OC) kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(P)H, ascorbate (ASC) and (GSH) synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO) and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%), α-pinene (7.4%), aromadendrene (3.6%), silvestrene (2.8%), sabinene (2%) and α-terpineol (0.9%). Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65%) and sabinene (0.8%) and an increase in aromadendrene (5%), silvestrene (7.8%) and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  2. Oligo-Carrageenan Kappa-Induced Reducing Redox Status and Increase in TRR/TRX Activities Promote Activation and Reprogramming of Terpenoid Metabolism in Eucalyptus Trees

    Directory of Open Access Journals (Sweden)

    Alberto González

    2014-06-01

    Full Text Available In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR/thioredoxin(TRX system induced by oligo-carrageenan (OC kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(PH, ascorbate (ASC and (GSH synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%, α-pinene (7.4%, aromadendrene (3.6%, silvestrene (2.8%, sabinene (2% and α-terpineol (0.9%. Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65% and sabinene (0.8% and an increase in aromadendrene (5%, silvestrene (7.8% and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  3. Reactive oxygen species and redox compartmentalization

    Directory of Open Access Journals (Sweden)

    Nina eKaludercic

    2014-08-01

    Full Text Available Reactive oxygen species (ROS formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatiotemporal manner. This makes ROS signaling similar to that of Ca2+ or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes whereas others are more reducing (mitochondria, nuclei. Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatiotemporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.

  4. Redox Proteomics

    OpenAIRE

    Butterfield, D. Allan; Dalle-Donne, Isabella

    2012-01-01

    Proteins are major targets of reactive oxygen and nitrogen species (ROS/RNS) and numerous post-translational, reversible or irreversible modifications have been characterized, which may lead to a change in the structure and/or function of the oxidized protein. Redox proteomics is an increasingly emerging branch of proteomics aimed at identifying and quantifying redox-based changes within the proteome both in redox signaling and under oxidative stress conditions. Correlation between protein ox...

  5. Photosynthetic sensitivity of phytoplankton to commonly used pharmaceuticals and its dependence on cellular phosphorus status.

    Science.gov (United States)

    Grzesiuk, Malgorzata; Wacker, Alexander; Spijkerman, Elly

    2016-05-01

    Recently pharmaceuticals have become significant environmental pollutants in aquatic ecosystems, that could affect primary producers such as microalgae. Here we analyzed the effect of pharmaceuticals on the photosynthesis of microalgae commonly found in freshwater-two species of Chlorophyceae and a member of the Eustigmatophyceae, via PAM fluorometry. As pharmaceuticals, three medicines often consumed in households were chosen: (i) fluoxetine, an antidepressant, (ii) propranolol, a β-blocker and (iii) ibuprofen, an anti-inflammatory and analgesic medicine. The EC50 for the quantum yield of photosystem II in phytoplankton acclimated to inorganic phosphorus (Pi)-replete and Pi-limited conditions was estimated. Acute toxicity experiments over a 5 h exposure revealed that Nannochloropsis limnetica was the least sensitive to pharmaceuticals in its photosynthetic yield out of all species tested. Although the estimation of sub-lethal effects can be vital in contrast to that of LC50s, the EC50 values in all species and for all medicines were orders of magnitude higher than concentrations found in polluted surface water. Chlamydomonas reinhardtii was the most sensitive to fluoxetine (EC50 of 1.6 mg L(-1)), and propranolol (EC50 of 3 mg L(-1)). Acutodesmus obliquus was most sensitive to ibuprofen (EC50 of 288 mg L(-1)). Additionally, the sensitivity to the pharmaceuticals changed under a Pi-limitation; the green algae became less sensitive to fluoxetine and propranolol. In contrast, Pi-limited algal species were more sensitive to ibuprofen. Our results suggest that the sensitivity of algae to pharmaceuticals is (i) highly compound- and species-specific and (ii) dependent on the cellular P status.

  6. Effects of ochratoxin A on some production traits, lipid peroxide and glutathione redox status of weaned piglets.

    Science.gov (United States)

    Balogh, K; Hausenblasz, J; Weber, Mária; Erdélyi, Márta; Fodor, Judit; Mézes, M

    2007-12-01

    The effect of feeding ochratoxin A (OTA) contaminated diet (379.6 and 338.1 microg/kg in starter and grower diets) on production traits, lipid peroxidation and some parameters of the glutathione redox system were investigated in weaned piglets over a seven-week period. Feed intake and feed conversion ratio (FCR) did not differ significantly, but in the first phase (0-28 days) the daily weight gain was significantly lower in the piglets fed the OTA-contaminated diet. Lipid peroxidation, as measured by the amount of malondialdehyde, glutathione content and glutathione peroxidase activity, did not change significantly in the blood plasma and red blood cell haemolysate in the OTA-loaded group, while malondialdehyde content increased significantly in the liver and markedly but not significantly in the kidney of piglets fed OTA-contaminated feed. Glutathione content did not differ significantly in the studied organs of the two groups while glutathione peroxidase activity of the OTA-loaded animals was significantly lower both in the liver and in the kidney. The results suggest that the use of feed-stuffs contaminated with low levels of OTA for seven weeks did not cause marked differences in the production traits or in lipid peroxidation and amount or activity of the glutathione redox system in the blood plasma, red blood cells and kidney, while significant changes occurred in the liver homogenate.

  7. Imaging Neuroinflammation after Stroke: Current Status of Cellular and Molecular MRI Strategies

    NARCIS (Netherlands)

    Deddens, L.H.; Van Tilborg, G.A.F.; Mulder, W.J.M.; de Vries, H.E.; Dijkhuizen, R.M.

    2012-01-01

    Cellular and molecular magnetic resonance imaging (MRI) strategies for studying the spatiotemporal profile of neuroinflammatory processes after stroke are increasingly being explored since the first reports appeared about a decade ago. These strategies most often employ (super)paramagnetic contrast

  8. β-Sitosterol enhances cellular glutathione redox cycling by reactive oxygen species generated from mitochondrial respiration: protection against oxidant injury in H9c2 cells and rat hearts.

    Science.gov (United States)

    Wong, Hoi Shan; Chen, Na; Leong, Pou Kuan; Ko, Kam Ming

    2014-07-01

    Herba Cistanches (Cistanche deserticola Y. C. Ma) is a 'Yang-invigorating' tonic herb in Chinese medicine. Preliminary chemical analysis indicated that β-sitosterol (BS) is one of the chemical constituents in an active fraction of Herba Cistanches. To investigate whether BS is an active ingredient of Herba Cistanches, the effects of BS on H9c2 cells and rat hearts were examined. The results indicated that BS stimulated the mitochondrial ATP generation capacity in H9c2 cells, which was associated with the increased production of mitochondrial reactive oxygen species. BS also stimulated mitochondrial state 3 and state 4 respiration, with the resultant decrease in coupling efficiency. BS produced an up-regulation of cellular glutathione redox cycling and protected against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. However, the protective effect of BS against myocardial ischemia/reperfusion injury was seen in female but not male rats ex vivo. The cardioprotection afforded by BS was likely mediated by an up-regulation of mitochondrial glutathione redox cycling in female rat hearts. In conclusion, the ensemble of results suggests that BS is an active ingredient of Herba Cistanches. The gender-dependent effect of BS on myocardial protection will further be investigated. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Regulatory redox state in tree seeds

    Directory of Open Access Journals (Sweden)

    Ewelina Ratajczak

    2017-12-01

    Full Text Available Peroxiredoxins (Prx are important regulators of the redox status of tree seeds during maturation and long-term storage. Thioredoxins (Trx are redox transmitters and thereby regulate Prx activity. Current research is focused on the association of Trx with Prx in tree seeds differing in the tolerance to desiccation. The results will allow for better understanding the regulation of the redox status in orthodox, recalcitrant, and intermediate seeds. The findings will also elucidate the role of the redox status during the loss of viability of sensitive seeds during drying and long-term storage.

  10. Redox proteomics.

    Science.gov (United States)

    Butterfield, D Allan; Dalle-Donne, Isabella

    2012-12-01

    Proteins are major targets of reactive oxygen and nitrogen species (ROS/RNS) and numerous post-translational, reversible or irreversible modifications have been characterized, which may lead to a change in the structure and/or function of the oxidized protein. Redox proteomics is an increasingly emerging branch of proteomics aimed at identifying and quantifying redox-based changes within the proteome both in redox signaling and under oxidative stress conditions. Correlation between protein oxidation and human disease is widely accepted, although elucidating cause and effect remains a challenge. Increasing biomedical data have provided compelling evidences for the involvement of perturbations in redox homeostasis in a large number of pathophysiological conditions and aging. Research toward a better understanding of the molecular mechanisms of a disease together with identification of specific targets of oxidative damage is urgently required. This is the power and potential of redox proteomics. In the last few years, combined proteomics, mass spectrometry (MS), and affinity chemistry-based methodologies have contributed in a significant way to provide a better understanding of protein oxidative modifications occurring in various biological specimens under different physiological and pathological conditions. Hence, this Forum on Redox Proteomics is timely. Original and review articles are presented on various subjects ranging from redox proteomics studies of oxidatively modified brain proteins in Alzheimer disease and animal models of Alzheimer and Parkinson disease, to potential new biomarker discovery paradigm for human disease, to chronic kidney disease, to protein nitration in aging and age-related neurodegenerative disorders, electrophile-responsive proteomes of special relevance to diseases involving mitochondrial alterations, to cardiovascular physiology and pathology.

  11. Integrated Haematological Profiles of Redox Status, Lipid, and Inflammatory Protein Biomarkers in Benign Obesity and Unhealthy Obesity with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Carla Lubrano

    2015-01-01

    Full Text Available The pathogenesis of obesity (OB and metabolic syndrome (MetS implies free radical-, oxidized lipid- (LOOH-, and inflammatory cytokine-mediated altered pathways in target organs. Key elements of the transition from benign OB to unhealthy OB+MetS remain unclear. Here, we measured a panel of redox, antioxidant, and inflammation markers in the groups of OB patients (67 with, 45 without MetS and 90 controls. Both OB groups displayed elevated levels of adipokines and heavy oxidative stress (OS evidenced by reduced levels of glutathione, downregulated glutathione-S-transferase, increased 4-hydroxynonenal-protein adducts, reactive oxygen species, and membrane-bound monounsaturated fatty acids (MUFA. Exclusively in OB+MetS, higher-than-normal glutathione peroxidase activity, tumor necrosis factor-α, and other proinflammatory cytokines/chemokines/growth factors were observed; a combination of high adipokine plasminogen activator inhibitor-1 and MUFA was consistent with increased cardiovascular risk. The uncomplicated OB group showed features of adaptation to OS such as decreased levels of vitamin E, activated superoxide dismutase, and inhibited catalase, suggesting H2O2 hyperproduction. Proinflammatory cytokine pattern was normal, except few markers like RANTES, a suitable candidate for therapeutic approaches to prevent a setting of MetS by inhibition of LOOH-primed leukocyte chemotaxis/recruitment to target tissues.

  12. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status.

    Science.gov (United States)

    Cappelli, Ana Paula G; Zoppi, Claudio C; Silveira, Leonardo R; Batista, Thiago M; Paula, Flávia M; da Silva, Priscilla M R; Rafacho, Alex; Barbosa-Sampaio, Helena C; Boschero, Antonio C; Carneiro, Everardo M

    2018-01-01

    In the present study, we investigated the relationship between early life protein malnutrition-induced redox imbalance, and reduced glucose-stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal-protein-diet (17%-protein, NP) or to a low-protein-diet (6%-protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H 2 O 2 ), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn-superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre-incubated with H 2 O 2 and/or N-acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H 2 O 2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre-incubated with H 2 O 2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N-acetylcysteine. © 2017 Wiley Periodicals, Inc.

  13. Plasma paraoxonase 1 arylesterase activity in D-galactose-induced aged rat model: correlation with LDL oxidation and redox status.

    Science.gov (United States)

    Kumar, Dileep; Rizvi, Syed Ibrahim

    2014-06-01

    There is much evidence linking the involvement of oxidative stress in the pathogenesis of aging. Paraoxonase 1 (PON1) is an HDL-associated antioxidant enzyme that inhibits the oxidative modification of low-density lipoproteins (LDL). We have investigated the changes in plasma PON1 activity, LDL oxidation, radical scavenging activity and lipid peroxidation in D-galactose-induced aging rat model and also compared the results with 24-month naturally aged rats. Arylesterase activity of PON1, susceptibility of LDL for oxidation, plasma radical scavenging activity and plasma thiobarbituric acid reactive substances (TBARS) were measured in normal control rats (4-months-old control rats subjected to D-galactose-induced experimental aging, and 24-month-old naturally aged rats). There was a significant decrease in plasma PON1 arylesterase activity in both subcutaneous D-galactose-treated groups and 24-month-old aged rats (P oxidative stress marker, was seen to increase in the experimental groups (P aged rats, there was a significant rise in plasma LDL oxidation (P aging mimics the naturally aged rat with reference to PON1 arylesterase activity and susceptibility to LDL oxidation. The results emphasize the importance of PON1 with respect to aging and its association with redox balance of the body.

  14. RED BLOOD CELL AND WHOLE BLOOD GLUTATHIONE REDOX STATUS IN ENDURANCE-TRAINED MEN FOLLOWING A SKI MARATHON

    Directory of Open Access Journals (Sweden)

    Eve Unt

    2008-09-01

    Full Text Available The aim of the present study was to evaluate the changes in glutathione redox ratio (GSSG·GSH-1 in red blood cells (RBCs and whole blood in well-trained men following a ski marathon. 16 male subjects (27.0 ± 4.7 yrs, 1.81 ± 0.06 m, 77.6 ± 9.6 kg, VO2max 66.2 ± 5.7 ml·kg-1·min-1 were examined before the competition (pre- COMP, after the competition (post-COMP and during an 18-hour recovery period (RECOV. There was a slight decrease in reduced glutathione (GSH in blood and in RBCs in post-COMP. During RECOV, the GSH level in blood was reduced, the GSH level in RBCs was significantly elevated (a statistically significant difference as compared to the pre-COMP level. The post-COMP GSSG·GSH-1 in full blood did not increase significantly, but its increase was statistically significant during the 18-hour recovery period. During the post-COMP and RECOV, the GSSG·GSH-1 in RBCs slightly decreased in comparison with the pre-COMP. Vitamin C concentration in serum increased in post-COMP (49% vs. pre- COMP and decreased to the baseline level during RECOV. In conclusion, our data show that acute exercise slightly increases the GSSG·GSH-1 in whole blood, while GSSG·GSH-1 in RBCs significantly decreases. Thus, exercise-related changes in the non-enzymatic components of the glutathione system (GSSG and GSH in whole blood and RBCs are not identical

  15. Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status.

    Directory of Open Access Journals (Sweden)

    Guan-Da Syu

    Full Text Available Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive oxygen species (ROS and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE usually impedes immunity, chronic moderate exercise (CME improves it. This study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The exercise group (n = 8 underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface along with redox-related parameters and mitochondria-related parameters. Our results showed that i the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation, and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii CME upregulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii most effects of CME were unchanged after detraining; and iv CME blocked ASE effects and this capability remained intact even after detraining. Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H(2O(2, but not by suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods of time even after detraining.

  16. The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status.

    Science.gov (United States)

    Kim, M; Williamson, C T; Prudhomme, J; Bebb, D G; Riabowol, K; Lee, P W K; Lees-Miller, S P; Mori, Y; Rahman, M M; McFadden, G; Johnston, R N

    2010-07-08

    Replication-competent oncolytic viruses hold great potential for the clinical treatment of many cancers. Importantly, many oncolytic virus candidates, such as reovirus and myxoma virus, preferentially infect cancer cells bearing abnormal cellular signaling pathways. Reovirus and myxoma virus are highly responsive to activated Ras and Akt signaling pathways, respectively, for their specificity for viral oncolysis. However, considering the complexity of cancer cell populations, it is possible that other tumor-specific signaling pathways may also contribute to viral discrimination between normal versus cancer cells. Because carcinogenesis is a multistep process involving the accumulation of both oncogene activations and the inactivation of tumor suppressor genes, we speculated that not only oncogenes but also tumor suppressor genes may have an important role in determining the tropism of these viruses for cancer cells. It has been previously shown that many cellular tumor suppressor genes, such as p53, ATM and Rb, are important for maintaining genomic stability; dysfunction of these tumor suppressors may disrupt intact cellular antiviral activity due to the accumulation of genomic instability or due to interference with apoptotic signaling. Therefore, we speculated that cells with dysfunctional tumor suppressors may display enhanced susceptibility to challenge with these oncolytic viruses, as previously seen with adenovirus. We report here that both reovirus and myxoma virus preferentially infect cancer cells bearing dysfunctional or deleted p53, ATM and Rb tumor suppressor genes compared to cells retaining normal counterparts of these genes. Thus, oncolysis by these viruses may be influenced by both oncogenic activation and tumor suppressor status.

  17. The impact of intermittent exercise in a hypoxic environment on redox status and cardiac troponin release in the serum of well-trained marathon runners.

    Science.gov (United States)

    Li, Feifei; Nie, Jinlei; Lu, Yifan; Tong, Tom Kwok Keung; Yi, Longyan; Yan, Huiping; Fu, Frank Hoo Kin; Ma, Shengxia

    2016-10-01

    To investigate the effects of hypoxic training on redox status and cardiac troponin (cTn) release after intermittent exercise. Nine well-trained male marathon runners (age, 21.7 ± 2.3 year; body mass, 64.7 ± 4.8 kg; height, 177.9 ± 3.8 cm; and VO2max, 64.3 ± 6.7 ml kg(-1) min(-1)) completed intermittent exercise under normoxic [trial N; fraction of inspiration oxygen (FIO2), 21.0 %] and hypoxic (trial H; FIO2, 14.4 %) conditions in random order. Each bout of intermittent exercise included hard run (16.2 ± 0.8 km h(-1)) at 90 % VO2max for 2 min followed by easy run (9.0 ± 0.4 km h(-1)) at 50 % VO2max for 2 min and 23 bouts in 92 min totally. Malondialdehyde, reduced glutathione (GSH), superoxide dismutase, an estimate of total antioxidant capacity (T-AOC), high-sensitivity cardiac troponin T (hs-cTnT), and cardiac troponin I (cTnI) were measured before, immediately after (0 h), and 2, 4, and 24 h after the completion of trials N and H. GSH was increased immediately after trial N. T-AOC was lower 4 h after trial H than trial N. Hs-cTnT was elevated from 0 to 4 h and returned to baseline 24 h after both trials. CTnI was increased after trial H; peaked at 2-4 h and returned to below the detection by 24 h. The overall redox status was balanced under normoxic conditions, and exercise-induced cTn release did not deviate. However, the protective effects of antioxidant were weaker in the hypoxic state than normoxic, and the stress on the myocardium induced by intermittent exercise was transiently aggravated.

  18. Might carnitine status in animals indicate environmental/toxicological harm at the cellular level?

    Energy Technology Data Exchange (ETDEWEB)

    Garst, J.E.

    1995-12-01

    It is well known that R-(L)-carnitine (Cn) is essential for the energy-producing, mitochondrial beta-oxidation of long chain fatty acids. Cn can ameliorate the diverse effects of drugs, a chemicals and pollutants. Moreover, the toxicities of carbon monoxide, several heavy metals, and even the antibiotic cephaloridine seem mediated, in part, by actions affecting the Cn system. Data which could suggest that the Cn system is an integrator/regulator of the cellular response by the organism to it`s environment is described.

  19. Lipoic acid and redox status in barley plants subjected to salinity and elevated CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, U.; Robredo, A.; Mena-Petite, A.; Munoz-Rueda, A. (Univ. del Pais Vasco/EHU, Dept. de Biologia Vegetal y Ecologia, Bilbao (Spain)); Lacuesta, M. (Univ. del Pais Vasco/EHU, Dept. de Biologia Vegetal y Ecologia, Vitoria-Gasteiz (Spain)); Sgherri, C.; Navari-Izzo, F. (Univ. di Pisa, Dipartimento di Chimica e Biotecnologie Agrarie, Pisa (Italy))

    2010-02-15

    Future environmental conditions will include elevated concentrations of salt in the soil and an elevated concentration of CO{sub 2}in the atmosphere. Because these environmental changes will likely affect reactive oxygen species (ROS) formation and cellular antioxidant metabolism in opposite ways, we analyzed changes in cellular H{sub 2}O{sub 2} and non-enzymatic antioxidant metabolite [lipoic acid (LA), ascorbate (ASA), glutathione (GSH)] content induced by salt stress (0, 80, 160 or 240 mM NaCl) under ambient (350 mumol mol-1) or elevated (700 mumol mol-1) CO{sub 2}concentrations in two barley cultivars (Hordeum vulgare L.) that differ in sensitivity to salinity (cv. Alpha is more sensitive than cv. Iranis). Under non-salinized conditions, elevated CO{sub 2}increased LA content, while ASA and GSH content decreased. Under salinized conditions and ambient CO{sub 2}, ASA increased, while GSH and LA decreased. At 240 mM NaCl, H{sub 2}O{sub 2} increased in Alpha and decreased in Iranis. When salt stress was imposed at elevated CO{sub 2}, less oxidative stress and lower increases in ASA were detected, while LA was constitutively higher. The decrease in oxidative stress could have been because of less ROS formation or to a higher constitutive LA level, which might have improved regulation of ASA and GSH reductions. Iranis had a greater capacity to synthesize ASA de novo and had higher constitutive LA content than did Alpha. Therefore, we conclude that elevated CO{sub 2}protects barley cultivars against oxidative damage. However, the magnitude of the positive effect is cultivar specific. (author)

  20. Genetically encoded fluorescent redox sensors.

    Science.gov (United States)

    Lukyanov, Konstantin A; Belousov, Vsevolod V

    2014-02-01

    Life is a constant flow of electrons via redox couples. Redox reactions determine many if not all major cellular functions. Until recently, redox processes remained hidden from direct observation in living systems due to the lack of adequate methodology. Over the last years, imaging tools including small molecule probes and genetically encoded sensors appeared, which provided, for the first time, an opportunity to visualize and, in some cases, quantify redox reactions in live cells. Genetically encoded fluorescent redox probes, such as HyPer, rxYFP and roGFPs, have been used in several models, ranging from cultured cells to transgenic animals, and now enough information has been collected to highlight advantages and pitfalls of these probes. In this review, we describe the main types of genetically encoded redox probes, their essential properties, advantages and disadvantages. We also provide an overview of the most important, in our opinion, results obtained using these probes. Finally, we discuss redox-dependent photoconversions of GFP and other prospective directions in redox probe development. Fluorescent protein-based redox probes have important advantages such as high specificity, possibility of transgenesis and fine subcellular targeting. For proper selection of a redox sensor for a particular model, it is important to understand that HyPer and roGFP2-Orp1 are the probes for H2O2, whereas roGFP1/2, rxYFP and roGFP2-Grx1 are the probes for GSH/GSSG redox state. Possible pH changes should be carefully controlled in experiments with HyPer and rxYFP. Genetically encoded redox probes are the only instruments allowing real-time monitoring of reactive oxygen species and thiol redox state in living cells and tissues. We believe that in the near future the palette of FP-based redox probes will be expanded to red and far-red parts of the spectrum and to other important reactive species such as NO, O2 and superoxide. This article is part of a Special Issue entitled

  1. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a programmed cell lysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  2. Current status and perspectives in atomic force microscopy-based identification of cellular transformation.

    Science.gov (United States)

    Dong, Chenbo; Hu, Xiao; Dinu, Cerasela Zoica

    2016-01-01

    Understanding the complex interplay between cells and their biomechanics and how the interplay is influenced by the extracellular microenvironment, as well as how the transforming potential of a tissue from a benign to a cancerous one is related to the dynamics of both the cell and its surroundings, holds promise for the development of targeted translational therapies. This review provides a comprehensive overview of atomic force microscopy-based technology and its applications for identification of cellular progression to a cancerous phenotype. The review also offers insights into the advancements that are required for the next user-controlled tool to allow for the identification of early cell transformation and thus potentially lead to improved therapeutic outcomes.

  3. Polycomb repressive complex's evolutionary conserved function: the role of EZH2 status and cellular background.

    Science.gov (United States)

    Gall Trošelj, Koraljka; Novak Kujundzic, Renata; Ugarkovic, Djurdjica

    2016-01-01

    When assembled in multiprotein polycomb repressive complexes (PRCs), highly evolutionary conserved polycomb group (PcG) proteins epigenetically control gene activity. Although the composition of PRCs may vary considerably, it is well established that the embryonic ectoderm development (EED) 1, suppressor of zeste (SUZ) 12, and methyltransferase enhancer of zeste (EZH2)-containing complex, PRC2, which is abundant in highly proliferative cells (including cancer cells), establishes a repressive methylation mark on histone 3 (H3K27me3). From the perspective of molecular cancer pathogenesis, this effect, when directed towards a promoter of tumor suppressor genes, represents pro-tumorigenic effect. This mode of action was shown in several cancer models. However, EZH2 function extends beyond this scenario. The highly specific cellular background, related to the origin of cell and numerous external stimuli during a given time-window, may be the trigger for EZH2 interaction with other proteins, not necessarily histones. This is particularly relevant for cancer. This review provides a critical overview of the evolutional importance of PRC and discusses several important aspects of EZH2 functioning within PRC. The review also deals with mutational studies on EZH2. Due to the existence of several protein (and messenger RNA (mRNA)) isoforms, these mutations were stratified, using the protein sequence which is considered canonical. This approach showed that there is an urgent need for the uniformed positioning of currently known EZH2 mutations (somatic-in tumors, as well as germline mutations in the Weaver's syndrome). Finally, we discuss EZH2 function with respect to amount of trimethylated H3K27, in a specific cellular milieu, through presenting the most recent data related to EZH2-H3K27m3 relationship in cancer. All these points are significant in considering EZH2 as a therapeutic target.

  4. The Effects of an Olive Fruit Polyphenol-Enriched Yogurt on Body Composition, Blood Redox Status, Physiological and Metabolic Parameters and Yogurt Microflora.

    Science.gov (United States)

    Georgakouli, Kalliopi; Mpesios, Anastasios; Kouretas, Demetrios; Petrotos, Konstantinos; Mitsagga, Chrysanthi; Giavasis, Ioannis; Jamurtas, Athanasios Z

    2016-06-03

    In the present study we investigated the effects of an olive polyphenol-enriched yogurt on yogurt microflora, as well as hematological, physiological and metabolic parameters, blood redox status and body composition. In a randomized double-blind, crossover design, 16 (6 men, 10 women) nonsmoking volunteers with non-declared pathology consumed either 400 g of olive fruit polyphenol-enriched yogurt with 50 mg of encapsulated olive polyphenols (experimental condition-EC) or 400 g of plain yogurt (control condition-CC) every day for two weeks. Physiological measurements and blood collection were performed before and after two weeks of each condition. The results showed that body weight, body mass index, hip circumference and systolic blood pressure decreased significantly (p yogurt regardless of condition. A tendency towards significance for decreased levels of low density lipoprotein (LDL) cholesterol (p = 0.06) and thiobarbituric acid reactive substances (p yogurt consumption was observed. The population of lactic acid bacteria (LAB) and production of lactate in yogurt were significantly enhanced after addition of olive polyphenols, contrary to the population of yeasts and molds. The results indicate that consumption of the polyphenol-enriched yogurt may help individuals with non-declared pathology reduce body weight, blood pressure, LDL cholesterol levels and lipid peroxidation, and promote growth of beneficial LAB.

  5. The Effects of an Olive Fruit Polyphenol-Enriched Yogurt on Body Composition, Blood Redox Status, Physiological and Metabolic Parameters and Yogurt Microflora

    Directory of Open Access Journals (Sweden)

    Kalliopi Georgakouli

    2016-06-01

    Full Text Available In the present study we investigated the effects of an olive polyphenol-enriched yogurt on yogurt microflora, as well as hematological, physiological and metabolic parameters, blood redox status and body composition. In a randomized double-blind, crossover design, 16 (6 men, 10 women nonsmoking volunteers with non-declared pathology consumed either 400 g of olive fruit polyphenol-enriched yogurt with 50 mg of encapsulated olive polyphenols (experimental condition—EC or 400 g of plain yogurt (control condition—CC every day for two weeks. Physiological measurements and blood collection were performed before and after two weeks of each condition. The results showed that body weight, body mass index, hip circumference and systolic blood pressure decreased significantly (p < 0.05 following the two-week consumption of yogurt regardless of condition. A tendency towards significance for decreased levels of low density lipoprotein (LDL cholesterol (p = 0.06 and thiobarbituric acid reactive substances (p < 0.05 following two weeks of polyphenol-enriched yogurt consumption was observed. The population of lactic acid bacteria (LAB and production of lactate in yogurt were significantly enhanced after addition of olive polyphenols, contrary to the population of yeasts and molds. The results indicate that consumption of the polyphenol-enriched yogurt may help individuals with non-declared pathology reduce body weight, blood pressure, LDL cholesterol levels and lipid peroxidation, and promote growth of beneficial LAB.

  6. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster.

    Science.gov (United States)

    Abolaji, Amos O; Kamdem, Jean P; Lugokenski, Thiago H; Farombi, Ebenezer O; Souza, Diogo O; da Silva Loreto, Élgion L; Rocha, João B T

    2015-08-01

    The compounds 4-vinylcyclohexene 1,2-monoepoxide (VCM) and 4-Vinylcyclohexene diepoxide (VCD) are the two downstream metabolites of 4-vinylcyclohexene (VCH), an ovotoxic agent in mammals. In addition, VCM and VCD may be found as by-products of VCH oxidation in the environment. Recently, we reported the involvement of oxidative stress in the toxicity of VCH in Drosophila melanogaster. However, it was not possible to determine the individual contributions of VCM and VCD in VCH toxicity. Hence, we investigated the toxicity of VCM and VCD (10-1000 µM) in flies after 5 days of exposure via the diet. Our results indicated impairments in climbing behaviour and disruptions in antioxidant balance and redox status evidenced by an increase in DCFH oxidation, decreases in total thiol content and glutathione-S-transferase (GST) activity in the flies exposed to VCM and VCD (pmelanogaster has provided further lessons on the toxicity of VCM and VCD which suggest that the reported toxicity of VCH may be mediated by its transformation to VCM and VCD. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The antioxidant potential of alprazolam on the redox status of peripheral blood leukocytes in restraint-stressed mice.

    Science.gov (United States)

    Núñez, María J; Novío, Silvia; Amigo, Gonzalo; Freire-Garabal, Manuel

    2011-10-24

    Stress can cause adverse reactions in the body that induce a wide range of biochemical and behavioral changes. Oxidative damage is an established outcome of stress that has been implicated in the pathogenesis of mood and anxiety disorders. Anxiolytic drugs are widely prescribed to treat these conditions; however, no animal study has investigated the effect of benzodiazepines on the levels of intracellular reactive oxygen species (ROS) in the peripheral blood leukocytes of stressed mice. Mice were immobilized for a period of 6h. Alprazolam (0.1-0.8 mg/kg of body weight) was administered 30 min before subjecting the animals to acute stress. The level of intracellular ROS in lymphocytes, granulocytes, and monocytes in the peripheral blood of stressed mice was investigated by using a 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe. Our results show that restraint stress significantly increases the generation of ROS in peripheral defense cells. Treatment with alprazolam partially reverses the adverse effects of stress. Our findings suggest that the therapeutic efficacy of alprazolam may be mediated, at least partially, by the reversal of oxidative damage as demonstrated by the protective enhancement of antioxidant status following a stress-induced decline. Because alprazolam is used for the treatment of anxiety in patients with cancer, neurodegenerative disease, inflammatory bowel diseases, and other diseases, these results may have important clinical implications. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Beneficial effects of quercetin-iron complexes on serum and tissue lipids and redox status in obese rats.

    Science.gov (United States)

    Imessaoudene, Asmahan; Merzouk, Hafida; Berroukeche, Farid; Mokhtari, Nassima; Bensenane, Bachir; Cherrak, Sabri; Merzouk, Sid Ahmed; Elhabiri, Mourad

    2016-03-01

    Obesity is characterized by iron deficiency, carbohydrate and fat alterations as well as oxidative stress. Iron status monitoring is recommended because of the conventional oral iron preparations that frequently exacerbate the already present oxidative stress. Iron complexation by natural antioxidants can be exploited. We herein investigated the metabolic effects of quercetin (25 mg/kg/day), iron (2.5 mg Fe/kg/day) or quercetin-iron complexes (molar ratio 5:1; 25 mg/2.5 mg/kg/day) in animal models of obesity. Our results emphasized that obese rats displayed metabolic alterations that were worsened by iron supplementation. In contrast, quercetin used alone or as iron complex clearly prevented adipose fat accumulation and alleviated the hyperglycemia, hyperlipidemia, liver steatosis and oxidative stress. In addition, it induced a modulation of lipase activities in obese rats. Interestingly, quercetin-iron complexes showed enhanced beneficial effects such as a corrected iron deficiency in obese rats when compared to quercetin alone. In conclusion, antianemic, hypoglycemic, hypolipidemic and antioxidative effects of the quercetin-iron complexes shed a light on their beneficial use against obesity-related metabolic alterations. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Lymphatic filariasis-specific immune responses in relation to lymphoedema grade and infection status. I. Cellular responses

    DEFF Research Database (Denmark)

    Nielsen, N. O.; Bloch, P.; Simonsen, P. E.

    2002-01-01

    had low levels of IL-10 independently of infection status. The findings thus give no immediate indication that the measured immunological parameters are related to progression of leg pathology. However, alternative interpretations are presented which suggest a possible role of immunological reactions......The filariasis-specific cellular responsiveness was assessed in 109 adult individuals from a Wuchereria bancrofti-endemic area in north-east Tanzania. There were 9 study groups. Five groups of individuals were negative for microfilariae (mf) and specific circulating filarial antigen (CFA) and had...... leg lymphoedema of varying severity ranging from early to more advanced grades (pathology groups 1-5). Another group comprised individuals with mixed grades of lymphoedema and positive for mf and/or CFA (mixed pathology group). Three asymptomatic groups consisted of individuals without leg pathology...

  10. Effect of Omega-3 and Vitamins E + C Supplements on the Concentration of Serum B-Vitamins and Plasma Redox Aminothiol Antioxidant Status in Elderly Men after Strength Training for Three Months.

    Science.gov (United States)

    Stea, Tonje Holte; Stølevik, Solvor B; Berntsen, Sveinung; Ezzathkah Bastani, Nasser; Paulsen, Gøran; Lohne Seiler, Hilde; Hetlelid, Ken J; Blomhoff, Rune; Mansoor, Mohammad Azam

    2016-01-01

    Data on redox plasma aminothiol status in individuals on strength training are very limited. Therefore, we studied the effect of omega-3 and vitamins E + C supplementation on the concentration of B-vitamins and redox aminothiol status in elderly men after strength training for 3 months. Healthy men, age 60 ± 6 (mean ± SD) were randomly divided into 3 groups: group I received placebo (n = 17), group II consumed omega-3 (700 mg, n = 17), and group III consumed vitamins E + C (235 mg +1 g, n = 16) daily for 3 months. All participants completed a strength training program for the same period. The concentration of serum vitamin B12 decreased and the concentration of serum folate increased in group I after the intervention (p = 0.01, p = 0.009). The concentration of plasma 5-pyridoxal phosphate decreased in groups II and III (p = 0.03 and p = 0.01), whereas the concentration of serum uric acid decreased only in group II (p = 0.02). We detected an increase in the concentration of reduced form of aminothiols in all groups (p vitamins E + C supplementation affect the concentrations of serum B-vitamins and redox plasma aminothiol status in healthy elderly men on strength training. © 2016 S. Karger AG, Basel.

  11. ‘Venus trapped, Mars transits': Cu and Fe redox chemistry, cellular topography and in situ ligand binding in terrestrial isopod hepatopancreas

    Science.gov (United States)

    Kille, P.; Morgan, A. J.; Powell, K.; Mosselmans, J. F. W.; Hart, D.; Gunning, P.; Hayes, A.; Scarborough, D.; McDonald, I.; Charnock, J. M.

    2016-01-01

    Woodlice efficiently sequester copper (Cu) in ‘cuprosomes' within hepatopancreatic ‘S' cells. Binuclear ‘B’ cells in the hepatopancreas form iron (Fe) deposits; these cells apparently undergo an apocrine secretory diurnal cycle linked to nocturnal feeding. Synchrotron-based µ-focus X-ray spectroscopy undertaken on thin sections was used to characterize the ligands binding Cu and Fe in S and B cells of Oniscus asellus (Isopoda). Main findings were: (i) morphometry confirmed a diurnal B-cell apocrine cycle; (ii) X-ray fluorescence (XRF) mapping indicated that Cu was co-distributed with sulfur (mainly in S cells), and Fe was co-distributed with phosphate (mainly in B cells); (iii) XRF mapping revealed an intimate morphological relationship between the basal regions of adjacent S and B cells; (iv) molecular modelling and Fourier transform analyses indicated that Cu in the reduced Cu+ state is mainly coordinated to thiol-rich ligands (Cu–S bond length 2.3 Å) in both cell types, while Fe in the oxidized Fe3+ state is predominantly oxygen coordinated (estimated Fe–O bond length of approx. 2 Å), with an outer shell of Fe scatterers at approximately 3.05 Å; and (v) no significant differences occur in Cu or Fe speciation at key nodes in the apocrine cycle. Findings imply that S and B cells form integrated unit-pairs; a functional role for secretions from these cellular units in the digestion of recalcitrant dietary components is hypothesized. PMID:26935951

  12. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.

    Science.gov (United States)

    Hoffmann, Marie-Christine; Ali, Koral; Sonnenschein, Marleen; Robrahn, Laura; Strauss, Daria; Narberhaus, Franz; Masepohl, Bernd

    2016-09-01

    Many enzymes require the molybdenum cofactor, Moco. Under Mo-limiting conditions, the high-affinity ABC transporter ModABC permits molybdate uptake and Moco biosynthesis in bacteria. Under Mo-replete conditions, Escherichia coli represses modABC transcription by the one-component regulator, ModE, consisting of a DNA-binding and a molybdate-sensing domain. Instead of a full-length ModE protein, many bacteria have a shorter ModE protein, ModE(S) , consisting of a DNA-binding domain only. Here, we asked how such proteins sense the intracellular molybdenum status. We show that the Agrobacterium tumefaciens ModE(S) protein Atu2564 is essential for modABC repression. ModE(S) binds two Mo-boxes in the modA promoter as shown by electrophoretic mobility shift assays. Northern analysis revealed cotranscription of modE(S) with the upstream gene, atu2565, which was dispensable for ModE(S) activity. To identify genes controlling ModE(S) function, we performed transposon mutagenesis. Tn5 insertions resulting in derepressed modA transcription mapped to the atu2565-modE(S) operon and several Moco biosynthesis genes. We conclude that A. tumefaciens ModE(S) activity responds to Moco availability rather than to molybdate concentration directly, as is the case for E. coli ModE. Similar results in Sinorhizobium meliloti suggest that Moco dependence is a common feature of ModE(S) regulators. © 2016 John Wiley & Sons Ltd.

  13. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Amos O. Abolaji

    2015-08-01

    Full Text Available The compounds 4-vinylcyclohexene 1,2-monoepoxide (VCM and 4-Vinylcyclohexene diepoxide (VCD are the two downstream metabolites of 4-vinylcyclohexene (VCH, an ovotoxic agent in mammals. In addition, VCM and VCD may be found as by-products of VCH oxidation in the environment. Recently, we reported the involvement of oxidative stress in the toxicity of VCH in Drosophila melanogaster. However, it was not possible to determine the individual contributions of VCM and VCD in VCH toxicity. Hence, we investigated the toxicity of VCM and VCD (10–1000 µM in flies after 5 days of exposure via the diet. Our results indicated impairments in climbing behaviour and disruptions in antioxidant balance and redox status evidenced by an increase in DCFH oxidation, decreases in total thiol content and glutathione-S-transferase (GST activity in the flies exposed to VCM and VCD (p<0.05. These effects were accompanied by disruptions in the transcription of the genes encoding the proteins superoxide dismutase (SOD1, kelch-like erythroid-derived cap-n-collar (CNC homology (ECH-associated protein 1 (Keap-1, mitogen activated protein kinase 2 (MAPK-2, catalase, Cyp18a1, JAFRAC 1 (thioredoxin peroxidase 1 and thioredoxin reductase 1 (TrxR-1 (p<0.05. VCM and VCD inhibited acetylcholinesterase (AChE and delta aminolevulinic acid dehydratase (δ-ALA D activities in the flies (p<0.05. Indeed, here, we demonstrated that different target enzymes and genes were modified by the electrophiles VCM and VCD in the flies. Thus, D. melanogaster has provided further lessons on the toxicity of VCM and VCD which suggest that the reported toxicity of VCH may be mediated by its transformation to VCM and VCD.

  14. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  15. Status of Two Species of Lac Insects in the Genus Kerria from China Based on Morphological, Cellular, and Molecular Evidence

    Science.gov (United States)

    Chen, Xiaoming; Chen, Hang; Feng, Ying; He, Rui; Yang, Zixiang

    2011-01-01

    The taxonomic status of the Chinese lac insects Kerria yunnanensis (Ou and Hong) (Hemiptera: Kerridae) and K. ruralis (Wang, Yao, Teiu and Liang) were analyzed in this paper by comparing morphological, cellular, and molecular data. Cladistic analysis showed K. yunnanensis and K. ruralis to be distinct from other Kerria species such as K. lacca and K. chinensis. The karyotype of K. yunnanensis was 3A and the chromosome structure was K = 6m + 2sm + 10T, while in K. ruralis the karyotype was 3B and the chromosome structure was K = 8m + 10T. Kerria ruralis and K. yunnanensis had the closest relationship among species in the genus as they had the most similar karyotype homology. Based on the karyotype analysis, K. sindica and K. lacca formed a sister group with K. ruralis and K. yunnanensis. Kerria pusana and K. nepalensis were clustered as a sister branch, indicating the close relationship of these taxa. The karyotype of K. chinensis was however, different from the other six species and formed a separate branch. RAPD analysis also showed that K. yunnanensis and K. ruralis had distinct differences from other species of Kerria, although they did not form sister taxa. Molecular analysis based on the EF1α gene using ML, MP, and Mr. Bayes' methods indicated that seven species of lac insects cluster in two major groups. In group 1, K. sindica and K. lacca formed a sister clade and were primitive members of the genus. In group 2, K. chinensis formed the earliest diverging branch followed by K. ruralis. Kerria yunnanensis was the next to diverge followed by the cluster containing K. pusana and K. nepalensis. Hybridization testing showed that crosses neither between K. yunnanensis and K. sindica, nor between K. yunnanensis and K. lacca could produce first generation larvae. This was indicative that K. yunnanensis had a distant genetic relationship from the other species. Morphological, cellular, molecular, and hybridization results confirmed the independent status of the

  16. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  17. Acquisition of Fe from Natural Organic Matter by an Aerobic Pseudomonas Bacterium: Siderophores and Cellular Fe Status

    Science.gov (United States)

    Koehn, K.; Dehner, C.; Dubois, J.; Maurice, P. A.

    2010-12-01

    Aerobic microorganisms have evolved various strategies to acquire nutrient Fe, including release of Fe-chelating siderophores. The potential importance of siderophores in Fe acquisition from natural organic matter (NOM) (reverse osmosis, RO; and XAD-8 samples with naturally associated Fe) was investigated using a wild type strain (WT) of aerobic Pseudomonas mendocina that produces siderophore(s) and an engineered mutant that cannot. Microbial growth under Fe-limited batch conditions was monitored via optical density, and a β-galactosidase biosensor assay was used to quantify cellular Fe status. Both WT and mutant strains acquired Fe from NOM. Fe ‘stress’ in the presence of the RO sample decreased with increasing [Fe] (as determined by different [DOC]s) and was consistently less for the WT. For both WT and mutant, maximum growth in the presence of RO sample increased as: 1 mgC/L (0.2μM Fe) siderophores are useful but not necessary for Fe acquisition from NOM by P. mendocina and (2) NOM may have complex effects on microbial growth, related not just to Fe content but potentially to the presence of other (trace)metals such as Al and/or to effects on biofilm development.

  18. Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study.

    Science.gov (United States)

    Berge, Rolf K; Ramsvik, Marie S; Bohov, Pavol; Svardal, Asbjørn; Nordrehaug, Jan E; Rostrup, Espen; Bruheim, Inge; Bjørndal, Bodil

    2015-12-15

    concentrations remained unchanged. Krill oil consumption is considered health beneficial as it decreases cardiovascular disease risk parameters through effects on plasma TAGs, lipoprotein particles, fatty acid profile, redox status and possible inflammation. Noteworthy, no adverse effects on plasma levels of TMAO and carnitine were found.

  19. Antifibrotic effect of xanthohumol in combination with praziquantel is associated with altered redox status and reduced iron accumulation during liver fluke-associated cholangiocarcinogenesis.

    Science.gov (United States)

    Jamnongkan, Wassana; Thanee, Malinee; Yongvanit, Puangrat; Loilome, Watcharin; Thanan, Raynoo; Kimawaha, Phongsaran; Boonmars, Tidarat; Silakit, Runglawan; Namwat, Nisana; Techasen, Anchalee

    2018-01-01

    Cholangiocarcinoma (CCA) caused by infection of the liver fluke Opisthorchis viverrini , (Ov) is the major public health problem in northeast Thailand. Following Ov infection the subsequent molecular changes can be associated by reactive oxygen species (ROS) induced chronic inflammation, advanced periductal fibrosis, and cholangiocarcinogenesis. Notably, resistance to an activation of cell death in prolonged oxidative stress conditions can occur but some damaged/mutated cells could survive and enable clonal expansion. Our study used a natural product, xanthohumol (XN), which is an anti-oxidant and anti-inflammatory compound, to examine whether it could prevent Ov-associated CCA carcinogenesis. We measured the effect of XN with or without praziquantel (PZ), an anti-helminthic treatment, on DNA damage, redox status change including iron accumulation and periductal fibrosis during CCA genesis induced by administration of Ov and N -dinitrosomethylamine (NDMA) in hamsters. Animals were randomly divided into four groups: group I, Ov infection and NDMA administration (ON); group II, Ov infection and NDMA administration and PZ treatment (ONP); the latter 2 groups were similar to group I and II, but group III received additional XN (XON) and group IV received XN plus PZ (XONP). The results showed that high 8-oxodG (a marker of DNA damage) was observed throughout cholangiocarcinogenesis. Moreover, increased expression of CD44v8-10 (a cell surface in regulation of the ROS defense system), whereas decreased expression of phospho-p38 MAPK (a major ROS target), was found during the progression of the bile duct cell transformation. In addition, high accumulation of iron and expression of transferrin receptor-1 (TfR-1) in both malignant bile ducts and inflammatory cells were detected. Furthermore, fibrosis also increased with the highest level being on day 180. On the other hand, the groups of XN with or without PZ supplementations showed an effective reduction in all the markers

  20. Antifibrotic effect of xanthohumol in combination with praziquantel is associated with altered redox status and reduced iron accumulation during liver fluke-associated cholangiocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Wassana Jamnongkan

    2018-01-01

    Full Text Available Cholangiocarcinoma (CCA caused by infection of the liver fluke Opisthorchis viverrini, (Ov is the major public health problem in northeast Thailand. Following Ov infection the subsequent molecular changes can be associated by reactive oxygen species (ROS induced chronic inflammation, advanced periductal fibrosis, and cholangiocarcinogenesis. Notably, resistance to an activation of cell death in prolonged oxidative stress conditions can occur but some damaged/mutated cells could survive and enable clonal expansion. Our study used a natural product, xanthohumol (XN, which is an anti-oxidant and anti-inflammatory compound, to examine whether it could prevent Ov-associated CCA carcinogenesis. We measured the effect of XN with or without praziquantel (PZ, an anti-helminthic treatment, on DNA damage, redox status change including iron accumulation and periductal fibrosis during CCA genesis induced by administration of Ov and N-dinitrosomethylamine (NDMA in hamsters. Animals were randomly divided into four groups: group I, Ov infection and NDMA administration (ON; group II, Ov infection and NDMA administration and PZ treatment (ONP; the latter 2 groups were similar to group I and II, but group III received additional XN (XON and group IV received XN plus PZ (XONP. The results showed that high 8-oxodG (a marker of DNA damage was observed throughout cholangiocarcinogenesis. Moreover, increased expression of CD44v8-10 (a cell surface in regulation of the ROS defense system, whereas decreased expression of phospho-p38MAPK (a major ROS target, was found during the progression of the bile duct cell transformation. In addition, high accumulation of iron and expression of transferrin receptor-1 (TfR-1 in both malignant bile ducts and inflammatory cells were detected. Furthermore, fibrosis also increased with the highest level being on day 180. On the other hand, the groups of XN with or without PZ supplementations showed an effective reduction in all the

  1. Redox status and heavy metal risk in intertidal sediments in NW Spain as inferred from the degrees of pyritization of iron and trace elements.

    Science.gov (United States)

    Alvarez-Iglesias, P; Rubio, B

    2009-04-01

    Mariculture is an important economic activity in shallow marine areas of the Rías Baixas (Galicia, NW Spain). The maintenance of high product quality requires surveillance of environmental quality, including the risk of metal toxicity. In this study the redox status of intertidal sediments in the Bay of San Simón, and the risk of toxicity posed by their As, Cd, Cr, Cu, Mn, Ni, Pb and Zn contents, were evaluated by determination of operationally defined reactive, silicate-bound, organic and pyrite-related fractions of these elements and of Fe. The large silicate-bound fractions of most of these metals indicate their lithogenic origin; the main exception is Pb, which in all respects exhibits singular behaviour associated with its predominantly anthropogenic origin in a ceramics factory. In sediments with larger fine-grained particle contents, which are oxic only in the top few centimetres, greater proportions of the trace elements are present as sulphides or associated with sulphide minerals: the degree of pyritization of Fe (DOP) is 46% overall, and the pyrite fraction of some elements doubtless increases at the expense of the reactive fraction, most overall degrees of trace metal pyritization (DTMPs) lying in the range 10-50%. A decline in pyrite genesis at depths below about 18 cm in these sediments is attributed to the exhaustion of organic matter susceptible to metabolization by sulphide-generating bacteria. In coarse-grained, oxic sediments the oxidation of sulphides makes pyrite-related fractions very small, and reactive and silicate-bound fractions are negatively correlated; reactive fractions associated with Fe-Mn oxyhydroxides are large, and DOP and DTMPs are low (generally much lower than in mud-rich sediments), except for Pb. Most of the elements studied are mainly present in forms that are neither bioavailable nor potentially bioavailable, and so do not constitute a significant environmental threat. However, the high DTMPs of Cu and Pb indicate

  2. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  3. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism.

    Science.gov (United States)

    Wang, Jun; Keceli, Gizem; Cao, Rui; Su, Jiangtao; Mi, Zhiyuan

    2017-01-01

    This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.

  4. The Fruits of Wampee Inhibit H2O2-Induced Apoptosis in PC12 Cells via the NF-κB Pathway and Regulation of Cellular Redox Status

    Directory of Open Access Journals (Sweden)

    Xiaobin Zeng

    2014-06-01

    Full Text Available Wampee (Clausena lansium fruits (CLS, whose pulp can be used to prepare fruit cups, desserts, jam, or jelly, can be eaten along with the peel. In this study, a PC12 cell model was built to observe the protective effect of CLS against H2O2-induced oxidative stress. We found that pretreatment with CLS increased cell viability and inhibited cytotoxicity, caspase-3 activity and DNA condensation. CLS also attenuated the increase in ROS production and MMP reduction. Moreover, we attempted to determine whether CLS suppressed the expression and phosphorylation of NF-κB. Western blot and immunostaining assay revealed that CLS inhibited H2O2-induced up-regulation of NF-κB p65 and pNF-κB p65. And CLS significantly suppressed the translocation of NF-κB p65 and pNF-κB p65 from cytoplasm to nuclear. Also, seven major compounds including a new flavanoid, luteolin-4'-O-β-d-gluco-pyranoside (3 and six known compounds 1,2, 4–7 were isolated and identified from CLS. Their antioxidative and H2O2-induced PC12 cell apoptosis-reversing activity were determined. These findings suggest that CLS and its major constituents (flavanoids may be potential antioxidant agents and should encourage further research into their use as a functional food for neurodegenerative diseases.

  5. Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo

    Science.gov (United States)

    Timme-Laragy, Alicia R.; Goldstone, Jared V.; Imhoff, Barry R.; Stegeman, John J.; Hahn, Mark E.; Hansen, Jason M.

    2013-01-01

    Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous non-protein antioxidant defense molecule is the tri-peptide glutathione (γ-glutamyl-cysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0–5 days post-fertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione (GSH, GSSG) using HPLC, and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0–120 hours of zebrafish development (including mature oocytes, fertilization, mid-blastula transition, gastrulation, somitogenesis, pharyngula, pre-hatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12 hours post fertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12 h, and then oscillated around −190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (−220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study

  6. Organelle redox autonomy during environmental stress.

    Science.gov (United States)

    Bratt, Avishay; Rosenwasser, Shilo; Meyer, Andreas; Fluhr, Robert

    2016-09-01

    Oxidative stress is generated in plants because of inequalities in the rate of reactive oxygen species (ROS) generation and scavenging. The subcellular redox state under various stress conditions was assessed using the redox reporter roGFP2 targeted to chloroplastic, mitochondrial, peroxisomal and cytosolic compartments. In parallel, the vitality of the plant was measured by ion leakage. Our results revealed that during certain physiological stress conditions the changes in roGFP2 oxidation are comparable to application of high concentrations of exogenous H2 O2 . Under each stress, particular organelles were affected. Conditions of extended dark stress, or application of elicitor, impacted chiefly on the status of peroxisomal redox state. In contrast, conditions of drought or high light altered the status of mitochondrial or chloroplast redox state, respectively. Amalgamation of the results from diverse environmental stresses shows cases of organelle autonomy as well as multi-organelle oxidative change. Importantly, organelle-specific oxidation under several stresses proceeded cell death as measured by ion leakage, suggesting early roGFP oxidation as predictive of cell death. The measurement of redox state in multiple compartments enables one to look at redox state connectivity between organelles in relation to oxidative stress as well as assign a redox fingerprint to various types of stress conditions. © 2016 John Wiley & Sons Ltd.

  7. The redox biology network in cancer pathophysiology and therapeutics

    Directory of Open Access Journals (Sweden)

    Gina Manda

    2015-08-01

    Full Text Available The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1 and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic, greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular

  8. Redox interplay between mitochondria and peroxisomes

    Directory of Open Access Journals (Sweden)

    Celien eLismont

    2015-05-01

    Full Text Available Reduction-oxidation or ‘redox’ reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from ‘omics’ technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of

  9. An evaluation of heat on protein oxidation of soy protein isolate or soy protein isolate mixed with soybean oilin vitroand its consequences on redox status of broilers at early age.

    Science.gov (United States)

    Zhang, Xianglun; Lu, Peng; Xue, Wenyue; Wu, Dawei; Wen, Chao; Zhou, Yanmin

    2017-08-01

    The objective of this study was to evaluate effects of heat treatment and soybean oil inclusion on protein oxidation of soy protein isolate (SPI) and of oxidized protein on redox status of broilers at an early age. SPI mixed with soybean oil (SPIO) heated at 100°C for 8 h was used to evaluate protein oxidation of SPI. A total of two hundred and sixteen 1-day-old Arbor Acres chicks were divided into 3 groups with 6 replicates of 12 birds, receiving basal diet (CON), heat-oxidized SPI diet (HSPI) or mixture of SPI and 2% soybean oil diet (HSPIO) for 21 d, respectively. Increased protein carbonyl, decreased protein sulfhydryl of SPI were observed as heating time increased in all treatments (poil increased protein carbonyl of SPI at 8 h heating (poxidation protein products (AOPPs) in liver and protein carbonyl in jejunal mucosa as compared with that of the CON (poxidation of SPI can be induced by heat and soybean oil and oxidized protein resulted in redox imbalance in broilers at an early age.

  10. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  11. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  12. Experimental Evidence that In Vivo Intracerebral Administration of L-2-Hydroxyglutaric Acid to Neonatal Rats Provokes Disruption of Redox Status and Histopathological Abnormalities in the Brain.

    Science.gov (United States)

    Ribeiro, Rafael Teixeira; Zanatta, Ângela; Amaral, Alexandre Umpierrez; Leipnitz, Guilhian; de Oliveira, Francine Hehn; Seminotti, Bianca; Wajner, Moacir

    2018-02-06

    Tissue accumulation of L-2-hydroxyglutaric acid (L-2-HG) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-2-HGA), a rare neurometabolic inherited disease characterized by neurological symptoms and brain white matter abnormalities whose pathogenesis is not yet well established. L-2-HG was intracerebrally administered to rat pups at postnatal day 1 (P1) to induce a rise of L-2-HG levels in the central nervous system (CNS). Thereafter, we investigated whether L-2-HG in vivo administration could disturb redox homeostasis and induce brain histopathological alterations in the cerebral cortex and striatum of neonatal rats. L-2-HG markedly induced the generation of reactive oxygen species (increase of 2',7'-dichloroflurescein-DCFH-oxidation), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione-GSH) and sulfhydryl content in the cerebral cortex. Alterations of the activities of various antioxidant enzymes were also observed in the cerebral cortex and striatum following L-2-HG administration. Furthermore, L-2-HG-induced lipid peroxidation and GSH decrease in the cerebral cortex were prevented by the antioxidant melatonin and by the classical antagonist of NMDA glutamate receptor MK-801, suggesting the involvement of reactive species and of overstimulation of NMDA receptor in these effects. Finally, L-2-HG provoked significant vacuolation and edema particularly in the cerebral cortex with less intense alterations in the striatum that were possibly associated with the unbalanced redox homeostasis caused by this metabolite. Taken together, it is presumed that these pathomechanisms may underlie the neurological symptoms and brain abnormalities observed in the affected patients.

  13. The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status

    OpenAIRE

    Kim, M.; Williamson, CT; Prudhomme, J.; Bebb, DG; Riabowol, K; Lee, PWK; Lees-Miller, SP; Mori, Y; Rahman, MM; McFadden, G; Johnston, RN

    2010-01-01

    Replication-competent oncolytic viruses hold great potential for the clinical treatment of many cancers. Importantly, many oncolytic virus candidates, such as reovirus and myxoma virus, preferentially infect cancer cells bearing abnormal cellular signaling pathways. Reovirus and myxoma virus are highly responsive to activated Ras and Akt signaling pathways, respectively, for their specificity for viral oncolysis. However, considering the complexity of cancer cell populations, it is possible t...

  14. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.

    Science.gov (United States)

    Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A

    2016-11-16

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H2O2. Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Redox Regulation in Cancer: A Double-edged Sword with Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Asha Acharya

    2010-01-01

    Full Text Available Oxidative stress, implicated in the etiology of cancer, results from an imbalance in the production of reactive oxygen species (ROS and cell’s own antioxidant defenses. ROS deregulate the redox homeostasis and promote tumor formation by initiating an aberrant induction of signaling networks that cause tumorigenesis. Ultraviolet (UV exposures, γ-radiation and other environmental carcinogens generate ROS in the cells, which can exert apoptosis in the tumors, thereby killing the malignant cells or induce the progression of the cancer growth by blocking cellular defense system. Cancer stem cells take the advantage of the aberrant redox system and spontaneously proliferate. Oxidative stress and gene-environment interactions play a significant role in the development of breast, prostate, pancreatic and colon cancer. Prolonged lifetime exposure to estrogen is associated with several kinds of DNA damage. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. BRCA1, a tumor suppressor against hormone responsive cancers such as breast and prostate cancer, plays a significant role in inhibiting ROS and estrogen mediated DNA damage; thereby regulate the redox homeostasis of the cells. Several transcription factors and tumor suppressors are involved during stress response such as Nrf2, NFκB and BRCA1. A promising strategy for targeting redox status of the cells is to use readily available natural substances from vegetables, fruits, herbs and spices. Many of the phytochemicals have already been identified to have chemopreventive potential, capable of intervening in carcinogenesis.

  16. Redox Modulations, Antioxidants, and Neuropsychiatric Disorders

    Science.gov (United States)

    Fraunberger, Erik A.; Laliberté, Victoria L. M.; Duong, Angela; Andreazza, Ana C.

    2016-01-01

    Although antioxidants, redox modulations, and neuropsychiatric disorders have been widely studied for many years, the field would benefit from an integrative and corroborative review. Our primary objective is to delineate the biological significance of compounds that modulate our redox status (i.e., reactive species and antioxidants) as well as outline their current role in brain health and the impact of redox modulations on the severity of illnesses. Therefore, this review will not enter into the debate regarding the perceived medical legitimacy of antioxidants but rather seek to clarify their abilities and limitations. With this in mind, antioxidants may be interpreted as natural products with significant pharmacological actions in the body. A renewed understanding of these often overlooked compounds will allow us to critically appraise the current literature and provide an informed, novel perspective on an important healthcare issue. In this review, we will introduce the complex topics of redox modulations and their role in the development of select neuropsychiatric disorders. PMID:26640614

  17. LRRK2 Kinase Activity and Biology are Not Uniformly Predicted by its Autophosphorylation and Cellular Phosphorylation Site Status

    Directory of Open Access Journals (Sweden)

    April eReynolds

    2014-06-01

    Full Text Available Missense mutations in the Leucine Rich Repeat protein Kinase 2 (LRRK2 gene are the most common genetic predisposition to develop Parkinson’s disease (PD LRRK2 is a large multi-domain phosphoprotein with a GTPase domain and a serine/threonine protein kinase domain whose activity is implicated in neuronal toxicity; however the precise mechanism is unknown. LRRK2 autophosphorylates on several serine/threonine residues across the enzyme and is found constitutively phosphorylated on Ser910, Ser935, Ser955 and Ser973, which are proposed to be regulated by upstream kinases. Here we investigate the phosphoregulation at these sites by analyzing the effects of disease-associated mutations Arg1441Cys, Arg1441Gly, Ala1442Pro, Tyr1699Cys, Ile2012Thr, Gly2019Ser, and Ile2020Thr. We also studied alanine substitutions of phosphosite serines 910, 935, 955 and 973 and specific LRRK2 inhibition on autophosphorylation of LRRK2 Ser1292, Thr1491, Thr2483 and phosphorylation at the cellular sites. We found that mutants in the Roc-COR domains, including Arg1441Cys, Arg1441His, Ala1442Pro and Tyr1699Cys, can positively enhance LRRK2 kinase activity while concomitantly inducing the dephosphorylation of the cellular sites. Mutation of the cellular sites individually did not affect LRRK2 intrinsic kinase activity; however, Ser910/935/955/973Ala mutations trended toward increased kinase activity of LRRK2. Increased cAMP levels did not lead to increased LRRK2 cellular site phosphorylation, 14-3-3 binding or kinase activity. In cells, inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser1292 by Calyculin A and okadaic acid sensitive phosphatases, while the cellular sites are dephosphorylated by Calyculin A sensitive phosphatases. These findings indicate that comparative analysis of both Ser1292 and Ser910/935/955/973 phosphorylation sites will provide important and distinct measures of LRRK2 kinase and biological activity in vitro and in vivo.

  18. Impact of the NCAM derived mimetic peptide plannexin on the acute cellular consequences of a status epilepticus

    DEFF Research Database (Denmark)

    Zellinger, Christina; Hadamitzky, Martin; Bock, Elisabeth

    2011-01-01

    in hippocampal subregions. The comparison between the vehicle- and plannexin-treated animals with status epilepticus did not reveal neuroprotective effects of plannexin on mature neurons. However, treatment with plannexin partially prevented the reduction in the number of doublecortin-labeled neuronal progenitor...

  19. An evaluation of heat on protein oxidation of soy protein isolate or soy protein isolate mixed with soybean oil and its consequences on redox status of broilers at early age

    Directory of Open Access Journals (Sweden)

    Xianglun Zhang

    2017-08-01

    Full Text Available Objective The objective of this study was to evaluate effects of heat treatment and soybean oil inclusion on protein oxidation of soy protein isolate (SPI and of oxidized protein on redox status of broilers at an early age. Methods SPI mixed with soybean oil (SPIO heated at 100°C for 8 h was used to evaluate protein oxidation of SPI. A total of two hundred and sixteen 1-day-old Arbor Acres chicks were divided into 3 groups with 6 replicates of 12 birds, receiving basal diet (CON, heat-oxidized SPI diet (HSPI or mixture of SPI and 2% soybean oil diet (HSPIO for 21 d, respectively. Results Increased protein carbonyl, decreased protein sulfhydryl of SPI were observed as heating time increased in all treatments (p<0.05. Addition of 2% soybean oil increased protein carbonyl of SPI at 8 h heating (p<0.05. Dietary HSPI and HSPIO decreased the average daily gain of broilers as compared with the CON (p<0.05. Broilers fed HSPI and HSPIO exhibited decreased glutathione (GSH in serum, catalase activity and total sulfhydryl in liver and increased malondialdehyde (MDA and protein carbonyl in serum, advanced oxidation protein products (AOPPs in liver and protein carbonyl in jejunal mucosa as compared with that of the CON (p<0.05. Additionally, broilers receiving HSPIO showed decreased glutathione peroxidase activity (GSH-Px in serum, GSH and hydroxyl radical scavenging capacity in liver, GSH-Px activity in duodenal mucosa, GSH-Px activity and superoxide anion radical scavenging capacity in jejunal mucosa and increased AOPPs in serum, MDA and protein carbonyl in liver, MDA and AOPPs in jejunal mucosa (p<0.05. Conclusion Protein oxidation of SPI can be induced by heat and soybean oil and oxidized protein resulted in redox imbalance in broilers at an early age.

  20. Redox signaling in acute pancreatitis

    Science.gov (United States)

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  1. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis.

    Science.gov (United States)

    Trinei, Mirella; Giorgio, Marco; Cicalese, Angelo; Barozzi, Sara; Ventura, Andrea; Migliaccio, Enrica; Milia, Elisabetta; Padura, Ines Martin; Raker, Veronica A; Maccarana, Marco; Petronilli, Valeria; Minucci, Saverio; Bernardi, Paolo; Lanfrancone, Luisa; Pelicci, Pier Giuseppe

    2002-05-30

    Correlative evidence links stress, accumulation of oxidative cellular damage and ageing in lower organisms and in mammals. We investigated their mechanistic connections in p66Shc knockout mice, which are characterized by increased resistance to oxidative stress and extended life span. We report that p66Shc acts as a downstream target of the tumour suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. Other functions of p53 are not influenced by p66Shc expression. In basal conditions, p66Shc-/- and p53-/- cells have reduced amounts of intracellular oxidants and oxidation-damaged DNA. We propose that steady-state levels of intracellular oxidants and oxidative damage are genetically determined and regulated by a stress-induced signal transduction pathway involving p53 and p66Shc.

  2. Western blot data using two distinct anti-O-GlcNAc monoclonal antibodies showing unique glycosylation status on cellular proteins under 2-deoxy-d-glucose treatment

    Directory of Open Access Journals (Sweden)

    Tetsuya Okuda

    2017-02-01

    Full Text Available Protein modification by O-linked N-acetylglucosamine (O-GlcNAcylation is one of the post transcriptional modifications occurring on cellular proteins. This paper provides a data set relating to the O-GlcNAcylation of cellular proteins detected by RL2 and CTD110.6 antibodies, which are commonly used for detection of protein O-GlcNAcylation, in 2-deoxy-d-glucose (2DG-treated human teratocarcinoma NCCIT cells in support of the research article entitled “A novel, promoter-based, target-specific assay identifies 2-deoxy-d-glucose as an inhibitor of globotriaosylceramide biosynthesis” (Okuda et al., 2009 [1]. The main article described a suppressive effect of 2DG on an Sp1 target gene in NCCIT cells and discussed the relationship between the effect of 2DG and O-GlcNAcylation status of Sp1. The data in this paper complements this relationship by Western blotting and clearly showed that the 2DG treatment increased O-GlcNAcylation of cellular proteins in NCCIT cells, whereas the RL2 and CTD110.6 epitopes were detected in a different manner. The RL2 epitope was detected on Sp1 during 2DG treatment, and the level was transiently increased at 24 h. In contrast, the CTD110.6 epitope became detectable on Sp1 over 72 h after 2DG treatment, and then the other proteins containing CTD110.6 epitopes also appeared in the cell lysates and the anti-Sp1 antibody precipitates.

  3. Differences in p53 status significantly influence the cellular response and cell survival to 1,25-dihydroxyvitamin D3-metformin cotreatment in colorectal cancer cells.

    Science.gov (United States)

    Abu El Maaty, Mohamed A; Strassburger, Wendy; Qaiser, Tooba; Dabiri, Yasamin; Wölfl, Stefan

    2017-11-01

    Mutations in the tumor suppressor p53 are highly prevalent in cancers and are known to influence the sensitivity of cells to various chemotherapeutics including the anti-cancer candidates 1,25-dihydrovitamin D3 [1,25D3] and metformin. Previous studies have demonstrated additive/synergistic anti-cancer effects of the 1,25D3-metformin combination in different models, however, the influence of p53 status on the efficacy of this regimen has not been investigated. The CRC colorectal cancer (CRC) cell lines HCT116 wild-type (wt), HCT116 p53-/-, and HT-29 (mutant; R273H) were employed, covering three different p53 variations. Synergistic effects of the combination were confirmed in all cell lines using MTT assay. Detailed evaluation of the combination's effects was performed, including on-line measurements of cellular metabolism (glycolysis/respiration) using a biosensor chip system, analyses of mitochondrial activity (membrane potential and ATP/ROS production), mRNA expression analysis of WNT/β-catenin pathway players, and a comprehensive proteomic screen using immunoblotting and ELISA microarrays. AMPK signaling was found to be more strongly induced in response to all treatments in HCT116 wt cells compared to other cell lines, an observation that was coupled to a stronger accumulation of intracellular ROS in response to metformin/combination, and finally an induction in autophagy, depicted by an increase in LC3II:LC3I ratio in combination-treated cells compared to mono-treatments. An induction in apoptotic signaling was observed in the other cell lines in response to the combination, illustrated by a decrease in expression of pro-survival Bcl2 family members. P53 status impacts cellular responses to the combination but does not hamper its anti-proliferative synergy. © 2017 Wiley Periodicals, Inc.

  4. Regulatory Control or Oxidative Damage? Proteomic Approaches to Interrogate the Role of Cysteine Oxidation Status in Biological Processes*

    Science.gov (United States)

    Held, Jason M.; Gibson, Bradford W.

    2012-01-01

    Oxidation is a double-edged sword for cellular processes and its role in normal physiology, cancer and aging remains only partially understood. Although oxidative stress may disrupt biological function, oxidation-reduction (redox) reactions in a cell are often tightly regulated and play essential physiological roles. Cysteines lie at the interface between these extremes since the chemical properties that make specific thiols exquisitely redox-sensitive also predispose them to oxidative damage by reactive oxygen or nitrogen species during stress. Thus, these modifications can be either under reversible redox regulatory control or, alternatively, a result of reversible or irreversible oxidative damage. In either case, it has become increasingly important to assess the redox status of protein thiols since these modifications often impact such processes as catalytic activity, conformational alterations, or metal binding. To better understand the redox changes that accompany protein cysteine residues in complex biological systems, new experimental approaches have been developed to identify and characterize specific thiol modifications and/or changes in their overall redox status. In this review, we describe the recent technologies in redox proteomics that have pushed the boundaries for detecting and quantifying redox cysteine modifications in a cellular context. While there is no one-size-fits-all analytical solution, we highlight the rationale, strengths, and limitations of each technology in order to effectively apply them to specific biological questions. Several technological limitations still remain unsolved, however these approaches and future developments play an important role toward understanding the interplay between oxidative stress and redox signaling in health and disease. PMID:22159599

  5. Subcellular compartmentation of sugar signalling: Links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning

    Directory of Open Access Journals (Sweden)

    Axel eTiessen

    2013-01-01

    Full Text Available Recent findings suggest that both subcellular compartmentation and route of sucrolysis are important for plant development, growth, and yield. Signalling effects are dependent on the tissue, cell type and stage of development. Downstream effects also depend on the amount and localisation of hexoses and disaccharides. All enzymes of sucrose metabolism (e.g. invertase, hexokinase, fructokinase, sucrose synthase, and sucrose 6-phosphate synthase are not produced from single genes, but from paralogue families in plant genomes. Each paralogue has unique expression across plant organs and developmental stages. Multiple isoforms can be targeted to different cellular compartments (e.g. plastids, mitochondria, nuclei, and cytosol. Many of the key enzymes are regulated by post-transcriptional modifications and associate in multimeric protein complexes. Some isoforms have regulatory functions, either in addition to or in replacement of their catalytic activity. This explains why some isozymes are not redundant, but also complicates elucidation of their specific involvement in sugar signalling. The subcellular compartmentation of sucrose metabolism forces refinement of some of the paradigms of sugar signalling during physiological processes. For example, the catalytic and signalling functions of diverse paralogues needs to be more carefully analysed in the context of post-genomic biology. It is important to note that it is the differential localization of both the sugars themselves as well as the sugar-metabolizing enzymes that ultimately led to sugar signalling. We conclude that a combination of subcellular complexity and gene duplication/subfunctionalization gave rise to sugar signalling as a regulatory mechanism in plant cells.

  6. Redox imbalance mediates entomotoxic effects of the conifer Araucaria angustifolia in Anticarsia gemmatalis velvetbean caterpillar

    Directory of Open Access Journals (Sweden)

    Cátia dos Santos Branco

    2016-12-01

    Full Text Available The velvetbean caterpillar, Anticarsia gemmatalis is one of the most important pests of soybean crops in tropical America. By feeding on leaves, significant defoliation occurs resulting in reduced photosynthetic capacity required for plants’ maintenance and growth, which subsequently can lead to crop losses and reduced agricultural productivity. Many studies have sought to look for compounds that have insecticidal effects. One class of compounds is phenolics, which are produced by plants and have been found to influence the behavior and development of defoliators, representing an important alternative approach to many synthetic insecticides. Particularly, Araucaria angustifolia is a plant rich in polyphenols, which are compounds able to alter cellular dynamics through modulating redox status. In this study, A. angustifolia extract (AAE was added to the artificial diet of A. gemmatalis. The results demonstrated that AAE was able to reduce larval viability by inducing morphological changes and a delay in the insect’s development. In addition, AAE was found to induce oxidative damage to lipids and proteins, as well as increased nitric oxide levels in A. gemmatalis larvae. AAE treatments also decreased the antioxidant defense systems, leading to a redox imbalance. The reduction in viability in A. gemmatalis was positively correlated with oxidative markers, suggesting that redox imbalance can lead to larvae’s death. These results suggest that AAE possess insecticidal potential through the mechanisms of action of altering cellular redox state. Though further studies are required to confirm this, our study nevertheless contributes to a better understanding of AAE’s mechanisms of action as potential biopesticides in pest management, opening new perspectives on the development of compounds with insecticidal action.

  7. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  8. Measuring intracellular redox conditions using GFP-based sensors

    DEFF Research Database (Denmark)

    Björnberg, Olof; Ostergaard, Henrik; Winther, Jakob R

    2006-01-01

    Recent years have seen the development of methods for analyzing the redox conditions in specific compartments in living cells. These methods are based on genetically encoded sensors comprising variants of Green Fluorescent Protein in which vicinal cysteine residues have been introduced at solvent......-exposed positions. Several mutant forms have been identified in which formation of a disulfide bond between these cysteine residues results in changes of their fluorescence properties. The redox sensors have been characterized biochemically and found to behave differently, both spectroscopically and in terms...... of redox properties. As genetically encoded sensors they can be expressed in living cells and used for analysis of intracellular redox conditions; however, which parameters are measured depends on how the sensors interact with various cellular redox components. Results of both biochemical and cell...

  9. Epidermal growth factor receptor status in early stage breast cancer is associated with cellular proliferation but not cross-talk.

    Science.gov (United States)

    Stebbing, Justin; Thiyagarajan, Arun; Surendrakumar, Veena; Payne, Rachel; Krell, Jonathan; Szydlo, Richard; Peston, David; Lewis, Jacqueline S; Coombes, R Charles; Shousha, Sami

    2011-09-01

    The epidermal growth factor receptor (EGFR) is a therapeutic target in a number of settings in solid malignancies, but its role in breast cancer has remained unclear and controversial. In 810 primary breast cancers derived from patients suitable for cytotoxic chemotherapy, EGFR was prospectively measured and interactions with tumour and clinical correlates were tested to observe whether postulated cross-talk mechanisms are likely to modulate breast cancer metastasis and proliferation. A minority (79 tumours, 9.8%) were EGFR positive; in a multivariate analysis the likelihood of being EGFR positive was significantly increased for patients with grade 3 disease, compared with grade 1 (OR 15.6; 95% CI 2 to 122, p=0.0001), and for oestrogen receptor-negative status compared with positive (OR 24.1; 95% CI 12.7 to 46.00, p=0.0001). EGFR expression may play a role in breast cancer proliferation, but appears unlikely to modify tumour pathology via postulated mechanisms of oestrogen receptor/EGFR-mediated cross-talk.

  10. Organic and Conventional Yerba Mate (Ilex paraguariensis A. St. Hil Improves Metabolic Redox Status of Liver and Serum in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Cátia S. Branco

    2013-07-01

    Full Text Available Organic and conventional yerba mate (Ilex paraguariensis is widely used in South America to prepare nonalcoholic drinks rich in polyphenols. These compounds are able to prevent the generation of reactive species, thus minimizing the incidence of several diseases. In this perspective, we hypothesized that yerba mate may have protective effects against pentylenetetrazol (PTZ-induced oxidative damage in liver and serum of rats. Animals (n = 42 received distilled water (control or yerba mate (organic or conventional for fifteen days. Then, half of the rats of each group received 60 mg/kg PTZ intraperitoneally or saline solution. After 30 min the animals were euthanized and the liver and blood were collected. The results showed that organic and conventional yerba mate avoided PTZ-induced oxidative damage and nitric oxide production in the liver and serum of the rats. Moreover, both kinds of yerba mate prevented the decrease in enzymatic (superoxide dismutase and catalase and non-enzymatic (sulfhydryl protein content defenses in the liver and serum. In addition, histopathologic analysis of the liver showed that yerba mate reduced PTZ-induced cell damage. These findings indicate that yerba mate provides hepatoprotection and improves antioxidant status in the serum, which may contribute to the development of new therapeutic strategies using nutraceuticals drinks.

  11. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  12. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  13. Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: Evidence for differential redox buffering in seedlings and cotyledon.

    Directory of Open Access Journals (Sweden)

    Inès Karmous

    Full Text Available In agriculture, heavy metal contamination of soil interferes with processes associated with plant growth, development and productivity. Here, we describe oxidative and redox changes, and deleterious injury within cotyledons and seedlings caused by exposure of germinating (Phaseolus vulgaris L. var. soisson nain hâtif seeds to copper (Cu. Cu induced a marked delay in seedling growth, and was associated with biochemical disturbances in terms of intracellular oxidative status, redox regulation and energy metabolism. In response to these alterations, modulation of activities of antioxidant proteins (thioredoxin and glutathione reductase, peroxiredoxin occurred, thus preventing oxidative damage. In addition, oxidative modification of proteins was detected in both cotyledons and seedlings by one- and two-dimensional electrophoresis. These modified proteins may play roles in redox buffering. The changes in activities of redox proteins underline their fundamental roles in controlling redox homeostasis. However, observed differential redox responses in cotyledon and seedling tissues showed a major capacity of the seedlings' redox systems to protect the reduced status of protein thiols, thus suggesting quantitatively greater antioxidant protection of proteins in seedlings compared to cotyledon. To our knowledge, this is the first comprehensive redox biology investigation of the effect of Cu on seed germination.

  14. Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: Evidence for differential redox buffering in seedlings and cotyledon.

    Science.gov (United States)

    Karmous, Inès; Trevisan, Rafael; El Ferjani, Ezzeddine; Chaoui, Abdelilah; Sheehan, David

    2017-01-01

    In agriculture, heavy metal contamination of soil interferes with processes associated with plant growth, development and productivity. Here, we describe oxidative and redox changes, and deleterious injury within cotyledons and seedlings caused by exposure of germinating (Phaseolus vulgaris L. var. soisson nain hâtif) seeds to copper (Cu). Cu induced a marked delay in seedling growth, and was associated with biochemical disturbances in terms of intracellular oxidative status, redox regulation and energy metabolism. In response to these alterations, modulation of activities of antioxidant proteins (thioredoxin and glutathione reductase, peroxiredoxin) occurred, thus preventing oxidative damage. In addition, oxidative modification of proteins was detected in both cotyledons and seedlings by one- and two-dimensional electrophoresis. These modified proteins may play roles in redox buffering. The changes in activities of redox proteins underline their fundamental roles in controlling redox homeostasis. However, observed differential redox responses in cotyledon and seedling tissues showed a major capacity of the seedlings' redox systems to protect the reduced status of protein thiols, thus suggesting quantitatively greater antioxidant protection of proteins in seedlings compared to cotyledon. To our knowledge, this is the first comprehensive redox biology investigation of the effect of Cu on seed germination.

  15. Redox Species of Redox Flow Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2015-11-01

    Full Text Available Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  16. Defense Against Reactive Carbonyl Species Involves at Least Three Subcellular Compartments where Individual Components of the System Respond to Cellular Sugar Status.

    Science.gov (United States)

    Schmitz, Jessica; Dittmar, Isabell C; Brockmann, Jörn D; Schmidt, Marc; Hüdig, Meike; Rossoni, Alessandro W; Maurino, Veronica G

    2017-11-17

    Methylglyoxal (MGO) and glyoxal (GO) are toxic reactive carbonyl species generated as by-products of glycolysis. The pre-emption pathway for detoxification of these products, the glyoxalase (GLX) system, involves two consecutive reactions catalyzed by GLXI and GLXII. In Arabidopsis thaliana, the GLX system is encoded by three homologs of GLXI and three homologs of GLXII, from which several predicted GLXI and GLXII isoforms can be derived through alternative splicing. We identified the physiologically relevant splice forms using sequencing data and demonstrated that the resulting isoforms have different subcellular localizations. All three GLXI homologs are functional in vivo, as they complemented a yeast GLXI loss-of-function mutant. Efficient MGO and GO detoxification can be controlled by a switch in metal cofactor usage. MGO formation is closely connected to the flux through glycolysis and through the Calvin Benson cycle; accordingly, expression analysis indicated that GLXI is transcriptionally regulated by endogenous sugar levels. Analyses of Arabidopsis loss-of-function lines revealed that the elimination of toxic reactive carbonyl species during germination and seedling establishment depends on the activity of the cytosolic GLXI;3 isoform. The Arabidopsis GLX system involves the cytosol, chloroplasts, and mitochondria, which harbor individual components that might be utilized at specific developmental stages and respond differentially to cellular sugar status. © 2017 American Society of Plant Biologists. All rights reserved.

  17. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  18. Redox Regulation in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Sonam Parakh

    2013-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS.

  19. Redox Regulation in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Parakh, Sonam; Spencer, Damian M.; Halloran, Mark A.; Soo, Kai Y.; Atkin, Julie D.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS. PMID:23533690

  20. Redox Imbalance and Morphological Changes in Skin Fibroblasts in Typical Rett Syndrome

    Directory of Open Access Journals (Sweden)

    Cinzia Signorini

    2014-01-01

    Full Text Available Evidence of oxidative stress has been reported in the blood of patients with Rett syndrome (RTT, a neurodevelopmental disorder mainly caused by mutations in the gene encoding the Methyl-CpG-binding protein 2. Little is known regarding the redox status in RTT cellular systems and its relationship with the morphological phenotype. In RTT patients (n = 16 we investigated four different oxidative stress markers, F2-Isoprostanes (F2-IsoPs, F4-Neuroprostanes (F4-NeuroPs, nonprotein bound iron (NPBI, and (4-HNE PAs, and glutathione in one of the most accessible cells, that is, skin fibroblasts, and searched for possible changes in cellular/intracellular structure and qualitative modifications of synthesized collagen. Significantly increased F4-NeuroPs (12-folds, F2-IsoPs (7.5-folds NPBI (2.3-folds, 4-HNE PAs (1.48-folds, and GSSG (1.44-folds were detected, with significantly decreased GSH (−43.6% and GSH/GSSG ratio (−3.05 folds. A marked dilation of the rough endoplasmic reticulum cisternae, associated with several cytoplasmic multilamellar bodies, was detectable in RTT fibroblasts. Colocalization of collagen I and collagen III, as well as the percentage of type I collagen as derived by semiquantitative immunofluorescence staining analyses, appears to be significantly reduced in RTT cells. Our findings indicate the presence of a redox imbalance and previously unrecognized morphological skin fibroblast abnormalities in RTT patients.

  1. ROS-mediated redox signaling during cell differentiation in plants.

    Science.gov (United States)

    Schmidt, Romy; Schippers, Jos H M

    2015-08-01

    Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Genetically Encoded Fluorescent Redox Probes

    OpenAIRE

    Hui-Wang Ai; Wei Ren

    2013-01-01

    Redox processes are involved in almost every cell of the body as a consequence of aerobic life. In the past decades, redox biology has been increasingly recognized as one of the key themes in cell signaling. The progress has been accelerated by development of fluorescent probes that can monitor redox conditions and dynamics in cells and cell compartments. This short paper focuses on fluorescent redox probes that are genetically encoded, and discusses their properties, molecular mechanism, adv...

  3. Redox therapy in neonatal sepsis: reasons, targets, strategy, and agents.

    Science.gov (United States)

    Bajčetić, Milica; Spasić, Snežana; Spasojević, Ivan

    2014-09-01

    Neonatal sepsis is one of the most fulminating conditions in neonatal intensive care units. Antipathogen and supportive care are administered routinely, but do not deliver satisfactory results. In addition, the efforts to treat neonatal sepsis with anti-inflammatory agents have generally shown to be futile. The accumulating data imply that intracellular redox changes intertwined into neonatal sepsis redox cycle represent the main cause of dysfunction of mitochondria and cells in neonatal sepsis. Our aim here is to support the new philosophy in neonatal sepsis treatment, which involves the integration of mechanisms that are responsible for cellular dysfunction and organ failure, the recognition of the most important targets, and the selection of safe agents that can stop the neonatal sepsis redox cycle by hitting the hot spots. Redox-active agents that could be beneficial for neonatal sepsis treatment according to these criteria include lactoferrin, interleukin 10, zinc and selenium supplements, ibuprofen, edaravone, and pentoxifylline.

  4. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells

    Science.gov (United States)

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses. PMID:28184230

  5. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  6. Redox Flow Batteries, a Review

    OpenAIRE

    Weber, Adam Z.

    2013-01-01

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  7. Carbonyl Stress in Aging Process: Role of Vitamins and Phytochemicals as Redox Regulators

    Science.gov (United States)

    Ergin, Volkan; Hariry, Reza Ebrahimi; Karasu, Çimen

    2013-01-01

    There is a growing scientific agreement that the cellular redox regulators such as antioxidants, particularly the natural polyphenolic forms, may help lower the incidence of some pathologies, including metabolic diseases like diabetes and diabesity, cardiovascular and neurodegenerative abnormalities, and certain cancers or even have anti-aging properties. The recent researches indicate that the degree of metabolic modulation and adaptation response of cells to reductants as well as oxidants establish their survival and homeostasis, which is linked with very critical balance in imbalances in cellular redox capacity and signaling, and that might be an answer the questions why some antioxidants or phytochemicals potentially could do more harm than good, or why some proteins lose their function by increase interactions with glyco- and lipo-oxidation mediates in the cells (carbonyl stress). Nonetheless, pursue of healthy aging has led the use of antioxidants as a means to disrupt age-associated physiological dysfunctions, dysregulated metabolic processes or prevention of many age-related diseases. Although it is still early to define their exact clinical benefits for treating age-related disease, a diet rich in polyphenolic or other forms of antioxidants does seem to offer hope in delaying the onset of age-related disorders. It is now clear that any deficiency in antioxidant vitamins, inadequate enzymatic antioxidant defenses can distinctive for many age-related disease, and protein carbonylation can used as an indicator of oxidative stress associated diseases and aging status. This review examines antioxidant compounds and plant polyphenols as redox regulators in health, disease and aging processes with hope that a better understanding of the many mechanisms involved with these distinct compounds, which may lead to better health and novel treatment approaches for age-related diseases. PMID:24124633

  8. Genetically Encoded Fluorescent Redox Probes

    Directory of Open Access Journals (Sweden)

    Hui-Wang Ai

    2013-11-01

    Full Text Available Redox processes are involved in almost every cell of the body as a consequence of aerobic life. In the past decades, redox biology has been increasingly recognized as one of the key themes in cell signaling. The progress has been accelerated by development of fluorescent probes that can monitor redox conditions and dynamics in cells and cell compartments. This short paper focuses on fluorescent redox probes that are genetically encoded, and discusses their properties, molecular mechanism, advantages and pitfalls. Our recent work on reaction-based encoded probes that are responsive to particular redox signaling molecules is also reviewed. Future challenges and directions are also commented.

  9. Genetically encoded fluorescent redox probes.

    Science.gov (United States)

    Ren, Wei; Ai, Hui-Wang

    2013-11-11

    Redox processes are involved in almost every cell of the body as a consequence of aerobic life. In the past decades, redox biology has been increasingly recognized as one of the key themes in cell signaling. The progress has been accelerated by development of fluorescent probes that can monitor redox conditions and dynamics in cells and cell compartments. This short paper focuses on fluorescent redox probes that are genetically encoded, and discusses their properties, molecular mechanism, advantages and pitfalls. Our recent work on reaction-based encoded probes that are responsive to particular redox signaling molecules is also reviewed. Future challenges and directions are also commented.

  10. Ediacaran Redox Fluctuations

    Science.gov (United States)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2013-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  11. Hot semiworks Redox studies

    Energy Technology Data Exchange (ETDEWEB)

    Evans, T.F.; Tomlinson, R.E.

    1954-01-27

    The separations Hot Semiworks at the Hanford Atomic Products Operation was built in order to: (1) develop optimum conditions for the economic operation of the Redox and TBP plants, (2) procure engineering design data which would allow the specification of process equipment required for new processes such as Purex, (3) provide facilities for the study of future process and engineering problems on a semiworks scale employing radioactive process solutions, and (4) provide facilities for immediate trouble shooting for urgent separations plant problems. The initial operation of this facility was designed to develop conditions for the economic operation of the Redox Plant. These studies, covering a period from November, 1952 to October, 1953, are described in this report. The Redox process is used at Hanford for the separation of uranium and plutonium from fission products and from each other. The basis of the process is the preferential extraction of uranium and plutonium nitrates from an aqueous phase of high salting strength into an organic solvent (methyl isobutyl ketone) to effect the separation from fission products. This operation is conducted continuously in columns, packed with Raschig rings, through which the phases are passed counter-currently. Uranium and plutonium are separated by converting the plutonium to a lower valence state, in which form it is preferentially extracted back into an aqueous phase of high salting strength in a second column. Uranium is then returned to an aqueous phase of low salting strength in a third column. The products are further decontaminated in similar additional cycles. A detailed description of the process is given in the Redox Technical Manual.

  12. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  13. Redox control of plant growth and development.

    Science.gov (United States)

    Kocsy, Gábor; Tari, Irma; Vanková, Radomíra; Zechmann, Bernd; Gulyás, Zsolt; Poór, Péter; Galiba, Gábor

    2013-10-01

    Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. The Redox Potential of Hot Springs in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Fu Chen Menghau Sung

    2009-01-01

    Full Text Available Scientists began acquiring the basic of geology, occurrence, water temperature and chemistry of hot springs in Tai wan over a century ago. However, data regarding redox potential and important redox couples still remains limited. This study explores the redox status of hot springs in Taiwan by measuring Eh in the field and by determining the concentrations of commonly found redox couples, i.e., O2/H2O, NO3 -/NH4 +, and HS-/SO4 -2. Water samples were collected at hot spring discharge pools or the heads of water wells using a pump. A total of 11 hot springs located at 9 different locations across Taiwan were surveyed.

  15. Characterisation of the Redox Sensitive NMDA Receptor

    KAUST Repository

    Alzahrani, Ohood

    2016-05-01

    Glucose entry into the brain and its subsequent metabolism to L-lactate, regulated by astrocytes, plays a major role in synaptic plasticity and memory formation. A recent study has shown that L-lactate produced by the brain upon stimulation of glycolysis, and glycogen-derived L-lactate from astrocytes and its transport into neurons, is crucial for memory formation. A recent study revealed the molecular mechanisms that underlie the role of L-lactate in neuronal plasticity and long-term memory formation. L-lactate was shown to induce a cascade of molecular events via modulation of redox-sensitive N-Methyl-D-aspartate (NMDA) receptor activity that was mimicked by nicotinamide adenine dinucleotide hydride (NADH) co-enzyme. This indicated that changes in cellular redox state, following L-lactate transport inside the cells and its subsequent metabolism, production of NADH, and favouring a reduced state are the key effects of L-lactate. Therefore, we are investigating the role of L-lactate in modulating NMDA receptor function via redox modulatory sites. Accordingly, crucial redox-sensitive cysteine residues, Cys320 and Cys87, of the NR2A NMDA receptor subunit are mutated using site-directed mutation, transfected, and expressed in HEK293 cells. This cellular system will then be used to characterise and monitor its activity upon Llactate stimulation, compared to the wild type. This will be achieved by calcium imaging, using fluorescent microscopy. Our data shows that L-lactate potentiated NMDA receptor activity and increased intracellular calcium influx in NR1/NR2A wild type compared to the control condition (WT NR1/NR2A perfused with (1μM) glutamate and (1μM) glycine agonist only), showing faster response initiation and slower decay rate of the calcium signal to the baseline. Additionally, stimulating with L-lactate associated with greater numbers of cells having high fluorescent intensity (peak amplitude) compared to the control. Furthermore, L-lactate rescued the

  16. Redox control of senescence and age-related disease

    Directory of Open Access Journals (Sweden)

    Akshaya Chandrasekaran

    2017-04-01

    Full Text Available The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.

  17. Redox control of senescence and age-related disease.

    Science.gov (United States)

    Chandrasekaran, Akshaya; Idelchik, Maria Del Pilar Sosa; Melendez, J Andrés

    2017-04-01

    The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, Kendra K.S., E-mail: knordgre@d.umn.edu; Wallace, Kendall B., E-mail: kwallace@d.umn.edu

    2014-01-01

    Doxorubicin (DOX) is a widely prescribed treatment for a broad scope of cancers, but clinical utility is limited by the cumulative, dose-dependent cardiomyopathy that occurs with repeated administration. DOX-induced cardiotoxicity is associated with the production of reactive oxygen species (ROS) and oxidation of lipids, DNA and proteins. A major cellular defense mechanism against such oxidative stress is activation of the Keap1/Nrf2-antioxidant response element (ARE) signaling pathway, which transcriptionally regulates expression of antioxidant genes such as Nqo1 and Gstp1. In the present study, we address the hypothesis that an initial event associated with DOX-induced oxidative stress is activation of the Keap1/Nrf2-dependent expression of antioxidant genes and that this is regulated through drug-induced changes in redox status of the Keap1 protein. Incubation of H9c2 rat cardiac myoblasts with DOX resulted in a time- and dose-dependent decrease in non-protein sulfhydryl groups. Associated with this was a near 2-fold increase in Nrf2 protein content and enhanced transcription of several of the Nrf2-regulated down-stream genes, including Gstp1, Ugt1a1, and Nqo1; the expression of Nfe2l2 (Nrf2) itself was unaltered. Furthermore, both the redox status and the total amount of Keap1 protein were significantly decreased by DOX, with the loss of Keap1 being due to both inhibited gene expression and increased autophagic, but not proteasomal, degradation. These findings identify the Keap1/Nrf2 pathway as a potentially important initial response to acute DOX-induced oxidative injury, with the primary regulatory events being the oxidation and autophagic degradation of the redox sensor Keap1 protein. - Highlights: • DOX caused a ∼2-fold increase in Nrf2 protein content. • DOX enhanced transcription of several Nrf2-regulated down-stream genes. • Redox status and total amount of Keap1 protein were significantly decreased by DOX. • Loss of Keap1 protein was due to

  19. Systemic Redox Imbalance in Chronic Kidney Disease: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Konstantina P. Poulianiti

    2016-01-01

    Full Text Available Patients with chronic kidney disease (CKD experience imbalance between oxygen reactive species (ROS production and antioxidant defenses leading to cell and tissue damage. However, it remains unclear at which stage of renal insufficiency the redox imbalance becomes more profound. The aim of this systematic review was to provide an update on recent advances in our understanding of how the redox status changes in the progression of renal disease from predialysis stages 1 to 4 to end stage 5 and whether the various treatments and dialysis modalities influence the redox balance. A systematic review was conducted searching PubMed and Scopus by using the Cochrane and PRISMA guidelines. In total, thirty-nine studies met the inclusion criteria and were reviewed. Even from an early stage, imbalance in redox status is evident and as the kidney function worsens it becomes more profound. Hemodialysis therapy per se seems to negatively influence the redox status by the elevation of lipid peroxidation markers, protein carbonylation, and impairing erythrocyte antioxidant defense. However, other dialysis modalities do not so far appear to confer advantages. Supplementation with antioxidants might assist and should be considered as an early intervention to halt premature atherogenesis development at an early stage of CKD.

  20. Mitochondrial and cellular mechanisms for managing lipid excess

    Directory of Open Access Journals (Sweden)

    Miguel A Aon

    2014-07-01

    Full Text Available Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete.Cells store fatty acids (FAs as triacylglycerol and package them into cytoplasmic lipid droplets (LDs. New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates.Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g. exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain ROS within levels compatible with signaling while ensuring robust and reliable energy supply.

  1. Impact of exercise training on redox signaling in cardiovascular diseases.

    Science.gov (United States)

    Campos, Juliane C; Gomes, Kátia M S; Ferreira, Julio C B

    2013-12-01

    Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Redox Chemistry of Rainwater

    Science.gov (United States)

    Willey, J. D.; Mullaugh, K. M.; Kieber, R. J.; Avery, B.; Mead, R. N.

    2011-12-01

    Oxidation-reduction processes affect the chemical speciation of many inorganic and organic species in rainwater. The presence and concentrations of certain reactive radicals is also critically dependent upon redox chemistry. There are many oxidants and reductants in rainwater, and hence many competing redox reactions. Measurement of both halves of a redox couple can yield important information about rainwater pe- (-log electron activity) and also identify relevant oxidants and reductants for that particular redox speciation. Several redox couples have been measured in rainwater in Wilmington, NC, USA, as well as at other locations. There are at least three relevant oxidant-reductant couples in rainwater rather than a unique pe-. Mn redox speciation responds to the molecular oxygen-water couple (pe- = 15.9 for rainwater in contact with air and pH of 4.7). Fe, Hg and the nitrate-nitrite-ammonium system appear to be controlled by the molecular oxygen-hydrogen peroxide couple, with hydrogen peroxide acting as a reductant (pe- = 9.2). Cu responds to superoxide as a reductant with molecular oxygen as an oxidant (pe- = 2.7). Direct Pt electrode measurements of redox potential in rainwater consistently yield lower redox potentials than predicted by the molecular oxygen-water couple, indicating the redox chemistry of rainwater is more complex and rainwater is less oxidizing than previously thought.

  3. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass.

    Science.gov (United States)

    Polotow, Tatiana G; Poppe, Sandra C; Vardaris, Cristina V; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F; Bondan, Eduardo F; Barros, Marcelo P

    2015-09-28

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.

  4. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass

    Directory of Open Access Journals (Sweden)

    Tatiana G. Polotow

    2015-09-01

    Full Text Available Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs and the antioxidant carotenoid astaxanthin (ASTA. However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation, drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.

  5. Glutathione modulates the toxicity of, but is not a biologically relevant reductant for, the Pseudomonas aeruginosa redox toxin pyocyanin.

    Science.gov (United States)

    Muller, Michael

    2011-04-15

    Pyocyanin is an important redox toxin produced by the common human pathogen Pseudomonas aeruginosa. It generates reactive oxygen species (ROS) that alter intracellular redox status and cell function. Reducing equivalents for pyocyanin are provided by intracellular NAD(P)H and, it has been reported, glutathione (GSH). Cellular GSH levels are at least 1-2 orders of magnitude greater than NAD(P)H; therefore GSH should represent the major reductant for pyocyanin and potentiate its toxicity. Paradoxically, GSH has been found to inhibit pyocyanin toxicity in cellular models. This study was undertaken to evaluate the potential of GSH as a biologically relevant reductant for pyocyanin. As observed using spectrophotometry, under aerobic conditions pyocyanin readily oxidized NADPH, whereas oxidation of GSH could not be detected. Under anaerobic conditions pyocyanin was reduced by NADPH, but reduction by GSH could not be detected. Reduction of molecular oxygen and the formation of ROS readily proceeded in the presence of pyocyanin and NADPH, whereas GSH was without effect. Finally, exposure of normal human dermal fibroblasts to subcytotoxic concentrations of pyocyanin did not lead to depletion of endogenous GSH, but exogenous GSH provided protection against the senescence-inducing effects of the toxin. In summary, GSH does not reduce pyocyanin under physiologically relevant conditions or contribute to pyocyanin toxicity. However, GSH does provide protection against the deleterious effects of this important bacterial toxin on mammalian cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. New approach to modulate retinal cellular toxic effects of high glucose using marine epa and dha

    Directory of Open Access Journals (Sweden)

    Fagon Roxane

    2011-06-01

    Full Text Available Abstract Background Protective effects of omega-3 fatty acids against cellular damages of high glucose were studied on retinal pigmented epithelial (RPE cells. Methods Retinal epithelial cells were incubated with omega-3 marine oils rich in EPA and DHA and then with high glucose (25 mM for 48 hours. Cellular responses were compared to normal glucose (5 mM: intracellular redox status, reactive oxygen species (ROS, mitochondrial succinate deshydrogenase activity, inflammatory cytokines release and caveolin-1 expression were evaluated using microplate cytometry, ELISA and flow cytometry techniques. Fatty acids incorporation in retinal cell membranes was analysed using chromatography. Results Preincubation of the cells with fish oil decreased ROS overproduction, mitochondrial alterations and TNFα release. These protective effects could be attributed to an increase in caveolin-1 expression induced by marine oil. Conclusion Marine formulations rich in omega-3 fatty acids represent a promising therapeutic approach for diabetic retinopathy.

  7. Direct electrochemistry of redox proteins

    NARCIS (Netherlands)

    Heering, H.A.

    1995-01-01

    The goal of the project was to obtain more detailed insight in interactions between redox proteins and solid electrodes and the mechanisms of electron transfer. In addition to this, the influence of the protein environment on the redox properties of the active site and the possible

  8. Redox Modulation by Amaranth Oil in Human Lung Fibroblasts

    NARCIS (Netherlands)

    Semen, K.O.; den Hartog, G.J.M.; Kaminsky, D.V.; Sirota, T.V.; Maij, N.G.A.A.; Yelisyeyeva, O.P.; Bast, A.

    2013-01-01

    Amaranth oil has several health benefits. It has lipid lowering, anti-diabetic, immune modulatory and cytoprotective properties, activates the function of mitochondria and improves heart rate variability. It has been suggested that the effect of amaranth oil on redox status is involved in this

  9. Characterization of plasma thiol redox potential in a common marmoset model of aging

    Directory of Open Access Journals (Sweden)

    James R. Roede

    2013-01-01

    Full Text Available Due to its short lifespan, ease of use and age-related pathologies that mirror those observed in humans, the common marmoset (Callithrix jacchus is poised to become a standard nonhuman primate model of aging. Blood and extracellular fluid possess two major thiol-dependent redox nodes involving cysteine (Cys, cystine (CySS, glutathione (GSH and glutathione disulfide (GSSG. Alteration in these plasma redox nodes significantly affects cellular physiology, and oxidation of the plasma Cys/CySS redox potential (EhCySS is associated with aging and disease risk in humans. The purpose of this study was to determine age-related changes in plasma redox metabolites and corresponding redox potentials (Eh to further validate the marmoset as a nonhuman primate model of aging. We measured plasma thiol redox states in marmosets and used existing human data with multivariate adaptive regression splines (MARS to model the relationships between age and redox metabolites. A classification accuracy of 70.2% and an AUC of 0.703 were achieved using the MARS model built from the marmoset redox data to classify the human samples as young or old. These results show that common marmosets provide a useful model for thiol redox biology of aging.

  10. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  11. Vegetarian diets and public health: biomarker and redox connections.

    Science.gov (United States)

    Benzie, Iris F F; Wachtel-Galor, Sissi

    2010-11-15

    Vegetarian diets are rich in antioxidant phytochemicals. However, they may not act as antioxidants in vivo, and yet still have important signaling and regulatory functions. Some may act as pro-oxidants, modulating cellular redox tone and oxidizing redox sensitive sites. In this review, evidence for health benefits of vegetarian diets is presented from different perspectives: epidemiological, biomarker, evolutionary, and public health, as well as antioxidant. From the perspective of molecular connections between diet and health, evidence of a role for plasma ascorbic acid as a biomarker for future disease risk is presented. Basic concepts of redox-based cell signaling are presented, and effects of antioxidant phytochemicals on signaling, especially via redox tone, sulfur switches and the Antioxidant Response Element (ARE), are explored. Sufficient scientific evidence exists for public health policy to promote a plant-rich diet for health promotion. This does not need to wait for science to provide all the answers as to why and how. However, action and interplay of dietary antioxidants in the nonequilibrium systems that control redox balance, cell signaling, and cell function provide rich ground for research to advance understanding of orthomolecular nutrition and provide science-based evidence to advance public health in our aging population.

  12. 1,4-Naphthoquinones: From Oxidative Damage to Cellular and Inter-Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Lars-Oliver Klotz

    2014-09-01

    Full Text Available Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others to cellular and inter-cellular signaling processes are discussed: (i naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.

  13. Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis.

    Science.gov (United States)

    Woehle, Christian; Dagan, Tal; Landan, Giddy; Vardi, Assaf; Rosenwasser, Shilo

    2017-05-15

    The redox-sensitive proteome (RSP) consists of protein thiols that undergo redox reactions, playing an important role in coordinating cellular processes. Here, we applied a large-scale phylogenomic reconstruction approach in the model diatom Phaeodactylum tricornutum to map the evolutionary origins of the eukaryotic RSP. The majority of P. tricornutum redox-sensitive cysteines (76%) is specific to eukaryotes, yet these are encoded in genes that are mostly of a prokaryotic origin (57%). Furthermore, we find a threefold enrichment in redox-sensitive cysteines in genes that were gained by endosymbiotic gene transfer during the primary plastid acquisition. The secondary endosymbiosis event coincides with frequent introduction of reactive cysteines into existing proteins. While the plastid acquisition imposed an increase in the production of reactive oxygen species, our results suggest that it was accompanied by significant expansion of the RSP, providing redox regulatory networks the ability to cope with fluctuating environmental conditions.

  14. Redox environment in stem and differentiated cells: A quantitative approach

    Directory of Open Access Journals (Sweden)

    O.G. Lyublinskaya

    2017-08-01

    Full Text Available Stem cells are believed to maintain a specific intracellular redox status through a combination of enhanced removal capacity and limited production of ROS. In the present study, we challenge this assumption by developing a quantitative approach for the analysis of the pro- and antioxidant ability of human embryonic stem cells in comparison with their differentiated descendants, as well as adult stem and non-stem cells. Our measurements showed that embryonic stem cells are characterized by low ROS level, low rate of extracellular hydrogen peroxide removal and low threshold for peroxide-induced cytotoxicity. However, biochemical normalization of these parameters to cell volume/protein leads to matching of normalized values in stem and differentiated cells and shows that tested in the present study cells (human embryonic stem cells and their fibroblast-like progenies, adult mesenchymal stem cells, lymphocytes, HeLa maintain similar intracellular redox status. Based on these observations, we propose to use ROS concentration averaged over the cell volume instead of ROS level as a measure of intracellular redox balance. We show that attempts to use ROS level for comparative analysis of redox status of morphologically different cells could lead to false conclusions. Methods for the assessment of ROS concentration based on flow cytometry analysis with the use of H2DCFDA dye and HyPer, genetically encoded probe for hydrogen peroxide, are discussed.

  15. Redox characterization of functioning skeletal muscle

    Directory of Open Access Journals (Sweden)

    Li eZuo

    2015-11-01

    Full Text Available Skeletal muscle physiology is influenced by the presence of chemically reactive molecules such as reactive oxygen species (ROS. These molecules regulate multiple redox-sensitive signaling pathways that play a critical role in cellular processes including gene expression and protein modification. While ROS have gained much attention for their harmful effects in muscle fatigue and dysfunction, research has also shown ROS to facilitate muscle adaptation after stressors such as physical exercise. This manuscript aims to provide a comprehensive review of the current understanding of redox signaling in skeletal muscle. ROS-induced oxidative stress and its role in the aging process are discussed. Mitochondria have been shown to generate large amounts of ROS during muscular contractions, and thus are susceptible to oxidative stress. ROS can modify proteins located in the mitochondrial membrane leading to cell death and osmotic swelling. ROS also contribute to the necrosis and inflammation of muscle fibers that is associated with muscular diseases including Duchenne muscular dystrophy (DMD. It is imperative that future research continues to investigate the exact role of ROS in normal skeletal muscle function as well as muscular dysfunction and disease.

  16. Redox Properties of Free Radicals.

    Science.gov (United States)

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  17. Differential alkylation-based redox proteomics - Lessons learnt

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    -sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here...... is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original......, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine...

  18. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche.

    Science.gov (United States)

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-10-09

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche.

  19. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ca2+ signalling in the myocardium by (redox regulation of PKA/CaMKII

    Directory of Open Access Journals (Sweden)

    Alex S Johnston

    2015-08-01

    Full Text Available Homeostatic cardiac function is maintained by a complex network of interdependent signaling pathways which become compromised during disease progression. Excitation-contraction-coupling, the translation of an electrical signal to a contractile response is critically dependent on a tightly controlled sequence of events culminating in a rise in intracellular Ca2+ and subsequent contraction of the myocardium. Dysregulation of this Ca2+ handling system as well as increases in the production of reactive oxygen species (ROS are two major contributing factors to myocardial disease progression. ROS, generated by cellular oxidases and by-products of cellular metabolism, are highly reactive oxygen derivatives that function as key secondary messengers within the heart and contribute to normal homeostatic function. However, excessive production of ROS, as in disease, can directly interact with kinases critical for Ca2+ regulation. This post-translational oxidative modification therefore links changes in the redox status of the myocardium to phospho-regulated pathways essential for its function. This review aims to describe the oxidative regulation of the Ca2+/calmodulin-dependent kinase II (CaMKII and cAMP-dependent protein kinase A (PKA, and the subsequent impact this has on Ca2+ handling within the myocardium. Elucidating the impact of alterations in intracellular ROS production on Ca2+ dynamics through oxidative modification of key ROS sensing kinases, may provide novel therapeutic targets for preventing myocardial disease progression.

  1. Enteric commensal bacteria induce extracellular signal-regulated kinase pathway signaling via formyl peptide receptor-dependent redox modulation of dual specific phosphatase 3.

    Science.gov (United States)

    Wentworth, Christy C; Alam, Ashfaqul; Jones, Rheinallt M; Nusrat, Asma; Neish, Andrew S

    2011-11-04

    The normal microbial occupants of the mammalian intestine are crucial for maintaining gut homeostasis, yet the mechanisms by which intestinal cells perceive and respond to the microbiota are largely unknown. Intestinal epithelial contact with commensal bacteria and/or their products has been shown to activate noninflammatory signaling pathways, such as extracellular signal-related kinase (ERK), thus influencing homeostatic processes. We previously demonstrated that commensal bacteria stimulate ERK pathway activity via interaction with formyl peptide receptors (FPRs). In the current study, we expand on these findings and show that commensal bacteria initiate ERK signaling through rapid FPR-dependent reactive oxygen species (ROS) generation and subsequent modulation of MAP kinase phosphatase redox status. ROS generation induced by the commensal bacteria Lactobacillus rhamnosus GG and the FPR peptide ligand, N-formyl-Met-Leu-Phe, was abolished in the presence of selective inhibitors for G protein-coupled signaling and FPR ligand interaction. In addition, pretreatment of cells with inhibitors of ROS generation attenuated commensal bacteria-induced ERK signaling, indicating that ROS generation is required for ERK pathway activation. Bacterial colonization also led to oxidative inactivation of the redox-sensitive and ERK-specific phosphatase, DUSP3/VHR, and consequent stimulation of ERK pathway signaling. Together, these data demonstrate that commensal bacteria and their products activate ROS signaling in an FPR-dependent manner and define a mechanism by which cellular ROS influences the ERK pathway through a redox-sensitive regulatory circuit.

  2. Alcohol Induces Mitochondrial Redox Imbalance in Alveolar Macrophages

    Science.gov (United States)

    Liang, Yan; Harris, Frank L.; Jones, Dean P.; Brown, Lou Ann S.

    2013-01-01

    Alcohol abuse suppresses the immune responses of alveolar macrophages (AMs) and increases the risk of a respiratory infection via chronic oxidative stress and depletion of critical antioxidants within alveolar cells and the alveolar lining fluid. Although alcohol-induced mitochondrial oxidative stress has been demonstrated, the oxidation of the mitochondrial thioredoxin redox circuit in response to alcohol has not been examined. In vitro ethanol exposure of a mouse AM cell line and AMs from an ethanol-fed mice demonstrated NADPH depletion concomitant with oxidation of mitochondrial glutathione and oxidation of the thioredoxin redox circuit system including thioredoxin 2 (Trx2) and thioredoxin 2 reductase (Trx2R). Mitochondrial peroxiredoxins (Prdxs), which are critical for the reduction of the thioredoxin circuit, were irreversibly hyperoxidized to an inactive form. Ethanol also decreased the mRNAs for Trx2, Trx2R, Prdx3, and Prdx5 plus the mitochondrial thiol-disulfide proteins glutaredoxin 2, glutathione reductase, and glutathione peroxidase 2. Thus, the mitochondrial thioredoxin circuit was highly oxidized by ethanol, thereby compromising the mitochondrial antioxidant capacity and ability to detoxify mitochondrial reactive oxygen species. Oxidation of the mitochondrial thioredoxin redox circuit would further compromise the transient oxidation of thiol groups within specific proteins, the basis of redox signaling, and the processes by which cells respond to oxidants. Impaired mitochondria can then jeopardize cellular function of AMs such as phagocytosis which may explain the increased risk of respiratory infection in subjects with an alcohol use disorder. PMID:24140864

  3. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    OpenAIRE

    Spiers, Jereme G.; Hsiao-Jou Cortina eChen; Conrad eSernia; Lavidis, Nickolas A.

    2015-01-01

    Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis induce activity in the cellular reduction-oxidation (redox) system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to prese...

  4. Modulatory effect of silymarin on nuclear factor-erythroid-2-related factor 2 regulated redox status, nuclear factor-κB mediated inflammation and apoptosis in experimental gastric ulcer.

    Science.gov (United States)

    Arafa Keshk, Walaa; Zahran, Samer Mahmoud; Katary, Mohamed Alaa; Abd-Elaziz Ali, Darin

    2017-08-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) consumption has been commonly associated with gastric mucosal lesions including gastric ulcer. Silymarin (SM) is a flavonoid mixture with anti-oxidant and anti-inflammatory activities which explain its protective role against hepatic and renal injuries. However, its impact on gastric ulcer has not yet been elucidated. Thus we went further to investigate the potential protective effects of SM against indomethacin-induced gastric injury in rats. Pretreatment with SM (50 mg/kg orally) attenuated the severity of gastric mucosal damage as evidenced by decreasing ulcer index (UI) and ulcer score, improvement of disturbed histopathologicl features to be insignificant with those induced by the reference anti-ulcer drug. Pretreatment with SM also suppressed gastric inflammation by decreasing myeloperoxidase activity, tumer necrosis factor-α (TNF- α) and interleukin 6 (IL6) levels along with nuclear factor kappa B p65 (NF-κB) expression. Meanwhile, SM prevent gastric oxidative stress via inhibition of lipid peroxides formation, enhancement of glutathione peroxidase, superoxide dismutase activities and up-regulation of nuclear factor-erythroid-2-related factor 2 (Nrf2), the redox-sensitive master regulator of oxidative stress signaling. In conclusion, the results herein revealed that SM has a gastro-protective effect which is mediated via suppression of gastric inflammation, oxidative stress, increased the anti-oxidant and the cyto-protective defense mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect [v1; ref status: indexed, http://f1000r.es/a0

    Directory of Open Access Journals (Sweden)

    Halina Witkiewicz

    2013-01-01

    Full Text Available Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect. Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis, gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in

  6. Redox Pioneer: Professor Joseph Loscalzo

    OpenAIRE

    Leopold, Jane A.

    2010-01-01

    Dr. Joseph Loscalzo (M.D., 1978; Ph.D., 1977) is recognized here as a Redox Pioneer because he has published two articles in the field of antioxidant/redox biology that have been cited more than 1,000 times and 22 articles that have been cited more than 100 times. Dr. Loscalzo is known for his seminal contributions to our understanding of the vascular biology of nitric oxide. His initial discovery that the antiplatelet effects of organic nitrates are potentiated by thiols through a mechanism ...

  7. Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity

    Directory of Open Access Journals (Sweden)

    He N. Xu

    2014-03-01

    Full Text Available NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes as well as in the regulation of embryonic development and aging. To fluorimetrically assess the mitochondrial redox state, Dr. Chance and co-workers measured the fluorescence of NADH and oxidized flavoproteins (Fp including flavin–adenine–dinucleotide (FAD and demonstrated their ratio (i.e. the redox ratio is a sensitive indicator of the mitochondrial redox states. The Chance redox scanner was built to simultaneously measure NADH and Fp in tissue at submillimeter scale in 3D using the freeze-trap protocol. This paper summarizes our recent research experience, development and new applications of the redox scanning technique in collaboration with Dr. Chance beginning in 2005. Dr. Chance initiated or actively involved in many of the projects during the last several years of his life. We advanced the redox scanning technique by measuring the nominal concentrations (in reference to the frozen solution standards of the endogenous fluorescent analytes, i.e., [NADH] and [Fp] to quantify the redox ratios in various biological tissues. The advancement has enabled us to identify an array of the redox indices as quantitative imaging biomarkers (including [NADH], [Fp], [Fp]/([NADH]+[Fp], [NADH]/[Fp], and their standard deviations for studying some important biological questions on cancer and normal tissue metabolism. We found that the redox indices were associated or changed with (1 tumorigenesis (cancer versus non-cancer of human breast tissue biopsies; (2 tumor metastatic potential; (3 tumor glucose uptake; (4 tumor p53 status; (5 PI3K pathway activation in pre-malignant tissue; (6 therapeutic effects on tumors; (7 embryonic stem cell differentiation; (8 the heart under fasting. Together, our work demonstrated that the tissue redox indices obtained from the redox scanning technique may provide useful information about tissue metabolism and physiology status in normal

  8. Pycnogenol attenuates the symptoms of immune dysfunction through restoring a cellular antioxidant status in low micronutrient-induced immune deficient mice

    Science.gov (United States)

    Lee, Jeongmin; Nam, Da-Eun; Kim, Ok-Kyung

    2014-01-01

    BACKGROUND/OBJECTIVES We investigated the effect of Pycnogenol (Pyc) on survival and immune dysfunction of C57BL/6 mice induced by low micronutrient supplementation. MATERIALS/METHODS Female C57/BL/6 mice were fed a diet containing 7.5% of the recommended amount of micronutrients for a period of 12 wks (immunological assay) and 18 wks (survival test). For immunological assay, lymphocyte proliferation, cytokine regulation, and hepatic oxidative status were determined. RESLUTS Pyc supplementation with 50 and 100 mg·kg-1·bw·d-1 resulted in partial extension of the median survival time. Pyc supplementation led to increased T and B cell response against mitogens and recovery of an abnormal shift of cytokine pattern designated by the decreased secretion of Th1 cytokine and increased secretion of Th2 cytokine. Hepatic vitamin E level was significantly decreased by micronutrient deficiency, in accordance with increased hepatic lipid peroxidation level. However, Pyc supplementation resulted in a dose-dependent reduction of hepatic lipid peroxidation, which may result from restoration of hepatic vitamin E level. CONCLUSION Findings of this study suggest that Pyc supplementation ameliorates premature death by restoring immune dysfunction, such as increasing lymphocyte proliferation and regulation of cytokine release from helper T cells, which may result from the antioxidative ability of Pyc. PMID:25324933

  9. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean ( Vicia faba L.)

    Science.gov (United States)

    Anjum, Naser A.; Singh, Neetu; Singh, Manoj K.; Shah, Zahoor A.; Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal

    2013-07-01

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed "graphene oxide") are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop—faba bean ( Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L-1) of graphene oxide (0.5-5 μm) and evaluates glutathione (γ-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L-1), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L-1) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and glutathione-metabolizing enzymes.

  10. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State.

    Science.gov (United States)

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Inborn defects of the tricarboxylic acid (TCA) cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH), pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  11. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State

    Directory of Open Access Journals (Sweden)

    Simone Cardaci

    2012-01-01

    Full Text Available Inborn defects of the tricarboxylic acid (TCA cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH, fumarate hydratase (FH, and isocitrate dehydrogenase (IDH, pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  12. Electrical Microengineering of Redox Enzymes

    Science.gov (United States)

    1994-03-31

    as cytochrome c, myoglobin. ferredoxin and phycocyanin ) has been studied by Kuwana, Hill, Hawkridgc. Blount, Bowden. Armstrong and their colleagues.4...shell- around their redox centers. (such as cytochrome c,A h wu w AN uv. myoglobin. ferredoxin and phycocyanin ) ha•e also shown that. e~en though these

  13. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  14. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  15. Skin Redox Balance Maintenance: The Need for an Nrf2-Activator Delivery System

    Directory of Open Access Journals (Sweden)

    Maya Ben-Yehuda Greenwald

    2016-01-01

    Full Text Available The skin, being the largest organ of the body, functions as a barrier between our body and the environment. It is consistently exposed to various exogenous and endogenous stressors (e.g., air pollutants, ionizing and non-ionizing irradiation, toxins, mitochondrial metabolism, enzyme activity, inflammatory process, etc. producing reactive oxygen species (ROS and physical damage (e.g., wounds, sunburns also resulting in reactive oxygen species production. Although skin is equipped with an array of defense mechanisms to counteract reactive oxygen species, augmented exposure and continued reactive oxygen species might result in excessive oxidative stress leading to many skin disorders including inflammatory diseases, pigmenting disorders and some types of cutaneous malignancy. The nuclear factor erythroid 2-related factor 2 (Nrf2 is an emerging regulator of cellular resistance and of defensive enzymes such as the phase II enzymes. Induction of the Keap1–Nrf2 pathway may have a beneficial effect in the treatment of a large number of skin disorders by stimulating an endogenous defense mechanism. However, prolonged and enhanced activation of this pathway is detrimental and, thus, limits the therapeutic potential of Keap1–Nrf2 modulators. Here, we review the consequences of oxidative stress to the skin, and the defense mechanisms that skin is equipped with. We describe the challenges of maintaining skin redox balance and its impact on skin status and function. Finally, we suggest a novel strategy for maintenance of skin redox homeostasis by modulating the Keap1–Nrf2 pathway using nanotechnology-based delivery systems.

  16. S-Glutathionylation and Redox Protein Signaling in Drug Addiction.

    Science.gov (United States)

    Womersley, Jacqueline S; Uys, Joachim D

    2016-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin. Copyright © 2016. Published by Elsevier Inc.

  17. Targeting the Redox Balance in Inflammatory Skin Conditions

    Directory of Open Access Journals (Sweden)

    Ditte M. S. Lundvig

    2013-04-01

    Full Text Available Reactive oxygen species (ROS can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative stress has been linked to various inflammatory diseases. Inflammation is an essential response in the protection against injurious insults and thus important at the onset of wound healing. However, hampered resolution of inflammation can result in a chronic, exaggerated response with additional tissue damage. In the pathogenesis of several inflammatory skin conditions, e.g., sunburn and psoriasis, inflammatory-mediated tissue damage is central. The prolonged release of excess ROS in the skin can aggravate inflammatory injury and promote chronic inflammation. The cellular redox balance is therefore tightly regulated by several (enzymatic antioxidants and pro-oxidants; however, in case of chronic inflammation, the antioxidant system may be depleted, and prolonged oxidative stress occurs. Due to the central role of ROS in inflammatory pathologies, restoring the redox balance forms an innovative therapeutic target in the development of new strategies for treating inflammatory skin conditions. Nevertheless, the clinical use of antioxidant-related therapies is still in its infancy.

  18. Series of quinone-containing nanosensors for biologically relevant redox potential determination by surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Thomson, Patrick I T; Camus, Victoria L; Hu, Yuyu; Campbell, Colin J

    2015-01-01

    Redox potential is of key importance in the control and regulation of cellular function and lifecycle, and previous approaches to measuring the biological redox potential noninvasively in real time are limited to areas of hypoxia or normoxia. In this paper, we extend our previous work on nanoparticle-based intracellular nanosensors to cover a much wider redox potential range of -470 to +130 mV vs NHE, which includes the redox potential range occupied by cells in a state of oxidative stress. The nanosensors are rationally designed to target different areas of this redox potential range and are monitored by surface-enhanced Raman spectroscopy, which will permit noninvasive real-time imaging of cells undergoing oxidative stress.

  19. Oxygen in human health from life to death – An approach to teaching redox biology and signaling to graduate and medical students

    Directory of Open Access Journals (Sweden)

    Margaret M. Briehl

    2015-08-01

    Full Text Available In the absence of oxygen human life is measured in minutes. In the presence of oxygen, normal metabolism generates reactive species (ROS that have the potential to cause cell injury contributing to human aging and disease. Between these extremes, organisms have developed means for sensing oxygen and ROS and regulating their cellular processes in response. Redox signaling contributes to the control of cell proliferation and death. Aberrant redox signaling underlies many human diseases. The attributes acquired by altered redox homeostasis in cancer cells illustrate this particularly well. This teaching review and the accompanying illustrations provide an introduction to redox biology and signaling aimed at instructors of graduate and medical students.

  20. Glutathione: new roles in redox signalling for an old antioxidant

    Directory of Open Access Journals (Sweden)

    KATIA eAQUILANO

    2014-08-01

    Full Text Available The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signalling. In particular, GSH is involved in nutrient metabolism, antioxidant defence and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signalling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy and viral infection.

  1. Anxiety disorders and accelerated cellular ageing

    NARCIS (Netherlands)

    Verhoeven, J.E.; Revesz, D.; van Oppen, P.C.; Epel, E.S.; Wolkowitz, O.M.; Penninx, B.W.

    2015-01-01

    Background: Anxiety disorders increase the risk of onset of several ageing-related somatic conditions, which might be the consequence of accelerated cellular ageing. Aims: To examine the association between anxiety status and leukocyte telomere length (LTL) as an indicator of cellular ageing.

  2. Chemistry and Redox Biology of Mycothiol.

    Science.gov (United States)

    Reyes, Aníbal M; Pedre, Brandán; De Armas, María Inés; Tossounian, Maria-Armineh; Radi, Rafael; Messens, Joris; Trujillo, Madia

    2018-02-20

    Mycothiol (MSH, AcCys-GlcN-Ins) is the main low-molecular weight (LMW) thiol of most Actinomycetes, including the human pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Strains with decreased MSH content show increased susceptibilities to hydroperoxides and electrophilic compounds. In M. tuberculosis, MSH modulates the response to several antituberculosis drugs. Enzymatic routes involving MSH could provide clues for specific drug design. Recent Advances: Physicochemical data argue against a rapid, nonenzymatic reaction of MSH with oxidants, disulfides, or electrophiles. Moreover, exposure of the bacteria to high concentrations of two-electron oxidants resulted in protein mycothiolation. The recently described glutaredoxin-like protein mycoredoxin-1 (Mrx-1) provides a route for catalytic reduction of mycothiolated proteins, protecting critical cysteines from irreversible oxidation. The description of MSH/Mrx-1-dependent activities of peroxidases helped to explain the higher susceptibility to oxidants observed in Actinomycetes lacking MSH. Moreover, the first mycothiol-S-transferase, member of the DinB superfamily of proteins, was described. In Corynebacterium, both the MSH/Mrx-1 and the thioredoxin pathways reduce methionine sulfoxide reductase A. A novel tool for in vivo imaging of the MSH/mycothiol disulfide (MSSM) status allows following changes in the mycothiol redox state during macrophage infection and its relationship with antibiotic sensitivity. Redundancy of MSH with other LMW thiols is starting to be unraveled and could help to rationalize the differences in the reported importance of MSH synthesis observed in vitro versus in animal infection models. Future work should be directed to establish the structural bases of the specificity of MSH-dependent enzymes, thus facilitating drug developments. Antioxid. Redox Signal. 28, 487-504.

  3. Wine consumption and intestinal redox homeostasis

    Science.gov (United States)

    Biasi, Fiorella; Deiana, Monica; Guina, Tina; Gamba, Paola; Leonarduzzi, Gabriella; Poli, Giuseppe

    2014-01-01

    Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine׳s beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects. PMID:25009781

  4. Inorganic geochemistry and redox dynamics in bank filtration settings.

    Science.gov (United States)

    Farnsworth, Claire E; Hering, Janet G

    2011-06-15

    Bank filtration induces flow of surface water through a hydraulically connected aquifer by excess pumping from a production well in the aquifer. This review presents the four main geochemical processes relevant for inorganic geochemistry, with a focus on iron (Fe) and manganese (Mn), during bank filtration: reduction near the bank, oxidation near the production well, carbonate dissolution, and sorption to aquifer materials. Physical and transport processes affect these geochemical processes and influence the redox state of the infiltrate. The presence of Fe and Mn in bank infiltrate is directly related to its redox status and can necessitate drinking water treatment after extraction. Long-term, in situ sequestration of Fe and Mn requires precipitation of oxide or carbonate solids, since a sorption front can breakthrough at the production well.

  5. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  6. Application of iTRAQ Reagents to Relatively Quantify the Reversible Redox State of Cysteine Residues

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2012-01-01

    Full Text Available Cysteines are one of the most rarely used amino acids, but when conserved in proteins they often play critical roles in structure, function, or regulation. Reversible cysteine modifications allow for potential redox regulation of proteins. Traditional measurement of the relative absolute quantity of a protein between two samples is not always necessarily proportional to the activity of the protein. We propose application of iTRAQ reagents in combination with a previous thiol selection method to relatively quantify the redox state of cysteines both within and between samples in a single analysis. Our method allows for the identification of the proteins, identification of redox-sensitive cysteines within proteins, and quantification of the redox status of individual cysteine-containing peptides. As a proof of principle, we applied this technique to yeast alcohol dehydrogenase-1 exposed in vitro to H2O2 and also in vivo to the complex proteome of the Gram-negative bacterium Bacillus subtilis.

  7. Double-blind randomised controlled trial of the independent and synergistic effect of Spirulina maxima with exercise (ISESE) on general fitness, lipid profile and redox status in overweight and obese subjects: study protocol

    Science.gov (United States)

    Hernández-Lepe, Marco Antonio; López-Díaz, José Alberto; de la Rosa, Laura Alejandra; Hernández-Torres, Rosa Patricia; Wall-Medrano, Abraham; Juarez-Oropeza, Marco Antonio; Pedraza-Chaverri, José; Urquidez-Romero, Rene; Ramos-Jiménez, Arnulfo

    2017-01-01

    Introduction In order to reduce cardiovascular disease risk factors, a healthy diet must include dietary antioxidants from different sources (eg, Spirulina maxima) and regular practice of exercise should be promoted. There is some evidence from animal studies that S. maxima and exercise decrease cardiovascular disease risks factors. However, very few studies have proved the independent or synergistic effect of S. maxima plus exercise in humans. This study attempts to address the independent and synergistic effects in overweight and obese subjects participating in a systematic physical exercise programme at moderate intensity on general fitness, plasma lipid profile and antioxidant capacity. Methods and analysis Using a randomised, double-blind, placebo-controlled, counterbalanced crossover study design, 80 healthy overweight and obese subjects will be evaluated during a 12-week isoenergetic diet accompanied by 4.5 g/day S. maxima intake and/or a physical systematic exercise programme at moderate intensity. Body composition, oxygen uptake, heart rate, capillary blood lactate, plasma concentrations of triacylglycerols, total, low-density and high-density lipoprotein cholesterol, antioxidant status, lipid oxidation, protein carbonyls, superoxide dismutase, catalase, glutathione, glutathione peroxidase, glutathione reductase and paraoxonase will be assessed. Ethics and dissemination This study and all the procedures have been approved by the Universidad Autonoma de Ciudad Juarez Bioethics Committee. Findings will be disseminated through peer-reviewed journals, national and international conferences. Trial registration number ClinicalTrials.gov: NCT02837666. PMID:28645949

  8. Engineering redox balance through cofactor systems.

    Science.gov (United States)

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. New Approach in Translational Medicine: Effects of Electrolyzed Reduced Water (ERW on NF-κB/iNOS Pathway in U937 Cell Line under Altered Redox State

    Directory of Open Access Journals (Sweden)

    Sara Franceschelli

    2016-09-01

    Full Text Available It is known that increased levels of reactive oxygen species (ROS and reactive nitrogen species (RNS can exert harmful effects, altering the cellular redox state. Electrolyzed Reduced Water (ERW produced near the cathode during water electrolysis exhibits high pH, high concentration of dissolved hydrogen and an extremely negative redox potential. Several findings indicate that ERW had the ability of a scavenger free radical, which results from hydrogen molecules with a high reducing ability and may participate in the redox regulation of cellular function. We investigated the effect of ERW on H2O2-induced U937 damage by evaluating the modulation of redox cellular state. Western blotting and spectrophotometrical analysis showed that ERW inhibited oxidative stress by restoring the antioxidant capacity of superoxide dismutase, catalase and glutathione peroxidase. Consequently, ERW restores the ability of the glutathione reductase to supply the cell of an important endogenous antioxidant, such as GSH, reversing the inhibitory effect of H2O2 on redox balance of U937 cells. Therefore, this means a reduction of cytotoxicity induced by peroxynitrite via a downregulation of the NF-κB/iNOS pathway and could be used as an antioxidant for preventive and therapeutic application. In conclusion, ERW can protect the cellular redox balance, reducing the risk of several diseases with altered cellular homeostasis such as inflammation.

  10. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma.

    Science.gov (United States)

    Lai, Kun-Goung; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2017-06-01

    We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.

  11. Applications of redox polymers in biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Boguslavsky, L. (Moltech Corporation, Stony Brook, NY (United States)); Hale, P.D. (Moltech Corporation, Stony Brook, NY (United States)); Geng Lin (Moltech Corporation, Stony Brook, NY (United States)); Skotheim, T.A. (Moltech Corporation, Stony Brook, NY (United States)); Lee Hongsui (Dept. of Applied Science, Brookhaven National Lab., Upton, NY (United States))

    1993-03-01

    Polymers containing covalently attached redox molecules can be highly effective electron transfer mediators for flavin adenine dinucleotide redox centers of many oxidases. Highly flexible siloxane and ethylene oxide polymers containing covalently attached ferrocene molecules are shown to be capable of mediating electron transfer between enzymes and an electrode. The construction and response of bienzyme cholesterol biosensor, acetylcholine and glucose biosensor are described and discussed. Our data showed that the flexibility, hydrophilicity of the polymer, the density of redox centers in the polymer matrices and the self-exchange reaction rate of the redox molecules control the efficiency of the electron transfer mediation. (orig.)

  12. Redox control of enzymatic functions: The electronics of life's circuitry.

    Science.gov (United States)

    Bonini, Marcelo G; Consolaro, Marcia E L; Hart, Peter C; Mao, Mao; de Abreu, Andre Luelsdorf Pimenta; Master, Alyssa M

    2014-03-26

    The field of redox biology has changed tremendously over the past 20 years. Formerly regarded as bi-products of the aerobic metabolism exclusively involved in tissue damage, reactive oxygen species (ROS) are now recognized as active participants of cell signaling events in health and in disease. In this sense, ROS and the more recently defined reactive nitrogen species (RNS) are, just like hormones and second messengers, acting as fundamental orchestrators of cell signaling pathways. The chemical modification of enzymes by ROS and RNS (that result in functional enzymatic alterations) accounts for a considerable fraction of the transient and persistent perturbations imposed by variations in oxidant levels. Upregulation of ROS and RNS in response to stress is a common cellular response that foments adaptation to a variety of physiologic alterations (hypoxia, hyperoxia, starvation, and cytokine production). Frequently, these are beneficial and increase the organisms' resistance against subsequent acute stress (preconditioning). Differently, the sustained ROS/RNS-dependent rerouting of signaling produces irreversible alterations in cellular functioning, often leading to pathogenic events. Thus, the duration and reversibility of protein oxidations define whether complex organisms remain "electronically" healthy. Among the 20 essential amino acids, four are particularly susceptible to oxidation: cysteine, methionine, tyrosine, and tryptophan. Here, we will critically review the mechanisms, implications, and repair systems involved in the redox modifications of these residues in proteins while analyzing well-characterized prototypic examples. Occasionally, we will discuss potential consequences of amino acid oxidation and speculate on the biologic necessity for such events in the context of adaptative redox signaling. © 2014 IUBMB Life, 2014. © 2014 International Union of Biochemistry and Molecular Biology.

  13. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  14. Glutathione Redox System in β-Thalassemia/Hb E Patients

    Directory of Open Access Journals (Sweden)

    Ruchaneekorn W. Kalpravidh

    2013-01-01

    Full Text Available β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH/glutathione disulfide (GSSG and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body’s first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores.

  15. Redox control of iron biomineralization in Magnetospirillum magneticum AMB-1

    Science.gov (United States)

    Jones, Stephanie Rhianon

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. In order to dissect the biological components that control this process, we have carried out genetic and biochemical studies of proteins proposed to function in iron mineralization in Magnetospirillum magneticum AMB-1. As iron biomineralization by magnetotactic bacteria represents a particularly interesting case for understanding how the production of nanomaterials can be programmed at the genetic level, we also apply synthetic biology techniques towards the production of new cellular materials and new cellular functions. As the production of magnetite requires both the formation of Fe(II) and Fe(III), the redox components of the magnetosome play an essential role in this process. Using genetic complementation studies, we show that the redox cofactors or heme sites of the two putative redox partners, MamP and MamT, are required for magnetite biomineralization in vivo and that removal of one or both sites leads to defects in mineralization. We develop and optimize a heterologous expression method in the E. coli periplasm to cleanly isolate fully heme-loaded MamP for biochemical studies. Spectrochemical redox titrations show that the reduction potential of MamP lies in a different range than other c-type cytochrome involved in either Fe(III) reduction or Fe(II) oxidation. Nonetheless, in vitro mineralization studies with MamP and Fe(II) show that it is able to catalyze the formation of mixed-valent Fe(II)/Fe(III) oxides such as green rust. Biomineralization also requires lattice-templating proteins that guide the growth of the functional crystalline material. We

  16. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  17. Characterization of redox proteins using electrochemical methods

    NARCIS (Netherlands)

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain

  18. Biochemical methods for monitoring protein thiol redox states in biological systems

    Directory of Open Access Journals (Sweden)

    Olena Rudyk

    2014-01-01

    Full Text Available Oxidative post-translational modifications of proteins resulting from events that increase cellular oxidant levels play important roles in physiological and pathophysiological processes. Evaluation of alterations to protein redox states is increasingly common place because of methodological advances that have enabled detection, quantification and identification of such changes in cells and tissues. This mini-review provides a synopsis of biochemical methods that can be utilized to monitor the array of different oxidative and electrophilic modifications that can occur to protein thiols and can be important in the regulatory or maladaptive impact oxidants can have on biological systems. Several of the methods discussed are valuable for monitoring the redox state of established redox sensing proteins such as Keap1.

  19. A redox signalling globin is essential for reproduction in Caenorhabditis elegans

    Science.gov (United States)

    de Henau, Sasha; Tilleman, Lesley; Vangheel, Matthew; Luyckx, Evi; Trashin, Stanislav; Pauwels, Martje; Germani, Francesca; Vlaeminck, Caroline; Vanfleteren, Jacques R.; Bert, Wim; Pesce, Alessandra; Nardini, Marco; Bolognesi, Martino; de Wael, Karolien; Moens, Luc; Dewilde, Sylvia; Braeckman, Bart P.

    2015-12-01

    Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers.

  20. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Science.gov (United States)

    Chausse, Bruno; Vieira-Lara, Marcel A; Sanchez, Angélica B; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  1. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Directory of Open Access Journals (Sweden)

    Bruno Chausse

    Full Text Available Intermittent fasting (IF is a dietary intervention often used as an alternative to caloric restriction (CR and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  2. Redox activity of naphthalene secondary organic aerosol

    Science.gov (United States)

    McWhinney, R. D.; Zhou, S.; Abbatt, J. P. D.

    2013-04-01

    Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. Similar attempts to predict redox behaviour of oxidised two-stroke engine exhaust particles by measuring 1,2-naphthoquinone, 1,4-naphthoquinone and 9,10-phenanthrenequinone predicted DTT decay rates only 4.9 ± 2.5% of those observed. Together, these results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10-4 m3 μg-1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. As well, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.

  3. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  4. SOIL REDOX POTENTIAL AND ITS IMPACT ON MICROORGANISMS AND PLANTS OF WETLANDS

    Directory of Open Access Journals (Sweden)

    Ewelina Tokarz

    2015-06-01

    Full Text Available Although peatlands cover only 3% of the Earth’s surface, they constitute a huge reservoir of carbon. It is estimated that they accumulate one third of carbon contained in all types of soils worldwide. Therefore, knowledge of the physical, chemical, and biological properties of peat is important for prevention of peat degradation and release of carbon stored as CO2 into the atmosphere. In organic soils, water plays a very important role as a protective factor against mineralisation of organic matter. Therefore, organic soils are characterised by high specificity and dissimilarity from mineral soils. The hydrological factor induces a variety of changes in the physical and chemical properties, e.g. low redox potential or low oxygen content in soil pores. Many soil processes are determined by the soil oxygenation status, which can be measured with various indicators as well as direct and indirect measurements. One of the indirect methods is measurement of the redox potential. The oxidation-reduction potential (redox potential or Eh is a measure of the ratio of oxidised to reduced forms in a solution. This parameter is inextricably linked to oxygen supply and the processes of consumption thereof by microorganisms and plant roots. Therefore, the redox potential is used as an indicator of the oxygenation status and the content of biogenic forms and toxins in the soil environment and sediments. In the case of submerged soils, penetration of atmospheric oxygen into the soil is limited due to low rates of oxygen diffusion and, hence, low redox potential, which inhibits plant growth through inhibition of respiration and production of toxins in reducing conditions. The aim of this article is (1 to the show soil-plant-soil microorganism interactions taking place on peatbogs in the context of redox potential, (2 to investigate the responses of plants and soil microorganisms to the changing redox potential, and (3 to demonstrate the mechanisms of plant

  5. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Directory of Open Access Journals (Sweden)

    Revati eWani

    2014-10-01

    Full Text Available The perception of reactive oxygen species (ROS has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g. cancer. New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically-distinct alterations to the protein (e.g. sulfenic/sulfinic/sulfonic acid, disulfides. These post-translational modifications (PTM are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.

  6. Redox activity and chemical interactions of metal oxide nano- and micro-particles with dithiothreitol (DTT).

    Science.gov (United States)

    Nicolas, Johny; Jaafar, Malek; Sepetdjian, Elizabeth; Saad, Walid; Sioutas, Constantinos; Shihadeh, Alan; Saliba, Najat A

    2015-11-01

    The wide application and production of nanotechnology have increased the interest in studying the toxicity of nano- and micro-sized particles escaping into air from various aspects of the production process. Metal oxides (MOs) are one particular class of particles that exist abundantly in ambient PM. Studies show an emphasis on biological mechanisms by which inhalation exposure to MOs leads to disease. However, different biological assays provide different redox activity rankings making it difficult to assess the contributions of various MOs to measures of aggregate toxicity in multi-pollutant systems such as ambient PM. Therefore, research to evaluate the chemical interaction between these particles and molecules that are relevant to cellular redox activity can help in establishing indicators of reactivity. In particular, this study assesses the redox activity of six MOs mainly emitted from anthropogenic industrial activities using the dithiothreitol (DTT) assay. DTT is commonly used in acellular assays due to its analogous structure to cellular glutathione. The structural and chemical behaviors between active MOs and DTT were elucidated using FTIR, NMR, and BET methods. The results indicate that the health risk (redox activity) associated with MOs is mainly a function of their surface reactivity demonstrated by the ability of the oxidized (S-H) bond in DTT to form a stable bond with the MO surface.

  7. Distinct responses of compartmentalized glutathione redox potentials to pharmacologic quinones targeting NQO1.

    Science.gov (United States)

    Kolossov, Vladimir L; Ponnuraj, Nagendraprabhu; Beaudoin, Jessica N; Leslie, Matthew T; Kenis, Paul J; Gaskins, H Rex

    2017-01-29

    Deoxynyboquinone (DNQ), a potent novel quinone-based antineoplastic agent, selectively kills solid cancers with overexpressed cytosolic NAD(P)H:quinone oxidoreductase-1 (NQO1) via excessive ROS production. A genetically encoded redox-sensitive probe was used to monitor intraorganellar glutathione redox potentials (EGSH) as a direct indicator of cellular oxidative stress following chemotherapeutic administration. Beta-lapachone (β-lap) and DNQ-induced spatiotemporal redox responses were monitored in human lung A549 and pancreatic MIA-PaCa-2 adenocarcinoma cells incubated with or without dicumarol and ES936, potent NQO1 inhibitors. Immediate oxidation of EGSH in both the cytosol and mitochondrial matrix was observed in response to DNQ and β-lap. The DNQ-induced cytosolic oxidation was fully prevented with NQO1 inhibition, whereas mitochondrial oxidation in A549 was NQO1-independent in contrast to MIA-PaCa-2 cells. However, at pharmacologic concentrations of β-lap both quinone-based substrates directly oxidized the redox probe, a possible sign of off-target reactivity with cellular thiols. Together, these data provide new evidence that DNQ's direct and discerning NQO1 substrate specificity underlies its pharmacologic potency, while β-lap elicits off-target responses at its effective doses. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Cornelius, Nanna; Gregersen, Niels

    2015-01-01

    in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory...... chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism......, by production of pathological amounts of ROS, may cause disturbed redox signalling and induce chronic cell stress with non-resolving or compromised cell repair responses and increased susceptibility to cell stress induced cell death. We suggest that this model may have important implications for those inborn...

  9. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-01-01

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.

  10. Redox activity of naphthalene secondary organic aerosol

    OpenAIRE

    R. D. McWhinney; S. Zhou; J. P. D. Abbatt

    2013-01-01

    Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the obse...

  11. Redox-active quinones induces genome-wide DNA methylation changes by an iron-mediated and Tet-dependent mechanism

    DEFF Research Database (Denmark)

    Zhao, Bailin; Yang, Ying; Wang, Xiaoli

    2014-01-01

    DNA methylation has been proven to be a critical epigenetic mark important for various cellular processes. Here, we report that redox-active quinones, a ubiquitous class of chemicals found in natural products, cancer therapeutics and environment, stimulate the conversion of 5 mC to 5 hmC in vivo...... diminished the 5 hmC increase. These results suggest an iron-regulated Tet-dependent DNA demethylation mechanism mediated by redox-active biomolecules....

  12. Real-time imaging of the intracellular glutathione redox potential in the malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Denis Kasozi

    Full Text Available In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2, we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH of drug-sensitive (3D7 and resistant (Dd2 P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be -314.2±3.1 mV and -313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h. As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in

  13. High energy density redox flow device

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.; Duduta, Mihai; Limthongkul, Pimpa

    2017-10-10

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  14. Polyarene mediators for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  15. A redox-flow electrochromic window.

    Science.gov (United States)

    Jennings, James R; Lim, Wei Yang; Zakeeruddin, Shaik M; Grätzel, Michael; Wang, Qing

    2015-02-04

    A low-cost electrochromic (EC) window based on a redox-flow system that does not require expensive transparent conductive oxide (TCO) substrates is introduced and demonstrated for the first time. An aqueous I3–/I– redox electrolyte is used in place of a TCO to oxidize/reduce a molecular layer of an EC triphenylamine derivative that is anchored to a mesoporous TiO2 scaffold on the inner faces of a double-paned window. The redox electrolyte is electrochemically oxidized/reduced in an external two-compartment cell and circulated through the window cavity using an inexpensive peristaltic pump, resulting in coloration or decoloration of the window due to reaction of the redox solution with the triphenylamine derivative. The absorption characteristics, coloration/decoloration times, and cycling stability of the prototype EC window are evaluated, and prospects for further development are discussed.

  16. Redox-Dependent Conformational Switching of Diphenylacetylenes

    Directory of Open Access Journals (Sweden)

    Ian M. Jones

    2014-07-01

    Full Text Available Herein we describe the design and synthesis of a redox-dependent single-molecule switch. Appending a ferrocene unit to a diphenylacetylene scaffold gives a redox-sensitive handle, which undergoes reversible one-electron oxidation, as demonstrated by cyclic voltammetry analysis. 1H-NMR spectroscopy of the partially oxidized switch and control compounds suggests that oxidation to the ferrocenium cation induces a change in hydrogen bonding interactions that results in a conformational switch.

  17. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  18. Membranes for Redox Flow Battery Applications

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  19. New Challenges to Study Heterogeneity in Cancer Redox Metabolism

    Directory of Open Access Journals (Sweden)

    Rui Benfeitas

    2017-07-01

    Full Text Available Reactive oxygen species (ROS are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(PH] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2, one of the most important ROS in pathophysiology in the progression of cancer

  20. Identification of DUOX1-dependent redox signaling through protein S-glutathionylation in airway epithelial cells☆

    Science.gov (United States)

    Hristova, Milena; Veith, Carmen; Habibovic, Aida; Lam, Ying-Wai; Deng, Bin; Geiszt, Miklos; Janssen-Heininger, Yvonne M.W.; van der Vliet, Albert

    2014-01-01

    The NADPH oxidase homolog dual oxidase 1 (DUOX1) plays an important role in innate airway epithelial responses to infection or injury, but the precise molecular mechanisms are incompletely understood and the cellular redox-sensitive targets for DUOX1-derived H2O2 have not been identified. The aim of the present study was to survey the involvement of DUOX1 in cellular redox signaling by protein S-glutathionylation, a major mode of reversible redox signaling. Using human airway epithelial H292 cells and stable transfection with DUOX1-targeted shRNA as well as primary tracheal epithelial cells from either wild-type or DUOX1-deficient mice, DUOX1 was found to be critical in ATP-stimulated transient production of H2O2 and increased protein S-glutathionylation. Using cell pre-labeling with biotin-tagged GSH and analysis of avidin-purified proteins by global proteomics, 61 S-glutathionylated proteins were identified in ATP-stimulated cells compared to 19 in untreated cells. Based on a previously established role of DUOX1 in cell migration, various redox-sensitive proteins with established roles in cytoskeletal dynamics and/or cell migration were evaluated for S-glutathionylation, indicating a critical role for DUOX1 in ATP-stimulated S-glutathionylation of β-actin, peroxiredoxin 1, the non-receptor tyrosine kinase Src, and MAPK phosphatase 1. Overall, our studies demonstrate the importance of DUOX1 in epithelial redox signaling through reversible S-glutathionylation of a range of proteins, including proteins involved in cytoskeletal regulation and MAPK signaling pathways involved in cell migration. PMID:24624333

  1. Identification of DUOX1-dependent redox signaling through protein S-glutathionylation in airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Milena Hristova

    2014-01-01

    Full Text Available The NADPH oxidase homolog dual oxidase 1 (DUOX1 plays an important role in innate airway epithelial responses to infection or injury, but the precise molecular mechanisms are incompletely understood and the cellular redox-sensitive targets for DUOX1-derived H2O2 have not been identified. The aim of the present study was to survey the involvement of DUOX1 in cellular redox signaling by protein S-glutathionylation, a major mode of reversible redox signaling. Using human airway epithelial H292 cells and stable transfection with DUOX1-targeted shRNA as well as primary tracheal epithelial cells from either wild-type or DUOX1-deficient mice, DUOX1 was found to be critical in ATP-stimulated transient production of H2O2 and increased protein S-glutathionylation. Using cell pre-labeling with biotin-tagged GSH and analysis of avidin-purified proteins by global proteomics, 61 S-glutathionylated proteins were identified in ATP-stimulated cells compared to 19 in untreated cells. Based on a previously established role of DUOX1 in cell migration, various redox-sensitive proteins with established roles in cytoskeletal dynamics and/or cell migration were evaluated for S-glutathionylation, indicating a critical role for DUOX1 in ATP-stimulated S-glutathionylation of β-actin, peroxiredoxin 1, the non-receptor tyrosine kinase Src, and MAPK phosphatase 1. Overall, our studies demonstrate the importance of DUOX1 in epithelial redox signaling through reversible S-glutathionylation of a range of proteins, including proteins involved in cytoskeletal regulation and MAPK signaling pathways involved in cell migration.

  2. Associations between Specific Redox Biomarkers and Age in a Large European Cohort: The MARK-AGE Project

    Directory of Open Access Journals (Sweden)

    Daniela Weber

    2017-01-01

    Full Text Available Oxidative stress and antioxidants play a role in age-related diseases and in the aging process. We here present data on protein carbonyls, 3-nitrotyrosine, malondialdehyde, and cellular and plasma antioxidants (glutathione, cysteine, ascorbic acid, uric acid, α-tocopherol, and lycopene and their relation with age in the European multicenter study MARK-AGE. To avoid confounding, only data from countries which recruited subjects from all three study groups (five of eight centers and only participants aged ≥55 years were selected resulting in data from 1559 participants. These included subjects from (1 the general population, (2 members from long-living families, and (3 their spouses. In addition, 683 middle-aged reference participants (35–54 years served as a control. After adjustment for age, BMI, smoking status, gender, and country, there were differences in protein carbonyls, malondialdehyde, 3-nitrotyrosine, α-tocopherol, cysteine, and glutathione between the 3 study groups. Protein carbonyls and 3-nitrotyrosine as well as cysteine, uric acid, and lycopene were identified as independent biomarkers with the highest correlation with age. Interestingly, from all antioxidants measured, only lycopene was lower in all aged groups and from the oxidative stress biomarkers, only 3-nitrotyrosine was increased in the descendants from long-living families compared to the middle-aged control group. We conclude that both lifestyle and genetics may be important contributors to redox biomarkers in an aging population.

  3. Design, Mechanism of Action, Bioavailability and Therapeutic Effects of Mn Porphyrin-based Redox Modulators

    Science.gov (United States)

    Tovmasyan, Artak; Sheng, Huaxin; Weitner, Tin; Arulpragasam, Amanda; Lu, Miaomiao; Warner, David S.; Vujaskovic, Zeljko; Spasojevic, Ivan; Batinic-Haberle, Ines

    2013-01-01

    Based on aqueous redox chemistry and simple in vivo models of oxidative stress, Escherichia coli and Streptomyces cerevisiae, the cationic Mn(III) N-substituted pyridylporphyrins (MnPs) have been identified as the most potent cellular redox modulators within the porphyrin class of drugs; their efficacy in animal models of diseases that have oxidative stress in common, is based on their high ability to catalytically remove superoxide (O2•−), peroxynitrite, carbonate anion radical (CO3•−), hypochlorous acid (HClO), nitric oxide (NO), lipid peroxyl and alkoxyl radicals, thus suppressing the primary oxidative event. While doing so MnPs could couple with cellular reductants and redox-active proteins. Reactive species are widely accepted as regulators of cellular transcriptional activity: minute, nanomolar levels are essential for normal cell function, while submicromolar or micromolar levels impose oxidative stress, which is evidenced in increased inflammatory and immune responses. By removing reactive species, MnPs affect redox-based cellular transcriptional activity and consequently secondary oxidative stress, and in turn inflammatory processes. The equal ability to reduce and oxidize superoxide during the dismutation process and recently accumulated results suggest that pro-oxidative actions of MnPs may also contribute to their therapeutic effects. All our data identify the superoxide dismutase (SOD)-like activity (estimated by log kca(O2•−) as a good measure for the therapeutic efficacy of MnPs. Their accumulation in mitochondria and their ability to cross the blood brain barrier contribute to their remarkable efficacy. We summarize herein the therapeutic effects of MnPs in cancer, central nervous system injuries, diabetes, their radioprotective action and potential for imaging. Few of the most potent modulators of cellular redox-based pathways, MnTE-2-PyP5+, MnTDE-2-ImP5+, MnTnHex-2-PyP5+ and MnTnBuOE-2-PyP5+ are under preclinical and clinical

  4. Redox Proteomics in Selected Neurodegenerative Disorders: From Its Infancy to Future Applications

    Science.gov (United States)

    Perluigi, Marzia; Reed, Tanea; Muharib, Tasneem; Hughes, Christopher P.; Robinson, Renã A.S.; Sultana, Rukhsana

    2012-01-01

    Abstract Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics. Antioxid. Redox Signal. 17, 1610–1655. PMID:22115501

  5. Wireless Cellular Mobile Communications

    OpenAIRE

    V. Zalud

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  6. Shotgun lipidomics in substantiating lipid peroxidation in redox biology: Methods and applications.

    Science.gov (United States)

    Hu, Changfeng; Wang, Miao; Han, Xianlin

    2017-08-01

    Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) has made profound advances for comprehensive analysis of cellular lipids. It represents one of the most powerful tools in analyzing lipids directly from lipid extracts of biological samples. It enables the analysis of nearly 50 lipid classes and thousands of individual lipid species with high accuracy/precision. The redox imbalance causes oxidative stress, resulting in lipid peroxidation, and alterations in lipid metabolism and homeostasis. Some lipid classes such as oxidized fatty acids, 4-hydroxyalkenal species, and plasmalogen are sensitive to oxidative stress or generated corresponding to redox imbalance. Therefore, accurate assessment of these lipid classes can provide not only the redox states, but also molecular insights into the pathogenesis of diseases. This review focuses on the advances of MDMS-SL in analysis of these lipid classes and molecular species, and summarizes their recent representative applications in biomedical/biological research. We believe that MDMS-SL can make great contributions to redox biology through substantiating the aberrant lipid metabolism, signaling, trafficking, and homeostasis under oxidative stress-related condition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker?

    Directory of Open Access Journals (Sweden)

    Elena Matteucci

    2007-01-01

    Full Text Available Erythrocytes are involved in the transport of oxygen and carbon dioxide in the body. Since pH is the influential factor in the Bohr-Haldane effect, pHi is actively maintained via secondary active transports Na+/H+ exchange and HC3 -/Cl- anion exchanger. Because of the redox properties of the iron, hemoglobin generates reactive oxygen species and thus, the human erythrocyte is constantly exposed to oxidative damage. Although the adult erythrocyte lacks protein synthesis and cannot restore damaged proteins, it is equipped with high activity of protective enzymes. Redox changes in the cell initiate various signalling pathways. Plasma membrane oxido-reductases (PMORs are transmembrane electron transport systems that have been found in the membranes of all cells and have been extensively characterized in the human erythrocyte. Erythrocyte PMORs transfer reducing equivalents from intracellular reductants to extracellular oxidants, thus their most important role seems to be to enable the cell respond to changes in intra- and extra-cellular redox environments.So far the activity of erythrocyte PMORs in disease states has not been systematically investigated. This review summarizes present knowledge on erythrocyte electron transfer activity in humans (health, type 1 diabetes, diabetic nephropathy, and chronic uremia and hypothesizes an integrated model of the functional organization of erythrocyte plasma membrane where electron pathways work in parallel with transport metabolons to maintain redox homeostasis.

  8. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    Energy Technology Data Exchange (ETDEWEB)

    Venceslau, Sofia S. [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal); Cort, John R.; Baker, Erin S. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Chu, Rosalie K.; Robinson, Errol W. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Dahl, Christiane [Institut für Mikrobiologie and Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn (Germany); Saraiva, Lígia M. [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal); Pereira, Inês A.C., E-mail: ipereira@itqb.unl.pt [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal)

    2013-11-29

    Highlights: •DsrC is known to interact with the dissimilatory sulfite reductase enzyme (DsrAB). •We show that, however, most cellular DsrC is not associated with DsrAB. •A gel-shift assay was developed that allows monitoring of the DsrC redox state. •The DsrC intramolecularly oxidized state could only be produced by arginine treatment. -- Abstract: Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC, which has two conserved redox-active cysteines. DsrC was initially believed to be a third subunit of DsrAB. Here, we report a study of the distribution of DsrC in cell extracts to show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we developed a cysteine-labelling gel-shift assay to monitor the DsrC redox state and behaviour, and procedures to produce the different redox forms. The oxidized state of DsrC with an intramolecular disulfide bond, which is proposed to be a key metabolic intermediate, could be successfully produced for the first time by treatment with arginine.

  9. Redox enzyme-mimicking activities of CeO2nanostructures: Intrinsic influence of exposed facets.

    Science.gov (United States)

    Yang, Yushi; Mao, Zhou; Huang, Wenjie; Liu, Lihua; Li, Junli; Li, Jialiang; Wu, Qingzhi

    2016-10-17

    CeO 2 nanoparticles (NPs) have been well demonstrated as an antioxidant in protecting against oxidative stress-induced cellular damages and a potential therapeutic agent for various diseases thanks to their redox enzyme-mimicking activities. The Ce 3+ /Ce 4+ ratio and oxygen vacancies on the surface have been considered as the major originations responsible for the redox enzyme-mimicking activities of CeO 2 NPs. Herein, CeO 2 nanostructures (nanocubes and nanorods) exposed different facets were synthesized via a facile hydrothermal method. The characterizations by X-ray photoelectron spectroscopy, Raman spectroscopy, and UV-Vis spectroscopy show that the Ce 3+ /Ce 4+ ratio and oxygen vacancy content on the surfaces of as-synthesized CeO 2 nanostructures are nearly at the same levels. Meanwhile, the enzymatic activity measurements indicate that the redox enzyme-mimicking activities of as-synthesized CeO 2 nanostructures are greatly dependent on their exposed facets. CeO 2 nanocubes with exposed {100} facets exhibit a higher peroxidase but lower superoxide dismutase activity than those of the CeO 2 nanorods with exposed {110} facets. Our results provide new insights into the redox enzyme-mimicking activities of CeO 2 nanostructures, as well as the design and synthesis of inorganic nanomaterials-based artificial enzymes.

  10. Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors.

    Science.gov (United States)

    Jiang, Jing; Auchinvole, Craig; Fisher, Kate; Campbell, Colin J

    2014-10-21

    Hypoxia is considered to be a reductive disorder of cells that is caused either by a lack of oxygen or by the dysregulation of metabolic pathways and is thought to play a role in the pathology of diseases including stroke and cancer. One aspect of hypoxia that remains poorly investigated is the dysregulation of cellular redox potential and its role in controlling biological pathway activation. Since there is currently no way of quantitatively measuring the intracellular redox potential of hypoxic cells, this provided us with the motivation to develop optical nanosensors whose Surface-Enhanced Raman (SER) spectrum provides a quantitative measure of redox potential in hypoxic cells. Our nanosensors are made from organic reporter molecules that show oxidation-state-dependent changes in the Raman spectrum and are chemically adsorbed onto gold nanoshells. These nanosensors can be taken up by cells, and by collecting the SER spectrum we can calculate the localised intracellular redox potential from single hypoxic cells in a non-invasive, reversible way.

  11. Redox storage systems for solar applications

    Science.gov (United States)

    Hagedorn, N. H.; Thaller, L. H.

    1981-01-01

    It is noted that the worldwide development of solar photovoltaic and wind turbine systems to meet a range of terrestrial electrical energy requirements has underscored the need for inexpensive and reliable electrical energy storage. The NASA Redox Energy Storage System, based on soluble aqueous iron and chromium chloride redox couples, has exhibited many system-related features which for the most part are unique to this storage system. The technology advances required in the two elements (electrodes and membranes), which are the key to its technological feasibility, have been attained and system development has begun. The design, construction, and testing of a 1-kW system integrated with a solar photovoltaic array is underway to provide early demonstration of the attractive system-related features of the NASA Redox Storage System. Also demonstrated will be its versatility and compatibility with a terrestrial solar photovoltaic electric power system.

  12. Potentiometric Measurements of Semiconductor Nanocrystal Redox Potentials.

    Science.gov (United States)

    Carroll, Gerard M; Brozek, Carl K; Hartstein, Kimberly H; Tsui, Emily Y; Gamelin, Daniel R

    2016-04-06

    A potentiometric method for measuring redox potentials of colloidal semiconductor nanocrystals (NCs) is described. Fermi levels of colloidal ZnO NCs are measured in situ during photodoping, allowing correlation of NC redox potentials and reduction levels. Excellent agreement is found between electrochemical and optical redox-indicator methods. Potentiometry is also reported for colloidal CdSe NCs, which show more negative conduction-band-edge potentials than in ZnO. This difference is highlighted by spontaneous electron transfer from reduced CdSe NCs to ZnO NCs in solution, with potentiometry providing a measure of the inter-NC electron-transfer driving force. Future applications of NC potentiometry are briefly discussed.

  13. Redox and the circadian clock in plant immunity: A balancing act.

    Science.gov (United States)

    Karapetyan, Sargis; Dong, Xinnian

    2017-12-19

    Plants' reliance on sunlight for energy makes their light-driven circadian clock a critical regulator in balancing the energy needs for vital activities such as growth and defense. Recent studies show that the circadian clock acts as a strategic planner to prime active defense responses towards the morning or daytime when conditions, such as the opening of stomata required for photosynthesis, are favorable for attackers. Execution of the defense response, on the other hand, is determined according to the cellular redox state and is regulated in part by the production of reactive oxygen and nitrogen species upon pathogen challenge. The interplay between redox and the circadian clock further gates the onset of defense response to a specific time of the day to avoid conflict with growth-related activities. In this review, we focus on discussing the roles of the circadian clock as a robust overseer and the cellular redox as a dynamic executor of plant defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Applying linear discriminant analysis to predict groundwater redox conditions conducive to denitrification

    Science.gov (United States)

    Wilson, S. R.; Close, M. E.; Abraham, P.

    2018-01-01

    Diffuse nitrate losses from agricultural land pollute groundwater resources worldwide, but can be attenuated under reducing subsurface conditions. In New Zealand, the ability to predict where groundwater denitrification occurs is important for understanding the linkage between land use and discharges of nitrate-bearing groundwater to streams. This study assesses the application of linear discriminant analysis (LDA) for predicting groundwater redox status for Southland, a major dairy farming region in New Zealand. Data cases were developed by assigning a redox status to samples derived from a regional groundwater quality database. Pre-existing regional-scale geospatial databases were used as training variables for the discriminant functions. The predictive accuracy of the discriminant functions was slightly improved by optimising the thresholds between sample depth classes. The models predict 23% of the region as being reducing at shallow depths (water management efforts focus on understanding hydrological bypassing that may occur via artificial drainage systems.

  15. Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.

    Science.gov (United States)

    Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong

    2018-03-01

    This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli.

    Science.gov (United States)

    Lim, Jae Hyung; Seo, Sang Woo; Kim, Se Yeon; Jung, Gyoo Yeol

    2013-11-01

    The intracellular redox state plays an important role in the cellular physiology that determines the efficiency of chemical and biofuel production by microbial cell factories. However, it is difficult to achieve optimal redox rebalancing of synthetic pathways owing to the sensitive responses of cellular physiology according as the intracellular redox state changes. Here, we demonstrate optimal rebalancing of the intracellular redox state by model-driven control of expression using n-butanol production in Escherichia coli as a model system. The synthetic n-butanol production pathway was constructed by implementing synthetic constitutive promoters and designing synthetic 5'-untranslated regions (5'-UTR) for each gene. Redox rebalancing was achieved by anaerobically activating the pyruvate dehydrogenase (PDH) complex and additionally tuning the expression level of NAD(+)-dependent formate dehydrogenase (fdh1 from Saccharomyces cerevisiae) through rational UTR engineering. Interestingly, efficient production of n-butanol required different amounts of reducing equivalents depending on whether the substrate was glucose or galactose. One intriguing implication of this work is that additional strain improvement can be achieved, even within given genetic components, through rebalancing intracellular redox state according to target products and substrates. © 2013 Published by Elsevier Inc.

  17. Redox-related metabolites and gene expression modulated by sugar in sunflower leaves: similarities with Sunflower chlorotic mottle virus-induced symptom.

    Science.gov (United States)

    Rodríguez, Marianela; Muñoz, Nacira; Lenardon, Sergio; Lascano, Ramiro

    2013-01-01

    Sugars are part of an integrated redox system, since they are key regulators of respiration and photosynthesis, and therefore of the levels of reducing power, ATP and ROS. These elements are major determinants of the cellular redox state, which is involved in the perception and regulation of many endogenous and environmental stimuli. Our previous findings suggested that early sugar increase produced during compatible Sunflower chlorotic mottle virus (SuCMoV) infection might modulate chlorotic symptom development through redox state alteration in sunflower. The purpose of this work was to characterize redox-related metabolites and gene expression changes associated with high sugar availability and symptom development induced by SuCMoV. The results show that sugar caused an increase in glutathione, ascorbate, pyridine nucleotides, and ATP. In addition, higher sugar availability reduced hydrogen peroxide and ΦPSII. This finding suggests that high sugar availability would be associated with cellular redox alteration and photoinhibitory process. The expression of the genes analyzed was also strongly affected by sugar, such as the down-regulation of psbA and up-regulation of psbO and cp29. The expression level of cytoplasmic (apx-1 and gr)- and chloroplastic (Fe-sod)-targeted genes was also significantly enhanced in sugar-treated leaves. Therefore, all these responses suggest that sugars induce chloroplastic redox state alteration with photoinhibition process that could be contributing to chlorotic symptom development during SuCMoV infection.

  18. Monolayer to MTS: using SEM, HIM, TEM and SERS to compare morphology, nanosensor uptake and redox potential in MCF7 cells

    Science.gov (United States)

    Jamieson, L. E.; Bell, A. P.; Harrison, D. J.; Campbell, C. J.

    2015-06-01

    Cellular redox potential is important for the control and regulation of a vast number of processes occurring in cells. When the fine redox potential balance within cells is disturbed it can have serious consequences such as the initiation or progression of disease. It is thought that a redox gradient develops in cancer tumours where the peripheral regions are well oxygenated and internal regions, further from vascular blood supply, become starved of oxygen and hypoxic. This makes treatment of these areas more challenging as, for example, radiotherapy relies on the presence of oxygen. Currently techniques for quantitative analysis of redox gradients are limited. Surface enhanced Raman scattering (SERS) nanosensors (NS) have been used to detect redox potential in a quantitative manner in monolayer cultured cells with many advantages over other techniques. This technique has considerable potential for use in multicellular tumour spheroids (MTS) - a three dimensional (3D) cell model which better mimics the tumour environment and gradients that develop. MTS are a more realistic model of the in vivo cellular morphology and environment and are becoming an increasingly popular in vitro model, replacing traditional monolayer culture. Imaging techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM) and helium ion microscopy (HIM) were used to investigate differences in morphology and NS uptake in monolayer culture compared to MTS. After confirming NS uptake, the first SERS measurements revealing quantitative information on redox potential in MTS were performed.

  19. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  20. Nominal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Tommaso Bolognesi

    2016-08-01

    Full Text Available The emerging field of Nominal Computation Theory is concerned with the theory of Nominal Sets and its applications to Computer Science. We investigate here the impact of nominal sets on the definition of Cellular Automata and on their computational capabilities, with a special focus on the emergent behavioural properties of this new model and their significance in the context of computation-oriented interpretations of physical phenomena. A preliminary investigation of the relations between Nominal Cellular Automata and Wolfram's Elementary Cellular Automata is also carried out.

  1. Biogeochemical Barriers: Redox Behavior of Metals and Metalloids

    Science.gov (United States)

    Redox conditions and pH are arguably the most important geochemical parameters that control contaminant transport and fate in groundwater systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting...

  2. A redox switch shapes the Lon protease exit pore to facultatively regulate proteolysis.

    Science.gov (United States)

    Nishii, Wataru; Kukimoto-Niino, Mutsuko; Terada, Takaho; Shirouzu, Mikako; Muramatsu, Tomonari; Kojima, Masaki; Kihara, Hiroshi; Yokoyama, Shigeyuki

    2015-01-01

    The Lon AAA+ protease degrades damaged or misfolded proteins in its intramolecular chamber. Its activity must be precisely controlled, but the mechanism by which Lon is regulated in response to different environments is not known. Facultative anaerobes in the Enterobacteriaceae family, mostly symbionts and pathogens, encounter both anaerobic and aerobic environments inside and outside the host's body, respectively. The bacteria characteristically have two cysteine residues on the Lon protease (P) domain surface that unusually form a disulfide bond. Here we show that the cysteine residues act as a redox switch of Lon. Upon disulfide bond reduction, the exit pore of the P-domain ring narrows by ∼30%, thus interrupting product passage and decreasing activity by 80%; disulfide bonding by oxidation restores the pore size and activity. The redox switch (E°' = -227 mV) is appropriately tuned to respond to variation between anaerobic and aerobic conditions, thus optimizing the cellular proteolysis level for each environment.

  3. Redox homeostasis in plants. The challenge of living with endogenous oxygen production.

    Science.gov (United States)

    De Gara, Laura; Locato, Vittoria; Dipierro, Silvio; de Pinto, Maria C

    2010-08-31

    Plants are not only obligate aerobic organisms requiring oxygen for mitochondrial energy production, but also produce oxygen during photosynthesis. Therefore, plant cells have to cope with a hyperoxic cellular environment that determines a production of reactive oxygen species (ROS) higher than the one occurring in animal cells. In order to maintain redox homeostasis under control, plants evolved a particularly complex and redundant ROS-scavenging system, in which enzymes and metabolites are linked in a network of reactions. This review gives an overview of the mechanisms active in plant cells for controlling redox homeostasis during optimal growth conditions, when ROS are produced in a steady-state low amount, and during stress conditions, when ROS production is increased. Particular attention is paid to the aspects of oxygen/ROS management for which plant and animal cells differ. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Characterization of redox conditions in groundwater contaminant plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwarth, Steven A.

    2000-01-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...... dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial...

  5. Redox fluctuations in the Early Ordovician oceans

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Gilleaudeau, Geoffrey Jon; Peralta, Silvio

    2017-01-01

    Chromium (Cr) stable isotopes are a useful tracer of changes in redox conditions because changes in its oxidation state are accompanied by an isotopic fractionation. Recent co-precipitation experiments have shown that Cr(VI) is incorporated into the calcite lattice, suggesting that carbonates are...

  6. Methods for using redox liposome biosensors

    Science.gov (United States)

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  7. Le reazioni redox: un pasticcio concettuale?

    Directory of Open Access Journals (Sweden)

    Elena Ghibaudi

    2015-10-01

    Full Text Available Le reazioni di ossidoriduzione costituiscono un argomento centrale di qualsiasi corso di base di chimica, sia a livello scolastico che universitario. Il loro apprendimento comporta il superamento di svariati ostacoli concettuali, la cui difficoltà può risultare amplificata da prassi didattiche inadeguate. Gli errori più ricorrenti nel presentare l’argomento sono di due tipi: i fare implicitamente riferimento a modelli esplicativi distinti (es. il numero di ossidazione e il trasferimento elettronico, senza esplicitarli e senza evidenziarne la differente natura e il campo di validità; ii confondere il livello della spiegazione formale con quello della realtà fisica. I fenomeni redox sono normalmente interpretati sulla base di tre distinti modelli empirici, che fanno riferimento al trasferimento di atomi di ossigeno, di atomi di idrogeno, di elettroni; e di un quarto modello, formale, fondato sul cambiamento del numero di ossidazione. La confusione tra questi modelli può generare considerevoli problemi di apprendimento. Il presente lavoro riporta un’analisi critica delle implicazioni concettuali della didattica dei processi redox. L’analisi è articolata in tre sezioni: i disamina della evoluzione storica del concetto di ossidoriduzione; ii analisi dei modelli redox e del loro campo di validità; iii discussione di alcuni aspetti epistemologici inerenti i processi redox che sono rilevanti per la didattica della chimica.

  8. Quinonoid functionality redox properties Diiminic functionality Lewis ...

    African Journals Online (AJOL)

    Preferred Customer

    base due to the presence of the two diiminic nitrogen atoms (Scheme 1). Calderazzo et al. [2], showed that PDON reacts with Lewis acids such as TiCl4 to give N,N-coordinated derivatives, and with a low-valent organometallic compound giving a redox reaction (Scheme 2). It has to be noted that when PDON coordinates ...

  9. Immobilization of redox mediators on functionalized carbon ...

    Indian Academy of Sciences (India)

    Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) ...

  10. Metathetical Redox Reaction of (Diacetoxyiodoarenes and Iodoarenes

    Directory of Open Access Journals (Sweden)

    Antoine Jobin-Des Lauriers

    2015-12-01

    Full Text Available The oxidation of iodoarenes is central to the field of hypervalent iodine chemistry. It was found that the metathetical redox reaction between (diacetoxyiodoarenes and iodoarenes is possible in the presence of a catalytic amount of Lewis acid. This discovery opens a new strategy to access (diacetoxyiodoarenes. A computational study is provided to rationalize the results observed.

  11. Investigating improvements on redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, AM

    2006-09-01

    Full Text Available storage devices coupled to most of their applications. Lead-acid batteries have long been used as the most economical option to store electricity in many small scale applications, but lately more interest have been shown in redox flow batteries. The low...

  12. Redox cycling of potential antitumor aziridinylquinones

    NARCIS (Netherlands)

    Lusthof, Klaas J.; de Mol, Nicolaas J.; Richter, Wilma; Janssen, Lambert H.M.; Butler, John; Hoey, Brigid M.; Verboom, Willem; Reinhoudt, David

    1992-01-01

    The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthetized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase

  13. Ontogeny of redox regulation in Atlantic cod (Gadus morhua) larvae.

    Science.gov (United States)

    Hamre, Kristin; Penglase, Samuel J; Rasinger, Josef D; Skjærven, Kaja H; Olsvik, Pål A

    2014-08-01

    The reduction potential of a cell is related to its fate. Proliferating cells are more reduced than those that are differentiating, whereas apoptotic cells are generally the most oxidized. Glutathione is considered the most important cellular redox buffer and the average reduction potential (Eh) of a cell or organism can be calculated from the concentrations of glutathione (GSH) and glutathione disulfide (GSSG). In this study, triplicate groups of cod larvae at various stages of development (3 to 63 days post-hatch; dph) were sampled for analyses of GSSG/2GSH concentrations, together with activities of antioxidant enzymes and expression of genes encoding proteins involved in redox metabolism. The concentration of total GSH (GSH+GSSG) increased from 610 ± 100 to 1260 ± 150 μmol/kg between 7 and 14 dph and was then constant until 49 dph, after which it decreased to 810 ± 100 μmol/kg by 63 dph. The 14- to 49-dph period, when total GSH concentrations were stable, coincides with the proposed period of metamorphosis in cod larvae. The concentration of GSSG comprised approximately 1% of the total GSH concentration and was stable throughout the sampling series. This resulted in a decreasing Eh from -239 ± 1 to -262 ± 7 mV between 7 and 14 dph, after which it remained constant until 63 dph. The changes in GSH and Eh were accompanied by changes in the expression of several genes involved in redox balance and signaling, as well as changes in activities of antioxidant enzymes, with the most dynamic responses occurring in the early phase of cod larval development. It is hypothesized that metamorphosis in cod larvae starts with the onset of mosaic hyperplasia in the skeletal muscle at approximately 20 dph (6.8mm standard length (SL)) and ends with differentiation of the stomach and disappearance of the larval finfold at 40 to 50 dph (10-15 mm SL). Thus, metamorphosis in cod larvae seems to coincide with high and stable total concentrations of GSH. Copyright © 2014 The

  14. Cellular magnesium homeostasis.

    Science.gov (United States)

    Romani, Andrea M P

    2011-08-01

    Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg(2+) homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg(2+) in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg(2+) homeostasis and how these mechanisms are altered under specific pathological conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Bimetallic redox synergy in oxidative palladium catalysis.

    Science.gov (United States)

    Powers, David C; Ritter, Tobias

    2012-06-19

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd

  16. Hijacking cellular garbage cans.

    Science.gov (United States)

    Welsch, Sonja; Locker, Jacomine Krijnse

    2010-06-25

    Viruses are perfect opportunists that have evolved to modify numerous cellular processes in order to complete their replication cycle in the host cell. An article by Reggiori and coworkers in this issue of Cell Host & Microbe reveals how coronaviruses can divert a cellular quality control pathway that normally functions in degradation of mis-folded proteins to replicate the viral genome. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  18. TWO IDEAS OF THE REDOX REACTION: MISCONCEPTIONS AND ...

    African Journals Online (AJOL)

    Preferred Customer

    participants were not sure about this and chose the reactions ii or iii or both (that are acid-base reactions!), and delivered reasons such as: "MgO and Mg(OH)2 contain oxygen, what is absolutely necessary for redox reactions; to any redox reaction O is necessary – so choice (i) cannot be a redox reaction". These students ...

  19. Are bioassays useful tools to assess redox processes and biodegradation?

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Pedersen, Philip Grinder; Ludvigsen, L.

    2002-01-01

    sensitive hydrochemical or geochemical parameters, levels of hydrogen, and redox potential. However, all these approaches have to be evaluated against TEAP-bioassays as the most direct measure. We assessed successfully ongoing microbial-mediated redox processes by TEAP-bioassays in degradation studies...... of aromatic and chlorinated aliphatic compounds in landfill leachate plumes, and of pesticides in aquifers with various redox conditions....

  20. Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif.

    Directory of Open Access Journals (Sweden)

    Amir Aghajanian

    2009-11-01

    Full Text Available Rho family GTPases are critical regulators of the cytoskeleton and affect cell migration, cell-cell adhesion, and cell-matrix adhesion. As with all GTPases, their activity is determined by their guanine nucleotide-bound state. Understanding how Rho proteins are activated and inactivated has largely focused on regulatory proteins such as guanine nucleotide exchange factors (GEFs and GTPase activating proteins (GAPs. However, recent in vitro studies have indicated that GTPases may also be directly regulated by redox agents. We hypothesized that this redox-based mechanism occurs in cells and affects cytoskeletal dynamics, and in this report we conclude this is indeed a novel mechanism of regulating the GTPase RhoA.In this report, we show that RhoA can be directly activated by reactive oxygen species (ROS in cells, and that this requires two critical cysteine residues located in a unique redox-sensitive motif within the phosphoryl binding loop. First, we show that ROS can reversibly activate RhoA and induce stress fiber formation, a well characterized readout of RhoA activity. To determine the role of cysteine residues in this mechanism of regulation, we generated cysteine to alanine RhoA mutants. Mutation of these cysteines abolishes ROS-mediated activation and stress fiber formation, indicating that these residues are critical for redox-regulation of RhoA. Importantly, these mutants maintain the ability to be activated by GEFs.Our findings identify a novel mechanism for the regulation of RhoA in cells by ROS, which is independent of classical regulatory proteins. This mechanism of regulation may be particularly relevant in pathological conditions where ROS are generated and the cellular redox-balance altered, such as in asthma and ischemia-reperfusion injury.

  1. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis.

    Science.gov (United States)

    Qi, Haishan; Li, Shanshan; Zhao, Sumin; Huang, Di; Xia, Menglei; Wen, Jianping

    2014-01-01

    To rationally guide the improvement of isobutanol production, metabolic network and metabolic profiling analysis were performed to provide global and profound insights into cell metabolism of isobutanol-producing Bacillus subtilis. The metabolic flux distribution of strains with different isobutanol production capacity (BSUL03, BSUL04 and BSUL05) drops a hint of the importance of NADPH on isobutanol biosynthesis. Therefore, the redox pathways were redesigned in this study. To increase NADPH concentration, glucose-6-phosphate isomerase was inactivated (BSUL06) and glucose-6-phosphate dehydrogenase was overexpressed (BSUL07) successively. As expected, NADPH pool size in BSUL07 was 4.4-fold higher than that in parental strain BSUL05. However, cell growth, isobutanol yield and production were decreased by 46%, 22%, and 80%, respectively. Metabolic profiling analysis suggested that the severely imbalanced redox status might be the primary reason. To solve this problem, gene udhA of Escherichia coli encoding transhydrogenase was further overexpressed (BSUL08), which not only well balanced the cellular ratio of NAD(P)H/NAD(P)+, but also increased NADH and ATP concentration. In addition, a straightforward engineering approach for improving NADPH concentrations was employed in BSUL05 by overexpressing exogenous gene pntAB and obtained BSUL09. The performance for isobutanol production by BSUL09 was poorer than BSUL08 but better than other engineered strains. Furthermore, in fed-batch fermentation the isobutanol production and yield of BSUL08 increased by 11% and 19%, up to the value of 6.12 g/L and 0.37 C-mol isobutanol/C-mol glucose (63% of the theoretical value), respectively, compared with parental strain BSUL05. These results demonstrated that model-driven complemented with metabolic profiling analysis could serve as a useful approach in the strain improvement for higher bio-productivity in further application.

  2. Redox Control of Inflammation in Macrophages

    Science.gov (United States)

    Dehne, Nathalie; Grossmann, Nina; Jung, Michaela; Namgaladze, Dmitry; Schmid, Tobias; von Knethen, Andreas; Weigert, Andreas

    2013-01-01

    Abstract Macrophages are present throughout the human body, constitute important immune effector cells, and have variable roles in a great number of pathological, but also physiological, settings. It is apparent that macrophages need to adjust their activation profile toward a steadily changing environment that requires altering their phenotype, a process known as macrophage polarization. Formation of reactive oxygen species (ROS), derived from NADPH-oxidases, mitochondria, or NO-producing enzymes, are not necessarily toxic, but rather compose a network signaling system, known as redox regulation. Formation of redox signals in classically versus alternatively activated macrophages, their action and interaction at the level of key targets, and the resulting physiology still are insufficiently understood. We review the identity, source, and biological activities of ROS produced during macrophage activation, and discuss how they shape the key transcriptional responses evoked by hypoxia-inducible transcription factors, nuclear-erythroid 2-p45-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor-γ. We summarize the mechanisms how redox signals add to the process of macrophage polarization and reprogramming, how this is controlled by the interaction of macrophages with their environment, and addresses the outcome of the polarization process in health and disease. Future studies need to tackle the option whether we can use the knowledge of redox biology in macrophages to shape their mediator profile in pathophysiology, to accelerate healing in injured tissue, to fight the invading pathogens, or to eliminate settings of altered self in tumors. Antioxid. Redox Signal. 19, 595–637. PMID:23311665

  3. The redox stress hypothesis of aging.

    Science.gov (United States)

    Sohal, Rajindar S; Orr, William C

    2012-02-01

    The main objective of this review is to examine the role of endogenous reactive oxygen/nitrogen species (ROS) in the aging process. Until relatively recently, ROS were considered to be potentially toxic by-products of aerobic metabolism, which, if not eliminated, may inflict structural damage on various macromolecules. Accrual of such damage over time was postulated to be responsible for the physiological deterioration in the postreproductive phase of life and eventually the death of the organism. This "structural damage-based oxidative stress" hypothesis has received support from the age-associated increases in the rate of ROS production and the steady-state amounts of oxidized macromolecules; however, there are increasing indications that structural damage alone is insufficient to satisfactorily explain the age-associated functional losses. The level of oxidative damage accrued during aging often does not match the magnitude of functional losses. Although experimental augmentation of antioxidant defenses tends to enhance resistance to induced oxidative stress, such manipulations are generally ineffective in the extension of life span of long-lived strains of animals. More recently, in a major conceptual shift, ROS have been found to be physiologically vital for signal transduction, gene regulation, and redox regulation, among others, implying that their complete elimination would be harmful. An alternative notion, advocated here, termed the "redox stress hypothesis," proposes that aging-associated functional losses are primarily caused by a progressive pro-oxidizing shift in the redox state of the cells, which leads to the overoxidation of redox-sensitive protein thiols and the consequent disruption of the redox-regulated signaling mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Redox metabolism abnormalities in autistic children associated with mitochondrial disease

    Science.gov (United States)

    Frye, R E; DeLaTorre, R; Taylor, H; Slattery, J; Melnyk, S; Chowdhury, N; James, S J

    2013-01-01

    Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly

  5. Chasing stress signals - Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea.

    Science.gov (United States)

    Marschall, Robert; Schumacher, Julia; Siegmund, Ulrike; Tudzynski, Paul

    2016-05-01

    Reactive oxygen species (ROS) are important molecules influencing intracellular developmental processes as well as plant pathogen interactions. They are produced at the infection site and affect the intracellular redox homeostasis. However, knowledge of ROS signaling pathways, their connection to other signaling cascades, and tools for the visualization of intra- and extracellular ROS levels and their impact on the redox state are scarce. By using the genetically encoded biosensor roGFP2 we studied for the first time the differences between the redox states of the cytosol, the intermembrane space of mitochondria and the ER in the filamentous fungus Botrytis cinerea. We showed that the ratio of oxidized to reduced glutathione inside of the cellular compartments differ and that the addition of hydrogen peroxide (H2O2), calcium chloride (CaCl2) and the fluorescent dye calcofluor white (CFW) have a direct impact on the cellular redox states. Dependent on the type of stress agents applied, the redox states were affected in the different cellular compartments in a temporally shifted manner. By integrating the biosensor in deletion mutants of bcnoxA, bcnoxB, bctrx1 and bcltf1 we further elucidated the putative roles of the different proteins in distinct stress-response pathways. We showed that the redox states of ΔbcnoxA and ΔbcnoxB display a wild-type pattern upon exposure to H2O2, but appear to be strongly affected by CaCl2 and CFW. Moreover, we demonstrated the involvement of the light-responsive transcription factor BcLtf1 in the maintenance of the redox state in the intermembrane space of the mitochondria. Finally, we report that CaCl2 as well as cell wall stress-inducing agents stimulate ROS production and that ΔbcnoxB produces significantly less ROS than the wild type and ΔbcnoxA. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Tissue-resident Sca1+ PDGFRα+ mesenchymal progenitors are the cellular source of fibrofatty infiltration in arrhythmogenic cardiomyopathy [v1; ref status: indexed, http://f1000r.es/17s

    Directory of Open Access Journals (Sweden)

    Ben Paylor

    2013-06-01

    Full Text Available Arrhythmogenic cardiomyopathy (AC is a disease of the heart involving myocardial dystrophy leading to fibrofatty scarring of the myocardium and is associated with an increased risk of both ventricular arrhythmias and sudden cardiac death. It often affects the right ventricle but may also involve the left. Although there has been significant progress in understanding the role of underlying desmosomal genetic defects in AC, there is still a lack of data regarding the cellular processes involved in its progression. The development of cardiac fibrofatty scarring is known to be a principal pathological process associated with ventricular arrhythmias, and it is vital that we elucidate the role of various cell populations involved in the disease if targeted therapeutics are to be developed. The known role of mesenchymal progenitor cells in the reparative process of both the heart and skeletal muscle has provided inspiration for the identification of the cellular basis of fibrofatty infiltration in AC. Here we hypothesize that reparative processes triggered by myocardial degeneration lead to the differentiation of tissue-resident Sca1+ PDGFRα+ mesenchymal progenitors into adipocytes and fibroblasts, which compose the fibrofatty lesions characteristic of AC.

  7. In vivo Estimation of Redox States with Autofluorescence Spectroscopy in Oral Submucous Fibrosis Patients: A Pilot Study

    Directory of Open Access Journals (Sweden)

    V Jayanth Kumar

    2012-01-01

    Full Text Available Oral submucous fibrosis (OSMF is a common premalignant condition occurring in Southeast Asia and Indian subcontinent. An early diagnosis and prompt treatment with patient counseling helps in the cure of the disease. Aim: The aim of this pilot study is to study and assess the redox ratio in patients with OSMF and normal patients. Materials and methods: This pilot study was carried out on in 10 patients visiting the Oral Medicine Department of our institution. After a thorough history, clinical examination and incisional biopsy the proven cases of OSMF were taken up for autofluorescence study. The representative site in the buccal mucosa was chosen based on clinical examination and the site was subjected to excitation with a light of wavelength 350 and 450 nm. This corresponds to the excitation wavelength of NADH and FAD respectively. The resulting emission intensities were obtained and the redox ratio was calculated. For control, about 10 cases of age-matched patients who had the habit of tobacco usage but without any lesions were chosen. Results: The redox ratio of patients with OSMF was 0.58 t 0.08 and in normal patients was 0.37 ± 0.04. Inference: The redox ratio is an indication of metabolic activity of the tissue being examined- From this study it could be concluded that an increase in redox ratio with a decreased cellular activity is seen in patients with OSMF.

  8. Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae.

    Science.gov (United States)

    Thabet, Sana; Simonet, France; Lemaire, Marc; Guillard, Chantal; Cotton, Pascale

    2014-12-01

    We have investigated the antimicrobial effects of photocatalysis on the yeast model Saccharomyces cerevisiae. To accurately study the antimicrobial mechanisms of the photocatalytic process, we focused our investigations on two questions: the entry of the nanoparticles in treated cells and the fate of the intracellular environment. Transmission electronic microscopy did not reveal any entry of nanoparticles within the cells, even for long exposure times, despite degradation of the cell wall space and deconstruction of cellular compartments. In contrast to proteins located at the periphery of the cells, intracellular proteins did not disappear uniformly. Disappearance or persistence of proteins from the pool of oxidized intracellular isoforms was not correlated to their functions. Altogether, our data suggested that photocatalysis induces the establishment of an intracellular oxidative environment. This hypothesis was sustained by the detection of an increased level of superoxide ions (O2°(-)) in treated cells and by greater cell cultivability for cells expressing oxidant stress response genes during photocatalytic exposure. The increase in intracellular ROS, which was not connected to the entry of nanoparticles within the cells or to a direct contact with the plasma membrane, could be the result of an imbalance in redox status amplified by chain reactions. Moreover, we expanded our study to other yeast and filamentous fungi and pointed out that, in contrast to the laboratory model S. cerevisiae, some environmental strains are very resistant to photocatalysis. This could be related to the cell wall composition and structure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Impact of Photocatalysis on Fungal Cells: Depiction of Cellular and Molecular Effects on Saccharomyces cerevisiae

    Science.gov (United States)

    Thabet, Sana; Simonet, France; Lemaire, Marc; Guillard, Chantal

    2014-01-01

    We have investigated the antimicrobial effects of photocatalysis on the yeast model Saccharomyces cerevisiae. To accurately study the antimicrobial mechanisms of the photocatalytic process, we focused our investigations on two questions: the entry of the nanoparticles in treated cells and the fate of the intracellular environment. Transmission electronic microscopy did not reveal any entry of nanoparticles within the cells, even for long exposure times, despite degradation of the cell wall space and deconstruction of cellular compartments. In contrast to proteins located at the periphery of the cells, intracellular proteins did not disappear uniformly. Disappearance or persistence of proteins from the pool of oxidized intracellular isoforms was not correlated to their functions. Altogether, our data suggested that photocatalysis induces the establishment of an intracellular oxidative environment. This hypothesis was sustained by the detection of an increased level of superoxide ions (O2°−) in treated cells and by greater cell cultivability for cells expressing oxidant stress response genes during photocatalytic exposure. The increase in intracellular ROS, which was not connected to the entry of nanoparticles within the cells or to a direct contact with the plasma membrane, could be the result of an imbalance in redox status amplified by chain reactions. Moreover, we expanded our study to other yeast and filamentous fungi and pointed out that, in contrast to the laboratory model S. cerevisiae, some environmental strains are very resistant to photocatalysis. This could be related to the cell wall composition and structure. PMID:25261515

  10. Cellular and Molecular Mechanisms in Perioperative Hepatic Protection: A Review of Current Interventions

    Directory of Open Access Journals (Sweden)

    Zahra Talebi

    2017-05-01

    Full Text Available Liver is one of the most important organs needing great concern during the perioperative period. There are a number of different mechanisms that interact with liver cells and might affect their integrity and cell live. Though these mechanisms are not all the same, there is a great common point: all affect the metabolic pathways of the liver. Ischemia, anesthetic drug effects and other perioperative insults may affect the liver. Disturbance in an organ’s blood flow is an inherent part of diverse surgical procedures, which leads to lack of oxygen and nutrient supply. These ischemic periods can be particularly long in case of liver surgeries, such as resection of large hepatic tumors, management of hepatic trauma and liver transplant. Once the blood flow and oxygen supply are restored, the interruption of blood flow affects the oxygen dependent cells in liver, which require mitochondrial oxidative phosphorylation for their metabolism. Molecular mechanisms such as Redox status, ionic interchange disturbances as well as different mediators and cells like KC, SEC, dendritic cells, leukocytes, and lymphocytes, are involved in the process ultimately leading to cell death by apoptosis and necrosis. This review provides an overview on the cellular and molecular mechanisms involved in liver injuries, categorizing these mechanisms in 3 different classes: preoperative mechanisms, intraoperative mechanisms and postoperative mechanisms. Each of them are discussed in a different part of the manuscript

  11. Interaction of plasma glutathione redox and folate deficiency on arsenic methylation capacity in Bangladeshi adults.

    Science.gov (United States)

    Niedzwiecki, Megan M; Hall, Megan N; Liu, Xinhua; Slavkovich, Vesna; Ilievski, Vesna; Levy, Diane; Alam, Shafiul; Siddique, Abu B; Parvez, Faruque; Graziano, Joseph H; Gamble, Mary V

    2014-08-01

    Inorganic arsenic(As) is metabolized through a series of methylation reactions catalyzed by arsenic(III)-methyltransferase (AS3MT), resulting in the generation of monomethylarsonic (MMAs) and dimethylarsinic acids (DMAs). AS3MT activity requires the presence of the methyl donor S-adenosylmethionine, a product of folate-dependent one-carbon metabolism, and a reductant. Although glutathione (GSH), the primary endogenous antioxidant, is not required for As methylation, GSH stimulates As methylation rates in vitro. However, the relationship between GSH redox and As methylation capacity in humans is unknown. We wished to test the hypothesis that a more oxidized plasma GSH redox status is associated with decreased As methylation capacity and examine whether these associations are modified by folate nutritional status. Concentrations of plasma GSH and GSSG, plasma folate, total blood As (bAs), total urinary As (uAs), and uAs metabolites were assessed in a cross-sectional study of n=376 Bangladeshi adults who were chronically exposed to As in drinking water. We observed that a decreased plasma GSH/GSSG ratio (reflecting a more oxidized redox state) was significantly associated with increased urinary %MMA, decreased urinary %DMA, and increased total bAs in folate-deficient individuals (plasma folate ≤ 9.0 nmol/L). Concentrations of plasma GSH and GSSG were independently associated with increased and decreased As methylation capacity, respectively. No significant associations were observed in folate-sufficient individuals, and interactions by folate status were statistically significant. Our findings suggest that GSH/GSSG redox regulation might contribute to the large interindividual variation in As methylation capacity observed in human populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Hydrogen peroxide probes directed to different cellular compartments.

    Directory of Open Access Journals (Sweden)

    Mikalai Malinouski

    2011-01-01

    Full Text Available Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells.Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events.We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells.

  13. Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery

    Science.gov (United States)

    Lee, Wonmi; Jo, Changshin; Youk, Sol; Shin, Hun Yong; Lee, Jinwoo; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    For enhancing the performance of vanadium redox flow battery (VRFB), a sluggish reaction rate issue of V2+/V3+ redox couple evaluated as the rate determining reaction should be addressed. For doing that, mesoporous tungsten oxide (m-WO3) and oxyniride (m-WON) structures are proposed as the novel catalysts, while m-WON is gained by NH3 heat treatment of m-WO3. Their specific surface area, crystal structure, surface morphology and component analysis are measured using BET, XRD, TEM and XPS, while their catalytic activity for V2+/V3+ redox reaction is electrochemically examined. As a result, the m-WON shows higher peak current, smaller peak potential difference, higher electron transfer rate constant and lower charge transfer resistance than other catalysts, like the m-WO3, WO3 nanoparticle and mesoporous carbon, proving that it is superior catalyst. Regarding the charge-discharge curve tests, the VRFB single cell employing the m-WON demonstrates high voltage and energy efficiencies, high specific capacity and low capacity loss rate. The excellent results of m-WON are due to the reasons like (i) reduced energy band gap, (ii) reaction familiar surface functional groups and (ii) greater electronegativity.

  14. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  15. Cooperative redox activation for carbon dioxide conversion.

    Science.gov (United States)

    Lian, Zhong; Nielsen, Dennis U; Lindhardt, Anders T; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-16

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing 'waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  16. Cooperative redox activation for carbon dioxide conversion

    Science.gov (United States)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  17. Anion permselective membrane. [For redox fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Hodgdon, R.B.

    1978-01-01

    Experimental anion permeselective membranes were improved and characterized for use as separators in a chemical redox, power storage cell being developed at the NASA Lewis Research Center. The goal of minimal Fe/sup +3/ ion transfer was achieved for each candidate membrane system. Minimal membrane resistivity was demonstrated by reduction of film thickness using synthetic backing materials but usefulness of thin membranes was limited by the scarcity of compatible fabrics. The most durable and useful backing fabrics were modacrylics. One membrane, a copolymer of 4 vinylpyridine and vinyl benzylchloride was outstanding in overall electrochemical and physical properties. Long term (1000 hrs) membrane chemical and thermal durability in redox environment was shown by three candidate polymers and two membranes. The remainder had good durability at ambient temperature. Manufacturing capability was demonstrated for large scale production of membrane sheets 5.5 ft/sup 2/ in area for two candidate systems.

  18. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  19. Proterozoic ocean redox and biogeochemical stasis.

    Science.gov (United States)

    Reinhard, Christopher T; Planavsky, Noah J; Robbins, Leslie J; Partin, Camille A; Gill, Benjamin C; Lalonde, Stefan V; Bekker, Andrey; Konhauser, Kurt O; Lyons, Timothy W

    2013-04-02

    The partial pressure of oxygen in Earth's atmosphere has increased dramatically through time, and this increase is thought to have occurred in two rapid steps at both ends of the Proterozoic Eon (∼2.5-0.543 Ga). However, the trajectory and mechanisms of Earth's oxygenation are still poorly constrained, and little is known regarding attendant changes in ocean ventilation and seafloor redox. We have a particularly poor understanding of ocean chemistry during the mid-Proterozoic (∼1.8-0.8 Ga). Given the coupling between redox-sensitive trace element cycles and planktonic productivity, various models for mid-Proterozoic ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients, with potential ecological constraints on emerging eukaryotic life. Here, we exploit the differing redox behavior of molybdenum and chromium to provide constraints on seafloor redox evolution by coupling a large database of sedimentary metal enrichments to a mass balance model that includes spatially variant metal burial rates. We find that the metal enrichment record implies a Proterozoic deep ocean characterized by pervasive anoxia relative to the Phanerozoic (at least ∼30-40% of modern seafloor area) but a relatively small extent of euxinic (anoxic and sulfidic) seafloor (less than ∼1-10% of modern seafloor area). Our model suggests that the oceanic Mo reservoir is extremely sensitive to perturbations in the extent of sulfidic seafloor and that the record of Mo and chromium enrichments through time is consistent with the possibility of a Mo-N colimited marine biosphere during many periods of Earth's history.

  20. Redox Flow Batteries, Hydrogen and Distributed Storage

    OpenAIRE

    Dennison, C. R.; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka Eero; Toghill, Kathryn E.; GIRAULT Hubert

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enh...

  1. Redox signalling and cardioprotection: translatability and mechanism.

    Science.gov (United States)

    Pagliaro, P; Penna, C

    2015-04-01

    The morbidity and mortality from coronary artery disease (CAD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of culprit coronary arteries. Although it is mandatory to reperfuse the ischaemic territory as soon as possible, paradoxically this leads to additional myocardial injury, namely ischaemia/reperfusion (I/R) injury, in which redox stress plays a pivotal role and for which no effective therapy is currently available. In this review, we report evidence that the redox environment plays a pivotal role not only in I/R injury but also in cardioprotection. In fact, cardioprotective strategies, such as pre- and post-conditioning, result in a robust reduction in infarct size in animals and the role of redox signalling is of paramount importance in these conditioning strategies. Nitrosative signalling and cysteine redox modifications, such as S-nitrosation/S-nitrosylation, are also emerging as very important mechanisms in conditioning cardioprotection. The reasons for the switch from protective oxidative/nitrosative signalling to deleterious oxidative/nitrosative/nitrative stress are not fully understood. The complex regulation of this switch is, at least in part, responsible for the diminished or lack of cardioprotection induced by conditioning protocols observed in ageing animals and with co-morbidities as well as in humans. Therefore, it is important to understand at a mechanistic level the reasons for these differences before proposing a safe and useful transition of ischaemic or pharmacological conditioning. Indeed, more mechanistic novel therapeutic strategies are required to protect the heart from I/R injury and to improve clinical outcomes in patients with CAD. © 2014 The British Pharmacological Society.

  2. The role of intracellular redox imbalance in nanomaterial induced cellular damage and genotoxicity

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Chauché, Caroline; Brown, David M

    2015-01-01

    as one of the main contributors to nanomaterial (NM) induced adverse effects. One of the most important and widely investigated of these effects is genotoxicity. In general, systems that defend an organism against oxidative damage to DNA are very complex and include prevention of reactive oxygen species...

  3. Medical ozone increases methotrexate clinical response and improves cellular redox balance in patients with rheumatoid arthritis.

    Science.gov (United States)

    León Fernández, Olga Sonia; Viebahn-Haensler, Renate; Cabreja, Gilberto López; Espinosa, Irainis Serrano; Matos, Yanet Hernández; Roche, Liván Delgado; Santos, Beatriz Tamargo; Oru, Gabriel Takon; Polo Vega, Juan Carlos

    2016-10-15

    Medical ozone reduced inflammation, IL-1β, TNF-α mRNA levels and oxidative stress in PG/PS-induced arthritis in rats. The aim of this study was to investigate the medical ozone effects in patients with rheumatoid arthritis treated with methotrexate and methotrexate+ozone, and to compare between them. A randomized clinical study with 60 patients was performed, who were divided into two groups: one (n=30) treated with methotrexate (MTX), folic acid and Ibuprophen (MTX group) and the second group (n=30) received the same as the MTX group+medical ozone by rectal insufflation of the gas (MTX+ozone group). The clinical response of the patients was evaluated by comparing Disease Activity Score 28 (DAS28), Health Assessment Questionnaire Disability Index (HAQ-DI), Anti-Cyclic Citrullinated (Anti-CCP) levels, reactants of acute phase and biochemical markers of oxidative stress before and after 20 days of treatment. MTX+ozone reduced the activity of the disease while MTX merely showed a tendency to decrease the variables. Reactants of acute phase displayed a similar picture. MTX+ozone reduced Anti-CCP levels as well as increased antioxidant system, and decreased oxidative damage whereas MTX did not change. Glutathione correlated with all clinical variables just after MTX+ozone. MTX+ozone increased the MTX clinical response in patients with rheumatoid arthritis. No side effects were observed. These results suggest that ozone can increase the efficacy of MTX probably because both share common therapeutic targets. Medical ozone treatment is capable of being a complementary therapy in the treatment of rheumatoid arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Kinetic and Thermodynamic Aspects of Cellular Thiol-Disulfide Redox Regulation

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Hansen, Rosa Erritzøe; Winther, Jakob R

    2009-01-01

    that affect the rate of thiol-disulfide exchange and stability of disulfide bonds are discussed within the framework of the underlying chemical foundations. This includes the effect of thiol acidity (pKa), the local electrostatic environment, molecular strain and entropy. Even though a thiol...

  5. Adaptation of Organisms by Resonance of RNA Transcription with the Cellular Redox Cycle

    Science.gov (United States)

    Stolc, Viktor

    2012-01-01

    Sequence variation in organisms differs across the genome and the majority of mutations are caused by oxidation, yet its origin is not fully understood. It has also been shown that the reduction-oxidation reaction cycle is the fundamental biochemical cycle that coordinates the timing of all biochemical processes in that cell, including energy production, DNA replication, and RNA transcription. It is shown that the temporal resonance of transcriptome biosynthesis with the oscillating binary state of the reduction-oxidation reaction cycle serves as a basis for non-random sequence variation at specific genome-wide coordinates that change faster than by accumulation of chance mutations. This work demonstrates evidence for a universal, persistent and iterative feedback mechanism between the environment and heredity, whereby acquired variation between cell divisions can outweigh inherited variation.

  6. Redox equilibria of iron oxides in aqueous-based magnetite dispersions: effect of pH and redox potential.

    Science.gov (United States)

    Pang, Suh Cem; Chin, Suk Fun; Anderson, Marc A

    2007-07-01

    The effect of pH and redox potential on the redox equilibria of iron oxides in aqueous-based magnetite dispersions was investigated. The ionic activities of each dissolved iron species in equilibrium with magnetite nanoparticles were determined and contoured within the Eh-pH framework of a composite stability diagram. Both standard redox potentials and equilibrium constants for all major iron oxide redox equilibria in magnetite dispersions were found to differ from values reported for noncolloidal systems. The "triple point" position of redox equilibrium among Fe(II) ions, magnetite, and hematite shifted to a higher standard redox potential and an equilibrium constant which was several orders of magnitude higher. The predominant area of magnetite stability was enlarged to cover a wider range of both pH and redox potentials as compared to that of a noncolloidal magnetite system.

  7. Statins: Pleiotropic Regulators of Cardiovascular Redox State

    Science.gov (United States)

    Channon, Keith M.

    2014-01-01

    Abstract Lipid-lowering treatment with statins is one of the most effective therapeutic strategies in cardiovascular medicine because they reduce cardiovascular risk in both primary and secondary prevention. Despite the well-established links between low-density lipoprotein and cardiovascular risk, the clinical benefit from statin treatment is not fully explained by their lipid-lowering potential. A number of pleiotropic effects of statins have been described over the past decade, and their ability to suppress global oxidative stress is probably one of the most important mechanisms by which they exert their beneficial effects on the cardiovascular system. In this Forum, there are review articles discussing the molecular mechanisms by which statins modify redox signaling in the vasculature and the heart. They exert direct effects on the vascular wall and the myocardium or indirect by targeting the interactions between the cardiovascular system and adipose tissue or circulating cell types. The review articles in this Forum follow a translational approach and link the molecular mechanisms by which statins modify cardiovascular redox signaling with their clinical benefit in the prevention and treatment of cardiovascular diseases. Antioxid. Redox Signal. 20, 1195–1197. PMID:24409984

  8. A redox-mediated Kemp eliminase

    Science.gov (United States)

    Li, Aitao; Wang, Binju; Ilie, Adriana; Dubey, Kshatresh D.; Bange, Gert; Korendovych, Ivan V.; Shaik, Sason; Reetz, Manfred T.

    2017-03-01

    The acid/base-catalysed Kemp elimination of 5-nitro-benzisoxazole forming 2-cyano-4-nitrophenol has long served as a design platform of enzymes with non-natural reactions, providing new mechanistic insights in protein science. Here we describe an alternative concept based on redox catalysis by P450-BM3, leading to the same Kemp product via a fundamentally different mechanism. QM/MM computations show that it involves coordination of the substrate's N-atom to haem-Fe(II) with electron transfer and concomitant N-O heterolysis liberating an intermediate having a nitrogen radical moiety Fe(III)-N. and a phenoxyl anion. Product formation occurs by bond rotation and H-transfer. Two rationally chosen point mutations cause a notable increase in activity. The results shed light on the prevailing mechanistic uncertainties in human P450-catalysed metabolism of the immunomodulatory drug leflunomide, which likewise undergoes redox-mediated Kemp elimination by P450-BM3. Other isoxazole-based pharmaceuticals are probably also metabolized by a redox mechanism. Our work provides a basis for designing future artificial enzymes.

  9. Measurement of Redox Potential in Nanoecotoxicological Investigations

    Directory of Open Access Journals (Sweden)

    Ratna Tantra

    2012-01-01

    Full Text Available Redox potential has been identified by the Organisation for Economic Co-operation and Development (OECD as one of the parameters that should be investigated for the testing of manufactured nanomaterials. There is still some ambiguity concerning this parameter, i.e., as to what and how to measure, particularly when in a nanoecotoxicological context. In this study the redox potentials of six nanomaterials (either zinc oxide (ZnO or cerium oxide (CeO2 dispersions were measured using an oxidation-reduction potential (ORP electrode probe. The particles under testing differed in terms of their particle size and dispersion stability in deionised water and in various ecotox media. The ORP values of the various dispersions and how they fluctuate relative to each other are discussed. Results show that the ORP values are mainly governed by the type of liquid media employed, with little contributions from the nanoparticles. Seawater was shown to have reduced the ORP value, which was attributed to an increase in the concentration of reducing agents such as sulphites or the reduction of dissolved oxygen concentration. The lack of redox potential value contribution from the particles themselves is thought to be due to insufficient interaction of the particles at the Pt electrode of the ORP probe.

  10. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  11. Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability.

    Science.gov (United States)

    Banning, Andre; Rüde, Thomas R; Dölling, Bettina

    2013-11-15

    Cretaceous shallow marine sediments from northwestern Germany exhibit a distinct colour and geochemical boundary in a depth of several decametres, witnessing a terrestrial oxidative paleo redox process which resulted in cement loss and oxidation of Fe(II) phases. Sediment samples were obtained from boreholes drilled in near-coastal and further basinward paleo environments, including both reduced and oxidized redox facies, to characterize As and Fe occurrence in unaltered layers and redistributional consequences of the redox event. Geochemical and mineralogical composition and As fractionation were assessed. Arsenic resides in pyrite in the reduced section with a bulk rock maximum concentration of 39 μg g(-1), calculated Aspyrite is ~0.2 wt.%. Siderite concretions in the fine sands do not function as As sinks, neither does glauconite whose general As/Fe leaching behaviour was characterized. In the zone of redox transition, reduced and oxidized phases coexist and elevated As concentrations (up to 73 μg g(-1)) with high proportions of reactive As were detected. Arsenic behaviour changes from relatively homogeneous Fe sulphide-control in the unaltered sediments to very heterogeneous Fe hydroxide-control above the paleo redox boundary. The studied characteristics determine recent As availability in the subsurface and must be considered during groundwater extraction from this highly important aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Maternal alcohol use during pregnancy causes systemic oxidation of the glutathione redox system

    Science.gov (United States)

    Gauthier, Theresa W.; Kable, Julie A.; Burwell, Leandrea; Coles, Claire D.; Brown, Lou Ann S.

    2010-01-01

    Summary Background Increased systemic oxidant stress contributes to a variety of maternal complications of pregnancy. Although the antioxidant glutathione (GSH) and its oxidized component glutathione disulfide (GSSG) have been demonstrated to be significantly altered in the adult alcoholic, the effects of maternal alcohol use during pregnancy on oxidant stress in the post partum female remain under investigation. We hypothesized that maternal alcohol use would increase systemic oxidant stress in the pregnant female, evidenced by an oxidized systemic GSH redox potential. Methods As a subset analysis of a larger maternal language study, we evaluated the effects of alcohol consumption during pregnancy on the systemic GSH redox status of the post partum female. Using an extensive maternal questionnaire, post partum women where queried regarding their alcohol consumption during pregnancy. Any drinking, the occurrence of drinking > 3 drinks/occasion, and excessive drinking of >5 drinks/occasion during pregnancy were noted. Using HPLC, maternal plasma samples were analyzed for GSH, oxidized GSSH and the redox potential of the GSH/GSSG antioxidant pair calculated. Results Maternal alcohol use occurred in 25% (83/321) of our study sample. Two in ten women reported consuming > 3 drinks/occasion during pregnancy, while one in ten women reported consuming excessive alcohol at > 5 drinks/occasion. Any alcohol use during pregnancy significantly decreased plasma GSH (p3 drinks/occasion or > 5 drinks/occasion significantly decreased plasma GSH concentration (p<0.05), increased the percent of oxidized GSSG (p<0.05), and substantially oxidized the plasma GSH redox potential (p<0.05). Conclusions Alcohol use during pregnancy, particularly at levels of more than 3 drinks/occasion, caused significant oxidation of the systemic GSH system in the post partum women. The clinical ramifications of the observed alcohol-induced oxidation of the GSH redox system on high risk pregnancies or on

  13. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  14. Nrf2-mediated redox signaling in arsenic carcinogenesis: a review.

    Science.gov (United States)

    Sinha, Dona; Biswas, Jaydip; Bishayee, Anupam

    2013-02-01

    Arsenic is a ubiquitous toxic metalloid whose natural leaching from geogenic resources of earths crust into groundwater has become a dreadful health hazard to millions of people across the globe. Arsenic has been documented as a top most potent human carcinogen by Agency of Toxic Substances and Disease Registry. There have been a number of schools of opinions regarding the underlying mechanism of arsenic-induced carcinogenicity, but the theory of oxidative stress generated by arsenic has gained much importance. Imbalance in the cellular redox state and its associated complications have been closely associated with nuclear factor-erythroid 2-related factor 2 (Nrf2), a basic-leucine zipper transcription factor that activates the antioxidant responsive element and electrophilic responsive element, thereby upregulating the expression of a variety of downstream genes. This review has been framed on the lines of differential molecular responses of Nrf2 on arsenic exposure as well as the chemopreventive strategy which may be improvised to regulate Nrf2 in order to combat arsenic-induced oxidative stress and its long-term carcinogenic effect.

  15. Redox Enzymes of Red Beetroot Vacuoles (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2014-12-01

    Full Text Available Years of research have shown that some of the redox elements (enzymes, coenzymes, and co-substrate are isolated from each other kinetic and spatial manner (compartmentalization in the eukaryotic cells. The redox elements forming the "highly" and "widely" specialized redox system are found in all cell structures: mitochondria, plastids, peroxisomes, apoplast, nucleus etc. In recent years the active involvement of the central vacuole in the maintenance of the plant cell redox homeostasis is discussed, actually the information about the vacuolar redox system is very small. The high-priority redox processes and "redox-specialization" of the vacuolar compartment are not known. We have begun a study of red beet-root vacuole redox systems (Beta vulgaris L. and have identified redox enzymes such as: phenol peroxidase (EC 1.11.1.7, superoxide dismutase (EC 1.15.1.1 and glutathione reductase (EC 1.8.1.7. This paper presents some of the characteristics of these enzymes and considers the probable ways of their functioning in vacuolar redox chains.

  16. Redox Regulation of Inflammatory Processes Is Enzymatically Controlled

    Directory of Open Access Journals (Sweden)

    Inken Lorenzen

    2017-01-01

    Full Text Available Redox regulation depends on the enzymatically controlled production and decay of redox active molecules. NADPH oxidases, superoxide dismutases, nitric oxide synthases, and others produce the redox active molecules superoxide, hydrogen peroxide, nitric oxide, and hydrogen sulfide. These react with target proteins inducing spatiotemporal modifications of cysteine residues within different signaling cascades. Thioredoxin family proteins are key regulators of the redox state of proteins. They regulate the formation and removal of oxidative modifications by specific thiol reduction and oxidation. All of these redox enzymes affect inflammatory processes and the innate and adaptive immune response. Interestingly, this regulation involves different mechanisms in different biological compartments and specialized cell types. The localization and activity of distinct proteins including, for instance, the transcription factor NFκB and the immune mediator HMGB1 are redox-regulated. The transmembrane protein ADAM17 releases proinflammatory mediators, such as TNFα, and is itself regulated by a thiol switch. Moreover, extracellular redox enzymes were shown to modulate the activity and migration behavior of various types of immune cells by acting as cytokines and/or chemokines. Within this review article, we will address the concept of redox signaling and the functions of both redox enzymes and redox active molecules in innate and adaptive immune responses.

  17. The Role of Redox-Regulating Enzymes in Inoperable Breast Cancers Treated with Neoadjuvant Chemotherapy

    Directory of Open Access Journals (Sweden)

    Nelli Roininen

    2017-01-01

    Full Text Available Although validated predictive factors for breast cancer chemoresistance are scarce, there is emerging evidence that the induction of certain redox-regulating enzymes may contribute to a poor chemotherapy effect. We investigated the possible association between chemoresistance and cellular redox state regulation in patients undergoing neoadjuvant chemotherapy (NACT for breast cancer. In total, 53 women with primarily inoperable or inflammatory breast cancer who were treated with NACT were included in the study. Pre-NACT core needle biopsies and postoperative tumor samples were immunohistochemically stained for nuclear factor erythroid 2-related factor 2 (Nrf2, Kelch-like ECH-associated protein 1 (Keap1, thioredoxin (Trx, and peroxiredoxin I (Prx I. The expression of all studied markers increased during NACT. Higher pre-NACT nuclear Prx I expression predicted smaller size of a resected tumor (p=0.00052; r=−0.550, and higher pre-NACT cytoplasmic Prx I expression predicted a lower amount of evacuated nodal metastasis (p=0.0024; r=−0.472. Pre-NACT nuclear Trx expression and pre-NACT nuclear Keap1 expression had only a minor prognostic significance as separate factors, but when they were combined, low expression for both antibodies before NACT predicted dismal disease-free survival (log-rank p=0.0030. Our results suggest that redox-regulating enzymes may serve as potential prognostic factors in primarily inoperable breast cancer patients.

  18. Structural Basis for NADH/NAD+ Redox Sensing by a Rex Family Repressor

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, K.J.; Soares, A.; Strain-Damerell, C. M.; Xie, K.; Brekasis, D.; Pagent, M. S. B.; Kielkopf, C. L.

    2010-05-28

    Nicotinamide adenine dinucleotides have emerged as key signals of the cellular redox state. Yet the structural basis for allosteric gene regulation by the ratio of reduced NADH to oxidized NAD{sup +} is poorly understood. A key sensor among Gram-positive bacteria, Rex represses alternative respiratory gene expression until a limited oxygen supply elevates the intracellular NADH:NAD{sup +} ratio. Here we investigate the molecular mechanism for NADH/NAD{sup +} sensing among Rex family members by determining structures of Thermus aquaticus Rex bound to (1) NAD{sup +}, (2) DNA operator, and (3) without ligand. Comparison with the Rex/NADH complex reveals that NADH releases Rex from the DNA site following a 40{sup o} closure between the dimeric subunits. Complementary site-directed mutagenesis experiments implicate highly conserved residues in NAD-responsive DNA-binding activity. These rare views of a redox sensor in action establish a means for slight differences in the nicotinamide charge, pucker, and orientation to signal the redox state of the cell.

  19. Diglycosyl diselenides alter redox homeostasis and glucose consumption of infective African trypanosomes

    Directory of Open Access Journals (Sweden)

    Jaime Franco

    2017-12-01

    Full Text Available With the aim to develop compounds able to target multiple metabolic pathways and, thus, to lower the chances of drug resistance, we investigated the anti-trypanosomal activity and selectivity of a series of symmetric diglycosyl diselenides and disulfides. Of 18 compounds tested the fully acetylated forms of di-β-D-glucopyranosyl and di-β-D-galactopyranosyl diselenides (13 and 15, respectively displayed strong growth inhibition against the bloodstream stage of African trypanosomes (EC50 0.54 μM for 13 and 1.49 μM for 15 although with rather low selectivity (SI < 10 assayed with murine macrophages. Nonacetylated versions of the same sugar diselenides proved to be, however, much less efficient or completely inactive to suppress trypanosome growth. Significantly, the galactosyl (15, and to a minor extent the glucosyl (13, derivative inhibited glucose catabolism but not its uptake. Both compounds induced redox unbalance in the pathogen. In vitro NMR analysis indicated that diglycosyl diselenides react with glutathione, under physiological conditions, via formation of selenenylsulfide bonds. Our results suggest that non-specific cellular targets as well as actors of the glucose and the redox metabolism of the parasite may be affected. These molecules are therefore promising leads for the development of novel multitarget antitrypanosomal agents. Keywords: Glutathione, Redox biosensor, Selenosugar, Trypanosome inhibition, Selenium NMR

  20. Unveiling the Redox Control of Plant Reproductive Development during Abiotic Stress.

    Science.gov (United States)

    Zinta, Gaurav; Khan, Asif; AbdElgawad, Hamada; Verma, Vipasha; Srivastava, Ashish Kumar

    2016-01-01

    Plants being sessile in nature are often challenged to various abiotic stresses including temperature fluctuations, water supply, salinity, and nutrient availability. Exposure of plants to such environmental perturbations result in the formation of reactive oxygen species (ROS) in cells. To scavenge ROS, enzymatic and molecular antioxidants are produced at a cellular level. ROS act as a signaling entity at lower concentrations maintaining normal growth and development, but if their levels increase beyond certain threshold, they produce toxic effects in plants. Some developmental stages, such as development of reproductive organs are more sensitive to abiotic stress than other stages of growth. As success of plant reproductive development is directly correlated with grain yield, stresses coinciding with reproductive phase results in the higher yield losses. In this article, we summarize the redox control of plant reproductive development, and elaborate how redox homeostasis is compromised during abiotic stress exposure. We highlight why more emphasis should be given to understand redox control of plant reproductive organ development during abiotic stress exposure96to engineer crops with better crop yield. We specifically discuss the role of ROS as a signaling molecule and its cross-talk with other signaling molecules such as hormones and sugars.

  1. Peripheral artery disease, redox signaling, oxidative stress – Basic and clinical aspects

    Directory of Open Access Journals (Sweden)

    Sebastian Steven

    2017-08-01

    Full Text Available Reactive oxygen and nitrogen species (ROS and RNS, e.g. H2O2, nitric oxide confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry. Peripheral artery disease (PAD is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage. It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and redox signaling underlying the disease progression with special emphasis on the contribution of inflammatory processes. We also highlight therapeutic strategies comprising pharmacological (e.g. statins, angiotensin-converting enzyme inhibitors, phosphodiesterase inhibition and non-pharmacological (e.g. exercise interventions. Both of these strategies induce potent indirect antioxidant and anti-inflammatory mechanisms that may contribute to an improvement of PAD associated complications and disease progression by removing excess formation of ROS and RNS (e.g. by ameliorating primary complications such as hyperlipidemia and hypertension as well as the normalization of the inflammatory phenotype suppressing the progression of atherosclerosis.

  2. A new mitofusin topology places the redox-regulated C terminus in the mitochondrial intermembrane space.

    Science.gov (United States)

    Mattie, Sevan; Riemer, Jan; Wideman, Jeremy G; McBride, Heidi M

    2017-12-06

    Mitochondrial fusion occurs in many eukaryotes, including animals, plants, and fungi. It is essential for cellular homeostasis, and yet the underlying mechanisms remain elusive. Comparative analyses and phylogenetic reconstructions revealed that fungal Fzo1 and animal Mitofusin proteins are highly diverged from one another and lack strong sequence similarity. Bioinformatic analysis showed that fungal Fzo1 proteins exhibit two predicted transmembrane domains, whereas metazoan Mitofusins contain only a single transmembrane domain. This prediction contradicts the current models, suggesting that both animal and fungal proteins share one topology. This newly predicted topology of Mfn1 and Mfn2 was demonstrated biochemically, confirming that the C-terminal, redox-sensitive cysteine residues reside within the intermembrane space (IMS). Functional experiments established that redox-mediated disulfide modifications within the IMS domain are key modulators of reversible Mfn oligomerization that drives fusion. Together, these results lead to a revised understanding of Mfns as single-spanning outer membrane proteins with an Nout-Cin orientation, providing functional insight into the IMS contribution to redox-regulated fusion events. © 2018 Mattie et al.

  3. Exploring the redox balance inside gram-negative bacteria with redox-sensitive GFP.

    Science.gov (United States)

    van der Heijden, Joris; Vogt, Stefanie L; Reynolds, Lisa A; Peña-Díaz, Jorge; Tupin, Audrey; Aussel, Laurent; Finlay, B Brett

    2016-02-01

    Aerobic bacteria are continuously fighting potential oxidative stress due to endogenous and exogenous reactive oxygen species (ROS). To achieve this goal, bacteria possess a wide array of defenses and stress responses including detoxifying enzymes like catalases and peroxidases; however until now, the dynamics of the intra-bacterial redox balance remained poorly understood. Herein, we used redox-sensitive GFP (roGFP2) inside a variety of gram-negative bacteria to study real-time redox dynamics immediately after a challenge with hydrogen peroxide. Using this biosensor, we determined the individual contributions of catalases and peroxidases and found that each enzyme contributes more to rapid detoxification or to prolonged catalytic activity. We also found that the total catalytic power is affected by environmental conditions. Additionally, using a Salmonella strain that is devoid of detoxifying enzymes, we examined endogenous ROS production. By measuring endogenous ROS production, we assessed the role of oxidative stress in toxicity of heavy metals and antibiotics. We found that exposure to nickel induced significant oxidative stress whereas cobalt (which was previously implicated to induce oxidative stress) did not induce ROS formation. Since a turbulent debate evolves around oxidative stress as a general killing mechanism by antibiotics (aminoglycosides, fluoroquinolones and β-lactams), we measured oxidative stress in bacteria that were challenged with these antibiotics. Our results revealed that antibiotics do not induce ROS formation in bacteria thereby disputing a role for oxidative stress as a general killing mechanism. Together, our results expose how the intra-bacterial redox balance in individual microorganisms is affected by environmental conditions and encounters with stress-inducing compounds. These findings demonstrate the significant potential of roGFP2 as a redox biosensor in gram-negative bacteria to investigate redox dynamics under a variety of

  4. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: implications for cellular mechanisms of metastasis [v2; ref status: indexed, http://f1000r.es/11h

    Directory of Open Access Journals (Sweden)

    Halina Witkiewicz

    2013-04-01

    Full Text Available Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes, megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar

  5. Oxidative/Antioxidative Status in Obese and Sport Trained Children: A Comparative Study

    National Research Council Canada - National Science Library

    Matusik, Pawel; Prokopowicz, Zofia; Norek, Berenika; Olszanecka-Glinianowicz, Magdalena; Chudek, Jerzy; Malecka-Tendera, Ewa

    2015-01-01

      The aim of the study was to compare oxidative/antioxidative status in obese and sport trained children and to correlate obtained redox markers with anthropometrical measurements, body composition...

  6. Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family1[W][OA

    Science.gov (United States)

    Viola, Ivana L.; Güttlein, Leandro N.; Gonzalez, Daniel H.

    2013-01-01

    TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR1 (TCP) transcription factors participate in plant developmental processes associated with cell proliferation and growth. Most members of class I, one of the two classes that compose the family, have a conserved cysteine at position 20 (Cys-20) of the TCP DNA-binding and dimerization domain. We show that Arabidopsis (Arabidopsis thaliana) class I proteins with Cys-20 are sensitive to redox conditions, since their DNA-binding activity is inhibited after incubation with the oxidants diamide, oxidized glutathione, or hydrogen peroxide or with nitric oxide-producing agents. Inhibition can be reversed by treatment with the reductants dithiothreitol or reduced glutathione or by incubation with the thioredoxin/thioredoxin reductase system. Mutation of Cys-20 in the class I protein TCP15 abolished its redox sensitivity. Under oxidizing conditions, covalently linked dimers were formed, suggesting that inactivation is associated with the formation of intermolecular disulfide bonds. Inhibition of class I TCP protein activity was also observed in vivo, in yeast (Saccharomyces cerevisiae) cells expressing TCP proteins and in plants after treatment with redox agents. This inhibition was correlated with modifications in the expression of the downstream CUC1 gene in plants. Modeling studies indicated that Cys-20 is located at the dimer interface near the DNA-binding surface. This places this residue in the correct orientation for intermolecular disulfide bond formation and explains the sensitivity of DNA binding to the oxidation of Cys-20. The redox properties of Cys-20 and the observed effects of cellular redox agents both in vitro and in vivo suggest that class I TCP protein action is under redox control in plants. PMID:23686421

  7. Context-dependent redox properties of natural phenolic materials.

    Science.gov (United States)

    Kim, Eunkyoung; Liu, Yi; Leverage, W Taylor; Yin, Jun-Jie; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-05-12

    Macromolecular phenolics are among the most abundant organic molecules in nature, yet their biological activities are largely unresolved because of their structural complexity and because of an inability to probe their functionality experimentally. We developed thin film and electrochemical methodologies to probe the redox properties of melanin, lignin, and humic acid, three of the most abundant phenolic materials. We observed that all three phenolic matrixes possess redox activity and can be repeatedly switched between oxidized and reduced states. Furthermore, we observed that melanin possesses pro-oxidant activities exemplified by the uncatalyzed generation of reactive oxygen species (ROS) upon exposure to air; however, this pro-oxidant activity is observed only for melanin films that are poised in their reduced state. Conversely, melanin's antioxidant radical-scavenging activities are insensitive to its redox state. These results demonstrate that natural phenolic matrixes are not inert but rather serve as open-source redox media with significant potential for impacting redox signaling and redox biology.

  8. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  9. Sources and implications of NADH/NAD+ redox imbalance in diabetes and its complications

    Directory of Open Access Journals (Sweden)

    Wu J

    2016-05-01

    Full Text Available Jinzi Wu,1Zhen Jin,1Hong Zheng,1,2Liang-Jun Yan1 1Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA; 2Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China Abstract: NAD+ is a fundamental molecule in metabolism and redox signaling. In diabetes and its complications, the balance between NADH and NAD+ can be severely perturbed. On one hand, NADH is overproduced due to influx of hyperglycemia to the glycolytic and Krebs cycle pathways and activation of the polyol pathway. On the other hand, NAD+ can be diminished or depleted by overactivation of poly ADP ribose polymerase that uses NAD+ as its substrate. Moreover, sirtuins, another class of enzymes that also use NAD+ as their substrate for catalyzing protein deacetylation reactions, can also affect cellular content of NAD+. Impairment of NAD+ regeneration enzymes such as lactate dehydrogenase in erythrocytes and complex I in mitochondria can also contribute to NADH accumulation and NAD+ deficiency. The consequence of NADH/NAD+ redox imbalance is initially reductive stress that eventually leads to oxidative stress and oxidative damage to macromolecules, including DNA, lipids, and proteins. Accordingly, redox imbalance-triggered oxidative damage has been thought to be a major factor contributing to the development of diabetes and its complications. Future studies on restoring NADH/NAD+ redox balance could provide further insights into design of novel antidiabetic strategies. Keywords: mitochondria, complex I, reactive oxygen species, polyol pathway, poly ADP ribosylation, sirtuins, oxidative stress, oxidative damage

  10. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Koning, Anne; Kuhnle, Gunter G C; Nagy, Peter; Bianco, Christopher L; Pasch, Andreas; Wink, David A; Fukuto, Jon M; Jackson, Alan A; van Goor, Harry; Olson, Kenneth R; Feelisch, Martin

    2017-10-01

    Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.

  11. Redox and Nitric Oxide-Mediated Regulation of Sensory Neuron Ion Channel Function

    Science.gov (United States)

    2015-01-01

    Abstract Significance: Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. Recent Advances: Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. Critical Issues: The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. Future Directions: Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics. Antioxid. Redox Signal. 22, 486–504. PMID:24735331

  12. Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells*

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2013-01-01

    In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury. PMID:23640889

  13. Probabilistic cellular automata.

    Science.gov (United States)

    Agapie, Alexandru; Andreica, Anca; Giuclea, Marius

    2014-09-01

    Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.

  14. Predictability in cellular automata.

    Science.gov (United States)

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.

  15. Redox-mediated quorum sensing in plants.

    Directory of Open Access Journals (Sweden)

    Alexandra W Fuller

    Full Text Available The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere's chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs. The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS production regulates similar redox circuits related to root recognition, broadening xenognosins' role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction

  16. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulenova, Alena [Principal Investigator; Vandegrift, III, George F. [Collaborator

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  17. Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria.

    Science.gov (United States)

    Maksimov, Eugene G; Mironov, Kirill S; Trofimova, Marina S; Nechaeva, Natalya L; Todorenko, Daria A; Klementiev, Konstantin E; Tsoraev, Georgy V; Tyutyaev, Eugene V; Zorina, Anna A; Feduraev, Pavel V; Allakhverdiev, Suleyman I; Paschenko, Vladimir Z; Los, Dmitry A

    2017-09-01

    Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.

  18. Biogeochemical redox processes and their impact on contaminant dynamics

    Science.gov (United States)

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  19. Redox buffer capacity of the cell: theoretical and experimental approach.

    Science.gov (United States)

    Martinovich, Grigory G; Martinovich, Irina V; Cherenkevich, Sergey N; Sauer, Heinrich

    2010-11-01

    Reactive oxygen species (ROS) are involved in a variety of biological phenomena, such as mutation, carcinogenesis, inflammation, aging, development, and signal transduction. Intracellular generation of ROS might lead to the activation of redox signaling or oxidative stress. Nonetheless, it is difficult to estimate whether ROS-induced intracellular events are beneficial or deleterious to the cell. The quantitative basis of changes in the intracellular redox state of cells is not well-defined, thus leading to the dilemma that redox changes induced by oxidants in distinct cell types cannot be predicted. To overcome this limitation this study undertakes to analyze on a theoretical as well as on an experimental basis the intracellular redox state changes occurring inside cells upon addition of oxidants or reductants. 2,7-Dichlorodihydrofluorescein (H(2)DCF) was used to characterize the redox buffer capacity in erythrocytes. It was shown that the redox buffer capacity of erythrocytes in the relation to peroxynitrite (ONOO(-)) is 2.1 times lower than the redox buffer capacity of erythrocytes in the relation to hydrogen peroxide (H(2)O(2)). The feasibility of redox buffer capacity assessment as an innovative tool for investigation and description of redox signaling events in cells is discussed.

  20. Dimensional behavior of Ni-YSZ composites during redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Larsen, Peter Halvor

    2009-01-01

    The dimensional behavior of Ni-yttria-stabilized zirconia (YSZ) cermets during redox cycling was tested in dilatometry within the temperature range 600-1000 degrees C. The effect Of humidity oil redox stability was investigated at intermediate and low temperatures. We show that both the sintering...... of nickel depending on temperature of the initial reduction and the operating conditions, and the temperature of reoxidation are very important for the size of the dimensional change. Cumulative redox strain (CRS) is shown to be correlated with temperature. Measured maximum CRS after three redox cycles...

  1. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  2. Redox shuttles for lithium ion batteries

    Science.gov (United States)

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  3. Proterozoic ocean redox and biogeochemical stasis

    OpenAIRE

    Reinhard, Christopher T.; Planavsky, Noah J.; Robbins, Leslie J.; Partin, Camille A.; Gill, Benjamin C.; Lalonde, Stefan V.; Bekker, Andrey; Konhauser, Kurt O.; Lyons, Timothy W.

    2013-01-01

    The partial pressure of oxygen in Earth’s atmosphere has increased dramatically through time, and this increase is thought to have occurred in two rapid steps at both ends of the Proterozoic Eon (∼2.5–0.543 Ga). However, the trajectory and mechanisms of Earth’s oxygenation are still poorly constrained, and little is known regarding attendant changes in ocean ventilation and seafloor redox. We have a particularly poor understanding of ocean chemistry during the mid-Proterozoic (∼1.8–0.8 Ga). G...

  4. Fe-V redox flow batteries

    Science.gov (United States)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-07-08

    A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

  5. Aqueous electrolytes for redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tianbiao; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-10-17

    An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.

  6. Transition-Metal-Catalyzed Redox-Neutral and Redox-Green C-H Bond Functionalization.

    Science.gov (United States)

    Wang, Hongli; Huang, Hanmin

    2016-08-01

    Transition-metal-catalyzed C-H bond functionalization has become one of the most promising strategies to prepare complex molecules from simple precursors. However, the utilization of environmentally unfriendly oxidants in the oxidative C-H bond functionalization reactions reduces their potential applications in organic synthesis. This account describes our recent efforts in the development of a redox-neutral C-H bond functionalization strategy for direct addition of inert C-H bonds to unsaturated double bonds and a redox-green C-H bond functionalization strategy for realization of oxidative C-H functionalization with O2 as the sole oxidant, aiming to circumvent the problems posed by utilizing environmentally unfriendly oxidants. In principle, these redox-neutral and redox-green strategies pave the way for establishing new environmentally benign transition-metal-catalyzed C-H bond functionalization strategies. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The influence of land use on soil organic carbon and nitrogen content and redox potential

    DEFF Research Database (Denmark)

    Kusliene, Gedrime

    2010-01-01

    different farming systems (conventional and organic) as well as abandoned lands. We choose the plants of two botanical species (Poaceae and Fabaceae) in organic and conventional farming systems as well as abandoned lands. Experimental results show that the best soil organic matter status according...... to the investigated indexes is in the soils of conventional and orgaic farming systems occupied with mixtures of Poaceae and Fabaceae and the worst - in the soils of abandoned Poaceae meadowa. In the abandoned lands, Fabaceae (galega) had better influence on soil organic matter status than Poaceae.......The aim of the research was to evaluate organic matter status in the soil according to the organic carbon content, total and mineral nitrogen amounts, carbon to nitrogen (C:N) ratio and redox potential depending on land usage and plant spieces. Soil samples were taken from the fields under...

  8. Matriptase autoactivation is tightly regulated by the cellular chemical environments.

    Directory of Open Access Journals (Sweden)

    Jehng-Kang Wang

    Full Text Available The ability of cells to rapidly detect and react to alterations in their chemical environment, such as pH, ionic strength and redox potential, is essential for cell function and survival. We present here evidence that cells can respond to such environmental alterations by rapid induction of matriptase autoactivation. Specifically, we show that matriptase autoactivation can occur spontaneously at physiological pH, and is significantly enhanced by acidic pH, both in a cell-free system and in living cells. The acid-accelerated autoactivation can be attenuated by chloride, a property that may be part of a safety mechanism to prevent unregulated matriptase autoactivation. Additionally, the thio-redox balance of the environment also modulates matriptase autoactivation. Using the cell-free system, we show that matriptase autoactivation is suppressed by cytosolic reductive factors, with this cytosolic suppression being reverted by the addition of oxidizing agents. In living cells, we observed rapid induction of matriptase autoactivation upon exposure to toxic metal ions known to induce oxidative stress, including CoCl2 and CdCl2. The metal-induced matriptase autoactivation is suppressed by N-acetylcysteine, supporting the putative role of altered cellular redox state in metal induced matriptase autoactivation. Furthermore, matriptase knockdown rendered cells more susceptible to CdCl2-induced cell death compared to control cells. This observation implies that the metal-induced matriptase autoactivation confers cells with the ability to survive exposure to toxic metals and/or oxidative stress. Our results suggest that matriptase can act as a cellular sensor of the chemical environment of the cell that allows the cell to respond to and protect itself from changes in the chemical milieu.

  9. Redox Reaction Mechanisms with Non-triiodide Mediators in Dye-Sensitized Solar Cells by Redox Potential Calculations.

    Science.gov (United States)

    Jono, Ryota; Sumita, Masato; Tateyama, Yoshitaka; Yamashita, Koichi

    2012-12-06

    We investigate reaction mechanisms of the redox mediators in dye-sensitized solar cells through systematic calculations of redox potentials of possible cobalt complexes and iodides in acetonitrile solution by use of the thermodynamic cycle method with continuum solvent model. The calculated redox potentials were in good agreement with the experimental values, although the experimentalists used different reference electrodes. The maximum open circuit voltage (VOC) of the mediators calculated in this work indicate that the I2(•-)/2I(-) and I2/I2(•-) as well as the net I2/2I(-) redox reactions can dominate at both photoanode and counter-electrode.

  10. Cosserat modeling of cellular solids

    NARCIS (Netherlands)

    Onck, P.R.

    2002-01-01

    Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat

  11. Mineral evolution of redox-sensitive elements

    Science.gov (United States)

    Hazen, R. M.; Sverjensky, D. A.; Grew, E. S.; Downs, R. T.; Golden, J.; Hystad, G.

    2012-12-01

    Temporal trends in Earth's near-surface mineralogy correlate with major events in geochemical, tectonic, and biological evolution. Recent compilations of age and locality information for the minerals of redox-sensitive elements Mo, Hg, W, Ni, Co, and U reveal statistically significant trends related to key events in the history of the geosphere and biosphere. Mineralization for all of these elements correlates with five intervals of supercontinent assembly, from ~2.7 Ga (Kenorland) to 300 Ma (Pangaea; see Fig. 1). Details of mineral diversity and distribution correlate with changes in near-surface geochemistry, as well as such biological innovations as oxygenic photosynthesis and the rise of the terrestrial biosphere. In addition, systematic increases in average and maximum trace concentrations of Re in molybdenite since 3.0 Ga point to enhanced oxidative weathering by subsurface fluids (Fig. 2). These trace element results, coupled with the delayed appearance of minerals of other redox sensitive elements, suggest that significant terrestrial subsurface oxidation may have postdated the Great Oxidation Event (~2.4 to 2.2 Ga) by hundreds of millions of years.he distribution of molybdenite (MoS2) through Earth history is episodic, with maxima corresponding to times of supercontinent assembly. he rhenium content of molybdenite displays a statistically significant increase over 3 billion years of Earth history. This trend reflects the increased mobility of Re in more oxidized subsurface aqueous environments.

  12. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  13. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  14. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  15. Review of cellular mechanotransduction

    Science.gov (United States)

    Wang, Ning

    2017-06-01

    Living cells and tissues experience physical forces and chemical stimuli in the human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at the cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.

  16. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.......Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...

  17. Keap1-Nrf2 regulated redox signaling in utero: Priming of disease susceptibility in offspring.

    Science.gov (United States)

    Chapple, Sarah J; Puszyk, William M; Mann, Giovanni E

    2015-11-01

    Intrauterine exposure to gestational diabetes, pre-eclampsia or intrauterine growth restriction alters the redox status of the developing fetus. Such pregnancy-related diseases in most cases do not have a readily identifiable genetic cause, and epigenetic 'priming' mechanisms in utero may predispose both mother and child to later-life onset of cardiovascular and metabolic diseases. The concept of 'fetal programing' or 'developmental priming' and its association with an increased risk of disease in childhood or adulthood has been reviewed extensively. This review focuses on adaptive changes in the in utero redox environment during normal pregnancy and the consequences of alterations in redox control associated with pregnancies characterized by oxidative stress. We evaluate the evidence that the Keap1-Nrf2 pathway is important for protecting the fetus against adverse conditions in utero and may itself be subject to epigenetic priming, potentially contributing to an increased risk of vascular disease and insulin resistance in later life. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Short-Term Subclinical Zinc Deficiency in Weaned Piglets Affects Cardiac Redox Metabolism and Zinc Concentration.

    Science.gov (United States)

    Brugger, Daniel; Windisch, Wilhelm M

    2017-04-01

    Background: Subclinical zinc deficiency (SZD) represents the common zinc malnutrition phenotype. However, its association with oxidative stress is not well understood. The heart muscle may be a promising target for studying early changes in redox metabolism. Objective: We investigated the effects of short-term SZD on cardiac redox metabolism in weaned piglets. Methods: Forty-eight weaned German Large White × Landrace × Piétrain piglets (50% castrated males and 50% females; body weight of 8.5 kg) were fed diets with different zinc concentrations for 8 d. Measurements included cardiac parameters of antioxidative capacity, stress-associated gene expression, and tissue zinc status. Analyses comprised (linear, broken-line) regression models and Pearson correlation coefficients. Results: Glutathione and α-tocopherol concentrations as well as catalase, glutathione reductase, B-cell lymphoma 2-associated X protein, and caspase 9 gene expression plateaued in response to reduction in dietary zinc from 88.0 to 57.6, 36.0, 36.5, 41.3, 55.3, and 33.8 mg/kg, respectively ( P SZD decreased cardiac antioxidative capacity of weaned piglets while simultaneously increasing stress-associated gene expression and zinc concentration. This is the first report to our knowledge on the effects of SZD on redox metabolism. © 2017 American Society for Nutrition.

  19. Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Sakelliou

    2016-01-01

    Full Text Available We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day immediately after a muscle-damaging exercise protocol (300 eccentric contractions and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.

  20. Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States)

    2016-04-05

    mechanism may help to explain U retention in some geologic materials, improving our understanding of U-based geochronology and the redox status of ancient geochemical environments. Additionally, U(VI) may be incorporated within silicate minerals though encapsulation of U-bearing iron oxides, leading to a redox stable solid. Our research detailing previously unrecognized mechanism of U incorporation within sediment minerals may even lead to new approaches for in situ contamination remediation techniques, and will help refine models of U fate and transport in reduced subsurface zones.

  1. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.

    Science.gov (United States)

    Duan, Wentao; Vemuri, Rama S; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-02-13

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

  2. "JCE" Classroom Activity #111: Redox Reactions in Three Representations

    Science.gov (United States)

    Nieves, Edgardo L. Ortiz; Barreto, Reizelie; Medina, Zuleika

    2012-01-01

    This activity introduces students to the concept of reduction-oxidation (redox) reactions. To help students obtain a thorough understanding of redox reactions, the concept is explored at three levels: macroscopic, submicroscopic, and symbolic. In this activity, students perform hands-on investigations of the three levels as they work at different…

  3. Redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    , ferrogenic, nitrate-reducing and aerobic environments overa distance of 370 m. This redox zone sequence is consistent with thermodynamical principles and is closely matched by the leachate plume determined by the chloride plume distribution. The redox zone sequence is believed to be key in controlling...... the fate of reactive pollutants leached from the landfill....

  4. Biogeochemical Barriers: Redox Behavior of Metals and Metalloids

    Science.gov (United States)

    Wilkin, R. T.

    2008-12-01

    Redox conditions and pH are arguably the most important geochemical parameters that control contaminant transport and fate in groundwater systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting solubility, reactivity, and bioavailability. In recent years, innovative technologies have emerged to meet groundwater cleanup goals that take advantage of the redox behavior of contaminant species. Remedial technologies that strategically manipulate subsurface redox conditions may emphasize reductive processes, as in subsurface permeable reactive barriers, or, oxidative processes, as in permanganate injection. The speciation and mobility of inorganic contaminants can be directly impacted by redox conditions (e.g., As, Se) or can be indirectly tied to redox conditions in cases where complexation or metal precipitation (e.g., Pb, Cd, Ni) occurs with some other redox-sensitive element (e.g., S). Monitoring oxidation-reduction processes in groundwater systems is frequently challenging and should be viewed as an integrated assessment of hydrogeochemical processes, microbiological diversity, and aquifer characteristics. The presentation will discuss approaches for linking field data and geochemical models. A case study site with over two decades of groundwater monitoring data will also be used to explore the contrasting redox behaviors of metals (Pb, Cd) and selected oxyanion species (As, Se). This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.

  5. Investigation of activity and selectivity of redox catalysts in oxidative ...

    African Journals Online (AJOL)

    In this study, oxidative coupling of methane on Redox catalysts in fluidized bed reactor was investigated. For this purpose, the catalyst Mn-Na2WO4/SiO2 was selected as a Redox catalyst. In order to investigate this catalyst, transient state experiments were designed and performed. Then, the different reaction conditions on ...

  6. Exercise redox biochemistry: Conceptual, methodological and technical recommendations

    Directory of Open Access Journals (Sweden)

    James N. Cobley

    2017-08-01

    Full Text Available Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded: which often complicates attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling.

  7. Two Ideas of the Redox Reaction: Misconceptions and their ...

    African Journals Online (AJOL)

    For redox reactions students are doing this too: “one Cu2+ ion takes two electrons and is reduced to copper” – instead of “to one Cu atom”! Another difficulty seems to be the historical redox definition with the “oxygen transfer”: this idea is so attractive that students argue mostly with oxygen participation instead of the transfer ...

  8. Endocrine and cellular stress effects of zinc oxide nanoparticles and nifedipine in marsh frogs Pelophylax ridibundus.

    Science.gov (United States)

    Falfushynska, Halina; Gnatyshyna, Lesya; Horyn, Oksana; Sokolova, Inna; Stoliar, Oksana

    2017-04-01

    Freshwater organisms including amphibians experience increasing exposures to emerging pollutants such as nanoparticles and pharmaceuticals, which can affect their fitness and performance. We studied the effects of two common pollutants extensively used in industry, pharmaceutical and personal care products, nano-zinc oxide (nZnO) and a Ca-channel blocker nifedipine (Nfd), on endocrine status and cellular stress markers of the marsh frog Pelophylax ridibundus. Males were exposed for 14days to nZnO (3.1μM), Zn2+ (3.1μM, as a positive control for nZnO exposures), Nfd (10μM), and combination of nZnO and Nfd (nZnO+Nfd). Exposure to nZnO and Zn2+ led to an increase in Zn burdens, elevated concentrations of the metal-bound metallothioneins (MT-Me) in the liver and increased vitellogenin in the serum, whereas exposures to Nfd and nZnO+Nfd resulted in the metal release from MTs and a significant increase in the ratio of total to metal-bound MTs. This likely reflects oxidative stress caused by Nfd exposures as manifested in the elevated levels of oxyradical production, upregulation of superoxide dismutase activity (SOD) and increase in the total and oxidized glutathione concentrations in Nfd-exposed frogs. Zn-containing exposures upregulated activity of deiodinase (in nZnO and nZnO+Nfd exposures) and serum thyrotropin level (in the case of Zn2+). All exposures caused an increase in DNA fragmentation, lipofuscin accumulation as well as upregulation of caspase-3 and CYP450 levels reflecting cytotoxicity of the studied compounds in the liver. Across all experimental treatments, nZnO exposures in the absence of Nfd had the least impact on the cellular stress traits or redox status in frogs. This indicates that at the low environmentally relevant levels of pollution, pharmaceuticals such as Nfd and free metals (such as Zn2+) may represent a stronger threat to the health of the frogs than nZnO particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria.

    Science.gov (United States)

    Li, Shan-Wei; Sheng, Guo-Ping; Cheng, Yuan-Yuan; Yu, Han-Qing

    2016-12-19

    Although the capacity for electroactive bacteria to convert environmental metallic minerals and organic pollutants is well known, the role of the redox properties of microbial extracellular polymeric substances (EPS) in this process is poorly understood. In this work, the redox properties of EPS from two widely present electroactive bacterial strains (Shewanella oneidensis and Pseudomonas putida) were explored. Electrochemical analysis demonstrates that the EPS extracted from the two strains exhibited redox properties. Spectroelectrochemical and protein electrophoresis analyses indicate that the extracted EPS from S. oneidensis and P. putida contained heme-binding proteins, which were identified as the possible redox components in the EPS. The results of heme-mediated behavior of EPS may provide an insight into the important roles of EPS in electroactive bacteria to maximize their redox capability for biogeochemical cycling, environmental bioremediation and wastewater treatment.

  10. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes...... with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet...... supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support....

  11. Energy storage device including a redox-enhanced electrolyte

    Science.gov (United States)

    Stucky, Galen; Evanko, Brian; Parker, Nicholas; Vonlanthen, David; Auston, David; Boettcher, Shannon; Chun, Sang-Eun; Ji, Xiulei; Wang, Bao; Wang, Xingfeng; Chandrabose, Raghu Subash

    2017-08-08

    An electrical double layer capacitor (EDLC) energy storage device is provided that includes at least two electrodes and a redox-enhanced electrolyte including two redox couples such that there is a different one of the redox couples for each of the electrodes. When charged, the charge is stored in Faradaic reactions with the at least two redox couples in the electrolyte and in a double-layer capacitance of a porous carbon material that comprises at least one of the electrodes, and a self-discharge of the energy storage device is mitigated by at least one of electrostatic attraction, adsorption, physisorption, and chemisorption of a redox couple onto the porous carbon material.

  12. Molecular analysis of Ku redox regulation

    Directory of Open Access Journals (Sweden)

    Shatilla Andrea

    2009-08-01

    Full Text Available Abstract Background DNA double-strand breaks (DSBs can occur in response to ionizing radiation (IR, radiomimetic agents and from endogenous DNA-damaging reactive oxygen metabolites. Unrepaired or improperly repaired DSBs are potentially the most lethal form of DNA damage and can result in chromosomal translocations and contribute to the development of cancer. The principal mechanism for the repair of DSBs in humans is non-homologous end-joining (NHEJ. Ku is a key member of the NHEJ pathway and plays an important role in the recognition step when it binds to free DNA termini. Ku then stimulates the assembly and activation of other NHEJ components. DNA binding of Ku is regulated by redox conditions and evidence from our laboratory has demonstrated that Ku undergoes structural changes when oxidized that results in a reduction in DNA binding activity. The C-terminal domain and cysteine 493 of Ku80 were investigated for their contribution to redox regulation of Ku. Results We effectively removed the C-terminal domain of Ku80 generating a truncation mutant and co-expressed this variant with wild type Ku70 in an insect cell system to create a Ku70/80ΔC heterodimer. We also generated two single amino acid variants of Cys493, replacing this amino acid with either an alanine (C493A or a serine (C493S, and over-expressed the variant proteins in SF9 insect cells in complex with wild type Ku70. Neither the truncation nor the amino acid substitutions alters protein expression or stability as determined by SDS-PAGE and Western blot analysis. We show that the C493 mutations do not alter the ability of Ku to bind duplex DNA in vitro under reduced conditions while truncation of the Ku80 C-terminus slightly reduced DNA binding affinity. Diamide oxidation of cysteines was shown to inhibit DNA binding similarly for both the wild-type and all variant proteins. Interestingly, differential DNA binding activity following re-reduction was observed for the Ku70/80

  13. Integrated cellular systems

    Science.gov (United States)

    Harper, Jason C.

    The generation of new three-dimensional (3D) matrices that enable integration of biomolecular components and whole cells into device architectures, without adversely altering their morphology or activity, continues to be an expanding and challenging field of research. This research is driven by the promise that encapsulated biomolecules and cells can significantly impact areas as diverse as biocatalysis, controlled delivery of therapeutics, environmental and industrial process monitoring, early warning of warfare agents, bioelectronics, photonics, smart prosthetics, advanced physiological sensors, portable medical diagnostic devices, and tissue/organ replacement. This work focuses on the development of a fundamental understanding of the biochemical and nanomaterial mechanisms that govern the cell directed assembly and integration process. It was shown that this integration process relies on the ability of cells to actively develop a pH gradient in response to evaporation induced osmotic stress, which catalyzes silica condensation within a thin 3D volume surrounding the cells, creating a functional bio/nano interface. The mechanism responsible for introducing functional foreign membrane-bound proteins via proteoliposome addition to the silica-lipid-cell matrix was also determined. Utilizing this new understanding, 3D cellular immobilization capabilities were extended using sol-gel matrices endowed with glycerol, trehalose, and media components. The effects of these additives, and the metabolic phase of encapsulated S. cerivisiase cells, on long-term viability and the rate of inducible gene expression was studied. This enabled the entrapment of cells within a novel microfluidic platform capable of simultaneous colorimetric, fluorescent, and electrochemical detection of a single analyte, significantly improving confidence in the biosensor output. As a complementary approach, multiphoton protein lithography was utilized to engineer 3D protein matrices in which to

  14. The sodium pumping NADH:quinone oxidoreductase (Na⁺-NQR), a unique redox-driven ion pump.

    Science.gov (United States)

    Barquera, Blanca

    2014-08-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a unique Na(+) pumping respiratory complex found only in prokaryotes, that plays a key role in the metabolism of marine and pathogenic bacteria, including Vibrio cholerae and other human pathogens. Na(+)-NQR is the main entrance for reducing equivalents into the respiratory chain of these bacteria, catalyzing the oxidation of NADH and the reduction of quinone, the free energy of this redox reaction drives the selective translocation of Na(+) across the cell membrane, which energizes key cellular processes. In this review we summarize the unique properties of Na(+)-NQR in terms of its redox cofactor composition, electron transfer reactions and a possible mechanism of coupling and pumping.

  15. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen species.

    Science.gov (United States)

    Farhan, Mohd; Khan, Husain Yar; Oves, Mohammad; Al-Harrasi, Ahmed; Rehmani, Nida; Arif, Hussain; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-02-04

    Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells.

  16. Manganese superoxide dismutase (SOD2): is there a center in the universe of mitochondrial redox signaling?

    Science.gov (United States)

    Zou, Xianghui; Ratti, Bianca A; O'Brien, Joseph Gerald; Lautenschlager, Sueli O; Gius, David R; Bonini, Marcelo G; Zhu, Yueming

    2017-08-01

    It is becoming increasingly clear that mitochondria drive cellular functions and in vivo phenotypes by directing the production rate and abundance of metabolites that are proposed to function as signaling molecules (Chandel 2015; Selak et al. 2005; Etchegaray and Mostoslavsky 2016). Many of these metabolites are intermediates that make up cellular metabolism, part of which occur in mitochondria (i.e. the TCA and urea cycles), while others are produced "on demand" mainly in response to alterations in the microenvironment in order to participate in the activation of acute adaptive responses (Mills et al. 2016; Go et al. 2010). Reactive oxygen species (ROS) are well suited for the purpose of executing rapid and transient signaling due to their short lived nature (Bae et al. 2011). Hydrogen peroxide (H2O2), in particular, possesses important characteristics including diffusibility and faster reactivity with specific residues such as methionine, cysteine and selenocysteine (Bonini et al. 2014). Therefore, it is reasonable to propose that H2O2 functions as a relatively specific redox signaling molecule. Even though it is now established that mtH2O2 is indispensable, at least for hypoxic adaptation and energetic and/or metabolic homeostasis (Hamanaka et al. 2016; Guzy et al. 2005), the question of how H2O2 is produced and regulated in the mitochondria is only partially answered. In this review, some roles of this indispensable signaling molecule in driving cellular metabolism will be discussed. In addition, we will discuss how H2O2 formation in mitochondria depends on and is controlled by MnSOD. Finally, we will conclude this manuscript by highlighting why a better understanding of redox hubs in the mitochondria will likely lead to new and improved therapeutics of a number of diseases, including cancer.

  17. Redox activation of Fe(III)-thiosemicarbazones and Fe(III)-bleomycin by thioredoxin reductase: specificity of enzymatic redox centers and analysis of reactive species formation by ESR spin trapping

    Science.gov (United States)

    Myers, Judith M.; Cheng, Qing; Antholine, William E.; Kalyanaraman, Balaraman; Filipovska, Aleksandra; Arnér, ArnerElias S.J.; Myers, Charles R.

    2013-01-01

    Thiosemicarbazones such as triapine (Tp) and Dp44mT are tridentate iron (Fe) chelators that have well-documented anti-neoplastic activity. While Fe-thiosemicarbazones can undergo redox-cycling to generate reactive species that may have important roles in their cytotoxicity, there is only limited insight into specific cellular agents that can rapidly reduce Fe(III)-thiosemicarbazones and thereby promote their redox activity. Here we report that thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) have this activity, and that there is considerable specificity to the interactions between specific redox centers in these enzymes and different Fe(III) complexes. Site-directed variants of TrxR1 demonstrate that the selenocysteine (Sec) of the enzyme is not required, whereas the C59 residue and the flavin have important roles. While TrxR1 and GR have analogous C59/flavin motifs, TrxR is considerably faster than GR. For both enzymes, Fe(III)(Tp)2 is reduced faster than Fe(III)(Dp44mT)2. This reduction promotes redox cycling and the generation of hydroxyl radical (HO•) in a peroxide-dependent manner, even with low μM levels of Fe(Tp)2. TrxR also reduces Fe(III)-bleomycin and this activity is Sec-dependent. TrxR cannot reduce Fe(III)-EDTA at significant rates. Our findings are the first to demonstrate pro-oxidant reductive activation of Fe(III)-based antitumor thiosemicarbazones by interactions with specific enzyme species. The marked elevation of TrxR in many tumors could contribute to the selective tumor toxicity of these drugs by enhancing the redox activation of Fe(III)-thiosemicarbazones and the generation of reactive oxygen species such as HO• PMID:23485585

  18. Redox activation of Fe(III)-thiosemicarbazones and Fe(III)-bleomycin by thioredoxin reductase: specificity of enzymatic redox centers and analysis of reactive species formation by ESR spin trapping.

    Science.gov (United States)

    Myers, Judith M; Cheng, Qing; Antholine, William E; Kalyanaraman, Balaraman; Filipovska, Aleksandra; Arnér, Elias S J; Myers, Charles R

    2013-07-01

    Thiosemicarbazones such as Triapine (Tp) and Dp44mT are tridentate iron (Fe) chelators that have well-documented antineoplastic activity. Although Fe-thiosemicarbazones can undergo redox cycling to generate reactive species that may have important roles in their cytotoxicity, there is only limited insight into specific cellular agents that can rapidly reduce Fe(III)-thiosemicarbazones and thereby promote their redox activity. Here we report that thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) have this activity and that there is considerable specificity to the interactions between specific redox centers in these enzymes and various Fe(III) complexes. Site-directed variants of TrxR1 demonstrate that the selenocysteine (Sec) of the enzyme is not required, whereas the C59 residue and the flavin have important roles. Although TrxR1 and GR have analogous C59/flavin motifs, TrxR is considerably faster than GR. For both enzymes, Fe(III)(Tp)2 is reduced faster than Fe(III)(Dp44mT)2. This reduction promotes redox cycling and the generation of hydroxyl radical (HO) in a peroxide-dependent manner, even with low-micromolar levels of Fe(Tp)2. TrxR also reduces Fe(III)-bleomycin and this activity is Sec-dependent. TrxR cannot reduce Fe(III)-EDTA at significant rates. Our findings are the first to demonstrate pro-oxidant reductive activation of Fe(III)-based antitumor thiosemicarbazones by interactions with specific enzyme species. The marked elevation of TrxR1 in many tumors could contribute to the selective tumor toxicity of these drugs by enhancing the redox activation of Fe(III)-thiosemicarbazones and the generation of reactive oxygen species such as HO. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Justification identification criterion cellular structures state functions

    Directory of Open Access Journals (Sweden)

    Владимир Георгиевич Куликов

    2017-02-01

    Full Text Available The paper considers the possibility of presenting situations the state of cellular structures functions of the state in the form of regression equations. This allows you to create a replica of an information storage medium on the system status at a given time. The process of system transition from the initial to the final state are invited to formalize a coherent set of regression equations. The regression equations as state functions allow the verbal process of representing the states to replace the system - model. This, in turn, allows the development of parametric methods of management structure formation.

  20. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling

    Science.gov (United States)

    Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar

    2017-01-01

    Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499

  1. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation

    Energy Technology Data Exchange (ETDEWEB)

    Chapalamadugu, Kalyan C.; Panguluri, Siva K. [Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL (United States); Bennett, Eric S. [Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL (United States); Kolliputi, Narasaiah [Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (United States); Tipparaju, Srinivas M., E-mail: stippara@health.usf.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL (United States)

    2015-01-01

    Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72 h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia, arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD{sub 90}; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD and NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias. - Highlights: • Hyperoxia treatment leads to arrhythmia with prolonged QTc and action potential duration. • Hyperoxia treatment alters cardiac pyridine nucleotide [NAD(P)H/NAD(P)] levels. • SiRT1 and Kv1.5 are co

  2. [Senescence and cellular immortality].

    Science.gov (United States)

    Trentesaux, C; Riou, J-F

    2010-11-01

    Senescence was originally described from the observation of the limited ability of normal cells to grow in culture, and may be generated by telomere erosion, accumulation of DNA damages, oxidative stress and modulation of oncogenes or tumor suppressor genes. Senescence corresponds to a cellular response aiming to control tumor progression by limiting cell proliferation and thus constitutes an anticancer barrier. Senescence is observed in pre-malignant tumor stages and disappears from malignant tumors. Agents used in standard chemotherapy also have the potential to induce senescence, which may partly explain their therapeutic activities. It is possible to restore senescence in tumors using targeted therapies that triggers telomere dysfunction or reactivates suppressor genes functions, which are essential for the onset of senescence.

  3. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  4. Hybrid anodes for redox flow batteries

    Science.gov (United States)

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  5. High energy density redox flow device

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W. Craig; Chiang, Yet-Ming; Duduta, Mihai; Limthongkul, Pimpa

    2017-04-04

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  6. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  7. Lung extracellular matrix and redox regulation.

    Science.gov (United States)

    Watson, Walter H; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-08-01

    Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to

  8. PKI 166 induced redox signalling and apoptosis through activation of p53, MAP kinase and caspase pathway in epidermoid carcinoma.

    Science.gov (United States)

    Das, Subhasis; Dey, Kaushik Kumar; Bharti, Rashmi; MaitiChoudhury, Sujata; Maiti, Sukumar; Mandal, Mahitosh

    2012-01-01

    Cellular redox changes have emerged as a pivotal and proximal event in cancer. PKI 166 is used to determine the effects of redox sensitive inhibition of EGFR, metastasis and apoptosis in epidermoid carcinoma. Cytotoxicity study of PKI 166 (IC50 1.0 microM) treated A431 cells were performed by MTT assay for 48 and 72 hrs. Morphological analysis of PKI 166 treated A431 cells for 48 hrs. revealed the cell shrinkage, loss of filopodia and lamellipodia by phase contrast and SEM images in dose dependent manner. It has cytotoxic effects through inhibiting cellular proliferation, leads to the induction of apoptosis, as increased fraction of sub-G1 phase of the cell cycle, chromatin condensation and DNA ladder. It inhibited cyclin-D1 and cyclin-E expression and induced p53, p21 expression in dose dependent manner. Consequently, an imbalance of Bax/Bcl-2 ratio triggered caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favour of apoptosis. PKI 166 treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. It inhibited some metastatic properties of A431 cells supressing colony formation by soft agar assay and inhibition of MMP 9 activity by gelatin zymography and western blot analysis. PKI 166 inhibited growth factor induced phosphorylation of EGFR, Akt, MAPK, JNK and colony formation in A431 cells. Thus the inhibition of proliferation was associated with redox regulation of the caspase cascade, EGFR, Akt/PI3K, MAPK/ ERK and JNK pathway. On the other hand, increased antioxidant activity leads to decreased ROS generation inhibit the anti-proliferative and apoptotic properties of PKI 166 in A431 cells. These observations indicated PKI 166 induced redox signalling dependent inhibition of cell proliferation, metastatic properties and induction of apoptotic potential in epidermoid carcinoma.

  9. Selenium status affects selenoprotein expression, reproduction, and F₁ generation locomotor activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Penglase, Sam; Hamre, Kristin; Rasinger, Josef D; Ellingsen, Staale

    2014-06-14

    Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( < 0·10 mg/kg) to toxic (30 mg/kg). The mRNA expression of gpx1a and gpx1b and GPX activity responded in a similar manner to changes in Se status. GPX activity and mRNA levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates.

  10. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy.

    Science.gov (United States)

    Glass, Sterling B; Gonzalez-Fajardo, Laura; Beringhs, André O'Reilly; Lu, Xiuling

    2017-11-21

    The overabundance of reactive oxygen species (ROS) and antioxidants in cancer cells represents a challenge for therapeutic intervention, while also providing an opportunity for the development of new strategies to improve clinical therapeutic outcomes. Recent Advances: Nanotechnology has advanced tremendously in recent decades and now offers many potential opportunities to leverage altered redox status to improve conventional therapies. Highly tunable nanoparticle delivery systems have shown great promise for improving the following: (i) chemotherapy via selective redox-sensitive drug release in tumor cells and limited systemic toxicity; (ii) photodynamic therapy via enhancing photoactivation and/or ROS production; and (iii) radiation therapy via enhancing ROS production. Great progress has also been made regarding novel nanoparticle-mediated therapies to enhance tumor cell death via ROS generation and angiogenic inhibition. Current anticancer therapies are limited by systemic side effects and resistance. The inherent heterogeneity and hypoxic status of solid tumors impose significant barriers for even the most rationally designed nanoparticle systems. In addition, few comprehensive biodistribution and toxicity evaluations exist, and clinical efficacy remains to be established. The practicality of many nanoparticle systems is compromised by variable in vivo responses and scale-up difficulties due to complicated chemistry and prohibitive manufacturing costs. As nanoparticle design continues to advance, improved therapeutic efficacy will likely follow. Actively targeted systems may improve distribution specificity but more positive clinical demonstrations are needed. Further investigation into systemic and intracellular distribution as well as toxicity will improve understanding of how these nanoparticle systems can be applied to improve existing therapies. Antioxid. Redox Signal. 00, 000-000.

  11. Colloidal Supercapattery: Redox Ions in Electrode and Electrolyte.

    Science.gov (United States)

    Chen, Kunfeng; Xue, Dongfeng

    2017-09-11

    Redox chemistry is the cornerstone of various electrochemical energy conversion and storage systems, associated with ion diffusion process. To actualize both high energy and power density in energy storage devices, both multiple electron transfer reaction and fast ion diffusion occurred in one electrode material are prerequisite. The existence forms of redox ions can lead to different electrochemical thermodynamic and kinetic properties. Here, we introduce novel colloid system, which includes multiple varying ion forms, multi-interaction and abundant redox active sites. Unlike redox cations in solution and crystal materials, colloid system has specific reactivity-structure relationship. In the colloidal ionic electrode, the occurrence of multiple-electron redox reactions and fast ion diffusion leaded to ultrahigh specific capacitance and fast charge rate. The colloidal ionic supercapattery coupled with redox electrolyte provides a new potential technique for the comprehensive use of redox ions including cations and anions in electrode and electrolyte and a guiding design for the development of next-generation high performance energy storage devices. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chronoamperometry-Based Redox Cycling for Application to Immunoassays.

    Science.gov (United States)

    Lee, Ga-Yeon; Park, Jun-Hee; Chang, Young Wook; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2018-01-26

    In this work, the chronoamperometry-based redox cycling of 3,3',5,5'-tetramethylbenzidine (TMB) was performed by using interdigitated electrode (IDE). The signal was obtained from two sequential chronoamperometric profiles: (1) with the generator at the oxidative potential of TMB and the collector at the reductive potential of TMB, and (2) with the generator at the reductive potential of TMB and the collector at the oxidative potential of TMB. The chronoamperometry-based redox cycling (dual mode) showed a sensitivity of 1.49 μA/OD, and the redox cycling efficiency was estimated to be 94% (n = 10). The sensitivities of conventional redox cycling with the same interdigitated electrode and chronoamperometry using a single working electrode (single mode) were estimated to be 0.67 μA/OD and 0.18 μA/OD, respectively. These results showed that the chronoamperometry-based redox cycling (dual mode) could be more effectively used to quantify the oxidized TMB than other amperometric methods. The chronoamperometry-based redox cycling (dual mode) was applied to immunoassays using a commercial ELISA kit for medical diagnosis of the human hepatitis B virus surface antigen (hHBsAg). Finally, the chronoamperometry-based redox cycling (dual mode) provided more than a 10-fold higher sensitivity than conventional chronoamperometry using a single working electrode (single mode) when applied to a commercial ELISA kit for medical diagnosis of hHBsAg.

  13. Sulfur-based redox alterations in long-lived Snell dwarf mice.

    Science.gov (United States)

    Vitvitsky, Victor; Martinov, Michael; Ataullakhanov, Fazoil; Miller, Richard A; Banerjee, Ruma

    2013-01-01

    Changes in sulfur-based redox metabolite profiles in multiple tissues of long-lived Snell dwarf mice were com