WorldWideScience

Sample records for cellular phenotypes caused

  1. [Plasticity of the cellular phenotype].

    Science.gov (United States)

    Chneiweiss, Hervé

    2011-01-01

    The tragical consequences of the Hiroshima and Nagasaki atomic bombs in 1945 were to lead to the discovery of hematopoietic stem cells and their phenotypic plasticity, in response to environmental factors. These concepts were much later extended to the founding cells of other tissues. In the following collection of articles, the mechanisms underlying this plasticity, at the frontiers of developmental biology and oncology, are illustrated in the case of various cell types of neural origin and of some tumours. PMID:21501574

  2. Mutations in human C2CD3 cause skeletal dysplasia and provide new insights into phenotypic and cellular consequences of altered C2CD3 function.

    Science.gov (United States)

    Cortés, Claudio R; McInerney-Leo, Aideen M; Vogel, Ida; Rondón Galeano, Maria C; Leo, Paul J; Harris, Jessica E; Anderson, Lisa K; Keith, Patricia A; Brown, Matthew A; Ramsing, Mette; Duncan, Emma L; Zankl, Andreas; Wicking, Carol

    2016-01-01

    Ciliopathies are a group of genetic disorders caused by defective assembly or dysfunction of the primary cilium, a microtubule-based cellular organelle that plays a key role in developmental signalling. Ciliopathies are clinically grouped in a large number of overlapping disorders, including the orofaciodigital syndromes (OFDS), the short rib polydactyly syndromes and Jeune asphyxiating thoracic dystrophy. Recently, mutations in the gene encoding the centriolar protein C2CD3 have been described in two families with a new sub-type of OFDS (OFD14), with microcephaly and cerebral malformations. Here we describe a third family with novel compound heterozygous C2CD3 mutations in two fetuses with a different clinical presentation, dominated by skeletal dysplasia with no microcephaly. Analysis of fibroblast cultures derived from one of these fetuses revealed a reduced ability to form cilia, consistent with previous studies in C2cd3-mutant mouse and chicken cells. More detailed analyses support a role for C2CD3 in basal body maturation; but in contrast to previous mouse studies the normal recruitment of the distal appendage protein CEP164 suggests that this protein is not sufficient for efficient basal body maturation and subsequent axonemal extension in a C2CD3-defective background. PMID:27094867

  3. Noise in cellular signaling pathways: causes and effects

    OpenAIRE

    Ladbury, John E.; Arold, Stefan T.

    2012-01-01

    Noise caused by stochastic fluctuations in genetic circuits (transcription and translation) is now appreciated as a central aspect of cell function and phenotypic behavior. Noise has also been detected in signaling networks, but the origin of this noise and how it shapes cellular outcomes remain poorly understood. Here, we argue that noise in signaling networks results from the intrinsic promiscuity of protein-protein interactions, and that this noise has shaped cellular signal transduction. ...

  4. Lysosomal Storage Causes Cellular Dysfunction in Mucolipidosis II Skin Fibroblasts*

    Science.gov (United States)

    Otomo, Takanobu; Higaki, Katsumi; Nanba, Eiji; Ozono, Keiichi; Sakai, Norio

    2011-01-01

    Mucolipidosis II (ML-II) is a fatal inherited metabolic disease caused by deficiency of GlcNAc-phosphotransferase, which plays a role in generating the mannose 6-phosphate recognition marker on lysosomal enzymes. In ML-II, many lysosomal acid hydrolases are mistargeted out of cells, and lysosomes become filled with undigested substrates, which explains inclusion cell disease as an alternative name for this disease. In this study, we revealed various cellular phenotypes in ML-II skin fibroblasts. We quantitated phospholipid and cholesterol within cells and showed ∼2-fold accumulation in ML-II as compared with normal cells. Lysosomal pH of ML-II cells was higher than that of normal cells (5.29 ± 0.08 versus 4.79 ± 0.10, p < 0.001). The proliferated lysosomes in ML-II cells were accumulated ∼3-fold in amount as compared with normal cells. Intracellular logistics including endocytosis and mannose 6-phosphate receptor recycling were impaired in ML-II cells. To confirm whether these ML-II cellular phenotypes derive from deficient lysosomal acid hydrolases within lysosomes, we performed supplementation of lysosomal enzymes using a partially purified total enzyme mixture, which was derived from the conditioned culture medium of normal skin fibroblasts after NH4Cl treatment. This supplementation corrected all of the previously described ML-II phenotypes. In addition, the autophagic and mitochondrial impairment that we have previously reported improved, and inclusion bodies disappeared on electron micrography following total lysosomal enzyme supplementation. Our results indicate that various cellular phenotypes in ML-II are caused by the deficiency of many lysosomal enzymes and massive accumulation of undigested substrates. PMID:21846724

  5. Evolution of cellular morpho-phenotypes in cancer metastasis.

    Science.gov (United States)

    Wu, Pei-Hsun; Phillip, Jude M; Khatau, Shyam B; Chen, Wei-Chiang; Stirman, Jeffrey; Rosseel, Sophie; Tschudi, Katherine; Van Patten, Joshua; Wong, Michael; Gupta, Sonal; Baras, Alexander S; Leek, Jeffrey T; Maitra, Anirban; Wirtz, Denis

    2015-01-01

    Intratumoral heterogeneity greatly complicates the study of molecular mechanisms driving cancer progression and our ability to predict patient outcomes. Here we have developed an automated high-throughput cell-imaging platform (htCIP) that allows us to extract high-content information about individual cells, including cell morphology, molecular content and local cell density at single-cell resolution. We further develop a comprehensive visually-aided morpho-phenotyping recognition (VAMPIRE) tool to analyze irregular cellular and nuclear shapes in both 2D and 3D microenvironments. VAMPIRE analysis of ~39,000 cells from 13 previously sequenced patient-derived pancreatic cancer samples indicate that metastasized cells present significantly lower heterogeneity than primary tumor cells. We found the same morphological signature for metastasis for a cohort of 10 breast cancer cell lines. We further decipher the relative contributions to heterogeneity from cell cycle, cell-cell contact, cell stochasticity and heritable morphological variations. PMID:26675084

  6. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles.

    Science.gov (United States)

    Schütz, Irene; Lopez-Hernandez, Tania; Gao, Qi; Puchkov, Dmytro; Jabs, Sabrina; Nordmeyer, Daniel; Schmudde, Madlen; Rühl, Eckart; Graf, Christina M; Haucke, Volker

    2016-07-01

    Nanoparticles (NPs) are widely used as components of drugs or cosmetics and hold great promise for biomedicine, yet their effects on cell physiology remain poorly understood. Here we demonstrate that clathrin-independent dynamin 2-mediated caveolar uptake of surface-functionalized silica nanoparticles (SiNPs) impairs cell viability due to lysosomal dysfunction. We show that internalized SiNPs accumulate in lysosomes resulting in inhibition of autophagy-mediated protein turnover and impaired degradation of internalized epidermal growth factor, whereas endosomal recycling proceeds unperturbed. This phenotype is caused by perturbed delivery of cargo via autophagosomes and late endosomes to SiNP-filled cathepsin B/L-containing lysosomes rather than elevated lysosomal pH or altered mTOR activity. Given the importance of autophagy and lysosomal protein degradation for cellular proteostasis and clearance of aggregated proteins, these results raise the question of beneficial use of NPs in biomedicine and beyond. PMID:27226546

  7. Survival of Phenotypic Information during Cellular Growth Transitions.

    Science.gov (United States)

    Ray, J Christian J

    2016-08-19

    Phenotypic memory can predispose cells to physiological outcomes, contribute to heterogeneity in cellular populations, and allow computation of environmental features, such as nutrient gradients. In bacteria and synthetic circuits in general, memory can often be set by protein concentrations: because of the relative stability of proteins, the degradation rate is often dominated by the growth rate, and inheritance is a significant factor. Cells can then be primed to respond to events that recur with frequencies faster than the time to eliminate proteins. Protein memory can be extended if cells reach extremely low growth rates or no growth. Here we characterize the necessary time scales for different quantities of protein memory, measured as relative entropy (Kullback-Leibler divergence), for a variety of cellular growth arrest transition dynamics. We identify a critical manifold in relative protein degradation/growth arrest time scales where information is, in principle, preserved indefinitely because proteins are trapped at a concentration determined by the competing time scales as long as nongrowth-mediated protein degradation is negligible. We next asked what characteristics of growth arrest dynamics and initial protein distributions best preserve or eliminate information about previous environments. We identified that sharp growth arrest transitions with skewed initial protein distributions optimize flexibility, with information preservation and minimal cost of residual protein. As a result, a nearly memoryless regime, corresponding to a form of bet-hedging, may be an optimal strategy for storage of information by protein concentrations in growth-arrested cells. PMID:26910476

  8. Impaired Cellular Bioenergetics Causes Mitochondrial Calcium Handling Defects in MT-ND5 Mutant Cybrids

    Science.gov (United States)

    Duchen, Michael R.

    2016-01-01

    Mutations in mitochondrial DNA (mtDNA) can cause mitochondrial disease, a group of metabolic disorders that affect both children and adults. Interestingly, individual mtDNA mutations can cause very different clinical symptoms, however the factors that determine these phenotypes remain obscure. Defects in mitochondrial oxidative phosphorylation can disrupt cell signaling pathways, which may shape these disease phenotypes. In particular, mitochondria participate closely in cellular calcium signaling, with profound impact on cell function. Here, we examined the effects of a homoplasmic m.13565C>T mutation in MT-ND5 on cellular calcium handling using transmitochondrial cybrids (ND5 mutant cybrids). We found that the oxidation of NADH and mitochondrial membrane potential (Δψm) were significantly reduced in ND5 mutant cybrids. These metabolic defects were associated with a significant decrease in calcium uptake by ND5 mutant mitochondria in response to a calcium transient. Inhibition of glycolysis with 2-deoxy-D-glucose did not affect cytosolic calcium levels in control cybrids, but caused an increase in cytosolic calcium in ND5 mutant cybrids. This suggests that glycolytically-generated ATP is required not only to maintain Δψm in ND5 mutant mitochondria but is also critical for regulating cellular calcium homeostasis. We conclude that the m.13565C>T mutation in MT-ND5 causes defects in both mitochondrial oxidative metabolism and mitochondrial calcium sequestration. This disruption of mitochondrial calcium handling, which leads to defects in cellular calcium homeostasis, may be an important contributor to mitochondrial disease pathogenesis. PMID:27110715

  9. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43.

    Directory of Open Access Journals (Sweden)

    Merlin Nanayakkara

    Full Text Available Celiac disease (CD is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP gene was identified as strongly associated with CD using genome-wide association studies (GWAS. The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD and controls, without and with treatment with A-gliadin peptide P31-43. We observed a "CD cellular phenotype" in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.

  10. Invasion strategies in clonal aquatic plants: Are phenotypic differences caused by phenotypic plasticity or local adaptation?

    DEFF Research Database (Denmark)

    Riis, Tenna; Lambertini, Carla; Olesen, Birgit;

    2010-01-01

    . Methods: Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of...

  11. Phenotypic programming as a distal cause of resilience

    NARCIS (Netherlands)

    Nederhof, Esther

    2015-01-01

    During early childhood, individuals with high sensitivity to early programming adjust their phenotype in a way that is expected to be adaptive in their later environment. These adaptations are hypothesized to result in resilience in environments that match the early environment. As appraisal style i

  12. Intra-cellular Staphylococcus aureus alone causes infection in vivo

    Directory of Open Access Journals (Sweden)

    T Hamza

    2013-07-01

    Full Text Available Chronic and recurrent bone infections occur frequently but have not been explained. Staphylococcus aureus (S. aureus is often found among chronic and recurrent infections and may be responsible for such infections. One possible reason is that S. aureus can internalize and survive within host cells and by doing so, S. aureus can evade both host defense mechanisms and most conventional antibiotic treatments. In this study, we hypothesized that intra-cellular S. aureus could induce infections in vivo. Osteoblasts were infected with S. aureus and, after eliminating extra-cellular S. aureus, inoculated into an open fracture rat model. Bacterial cultures and radiographic observations at post-operative day 21 confirmed local bone infections in animals inoculated with intra-cellular S. aureus within osteoblasts alone. We present direct in vivo evidence that intra-cellular S. aureus could be sufficient to induce bone infection in animals; we found that intra-cellular S. aureus inoculation of as low as 102 colony forming units could induce severe bone infections. Our data may suggest that intra-cellular S. aureus can “hide” in host cells during symptom-free periods and, under certain conditions, they may escape and lead to infection recurrence. Intra-cellular S. aureus therefore could play an important role in the pathogenesis of S. aureus infections, especially those chronic and recurrent infections in which disease episodes may be separated by weeks, months, or even years.

  13. Application of an Image Cytometry Protocol for Cellular and Mitochondrial Phenotyping on Fibroblasts from Patients with Inherited Disorders

    DEFF Research Database (Denmark)

    Fernandez-Guerra, Paula; Lund, Martin; Corydon, T J;

    2015-01-01

    Cellular phenotyping of human dermal fibroblasts (HDFs) from patients with inherited diseases provides invaluable information for diagnosis, disease aetiology, prognosis and assessing of treatment options. Here we present a cell phenotyping protocol using image cytometry that combines measurement...... mitochondrial parameters by image cytometry in HDFs from patients with inherited metabolic diseases.......Cellular phenotyping of human dermal fibroblasts (HDFs) from patients with inherited diseases provides invaluable information for diagnosis, disease aetiology, prognosis and assessing of treatment options. Here we present a cell phenotyping protocol using image cytometry that combines measurements...... of crucial cellular and mitochondrial parameters: (1) cell number and viability, (2) thiol redox status (TRS), (3) mitochondrial membrane potential (MMP) and (4) mitochondrial superoxide levels (MSLs). With our protocol, cell viability, TRS and MMP can be measured in one small cell sample and MSL on...

  14. Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation?

    Science.gov (United States)

    Riis, Tenna; Lambertini, Carla; Olesen, Birgit; Clayton, John S.; Brix, Hans; Sorrell, Brian K.

    2010-01-01

    Background and Aims The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important. Here the primary adaptive strategy in three non-native, clonally reproducing macrophytes (Egeria densa, Elodea canadensis and Lagarosiphon major) in New Zealand freshwaters were examined and an attempt was made to link observed differences in plant morphology to local variation in habitat conditions. Methods Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of these same populations was also quantified. Key Results For all three species, greater variation in plant characteristics was found before they were grown in standardized conditions. Moreover, field populations displayed remarkably little genetic variation and there was little interaction between habitat conditions and plant morphological characteristics. Conclusions The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis and L. major, but no other relationships between plant characteristics and habitat conditions were apparent. This implies that within-species differences in plant size can be explained

  15. Fluorosis Caused Cellular Apoptosis and Oxidative Stress of Rat Kidneys

    Institute of Scientific and Technical Information of China (English)

    SONG Yang; WANG Jin-cheng; XU Hui; DU Zhen-wu; ZHANG Gui-zhen; SELIM Hamid Abdu; LI Guang-sheng

    2013-01-01

    As the strongest electronegative element,fluorine can stimulate the production of superoxide radicals in cells.In view of the important roles of kidneys in bone metabolism,the authors analyzed the quantitative pathomorphological characteristics of renal damage and the potential cellular apoptosis and oxidative stress mechanisms in rats treated with excessive fluoride.Wistar rats were exposed to 50 mg F-(110.5 mg NaF)/L,100 mg F-(221.0 mg NaF)/Land 150 mg F (331.5 mg NaF)/L in drinking water for 70 and 140 d,respectively.Microscope with image analysis was used to quantitate pathomorphological changes in renal tissues of the rats.Reactive oxygen species(ROS),the cell cycle and apoptosis of renal cells were measured by flow cytometry and TUNEL technique(terminal deoxynucleotidyl transferase dUTP nick end labeling),respectively.The ion concentrations in serum and renal functional parameters were detected by automatic biochemical analyzer.Quantitative analysis results demonstrate the expanded Bowman's space of glomerulus and obvious dilatation of renal tubule.TUNEL technique revealed that NBT/BCIP (nitro blue tetrazoliurn/5-bromo-4-chloro-3′-indolylphosphate,p-toluidine salt)-staining positive apoptotic cells selectively located in medullocortical junction areas.The data suggest that renal damage in chronic fluorostic rats is associated with the cellular apoptosis and oxidative stress.

  16. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  17. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    International Nuclear Information System (INIS)

    Highlights: → We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. → GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. → Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. → Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-β-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of α subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  18. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    NARCIS (Netherlands)

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-

  19. Phenotypic characterization of the bone marrow stem cells used in regenerative cellular therapy

    International Nuclear Information System (INIS)

    Regenerative medicine is a novel therapeutic method with broad potential for the treatment of various illnesses, based on the use of bone marrow (BM) stem cells, whose phenotypic characterization is limited. The paper deals with the expression of different cell membrane markers in mononuclear BM cells from 14 patients who underwent autologous cell therapy, obtained by medullary puncture and mobilization to peripheral blood, with the purpose of characterizing the different types of cells present in that heterogeneous cellular population and identifying the adhesion molecules involved in their adhesion. A greater presence was observed of adherent stem cells from the marrow stroma in mononuclear cells obtained directly from the BM; a larger population of CD90+cells in mononuclear cells from CD34-/CD45-peripheral blood with a high expression of molecules CD44 and CD62L, which suggests a greater presence of mesenchymal stem cells (MSC) in mobilized cells from the marrow stroma. The higher levels of CD34+cells in peripheral blood stem cells with a low expression of molecules CD117-and DR-suggests the presence of hematopoietic stem cells, hemangioblasts and progenitor endothelial cells mobilized to peripheral circulation. It was found that mononuclear cells from both the BM and peripheral blood show a high presence of stem cells with expression of adhesion molecule CD44 (MMC marker), probably involved in their migration, settling and differentiation

  20. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    International Nuclear Information System (INIS)

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution

  1. A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons.

    Science.gov (United States)

    Williams, Michael R; Fricano-Kugler, Catherine J; Getz, Stephanie A; Skelton, Patrick D; Lee, Jeonghoon; Rizzuto, Christian P; Geller, Joseph S; Li, Meijie; Luikart, Bryan W

    2016-01-01

    Retroviruses expressing a fluorescent protein, Cas9, and a small guide RNA are used to mimic nonsense PTEN mutations from autism patients in developing mouse neurons. We compare the cellular phenotype elicited by CRISPR-Cas9 to those elicited using shRNA or Cre/Lox technologies and find that knockdown or knockout (KO) produced a corresponding moderate or severe neuronal hypertrophy in all cells. In contrast, the Cas9 approach produced missense and nonsense Pten mutations, resulting in a mix of KO-equivalent hypertrophic and wild type-like phenotypes. Importantly, despite this mixed phenotype, the neuronal hypertrophy resulting from Pten loss was evident on average in the population of manipulated cells. Having reproduced the known Pten KO phenotype using the CRISPR-Cas9 system we design viruses to target a gene that has recently been associated with autism, KATNAL2. Katnal2 deletion in the mouse results in decreased dendritic arborization of developing neurons. We conclude that retroviral implementation of the CRISPR-Cas9 system is an efficient system for cellular phenotype discovery in wild-type animals. PMID:27161796

  2. A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons

    Science.gov (United States)

    Williams, Michael R.; Fricano-Kugler, Catherine J.; Getz, Stephanie A.; Skelton, Patrick D.; Lee, Jeonghoon; Rizzuto, Christian P.; Geller, Joseph S.; Li, Meijie; Luikart, Bryan W.

    2016-01-01

    Retroviruses expressing a fluorescent protein, Cas9, and a small guide RNA are used to mimic nonsense PTEN mutations from autism patients in developing mouse neurons. We compare the cellular phenotype elicited by CRISPR-Cas9 to those elicited using shRNA or Cre/Lox technologies and find that knockdown or knockout (KO) produced a corresponding moderate or severe neuronal hypertrophy in all cells. In contrast, the Cas9 approach produced missense and nonsense Pten mutations, resulting in a mix of KO-equivalent hypertrophic and wild type-like phenotypes. Importantly, despite this mixed phenotype, the neuronal hypertrophy resulting from Pten loss was evident on average in the population of manipulated cells. Having reproduced the known Pten KO phenotype using the CRISPR-Cas9 system we design viruses to target a gene that has recently been associated with autism, KATNAL2. Katnal2 deletion in the mouse results in decreased dendritic arborization of developing neurons. We conclude that retroviral implementation of the CRISPR-Cas9 system is an efficient system for cellular phenotype discovery in wild-type animals. PMID:27161796

  3. Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans

    OpenAIRE

    Uchida, Maho; McDermott, Gerry; Wetzler, Modi; Le Gros, Mark A.; Myllys, Markko; Knoechel, Christian; Barron, Annelise E.; Larabell, Carolyn A.

    2009-01-01

    The opportunistic pathogen Candida albicans can undergo phenotypic switching between a benign, unicellular phenotype and an invasive, multicellular form that causes candidiasis. Increasingly, strains of Candida are becoming resistant to antifungal drugs, making the treatment of candidiasis difficult, especially in immunocompromised or critically ill patients. Consequently, there is a pressing need to develop new drugs that circumvent fungal drug-resistance mechanisms. In this work we used sof...

  4. Investigation of the genetic cause and related phenotypes of rare early onset retinal dystrophies

    OpenAIRE

    Hull, S

    2016-01-01

    Early onset retinal dystrophies (EORD) are a group of disorders presenting in childhood with degenerative abnormalities in photoreceptor cells. They are one of the leading causes of sight impairment in the United Kingdom. Since the initial discovery of Rho causing dominant retinitis pigmentosa in 1990, more than 160 genes have been associated with retinal dystrophy. Many, including CRB1, CRX, and RPE65 exhibit phenotypic heterogeneity and have been associated with more than one retinal disord...

  5. Relative frequency of underlying genetic causes for the development of UPD(14)pat-like phenotype

    OpenAIRE

    Kagami, Masayo; Kato, Fumiko; Matsubara, Keiko; Sato, Tomoko; Nishimura, Gen; Ogata, Tsutomu

    2012-01-01

    Paternal uniparental disomy 14 (UPD(14)pat) results in a unique constellation of clinical features, and a similar phenotypic constellation is also caused by microdeletions involving the DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and/or the MEG3-DMR and by epimutations (hypermethylations) affecting the DMRs. However, relative frequency of such underlying genetic causes remains to be clarified, as well as that of underlying mechanisms of UPD(14)pat, that is, trisomy rescue (...

  6. Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity

    Science.gov (United States)

    Chiu, Brian; Z-M Wan, Jim; Abley, Doris; Akabutu, John

    2005-05-01

    Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity ( μg) may modulate the proliferation and differentiation. We investigated the application of μg to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated μg for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in 1 G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers performed by flow-cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated μg may be potentially beneficial in the fields of stem cell biology and somatic cell therapy.

  7. Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype

    OpenAIRE

    Korenberg, Julie R; Kawashima, Hiroko; Pulst, Stefan-M.; Ikeuchi, T; Ogasawara, N; Yamamoto, K.; Schonberg, Steven A.; West, Ruth; Allen, Leland; Magenis, Ellen; Ikawa, K; Taniguchi, N; Epstein, Charles J.

    1990-01-01

    Down syndrome (DS) is a major cause of mental retardation and heart disease. Although it is usually caused by the presence of an extra chromosome 21, a subset of the diagnostic features may be caused by the presence of only band 21q22. We now present evidence that significantly narrows the chromosomal region responsible for several of the phenotypic features of DS. We report a molecular and cytogenetic analysis of a three-generation family containing four individuals with clinical DS as manif...

  8. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12.

    Science.gov (United States)

    Tsui, H C; Leung, H C; Winkler, M E

    1994-07-01

    The region immediately downstream from the miaA tRNA modification gene at 94.8 min contains the hfq gene and the hflA region, which are important in the bacteriophage Q beta and lambda life cycles. The roles of these genes in bacteria remain largely unknown. We report here the characterization of two chromosomal hfq insertion mutations. An omega (omega) cassette insertion near the end of hfq resulted in phenotypes only slightly different from the parent, although transcript mapping demonstrated that the insertion was completely polar on hflX expression. In contrast, an equally polar omega cassette insertion near the beginning of hfq caused pronounced pleiotropic phenotypes, including decreased growth rates and yields, decreased negative supercoiling of plasmids in stationary phase, increased cell size, osmosensitivity, increased oxidation of carbon sources, increased sensitivity to ultraviolet light, and suppression of bgl activation by hns mutations. hfq::omega mutant phenotypes were distinct from those caused by omega insertions early in the miaA tRNA modification gene. On the other hand, both hfq insertions interfered with lambda phage plaque formation, probably by means of polarity at the hflA region. Together, these results show that hfq function plays a fundamental role in Escherichia coli physiology and that hfq and the hflA-region are in the amiB-mutL-miaA-hfq-hflX superoperon. PMID:7984093

  9. Functional adaptation and phenotypic plasticity at the cellular and whole plant level

    Indian Academy of Sciences (India)

    Karl J Niklas

    2009-10-01

    The ability to adaptively alter morphological, anatomical, or physiological functional traits to local environmental variations using external environmental cues is especially well expressed by all terrestrial and most aquatic plants. A ubiquitous cue eliciting these plastic phenotypic responses is mechanical perturbation (MP), which can evoke dramatic differences in the size, shape, or mechanical properties of conspecifics. Current thinking posits that MP is part of a very ancient ``stress-perception response system” that involves receptors located at the cell membrane/cell wall interface capable of responding to a broad spectrum of stress-inducing factors. This hypothesis is explored here from the perspective of cell wall evolution and the control of cell wall architecture by unicellular and multicellular plants. Among the conclusions that emerge from this exploration is the perspective that the plant cell is phenotypically plastic.

  10. Phenotypic impact of regulatory noise in cellular stress-response pathways

    OpenAIRE

    Zhuravel, Daniil; Fraser, Dawn; St-Pierre, Simon; Tepliakova, Lioudmila; Pang, Wyming L.; Hasty, Jeff; Kærn, Mads

    2010-01-01

    Recent studies indicate that intrinsic promoter-mediated gene expression noise can confer a selective advantage under acute environmental stress by providing beneficial phenotypic diversity within cell populations. To investigate how extrinsic gene expression noise impacts the fitness of cell populations under stress, we engineered two nearly isogenic budding yeast strains; one carrying a two-step regulatory cascade that allows for precise control of the noise transmitted from a transcription...

  11. Bioinspired genotype–phenotype linkages: mimicking cellular compartmentalization for the engineering of functional proteins

    OpenAIRE

    Van Vliet, Liisa D.; Colin, Pierre-Yves; Hollfelder, Florian

    2015-01-01

    The idea of compartmentalization of genotype and phenotype in cells is key for enabling Darwinian evolution. This contribution describes bioinspired systems that use in vitro compartments—water-in-oil droplets and gel-shell beads—for the directed evolution of functional proteins. Technologies based on these principles promise to provide easier access to protein-based therapeutics, reagents for processes involving enzyme catalysis, parts for synthetic biology and materials with biological comp...

  12. An Unbiased Method for Clustering Bacterial Effectors Using Host Cellular Phenotypes

    OpenAIRE

    Dowling, Andrea J.; Hodgson, David J.

    2014-01-01

    We present a novel method implementing unbiased high-content morphometric cell analysis to classify bacterial effector phenotypes. This clustering methodology represents a significant advance over more qualitative visual approaches and can also be used to classify, and therefore predict the likely function of, unknown effector genes from any microbial genome. As a proof of concept, we use this approach to investigate 23 genetic regions predicted to encode antimacrophage effectors located acro...

  13. Phenotypic Switching in Cryptococcus neoformans Results in Changes in Cellular Morphology and Glucuronoxylomannan Structure

    OpenAIRE

    Fries, Bettina C.; Goldman, David L.; Cherniak, Robert; Ju, Rujin; Casadevall, Arturo

    1999-01-01

    Cryptococcus neoformans strains exhibit variability in their capsular polysaccharide, cell morphology, karyotype, and virulence, but the relationship between these variables is poorly understood. A hypovirulent C. neoformans 24067A isolate, which usually produces smooth (SM) colony types, was found to undergo phenotypic switching and to produce wrinkled (WR) and pseudohyphal (PH) colony types at frequencies of approximately 10−4 to 10−5 when plated on Sabouraud agar. Cells from these colony t...

  14. Cardiac hypertrophy, arrhythmogenicity and the new myocardial phenotype. II. The cellular adaptational process.

    Science.gov (United States)

    Swynghedauw, B; Chevalier, B; Charlemagne, D; Mansier, P; Carré, F

    1997-07-01

    Ventricular fibrosis is not the only structural determinant of arrhythmias in left ventricular hypertrophy. In an experimental model of compensatory cardiac hypertrophy (CCH) the degree of cardiac hypertrophy is also independently linked to ventricular arrhythmias. Cardiac hypertrophy reflects the level of adaptation, and matches the adaptational modifications of the myocardial phenotype. We suggest that these modifications have detrimental aspects. The increased action potential (AP) and QT duration and the prolonged calcium transient both favour spontaneous calcium oscillations, and both are potentially arrhythmogenic and linked to phenotypic changes in membrane proteins. To date, only two ionic currents have been studied in detail: Ito is depressed (likely the main determinant in AP durations), and If, the pacemaker current, is induced in the overloaded ventricular myocytes. In rat CCH, the two components of the sarcoplasmic reticulum, namely Ca(2+)-ATPase and ryanodine receptors, are down-regulated in parallel. Nevertheless, while the inward calcium current is unchanged, the functionally linked duo composed of the Na+/Ca2+ exchanged and (Na+, K+)-ATPase, is less active. Such an imbalance may explain the prolonged calcium transient. The changes in heart rate variability provide information about the state of the autonomic nervous system and has prognostic value even in CCH. Transgenic studies have demonstrated that the myocardial adrenergic and muscarinic receptor content is also a determining factor. During CCH, several phenotypic membrane changes participate in the slowing of contraction velocity and are thus adaptational. They also have a detrimental counterpart and, together with fibrosis, favour arrhythmias. PMID:9302342

  15. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype

    DEFF Research Database (Denmark)

    Davis, Erica; Jensen, Charlotte Harken; Schroder, Henrik Daa;

    2004-01-01

    The callipyge (CLPG) phenotype is an inherited skeletal muscle hypertrophy described in sheep. It is characterized by an unusual mode of inheritance ("polar overdominance") in which only heterozygous individuals having received the CLPG mutation from their father (+(MAT)/CLPG(PAT)) express the...... expression profile causes the callipyge muscular hypertrophy has remained unclear. Herein, we demonstrate that the callipyge phenotype is perfectly correlated with ectopic expression of DLK1 protein in hypertrophied muscle of +(MAT)/CLPG(PAT) sheep. We demonstrate the causality of this association by...... inducing a generalized muscular hypertrophy in transgenic mice that express DLK1 in skeletal muscle. The absence of DLK1 protein in skeletal muscle of CLPG/CLPG animals, despite the presence of DLK1 mRNA, supports a trans inhibition mediated by noncoding RNAs expressed from the maternal allele....

  16. Mucopolysaccharidosis VI (Maroteaux-Lamy Syndrome): Six unique arylsulfatase B gene alleles causing variable disease phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Isbrandt, D.; Arlt, G.; Figura, K. von; Peters, C.; Brooks, D.A.; Hopwood, J.J.

    1994-03-01

    Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme arylsulfatase B (ASB), also known as N-acetylgalactosamine-4-sulfatase. Multiple clinical phenotypes of this autosomal recessively inherited disease have been described. Recent isolation and characterization of the human ASB gene facilitated the analysis of molecular defects underlying the different phenotypes. Conditions for PCR amplification of the entire open reading frame from genomic DNA and for subsequent direct automated DNA sequencing of the resulting DNA fragments were established. Besides two polymorphisms described elsewhere that cause methionine-for-valine substitutions in the arylsulfatase B gene, six new mutations in six patients were detected: four point mutations resulting in amino acid substitutions, a 1-bp deletion, and a 1-bp insertion. The point mutations were two G-to-A and two T-to-C transitions. The G-to-A transitions cause an arginine-for-glycine substitution at residue 144 in a homoallelic patient with a severe disease phenotype and a tyrosine-for-cysteine substitution at residue 521 in a potentially heteroallelic patient with the severe form of the disease. The T-to-C transitions cause an arginine-for-cysteine substitution at amino acid residue 192 in a homoallelic patient with mild symptoms and a proline-for-leucine substitution at amino acid 321 in a homoallelic patient with the intermediate form. The insertion between nucleotides T1284 and G1285 resulted in a loss of the 100 C-terminal amino acids of the wild-type protein and in the deletion of nucleotide C1577 in a 39-amino-acid C-terminal extension of the ASB polypeptide. Both mutations were detected in homoallelic patients with the severe form of the disease. Expression of mutant cDNAs encoding the four amino acid substitutions and the deletion resulted in reduction of both ASB protein levels and arylsulfatase enzyme activity. 25 refs., 4 figs.

  17. Evaluation of cellular phenotypes implicated in immunopathogenesis and monitoring immune reconstitution inflammatory syndrome in HIV/leprosy cases.

    Directory of Open Access Journals (Sweden)

    Carmem Beatriz Wagner Giacoia-Gripp

    Full Text Available BACKGROUND: It is now evident that HAART-associated immunological improvement often leads to a variety of new clinical manifestations, collectively termed immune reconstitution inflammatory syndrome, or IRIS. This phenomenon has already been described in cases of HIV coinfection with Mycobacterium leprae, most of them belonging to the tuberculoid spectrum of leprosy disease, as observed in leprosy reversal reaction (RR. However, the events related to the pathogenesis of this association need to be clarified. This study investigated the immunological profile of HIV/leprosy patients, with special attention to the cellular activation status, to better understand the mechanisms related to IRIS/RR immunopathogenesis, identifying any potential biomarkers for IRIS/RR intercurrence. METHODS/PRINCIPAL FINDINGS: Eighty-five individuals were assessed in this study: HIV/leprosy and HIV-monoinfected patients, grouped according to HIV-viral load levels, leprosy patients without HIV coinfection, and healthy controls. Phenotypes were evaluated by flow cytometry for T cell subsets and immune differentiation/activation markers. As expected, absolute counts of the CD4+ and CD8+ T cells from the HIV-infected individuals changed in relation to those of the leprosy patients and controls. However, there were no significant differences among the groups, whether in the expression of cellular differentiation phenotypes or cellular activation, as reflected by the expression of CD38 and HLA-DR. Six HIV/leprosy patients identified as IRIS/RR were analyzed during IRIS/RR episodes and after prednisone treatment. These patients presented high cellular activation levels regarding the expression of CD38 in CD8+ cells T during IRIS/RR (median: 77,15%, dropping significantly (p<0,05 during post-IRIS/RR moments (median: 29,7%. Furthermore, an increase of cellular activation seems to occur prior to IRIS/RR. CONCLUSION/SIGNIFICANCE: These data suggest CD38 expression in CD8+ T cells

  18. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Irina M Shapiro

    2011-08-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA-Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT-dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell-cell junction formation, and regulation of cell migration, were enriched among EMT-associated alternatively splicing events. Our analysis suggested that most EMT-associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT-associated splicing pattern. Expression of EMT-associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT-dependent splicing changes occur commonly in human tumors. The functional significance of EMT-associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT-associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression.

  19. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies.

    Science.gov (United States)

    Scalco, Renata Siciliani; Gardiner, Alice R; Pitceathly, Robert D S; Hilton-Jones, David; Schapira, Anthony H; Turner, Chris; Parton, Matt; Desikan, Mahalekshmi; Barresi, Rita; Marsh, Julie; Manzur, Adnan Y; Childs, Anne-Marie; Feng, Lucy; Murphy, Elaine; Lamont, Phillipa J; Ravenscroft, Gianina; Wallefeld, William; Davis, Mark R; Laing, Nigel G; Holton, Janice L; Fialho, Doreen; Bushby, Kate; Hanna, Michael G; Phadke, Rahul; Jungbluth, Heinz; Houlden, Henry; Quinlivan, Ros

    2016-08-01

    Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n = 6). Symptoms included myalgia (n = 7), exercise intolerance (n = 7) and episodes of rhabdomyolysis (n = 2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients; however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series, immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other "typical" features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes. PMID:27312022

  20. Relative frequency of underlying genetic causes for the development of UPD(14)pat-like phenotype.

    Science.gov (United States)

    Kagami, Masayo; Kato, Fumiko; Matsubara, Keiko; Sato, Tomoko; Nishimura, Gen; Ogata, Tsutomu

    2012-09-01

    Paternal uniparental disomy 14 (UPD(14)pat) results in a unique constellation of clinical features, and a similar phenotypic constellation is also caused by microdeletions involving the DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and/or the MEG3-DMR and by epimutations (hypermethylations) affecting the DMRs. However, relative frequency of such underlying genetic causes remains to be clarified, as well as that of underlying mechanisms of UPD(14)pat, that is, trisomy rescue (TR), gamete complementation (GC), monosomy rescue (MR), and post-fertilization mitotic error (PE). To examine this matter, we sequentially performed methylation analysis, microsatellite analysis, fluorescence in situ hybridization, and array-based comparative genomic hybridization in 26 patients with UPD(14)pat-like phenotype. Consequently, we identified UPD(14)pat in 17 patients (65.4%), microdeletions of different patterns in 5 patients (19.2%), and epimutations in 4 patients (15.4%). Furthermore, UPD(14)pat was found to be generated through TR or GC in 5 patients (29.4%), MR or PE in 11 patients (64.7%), and PE in 1 patient (5.9%). Advanced maternal age at childbirth (≥35 years) was predominantly observed in the MR/PE subtype. The results imply that the relative frequency of underlying genetic causes for the development of UPD(14)pat-like phenotype is different from that of other imprinting disorders, and that advanced maternal age at childbirth as a predisposing factor for the generation of nullisomic oocytes through non-disjunction at meiosis 1 may be involved in the development of MR-mediated UPD(14)pat. PMID:22353941

  1. Causes of variation in biotic interaction strength and phenotypic selection along an altitudinal gradient.

    Science.gov (United States)

    Mezquida, Eduardo T; Benkman, Craig W

    2014-06-01

    Understanding the causes of variation in biotic interaction strength and phenotypic selection remains one of the outstanding goals of evolutionary ecology. Here we examine the variation in strength of interactions between two seed predators, common crossbills (Loxia curvirostra) and European red squirrels (Sciurus vulgaris), and mountain pine (Pinus uncinata) at and below tree limit in the Pyrenees, and how this translates into phenotypic selection. Seed predation by crossbills increased whereas seed predation by squirrels decreased with increasing elevation and as the canopy became more open. Overall, seed predation by crossbills averaged about twice that by squirrels, and the intensity of selection exerted by crossbills averaged between 2.6 and 7.5 times greater than by squirrels. The higher levels of seed predation by crossbills than squirrels were related to the relatively open nature of most of the forests, and the higher intensity of selection exerted by crossbills resulted from their higher levels of seed predation. However, most of the differences in selection intensity between crossbills and squirrels were the result of habitat features having a greater effect on the foraging behavior of squirrels than of crossbills, causing selection to be much lower for squirrels than for crossbills. PMID:24593660

  2. The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype.

    Science.gov (United States)

    Raja, Vaishnavi; Greenberg, Miriam L

    2014-04-01

    The phospholipid cardiolipin (CL) plays a role in many cellular functions and signaling pathways both inside and outside of mitochondria. This review focuses on the role of CL in energy metabolism. Many reactions of electron transport and oxidative phosphorylation, the transport of metabolites required for these processes, and the stabilization of electron transport chain supercomplexes require CL. Recent studies indicate that CL is required for the synthesis of iron-sulfur (Fe-S) co-factors, which are essential for numerous metabolic pathways. Activation of carnitine shuttle enzymes that are required for fatty acid metabolism is CL dependent. The presence of substantial amounts of CL in the peroxisomal membrane suggests that CL may be required for peroxisomal functions. Understanding the role of CL in energy metabolism may identify physiological modifiers that exacerbate the loss of CL and underlie the variation in symptoms observed in Barth syndrome, a genetic disorder of CL metabolism. PMID:24445246

  3. Cytotoxic and phenotypic effects of uranium and lead on osteoblastic cellular models

    International Nuclear Information System (INIS)

    This study is involved in the evaluation of bio-hazard associated with the use of uranium in nuclear activities and industrial research. The uranium, known in the literature as potentially carcinogenic or toxic for reproduction, can become a public health problem with the views of the various possibilities of human infections (military of the Gulf War, Finnish populations exposed to drinking water contaminated by example). The skeleton represents the organ of long-term storage of uranium and can be a target of its toxicity. Lead sharing this way of fixing in the bone matrix and have the same adverse effects on bone formation. The osteoblasts, cells responsible in bone formation, are specific targets of these two metals. The aim of this study was to evaluate the effects of acute toxicity of speciation controlled uranium and lead on osteoblasts culture. The intracellular accumulation, distribution and speciation were then studied to explain the observed toxicity. A cell death and phenotypic disorder were highlighted. The speciation is seen as crucial in biological effects of these metals. The most toxic species of both metals have been identified. The accumulation or cell distribution could not alone explain the impact of speciation on the toxicity observed. However, a phenomenon of intracellular precipitation of uranium and lead has been stressed and could be involved in a detoxification mechanism. (author)

  4. Genotype-Property Patient-Phenotype Relations Suggest that Proteome Exhaustion Can Cause Amyotrophic Lateral Sclerosis

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2015-01-01

    Late-onset neurodegenerative diseases remain poorly understood as search continues for the perceived pathogenic protein species. Previously, variants in Superoxide Dismutase 1 (SOD1) causing Amyotrophic Lateral Sclerosis (ALS) were found to destabilize and reduce net charge, suggesting a pathogenic...... aggregation mechanism. This paper reports analysis of compiled patient data and experimental and computed protein properties for variants of human SOD1, a major risk factor of ALS. Both stability and reduced net charge correlate significantly with disease, with larger significance than previously observed...... number, expressed as an exponential function of the experimental stabilities (R-2 = 0.31, p = 0.002), and this phenotype is further aggravated by charge (R-2 = 0.51, p = 1.8 x 10-5). This finding suggests that disease relates to the copy number of misfolded proteins. Exhaustion of motor neurons due to...

  5. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome.

    Science.gov (United States)

    Brown, Kyla; Selfridge, Jim; Lagger, Sabine; Connelly, John; De Sousa, Dina; Kerr, Alastair; Webb, Shaun; Guy, Jacky; Merusi, Cara; Koerner, Martha V; Bird, Adrian

    2016-02-01

    Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions. PMID:26647311

  6. Molecular and phenotypic characteristics of seven novel mutations causing branched-chain organic acidurias.

    Science.gov (United States)

    Stojiljkovic, M; Klaassen, K; Djordjevic, M; Sarajlija, A; Brasil, S; Kecman, B; Grkovic, S; Kostic, J; Rodriguez-Pombo, P; Desviat, L R; Pavlovic, S; Perez, B

    2016-09-01

    Specific mitochondrial enzymatic deficiencies in the catabolism of branched-chain amino acids cause methylmalonic aciduria (MMA), propionic acidemia (PA) and maple syrup urine disease (MSUD). Disease-causing mutations were identified in nine unrelated branched-chain organic acidurias (BCOA) patients. We detected eight previously described mutations: p.Asn219Tyr, p.Arg369His p.Val553Glyfs*17 in MUT, p.Thr198Serfs*6 in MMAA, p.Ile144_Leu181del in PCCB, p.Gly288Valfs*11, p.Tyr438Asn in BCKDHA and p.Ala137Val in BCKDHB gene. Interestingly, we identified seven novel genetic variants: p.Leu549Pro, p.Glu564*, p.Leu641Pro in MUT, p.Tyr206Cys in PCCB, p.His194Arg, p.Val298Met in BCKDHA and p.Glu286_Met290del in BCKDHB gene. In silico and/or eukaryotic expression studies confirmed pathogenic effect of all novel genetic variants. Aberrant enzymes p.Leu549Pro MUT, p.Leu641Pro MUT and p.Tyr206Cys PCCB did not show residual activity in activity assays. In addition, activity of MUT enzymes was not rescued in the presence of vitamin B12 precursor in vitro which was in accordance with non-responsiveness or partial responsiveness of patients to vitamin B12 therapy. Our study brings the first molecular genetic data and detailed phenotypic characteristics for MMA, PA and MSUD patients for Serbia and the whole South-Eastern European region. Therefore, our study contributes to the better understanding of molecular landscape of BCOA in Europe and to general knowledge on genotype-phenotype correlation for these rare diseases. PMID:26830710

  7. Production of a Marfan cellular phenotype by expressing a mutant human fibrillin allele on a normal human or murine genetic background

    Energy Technology Data Exchange (ETDEWEB)

    Eldadah, Z.A.; Dietz, H.C. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Brenn, T. [Stanford Univ. Medical Center, CA (United States)] [and others

    1994-09-01

    The Marfan Syndrome (MFS) is a heritable disorder of connective tissue caused by defects in fibrillin (FBN1), a 350 kD glycoprotein and principal component of the extracellular microfibril. Previous correlations of mutant transcript level and disease severity suggested a dominant negative model of MFS pathogenesis. To address this hypothesis we assembled an expression construct containing the mutant allele from a patient with severe MFS. This mutation causes skipping of FBN1 exon 2 and a frame shift, leading to a premature termination codon in exon 4. The predicted peptide would thus consist of 55 wild type and 45 missense amino acids. The construct was stably transfected into cultured human and mouse fibroblasts, and several clonal cell populations were established. Human and mouse cells expressing the truncated peptide exhibited markedly diminished fibrillin deposition and disorganized microfibrillar architecture by immunofluorescence. Pulse-chase analysis of these cells demonstrated normal levels of fibrillin synthesis but substantially decreased fibrillin deposition into the extracellular matrix. These data illustrate that expression of a mutant FBN1 allele, on a background of two normal alleles, is sufficient to disrupt normal fibrillin aggregation and reproduce the MFS cellular phenotype. This provides confirmation of a dominant negative model of MFS pathogenesis and may offer mutant allele knockout as a strategy for gene therapy. In addition, these data underscore the importance of the FBN1 amino-terminus in normal multimer formation and suggest that expression of the human extreme 5{prime} FBN1 coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Indeed, transgenic mice harboring this mutant allele have been produced, and phenotype analysis is currently in progress.

  8. A cytochrome P450 phenotyping cocktail causing unexpected adverse reactions in female volunteers

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Steen; Damkier, Per; Hougaard Christensen, Mette Marie;

    2013-01-01

    A four-drug cytochrome P450 (CYP) phenotyping cocktail was developed to rapidly and safely determine CYP2D6, CYP2C19, CYP2C9 and CYP1A2 enzyme activity and phenotype.......A four-drug cytochrome P450 (CYP) phenotyping cocktail was developed to rapidly and safely determine CYP2D6, CYP2C19, CYP2C9 and CYP1A2 enzyme activity and phenotype....

  9. The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells.

    Science.gov (United States)

    Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Gobeil, Stephane; Morin, Chantale; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho

    2016-03-22

    The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. Previously, we identified the mannose receptor LY75 gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. LY75 represents endocytic receptor expressed on dendritic cells and so far, has been primarily studied for its role in antigen processing and presentation. Here we demonstrate that LY75 is overexpressed in advanced EOC and that LY75 suppression induces mesenchymal-to-epithelial transition (MET) in EOC cell lines with mesenchymal morphology (SKOV3 and TOV112), accompanied by reduction of their migratory and invasive capacity in vitro and enhanced tumor cell colonization and metastatic growth in vivo. LY75 knockdown in SKOV3 cells also resulted in predominant upregulation of functional pathways implicated in cell proliferation and metabolism, while pathways associated with cell signaling and adhesion, complement activation and immune response were mostly suppressed. Moreover, LY75 suppression had an opposite effect on EOC cell lines with epithelial phenotype (A2780s and OV2008), by directing epithelial-to-mesenchymal transition (EMT) associated with reduced capacity for in vivo EOC cell colonization, as similar/identical signaling pathways were reversely regulated, when compared to mesenchymal LY75 knockdown EOC cells.To our knowledge, this is the first report of a gene displaying such pleiotropic effects in sustaining the cellular phenotype of EOC cells and points to novel functions of this receptor in modulating EOC dissemination. Our data also support previous findings regarding the superior capacity of epithelial cancer cells in metastatic colonization of distant sites, compared to cancer cells with mesenchymal-like morphology. PMID:26871602

  10. A cellular model reflecting the phenotypic heterogeneity of mutant HRAS driven squamous cell carcinoma.

    Science.gov (United States)

    Cantariño, Neus; Fernández-Figueras, M Teresa; Valero, Vanesa; Musulén, Eva; Malinverni, Roberto; Granada, Isabel; Goldie, Stephen J; Martín-Caballero, Juan; Douet, Julien; Forcales, Sonia-Vanina; Buschbeck, Marcus

    2016-09-01

    Squamous cell carcinomas have a range of histopathological manifestations. The parameters that determine this clinically observed heterogeneity are not fully understood. Here, we report the generation of a cell culture model that reflects part of this heterogeneity. We have used the catalytic subunit of human telomerase hTERT and large T to immortalize primary UV-unexposed keratinocytes. Then, mutant HRAS G12V has been introduced to transform these immortal keratinocytes. When injected into immunosuppressed mice, transformed cells grew as xenografts with distinct histopathological characteristics. We observed three major tissue architectures: solid, sarcomatoid and cystic growth types, which were primarily composed of pleomorphic and basaloid cells but in some cases displayed focal apocrine differentiation. We demonstrate that the cells generated represent different stages of skin cancerogenesis and as such can be used to identify novel tumor-promoting alterations such as the overexpression of the PADI2 oncogene in solid-type SCC. Importantly, the cultured cells maintain the characteristics from the xenograft they were derived from while being amenable to manipulation and analysis. The availability of cell lines representing different clinical manifestations opens a new tool to study the stochastic and deterministic factors that cause case-to-case heterogeneity despite departing from the same set of oncogenes and the same genetic background. PMID:27074337

  11. A single point-mutation within the melanophilin gene causes the lavender plumage colour dilution phenotype in the chicken

    Directory of Open Access Journals (Sweden)

    Tixier-Boichard Michèle

    2008-01-01

    Full Text Available Abstract Background The lavender phenotype in the chicken causes the dilution of both black (eumelanin and red/brown (phaeomelanin pigments. Defects in three genes involved in intracellular melanosomal transport, previously described in mammals, give rise to similar diluted pigmentation phenotypes as those seen in lavender chickens. Results We have used a candidate-gene approach based on an expectation of homology with mammals to isolate a gene involved in pigmentation in chicken. Comparative sequence analysis of candidate genes in the chicken identified a strong association between a mutation in the MLPH gene and the diluted pigmentation phenotype. This mutation results in the amino acid change R35W, at a site also associated with similar phenotypes in mice, humans and cats. Conclusion This is the first time that an avian species with a mutation in the MLPH gene has been reported.

  12. De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes

    DEFF Research Database (Denmark)

    Gil-Rodríguez, María Concepción; Deardorff, Matthew A; Ansari, Morad;

    2015-01-01

    LS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive...

  13. Exome sequencing identified mutations in CASK and MYBPC3 as the cause of a complex dilated cardiomyopathy phenotype.

    Science.gov (United States)

    Reinstein, Eyal; Tzur, Shay; Bormans, Concetta; Behar, Doron M

    2016-01-01

    Whole-exome sequencing for clinical applications is now an integral part of medical genetics practice. Though most studies are performed in order to establish diagnoses in individuals with rare and clinically unrecognizable disorders, due to the constantly decreasing costs and commercial availability, whole-exome sequencing has gradually become the initial tool to study patients with clinically recognized disorders when more than one gene is responsible for the phenotype or in complex phenotypes, when variants in more than one gene can be the cause for the disease. Here we report a patient presenting with a complex phenotype consisting of severe, adult-onset, dilated cardiomyopathy, hearing loss and developmental delay, in which exome sequencing revealed two genetic variants that are inherited from a healthy mother: a novel missense variant in the CASK gene, mutations in which cause a spectrum of neurocognitive manifestations, and a second variant, in MYBPC3, that is associated with hereditary cardiomyopathy. We conclude that although the potential for co-occurrence of rare diseases is higher when analyzing undefined phenotypes in consanguineous families, it should also be given consideration in the genetic evaluation of complex phenotypes in non-consanguineous families. PMID:27173948

  14. Biallelic Mutations in TMEM126B Cause Severe Complex I Deficiency with a Variable Clinical Phenotype.

    Science.gov (United States)

    Alston, Charlotte L; Compton, Alison G; Formosa, Luke E; Strecker, Valentina; Oláhová, Monika; Haack, Tobias B; Smet, Joél; Stouffs, Katrien; Diakumis, Peter; Ciara, Elżbieta; Cassiman, David; Romain, Nadine; Yarham, John W; He, Langping; De Paepe, Boel; Vanlander, Arnaud V; Seneca, Sara; Feichtinger, René G; Płoski, Rafal; Rokicki, Dariusz; Pronicka, Ewa; Haller, Ronald G; Van Hove, Johan L K; Bahlo, Melanie; Mayr, Johannes A; Van Coster, Rudy; Prokisch, Holger; Wittig, Ilka; Ryan, Michael T; Thorburn, David R; Taylor, Robert W

    2016-07-01

    Complex I deficiency is the most common biochemical phenotype observed in individuals with mitochondrial disease. With 44 structural subunits and over 10 assembly factors, it is unsurprising that complex I deficiency is associated with clinical and genetic heterogeneity. Massively parallel sequencing (MPS) technologies including custom, targeted gene panels or unbiased whole-exome sequencing (WES) are hugely powerful in identifying the underlying genetic defect in a clinical diagnostic setting, yet many individuals remain without a genetic diagnosis. These individuals might harbor mutations in poorly understood or uncharacterized genes, and their diagnosis relies upon characterization of these orphan genes. Complexome profiling recently identified TMEM126B as a component of the mitochondrial complex I assembly complex alongside proteins ACAD9, ECSIT, NDUFAF1, and TIMMDC1. Here, we describe the clinical, biochemical, and molecular findings in six cases of mitochondrial disease from four unrelated families affected by biallelic (c.635G>T [p.Gly212Val] and/or c.401delA [p.Asn134Ilefs(∗)2]) TMEM126B variants. We provide functional evidence to support the pathogenicity of these TMEM126B variants, including evidence of founder effects for both variants, and establish defects within this gene as a cause of complex I deficiency in association with either pure myopathy in adulthood or, in one individual, a severe multisystem presentation (chronic renal failure and cardiomyopathy) in infancy. Functional experimentation including viral rescue and complexome profiling of subject cell lines has confirmed TMEM126B as the tenth complex I assembly factor associated with human disease and validates the importance of both genome-wide sequencing and proteomic approaches in characterizing disease-associated genes whose physiological roles have been previously undetermined. PMID:27374774

  15. Phenotypic plasticity and longevity in plants and animals: cause and effect?

    OpenAIRE

    Borges, Renee M

    2009-01-01

    Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experien...

  16. Gastric Composite Tumor of Alpha Fetoprotein-Producing Carcinoma/Hepatoid Adenocarcinoma and Endocrine Carcinoma with Reference to Cellular Phenotypes

    Directory of Open Access Journals (Sweden)

    Akira Suzuki

    2012-01-01

    Full Text Available Alpha-fetoprotein-producing carcinoma (AFPC/hepatoid adenocarcinoma (HAC and neuroendocrine carcinoma (NEC are uncommon in the stomach. Composite tumors consisting of these carcinomas and their histologic phenotypes are not well known. Between 2002 and 2007, to estimate the prevalence of composite tumors consisting of tubular adenocarcinoma, AFPC/HAC and NEC, we reviewed specimens obtained from 294 consecutive patients treated surgically for gastric cancer. We examined histological phenotype of tumors of AFPC or NEC containing the composite tumor by evaluating immunohistochemical expressions of MUC2, MUC5AC, MUC6, CDX2, and SOX2. Immunohistochemically, AFPC/HAC dominantly showed the intestinal or mixed phenotype, and NEC frequently showed the gastric phenotype. In the composite tumor, the tubular and hepatoid components showed the gastric phenotype, and the neuroendocrine component showed the mixed type. The unique composite tumor predominantly showed the gastric phenotype, and the hepatoid and neuroendocrine components were considered to be differentiated from the tubular component.

  17. An atypical Dent's disease phenotype caused by co-inheritance of mutations at CLCN5 and OCRL genes

    OpenAIRE

    Addis, Maria; Meloni, Cristiana; Tosetto, Enrica; Ceol, Monica; Cristofaro, Rosalba; Melis, Maria Antonietta; Vercelloni, Paolo; Del Prete, Dorella; Marra, Giuseppina; Anglani, Franca

    2012-01-01

    Dent's disease is an X-linked renal tubulopathy caused by mutations mainly affecting the CLCN5 gene. Defects in the OCRL gene, which is usually mutated in patients with Lowe syndrome, have been shown to lead to a Dent-like phenotype called Dent disease 2. However, about 20% of patients with Dent's disease carry no CLCN5/OCRL mutations. The disease's genetic heterogeneity is accompanied by interfamilial and intrafamilial phenotypic heterogeneity. We report on a case of Dent's disease with a ve...

  18. A novel mutation at the JK locus causing Jknull phenotype in a Chinese family

    Institute of Scientific and Technical Information of China (English)

    MENG; Yan

    2005-01-01

    [1]Olivès, B., Mattei, M. G., Huet, M. et al., Kidd blood group and urea transport of human erythrocytes are carried by the same pro-tein, J. Biol. Chem., 1995, 270(26): 15607―15610.[2]Sands, J. M., Timmer, R. T., Gunn, R. B., Urea transporters in kidney and erythrocytes, Am. J. Physiol.,1997, 273: F321―F339.[3]Heaton, D. C., McLoughlin, K., Jk(a-b-) red blood cells resist urea lysis, Transfusion, 1982, 22(1): 70―71.[4]Sands, J. M., Gargus, J. J., Frohlich, O. et al., Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport, J. Am. Soc. Nephrol., 1992, 2(12): 1689―1696.[5]Nidal, M., Irshaid, N. I., Eicher, H. H. et al., Novel alleles at the JK blood group locus explain the absence of the erythrocyte urea transporter in European families, Br. J. Heaematol., 2002, 116(2): 445―453.[6]Okubo, Y., Yamaguchi, H., Nagao, N. et al., Heterogeneity of the pheno type JK(a-,b-) found in Japanese, Transfusion, 1986, 26(3): 237―239.[7]Olives, B., Merriman, M., Bailly, P. et al., The molecular basis of the Kidd blood group polymorphism and its lack of association with type 1 diabetes susceptibility, Hum. Mol. Genet., 1997, 6(7): 1017―1020.[8]Fr(o)hlich, O., Macey, R. I., Edwards-Moulds, J. et al., Urea transport deficiency in Jk(ab) erythrocytes, Am. J. Physiol., 1991, 260: C778―C783.[9]Irshaid, N. M., Hustinx, H., Olsson, M. L., A novel molecular basis of the JK(a-b-) phenotype in a Swiss family, Vox. Sanguinis, 2000, 78(suppl 1): O019.[10]Lucien, N., Chiaroni, J., Cartron, J. P. et al., Partial deletion in the JK locus causing a Jk(null ) phenotype, Blood, 2002, 99(3): 1079―1081.[11]Yang, B., Verkman, A. S., Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B: Evidence for UT-B facilitated water transport in erythrocytes, J. Biol. Chem., 2002, 277(39): 36782―36786.[12]Van Hoek, A. N., Verkman, A. S., Functional reconstitution of the isolated erythrocyte water channel CHIP28, J

  19. Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network.

    Directory of Open Access Journals (Sweden)

    Jean-Michel Gibert

    2007-02-01

    Full Text Available Phenotypic plasticity is the ability of a genotype to produce contrasting phenotypes in different environments. Although many examples have been described, the responsible mechanisms are poorly understood. In particular, it is not clear how phenotypic plasticity is related to buffering, the maintenance of a constant phenotype against genetic or environmental variation. We investigate here the genetic basis of a particularly well described plastic phenotype: the abdominal pigmentation in female Drosophila melanogaster. Cold temperature induces a dark pigmentation, in particular in posterior segments, while higher temperature has the opposite effect. We show that the homeotic gene Abdominal-B (Abd-B has a major role in the plasticity of pigmentation in the abdomen. Abd-B plays opposite roles on melanin production through the regulation of several pigmentation enzymes. This makes the control of pigmentation very unstable in the posterior abdomen, and we show that the relative spatio-temporal expression of limiting pigmentation enzymes in this region of the body is thermosensitive. Temperature acts on melanin production by modulating a chromatin regulator network, interacting genetically with the transcription factor bric-à-brac (bab, a target of Abd-B and Hsp83, encoding the chaperone Hsp90. Genetic disruption of this chromatin regulator network increases the effect of temperature and the instability of the pigmentation pattern in the posterior abdomen. Colocalizations on polytene chromosomes suggest that BAB and these chromatin regulators cooperate in the regulation of many targets, including several pigmentation enzymes. We show that they are also involved in sex comb development in males and that genetic destabilization of this network is also strongly modulated by temperature for this phenotype. Thus, we propose that phenotypic plasticity of pigmentation is a side effect reflecting a global impact of temperature on epigenetic mechanisms

  20. The congenital "ant-egg" cataract phenotype is caused by a missense mutation in connexin46

    DEFF Research Database (Denmark)

    Hansen, Lars; Yao, Wenliang; Eiberg, Hans; Funding, Mikkel; Riise, Ruth; Kjær, Klaus Wilbrandt; Hejtmancik, James Fielding; Rosenberg, Thomas

    2006-01-01

    "Ant-egg" cataract is a rare, distinct variety of congenital/infantile cataract that was reported in a large Danish family in 1967. This cataract phenotype is characterized by ant-egg-like bodies embedded in the lens in a laminar configuration and is inherited as an autosomal dominant trait. We r...

  1. Stickler syndrome caused by COL2A1 mutations: genotype-phenotype correlation in a series of 100 patients

    OpenAIRE

    Mortier, Geert; Hoornaert, Kristien P; Vereecke, Inge; Dewinter, Chantal; Rosenberg, Thomas; Beemer, Frits A; Leroy, Jules G; Bendix, Laila; Björck, Erik; Bonduelle, Dr.; Boute, Odile; Cormier-Daire, Valérie; De Die-Smulders, Christine E.M.; Dieux-Coeslier, Anne; Dollfus, Hélène

    2010-01-01

    Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effec...

  2. Exome Sequencing Reveals De Novo WDR45 Mutations Causing a Phenotypically Distinct, X-Linked Dominant Form of NBIA

    OpenAIRE

    Haack, Tobias B.; Hogarth, Penelope; Kruer, Michael C.; Gregory, Allison; Wieland, Thomas; Schwarzmayr, Thomas; Graf, Elisabeth; Sanford, Lynn; Meyer, Esther; Kara, Eleanna; Cuno, Stephan M.; Harik, Sami I.; Dandu, Vasuki H.; Nardocci, Nardo; Zorzi, Giovanna

    2012-01-01

    Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic disorders characterized by abnormal iron deposition in the basal ganglia. We report that de novo mutations in WDR45, a gene located at Xp11.23 and encoding a beta-propeller scaffold protein with a putative role in autophagy, cause a distinctive NBIA phenotype. The clinical features include early-onset global developmental delay and further neurological deterioration (parkinsonism, dystonia, and dementia developing by ...

  3. Phenotypic plasticity and longevity in plants and animals: cause and effect?

    Indian Academy of Sciences (India)

    Renee M Borges

    2009-10-01

    Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.

  4. Phenotype-Optimized Sequence Ensembles Substantially Improve Prediction of Disease-Causing Mutation in Cystic Fibrosis

    OpenAIRE

    Masica, David L.; Sosnay, Patrick R.; Cutting, Garry R; Karchin, Rachel

    2012-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) mutation is associated with a phenotypic spectrum that includes cystic fibrosis (CF). The disease liability of some common CFTR mutations is known, but rare mutations are seen in too few patients to categorize unequivocally, making genetic diagnosis difficult. Computational methods can predict the impact of mutation, but prediction specificity is often below that required for clinical utility. Here, we present a novel supervised learn...

  5. Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD.

    Science.gov (United States)

    Lattante, Serena; de Calbiac, Hortense; Le Ber, Isabelle; Brice, Alexis; Ciura, Sorana; Kabashi, Edor

    2015-03-15

    Mutations in SQSTM1, encoding for the protein SQSTM1/p62, have been recently reported in 1-3.5% of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS/FTLD). Inclusions positive for SQSTM1/p62 have been detected in patients with neurodegenerative disorders, including ALS/FTLD. In order to investigate the pathogenic mechanisms induced by SQSTM1 mutations in ALS/FTLD, we developed a zebrafish model. Knock-down of the sqstm1 zebrafish ortholog, as well as impairment of its splicing, led to a specific phenotype, consisting of behavioral and axonal anomalies. Here, we report swimming deficits associated with shorter motor neuronal axons that could be rescued by the overexpression of wild-type human SQSTM1. Interestingly, no rescue of the loss-of-function phenotype was observed when overexpressing human SQSTM1 constructs carrying ALS/FTLD-related mutations. Consistent with its role in autophagy regulation, we found increased mTOR levels upon knock-down of sqstm1. Furthermore, treatment of zebrafish embryos with rapamycin, a known inhibitor of the mTOR pathway, yielded an amelioration of the locomotor phenotype in the sqstm1 knock-down model. Our results suggest that loss-of-function of SQSTM1 causes phenotypic features characterized by locomotor deficits and motor neuron axonal defects that are associated with a misregulation of autophagic processes. PMID:25410659

  6. An atypical Dent's disease phenotype caused by co-inheritance of mutations at CLCN5 and OCRL genes.

    Science.gov (United States)

    Addis, Maria; Meloni, Cristiana; Tosetto, Enrica; Ceol, Monica; Cristofaro, Rosalba; Melis, Maria Antonietta; Vercelloni, Paolo; Del Prete, Dorella; Marra, Giuseppina; Anglani, Franca

    2013-06-01

    Dent's disease is an X-linked renal tubulopathy caused by mutations mainly affecting the CLCN5 gene. Defects in the OCRL gene, which is usually mutated in patients with Lowe syndrome, have been shown to lead to a Dent-like phenotype called Dent disease 2. However, about 20% of patients with Dent's disease carry no CLCN5/OCRL mutations. The disease's genetic heterogeneity is accompanied by interfamilial and intrafamilial phenotypic heterogeneity. We report on a case of Dent's disease with a very unusual phenotype (dysmorphic features, ocular abnormalities, growth delay, rickets, mild mental retardation) in which a digenic inheritance was discovered. Two different, novel disease-causing mutations were detected, both inherited from the patient's healthy mother, that is a truncating mutation in the CLCN5 gene (A249fs*20) and a donor splice-site alteration in the OCRL gene (c.388+3A>G). The mRNA analysis of the patient's leukocytes revealed an aberrantly spliced OCRL mRNA caused by in-frame exon 6 skipping, leading to a shorter protein, but keeping intact the central inositol 5-phosphatase domain and the C-terminal side of the ASH-RhoGAP domain. Only wild-type mRNA was observed in the mother's leukocytes due to a completely skewed X inactivation. Our results are the first to reveal the effect of an epistatic second modifier in Dent's disease too, which can modulate its expressivity. We surmise that the severe Dent disease 2 phenotype of our patient might be due to an addictive interaction of the mutations at two different genes. PMID:23047739

  7. Genotype-phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene.

    Science.gov (United States)

    Sanmaneechai, Oranee; Feely, Shawna; Scherer, Steven S; Herrmann, David N; Burns, Joshua; Muntoni, Francesco; Li, Jun; Siskind, Carly E; Day, John W; Laura, Matilde; Sumner, Charlotte J; Lloyd, Thomas E; Ramchandren, Sindhu; Shy, Rosemary R; Grider, Tiffany; Bacon, Chelsea; Finkel, Richard S; Yum, Sabrina W; Moroni, Isabella; Piscosquito, Giuseppe; Pareyson, Davide; Reilly, Mary M; Shy, Michael E

    2015-11-01

    We aimed to characterize genotype-phenotype correlations and establish baseline clinical data for peripheral neuropathies caused by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot-Marie-Tooth disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium (INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were quantified by the Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and the Charcot-Marie-Tooth disease paediatric scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document mutation in MPZ gene indicating diagnosis of Charcot-Marie-Tooth disease type 1B. There were 103 patients from 71 families with 47 different MPZ mutations with a mean age of 40 years (range 3-84 years). Patients and mutations were separated into infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no family history of Charcot-Marie-Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking until after 15 months of age. Half of the infantile onset patients then required ambulation aids or wheelchairs for

  8. Cellular burdens and biological effects on tissue level caused by inhaled radon progenies

    CERN Document Server

    Madas, Balázs G; Farkas, Árpád; Szőke, István

    2014-01-01

    In the case of radon exposure, the spatial distribution of deposited radioactive particles is highly inhomogeneous in the central airways. The objective of this research is to investigate the consequences of this heterogeneity regarding cellular burdens in the bronchial epithelium and to study the possible biological effects on tissue level. Applying a computational fluid dynamics program, the deposition distribution of inhaled radon daughters has been determined in a bronchial airway model for 23 minutes of work in the New Mexico uranium mine corresponding to 0.0129 WLM exposure. A numerical epithelium model based on experimental data has been utilized in order to quantify cellular hits and doses. Finally, a carcinogenesis model considering cell death induced cell cycle shortening has been applied to assess the biological responses. Computations present, that cellular dose may reach 1.5 Gy, which is several orders of magnitude higher than tissue dose. The results are in agreement with the histological findin...

  9. Cellular compartments cause multistability and allow cells to process more information

    DEFF Research Database (Denmark)

    Harrington, Heather A; Feliu, Elisenda; Wiuf, Carsten; Stumpf, Michael P H

    2013-01-01

    outcomes for cellular-decision making. We combine different mathematical techniques to provide a heuristic procedure to determine if a system has the capacity for multiple steady states, and find conditions that ensure that multiple steady states cannot occur. Notably, we find that introducing species......Many biological, physical, and social interactions have a particular dependence on where they take place; e.g., in living cells, protein movement between the nucleus and cytoplasm affects cellular responses (i.e., proteins must be present in the nucleus to regulate their target genes). Here we use...... recent developments from dynamical systems and chemical reaction network theory to identify and characterize the key-role of the spatial organization of eukaryotic cells in cellular information processing. In particular, the existence of distinct compartments plays a pivotal role in whether a system is...

  10. Phenotype matching in wild parsnip and parsnip webworms: causes and consequences.

    Science.gov (United States)

    Zangerl, A R; Berenbaum, M R

    2003-04-01

    According to the geographic mosaic theory of coevolution, selection intensity in interactions varies across a landscape, forming a selection mosaic; interaction traits match at coevolutionary hotspots where selection is reciprocal and mismatch at coldspots where reciprocity is not a factor. Chemical traits play an important role in the interaction between wild parsnip (Pastinaca sativa) and the parsnip webworm (Depressaria pastinacella). Furanocoumarins, produced as plant defenses, are detoxified by the webworms by cytochrome P450 monooxygenases; significant additive genetic variation exists for both furanocoumarin production in the plant and detoxification in the insect, making these traits available for selection. To test the hypothesis that differences in selection intensity affect the distribution of coevolutionary hotspots and coldspots in this interaction, we examined 20 populations of webworms and wild parsnips in Illinois and Wisconsin that varied in size, extent of infestation, proximity to woods (and potential vertebrate predators), and proximity to a chemically distinct alternate host plant, Heracleum lanatum (cow parsnip). Twelve of 20 populations displayed phenotype matching between plant defense and insect detoxification profiles. Of the eight mismatched populations, a logistic regression model related matching probability to two predictors: the presence of the alternate host and average content of xanthotoxin (one of the five furanocoumarins produced by P. sativa). The odds of mismatching were significantly increased by the presence of the alternate host (odds ratio = 15.4) and by increased xanthotoxin content (odds ratio = 6.053). Parsnips growing near cow parsnip displayed chemical phenotypes that were chemically intermediate between cow parsnip and parsnips growing in isolation. Rapid phenotype matching in this system is likely due in part to differential mortality every season; larvae transferred to a plant 30 m or more from the plant on which

  11. Mosaicism for c.431_454dup in ARX causes a mild Partington syndrome phenotype

    DEFF Research Database (Denmark)

    Grønskov, Karen; Diness, Birgitte; Stahlhut, Michelle; Zilmer, Monica; Tümer, Zeynep; Bisgaard, Anne-Marie; Brøndum-Nielsen, Karen

    2014-01-01

    A common in frame duplication in ARX (c.431_454dup24) was found in a five year-old boy who presented with mild Partington syndrome. The duplication was detected by PCR amplification followed by fragment length analysis and was located in exon 2 spanning the two polyalanine tracts commonly seen to...... Partington syndrome. This patient is the first male reported to be mosaic for the duplication, and his clinical features are subtle. This study shows that in males with a phenotype of mild Partington syndrome and in heterozygous females fragment length analysis should be preferred over DNA sequencing....

  12. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.

    Science.gov (United States)

    Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-07-01

    The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice. PMID:22286805

  13. Complex I Disorders: Causes, Mechanisms, and Development of Treatment Strategies at the Cellular Level

    Science.gov (United States)

    Valsecchi, Federica; Koopman, Werner J. H.; Manjeri, Ganesh R.; Rodenburg, Richard J.; Smeitink, Jan A. M.; Willems, Peter H. G. M.

    2010-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) represents the final step in the conversion of nutrients into cellular energy. Genetic defects in the OXPHOS system have an incidence between 1:5,000 and 1:10,000 live births. Inherited isolated deficiency of the first complex (CI) of this system, a multisubunit assembly of 45 different proteins,…

  14. Dystrophin insufficiency causes a Becker muscular dystrophy-like phenotype in swine

    Science.gov (United States)

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker MD is caused by a dystrophin insufficiency or expression of a partially functional dystrophin protein. Deficiencies in existing mouse and dog models necessitate the development of a novel large animal model. Our pu...

  15. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype

    Directory of Open Access Journals (Sweden)

    Val A. Fajardo

    2015-08-01

    Full Text Available Centronuclear myopathy (CNM is a congenital myopathy that is histopathologically characterized by centrally located nuclei, central aggregation of oxidative activity, and type I fiber predominance and hypotrophy. Here, we obtained commercially available mice overexpressing phospholamban (PlnOE, a well-known inhibitor of sarco(endoplasmic reticulum Ca2+-ATPases (SERCAs, in their slow-twitch type I skeletal muscle fibers to determine the effects on SERCA function. As expected with a 6- to 7-fold overexpression of phospholamban, SERCA dysfunction was evident in PlnOE muscles, with marked reductions in rates of Ca2+ uptake, maximal ATPase activity and the apparent affinity of SERCA for Ca2+. However, our most significant discovery was that the soleus and gluteus minimus muscles from the PlnOE mice displayed overt signs of myopathy: they histopathologically resembled human CNM, with centrally located nuclei, central aggregation of oxidative activity, type I fiber predominance and hypotrophy, progressive fibrosis and muscle weakness. This phenotype is associated with significant upregulation of muscle sarcolipin and dynamin 2, increased Ca2+-activated proteolysis, oxidative stress and protein nitrosylation. Moreover, in our assessment of muscle biopsies from three human CNM patients, we found a significant 53% reduction in SERCA activity and increases in both total and monomeric PLN content compared with five healthy subjects, thereby justifying future studies with more CNM patients. Altogether, our results suggest that the commercially available PlnOE mouse phenotypically resembles human CNM and could be used as a model to test potential mechanisms and therapeutic strategies. To date, there is no cure for CNM and our results suggest that targeting SERCA function, which has already been shown to be an effective therapeutic target for murine muscular dystrophy and human cardiomyopathy, might represent a novel therapeutic strategy to combat CNM.

  16. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence

    OpenAIRE

    Chuprin, Anna; Gal, Hilah; BIRON-SHENTAL, Tal; Biran, Anat; Amiel, Aliza; Rozenblatt, Shmuel; Krizhanovsky, Valery

    2013-01-01

    Cellular senescence limits proliferation of potentially detrimental cells, preventing tumorigenesis and restricting tissue damage. However, the function of senescence in nonpathological conditions is unknown. Here, Krizhanovsky and colleagues discover a new pathway to activate senescence cell fusion. The authors find that fusion-induced senescence occurs during embryonic development in the placenta. A counterpart of this process is also observed after infection by the measles virus. The resul...

  17. Phenotypic Characterization of the Komeda Miniature Rat Ishikawa, an Animal Model of Dwarfism Caused by a Mutation in Prkg2

    OpenAIRE

    Tsuchida, Atsuko; Yokoi, Norihide; Namae, Misako; Fuse, Masanori; Masuyama, Taku; Sasaki, Masashi; Kawazu, Shoji; Komeda, Kajuro

    2008-01-01

    The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, ...

  18. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    OpenAIRE

    Clark, R.M.; Marker, P. C.; Roessler, E.; Dutra, A.; Schimenti, J C; Muenke, M; Kingsley, D. M.

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may un...

  19. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes

    International Nuclear Information System (INIS)

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNA 3′ untranslated region (3′-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle α-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3′-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC

  20. Molecular Phylogeny of the Psittacid Herpesviruses Causing Pacheco's Disease: Correlation of Genotype with Phenotypic Expression

    OpenAIRE

    Tomaszewski, Elizabeth K.; Kaleta, Erhard F.; Phalen, David N

    2003-01-01

    Fragments of 419 bp of the UL16 open reading frame from 73 psittacid herpesviruses (PsHVs) from the United States and Europe were sequenced. All viruses caused Pacheco's disease, and serotypes of the European isolates were known. A phylogenetic tree derived from these sequences demonstrated that the PsHVs that cause Pacheco's disease comprised four major genotypes, with each genotype including between two and four variants. With the exception of two viruses, the serotypes of the virus isolate...

  1. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    Directory of Open Access Journals (Sweden)

    Aarti eNagayach

    2014-10-01

    Full Text Available Behavioural impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45mg/ kg body weight; intraperitoneally. Motor function alterations were studied using Rotarod test (motor coordination and grip strength (muscle activity at 2nd, 4th, 6th, 8th, 10th and 12th week post diabetic confirmation. Scenario of glial (astroglia and microglia activation, cell death and glutamate transportation was gauged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labelling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioural alterations following STZ-induced diabetes.

  2. Phenotypes of hypertriglyceridemia caused by excess very-low-density lipoprotein

    NARCIS (Netherlands)

    Sniderman, A.D.; Tremblay, A.; Graaf, J. de; Couture, P.

    2012-01-01

    OBJECTIVE: To characterize the composition of very-low-density lipoprotein (VLDL) particles and the proportion of VLDL to total apolipoprotein B (apoB) particles in patients with hypertriglyceridemia caused by excess VLDL. METHODS: Subjects were selected from 2023 consecutive patients attending the

  3. Toll-like receptors: cellular signal transducers for exogenous molecular patterns causing immune responses.

    Science.gov (United States)

    Kirschning, C J; Bauer, S

    2001-09-01

    Innate immunity initiates protection of the host organism against invasion and subsequent multiplication of microbes by specific recognition. Germ line-encoded receptors have been identified for microbial products such as mannan, lipopeptide, peptidoglycan (PGN), lipoteichoic acid (LTA), lipopolysaccharide (LPS), and CpG-DNA. The Drosophila Toll protein has been shown to be involved in innate immune response of the adult fruitfly. Members of the family of Toll-like receptors (TLRs) in vertebrates have been implicated as pattern recognition receptors (PRRs). Ten TLRs are known and six of these have been demonstrated to mediate cellular activation by distinct microbial products. TLR4 has been implicated as activator of adaptive immunity, and analysis of systemic LPS responses in mice led to the identification of LPS-resistant strains instrumental in its identification as a transmembrane LPS signal transducer. Structural similarities between TLRs and receptor molecules involved in immune responses such as CD14 and the IL-1 receptors (IL-1Rs), as well as functional analysis qualified TLR2 as candidate receptor for LPS and other microbial products. Targeted disruption of the TLR9 gene in mice led to identification of TLR9 as CpG-DNA signal transducer. Involvement of TLR5 in cell activation by bacterial flagellin has been demonstrated. Further understanding of recognition and cellular signaling activated through the ancient host defense system represented by Toll will eventually lead to means for its therapeutic modulation. PMID:11680785

  4. Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice.

    Science.gov (United States)

    Viatte, Lydie; Nicolas, Gaël; Lou, Dan-Qing; Bennoun, Myriam; Lesbordes-Brion, Jeanne-Claire; Canonne-Hergaux, François; Schönig, Kai; Bujard, Hermann; Kahn, Axel; Andrews, Nancy C; Vaulont, Sophie

    2006-04-01

    We report the generation of a tetracycline-regulated (Tet ON) transgenic mouse model for acute and chronic expression of the iron regulatory peptide hepcidin in the liver. We demonstrate that short-term and long-term tetracycline-dependent activation of hepcidin in adult mice leads to hypoferremia and iron-limited erythropoiesis, respectively. This clearly establishes the key role of hepcidin in regulating the extracellular iron concentration. We previously demonstrated that, when expressed early in fetal development, constitutive transgenic hepcidin expression prevented iron accumulation in an Hfe-/- mouse model of hemochromatosis. We now explore the effect of chronic hepcidin expression in adult Hfe-/- mice that have already developed liver iron overload. We demonstrate that induction of chronic hepcidin expression in 2-month-old Hfe-/- mice alters their pattern of cellular iron accumulation, leading to increased iron in tissue macrophages and duodenal cells but less iron in hepatocytes. These hepcidin-induced changes in the pattern of cellular iron accumulation are associated with decreased expression of the iron exporter ferroportin in macrophages but no detectable alteration of ferroportin expression in the hepatocytes. We speculate that this change in iron homeostasis could offer a therapeutic advantage by protecting against damage to parenchymal cells. PMID:16339398

  5. Molecular phylogeny of the psittacid herpesviruses causing Pacheco's disease: correlation of genotype with phenotypic expression.

    Science.gov (United States)

    Tomaszewski, Elizabeth K; Kaleta, Erhard F; Phalen, David N

    2003-10-01

    Fragments of 419 bp of the UL16 open reading frame from 73 psittacid herpesviruses (PsHVs) from the United States and Europe were sequenced. All viruses caused Pacheco's disease, and serotypes of the European isolates were known. A phylogenetic tree derived from these sequences demonstrated that the PsHVs that cause Pacheco's disease comprised four major genotypes, with each genotype including between two and four variants. With the exception of two viruses, the serotypes of the virus isolates could be predicted by the genotypes. Genotypes 1 and 4 corresponded to serotype 1 isolates, genotype 2 corresponded to serotype 2 isolates, and genotype 3 corresponded to serotype 3 isolates. The single serotype 4 virus mapped to genotype 4. DNA from a virus with a unique serotype could not be amplified with primers that amplified DNA from all other PsHVs, and its classification remains unknown. Viruses representing all four genotypes were found in both the United States and Europe, and it was therefore predicted that serotypes 1, 2, and 3 were present in the United States. Serotype 4 was represented by a single European isolate that could not be genetically distinguished from serotype 1 viruses; therefore, the presence of serotype 4 in the United States could not be predicted. Viruses of genotype 4 were found to be the most commonly associated with Pacheco's disease in macaws and conures and were least likely to be isolated in chicken embryo fibroblasts in the United States. All four genotypes caused deaths in Amazon parrots, but genotype 4 was associated with Pacheco's disease only in Amazons in Europe. Genotypes 2, 3, and 4, but not 1, were found in African grey parrots. Although parrots from the Pacific distribution represent a relatively small percentage of the total number of birds with Pacheco's disease, all four genotypes were found to cause disease in these species. PMID:14512573

  6. p.L18P: a novel IDUA mutation that causes a distinct attenuated phenotype in mucopolysaccharidosis type I patients.

    Science.gov (United States)

    Pasqualim, G; Ribeiro, M G; da Fonseca, G G G; Szlago, M; Schenone, A; Lemes, A; Rojas, M V M; Matte, U; Giugliani, R

    2015-10-01

    Mucopolysaccharidosis type I is a rare autosomal recessive disorder caused by deficiency of α-l-iduronidase (IDUA) which leads to a wide spectrum of clinical severity. Here, we describe the case of four male patients who present the previously undescribed p.L18P mutation. Patient 1 (p.L18P/p.L18P) presents, despite multiple joint contractures, an attenuated phenotype. Patient 2 (p.L18P/p.W402X) was diagnosed at 4 years of age with bone dysplasia, coarse facies, limited mobility, claw hands and underwent bilateral carpal tunnel surgery at 6 years of age. Patients 3 and 4 (both p.L18P/p.L18P) are brothers. Patient 3 was diagnosed at 4 years of age, when presented claw hands, lower limb and shoulder pain, restricted articular movement and bilateral carpal tunnel syndrome. Patient 4 was diagnosed at 17 months of age when presented lower limb pain at night, respiratory allergy and repeated upper airways infections. Bioinformatics analysis indicates that p.L18P mutation reduces the signal peptide to 25 amino acids and alters its secondary structure. In conclusion, we report a new IDUA variant that alters the structure of the signal peptide, which likely impairs transport to lysosomes. Moreover, it leads to a distinct attenuated phenotype with mainly bone and cartilage symptoms, without visceromegalies, heart disease, or cognitive impairment. PMID:25256405

  7. Highly prevalent LIPH founder mutations causing autosomal recessive woolly hair/hypotrichosis in Japan and the genotype/phenotype correlations.

    Directory of Open Access Journals (Sweden)

    Kana Tanahashi

    Full Text Available Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH, and the 2 missense mutations c.736T>A (p.Cys246Ser and c.742C>A (p.His248Asn are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016, and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024. In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH.

  8. Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum: a detailed cellular co-expression study

    International Nuclear Information System (INIS)

    The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of [35S]-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized simultaneously on tissue sections processed to reveal cellular sites of preproenkephalin A messenger RNA or the dopamine and adenylate cyclase phosphoprotein-32, messenger RNA. The cellular co-expression of preproenkepahlin A and preprotachykinin messenger RNA was also examined within forebrain structures. Cellular sites of preproenkephalin A and dopamine and adenylate cyclase phosphoprotein-32 messenger RNAs were visualized using alkaline phosphatase-labelled oligonucleotides whilst sites of preprotachykinin and proneurotensin messenger RNA expression were detected using [35S]-labelled oligos. Cellular sites of enkephalin and dopamine and adenylate cyclase phosphoprotein-32 gene expression were identified microscopically by the concentration of purple alkaline phosphatase reaction product within the cell cytoplasm, whereas sites of substance P and proneurotensin gene expression were identified by the dense clustering of silver grains overlying cells.An intense hybridization signal was detected for all three neuropeptide messenger RNAs in the striatum, the nucleus accumbens and septum. Dopamine and adenylate cyclase phosphoprotein-32 messenger RNA was detected within the neostriatum but not within the septum. In all forebrain regions examined, with the exception of the islands of Cajella, the cellular expression of enkephalin messenger RNA and substance P messenger RNA was discordant; the two neuropeptide messenger RNAs were detected essentially in different cells, although in the striatum and nucleus accumbens occasional isolated cells were detected which contained both hybridization signals; dense clusters of silver grains overlay alkaline phosphatase-positive cells

  9. Cellular calcium deficiency plays a role in neuronal death caused by proteasome inhibitors

    OpenAIRE

    Wu, Shengzhou; Hyrc, Krzysztof L.; Moulder, Krista L.; Lin, Ying; Warmke, Timothy; Snider, B. Joy

    2009-01-01

    Cytosolic Ca2+ concentration ([Ca2+]i) is reduced in cultured neurons undergoing neuronal death caused by inhibitors of the ubiquitin proteasome system. Activation of calcium entry via voltage-gated Ca2+ channels restores cytosolic Ca2+ levels and reduces this neuronal death (Snider et al. 2002). We now show that this reduction in [Ca2+]i is transient and occurs early in the cell death process, before activation of caspase-3. Agents that increase Ca2+ influx such as activation of voltage-gate...

  10. Cellular Structural Changes in Candida albicans Caused by the Hydroalcoholic Extract from Sapindus saponaria L.

    Science.gov (United States)

    Shinobu-Mesquita, Cristiane S; Bonfim-Mendonça, Patricia S; Moreira, Amanda L; Ferreira, Izabel C P; Donatti, Lucelia; Fiorini, Adriana; Svidzinski, Terezinha I E

    2015-01-01

    Vulvovaginal candidiasis (VVC) is a disease caused by the abnormal growth of yeast-like fungi in the mucosa of the female genital tract. Candida albicans is the principal etiological agent involved in VVC, but reports have shown an increase in the prevalence of Candida non-C. albicans (CNCA) cases, which complicates VVC treatment because CNCA does not respond well to antifungal therapy. Our group has reported the in vitro antifungal activity of extracts from Sapindus saponaria L. The present study used scanning electron microscopy and transmission electron microscopy to further evaluate the antifungal activity of hydroalcoholic extract from S. saponaria (HE) against yeast obtained from VVC and structural changes induced by HE. We observed the antifungal activity of HE against 125 vaginal yeasts that belonged to four different species of the Candida genus and S. cerevisae. The results suggest that saponins that are present in HE act on the cell wall or membrane of yeast at the first moments after contact, causing damage to these structures and cell lysis. PMID:26007191

  11. Cellular analysis of the phenotypic correction of the genetically controlled low immune response to the polyproline determinant by macrophages

    International Nuclear Information System (INIS)

    SJL mice are high responders to the polyproline region of poly(Tyr,Glu)-polyPro-polyLys, (T,G)-Pro-L and of poly(Phe,Glu)-polyPro-polyLys, (Phe,G)-Pro-L, whereas DBA/l mice are the low responders to this moiety. The low responsiveness of DBA/l mice to polyproline could be enhanced by immunization with (T,G)-Pro-L 4 days after stimulation of peritoneal cells by thioglycolate. The same effect was observed when DBA/l mice were immunized with 107 syngeneic peritoneal exudate cells (PEC) preincubated in vitro with the immunogen. Similar treatments of SJL mice did not enhance the high response to polyproline, nor did it enhance low responses to other synthetic polypeptides tested. The enhancing effect of PEC on immunocompetent cells was established by transferring graded numbers of spleen cells together with 107 PEC into irradiated syngeneic DBA/l recipients. The effective cell type in the PEC was found to be the macrophage as the same results were observed with the adherent-cell population. Furthermore, the effect was not abolished after in vitro irradiation of PEC with 5000 R or by anti-theta treatment. In vivo irradiation of the PEC donors 2 days before the cells were harvested also did not influence the phenotypic correction of the low responsiveness. Transfer experiments in which graded inocula of either marrow cells or thymocytes from DBA/l donors were transferred into syngeneic recipients in the presence of an excess of the complementary cell type together with PEC indicated that the enhancing effect was reflected in the bone-marrow-cell population only

  12. Phenotypic and genetic consequences of protein damage.

    Directory of Open Access Journals (Sweden)

    Anita Krisko

    Full Text Available Although the genome contains all the information necessary for maintenance and perpetuation of life, it is the proteome that repairs, duplicates and expresses the genome and actually performs most cellular functions. Here we reveal strong phenotypes of physiological oxidative proteome damage at the functional and genomic levels. Genome-wide mutations rates and biosynthetic capacity were monitored in real time, in single Escherichia coli cells with identical levels of reactive oxygen species and oxidative DNA damage, but with different levels of irreversible oxidative proteome damage (carbonylation. Increased protein carbonylation correlates with a mutator phenotype, whereas reducing it below wild type level produces an anti-mutator phenotype identifying proteome damage as the leading cause of spontaneous mutations. Proteome oxidation elevates also UV-light induced mutagenesis and impairs cellular biosynthesis. In conclusion, protein damage reduces the efficacy and precision of vital cellular processes resulting in high mutation rates and functional degeneracy akin to cellular aging.

  13. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    Science.gov (United States)

    Clark, R M; Marker, P C; Roessler, E; Dutra, A; Schimenti, J C; Muenke, M; Kingsley, D M

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may underlie preaxial polydactyly in both mice and humans. We have used deletion chromosomes to demonstrate that the dominant mouse and human limb defects arise from gain-of-function mutations and not from haploinsufficiency. Furthermore, we created a loss-of-function mutation in the mouse Lmbr1 gene that causes digit number reduction (oligodactyly) on its own and in trans to a deletion chromosome. The loss of digits that we observed in mice with reduced Lmbr1 activity is in contrast to the gain of digits observed in Hx mice and human polydactyly patients. Our results suggest that the Lmbr1 gene is required for limb formation and that reciprocal changes in levels of Lmbr1 activity can lead to either increases or decreases in the number of digits in the vertebrate limb. PMID:11606546

  14. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence

    International Nuclear Information System (INIS)

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation

  15. Analysis of large phenotypic variability of EEC and SHFM4 syndromes caused by K193E mutation of the TP63 gene.

    Directory of Open Access Journals (Sweden)

    Jianhua Wei

    Full Text Available EEC (ectrodactyly, ectodermal dysplasia, clefting; OMIM 604292 is an autosomal dominant developmental disorder resulting mainly from pathogenic mutations of the DNA-binding domain (DBD of the TP63 gene. In this study, we showed that K193E mutation in nine affected individuals of a four-generation kindred with a large degree of phenotypic variability causes four different syndromes or TP63-related disorders: EEC, Ectrodactyly-ectodermal dysplasia (EE, isolated ectodermal dysplasia, and isolated Split Hand/Foot Malformation type 4 (SHFM4. Genotype-phenotype and DBD structural modeling analysis showed that the K193-located loop L2-A is associated with R280 through hydrogen bonding interactions, while R280 mutations also often cause large phenotypic variability of EEC and SHFM4. Thus, we speculate that K193 and several other DBD mutation-associated syndromes may share similar pathogenic mechanisms, particularly in the case of the same mutation with different phenotypes. Our study and others also suggest that the phenotypic variability of EEC is attributed, at least partially, to genetic and/or epigenetic modifiers.

  16. Heritable Change Caused by Transient Transcription Errors

    OpenAIRE

    Gordon, Alasdair J. E.; Satory, Dominik; Halliday, Jennifer A.; Herman, Christophe

    2013-01-01

    Transmission of cellular identity relies on the faithful transfer of information from the mother to the daughter cell. This process includes accurate replication of the DNA, but also the correct propagation of regulatory programs responsible for cellular identity. Errors in DNA replication (mutations) and protein conformation (prions) can trigger stable phenotypic changes and cause human disease, yet the ability of transient transcriptional errors to produce heritable phenotypic change (‘epim...

  17. SETD5 loss-of-function mutation as a likely cause of a familial syndromic intellectual disability with variable phenotypic expression.

    Science.gov (United States)

    Szczałuba, Krzysztof; Brzezinska, Monika; Kot, Justyna; Rydzanicz, Małgorzata; Walczak, Anna; Stawiński, Piotr; Werner, Bożena; Płoski, Rafał

    2016-09-01

    Loss-of-function de novo mutations in the SETD5 gene, encoding a putative methyltransferase, are an important cause of moderate/severe intellectual disability as evidenced by the results of sequencing large patient cohorts. We present the first familial case of a SETD5 mutation contributing to a phenotype of congenital heart defects and dysmorphic features, with variable expression, in two siblings and their father. Interestingly, the father demonstrated only mild intellectual impairment. Family based exome sequencing combined to careful parental phenotyping may reveal a more complex clinical picture in newly recognized syndromes. © 2016 Wiley Periodicals, Inc. PMID:27375234

  18. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency

    OpenAIRE

    Herreman, An; Hartmann, Dieter; Annaert, Wim; Saftig, Paul; Craessaerts, Katleen; Serneels, Lutgarde; Umans, Lieve; Schrijvers, Vincent; Checler, Frédéric; Vanderstichele, Hugo; Baekelandt, Veerle; Dressel, Ralf; Cupers, Philippe; Huylebroeck, Danny; Zwijsen, An

    1999-01-01

    Mutations in the homologous presenilin 1 (PS1) and presenilin 2 (PS2) genes cause the most common and aggressive form of familial Alzheimer’s disease. Although PS1 function and dysfunction have been extensively studied, little is known about the function of PS2 in vivo. To delineate the relationships of PS2 and PS1 activities and whether PS2 mutations involve gain or loss of function, we generated PS2 homozygous deficient (−/−) and PS1/PS2 double homozygous deficient mice. In contrast to PS1−...

  19. Analysis of Large Phenotypic Variability of EEC and SHFM4 Syndromes Caused by K193E Mutation of the TP63 Gene

    OpenAIRE

    Jianhua Wei; Yang Xue; Lian Wu; Jie Ma; Xiuli Yi; Junrui Zhang; Bin Lu; Chunying Li; Dashuang Shi; Songtao Shi; Xinghua Feng; Tao Cai

    2012-01-01

    EEC (ectrodactyly, ectodermal dysplasia, clefting; OMIM 604292) is an autosomal dominant developmental disorder resulting mainly from pathogenic mutations of the DNA-binding domain (DBD) of the TP63 gene. In this study, we showed that K193E mutation in nine affected individuals of a four-generation kindred with a large degree of phenotypic variability causes four different syndromes or TP63-related disorders: EEC, Ectrodactyly-ectodermal dysplasia (EE), isolated ectodermal dysplasia, and isol...

  20. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype

    OpenAIRE

    Murakami, Shunichi; Balmes, Gener; McKinney, Sandra; Zhang, Zhaoping; Givol, David; de Crombrugghe, Benoit

    2004-01-01

    We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed redu...

  1. Prostaglandin E2 deficiency causes a phenotype of aspirin sensitivity that depends on platelets and cysteinyl leukotrienes

    OpenAIRE

    Liu, Tao; Laidlaw, Tanya M.; Katz, Howard R.; Boyce, Joshua A.

    2013-01-01

    Aspirin-exacerbated respiratory disease (AERD) is a common, severe variant of asthma, which is associated with overproduction of cysteinyl leukotrienes (cysLTs) and respiratory reactions to drugs that block cyclooxygenase 1. We demonstrate that mice selectively lacking the capacity to up-regulate the generation of prostaglandin E2 with inflammation develop an AERD-like phenotype that depends critically on platelets and thromboxane receptors, which drive transcellular synthesis of cysLTs, whic...

  2. Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing

    OpenAIRE

    Schierenbeck, Lisa; Ries, David; Rogge, Kristin; Grewe, Sabrina; Weisshaar, Bernd; Kruse, Olaf

    2015-01-01

    Background: High light tolerance of microalgae is a desired phenotype for efficient cultivation in large scale production systems under fluctuating outdoor conditions. Outdoor cultivation requires the use of either wild-type or non-GMO derived mutant strains due to safety concerns. The identification and molecular characterization of such mutants derived from untagged forward genetics approaches was limited previously by the tedious and time-consuming methods involving techniques such as ...

  3. Diseases caused by Botryosphaeriaceae fungi in grapevine: phenotypic and molecular characterization of isolates and sensitivity to fugicides

    OpenAIRE

    Vaz, Ana Teresa de Almeida

    2008-01-01

    Different species in Botryosphaeriaceae fungi are commonly associated with black dead arm, bot canker, dieback, excoriose and esca diseases of grapevine. These grapevine trunk diseases are of major importance in Portugal and in many other grapevine growing regions of the world. The phenotypic and molecular characterisation of 43 Botryosphaeriaceae isolates, obtained from grapevine propagating materials, young and mature vine plants, allowed the identification of B. dothidea (two isolates), “B...

  4. Exosomal Proteome Profiling: A Potential Multi-Marker Cellular Phenotyping Tool to Characterize Hypoxia-Induced Radiation Resistance in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Stefani N. Thomas

    2013-08-01

    Full Text Available Radiation and drug resistance are significant challenges in the treatment of locally advanced, recurrent and metastatic breast cancer that contribute to mortality. Clinically, radiotherapy requires oxygen to generate cytotoxic free radicals that cause DNA damage and allow that damage to become fixed in the genome rather than repaired. However, approximately 40% of all breast cancers have hypoxic tumor microenvironments that render cancer cells significantly more resistant to irradiation. Hypoxic stimuli trigger changes in the cell death/survival pathway that lead to increased cellular radiation resistance. As a result, the development of noninvasive strategies to assess tumor hypoxia in breast cancer has recently received considerable attention. Exosomes are secreted nanovesicles that have roles in paracrine signaling during breast tumor progression, including tumor-stromal interactions, activation of proliferative pathways and immunosuppression. The recent development of protocols to isolate and purify exosomes, as well as advances in mass spectrometry-based proteomics have facilitated the comprehensive analysis of exosome content and function. Using these tools, studies have demonstrated that the proteome profiles of tumor-derived exosomes are indicative of the oxygenation status of patient tumors. They have also demonstrated that exosome signaling pathways are potentially targetable drivers of hypoxia-dependent intercellular signaling during tumorigenesis. This article provides an overview of how proteomic tools can be effectively used to characterize exosomes and elucidate fundamental signaling pathways and survival mechanisms underlying hypoxia-mediated radiation resistance in breast cancer.

  5. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus.

    Science.gov (United States)

    Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-06-01

    Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes. PMID:27103432

  6. A non-additive interaction in a single locus causes a very short root phenotype in wheat.

    Science.gov (United States)

    Li, Wanlong; Zhu, Huilan; Challa, Ghana S; Zhang, Zhengzhi

    2013-05-01

    Non-additive allelic interactions underlie over dominant and under dominant inheritance, which explain positive and negative heterosis. These heteroses are often observed in the aboveground traits, but rarely reported in root. We identified a very short root (VSR) phenotype in the F1 hybrid between the common wheat (Triticum aestivum L.) landrace Chinese Spring and synthetic wheat accession TA4152-71. When germinated in tap water, primary roots of the parental lines reached ~15 cm 10 days after germination, but those of the F1 hybrid were ~3 cm long. Selfing populations segregated at a 1 (long-root) to 1 (short-root) ratio, indicating that VSR is controlled by a non-additive interaction between two alleles in a single gene locus, designated as Vsr1. Genome mapping localized the Vsr1 locus in a 3.8-cM interval delimited by markers XWL954 and XWL2506 on chromosome arm 5DL. When planted in vermiculite with supplemental fertilizer, the F1 hybrid had normal root growth, virtually identical to the parental lines, but the advanced backcrossing populations segregated for VSR, indicating that the F1 VSR expression was suppressed by interactions between other genes in the parental background and the vermiculite conditions. Preliminary physiological analyses showed that the VSR suppression is independent of light status but related to potassium homeostasis. Phenotyping additional hybrids between common wheat and synthetics revealed a high VSR frequency and their segregation data suggested more Vsr loci involved. Because the VSR plants can be regularly maintained and readily phenotyped at the early developmental stage, it provides a model for studies of non-additive interactions in wheat. PMID:23381806

  7. Alzheimer disease-like clinical phenotype in a family with FTDP-17 caused by a MAPT R406W mutation

    DEFF Research Database (Denmark)

    Lindquist, S.G.; Holm, I.E.; Schwartz, M.;

    2008-01-01

    We report clinical, molecular, neuroimaging and neuropathological features of a Danish family with autosomal dominant inherited dementia, a clinical phenotype resembling Alzheimer's disease and a pathogenic mutation (R406W) in the microtubule associated protein tau (MAPT) gene. Pre-symptomatic and...... hippocampi. Microscopy revealed abundant numbers of tau-positive neurofibrillary tangles in all cortical areas and in some brainstem nuclei corresponding to a diagnosis of frontotemporal lobe degeneration on the basis of a MAPT mutation. The clinical and genetic heterogeneity of autosomal dominant inherited...

  8. Wine intake, ABO phenotype, and risk of ischemic heart disease and all-cause mortality: the Copenhagen Male Study-a 16-year follow-up

    DEFF Research Database (Denmark)

    Suadicani, P.; Hein, H.O.; Gyntelberg, F.

    2008-01-01

    were ABO phenotypes, alcohol intake (wine, beer, and spirits), tobacco smoking history, leisure-time, physical activity, social class, and age. During 16 years, 1985-1986 to end of 2001, 197 subjects (6.5%) died due to IHD, and 1,204 (39.8%) from all causes. Among non-O phenotypes (A, B, and AB......) significantly fewer men who died due to IHD were wine consumers, 43.9% versus 55.7%, P ... analysis, the hazard ratio (HR) (95% confidence limit) for men drinking up to 8 beverages/wk was 0.5 (0.3-1.02), and among men consuming > 8 beverages/wk (the highest quintile) the HR was 0.3 (0.2-0.8). P wine intake with IHD mortality was slightly...

  9. Root Cause Analysis and New Practical Schemes for better Accessing and Establishing of Dedicated Control Channel in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Rasoul Tanhatalab

    2013-12-01

    Full Text Available The Dedicated Control Channel (DCCH plays an important role in all generations of cellular networks, such as, GSM , HSPA and LTE ; through this logical channel, some information between user equipment and network can be carried. It should be considered that accessing to the DCCH is the entry gate of entrance to the every cellular network; and without a successful DCCH access call-setup process will not be possible. Hence, DCCH channel accessing is one of the most critical issues that RF planner and optimization engineers must consider. More than this, these schemes can contribute to achieve some algorithms in SON for ameliorating the DCCH accessing and serving better services at 4G. In this paper, a real fundamentally established cellular network (GSM is surveyed and its radio frequency network performance is evaluated and presented on the basis of KPI parameters in general. Furthermore, the DCCH Access Success in particular and different issues, findings, trials and improvements have been summarized. Also, recommendations have been listed to correlate the practical aspects of RF optimization, which affect the improvement of DCCH Access Success rate in cellular networks.

  10. Junctophilin 3 (JPH3) expansion mutations causing Huntington disease like 2 (HDL2) are common in South African patients with African ancestry and a Huntington disease phenotype.

    Science.gov (United States)

    Krause, Amanda; Mitchell, Claire; Essop, Fahmida; Tager, Susan; Temlett, James; Stevanin, Giovanni; Ross, Christopher; Rudnicki, Dobrila; Margolis, Russell

    2015-10-01

    Huntington disease (HD) is a progressive autosomal dominant neurodegenerative disorder, characterized by abnormal movements, cognitive decline, and psychiatric symptoms, caused by a CAG repeat expansion in the huntingtin (HTT) gene on chromosome 4p. A CAG/CTG repeat expansion in the junctophilin-3 (JPH3) gene on chromosome 16q24.2 causes a Huntington disease-like phenotype (HDL2). All patients to date with HDL2 have some African ancestry. The present study aimed to characterize the genetic basis of the Huntington disease phenotype in South Africans and to investigate the possible origin of the JPH3 mutation. In a sample of unrelated South African individuals referred for diagnostic HD testing, 62% (106/171) of white patients compared to only 36% (47/130) of black patients had an expansion in HTT. However, 15% (20/130) of black South African patients and no white patients (0/171) had an expansion in JPH3, confirming the diagnosis of Huntington disease like 2 (HDL2). Individuals with HDL2 share many clinical features with individuals with HD and are clinically indistinguishable in many cases, although the average age of onset and diagnosis in HDL2 is 5 years later than HD and individual clinical features may be more prominent. HDL2 mutations contribute significantly to the HD phenotype in South Africans with African ancestry. JPH3 haplotype studies in 31 families, mainly from South Africa and North America, provide evidence for a founder mutation and support a common African origin for all HDL2 patients. Molecular testing in individuals with an HD phenotype and African ancestry should include testing routinely for JPH3 mutations. PMID:26079385

  11. Cellular effects of LRRK2 mutations

    OpenAIRE

    Cookson, Mark R.

    2012-01-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are a relatively common cause of inherited Parkinson's disease (PD) but the mechanism(s) by which mutations lead to disease are poorly understood. Here, I will discuss what is known about LRRK2 in cellular models, focusing on specifically on assays that have been used to tease apart the effects of LRRK2 mutations on cellular phenotypes. LRRK2 expression has been suggested to cause loss of neuronal viability, although because it also has a stro...

  12. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  13. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes

    Science.gov (United States)

    Boitet, Evan R.; Turner, Ashley N.; Johnson, Larry W.; Kennedy, Daniel; Downs, Ethan R.; Hymel, Katherine M.; Gross, Alecia K.; Kesterson, Robert A.

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene. PMID:27224051

  14. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Science.gov (United States)

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene. PMID:27224051

  15. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice.

    Science.gov (United States)

    Williams, Aislinn J; Yee, Patricia; Smith, Mitchell C; Murphy, Geoffrey G; Umemori, Hisashi

    2016-07-01

    Specific growth factors induce formation and differentiation of excitatory and inhibitory synapses, and are essential for brain development and function. Fibroblast growth factor 22 (FGF22) is important for specifying excitatory synapses during development, including in the hippocampus. Mice with a genetic deletion of FGF22 (FGF22KO) during development subsequently have fewer hippocampal excitatory synapses in adulthood. As a result, FGF22KO mice are resistant to epileptic seizure induction. In addition to playing a key role in learning, the hippocampus is known to mediate mood and anxiety. Here, we explored whether loss of FGF22 alters affective, anxiety or social cognitive behaviors in mice. We found that relative to control mice, FGF22KO mice display longer duration of floating and decreased latency to float in the forced swim test, increased immobility in the tail suspension test, and decreased preference for sucrose in the sucrose preference test, which are all suggestive of a depressive-like phenotype. No differences were observed between control and FGF22KO mice in other behavioral assays, including motor, anxiety, or social cognitive tests. These results suggest a novel role for FGF22 specifically in affective behaviors. PMID:27036645

  16. An ultra-dense library resource for rapid deconvolution of mutations that cause phenotypes in Escherichia coli

    Science.gov (United States)

    Nehring, Ralf B.; Gu, Franklin; Lin, Hsin-Yu; Gibson, Janet L.; Blythe, Martin J.; Wilson, Ray; Bravo Núñez, María Angélica; Hastings, P. J.; Louis, Edward J.; Frisch, Ryan L.; Hu, James C.; Rosenberg, Susan M.

    2016-01-01

    With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter—ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing (‘forward genomics’) demonstrates a strategy that could similarly enable rapid screens in many other microbes. PMID:26578563

  17. Sublethal Concentrations Of Antibiotics Cause Shift To Anaerobic Metabolism In Listeria Monocytogenes And Induce Phenotypes Linked To Antibiotic Tolerance

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Ng, Yin; Gram, Lone

    Introduction: The foodborne pathogen Listeria monocytogenes can cause the severe infection listeriosis, which have up to 20-30% mortality, but if discovered in time, it can be treated with antibiotics. Most antibiotics are bacteriostatic against L. monocytogenes. This could be due to the coexiste...

  18. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Directory of Open Access Journals (Sweden)

    Demongeot Jacques

    2004-06-01

    Full Text Available Abstract Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.

  19. MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome.

    Science.gov (United States)

    Naess, Karin; Freyer, Christoph; Bruhn, Helene; Wibom, Rolf; Malm, Gunilla; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran

    2009-05-01

    Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations. PMID:19103152

  20. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock microbial identification system

    OpenAIRE

    Tighe, S.W.; de Lajudie, Philippe; Dipietro, K.; Lindström, K.; Nick, G; Jarvis, B. D. W.

    2000-01-01

    Previous studies have demonstrated that cellular fatty acid analysis is a useful tool for identifying unknown strains of rhizobia and establishing taxonomic relationships between the species. In this study, the fatty acid profiles of over 600 strains belonging to the genera #Agrobacterium$, #Bradyrhizobium$, #Mesorhizobium$, #Rhizobium$ and #Sinorhizobium$ were evaluated using the gas-chromatography-based Sherlock Microbial Identification System (MIS). Data collected with the MIS showed that ...

  1. Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects

    DEFF Research Database (Denmark)

    Koene, S; Rodenburg, R J; van der Knaap, M S; Willemsen, M A A P; Sperl, W; Laugel, V; Ostergaard, E; Tarnopolsky, M; Martin, M A; Nesbitt, V; Fletcher, J; Edvardson, S; Procaccio, V; Slama, A; van den Heuvel, L P W J; Smeitink, J A M

    2012-01-01

    Mitochondrial complex I is the largest multi-protein enzyme complex of the oxidative phosphorylation system. Seven subunits of this complex are encoded by the mitochondrial and the remainder by the nuclear genome. We review the natural disease course and signs and symptoms of 130 patients (four new...... cases and 126 from literature) with mutations in nuclear genes encoding structural complex I proteins or those involved in its assembly. Complex I deficiency caused by a nuclear gene defect is usually a non-dysmorphic syndrome, characterized by severe multi-system organ involvement and a poor prognosis....... Age at presentation may vary, but is generally within the first year of life. The most prevalent symptoms include hypotonia, nystagmus, respiratory abnormalities, pyramidal signs, dystonia, psychomotor retardation or regression, failure to thrive, and feeding problems. Characteristic symptoms include...

  2. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  3. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Directory of Open Access Journals (Sweden)

    Kim Nuytens

    Full Text Available Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  4. Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis.

    Science.gov (United States)

    Lao, Nga T; Long, Debbie; Kiang, Sophie; Coupland, George; Shoue, Douglas A; Carpita, Nicholas C; Kavanagh, Tony A

    2003-11-01

    The genome of Arabidopsis thaliana contains about 400 genes coding for glycosyltransferases, many of which are predicted to be involved in the synthesis and remodelling of cell wall components. We describe the isolation of a transposon-tagged mutant, parvus, which under low humidity conditions exhibits a severely dwarfed growth phenotype and failure of anther dehiscence resulting in semi-sterility. All aspects of the mutant phenotype were partially rescued by growth under high-humidity conditions, but not by the application of growth hormones or jasmonic acid. The mutation is caused by insertion of a maize Dissociation (Ds) element in a gene coding for a putative Golgi-localized glycosyltransferase belonging to family 8. Members of this family, originally identified on the basis of similarity to bacterial lipooligosaccharide glycosyltransferases, include enzymes known to be involved in the synthesis of bacterial and plant cell walls. Cell-wall carbohydrate analyses of the parvus mutant indicated reduced levels of rhamnogalacturonan I branching and alterations in the abundance of some xyloglucan linkages that may, however, be indirect consequences of the mutation. PMID:15010604

  5. Effects of arsenite on UROtsa cells: low-level arsenite causes accumulation of ubiquitinated proteins that is enhanced by reduction in cellular glutathione levels

    International Nuclear Information System (INIS)

    Chronic arsenic exposure increases risk for the development of diabetes, vascular disease, and cancers of the skin, lung, kidney, and bladder. This study investigates the effects of arsenite [As(III)] on human urothelial cells (UROtsa). As(III) toxicity was determined by exposing confluent UROtsa cells to As(III) (0.5-200 μM). Depleting cellular glutathione levels with buthionine sulfoximine (BSO) potentiated the toxicity of As(III). Cell viability was assessed with the (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. UROtsa cell ability to biotransform As(III) was determined by dosing cells with environmentally relevant concentrations of As(III) followed by HPLC/ICP-MS analysis of cell media and lysate. Both pentavalent and trivalent monomethylated products were detected. Although cytotoxicity was observed at high doses of As(III) (approximately 100 μM) in UROtsa cells, perturbations of a variety of molecular processes occurred at much lower doses. Exposure to low-level As(III) (0.5-25 μM) causes an accumulation of ubiquitin (Ub)-conjugated proteins. This effect is enhanced when cellular glutathione levels have been reduced with BSO treatment. Because As(III) has many effects on UROtsa cells, a greater understanding of how As(III) is affecting cellular proteins in a target tissue will lead to a better understanding of the mechanism of toxicity and pathogenesis for low-level As(III)

  6. Molecularly proven mosaicism in phenotypically normal parent of a girl with Freeman-Sheldon Syndrome caused by a pathogenic MYH3 mutation.

    Science.gov (United States)

    Hague, Jennifer; Delon, Isabelle; Brugger, Kim; Martin, Howard; Abbs, Stephen; Park, Soo-Mi

    2016-06-01

    We report a case of a female child who has classical Freeman-Sheldon syndrome (FSS) associated with a previously reported recurrent pathogenic heterozygous missense mutation, c.2015G > A, p. (Arg672His), in MYH3 where the phenotypically normal mother is a molecularly confirmed mosaic. To the best of our knowledge, this is the first report in the medical literature of molecularly confirmed parental mosaicism for a MYH3 mutation causing FSS. Since proven somatic mosaicism after having an affected child is consistent with gonadal mosaicism, a significantly increased recurrence risk is advised. Parental testing is thus essential for accurate risk assessment for future pregnancies and the use of new technologies with next generation sequencing (NGS) may improve the detection rate of mosaicism. © 2016 Wiley Periodicals, Inc. PMID:26996280

  7. Reduced-representation Phosphosignatures Measured by Quantitative Targeted MS Capture Cellular States and Enable Large-scale Comparison of Drug-induced Phenotypes.

    Science.gov (United States)

    Abelin, Jennifer G; Patel, Jinal; Lu, Xiaodong; Feeney, Caitlin M; Fagbami, Lola; Creech, Amanda L; Hu, Roger; Lam, Daniel; Davison, Desiree; Pino, Lindsay; Qiao, Jana W; Kuhn, Eric; Officer, Adam; Li, Jianxue; Abbatiello, Susan; Subramanian, Aravind; Sidman, Richard; Snyder, Evan; Carr, Steven A; Jaffe, Jacob D

    2016-05-01

    Profiling post-translational modifications represents an alternative dimension to gene expression data in characterizing cellular processes. Many cellular responses to drugs are mediated by changes in cellular phosphosignaling. We sought to develop a common platform on which phosphosignaling responses could be profiled across thousands of samples, and created a targeted MS assay that profiles a reduced-representation set of phosphopeptides that we show to be strong indicators of responses to chemical perturbagens.To develop the assay, we investigated the coordinate regulation of phosphosites in samples derived from three cell lines treated with 26 different bioactive small molecules. Phosphopeptide analytes were selected from these discovery studies by clustering and picking 1 to 2 proxy members from each cluster. A quantitative, targeted parallel reaction monitoring assay was developed to directly measure 96 reduced-representation probes. Sample processing for proteolytic digestion, protein quantification, peptide desalting, and phosphopeptide enrichment have been fully automated, making possible the simultaneous processing of 96 samples in only 3 days, with a plate phosphopeptide enrichment variance of 12%. This highly reproducible process allowed ∼95% of the reduced-representation phosphopeptide probes to be detected in ∼200 samples.The performance of the assay was evaluated by measuring the probes in new samples generated under treatment conditions from discovery experiments, recapitulating the observations of deeper experiments using a fraction of the analytical effort. We measured these probes in new experiments varying the treatments, cell types, and timepoints to demonstrate generalizability. We demonstrated that the assay is sensitive to disruptions in common signaling pathways (e.g. MAPK, PI3K/mTOR, and CDK). The high-throughput, reduced-representation phosphoproteomics assay provides a platform for the comparison of perturbations across a range of

  8. Cellular correlates of enhanced anxiety caused by acute treatment with the selective serotonin reuptake inhibitor fluoxetine in rats

    Directory of Open Access Journals (Sweden)

    Shilpa Ravinder

    2011-12-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are used extensively in the treatment of depression and anxiety disorders. The therapeutic benefits of SSRIs typically require several weeks of continuous treatment. Intriguingly, according to clinical reports, symptoms of anxiety may actually increase during the early stages of treatment although more prolonged treatment alleviates affective symptoms. Consistent with earlier studies that have used animal models to capture this paradoxical effect of SSRIs, we find that rats exhibit enhanced anxiety-like behavior on the elevated plus-maze one hour after a single injection of the SSRI fluoxetine. Next we investigated the potential neural substrates underlying the acute anxiogenic effects by analyzing the morphological and physiological impact of acute fluoxetine treatment on principal neurons of the basolateral amygdala (BLA, a brain area that plays a pivotal role in fear and anxiety. Although earlier studies have shown that behavioral or genetic perturbations that are anxiogenic for rodents also increase dendritic spine-density in the BLA, we find that a single injection of fluoxetine does not cause spinogenesis on proximal apical dendritic segments on BLA principal neurons an hour later. However, at the same time point when a single dose of fluoxetine caused enhanced anxiety, it also enhanced action potential firing in BLA neurons in ex vivo slices. Consistent with this finding, in vitro bath application of fluoxetine caused higher spiking frequency and this increase in excitability was correlated with an increase in the input resistance of these neurons. Our results suggest that enhanced excitability of amygdala neurons may contribute to the increase in anxiety-like behavior observed following acute fluoxetine treatment.

  9. Transient in utero disruption of Cystic Fibrosis Transmembrane Conductance Regulator causes phenotypic changes in Alveolar Type II cells in adult rats

    Directory of Open Access Journals (Sweden)

    Larson Janet E

    2009-03-01

    Full Text Available Abstract Background Mechanicosensory mechanisms regulate cell differentiation during lung organogenesis. We have previously demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR was integral to stretch-induced growth and development and that transient expression of antisense-CFTR (ASCFTR had negative effects on lung structure and function. In this study, we examined adult alveolar type II (ATII cell phenotype after transient knock down of CFTR by adenovirus-directed in utero expression of ASCFTR in the fetal lung. Results In comparison to (reporter gene-treated Controls, ASCFTR-treated adult rat lungs showed elevated phosphatidylcholine (PC levels in the large but not in the small aggregates of alveolar surfactant. The lung mRNA levels for SP-A and SP-B were lower in the ASCFTR rats. The basal PC secretion in ATII cells was similar in the two groups. However, compared to Control ATII cells, the cells in ASCFTR group showed higher PC secretion with ATP or phorbol myristate acetate. The cell PC pool was also larger in the ASCFTR group. Thus, the increased surfactant secretion in ATII cells could cause higher PC levels in large aggregates of surfactant. In freshly isolated ATII cells, the expression of surfactant proteins was unchanged, suggesting that the lungs of ASCFTR rats contained fewer ATII cells. Gene array analysis of RNA of freshly isolated ATII cells from these lungs showed altered expression of several genes including elevated expression of two calcium-related genes, Ca2+-ATPase and calcium-calmodulin kinase kinase1 (CaMkk1, which was confirmed by real-time PCR. Western blot analysis showed increased expression of calmodulin kinase I, which is activated following phosphorylation by CaMkk1. Although increased expression of calcium regulating genes would argue in favor of Ca2+-dependent mechanisms increasing surfactant secretion, we cannot exclude contribution of alternate mechanisms because of other phenotypic

  10. Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L. Merr].

    Directory of Open Access Journals (Sweden)

    Haicui Suo

    Full Text Available Gibberellic acids (GAs are plant hormones that play fundamental roles in plant growth and developmental processes. Previous studies have demonstrated that three key enzymes of GA20ox, GA3ox, and GA2ox are involved in GA biosynthesis. In this study, the Arabidopsis DREB1A gene driven by the CaMV 35S promoter was introduced into soybean plants by Agrobacterium- mediated transformation. The results showed that the transgenic soybean plants exhibited a typical phenotype of GA-deficient mutants, such as severe dwarfism, small and dark-green leaves, and late flowering compared to those of the non-transgenic plants. The dwarfism phenotype was rescued by the application of exogenous GA(3 once a week for three weeks with the concentrations of 144 µM or three times in one week with the concentrations of 60 µM. Quantitative RT-PCR analysis revealed that the transcription levels of the GA synthase genes were higher in the transgenic soybean plants than those in controls, whereas GA-deactivated genes except GmGA2ox4 showed lower levels of expression. The transcript level of GmGA2ox4 encoding the only deactivation enzyme using C(20-GAs as the substrates in soybean was dramatically enhanced in transgenic plants compared to that of wide type. Furthermore, the contents of endogenous bioactive GAs were significantly decreased in transgenic plants than those of wide type. The results suggested that AtDREB1A could cause dwarfism mediated by GA biosynthesis pathway in soybean.

  11. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models.

    Science.gov (United States)

    Kim, Seung-Hee; Hwang, Kyung-A; Choi, Kyung-Chul

    2016-02-01

    As a phytoestrogen, kaempferol (Kaem) is one of bioflavonoids, which are found in a variety of vegetables including broccoli, tea and tomato. In this study, the antiproliferative effects of Kaem in triclosn (TCS)-induced cell growth were examined in MCF-7 breast cancer cells. TCS promoted the cell viability of MCF-7 cells via estrogen receptor α (ERα) as did 17β-estradiol (E2), a positive control. On the other hand, Kaem significantly suppressed E2 or TCS-induced cell growth. To elucidate the molecular mechanisms of TCS and Kaem, alterations in the expressions of cell cycle, apoptosis and metastasis-related genes were identified using western blot assay. The treatment of the cells with TCS up-regulated the protein expressions of cyclin D1, cyclin E and cathepsin D, while down-regulated p21 and bax expressions. Kaem reversed TCS-induced gene expressions in an opposite manner. The phosphorylation of IRS-1, AKT, MEK1/2 and ERK was increased by TCS, indicating that TCS induced MCF-7 cell proliferation via nongenomic ER signaling pathway associated with IGF-1R. Kaem presented an antagonistic activity on this signaling by down-regulating the protein expression of pIRS-1, pAkt and pMEK1/2 promoted by E2 or TCS. In an in vivo xenografted mouse model, tumor growth was induced by treatment with E2 or TCS, which was identified in the measurement of tumor volume, hematoxylin and eosin staining, bromodeoxyuridine and immunohistochemistry assay. On the contrary, E2 or TCS-induced breast tumor growth was inhibited by co-treatment with Kaem, which is consistent with in vitro results. Taken together, these results revealed that Kaem has an anticancer effect against procancer activity of E2 or TCS, a xenoestrogen, in breast cancer and may be suggested as a prominent agent to neutralize breast cancer risk caused by TCS. PMID:26878784

  12. Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna

    International Nuclear Information System (INIS)

    The increased production of nanotechnology materials is a potential source of nano-sized particles (NSPs) in aquatic ecosystems. Meanwhile, polycyclic aromatic hydrocarbons (PAHs), in the presence of ecologically relevant levels of ultraviolet radiation (UV), can be acutely toxic to aquatic species including fish and invertebrates. Considering that suspended carbon-based NSPs (e.g., C60 fullerenes) may act in similar ways as dissolved organic matter (DOM) by altering the bioavailability of PAHs, the objective of this research was to determine the effect of suspended C60 on the photo-induced toxicity of fluoranthene. Transmission electron microscopy indicated that the presence of C60 protected cellular components (e.g., mitochondria, microvilli, and basal infoldings) in organisms exposed to UV and fluoranthene phototoxicity in short-term exposures. However, we found that long-term exposure (21 d) of low-level C60 caused significant cellular damage in the Daphnia magna alimentary canal. This paper highlights the importance of examining the interactions between existing stressors and nanoparticles in the aquatic environment.

  13. Copper and Zinc Interactions with Cellular Prion Proteins Change Solubility of Full-Length Glycosylated Isoforms and Induce the Occurrence of Heterogeneous Phenotypes

    Science.gov (United States)

    Brim, Svetlana; Groschup, Martin H.; Kuczius, Thorsten

    2016-01-01

    Prion diseases are characterized biochemically by protein aggregation of infectious prion isoforms (PrPSc), which result from the conformational conversion of physiological prion proteins (PrPC). PrPC are variable post-translationally modified glycoproteins, which exist as full length and as aminoterminally truncated glycosylated proteins and which exhibit differential detergent solubility. This implicates the presence of heterogeneous phenotypes, which overlap as protein complexes at the same molecular masses. Although the biological function of PrPC is still enigmatic, evidence reveals that PrPC exhibits metal-binding properties, which result in structural changes and decreased solubility. In this study, we analyzed the yield of PrPC metal binding affiliated with low solubility and changes in protein banding patterns. By implementing a high-speed centrifugation step, the interaction of zinc ions with PrPC was shown to generate large quantities of proteins with low solubility, consisting mainly of full-length glycosylated PrPC; whereas unglycosylated PrPC remained in the supernatants as well as truncated glycosylated proteins which lack of octarepeat sequence necessary for metal binding. This effect was considerably lower when PrPC interacted with copper ions; the presence of other metals tested exhibited no effect under these conditions. The binding of zinc and copper to PrPC demonstrated differentially soluble protein yields within distinct PrPC subtypes. PrPC–Zn2+-interaction may provide a means to differentiate glycosylated and unglycosylated subtypes and offers detailed analysis of metal-bound and metal-free protein conversion assays. PMID:27093554

  14. PHENOTYPIC AND MOLECULAR DIFFERENTIATION OF PECTOBACTERIUM AND DICKEYA SPP. CAUSING POTATO TUBER AND STEM ROT IN NORTH-WESTERN PROVINCES OF IRAN.

    Science.gov (United States)

    Pour, L; Mohammadi, M; Khodakaramian, G; Moghadam, B Soheili

    2015-01-01

    Iran is one of the most important potato-producing countries in Asia and Oceania. Approximately 20 percent of potato cultivation in Iran occurs in the North-western provinces. Pectobacterium and Dickeya species cause important diseases in potato crop. They may incite blackleg and are responsible for tuber soft rot in storage, thereby reducing yield and quality. In order to identify and differentiate the species of soft rot bacteria, potato stems and tubers showing soft rot symptoms were collected from potato fields in North-western Iran. A total of fifty strains belonging to Pectobacterium and Dickeya species were isolated and identified from the infected tissues. Phenotypic characterization revealed a considerable variation among strains thus dividing them into five separate groups. Group 1 strains belonged to Dickeya chrysanthemi that were different from the type strain in malonate utilization. Group 2 strains were similar to Pectobacterium betavascularum but were different from the type strain in utilization of raffinose, citrate and D-sorbitol. Group 3 strains showed more resemblance to P. wasabiae but were different from the type strain with respect to acetoin production. Group 4 strains belonged to P. carotovorum subsp. carotovorum (Pcc) and group 5 strains were identified as intersubspecific of Pcc and P. carotovorum subsp. odoriferum. Polymerase chain reaction using pelY primers identified strains belonging to Pectobacterium species but not P. betavascularum. PMID:27141762

  15. Substitution of arginine-839 by cysteine or histidine in the androgen receptor causes different receptor phenotypes in cultured cells and coordinate degrees of clinical androgen resistance.

    OpenAIRE

    Beitel, L K; Kazemi-Esfarjani, P; Kaufman, M; Lumbroso, R; DiGeorge, A M; Killinger, D W; Trifiro, M A; Pinsky, L.

    1994-01-01

    We aim to correlate point mutations in the androgen receptor gene with receptor phenotypes and with clinical phenotypes of androgen resistance. In two families, the external genitalia were predominantly female at birth, and sex-of-rearing has been female. Their androgen receptor mutation changed arginine-839 to histidine. In a third family, the external genitalia were predominantly male at birth, and sex-of-rearing has been male: their codon 839 has mutated to cysteine. In genital skin fibrob...

  16. A novel splice variant in the N-propeptide of COL5A1 causes an EDS phenotype with severe kyphoscoliosis and eye involvement.

    Directory of Open Access Journals (Sweden)

    Sofie Symoens

    Full Text Available BACKGROUND: The Ehlers-Danlos Syndrome (EDS is a heritable connective tissue disorder characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. The classic subtype of EDS is caused by mutations in one of the type V collagen genes (COL5A1 and COL5A2. Most mutations affect the type V collagen helical domain and lead to a diminished or structurally abnormal type V collagen protein. Remarkably, only two mutations were reported to affect the extended, highly conserved N-propeptide domain, which plays an important role in the regulation of the heterotypic collagen fibril diameter. We identified a novel COL5A1 N-propeptide mutation, resulting in an unusual but severe classic EDS phenotype and a remarkable splicing outcome. METHODOLOGY/PRINCIPAL FINDINGS: We identified a novel COL5A1 N-propeptide acceptor-splice site mutation (IVS6-2A>G, NM_000093.3_c.925-2A>G in a patient with cutaneous features of EDS, severe progressive scoliosis and eye involvement. Two mutant transcripts were identified, one with an exon 7 skip and one in which exon 7 and the upstream exon 6 are deleted. Both transcripts are expressed and secreted into the extracellular matrix, where they can participate in and perturb collagen fibrillogenesis, as illustrated by the presence of dermal collagen cauliflowers. Determination of the order of intron removal and computational analysis showed that simultaneous skipping of exons 6 and 7 is due to the combined effect of delayed splicing of intron 7, altered pre-mRNA secondary structure, low splice site strength and possibly disturbed binding of splicing factors. CONCLUSIONS/SIGNIFICANCE: We report a novel COL5A1 N-propeptide acceptor-splice site mutation in intron 6, which not only affects splicing of the adjacent exon 7, but also causes a splicing error of the upstream exon 6. Our findings add further insights into the COL5A1 splicing order and show for the first time that a single COL5A1 acceptor-splice site

  17. Cellular pharmacokinetics and intracellular activity of the novel peptide deformylase inhibitor GSK1322322 against Staphylococcus aureus laboratory and clinical strains with various resistance phenotypes: studies with human THP-1 monocytes and J774 murine macrophages.

    Science.gov (United States)

    Peyrusson, Frédéric; Butler, Deborah; Tulkens, Paul M; Van Bambeke, Françoise

    2015-09-01

    GSK1322322 is a peptide deformylase inhibitor active against Staphylococcus aureus strains resistant to currently marketed antibiotics. Our aim was to assess the activity of GSK1322322 against intracellular S. aureus using an in vitro pharmacodynamic model and, in parallel, to examine its cellular pharmacokinetics and intracellular disposition. For intracellular activity analysis, we used an established model of human THP-1 monocytes and tested one fully susceptible S. aureus strain (ATCC 25923) and 8 clinical strains with resistance to oxacillin, vancomycin, daptomycin, macrolides, clindamycin, linezolid, or moxifloxacin. Uptake, accumulation, release, and subcellular distribution (cell fractionation) of [(14)C]GSK1322322 were examined in uninfected murine J774 macrophages and uninfected and infected THP-1 monocytes. GSK1322322 demonstrated a uniform activity against the intracellular forms of all S. aureus strains tested, disregarding their resistance phenotypes, with a maximal relative efficacy (E max) of a 0.5 to 1 log10 CFU decrease compared to the original inoculum within 24 h and a static concentration (C s) close to its MIC in broth. Influx and efflux were very fast (gemfibrozil and verapamil. GSK1322322 was recovered in the cell-soluble fraction and was dissociated from the main subcellular organelles and from bacteria (in infected cells). The results of this study show that GSK1322322, as a typical novel deformylase inhibitor, may act against intracellular forms of S. aureus. They also suggest that GSK1322322 has the ability to freely diffuse into and out of eukaryotic cells as well as within subcellular compartments. PMID:26169402

  18. Phenotypic MicroRNA Microarrays

    Directory of Open Access Journals (Sweden)

    Veronica Soloveva

    2013-04-01

    Full Text Available Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

  19. Phenotypic, metabolic, and molecular genetic characterization of six patients with congenital adrenal hyperplasia caused by novel mutations in the CYP11B1 gene.

    Science.gov (United States)

    Nguyen, Huy-Hoang; Eiden-Plach, Antje; Hannemann, Frank; Malunowicz, Ewa M; Hartmann, Michaela F; Wudy, Stefan A; Bernhardt, Rita

    2016-01-01

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive inherited disorder of steroidogenesis. Steroid 11β-hydroxylase deficiency (11β-OHD) due to mutations in the CYP11B1 gene is the second most common form of CAH. In this study, 6 patients suffering from CAH were diagnosed with 11β-OHD using urinary GC-MS steroid metabolomics analysis. The molecular basis of the disorder was investigated by molecular genetic analysis of the CYP11B1 gene, functional characterization of splicing and missense mutations, and analysis of the missense mutations in a computer model of CYP11B1. All patients presented with abnormal clinical signs of hyperandrogenism. Their urinary steroid metabolomes were characterized by excessive excretion rates of metabolites of 11-deoxycortisol as well as metabolites of 11-deoxycorticosterone, and allowed definite diagnosis. Patient 1 carries compound heterozygous mutations consisting of a novel nonsense mutation p.Q102X (c.304C>T) in exon 2 and the known missense mutation p.T318R (c.953C>G) in exon 5. Two siblings (patient 2 and 3) were compound heterozygous carriers of a known splicing mutation c.1200+1G>A in intron 7 and a known missense mutation p.R448H (c.1343G>A) in exon 8. Minigene experiments demonstrated that the c.1200+1G>A mutation caused abnormal pre-mRNA splicing (intron retention). Two further siblings (patient 4 and 5) were compound heterozygous carriers of a novel missense mutation p.R332G (c.994C>G) in exon 6 and the known missense mutation p.R448H (c.1343G>A) in exon 8. A CYP11B1 activity study in COS-1 cells showed that only 11% of the enzyme activity remained in the variant p.R332G. Patient 6 carried a so far not described homozygous deletion g.2470_5320del of 2850 bp corresponding to a loss of the CYP11B1 exons 3-8. The breakpoints of the deletion are embedded into two typical 6 base pair repeats (GCTTCT) upstream and downstream of the gene. Experiments analyzing the influence of mutations on splicing and on enzyme

  20. Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available RNA interference (RNAi has been used increasingly for reverse genetics in invertebrates and mammalian cells, and has the potential to become an alternative to gene knockout technology in mammals. Thus far, only RNA polymerase III (Pol III-expressed short hairpin RNA (shRNA has been used to make shRNA-expressing transgenic mice. However, widespread knockdown and induction of phenotypes of gene knockout in postnatal mice have not been demonstrated. Previous studies have shown that Pol II synthesizes micro RNAs (miRNAs-the endogenous shRNAs that carry out gene silencing function. To achieve efficient gene knockdown in mammals and to generate phenotypes of gene knockout, we designed a construct in which a Pol II (ubiquitin C promoter drove the expression of an shRNA with a structure that mimics human miRNA miR-30a. Two transgenic lines showed widespread and sustained shRNA expression, and efficient knockdown of the target gene Sod2. These mice were viable but with phenotypes of SOD2 deficiency. Bigenic heterozygous mice generated by crossing these two lines showed nearly undetectable target gene expression and phenotypes consistent with the target gene knockout, including slow growth, fatty liver, dilated cardiomyopathy, and premature death. This approach opens the door of RNAi to a wide array of well-established Pol II transgenic strategies and offers a technically simpler, cheaper, and quicker alternative to gene knockout by homologous recombination for reverse genetics in mice and other mammalian species.

  1. Exclusion of mutations in the PRNP, JPH3, TBP, ATN1, CREBBP, POU3F2 and FTL genes as a cause of disease in Portuguese patients with a Huntington-like phenotype

    OpenAIRE

    Costa, Maria do Carmo; Teixeira-Castro, Andreia; Constante, Marco; Magalhães, Marina; Magalhães, Paula; Cerqueira, Joana; Vale, José; Passão, Vitorina; Barbosa, Célia; Robalo, Conceição; Coutinho, Paula; Barros, José; Santos, Manuela M.; Sequeiros, Jorge; Maciel, Patrícia

    2006-01-01

    Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterised by chorea, cognitive impairment, dementia and personality changes, caused by the expansion of a CAG repeat in the HD gene. Often, patients with a similar clinical presentation do not carry expansions of the CAG repeat in this gene [Huntington disease-like (HDL) patients]. We report the genetic analysis of 107 Portuguese patients with an HDL phenotype. The HDL genes PRNP and JPH3, encoding the prion prote...

  2. 溶酶体内胱氨酸可促进细胞凋亡并导致胱氨酸贮积症的表型发生%Lysosomal cystine augments apoptosis and causes the phenotype in cystinosis

    Institute of Scientific and Technical Information of China (English)

    Jess G. THOENE

    2005-01-01

    SUMMARY Nephropathic cystinosis is a lethal inborn error of metabolism that destroys kidney function by age 10 years. It is characterized by lysosomal cystine accumulation. How the cystine causes the phenotype is an open question. We propose that during apoptosis, permeablized lysosomes permit cystine to reach the cytosol where mixed disulfide formation occurs, augmenting apoptosis by interaction with a variety of pro-apoptotic proteins.

  3. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence.

    Science.gov (United States)

    Wiley, Christopher D; Campisi, Judith

    2016-06-14

    Cellular senescence is a complex stress response that permanently arrests the proliferation of cells at risk for oncogenic transformation. However, senescent cells can also drive phenotypes associated with aging. Although the senescence-associated growth arrest prevents the development of cancer, and the metabolism of cancer cells has been studied in depth, the metabolic causes and consequences of cellular senescence were largely unexplored until recently. New findings reveal key roles for several aspects of cellular metabolism in the establishment and control of senescent phenotypes. These discoveries have important implications for both cancer and aging. In this review, we highlight some of the recent links between metabolism and phenotypes that are commonly associated with senescent cells. PMID:27304503

  4. New concept: cellular senescence in pathophysiology of cholangiocarcinoma.

    Science.gov (United States)

    Sasaki, Motoko; Nakanuma, Yasuni

    2016-05-01

    Cholangiocarcinoma, a malignant tumor arising in the hepatobiliary system, presents with poor prognosis because of difficulty in its early detection/diagnosis. Recent progress revealed that cellular senescence may be involved in the pathophysiology of cholangiocarcinoma. Cellular senescence is defined as permanent growth arrest caused by several cellular injuries, such as oncogenic mutations and oxidative stress. "Oncogene-induced" and/or stress-induced senescence may occur in the process of multi-step cholangiocarcinogenesis, and overexpression of a polycomb group protein EZH2 may play a role in the escape from, and/or bypassing of, senescence. Furthermore, senescent cells may play important roles in tumor development and progression via the production of senescence-associated secretory phenotypes. Cellular senescence may be a new target for the prevention, early diagnosis, and therapy of cholangiocarcinoma in the near future. PMID:26680649

  5. The expanding phenotype of MELAS caused by the m.3291T > C mutation in the MT-TL1 gene.

    Science.gov (United States)

    Keilland, E; Rupar, C A; Prasad, Asuri N; Tay, K Y; Downie, A; Prasad, C

    2016-03-01

    m.3291T > C mutation in the MT-TL1 gene has been infrequently encountered in association with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), however remains poorly characterized from a clinical perspective. In the following report we describe in detail the phenotypic features, long term follow up (> 7 years) and management in a Caucasian family with MELAS due to the m.3291T > C mutation and review the literature on m.3291T > C mutation. The clinical phenotype in the proposita included overlapping features of MELAS, MERRF (Myoclonic epilepsy and ragged-red fiber syndrome), MNGIE (Mitochondrial neurogastrointestinal encephalopathy), KSS (Kearns-Sayre Syndrome) and CPEO (Chronic progressive external ophthalmoplegia). PMID:27014580

  6. The expanding phenotype of MELAS caused by the m.3291T>C mutation in the MT-TL1 gene

    Directory of Open Access Journals (Sweden)

    E. Keilland

    2016-03-01

    Full Text Available m.3291T>C mutation in the MT-TL1 gene has been infrequently encountered in association with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS, however remains poorly characterized from a clinical perspective. In the following report we describe in detail the phenotypic features, long term follow up (>7 years and management in a Caucasian family with MELAS due to the m.3291T>C mutation and review the literature on m.3291T>C mutation. The clinical phenotype in the proposita included overlapping features of MELAS, MERRF (Myoclonic epilepsy and ragged-red fiber syndrome, MNGIE (Mitochondrial neurogastrointestinal encephalopathy, KSS (Kearns-Sayre Syndrome and CPEO (Chronic progressive external ophthalmoplegia.

  7. Axotomy-induced neurotrophic withdrawal causes the loss of phenotypic differentiation and downregulation of NGF signalling, but not death of septal cholinergic neurons

    Directory of Open Access Journals (Sweden)

    Inestrosa Nibaldo C

    2010-01-01

    Full Text Available Abstract Background Septal cholinergic neurons account for most of the cholinergic innervations of the hippocampus, playing a key role in the regulation of hippocampal synaptic activity. Disruption of the septo-hippocampal pathway by an experimental transection of the fimbria-fornix drastically reduces the target-derived trophic support received by cholinergic septal neurons, mainly nerve growth factor (NGF from the hippocampus. Axotomy of cholinergic neurons induces a reduction in the number of neurons positive for cholinergic markers in the medial septum. In several studies, the reduction of cholinergic markers has been interpreted as analogous to the neurodegeneration of cholinergic cells, ruling out the possibility that neurons lose their cholinergic phenotype without dying. Understanding the mechanism of cholinergic neurodegeneration after axotomy is relevant, since this paradigm has been extensively explored as an animal model of the cholinergic impairment observed in neuropathologies such as Alzheimer's disease. The principal aim of this study was to evaluate, using modern quantitative confocal microscopy, neurodegenerative changes in septal cholinergic neurons after axotomy and to assess their response to delayed infusion of NGF in rats. Results We found that there is a slow reduction of cholinergic cells labeled by ChAT and p75 after axotomy. However, this phenomenon is not accompanied by neurodegenerative changes or by a decrease in total neuronal number in the medial septum. Although the remaining axotomized-neurons appear healthy, they are unable to respond to delayed NGF infusion. Conclusions Our results demonstrate that at 3 weeks, axotomized cholinergic neurons lose their cholinergic phenotype without dying and down-regulate their NGF-receptors, precluding the possibility of a response to NGF. Therefore, the physiological role of NGF in the adult septal cholinergic system is to support phenotypic differentiation and not survival

  8. NEFL N98S mutation: another cause of dominant intermediate Charcot-Marie-Tooth disease with heterogeneous early-onset phenotype.

    Science.gov (United States)

    Berciano, José; Peeters, Kristien; García, Antonio; López-Alburquerque, Tomás; Gallardo, Elena; Hernández-Fabián, Arantxa; Pelayo-Negro, Ana L; De Vriendt, Els; Infante, Jon; Jordanova, Albena

    2016-02-01

    The purpose of this study was to describe a pedigree with NEFL N98S mutation associated with a dominant intermediate Charcot-Marie-Tooth disease (DI-CMT) and heterogeneous early-onset phenotype. The pedigree comprised two patients, the proband and her son, aged 38 and 5 years. The proband, evaluated at age 31, showed delayed motor milestones that, as of the second decade, evolved into severe phenotype consisting of sensorimotor neuropathy, pes cavus, clawing hands, gait and kinetic cerebellar ataxia, nystagmus and dysarthria, she being wheelchair bound. By then, a working diagnosis of sporadic early onset cerebellar ataxia with peripheral neuropathy was established. Screening of mutations associated with SCA and autosomal recessive cerebellar ataxias was negative. Her son showed a mild phenotype characterized by delayed motor milestones, and lower-limb hypotonia and areflexia. Electrophysiology in both patients showed nerve conduction slowing in the intermediate range, both in proximal and distal nerve segments, but where compound muscle action potentials exhibited severe attenuation there was conduction slowing down to the demyelinating range. In the proband, cranial magnetic resonance imaging (MRI) showed cerebellar atrophy, electromyography disclosed active denervation in tibialis anterior, and MRI of lower-limb musculature demonstrated widespread and distally accentuated muscle fatty atrophy; furthermore, on water sensitive MRI sequences there was edema of calf muscles. We conclude that the NEFL N98S mutation is associated with a DI-CMT phenotype characterized by early-onset sensorimotor neuropathy delaying motor milestones, which may evolve into a severe and complex clinical picture including cerebellar ataxia. PMID:26645395

  9. Complex relation between triazine-susceptible phenotype and genotype in the weed Senecio vulgaris may be caused by chloroplast DNA polymorphism.

    Science.gov (United States)

    Frey, J E; Müller-Schärer, H; Frey, B; Frei, D

    1999-08-01

    The weed Senecio vulgaris acquired high levels of resistance to triazine herbicides soon after the latter's introduction. As in most weeds, triazine resistance is conferred by a point mutation in the chloroplast psbA gene that negatively affects the fitness of its carrier. To assess levels of triazine resistance in S. vulgaris field populations, we adopted a PCR-RFLP-based molecular diagnostic test recently developed for the triazine resistance-conferring region of the psbA gene of other weeds, including Brassica napus, Chenopodium spp. and Amaranthus spp., and compared these molecular results to the phenotypic response after triazine application. A highly significant linear correlation was found between phytotoxic symptoms and biomass reduction. Variability in phenotypic response was not only found between populations or inbred lines of S. vulgaris but also within replicates of the same inbred line. No clear relationship, however, was found between the DNA restriction pattern and the phenotypic response to triazine application, thereby throwing doubt on the use of such molecular diagnostic tests to track triazine resistance in S. vulgaris. Our results indicate that the chloroplast genome of S. vulgaris is polymorphic and that the level of polymorphism may be variable within single leaves of individual plants. We discuss the possible genetic basis of this polymorphism and its consequence for the acquisition and inheritance of chloroplast-based traits. PMID:22665192

  10. Heritable change caused by transient transcription errors.

    Directory of Open Access Journals (Sweden)

    Alasdair J E Gordon

    2013-06-01

    Full Text Available Transmission of cellular identity relies on the faithful transfer of information from the mother to the daughter cell. This process includes accurate replication of the DNA, but also the correct propagation of regulatory programs responsible for cellular identity. Errors in DNA replication (mutations and protein conformation (prions can trigger stable phenotypic changes and cause human disease, yet the ability of transient transcriptional errors to produce heritable phenotypic change ('epimutations' remains an open question. Here, we demonstrate that transcriptional errors made specifically in the mRNA encoding a transcription factor can promote heritable phenotypic change by reprogramming a transcriptional network, without altering DNA. We have harnessed the classical bistable switch in the lac operon, a memory-module, to capture the consequences of transient transcription errors in living Escherichia coli cells. We engineered an error-prone transcription sequence (A9 run in the gene encoding the lac repressor and show that this 'slippery' sequence directly increases epigenetic switching, not mutation in the cell population. Therefore, one altered transcript within a multi-generational series of many error-free transcripts can cause long-term phenotypic consequences. Thus, like DNA mutations, transcriptional epimutations can instigate heritable changes that increase phenotypic diversity, which drives both evolution and disease.

  11. Hypermorphic mutation of the voltage-gated sodium channel encoding gene Scn10a causes a dramatic stimulus-dependent neurobehavioral phenotype

    OpenAIRE

    Blasius, Amanda L.; Dubin, Adrienne E.; Petrus, Matt J.; Lim, Byung-Kwan; Narezkina, Anna; Criado, José R.; Wills, Derek N.; Xia, Yu; Moresco, Eva Marie Y.; Ehlers, Cindy; Knowlton, Kirk U.; Patapoutian, Ardem; Beutler, Bruce

    2011-01-01

    The voltage-gated sodium channel Nav1.8 is known to function in the transmission of pain signals induced by cold, heat, and mechanical stimuli. Sequence variants of human Nav1.8 have been linked to altered cardiac conduction. We identified an allele of Scn10a encoding the α-subunit of Nav1.8 among mice homozygous for N-ethyl-N-nitrosourea-induced mutations. The allele creates a dominant neurobehavioral phenotype termed Possum, characterized by transient whole-body tonic immobility induced by ...

  12. Karyotype alteration generates the neoplastic phenotypes of SV40-infected human and rodent cells

    OpenAIRE

    Bloomfield, Mathew; Duesberg, Peter

    2015-01-01

    Background Despite over 50 years of research, it remains unclear how the DNA tumor viruses SV40 and Polyoma cause cancers. Prevailing theories hold that virus-coded Tumor (T)-antigens cause cancer by inactivating cellular tumor suppressor genes. But these theories don’t explain four characteristics of viral carcinogenesis: (1) less than one in 10,000 infected cells become cancer cells, (2) cancers have complex individual phenotypes and transcriptomes, (3) recurrent tumors without viral DNA an...

  13. Physiological and cellular responses caused by RNAi- mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera virgifera larvae.

    Directory of Open Access Journals (Sweden)

    Parthasarathy Ramaseshadri

    Full Text Available Ingestion of double stranded RNA (dsRNA has been previously demonstrated to be effective in triggering RNA interference (RNAi in western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte, providing potential novel opportunities for insect pest control. The putative Snf7 homolog of WCR (DvSnf7 has previously been shown to be an effective RNAi target for insect control, as DvSnf7 RNAi leads to lethality of WCR larvae. Snf7 functions as a part of the ESCRT (Endosomal Sorting Complex Required for Transport pathway which plays a crucial role in cellular housekeeping by internalization, transport, sorting and lysosomal degradation of transmembrane proteins. To understand the effects that lead to death of WCR larvae by DvSnf7 RNAi, we examined some of the distinct cellular processes associated with ESCRT functions such as de-ubiquitination of proteins and autophagy. Our data indicate that ubiquitinated proteins accumulate in DvSnf7 dsRNA-fed larval tissues and that the autophagy process seems to be impaired. These findings suggest that the malfunctioning of these cellular processes in both midgut and fat body tissues triggered by DvSnf7 RNAi were the main effects leading to the death of WCR. This study also illustrates that Snf7 is an essential gene in WCR and its functions are consistent with biological functions described for other eukaryotes.

  14. Determinants of Disease Phenotype Differences Caused by Closely-Related Isolates of Begomovirus Betasatellites Inoculated with the Same Species of Helper Virus

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2015-09-01

    Full Text Available Tomato yellow leaf curl China virus (TYLCCNV is a monopartite begomovirus associated with different betasatellites. In this study, we investigate two different isolates of Tomato yellow leaf curl China betasatellite (TYLCCNB to determine what features of the viral genome are required for induction of characteristic phenotypic differences between closely-related betasatellite. When co-agroinoculated with TYLCCNV into Nicotiana spp. and tomato plants, TYLCCNB-Y25 induced only leaf curling on all hosts, while TYLCCNB-Y10 also induced enations, vein yellowing, and shoot distortions. Further assays showed that βC1 of TYLCCNB-Y25 differs from that of TYLCCNB-Y10 in symptom induction and transcriptional modulating. Hybrid satellites were constructed in which the βC1 gene or 200 nt partial promoter-like fragment upstream of the βC1 were exchanged. Infectivity assays showed that a TYLCCNB-Y25 hybrid with the intact TYLCCNB-Y10 βC1 gene was able to induce vein yellowing, shoot distortions, and a reduced size and number of enations. A TYLCCNB-Y10 hybrid with the intact TYLCCNB-Y25 βC1 gene produced only leaf curling. In contrast, the TYLCCNB-Y25 and TYLCCNB-Y10 hybrids with swapped partial promoter-like regions had little effect on the phenotypes induced by wild-type betasatellites. Further experiments showed that the TYLCCNB-Y25 hybrid carrying the C-terminal region of TYLCCNB-Y10 βC1 induced TYLCCNB-Y10-like symptoms. These findings indicate that the βC1 protein is the major symptom determinant and that the C-terminal region of βC1 plays an important role in symptom induction.

  15. Distinct Phenotypes Caused by Mutation of MSH2 in Trypanosome Insect and Mammalian Life Cycle Forms Are Associated with Parasite Adaptation to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Viviane Grazielle-Silva

    2015-06-01

    Full Text Available DNA repair mechanisms are crucial for maintenance of the genome in all organisms, including parasites where successful infection is dependent both on genomic stability and sequence variation. MSH2 is an early acting, central component of the Mismatch Repair (MMR pathway, which is responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. In addition, recent evidence suggests that MSH2 might also play an important, but poorly understood, role in responding to oxidative damage in both African and American trypanosomes.To investigate the involvement of MMR in the oxidative stress response, null mutants of MSH2 were generated in Trypanosoma brucei procyclic forms and in Trypanosoma cruzi epimastigote forms. Unexpectedly, the MSH2 null mutants showed increased resistance to H2O2 exposure when compared with wild type cells, a phenotype distinct from the previously observed increased sensitivity of T. brucei bloodstream forms MSH2 mutants. Complementation studies indicated that the increased oxidative resistance of procyclic T. brucei was due to adaptation to MSH2 loss. In both parasites, loss of MSH2 was shown to result in increased tolerance to alkylation by MNNG and increased accumulation of 8-oxo-guanine in the nuclear and mitochondrial genomes, indicating impaired MMR. In T. cruzi, loss of MSH2 also increases the parasite capacity to survive within host macrophages.Taken together, these results indicate MSH2 displays conserved, dual roles in MMR and in the response to oxidative stress. Loss of the latter function results in life cycle dependent differences in phenotypic outcomes in T. brucei MSH2 mutants, most likely because of the greater burden of oxidative stress in the insect stage of the parasite.

  16. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Lichius, Alexander; Bidard, Frederique; Buchholz, Franziska; Le Crom, Stphane; Martin, Joel X.; Schackwitz, Wendy; Austerlitz, Tina; Grigoriev, Igor V.; Baker, Scott E.; Margeot, Antoine; Seiboth, Bernhard; Kubicek, Christian P.

    2015-12-01

    Background: Trichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a. Results: In QM9136, we detected a surprisingly low number of mutagenic events in the promoter and coding regions of genes, i.e. only eight indels and six single nucleotide variants. One of these indels led to a frame-shift in the Zn2Cys6 transcription factor XYR1, the general regulator of cellulase and xylanase expression, and resulted in its C-terminal truncation by 140 amino acids. Retransformation of strain QM9136 with the wild-type xyr1 allele fully recovered the ability to produce cellulases, and is thus the reason for the cellulase-negative phenotype. Introduction of an engineered xyr1 allele containing the truncating point mutation into the moderate producer T. reesei QM9414 rendered this strain also cellulase-negative. The correspondingly truncated XYR1 protein was still able to enter the nucleus, but failed to be expressed over the basal constitutive level. Conclusion: The missing 140 C-terminal amino acids of XYR1 are therefore responsible for its previously observed auto-regulation which is essential for cellulases to be expressed. Our data present a working example of the use of genome sequencing leading to a functional explanation of the QM9136 cellulase-negative phenotype.

  17. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  18. Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis

    OpenAIRE

    Crozat, Karine; Hoebe, Kasper; Ugolini, Sophie; Hong, Nancy A.; Janssen, Edith; Rutschmann, Sophie; Mudd, Suzanne; Sovath, Sosathya; Vivier, Eric; Beutler, Bruce

    2007-01-01

    Mouse cytomegalovirus (MCMV) susceptibility often results from defects of natural killer (NK) cell function. Here we describe Jinx, an N-ethyl-N-nitrosourea–induced MCMV susceptibility mutation that permits unchecked proliferation of the virus, causing death. In Jinx homozygotes, activated NK cells and cytotoxic T lymphocytes (CTLs) fail to degranulate, although they retain the ability to produce cytokines, and cytokine levels are markedly elevated in the blood of infected mutant mice. Jinx w...

  19. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong; Kim, Eun Jin; Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Paik, Sang Gi [Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of); Cho, Eun Wie, E-mail: ewcho@kribb.re.kr [Daejeon-KRIBB-FHCRC Cooperation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-09-10

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confers resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.

  20. Epigenetics in heart failure phenotypes.

    Science.gov (United States)

    Berezin, Alexander

    2016-12-01

    Chronic heart failure (HF) is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF) and HF with preserved left ventricular ejection fraction (HFpEF). Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF. PMID:27335803

  1. Association between the porcine Escherichia coli F18 receptor genotype and phenotype and susceptibility to colonisation and postweaning diarrhoea caused by E-coli O138 : F18

    DEFF Research Database (Denmark)

    Frydendahl, K.; Jensen, Tim Kåre; Andersen, Jens Strodl;

    2003-01-01

    Porcine postweaning Escherichia coli enteritis is a cause of significant morbidity and mortality in pigs worldwide, and effective prevention remains an unsolved problem. This study examined the correlation between susceptibility of pigs to experimental infection with an E. coli F18 strain and the...... of in vitro adhesion assays performed with F18 cells on enterocyte preparations from 24 pigs, showed complete concordance with the F18 genotypes. In conclusion, this study showed a high correlation between the porcine intestinal F18 receptor genotypes and susceptibility to disease. However, pigs of...

  2. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): developmental and cellular heterogeneity of damage and repair

    International Nuclear Information System (INIS)

    Ultraviolet radiation has diverse morphogenetic and damaging effects on plants. The end point of damage is reduced plant growth, but in the short term UV radiation damages specific cellular components. We measured cyclobutane pyrimidine dimers in maize DNA from plants grown in natural solar radiation. Green maize tissues had detectable DNA damage, roots had less damage, and anthers had much more damage than green leaves. This heterogeneity in damage levels may reflect differences in dose received or in damage repair. The architecture of green tissues had no measurable effects on DNA damage levels, as leaf sheath and leaf blade were equivalent. We observed a slight increase in damage levels in plants sampled at the end of the day, but there was no accumulation of damage over the growing season. We measured photoreactivation, and found substantial levels of this light-dependent repair in both the epidermis and inner cell layers of leaves, and in all organelles that contain DNA – the nucleus, chloroplasts and mitochondria. We conclude that maize has efficient mechanisms for photo repair of daily UV-induced DNA damage that prevent accumulation

  3. Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus-Merzbacher-like disease in humans.

    Science.gov (United States)

    Tress, Oliver; Maglione, Marta; Zlomuzica, Armin; May, Dennis; Dicke, Nikolai; Degen, Joachim; Dere, Ekrem; Kettenmann, Helmut; Hartmann, Dieter; Willecke, Klaus

    2011-07-01

    Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47), which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher-like disease 1 (PMLD1), a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue. PMID:21750683

  4. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations - genotype-phenotype correlations and effect of bisphosphonate treatment.

    Science.gov (United States)

    Sato, Atsuko; Ouellet, Jean; Muneta, Takeshi; Glorieux, Francis H; Rauch, Frank

    2016-05-01

    Bisphosphonates are widely used to treat children with osteogenesis imperfecta (OI), a bone fragility disorder that is most often caused by mutations in COL1A1 or COL1A2. However, it is unclear whether this treatment decreases the risk of developing scoliosis. We retrospectively evaluated spine radiographs and charts of 437 patients (227 female) with OI caused by mutations in COL1A1 or COL1A2 and compared the relationship between scoliosis, genotype and bisphosphonate treatment history. At the last follow-up (mean age 11.9 [SD: 5.9] years), 242 (55%) patients had scoliosis. The prevalence of scoliosis was highest in OI type III (89%), followed by OI type IV (61%) and OI type I (36%). Moderate to severe scoliosis (Cobb angle ≥25°) was rare in individuals with COL1A1 haploinsufficiency mutations but was present in about two fifth of patients with triple helical glycine substitutions or C-propeptide mutations. During the first 2 to 4years of bisphosphonate therapy, patients with OI type III had lower Cobb angle progression rates than before bisphosphonate treatment, whereas in OI types I and IV bisphosphonate treatment was not associated with a change in Cobb angle progression rates. At skeletal maturity, the prevalence of scoliosis (Cobb angle >10°) was similar in patients who had started bisphosphonate treatment early in life (before 5.0years of age) and in patients who had started therapy later (after the age of 10.0years) or had never received bisphosphonate therapy. Bisphosphonate treatment decreased progression rate of scoliosis in OI type III but there was no evidence of a positive effect on scoliosis in OI types I and IV. The prevalence of scoliosis at maturity was not influenced by the bisphosphonate treatment history in any OI type. PMID:26927310

  5. Adjusting phenotypes by noise control.

    Directory of Open Access Journals (Sweden)

    Kyung H Kim

    2012-01-01

    Full Text Available Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our analysis is readily applicable to various types of noise control and to different types of system; for example, we can orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene networks.

  6. Phenotypic and Genotypic Characterization of Race TKTTF of Puccinia graminis f. sp. tritici that Caused a Wheat Stem Rust Epidemic in Southern Ethiopia in 2013-14.

    Science.gov (United States)

    Olivera, Pablo; Newcomb, Maria; Szabo, Les J; Rouse, Matthew; Johnson, Jerry; Gale, Samuel; Luster, Douglas G; Hodson, David; Cox, James A; Burgin, Laura; Hort, Matt; Gilligan, Christopher A; Patpour, Mehran; Justesen, Annemarie F; Hovmøller, Mogens S; Woldeab, Getaneh; Hailu, Endale; Hundie, Bekele; Tadesse, Kebede; Pumphrey, Michael; Singh, Ravi P; Jin, Yue

    2015-07-01

    A severe stem rust epidemic occurred in southern Ethiopia during November 2013 to January 2014, with yield losses close to 100% on the most widely grown wheat cultivar, 'Digalu'. Sixty-four stem rust samples collected from the regions were analyzed. A meteorological model for airborne spore dispersal was used to identify which regions were most likely to have been infected from postulated sites of initial infection. Based on the analyses of 106 single-pustule isolates derived from these samples, four races of Puccinia graminis f. sp. tritici were identified: TKTTF, TTKSK, RRTTF, and JRCQC. Race TKTTF was found to be the primary cause of the epidemic in the southeastern zones of Bale and Arsi. Isolates of race TKTTF were first identified in samples collected in early October 2013 from West Arsi. It was the sole or predominant race in 31 samples collected from Bale and Arsi zones after the stem rust epidemic was established. Race TTKSK was recovered from 15 samples from Bale and Arsi zones at low frequencies. Genotyping indicated that isolates of race TKTTF belongs to a genetic lineage that is different from the Ug99 race group and is composed of two distinct genetic types. Results from evaluation of selected germplasm indicated that some cultivars and breeding lines resistant to the Ug99 race group are susceptible to race TKTTF. Appearance of race TKTTF and the ensuing epidemic underlines the continuing threats and challenges posed by stem rust not only in East Africa but also to wider-scale wheat production. PMID:25775107

  7. A futile cycle, formed between two ATP-dependant -glutamyl cycle enzymes, -glutamyl cysteine synthetase and 5-oxoprolinase: the cause of cellular ATP depletion in nephrotic cystinosis?

    Indian Academy of Sciences (India)

    Akhilesh Kumar; Anand Kumar Bachhawat

    2010-03-01

    Cystinosis, an inherited disease caused by a defect in the lysosomal cystine transporter (CTNS), is characterized by renal proximal tubular dysfunction. Adenosine triphosphate (ATP) depletion appears to be a key event in the pathophysiology of the disease, even though the manner in which ATP depletion occurs is still a puzzle. We present a model that explains how a futile cycle that is generated between two ATP-utilizing enzymes of the -glutamyl cycle leads to ATP depletion. The enzyme -glutamyl cysteine synthetase (-GCS), in the absence of cysteine, forms 5-oxoproline (instead of the normal substrate, -glutamyl cysteine) and the 5-oxoproline is converted into glutamate by the ATP-dependant enzyme, 5-oxoprolinase. Thus, in cysteine-limiting conditions, glutamate is cycled back into glutamate via 5-oxoproline at the cost of two ATP molecules without production of glutathione and is the cause of the decreased levels of glutathione synthesis, as well as the ATP depletion observed in these cells. The model is also compatible with the differences seen in the human patients and the mouse model of cystinosis, where renal failure is not observed.

  8. Pseudomonas Aeruginosa Resistance Phenotypes and Phenotypic Highlighting Methods

    Science.gov (United States)

    BĂLĂŞOIU, MARIA; BĂLĂŞOIU, A.T.; MĂNESCU, RODICA; AVRAMESCU, CARMEN; IONETE, OANA

    2014-01-01

    Pseudomonas aeruginosa genus bacteria are well known for their increased drug resistance (phenotypic ang genotypic resistance). The most important resistance mechanisms are: enzyme production, reduction of pore expression, reduction of the external membrane proteins expression, efflux systems, topoisomerase mutations. These mechanisms often accumulate and lead to multidrug ressitance strains emergence. The most frequent acquired resistance mechanisms are betalactamase-type enzyme production (ESBLs, AmpC, carbapenemases), which determine variable phenotypes of betalactamines resistance, phenotypes which are associated with aminoglycosides and quinolones resistance. The nonenzymatic drug resistance mechanisms are caused by efflux systems, pore reduction and penicillin-binding proteins (PBP) modification, which are often associated to other resistance mechanisms. Phenotypic methods used for testing these mechanisms are based on highlighting these phenotypes using Kirby Bauer antibiogram, clinical breakpoints, and “cut off” values recommended by EUCAST 2013 standard, version 3.1. PMID:25729587

  9. Cellular Automata

    OpenAIRE

    Bagnoli, Franco

    1998-01-01

    An introduction to cellular automata (both deterministic and probabilistic) with examples. Definition of deterministic automata, dynamical properties, damage spreading and Lyapunov exponents; probabilistic automata and Markov processes, nonequilibrium phase transitions, directed percolation, diffusion; simulation techniques, mean field. Investigation themes: life, epidemics, forest fires, percolation, modeling of ecosystems and speciation. They represent my notes for the school "Dynamical Mod...

  10. Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure

    Science.gov (United States)

    Svensson, J. Peter; Quirós Pesudo, Laia; McRee, Siobhan K.; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D.

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised. PMID:24040048

  11. Cellular resilience.

    Science.gov (United States)

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  12. Important discoveries from analysing bacterial phenotypes

    OpenAIRE

    Bochner, Barry R.; Giovannetti, Luciana; Viti, Carlo

    2008-01-01

    The ability to test hundreds to thousands of cellular phenotypes in a single experiment has opened up new avenues of investigation and exploration and led to important discoveries in very diverse applications of microbiological research and development. The information provided by global phenotyping is complementary to, and often more easily interpretable than information provided by global molecular analytical methods such as gene chips and proteomics. This report summarizes advances present...

  13. Cytotoxic and phenotypic effects of uranium and lead on osteoblastic cellular models; Effets cytotoxiques et phenotypiques de l'uranium et du plomb sur des modeles cellulaires osteoblastiques

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S

    2008-04-15

    This study is involved in the evaluation of bio-hazard associated with the use of uranium in nuclear activities and industrial research. The uranium, known in the literature as potentially carcinogenic or toxic for reproduction, can become a public health problem with the views of the various possibilities of human infections (military of the Gulf War, Finnish populations exposed to drinking water contaminated by example). The skeleton represents the organ of long-term storage of uranium and can be a target of its toxicity. Lead sharing this way of fixing in the bone matrix and have the same adverse effects on bone formation. The osteoblasts, cells responsible in bone formation, are specific targets of these two metals. The aim of this study was to evaluate the effects of acute toxicity of speciation controlled uranium and lead on osteoblasts culture. The intracellular accumulation, distribution and speciation were then studied to explain the observed toxicity. A cell death and phenotypic disorder were highlighted. The speciation is seen as crucial in biological effects of these metals. The most toxic species of both metals have been identified. The accumulation or cell distribution could not alone explain the impact of speciation on the toxicity observed. However, a phenomenon of intracellular precipitation of uranium and lead has been stressed and could be involved in a detoxification mechanism. (author)

  14. Live 4D optical coherence tomography for early embryonic mouse cardiac phenotyping

    Science.gov (United States)

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.

    2016-03-01

    Studying embryonic mouse development is important for our understanding of normal human embryogenesis and the underlying causes of congenital defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development using optical coherence tomography (OCT). We have previously developed imaging approaches that combine static embryo culture, OCT imaging and advanced image processing to visualize the whole live mouse embryos and obtain 4D (3D+time) cardiodynamic datasets with cellular resolution. Here, we present the study of using 4D OCT for dynamic imaging of early embryonic heart in live mouse embryos to assess mutant cardiac phenotypes during development, including a cardiac looping defect. Our results indicate that the live 4D OCT imaging approach is an efficient phenotyping tool that can reveal structural and functional cardiac defects at very early stages. Further studies integrating live embryonic cardiodynamic phenotyping with molecular and genetic approaches in mouse mutants will help to elucidate the underlying signaling defects.

  15. Cellular senescence as the causal nexus of aging

    Directory of Open Access Journals (Sweden)

    Naina eBhatia-Dey

    2016-02-01

    Full Text Available We present cellular senescence as the ultimate driver of the aging process, as a causal nexus that bridges microscopic subcellular damage with the phenotypic, macroscopic effect of aging. It is important to understand how the various types of subcellular damage correlated with the aging process lead to the larger, visible effects of anatomical aging. While it has always been assumed that subcellular damage (cause results in macroscopic aging (effect, the bridging link between the two has been hard to define. Here, we propose that this bridge, which we term the causal nexus, is in fact cellular senescence. The subcellular damage itself does not directly cause the visible signs of aging, but rather, as the damage accumulates and reaches a critical mass, cells cease to proliferate and acquire the deleterious senescence-associated secretory phenotype (SASP which then leads to the macroscopic consequences of tissue breakdown to create the physiologically aged phenotype. Thus senescence is a precondition for anatomical aging, and this explains why aging is a gradual process that remains largely invisible during most of its progression. The subcellular damage includes shortening of telomeres, damage to mitochondria, aneuploidy and DNA double-strand breaks triggered by various genetic, epigenetic, and environmental factors. Damage pathways acting in isolation or in concert converge at the causal nexus of cellular senescence. In each species some types of damage can be more causative than in others and operate at a variable pace; for example, telomere erosion appears to be a primary cause in human cells, whereas activation of tumor suppressor genes is more causative in rodents. Such species-specific mechanisms indicate that despite different initial causes, most of aging is traced to a single convergent causal nexus: senescence. The exception is in some invertebrate species that escape senescence, and in nondividing cells such as neurons, where

  16. Efficient α, β-motif finder for identification of phenotype-related functional modules

    Directory of Open Access Journals (Sweden)

    Schmidt Matthew C

    2011-11-01

    Full Text Available Abstract Background Microbial communities in their natural environments exhibit phenotypes that can directly cause particular diseases, convert biomass or wastewater to energy, or degrade various environmental contaminants. Understanding how these communities realize specific phenotypic traits (e.g., carbon fixation, hydrogen production is critical for addressing health, bioremediation, or bioenergy problems. Results In this paper, we describe a graph-theoretical method for in silico prediction of the cellular subsystems that are related to the expression of a target phenotype. The proposed (α, β-motif finder approach allows for identification of these phenotype-related subsystems that, in addition to metabolic subsystems, could include their regulators, sensors, transporters, and even uncharacterized proteins. By comparing dozens of genome-scale networks of functionally associated proteins, our method efficiently identifies those statistically significant functional modules that are in at least α networks of phenotype-expressing organisms but appear in no more than β networks of organisms that do not exhibit the target phenotype. It has been shown via various experiments that the enumerated modules are indeed related to phenotype-expression when tested with different target phenotypes like hydrogen production, motility, aerobic respiration, and acid-tolerance. Conclusion Thus, we have proposed a methodology that can identify potential statistically significant phenotype-related functional modules. The functional module is modeled as an (α, β-clique, where α and β are two criteria introduced in this work. We also propose a novel network model, called the two-typed, divided network. The new network model and the criteria make the problem tractable even while very large networks are being compared. The code can be downloaded from http://www.freescience.org/cs/ABClique/

  17. 医院感染金黄色葡萄球菌耐药表型与耐药基因研究%Drug resistance phenotypes and drug resistance genes in Staphylococcus aureus causing nosocomial infections

    Institute of Scientific and Technical Information of China (English)

    张志军; 曹海燕; 刘延媛; 刘春来

    2015-01-01

    OBJECTIVE To study the drug resistance phenotypes and drug resistance genes in Staphylococcus au‐reus causing nosocomial infections so as to provide guidance for clinical prevention and treatment of the nosocomial infections .METHODS From Jan 2011 to Jan 2013 ,totally 120 strains of S .aureus were isolated from the submitted specimens that were obtained from the patients with nosocomial infections .According to the standard operation procedures of clinical laboratory standard institute ,the drug resistance phenotypes and drug resistance genes in the S .aureus strains were analyzed by using polymerase‐chain‐reaction (PCR) .RESULTS The drug resistance rates of the S .aureus strains to penicillin ,erythromycin ,gentamicin ,clindamycin ,tetracycline ,and ciprofloxacin were 100 .00% ,98 .83% ,80 .00% ,76 .67% ,76 .67% ,and 75 .83% ,respectively ;the strains were highly susceptible to vancomycin and linezolid .Among the different drug resistance phenotypes of S .aureus ,the drug resistance rate of the type Ⅵ S .aureus was the highest (97 .50% ) , followed by the type Ⅴ (67 .50% ) and the type Ⅳ(60 .00% ) .Among the S .aureus strains harboring different drug resistance genes ,the drug resistance rate of the S .aureus strains harboring mecA was the highest (98 .83% ) ,and the drug resistance of the drug resistance genes in the S .aureus strains was in accordance with the drug resistance of the S .aureus strains .CONCLUSION The S .aureus strains causing nosocomial infections are highly resistant to most of the antibiotics and highly susceptible to vancomycin .The type Ⅵ ,type Ⅴ ,and type Ⅳ are the major drug resistance phenotypes;the tetK and mecA are the predominant drug resistance genes .%目的:研究医院感染耐药金黄色葡萄球菌的耐药表型及耐药基因,以期为临床防治医院感染提供参考。方法选取2011年1月-2013年1月医院感染患者送检标本中分离的120株金黄色葡萄球菌,根据美国临床实验

  18. Transposon mutations in the 5' end of glnD, the gene for a nitrogen regulatory sensor, that suppress the osmosensitive phenotype caused by otsBA lesions in Escherichia coli.

    Science.gov (United States)

    Tøndervik, Anne; Torgersen, Haakon R; Botnmark, Hans K; Strøm, Arne R

    2006-06-01

    GlnD of Escherichia coli is a bifunctional signal-transducing enzyme (102.4 kDa) which uridylylates the allosteric regulatory protein PII and deuridylylates PII-UMP in response to growth with nitrogen excess or limitation, respectively. GlnD catalyzes these reactions in response to high or low levels of cytoplasmic glutamine, respectively, and indirectly directs the expression of nitrogen-regulated genes, e.g., the glnK-amtB operon. We report that chromosomal mini-Tn10 insertions situated after nucleotide number 997 or 1075 of glnD partially suppressed the osmosensitive phenotype of DeltaotsBA or otsA::Tn10 mutations (defective osmoregulatory trehalose synthesis). Strains carrying these glnD::mini-Tn10 mutations either completely repressed the expression of trp::(glnKp-lacZ) or induced this reporter system to nearly 60% of the wild-type glnD level in response to nitrogen availability, an essentially normal response. This was in contrast to the much-studied glnD99::Tn10 mutation, which carries its insertion in the 3' end of the gene, causes a complete repression of glnKp-lacZ expression under all growth conditions, and also confers leaky glutamine auxotrophy. When expressed from the Pm promoter in plasmid constructs, the present glnD mutations produced proteins with an apparent mass of 39 or 42 kDa. These proteins were deduced to comprise 344 or 370 N-terminal residues, respectively, harboring the known nucleotidyltransferase domain of GlnD, plus a common C-terminal addition of 12 residues encoded by IS10. They lacked three other domains of GlnD. Apparently, the transferase domain by itself enabled the cells to catalyze the uridylylation reaction and direct nitrogen-regulated gene expression. Our data indicate that there exists a link between osmotic stress and the nitrogen response. PMID:16740928

  19. Phenotypic MicroRNA Microarrays

    OpenAIRE

    Veronica Soloveva; Michel Liuzzi; Jin Yeop Kim; Hi Chul Kim; Jin Yeong Heo; Yong-Jun Kwon

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the bio...

  20. Cellular Signaling Pathways and Their Clinical Reflections

    Directory of Open Access Journals (Sweden)

    N. Ceren Sumer-Turanligil

    2010-06-01

    Full Text Available Cellular signaling pathways have important roles in cellular growth, differentiation, inflammatory response and apoptosis and in regulation of cellular responses under various chemical stimulators. Different proteins which belong to these pathways may be exposed to loss-of-function or gain-of-function mutations; this may lead to many clinical phenotypes including primarily cancer. In this review information about basic working principles of these pathways and diseases related to them are included. [Archives Medical Review Journal 2010; 19(3.000: 180-191

  1. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular......; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates...

  2. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features

    OpenAIRE

    Tucci, Valter; Kleefstra, Tjitske; Hardy, Andrea; Heise, Ines; Maggi, Silvia; Willemsen, Marjolein H.; Hilton, Helen; Esapa, Chris; Simon, Michelle; Buenavista, Maria-Teresa; McGuffin, Liam; Vizor, Lucie; Dodero, Luca; Tsaftaris, Sotirios; Romero, Rosario

    2014-01-01

    The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a r...

  3. Integrated cellular systems

    Science.gov (United States)

    Harper, Jason C.

    integrate cells and direct their behaviors. This process permits, for the first time, the selection and in situ isolation of a single target cell from a population of cells with mixed phenotypes, and the subsequent monitoring of its behavior, and that of its progeny, under well defined conditions. These techniques promise a new means to integrate biomolecules with nanostructures and macroscale systems, and to manipulate cellular behavior at the individual cell level, having significant implications towards development of practical and robust integrated cellular systems.

  4. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available BACKGROUND: The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. CONCLUSIONS/SIGNIFICANCE: These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  5. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  6. The thorny path linking cellular senescence to organismalaging

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Christopher K.; Mian, Saira; Campisi, Judith

    2005-08-09

    Half a century is fast approaching since Hayflick and colleagues formally described the limited ability of normal human cells to proliferate in culture (Hayflick and Moorhead, 1961). This finding--that normal somatic cells, in contrast to cancer cells, cannot divide indefinitely--challenged the prevailing idea that cells from mortal multicellular organisms were intrinsically ''immortal'' (Carrell, 1912). It also spawned two hypotheses, essential elements of which persist today. The first held that the restricted proliferation of normal cells, now termed cellular senescence, suppresses cancer (Hayflick, 1965; Sager, 1991; Campisi, 2001). The second hypothesis, as explained in the article by Lorenzini et al., suggested that the limited proliferation of cells in culture recapitulated aspects of organismal aging (Hayflick, 1965; Martin, 1993). How well have these hypotheses weathered the ensuing decades? Before answering this question, we first consider current insights into the causes and consequences of cellular senescence. Like Lorenzini et al., we limit our discussion to mammals. We also focus on fibroblasts, the cell type studied by Lorenzini et al., but consider other types as well. We suggest that replicative capacity in culture is not a straightforward assessment, and that it correlates poorly with both longevity and body mass. We speculate this is due to the malleable and variable nature of replicative capacity, which renders it an indirect metric of qualitative and quantitative differences among cells to undergo senescence, a response that directly alters cellular phenotype and might indirectly alter tissue structure and function.

  7. Phenotypic Heterogeneity Affects Stenotrophomonas maltophilia K279a Colony Morphotypes and β-Lactamase Expression.

    Science.gov (United States)

    Abda, Ebrahim M; Krysciak, Dagmar; Krohn-Molt, Ines; Mamat, Uwe; Schmeisser, Christel; Förstner, Konrad U; Schaible, Ulrich E; Kohl, Thomas A; Nieman, Stefan; Streit, Wolfgang R

    2015-01-01

    Phenotypic heterogeneity at the cellular level in response to various stresses, e.g., antibiotic treatment has been reported for a number of bacteria. In a clonal population, cell-to-cell variation may result in phenotypic heterogeneity that is a mechanism to survive changing environments including antibiotic therapy. Stenotrophomonas maltophilia has been frequently isolated from cystic fibrosis patients, can cause numerous infections in other organs and tissues, and is difficult to treat due to antibiotic resistances. S. maltophilia K279a produces the L1 and L2 β-lactamases in response to β-lactam treatment. Here we report that the patient isolate S. maltophilia K279a diverges into cellular subpopulations with distinct but reversible morphotypes of small and big colonies when challenged with ampicillin. This observation is consistent with the formation of elongated chains of bacteria during exponential growth phase and the occurrence of mainly rod-shaped cells in liquid media. RNA-seq analysis of small versus big colonies revealed differential regulation of at least seven genes among the colony morphotypes. Among those, bla L1 and bla L2 were transcriptionally the most strongly upregulated genes. Promoter fusions of bla L1 and bla L2 genes indicated that expression of both genes is also subject to high levels of phenotypic heterogeneous expression on a single cell level. Additionally, the comE homolog was found to be differentially expressed in homogenously versus heterogeneously bla L2 expressing cells as identified by RNA-seq analysis. Overexpression of comE in S. maltophilia K279a reduced the level of cells that were in a bla L2-ON mode to 1% or lower. Taken together, our data provide strong evidence that S. maltophilia K279a populations develop phenotypic heterogeneity in an ampicillin challenged model. This cellular variability is triggered by regulation networks including bla L1, bla L2, and comE. PMID:26696982

  8. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; Svensgaard, Jesper; Christensen, Svend;

    2015-01-01

    various scales of dynamic physiological responses need to be considered, and genotyping and external phenotyping should be linked to the physiology at the cellular and tissue level. A high-dimensional physiological phenotyping across scales is needed that integrates the precise characterization of the......-throughput non-invasive phenotyping needs to be validated and verified across scales to be used as proxy for the underlying processes. Armed with this interdisciplinary and multidimensional phenomics approach, plant physiology, non-invasive phenotyping, and functional genomics will complement each other...... basic research....

  9. A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure

    OpenAIRE

    Sun, Lei; Gilligan, Jeff; Staber, Cynthia; Schutte, Ryan J; Nguyen, Vivian; O'Dowd, Diane K.; Reenan, Robert

    2012-01-01

    Over 40 missense mutations in the human SCN1A sodium channel gene are linked to an epilepsy syndrome termed genetic epilepsy with febrile seizures plus (GEFS+). Inheritance of GEFS+ is dominant but the underlying cellular mechanisms remain poorly understood. Here we report knock-in of a GEFS+ SCN1A mutation (K1270T) into the Drosophila sodium channel gene, para, causes a semi-dominant temperature-induced seizure phenotype. Electrophysiological studies of GABAergic interneurons in the brains o...

  10. Cellular senescence and tumor promotion: Is aging the key?

    Science.gov (United States)

    Loaiza, Natalia; Demaria, Marco

    2016-04-01

    The senescence response is a potent tumor suppressor mechanism characterized by an irreversible growth arrest in response to potentially oncogenic signals to prevent the proliferation of damaged cells. Late in life, some of the features of senescent cells seem to mediate the development of age-related pathologies, including cancer. In the present review, we present a summary of the current knowledge regarding the causes, effector pathways and cellular features of senescence. We also discuss how the senescence response, initially a tumor suppressor mechanism, turns into a tumor promoter apparently as a consequence of aging. We argue that three age-related phenomena-senescence-associated secretory phenotype (SASP) dysregulation, decline in the immune system function and genomic instability-could contribute, independently or synergistically, to deteriorate the efficacy of the senescence response in stopping cancer. As a consequence, senescent cells could be considered premalignant cells, and targeting senescent cells could be a preventive and therapeutic strategy against cancer. PMID:26845683

  11. Phenotypic Evolution With and Beyond Genome Evolution.

    Science.gov (United States)

    Félix, M-A

    2016-01-01

    DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis. PMID:27282029

  12. A radiation measurement study on cellular phone

    International Nuclear Information System (INIS)

    This paper will explain the radiation level produced by various selected cellular phone from various models and brands available in the market. The result obtained from this study will also recommend whether a cellular phone is safe for public usage or it might cause any effect on public health. Finally, a database of radiation measurement level produced by selected various cellular phone will also be developed and exhibited in this paper. (Author)

  13. Covert Genetic Selections to Optimize Phenotypes

    OpenAIRE

    Wu, Di; Townsley, Elizabeth; Tartakoff, Alan Michael

    2007-01-01

    In many high complexity systems (cells, organisms, institutions, societies, economies, etc.), it is unclear which components should be regulated to affect overall performance. To identify and prioritize molecular targets which impact cellular phenotypes, we have developed a selection procedure (“SPI”–single promoting/inhibiting target identification) which monitors the abundance of ectopic cDNAs. We have used this approach to identify growth regulators. For this purpose, complex pools of S. c...

  14. Immune cellular response to HPV: current concepts

    Directory of Open Access Journals (Sweden)

    Maria Alice Guimarães Gonçalves

    2004-02-01

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  15. Covert genetic selections to optimize phenotypes.

    Directory of Open Access Journals (Sweden)

    Di Wu

    Full Text Available In many high complexity systems (cells, organisms, institutions, societies, economies, etc., it is unclear which components should be regulated to affect overall performance. To identify and prioritize molecular targets which impact cellular phenotypes, we have developed a selection procedure ("SPI"-single promoting/inhibiting target identification which monitors the abundance of ectopic cDNAs. We have used this approach to identify growth regulators. For this purpose, complex pools of S. cerevisiae cDNA transformants were established and we quantitated the evolution of the spectrum of cDNAs which was initially present. These data emphasized the importance of translation initiation and ER-Golgi traffic for growth. SPI provides functional insight into the stability of cellular phenotypes under circumstances in which established genetic approaches cannot be implemented. It provides a functional "synthetic genetic signature" for each state of the cell (i.e. genotype and environment by surveying complex genetic libraries, and does not require specialized arrays of cDNAs/shRNAs, deletion strains, direct assessment of clonal growth or even a conditional phenotype. Moreover, it establishes a hierarchy of importance of those targets which can contribute, either positively or negatively, to modify the prevailing phenotype. Extensions of these proof-of-principle experiments to other cell types should provide a novel and powerful approach to analyze multiple aspects of the basic biology of yeast and animal cells as well as clinically-relevant issues.

  16. Cellular basis of radiation-induced fibrosis

    International Nuclear Information System (INIS)

    Fibrosis is a common sequela of both cancer treatment by radiotherapy and accidental irradiation and has been described in many tissues including skin, lung, heart and liver. The underlying mechanisms of the radiation-induced fibrosis still remain to be resolved. In the present review we tried to illustrate the basic cellular mechanisms of radiation-induced fibrosis based on the newest findings arising from molecular radiobiology and cell biology. Based on these findings the cellular mechanism of radiation-induced fibrosis can be seen as a multicellular process involving various interacting cell systems in the target organ resulting in the fibrotic phenotype of the fibroblast/fibrocyte cell system

  17. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system.

    Science.gov (United States)

    Forger, Nancy G; Strahan, J Alex; Castillo-Ruiz, Alexandra

    2016-01-01

    Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970

  18. Additive dominant effect of a SOX10 mutation underlies a complex phenotype of PCWH.

    Science.gov (United States)

    Ito, Yukiko; Inoue, Naoko; Inoue, Yukiko U; Nakamura, Shoko; Matsuda, Yoshiki; Inagaki, Masumi; Ohkubo, Takahiro; Asami, Junko; Terakawa, Youhei W; Kohsaka, Shinichi; Goto, Yu-ichi; Akazawa, Chihiro; Inoue, Takayoshi; Inoue, Ken

    2015-08-01

    Distinct classes of SOX10 mutations result in peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease, collectively known as PCWH. Meanwhile, SOX10 haploinsufficiency caused by allelic loss-of-function mutations leads to a milder non-neurological disorder, Waardenburg-Hirschsprung disease. The cellular pathogenesis of more complex PCWH phenotypes in vivo has not been thoroughly understood. To determine the pathogenesis of PCWH, we have established a transgenic mouse model. A known PCWH-causing SOX10 mutation, c.1400del12, was introduced into mouse Sox10-expressing cells by means of bacterial artificial chromosome (BAC) transgenesis. By crossing the multiple transgenic lines, we examined the effects produced by various copy numbers of the mutant transgene. Within the nervous systems, transgenic mice revealed a delay in the incorporation of Schwann cells in the sciatic nerve and the terminal differentiation of oligodendrocytes in the spinal cord. Transgenic mice also showed defects in melanocytes presenting as neurosensory deafness and abnormal skin pigmentation, and a loss of the enteric nervous system. Phenotypes in each lineage were more severe in mice carrying higher copy numbers, suggesting a gene dosage effect for mutant SOX10. By uncoupling the effects of gain-of-function and haploinsufficiency in vivo, we have demonstrated that the effect of a PCWH-causing SOX10 mutation is solely pathogenic in each SOX10-expressing cellular lineage in a dosage-dependent manner. In both the peripheral and central nervous systems, the primary consequence of SOX10 mutations is hypomyelination. The complex neurological phenotypes in PCWH patients likely result from a combination of haploinsufficiency and additive dominant effect. PMID:25959061

  19. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-08-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  20. Whole-Organism Cellular Pathology: A Systems Approach to Phenomics.

    Science.gov (United States)

    Cheng, K C; Katz, S R; Lin, A Y; Xin, X; Ding, Y

    2016-01-01

    Phenotype is defined as the state of an organism resulting from interactions between genes, environment, disease, molecular mechanisms, and chance. The purpose of the emerging field of phenomics is to systematically determine and measure phenotypes across biology for the sake of understanding. Phenotypes can affect more than one cell type and life stage, so ideal phenotyping would include the state of every cell type within the context of both tissue architecture and the whole organism at each life stage. In medicine, high-resolution anatomic assessment of phenotype is obtained from histology. Histology's interpretative power, codified by Virchow as cellular pathology, is derived from its ability to discern diagnostic and characteristic cellular changes in diseased tissues. Cellular pathology is observed in every major human disease and relies on the ability of histology to detect cellular change in any cell type due to unbiased pan-cellular staining, even in optically opaque tissues. Our laboratory has shown that histology is far more sensitive than stereomicroscopy for detecting phenotypes in zebrafish mutants. Those studies have also shown that more complete sampling, greater consistency in sample orientation, and the inclusion of phenotypes extending over longer length scales would provide greater coverage of common phenotypes. We are developing technical approaches to achieve an ideal detection of cellular pathology using an improved form of X-ray microtomography that retains the strengths and addresses the weaknesses of histology as a screening tool. We are using zebrafish as a vertebrate model based on the overlaps between zebrafish and mammalian tissue architecture, and a body size small enough to allow whole-organism, volumetric imaging at cellular resolution. Automation of whole-organism phenotyping would greatly increase the value of phenomics. Potential societal benefits would include reduction in the cost of drug development, a reduction in the

  1. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Science.gov (United States)

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  2. Hormones and phenotypic plasticity: Implications for the evolution of integrated adaptive phenotypes

    Institute of Scientific and Technical Information of China (English)

    Sean C.LEMA; Jun KITANO

    2013-01-01

    It is generally accepted that taxa exhibit genetic variation in phenotypic plasticity,but many questions remain unanswered about how divergent plastic responses evolve under dissimilar ecological conditions.Hormones are signaling molecules that act as proximate mediators of phenotype expression by regulating a variety of cellular,physiological,and behavioral responses.Hormones not only change cellular and physiological states but also influence gene expression directly or indirectly,thereby linking environmental conditions to phenotypic development.Studying how hormonal pathways respond to environmental variation and how those responses differ between individuals,populations,and species can expand our understanding of the evolution of phenotypic plasticity.Here,we explore the ways that the study of hormone signaling is providing new insights into the underlying proximate bases for individual,population or species variation in plasticity.Using several studies as exemplars,we examine how a 'norm of reaction' approach can be used in investigations of hormone-mediated plasticity to inform the following:1) how environmental cues affect the component hormones,receptors and enzymes that comprise any endocrine signaling pathway,2) how genetic and epigenetic variation in endocrine-associated genes can generate variation in plasticity among these diverse components,and 3) how phenotypes mediated by the same hormone can be coupled and decoupled via independent plastic responses of signaling components across target tissues.Future studies that apply approaches such as reaction norms and network modeling to questions concerning how hormones link environmental stimuli to ecologically-relevant phenotypic responses should help unravel how phenotypic plasticity evolves.

  3. Metabolic, Immune, Epigenetic, Endocrine and Phenotypic Abnormalities Found in Individuals with Autism Spectrum Disorders, Down Syndrome and Alzheimer Disease May Be Caused by Congenital and/or Acquired Chronic Cerebral Toxoplasmosis

    Science.gov (United States)

    Prandota, Joseph

    2011-01-01

    "Toxoplasma gondii" is a protozoan parasite that infects about a third of human population. It is generally believed that in immunocompetent hosts, the parasite infection takes usually asymptomatic course and induces self-limiting disease, but in immunocompromised individuals may cause significant morbidity and mortality. "T. gondii" uses sulfated…

  4. Phenotypic characterization of Leishmania spp. causing cutaneous leishmaniasis in the lower Amazon region, western Pará state, Brazil, reveals a putative hybrid parasite, Leishmania (Viannia guyanensis × Leishmania (Viannia shawi shawi

    Directory of Open Access Journals (Sweden)

    Jennings Yara Lins

    2014-01-01

    Full Text Available We phenotypically characterized 43 leishmanial parasites from cutaneous leishmaniasis by isoenzyme electrophoresis and the indirect immunofluorescence antibody test (23 McAbs. Identifications revealed 11 (25.6% strains of Leishmania (V. braziliensis, 4 (9.3% of L. (V. shawi shawi, 7 (16.3% of L. (V. shawi santarensis, 6 (13.9% of L. (V. guyanensis and L. (V. lainsoni, 2 (4.7% of L. (L. amazonensis, and 7 (16.3% of a putative hybrid parasite, L. (V. guyanensis/L. (V. shawi shawi. McAbs detected three different serodemes of L. (V. braziliensis: I-7, II-1, and III-3 strains. Among the strains of L. (V. shawi we identified two populations: one (7 strains expressing the B19 epitope that was previously considered to be species-specific for L. (V. guyanensis. We have given this population sub-specific rank, naming it L. (V. s. santarensis. The other one (4 strains did not express the B19 epitope like the L. (V. shawi reference strain, which we now designate as L. (V. s. shawi. For the first time in the eastern Brazilian Amazon we register a putative hybrid parasite (7 strains, L. (V. guyanensis/L. (V. s. shawi, characterized by a new 6PGDH three-band profile at the level of L. (V. guyanensis. Its PGM profile, however, was very similar to that of L. (V. s. shawi. These results suggest that the lower Amazon region – western Pará state, Brazil, represents a biome where L. (V. guyanensis and L. (V. s. shawi exchange genetic information.

  5. Delineating the GRIN1 phenotypic spectrum

    DEFF Research Database (Denmark)

    Lemke, Johannes R; Geider, Kirsten; Helbig, Katherine L; Heyne, Henrike O; Schütz, Hannah; Hentschel, Julia; Courage, Carolina; Depienne, Christel; Nava, Caroline; Heron, Delphine; Møller, Rikke S; Hjalgrim, Helle; Lal, Dennis; Neubauer, Bernd A; Nürnberg, Peter; Thiele, Holger; Kurlemann, Gerhard; Arnold, Georgianne L; Bhambhani, Vikas; Bartholdi, Deborah; Pedurupillay, Christeen Ramane J; Misceo, Doriana; Frengen, Eirik; Strømme, Petter; Dlugos, Dennis J; Doherty, Emily S; Bijlsma, Emilia K; Ruivenkamp, Claudia A; Hoffer, Mariette J V; Goldstein, Amy; Rajan, Deepa S; Narayanan, Vinodh; Ramsey, Keri; Belnap, Newell; Schrauwen, Isabelle; Richholt, Ryan; Koeleman, Bobby P C; Sá, Joaquim; Mendonça, Carla; de Kovel, Carolien G F; Weckhuysen, Sarah; Hardies, Katia; De Jonghe, Peter; De Meirleir, Linda; Milh, Mathieu; Badens, Catherine; Lebrun, Marine; Busa, Tiffany; Francannet, Christine; Piton, Amélie; Riesch, Erik; Biskup, Saskia; Vogt, Heinrich; Dorn, Thomas; Helbig, Ingo; Michaud, Jacques L; Laube, Bodo; Syrbe, Steffen

    2016-01-01

    OBJECTIVE: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. METHODS: We collected molecular and clinical data from several diagnostic and research cohorts. Functional conseque......OBJECTIVE: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. METHODS: We collected molecular and clinical data from several diagnostic and research cohorts. Functional...... impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1...

  6. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  7. Variation in the Vitreous Phenotype of Stickler Syndrome Can Be Caused by Different Amino Acid Substitutions in the X Position of the Type II Collagen Gly-X-Y Triple Helix

    OpenAIRE

    Richards, Allan J; Baguley, David M.; Yates, John R W; Lane, Carol; Nicol, Mary; Harper, Peter S; Scott, John D.; Snead, Martin P

    2000-01-01

    Stickler syndrome is a dominantly inherited disorder characterized by arthropathy, midline clefting, hearing loss, midfacial hypoplasia, myopia, and retinal detachment. These features are highly variable both between and within families. Mutations causing the disorder have been found in the COL2A1 and COL11A1 genes. Premature termination codons in COL2A1 that result in haploinsufficiency of type II collagen are a common finding. These produce a characteristic congenital “membranous” anomaly o...

  8. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  9. Modelling cellular behaviour

    Science.gov (United States)

    Endy, Drew; Brent, Roger

    2001-01-01

    Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.

  10. Describing the phenotype in Rett syndrome using a population database

    OpenAIRE

    Colvin, L; Fyfe, S.; Leonard, S.; Schiavello, T; ELLAWAY, C; N de Klerk; Christodoulou, J.; Msall, M; Leonard, H

    2003-01-01

    Background: Mutations in the MECP2 gene have been recently identified as the cause of Rett syndrome, prompting research into genotype-phenotype relations. However, despite these genetic advances there has been little descriptive epidemiology of the full range of phenotypes.

  11. Changes in nuclear phenotypes following cold shock in Panstrongylus megistus (Burmeister

    Directory of Open Access Journals (Sweden)

    Simone L Garcia

    2000-12-01

    Full Text Available The nuclear phenotypes of Malpighian tubule epithelial cells of 5th instar male nymphs of the blood-sucking insect Panstrongylus megistus were studied immediately after a short (1 h cold shock at 0ºC, and 10 and 30 days later. The objective was to compare the responses to a cold shock with those known to occur after hyperthermia in order to provide insight into the cellular effect of cold in this species. Nuclei which usually exhibited a conspicuous Y chromosome chromocenter were the most frequent phenotype in control and treated specimens. Phenotypes in which the heterochromatin was unravelled, or in which there was nuclear fusion or cell death were more abundant in the shocked specimens. Most of the changes detected have also been found in heat-shocked nymphs, except for nuclear fusion which generates giant nuclei and which appeared to be less effective or necessary than that elicited after heat shock. Since other studies showed that a short cold shock does not affect the survival of more than 14% of 5th instar nymphs of P. megistus with domestic habit and can induce tolerance to a prolonged cold shock, heat shock proteins proteins are probably the best candidates for effective protection of the cells and the insects from drastic damage caused by low temperature shocks.

  12. Mixed phenotype acute leukemia

    Institute of Scientific and Technical Information of China (English)

    Ye Zixing; Wang Shujie

    2014-01-01

    Objective To highlight the current understanding of mixed phenotype acute leukemia (MPAL).Data sources We collected the relevant articles in PubMed (from 1985 to present),using the terms "mixed phenotype acute leukemia","hybrid acute leukemia","biphenotypic acute leukemia",and "mixed lineage leukemia".We also collected the relevant studies in WanFang Data base (from 2000 to present),using the terms "mixed phenotype acute leukemia" and "hybrid acute leukemia".Study selection We included all relevant studies concerning mixed phenotype acute leukemia in English and Chinese version,with no limitation of research design.The duplicated articles are excluded.Results MPAL is a rare subgroup of acute leukemia which expresses the myeloid and lymphoid markers simultaneously.The clinical manifestations of MPAL are similar to other acute leukemias.The World Health Organization classification and the European Group for Immunological classification of Leukaemias 1998 cdteria are most widely used.MPAL does not have a standard therapy regimen.Its treatment depends mostly on the patient's unique immunophenotypic and cytogenetic features,and also the experience of individual physician.The lack of effective treatment contributes to an undesirable prognosis.Conclusion Our understanding about MPAL is still limited.The diagnostic criteria have not been unified.The treatment of MPAL remains to be investigated.The prognostic factor is largely unclear yet.A better diagnostic cdteria and targeted therapeutics will improve the therapy effect and a subsequently better prognosis.

  13. Phenotypic Resistance to Antibiotics

    Directory of Open Access Journals (Sweden)

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  14. Ectopic expression of foxtail millet zip-like gene,SiPf40,in transgenic rice plants causes a pleiotropic phenotype affecting tillering,vascular distribution and root development

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Plant architecture determines grain production in rice(Oryza sativa) and is affected by important agronomic traits such as tillering,plant height,and panicle morphology.Many key genes involved in controlling the initiation and outgrowth of axillary buds,the elongation of stems,and the architecture of inflorescences have been isolated and analyzed.Previous studies have shown that SiPf40,which was identified from a foxtail millet(Setaria italica) immature seed cDNA library,causes extra branches and tillers in SiPf40-transgenic tobacco and foxtail millet,respectively.To reconfirm its function,we generated transgenic rice plants overexpressing SiPf40 under the control of the ubiquitin promoter.SiPf40-overexpressing transgenic plants have a greater tillering number and a wider tiller angle than wild-type plants.Their root architecture is modified by the promotion of lateral root development,and the distribution of xylem and phloem in the vascular bundle is affected.Analysis of hormone levels showed that the ratios of indole-3-acetic acid/zeatin(IAA/ZR) and IAA/gibberellic acid(IAA/GA) decreased in SiPf40-transgenic plants compared with wild-type plants.These findings strongly suggest that SiPf40 plays an important role in plant architecture.

  15. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  16. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  17. Cellular oncogenes in neoplasia.

    OpenAIRE

    Chan, V T; McGee, J O

    1987-01-01

    In recent years cellular homologues of many viral oncogenes have been identified. As these genes are partially homologous to viral oncogenes and are activated in some tumour cell lines they are termed "proto-oncogenes". In tumour cell lines proto-oncogenes are activated by either quantitative or qualitative changes in gene structure: activation of these genes was originally thought to be a necessary primary event in carcinogenesis, but activated cellular oncogenes, unlike viral oncogenes, do ...

  18. Cellular Cardiomyoplasty: Clinical Application

    OpenAIRE

    Chachques, J. (J.); Acar, C; J. Herreros; Trainini, J. (Jorge); Prosper, F.; D’Attellis, N. (N.); Fabiani, J. N.; Carpentier, A

    2004-01-01

    Myocardial regeneration can be induced with the implantation of a variety of myogenic and angiogenic cell types. More than 150 patients have been treated with cellular cardiomyoplasty worldwide, 18 patients have been treated by our group. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit postischemic remodelling, and restore regional myocardial contractility. Techniques for skeletal myoblasts culture and ex vivo expansion using auto...

  19. Cellular and molecular aspects of plant adaptation to microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  20. Cellular and molecular aspects of plant adaptation to microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  1. Cellular membrane collapse by atmospheric-pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  2. Cellular membrane collapse by atmospheric-pressure plasma jet

    International Nuclear Information System (INIS)

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells

  3. Cellular membrane collapse by atmospheric-pressure plasma jet

    Science.gov (United States)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  4. Phenotypic Switching in Fungi

    OpenAIRE

    Jain, Neena; Hasan, Fahmi; Fries, Bettina C.

    2008-01-01

    Over the past three decades new fungal diseases have emerged that now constitute a major threat, especially for patients with chronic diseases and/or underlying immune defi ciencies. Despite the epidemiologic data, the emergence of stable drug-resistant or hyper-virulent fungal strains in human disease has not been demonstrated as seen in emerging viral and bacterial infections. Fungi are eukaryotic microbes that capitalize on a sophisticated built-in ability to generate phenotypic variabilit...

  5. Modified apolipoprotein (apo) A-I by artificial sweetener causes severe premature cellular senescence and atherosclerosis with impairment of functional and structural properties of apoA-I in lipid-free and lipid-bound state.

    Science.gov (United States)

    Jang, Wookju; Jeoung, Nam Ho; Cho, Kyung-Hyun

    2011-05-01

    Long-term consumption of artificial sweeteners (AS) has been the recent focus of safety concerns. However, the potential risk of the AS in cardiovascular disease and lipoprotein metabolism has not been investigated sufficiently. We compared the influence of AS (aspartame, acesulfame K, and saccharin) and fructose in terms of functional and structural correlations of apolipoprotein (apo) A-I and high-density lipoproteins (HDL), which have atheroprotective effects. Long-term treatment of apoA-I with the sweetener at physiological concentration (3 mM for 168 h) resulted in loss of antioxidant and phospholipid binding activities with modification of secondary structure. The AS treated apoA-I exhibited proteolytic cleavage to produce 26 kDa-fragment. They showed pro-atherogenic properties in acetylated LDL phagocytosis of macrophages. Each sweetener alone or sweetener-treated apoA-I caused accelerated senescence in human dermal fibroblasts. These results suggest that long-term consumption of AS might accelerate atherosclerosis and senescence via impairment of function and structure of apoA-I and HDL. PMID:21533907

  6. Network motifs that stabilize the hybrid epithelial/mesenchymal phenotype

    Science.gov (United States)

    Jolly, Mohit Kumar; Jia, Dongya; Tripathi, Satyendra; Hanash, Samir; Mani, Sendurai; Ben-Jacob, Eshel; Levine, Herbert

    Epithelial to Mesenchymal Transition (EMT) and its reverse - MET - are hallmarks of cancer metastasis. While transitioning between E and M phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) phenotype that enables collective cell migration as a cluster of Circulating Tumor Cells (CTCs). These clusters can form 50-times more tumors than individually migrating CTCs, underlining their importance in metastasis. However, this hybrid E/M phenotype has been hypothesized to be only a transient one that is attained en route EMT. Here, via mathematically modeling, we identify certain `phenotypic stability factors' that couple with the core three-way decision-making circuit (miR-200/ZEB) and can maintain or stabilize the hybrid E/M phenotype. Further, we show experimentally that this phenotype can be maintained stably at a single-cell level, and knockdown of these factors impairs collective cell migration. We also show that these factors enable the association of hybrid E/M with high stemness or tumor-initiating potential. Finally, based on these factors, we deduce specific network motifs that can maintain the E/M phenotype. Our framework can be used to elucidate the effect of other players in regulating cellular plasticity during metastasis. This work was supported by NSF PHY-1427654 (Center for Theoretical Biological Physics) and the CPRIT Scholar in Cancer Research of the State of Texas at Rice University.

  7. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.

    Science.gov (United States)

    Malaquin, Nicolas; Martinez, Aurélie; Rodier, Francis

    2016-09-01

    Cellular senescence is historically associated with cancer suppression and aging. Recently, the reach of the senescence genetic program has been extended to include the ability of senescent cells to actively participate in tissue remodelling during many physiological processes, including placental biology, embryonic patterning, wound healing, and tissue stress responses caused by cancer therapy. Besides growth arrest, a significant feature of senescent cells is their ability to modify their immediate microenvironment using a senescence-associated (SA) secretome, commonly termed the SA secretory phenotype (SASP). Among others, the SASP contains growth factors, cytokines, and extracellular proteases that modulate the majority of both the beneficial and detrimental microenvironmental phenotypes caused by senescent cells. The SASP is thus becoming an obvious pharmaceutical target to manipulate SA effects. Herein, we review known signalling pathways underlying the SASP, including the DNA damage response (DDR), stress kinases, inflammasome, alarmin, inflammation- and cell survival-related transcription factors, miRNAs, RNA stability, autophagy, chromatin components, and metabolic regulators. We also describe the SASP as a temporally regulated dynamic sub-program of senescence that can be divided into a rapid DDR-associated phase, an early self-amplification phase, and a late "mature" phase, the late phase currently being the most widely studied SASP signature. Finally, we discuss how deciphering the signalling pathways regulating the SASP reveal targets that can be manipulated to harness the SA effects to benefit therapies for cancer and other age-related pathologies. PMID:27235851

  8. Irregular Cellular Learning Automata.

    Science.gov (United States)

    Esnaashari, Mehdi; Meybodi, Mohammad Reza

    2015-08-01

    Cellular learning automaton (CLA) is a recently introduced model that combines cellular automaton (CA) and learning automaton (LA). The basic idea of CLA is to use LA to adjust the state transition probability of stochastic CA. This model has been used to solve problems in areas such as channel assignment in cellular networks, call admission control, image processing, and very large scale integration placement. In this paper, an extension of CLA called irregular CLA (ICLA) is introduced. This extension is obtained by removing the structure regularity assumption in CLA. Irregularity in the structure of ICLA is needed in some applications, such as computer networks, web mining, and grid computing. The concept of expediency has been introduced for ICLA and then, conditions under which an ICLA becomes expedient are analytically found. PMID:25291810

  9. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  10. Cellular Homeostasis and Aging.

    Science.gov (United States)

    Hartl, F Ulrich

    2016-06-01

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans. PMID:27050288

  11. The behavioral phenotype of FMR1 mutations.

    Science.gov (United States)

    Boyle, Lia; Kaufmann, Walter E

    2010-11-15

    The purpose of this article is to provide an overview of the behavioral phenotype of FMR1 mutations, including fragile X syndrome (FXS) in order to better understand the clinical involvement of individuals affected by mutations in this gene. FXS is associated with a wide range of intellectual and behavioral problems, some relatively mild and others quite severe. FXS is the most common cause of inherited intellectual disability and one of the most prevalent genetic causes of autism spectrum disorder. Learning difficulties, attentional problems, anxiety, aggressive behavior, stereotypies, and mood disorders are also frequent in FXS. Recent studies of children and adults have identified associations between FMR1 premutation and many of the same disorders. We examine the neurobehavioral phenotypes of FXS and FMR1 premutation as they manifest across the lifespan of the individual. PMID:20981777

  12. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  13. COPD: Definition and Phenotypes

    DEFF Research Database (Denmark)

    Vestbo, J.

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is currently defined as a common preventable and treatable disease that is characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious...... particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patients. The evolution of this definition and the diagnostic criteria currently in use are discussed. COPD is increasingly divided in subgroups or phenotypes based on specific features and association with...

  14. Identifying cancer-causing noncoding RNAs

    NARCIS (Netherlands)

    le Sage, Carlos Karel

    2008-01-01

    To circumvent the dependency on prediction models, we developed a microRNA-screen-based assay to establish links between cellular phenotypes and microRNAs (miRNAs). To this end, a miRNA expression library (miR-Lib) was built consisting of 300 annotated miRNAs and around 100 candidate miRNAs. These m

  15. Phenotypic impact of genomic structural variation

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Symmons, Orsolya; Spitz, François;

    2013-01-01

    Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have...... delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants....

  16. Lung cancer stem cells—characteristics, phenotype

    OpenAIRE

    Hardavella, Georgia; George, Rachel; Sethi, Tariq

    2016-01-01

    Lung cancer remains a major cause of cancer-related deaths worldwide with unfavourable prognosis mainly due to the late stage of disease at presentation. High incidence and disease recurrence rates are a fact despite advances in treatment. Ongoing experimental and clinical observations suggest that the malignant phenotype in lung cancer is sustained by lung cancer stem cells (CSCs) which are putative stem cells situated throughout the airways that have the potential of initiating lung cancer ...

  17. Translating partitioned cellular automata into classical type cellular automata

    OpenAIRE

    Poupet, Victor

    2008-01-01

    Partitioned cellular automata are a variant of cellular automata that was defined in order to make it very simple to create complex automata having strong properties such as number conservation and reversibility (which are often difficult to obtain on cellular automata). In this article we show how a partitioned cellular automaton can be translated into a regular cellular automaton in such a way that these properties are conserved.

  18. Cellular and deafness mechanisms underlying connexin mutation induced hearing loss – A common hereditary deafness

    Directory of Open Access Journals (Sweden)

    Hong-Bo Zhao

    2015-05-01

    Full Text Available Hearing loss due to mutations in the connexin gene family which encodes gap junctional proteins is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2 mutations are responsible for ~50% of nonsyndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential (EP reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Additionally, there is no clear relationship between specific changes in connexin (channel functions and the phenotypes of mutation-induced hearing loss. Cx30, Cx29, Cx31, and Cx43 mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes and pathogeneses of specific-mutation induced hearing loss remain unclear. Finally, little information is available for humans. Further studies to address these deficiencies are urgently required.

  19. Genetic Dominance & Cellular Processes

    Science.gov (United States)

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  20. Radioactivity of cellular concrete

    International Nuclear Information System (INIS)

    The natural radioactivity of cellular concrete is discussed. Some data on the concentrations of 40K, 226Ra and 232Th in building materials in Poland are given. The results of dose rates measurements in living quarters as well as outside are presented. (A.S.)

  1. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  2. Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data.

    Directory of Open Access Journals (Sweden)

    Jonathan D Mosley

    Full Text Available A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1 non-synonymous SNPs (nsSNPs associated with "mechanistic phenotypes", comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1 thrombosis, evaluated in a population of 1,655 African Americans; and (2 four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs, and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher's p = 0.0001, FDR p = 0.03, driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10-5, FDR p = 0.03 (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L while the additive model showed enrichment related to chromatid segregation (p = 4×10-6, FDR p = 0.005 (KIF25, PINX1. We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.

  3. Mild intermittent hypoxemia in neonatal mice causes permanent neurofunctional deficit and white matter hypomyelination.

    Science.gov (United States)

    Juliano, Courtney; Sosunov, Sergey; Niatsetskaya, Zoya; Isler, Joseph A; Utkina-Sosunova, Irina; Jang, Isaac; Ratner, Veniamin; Ten, Vadim

    2015-02-01

    Very low birth weight (VLBW) premature infants experience numerous, often self-limited non-bradycardic episodes of intermittent hypoxemia (IH). We hypothesized that these episodes of IH affect postnatal white matter (WM) development causing hypomyelination and neurological handicap in the absence of cellular degeneration. Based on clinical data from ten VLBW neonates; a severity, daily duration and frequency of non-bradycardic IH episodes were reproduced in neonatal mice. Changes in heart rate and cerebral blood flow during IH were recorded. A short-term and long-term neurofunctional performance, cerebral content of myelin basic protein (MBP), 2'3' cyclic-nucleotide 3-phosphodiesterase (CNPase), electron microscopy of axonal myelination and the extent of cellular degeneration were examined. Neonatal mice exposed to IH exhibited no signs of cellular degeneration, yet demonstrated significantly poorer olfactory discrimination, wire holding, beam and bridge crossing, and walking-initiation tests performance compared to controls. In adulthood, IH-mice demonstrated no alteration in navigational memory. However, sensorimotor performance on rota-rod, wire-holding and beam tests was significantly worse compared to naive littermates. Both short- and long-term neurofunctional deficits were coupled with decreased MBP, CNPase content and poorer axonal myelination compared to controls. In neonatal mice mild, non-ischemic IH stress, mimicking that in VLBW preterm infants, replicates a key phenotype of non-cystic WM injury: permanent hypomyelination and sensorimotor deficits. Because this phenotype has developed in the absence of cellular degeneration, our data suggest that cellular mechanisms of WM injury induced by mild IH differ from that of cystic periventricular leukomalacia where the loss of myelin-producing cells and axons is the major mechanism of injury. PMID:25476492

  4. Physiological determinants and impacts of the adipocyte phenotype

    OpenAIRE

    Tchernof, A; Richard, D.

    2015-01-01

    The properties of adipose tissues accumulating in various compartments and ectopic sites around the body represent critical determinants of the relationship between obesity and metabolic disease. The increasingly recognized plasticity of the adipose cell phenotype led to many articles on the cellular characteristics and origins on brown, white and also of ‘beige' or ‘brite' adipocytes in recent years. This overview is a summary of manuscripts that were prepared by speakers at the 16th Interna...

  5. Mapping gene associations in human mitochondria using clinical disease phenotypes.

    Directory of Open Access Journals (Sweden)

    Curt Scharfe

    2009-04-01

    Full Text Available Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects

  6. Cellular Kinetics of Perivascular MSC Precursors

    Directory of Open Access Journals (Sweden)

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  7. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  8. Electromagnetic cellular interactions

    Czech Academy of Sciences Publication Activity Database

    Cifra, Michal; Fields, J. S.; Farhadi, A.

    2011-01-01

    Roč. 105, č. 3 (2011), 223-246. ISSN 0079-6107. [36th International Congress of Physiological Sciences (IUPS2009). Kyoto, 27.07.2009-01.08.2009] R&D Projects: GA ČR(CZ) GPP102/10/P454 Institutional research plan: CEZ:AV0Z20670512 Keywords : bioelectric phenomena * cellular biophysics Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.203, year: 2011

  9. Magnetic Cellular Switches

    OpenAIRE

    Overby, Darryl R.; Alenghat, Francis J.; Montoya-Zavala, Martín; Bei, HuCheng; Oh, Philmo; Karavitis, John; Ingber, Donald E.

    2004-01-01

    This paper focuses on the development of magnetic cellular switches to enable magnetic control of intracellular functions in living mammalian cells, including receptor signal transduction and gene transcription. Our approach takes advantage of the mechanosensitivity of adenosine 3′,5′-monophosphate (cAMP) induction and downstream transcription controlled by the cAMP regulatory element (CRE) to engineer gene constructs that optically report gene expression in living cells. We activate transcri...

  10. Cellular therapy in Tuberculosis

    Directory of Open Access Journals (Sweden)

    Shreemanta K. Parida

    2015-03-01

    Full Text Available Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB. We review here the role of Mesenchymal stromal cells, (MSCs, as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy.

  11. Cellular therapy in tuberculosis.

    Science.gov (United States)

    Parida, Shreemanta K; Madansein, Rajhmun; Singh, Nalini; Padayatchi, Nesri; Master, Iqbal; Naidu, Kantharuben; Zumla, Alimuddin; Maeurer, Markus

    2015-03-01

    Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB). We review here the role of Mesenchymal stromal cells, (MSCs), as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy. PMID:25809753

  12. Quantum cellular automata

    Science.gov (United States)

    Porod, Wolfgang; Lent, Craig S.; Bernstein, Gary H.

    1994-06-01

    The Notre Dame group has developed a new paradigm for ultra-dense and ultra-fast information processing in nanoelectronic systems. These Quantum Cellular Automata (QCA's) are the first concrete proposal for a technology based on arrays of coupled quantum dots. The basic building block of these cellular arrays is the Notre Dame Logic Cell, as it has been called in the literature. The phenomenon of Coulomb exclusion, which is a synergistic interplay of quantum confinement and Coulomb interaction, leads to a bistable behavior of each cell which makes possible their use in large-scale cellular arrays. The physical interaction between neighboring cells has been exploited to implement logic functions. New functionality may be achieved in this fashion, and the Notre Dame group invented a versatile majority logic gate. In a series of papers, the feasibility of QCA wires, wire crossing, inverters, and Boolean logic gates was demonstrated. A major finding is that all logic functions may be integrated in a hierarchial fashion which allows the design of complicated QCA structures. The most complicated system which was simulated to date is a one-bit full adder consisting of some 200 cells. In addition to exploring these new concepts, efforts are under way to physically realize such structures both in semiconductor and metal systems. Extensive modeling work of semiconductor quantum dot structures has helped identify optimum design parameters for QCA experimental implementations.

  13. Effect of Surface Modification and Macrophage Phenotype on Particle Internalization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daniel [Iowa State University; Phan, Ngoc [Iowa State University; Isely, Christopher [Iowa State University; Bruene, Lucas [Iowa State University; Bratlie, Kaitlin M [Ames Laboratory

    2014-11-10

    Material properties play a key role in the cellular internalization of polymeric particles. In the present study, we have investigated the effects of material characteristics such as water contact angle, zeta potential, melting temperature, and alternative activation of complement on particle internalization for pro-inflammatory, pro-angiogenic, and naïve macrophages by using biopolymers (~600 nm), functionalized with 13 different molecules. Understanding how material parameters influence particle internalization for different macrophage phenotypes is important for targeted delivery to specific cell populations. Here, we demonstrate that material parameters affect the alternative pathway of complement activation as well as particle internalization for different macrophage phenotypes. Here, we show that the quantitative structure–activity relationship method (QSAR) previously used to predict physiochemical properties of materials can be applied to targeting different macrophage phenotypes. These findings demonstrated that targeted drug delivery to macrophages could be achieved by exploiting material parameters.

  14. Matrix and cell phenotype differences in Dupuytren's disease

    NARCIS (Netherlands)

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2016-01-01

    BACKGROUND: Dupuytren's disease is a fibroproliferative disease of the hand and fingers, which usually manifests as two different phenotypes within the same patient. The disease first causes a nodule in the palm of the hand, while later, a cord develops, causing contracture of the fingers. RESULTS:

  15. X-Linked Dilated Cardiomyopathy: A Cardiospecific Phenotype of Dystrophinopathy

    OpenAIRE

    Akinori Nakamura

    2015-01-01

    X-linked dilated cardiomyopathy (XLDCM) is a distinct phenotype of dystrophinopathy characterized by preferential cardiac involvement without any overt skeletal myopathy. XLDCM is caused by mutations of the Duchenne muscular dystrophy (DMD) gene and results in lethal heart failure in individuals between 10 and 20 years. Patients with Becker muscular dystrophy, an allelic disorder, have a milder phenotype of skeletal muscle involvement compared to Duchenne muscular dystrophy (DMD) and sometime...

  16. RDH12 retinopathy: novel mutations and phenotypic description

    OpenAIRE

    Mackay, D. S.; Borman, A. D.; Moradi, P; Henderson, R. H.; Li, Z.; Wright, G. A.; Waseem, N; M. Gandra; Thompson, D.A.; Bhattacharya, S S; Holder, G E; Webster, A. R.; Moore, A T

    2011-01-01

    Purpose: To identify patients with autosomal recessive retinal dystrophy caused by mutations in the gene, retinal dehydrogenase 12 (RDH12), and to report the associated phenotype.Methods: After giving informed consent, all patients underwent full clinical evaluation. Patients were selected for mutation analysis based upon positive results from the Asper Ophthalmics Leber congenital amaurosis arrayed primer extansion (APEX) microarray screening, linkage analysis, or their clinical phenotype. A...

  17. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  18. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model.

    Science.gov (United States)

    Lee, Mijung; Liu, Tian; Im, Wooseok; Kim, Manho

    2016-08-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the aggregation of mutant Huntingtin (mHtt). Adipose-derived stem cells (ASCs) have a potential for use in the treatment of incurable disorders, including HD. ASCs secrete various neurotrophic factors and microvesicles, and modulate hostile microenvironments affected by disease through paracrine mechanisms. Exosomes are small vesicles that transport nucleic acid and protein between cells. Here, we investigated the therapeutic role of exosomes from ASCs (ASC-exo) using in vitro HD model by examining pathological phenotypes of this model. Immunocytochemistry result showed that ASC-exo significantly decreases mHtt aggregates in R6/2 mice-derived neuronal cells. Western blot result further confirmed the reduction in mHtt aggregates level by ASC-exo treatment. ASC-exo up-regulates PGC-1, phospho-CREB and ameliorates abnormal apoptotic protein level in an in vitro HD model. In addition, MitoSOX Red, JC-1 and cell viability assay showed that ASC-exo reduces mitochondrial dysfunction and cell apoptosis of in vitro HD model. These findings suggest that ASC-exo has a therapeutic potential for treating HD by modulating representative cellular phenotypes of HD. PMID:27177616

  19. Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens

    Directory of Open Access Journals (Sweden)

    Sun Youxian

    2008-06-01

    Full Text Available Abstract Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of

  20. Not All SCID Pigs Are Created Equally: Two Independent Mutations in the Artemis Gene Cause SCID in Pigs.

    Science.gov (United States)

    Waide, Emily H; Dekkers, Jack C M; Ross, Jason W; Rowland, Raymond R R; Wyatt, Carol R; Ewen, Catherine L; Evans, Alyssa B; Thekkoot, Dinesh M; Boddicker, Nicholas J; Serão, Nick V L; Ellinwood, N Matthew; Tuggle, Christopher K

    2015-10-01

    Mutations in >30 genes are known to result in impairment of the adaptive immune system, causing a group of disorders collectively known as SCID. SCID disorders are split into groups based on their presence and/or functionality of B, T, and NK cells. Piglets from a line of Yorkshire pigs at Iowa State University were shown to be affected by T(-)B(-)NK(+) SCID, representing, to our knowledge, the first example of naturally occurring SCID in pigs. In this study, we present evidence for two spontaneous mutations as the molecular basis for this SCID phenotype. Flow cytometry analysis of thymocytes showed an increased frequency of immature T cells in SCID pigs. Fibroblasts from these pigs were more sensitive to ionizing radiation than non-SCID piglets, eliminating the RAG1 and RAG2 genes. Genetic and molecular analyses showed that two mutations were present in the Artemis gene, which in the homozygous or compound heterozygous state cause the immunodeficient phenotype. Rescue of SCID fibroblast radiosensitivity by human Artemis protein demonstrated that the identified Artemis mutations are the direct cause of this cellular phenotype. The work presented in the present study reveals two mutations in the Artemis gene that cause T(-)B(-)NK(+) SCID in pigs. The SCID pig can be an important biomedical model, but these mutations would be undesirable in commercial pig populations. The identified mutations and associated genetic tests can be used to address both of these issues. PMID:26320255

  1. Sex hormone binding globulin phenotypes

    DEFF Research Database (Denmark)

    Cornelisse, M M; Bennett, Patrick; Christiansen, M;

    1994-01-01

    Human sex hormone binding globulin (SHBG) is encoded by a normal and a variant allele. The resulting SHBG phenotypes (the homozygous normal SHBG, the heterozygous SHBG and the homozygous variant SHBG phenotype) can be distinguished by their electrophoretic patterns. We developed a novel detection...

  2. Emerging molecular phenotypes of asthma.

    Science.gov (United States)

    Ray, Anuradha; Oriss, Timothy B; Wenzel, Sally E

    2015-01-15

    Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years, both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology, and genetics. These combined characteristics have been used to define phenotypes of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. Identification of consistent clinical phenotypes has now been reported across studies. Now the addition of various 'omics and identification of specific molecular pathways have moved the concept of clinical phenotypes toward the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biological therapies. Thus the global term asthma is poised to become obsolete, being replaced by terms that more specifically identify the pathology associated with the disease. PMID:25326577

  3. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  4. The GARP complex is required for cellular sphingolipid homeostasis

    DEFF Research Database (Denmark)

    Fröhlich, Florian; Petit, Constance; Kory, Nora;

    2015-01-01

    (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation...... the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2....

  5. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  6. Cellular-scale hydrodynamics

    DEFF Research Database (Denmark)

    Abkarian, Manouk; Faivre, Magalie; Horton, Renita; Smistrup, Kristian; Best-Popescu, Catherine A; Stone, Howard A.

    2008-01-01

    Microfluidic tools are providing many new insights into the chemical, physical and physicochemical responses of cells. Both suspension-level and single-cell measurements have been studied. We review our studies of these kinds of problems for red blood cells with particular focus on the shapes of ...... mechanical effects on suspended cells can be studied systematically in small devices, and how these features can be exploited to develop methods for characterizing physicochemical responses and possibly for the diagnosis of cellular-scale changes to environmental factors....

  7. Cellular mechanics and motility

    Science.gov (United States)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  8. Radiolabelled Cellular Blood Elements

    International Nuclear Information System (INIS)

    This volume contains the abstracts of the 5th International Symposion on Radiolabelling of Cellular Blood Elements to be held in Vienna, Austria, September 10-14, 1989. The Meeting is the fifth in a series of meetings designed to discuss the basics and clinical application of radiolabelling techniques. In these days, beside the search for new labelling agents and extending the knowledge in clinical use, the use of monoclonal antibodies is a big new challenge. All reviewed contributions that have been accepted for presentation are contained in this volume. (authors) 58 of them are of INIS scope

  9. BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription.

    Science.gov (United States)

    Dias, Cristina; Estruch, Sara B; Graham, Sarah A; McRae, Jeremy; Sawiak, Stephen J; Hurst, Jane A; Joss, Shelagh K; Holder, Susan E; Morton, Jenny E V; Turner, Claire; Thevenon, Julien; Mellul, Kelly; Sánchez-Andrade, Gabriela; Ibarra-Soria, Ximena; Deriziotis, Pelagia; Santos, Rui F; Lee, Song-Choon; Faivre, Laurence; Kleefstra, Tjitske; Liu, Pentao; Hurles, Mathew E; Fisher, Simon E; Logan, Darren W

    2016-08-01

    Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes. PMID:27453576

  10. Clinical studies of asthma phenotypes focusing on the role of the leukotrienes

    OpenAIRE

    Gyllfors, Per

    2006-01-01

    Inflammation in the airways in connection to asthma is a complex phenomenon and the mechanisms underlying the associated clinical symptoms involve the interaction of many different kinds of cells and mediators, giving rise to different phenotypes. The aim of the present thesis was to investigate the molecular and cellular mechanisms that results in two of these phenotypes, i.e., aspirinintolerant asthma and allergic asthma. The main focus was on leukotrienes and other eicosa...

  11. A Cellular GWAS Approach to Define Human Variation in Cellular Pathways Important to Inflammation.

    Science.gov (United States)

    Miller, Samuel I; Chaudhary, Anu

    2016-01-01

    An understanding of common human diversity in innate immune pathways should be beneficial in understanding autoimmune diseases, susceptibility to infection, and choices of anti-inflammatory treatment. Such understanding could also result in definition of currently unknown components of human inflammation pathways. A cellular genome-wide association studies (GWAS) platform, termed Hi-HOST (High-throughput human in vitro susceptibility testing), was developed to assay in vitro cellular phenotypes of infection in genotyped lymphoblastoid cells from genetically diverse human populations. Hi-HOST allows for measurement of multiple host and pathogen parameters of infection/inflammation including: bacterial invasion and intracellular replication, host cell death, and cytokine production. Hi-HOST has been used to successfully define a significant portion of the heritable human diversity in inflammatory cell death in response to Salmonella typhimurium. It also led to the discovery of genetic variants important to protection against systemic inflammatory response syndrome (SIRS) and protection against death and bacteremia in individuals with SIRS. Our laboratory is currently using this platform to define human diversity in autophagy and the NLPR3 inflammasome pathways, and to define new components that can impact the expression of phenotypes related to these pathways. PMID:27128945

  12. Emergence of phenotype switching through continuous and discontinuous evolutionary transitions.

    Science.gov (United States)

    Patra, Pintu; Klumpp, Stefan

    2015-07-01

    Bacterial persistence (phenotypic tolerance to antibiotics) provides a prime example of bet-hedging, where normally growing cells generate slow-growing but antibiotic-tolerant persister cells to survive through periods of exposure to antibiotics. The population dynamics of persistence is explained by a phenotype switching mechanism that allows individual cells to switch between these different cellular states with different environmental sensitivities. Here, we perform a theoretical study based on an exact solution for the case of a periodic variation of the environment to address how phenotype switching emerges and under what conditions switching is or is not beneficial for long-time growth. Specifically we report a bifurcation through which a fitness maximum and minimum emerge above a threshold in the duration of exposure to the antibiotic. Only above this threshold, the optimal phenotype switching rates are adjusted to the time scales of the environment, as emphasized by previous theoretical studies, while below the threshold a non-switching population is fitter than a switching one. The bifurcation can be of different type, depending on how the phenotype switching rates are allowed to vary. If the switching rates for both directions of the switch are coupled, the transition is discontinuous and results in evolutionary hysteresis, which we confirm with a stochastic simulation. If the switching rates vary individually, a continuous transition is obtained and no hysteresis is found. We discuss how both scenarios can be linked to changes in the underlying molecular networks. PMID:26020274

  13. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  14. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns of...... covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  15. DISCOVERING PATIENT PHENOTYPES USING GENERALIZED LOW RANK MODELS.

    Science.gov (United States)

    Schuler, Alejandro; Liu, Vincent; Wan, Joe; Callahan, Alison; Udell, Madeleine; Stark, David E; Shah, Nigam H

    2016-01-01

    The practice of medicine is predicated on discovering commonalities or distinguishing characteristics among patients to inform corresponding treatment. Given a patient grouping (hereafter referred to as a phenotype), clinicians can implement a treatment pathway accounting for the underlying cause of disease in that phenotype. Traditionally, phenotypes have been discovered by intuition, experience in practice, and advancements in basic science, but these approaches are often heuristic, labor intensive, and can take decades to produce actionable knowledge. Although our understanding of disease has progressed substantially in the past century, there are still important domains in which our phenotypes are murky, such as in behavioral health or in hospital settings. To accelerate phenotype discovery, researchers have used machine learning to find patterns in electronic health records, but have often been thwarted by missing data, sparsity, and data heterogeneity. In this study, we use a flexible framework called Generalized Low Rank Modeling (GLRM) to overcome these barriers and discover phenotypes in two sources of patient data. First, we analyze data from the 2010 Healthcare Cost and Utilization Project National Inpatient Sample (NIS), which contains upwards of 8 million hospitalization records consisting of administrative codes and demographic information. Second, we analyze a small (N=1746), local dataset documenting the clinical progression of autism spectrum disorder patients using granular features from the electronic health record, including text from physician notes. We demonstrate that low rank modeling successfully captures known and putative phenotypes in these vastly different datasets. PMID:26776181

  16. Discordant phenotype in siblings with X-linked agammaglobulinemia

    Energy Technology Data Exchange (ETDEWEB)

    Bykowsky, M.J.; Veksler, K.S.; Sullivan, K.E. [Children`s Hospital, Philadelphia, PA (United States)] [and others

    1996-03-01

    X-linked agammaglobulinemia (XLA) is a congenital humoral immunodeficiency caused by a defect in a B-cell-specific signaling molecule, Btk. There has been little concordance of phenotype with genotype in this disorder, and defects in Btk cause immunodeficiencies that range from mild impairment to complete inability to produce antibodies. The factors modifying the phenotype of XLA are not understood. The current study is the first description of two male siblings with identical T{sup 134}{yields}C mutations in the translation initiation ATG of Btk who have different clinical phenotypes as well as different laboratory phenotypes. The proband lacks immunoglobulins and B cells and has recurrent infections, while the elder, affected brother has normal levels of IgG and IgM and very few infections. Both have undetectable levels of Btk kinase activity in circulating mononuclear cells. Complete sequencing of Btk gene transcripts in both brothers revealed no additional mutations to account for the discordant phenotypes. This description provides unequivocal evidence that the phenotype of XLA is influenced by factors additional to the Btk gene. 39 refs., 3 figs., 3 tabs.

  17. Dissecting phenotypic variation among AIS patients

    International Nuclear Information System (INIS)

    We have created genital skin fibroblast cell lines directly from three patients in a Chinese family affected by androgen insensitivity syndrome (AIS). All patients in the family share an identical AR Arg840Cys mutant but show different disease phenotypes. By using the cell lines, we find that the mutation has not influenced a normal androgen-binding capacity at 37 deg C but has reduced the affinity for androgens and may cause thermolability of the androgen-receptor complex. The impaired nuclear trafficking of the androgen receptor in the cell lines is highly correlated with the severity of donors' disease phenotype. The transactivity of the mutant is substantially weakened and the extent of the reduced transactivity reflects severity of the donors' disease symptom. Our data reveal that although etiology of AIS is monogenic and the mutant may alter the major biological functions of its wild allele, the function of the mutant AR can also be influenced by the different genetic backgrounds and thus explains the divergent disease phenotypes

  18. Understanding the basis for Down syndrome phenotypes.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Down syndrome is a collection of features that are caused by trisomy for human Chromosome 21. While elevated transcript levels of the more than 350 genes on the chromosome are primarily responsible, it is likely that multiple genetic mechanisms underlie the numerous ways in which development and function diverge in individuals with trisomy 21 compared to euploid individuals. We consider genotype-phenotype interactions with the goal of producing working concepts that will be useful for approaches to ameliorate the effects of trisomy.

  19. Constraints on Speciation in Human Populations: Phenotypic Diversity Matters

    Directory of Open Access Journals (Sweden)

    Clara B. Jones

    2013-08-01

    Full Text Available A phenotype is an expression of a genotype interacting with a component of an environment. Phenotypic diversity can be generated by mutation, physiological mechanisms, developmental processes, or learning (reinforcing and aversive stimulus-response effects. Causes and consequences of lifetime reproductive success can be partitioned into one or another of the previous mechanisms of phenotypic diversity. This article highlights, in particular, the ways in which behavioral diversity including cultural rules, enhances a phenotype’s relative reproductive success. Expanding Frank’s (2013 theoretical framework, it is argued that, whilea diverse (e.g., “modular” human phenotype may broaden a phenotype’s success in a given landscape, byproducts are produced that increase gene flow between populations, limiting the potential for population divergence and reproductive isolation. The mechanisms discussed herein are not necessarily dependent upon conscious and aware operations.

  20. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  1. Modeling and cellular studies

    International Nuclear Information System (INIS)

    Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage

  2. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds......, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  3. Telomere dysfunction reduces microglial numbers without fully inducing an aging phenotype

    DEFF Research Database (Denmark)

    Khan, Asif Manzoor; Babcock, Alicia; Saeed, Hamid;

    2015-01-01

    The susceptibility of the aging brain to neurodegenerative disease may in part be attributed to cellular aging of the microglial cells that survey it. We investigated the effect of cellular aging induced by telomere shortening on microglia by the use of mice lacking the telomerase RNA component...... relatively resistant to telomerase deficiency during steady state conditions, despite an overall reduction in microglial numbers. Furthermore, telomerase deficiency and aging may provide disparate cues leading to distinct changes in microglial morphology and phenotype....

  4. Overexpression of Hsp27 affects the metastatic phenotype of human melanoma cells in vitro

    OpenAIRE

    Aldrian, Silke; Trautinger, Franz; Fröhlich, Ilse; Berger, Walter; Micksche, Michael; Kindas-Mügge, Ingela

    2002-01-01

    Overexpression of the small heat shock protein Hsp27 has been shown by us to inhibit the in vitro proliferation rate and to delay tumor development of a human melanoma cell line (A375) in nude mice. We hypothesized that Hsp27 may influence the neoplastic phenotype. In the present study Hsp27 transfectants from this cell line were analyzed for various cellular aspects associated with the metastatic process. We found that Hsp27-overexpressing clones exhibited an altered cellular morphology as c...

  5. Capturing phenotypes for precision medicine.

    Science.gov (United States)

    Robinson, Peter N; Mungall, Christopher J; Haendel, Melissa

    2015-10-01

    Deep phenotyping followed by integrated computational analysis of genotype and phenotype is becoming ever more important for many areas of genomic diagnostics and translational research. The overwhelming majority of clinical descriptions in the medical literature are available only as natural language text, meaning that searching, analysis, and integration of medically relevant information in databases such as PubMed is challenging. The new journal Cold Spring Harbor Molecular Case Studies will require authors to select Human Phenotype Ontology terms for research papers that will be displayed alongside the manuscript, thereby providing a foundation for ontology-based indexing and searching of articles that contain descriptions of phenotypic abnormalities-an important step toward improving the ability of researchers and clinicians to get biomedical information that is critical for clinical care or translational research. PMID:27148566

  6. Finding our way through phenotypes.

    Directory of Open Access Journals (Sweden)

    Andrew R Deans

    2015-01-01

    Full Text Available Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.

  7. Next-generation phenotypic screening.

    Science.gov (United States)

    Warchal, Scott J; Unciti-Broceta, Asier; Carragher, Neil O

    2016-07-01

    Phenotypic drug discovery (PDD) strategies are defined by screening and selection of hit or lead compounds based on quantifiable phenotypic endpoints without prior knowledge of the drug target. We outline the challenges associated with traditional phenotypic screening strategies and propose solutions and new opportunities to be gained by adopting modern PDD technologies. We highlight both historical and recent examples of approved drugs and new drug candidates discovered by modern phenotypic screening. Finally, we offer a prospective view of a new era of PDD underpinned by a wealth of technology advances in the areas of in vitro model development, high-content imaging and image informatics, mechanism-of-action profiling and target deconvolution. PMID:27357617

  8. Finding our way through phenotypes.

    Science.gov (United States)

    Deans, Andrew R; Lewis, Suzanna E; Huala, Eva; Anzaldo, Salvatore S; Ashburner, Michael; Balhoff, James P; Blackburn, David C; Blake, Judith A; Burleigh, J Gordon; Chanet, Bruno; Cooper, Laurel D; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E; Dumontier, Michel; Franz, Nico M; Friedrich, Frank; Gkoutos, George V; Haendel, Melissa; Harmon, Luke J; Hayamizu, Terry F; He, Yongqun; Hines, Heather M; Ibrahim, Nizar; Jackson, Laura M; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J; Le Novère, Nicolas; Lundberg, John G; Macklin, James; Mast, Austin R; Midford, Peter E; Mikó, István; Mungall, Christopher J; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J; Richter, Stefan; Robinson, Peter N; Ruttenberg, Alan; Schulz, Katja S; Segerdell, Erik; Seltmann, Katja C; Sharkey, Michael J; Smith, Aaron D; Smith, Barry; Specht, Chelsea D; Squires, R Burke; Thacker, Robert W; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D; Vogt, Lars; Wall, Christine E; Walls, Ramona L; Westerfeld, Monte; Wharton, Robert A; Wirkner, Christian S; Woolley, James B; Yoder, Matthew J; Zorn, Aaron M; Mabee, Paula

    2015-01-01

    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility. PMID:25562316

  9. Phenotypic profiling of ABC transporter coding genes in Myxococcus xanthus

    Directory of Open Access Journals (Sweden)

    RoyDWelch

    2014-07-01

    Full Text Available Information about a gene sometimes can be deduced by examining the impact of its mutation on phenotype. However, the genome-scale utility of the method is limited because, for nearly all model organisms, the majority of mutations result in little or no observable phenotypic impact. The cause of this is often attributed to robustness or redundancy within the genome, but that is only one plausible hypothesis. We examined a standard set of phenotypic traits, and applied statistical methods commonly used in the study of natural variants to an engineered mutant strain collection representing disruptions in 180 of the 192 ABC transporters within the bacterium Myxococcus xanthus. These strains display continuous variation in their phenotypic distributions, with a small number of “outlier” strains at both phenotypic extremes, and the majority within a confidence interval about the mean that always includes wild type. Correlation analysis reveals substantial pleiotropy, indicating that the traits do not represent independent variables. The traits measured in this study co-cluster with expression profiles, thereby demonstrating that these changes in phenotype correspond to changes at the molecular level, and therefore can be indirectly connected to changes in the genome. However, the continuous distributions, the pleiotropy, and the placement of wild type always within the confidence interval all indicate that this standard set of M. xanthus phenotypic assays is measuring a narrow range of partially overlapping traits that do not directly reflect fitness. This is likely a significant cause of the observed small phenotypic impact from mutation, and is unrelated to robustness and redundancy.

  10. Phenotypic and genetic characterization of a novel phenotype in pigs characterized by juvenile hairlessness and age dependent emphysema

    DEFF Research Database (Denmark)

    Bruun, Camilla S.; Jørgensen, Claus B.; Bay, Lene; Cirera, Susanna; Jensen, Henrik E.; Leifsson, Pàll S.; Nielsen, Jens; Christensen, Knud; Fredholm, Merete

    2008-01-01

    ß6-/- knockout phenotype seen in mice, the two genes encoding the two subunits of integrin avß6, i.e. ITGB6 and ITGAV, were considered candidate genes for this trait. Results: The mutated pig phenotype is characterized by hairlessness until puberty, thin skin with few hair follicles and absence of...... analysis with four microsatellite markers. Mapping of the porcine ITGB6 and ITGAV in the IMpRH radiation hybrid panel confirmed the comparative mapping information. Sequencing of the ITGB6 and ITGAV coding sequences from affected and normal pigs revealed no evidence of a causative mutation, but alternative...... resembling the integrin ß6-/- knockout phenotype seen in mice has been characterized in the pig. The candidate region on SSC15 has been confirmed by linkage analysis but molecular and functional analyses have excluded that the mutated phenotype is caused by structural mutations in or ablation of any of the...

  11. Huntington's disease: implications of associated cellular radiosensitivity

    International Nuclear Information System (INIS)

    Ionizing radiation sensitivity was studied in a series of Huntington's Disease (HD) patients and controls by measurement of radiation-induced chromosome aberrations in lymphocytes and by clonogenic survival of lymphoblastoid cell lines. As a group, HD patients were found to be significantly more radioisensitive than controls (p<0.001), but there was an overlap between values for the two groups such that an absolute distinction is not possible. These data are consistent with an association between HD and radiosensitivity but not with identity between HD and a radiosensitive phenotype, so that cellular radiosensitivity cannot be used for individual diagnosis. Analysis of three families including 5 HD patients and 11 first-degree relatives confirmed this conclusion and demonstrated that even within a given family presymptomatic diagnosis cannot be based on measurement of radiosensitivity. However, the common association of cellular radiosensitivity with HD probands and their families provides a potential lead to the identification of HD gene(s) and so to an eventual understanding of the aetiopathogenesis of this disease at the molecular level. (author)

  12. Case Study: The Mystery of the Seven Deaths--A Case Study in Cellular Respiration

    Science.gov (United States)

    Gazdik, Michaela

    2014-01-01

    Cellular respiration, the central component of cellular metabolism, can be a difficult concept for many students to fully understand. In this interrupted, problem-based case study, students explore the purpose of cellular respiration as they play the role of medical examiner, analyzing autopsy evidence to determine the mysterious cause of death…

  13. A case report of a patient with microcephaly, facial dysmorphism, chromosomal radiosensitivity and telomere length alterations closely resembling "Nijmegen breakage syndrome" phenotype.

    Science.gov (United States)

    Berardinelli, F; di Masi, A; Salvatore, M; Banerjee, S; Myung, K; De Villartay, J P; Revy, P; Plebani, A; Soresina, A; Taruscio, D; Tanzarella, C; Antoccia, A

    2007-01-01

    Genetic heterogeneity in Nijmegen breakage syndrome (NBS) is highlighted by patients showing clinical and cellular features of NBS but with no mutations in NBS1 and normal levels of nibrin. NBS is an autosomal recessive disorder, whose clinical cellular signs include growth and developmental defects, dysmorphic facies, immunodeficiency, cancer predisposition, chromosomal instability and radiosensitivity. NBS is caused by mutations in the NBS1 gene, whose product is part of the MRE11/RAD50/NBS1 complex involved in the DNA double-strand break (DSB) response pathway. Since the identification of the NBS1 gene, patients with NBS clinical signs, particularly severe congenital microcephaly, are screened for mutations in the NBS1 gene. Further analyses include X-ray-induced chromosome aberrations, telomere analysis, kinetics of DSBs repair, levels of a panel of proteins involved in the maintenance of genetic stability, radiation-induced phosphorylation of various substrates and cell cycle analysis. We describe a patient with a NBS clinical phenotype, chromosomal sensitivity to X-rays but without mutations in the whole NBS1 or in the Cernunnos gene. Enhanced response to irradiation was mediated neither by DSBs rejoining defects nor by the NBS/AT-dependent DNA-damage response pathway. Notably, we found that primary fibroblasts from this patient displayed telomere length alterations. Cross-talk between pathways controlling response to DSBs and those involved in maintaining telomeres has been shown in the present patient. Dissecting the cellular phenotype of radiosensitive NBS-like patients represents a useful tool for the research of new genes involved in the cellular response to DSBs. PMID:17395558

  14. The State of Cellular Probes

    OpenAIRE

    Yim, Youngbin

    2003-01-01

    Cellular probe technology is one of several potentially promising technologies for obtaining accurate travel time information. In 1996, the Federal Communications Commission (FCC) mandated E911 requirements that cellular location be provided when 911 emergency calls come in to emergency management authorities. The E911 requirements allow 50 -300 meters from the emergency call location, depending on the type of cellular phone technology used and whether handset-based or network-based solutions...

  15. Never-ageing cellular senescence

    OpenAIRE

    Ogrunc, Müge; d’Adda di Fagagna, Fabrizio

    2011-01-01

    Cellular senescence was historically discovered as a form of cellular ageing of in vitro cultured cells. It has been under the spotlight following the evidence of oncogene-induced senescence in vivo and its role as a potent tumour suppressor mechanism. Presently, a PubMed search using keywords ‘cellular senescence and cancer’ reveals 8398 number of references (by April 2011) showing that while our knowledge of senescence keeps expanding, the complexity of the phenomenon keeps us – researchers...

  16. Missing heritability of complex diseases: Enlightenment by genetic variants from intermediate phenotypes.

    Science.gov (United States)

    Blanco-Gómez, Adrián; Castillo-Lluva, Sonia; Del Mar Sáez-Freire, María; Hontecillas-Prieto, Lourdes; Mao, Jian Hua; Castellanos-Martín, Andrés; Pérez-Losada, Jesus

    2016-07-01

    Diseases of complex origin have a component of quantitative genetics that contributes to their susceptibility and phenotypic variability. However, after several studies, a major part of the genetic component of complex phenotypes has still not been found, a situation known as "missing heritability." Although there have been many hypotheses put forward to explain the reasons for the missing heritability, its definitive causes remain unknown. Complex diseases are caused by multiple intermediate phenotypes involved in their pathogenesis and, very often, each one of these intermediate phenotypes also has a component of quantitative inheritance. Here we propose that at least part of the missing heritability can be explained by the genetic component of intermediate phenotypes that is not detectable at the level of the main complex trait. At the same time, the identification of the genetic component of intermediate phenotypes provides an opportunity to identify part of the missing heritability of complex diseases. PMID:27241833

  17. Structural Modeling Insights into Human VKORC1 Phenotypes

    Directory of Open Access Journals (Sweden)

    Katrin J. Czogalla

    2015-08-01

    Full Text Available Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1 catalyses the reduction of vitamin K and its 2,3-epoxide essential to sustain γ-carboxylation of vitamin K-dependent proteins. Two different phenotypes are associated with mutations in human VKORC1. The majority of mutations cause resistance to 4-hydroxycoumarin- and indandione-based vitamin K antagonists (VKA used in the prevention and therapy of thromboembolism. Patients with these mutations require greater doses of VKA for stable anticoagulation than patients without mutations. The second phenotype, a very rare autosomal-recessive bleeding disorder caused by combined deficiency of vitamin K dependent clotting factors type 2 (VKCFD2 arises from a homozygous Arg98Trp mutation. The bleeding phenotype can be corrected by vitamin K administration. Here, we summarize published experimental data and in silico modeling results in order to rationalize the mechanisms of VKA resistance and VKCFD2.

  18. Active Cellular Nematics

    Science.gov (United States)

    Duclos, Guillaume; Erlenkaemper, Christoph; Garcia, Simon; Yevick, Hannah; Joanny, Jean-François; Silberzan, Pascal; Biology inspired physics at mesoscales Team; Physical approach of biological problems Team

    We study the emergence of a nematic order in a two-dimensional tissue of apolar elongated fibroblast cells. Initially, these cells are very motile and the monolayer is characterized by giant density fluctuations, a signature of far-from-equilibrium systems. As the cell density increases because of proliferation, the cells align with each other forming large perfectly oriented domains while the cellular movements slow down and eventually freeze. Therefore topological defects characteristic of nematic phases remain trapped at long times, preventing the development of infinite domains. By analogy with classical non-active nematics, we have investigated the role of boundaries and we have shown that cells confined in stripes of width smaller than typically 500 µm are perfectly aligned in the stripe direction. Experiments performed in cross-shaped patterns show that both the number of cells and the degree of alignment impact the final orientation. Reference: Duclos G., Garcia S., Yevick H.G. and Silberzan P., ''Perfect nematic order in confined monolayers of spindle-shaped cells'', Soft Matter, 10, 14, 2014

  19. 47 CFR 22.909 - Cellular markets.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular...

  20. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    Directory of Open Access Journals (Sweden)

    Chávez Francisco P

    2010-01-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.

  1. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence

    OpenAIRE

    Merilä, Juha; Hendry, Andrew P

    2014-01-01

    Many studies have recorded phenotypic changes in natural populations and attributed them to climate change. However, controversy and uncertainty has arisen around three levels of inference in such studies. First, it has proven difficult to conclusively distinguish whether phenotypic changes are genetically based or the result of phenotypic plasticity. Second, whether or not the change is adaptive is usually assumed rather than tested. Third, inferences that climate change is the specific caus...

  2. RNA Directed Modulation of Phenotypic Plasticity in Human Cells.

    Science.gov (United States)

    Trakman, Laura; Hewson, Chris; Burdach, Jon; Morris, Kevin V

    2016-01-01

    Natural selective processes have been known to drive phenotypic plasticity, which is the emergence of different phenotypes from one genome following environmental stimulation. Long non-coding RNAs (lncRNAs) have been observed to modulate transcriptional and epigenetic states of genes in human cells. We surmised that lncRNAs are governors of phenotypic plasticity and drive natural selective processes through epigenetic modulation of gene expression. Using heat shocked human cells as a model we find several differentially expressed transcripts with the top candidates being lncRNAs derived from retro-elements. One particular retro-element derived transcripts, Retro-EIF2S2, was found to be abundantly over-expressed in heat shocked cells. Over-expression of Retro-EIF2S2 significantly enhanced cell viability and modulated a predisposition for an adherent cellular phenotype upon heat shock. Mechanistically, we find that this retro-element derived transcript interacts directly with a network of proteins including 40S ribosomal protein S30 (FAU), Eukaryotic translation initiation factor 5A (EIF5A), and Ubiquitin-60S ribosomal protein L40 (UBA52) to affect protein modulated cell adhesion pathways. We find one motif in Retro-EIF2S2 that exhibits binding to FAU and modulates phenotypic cell transitions from adherent to suspension states. The observations presented here suggest that retroviral derived transcripts actively modulate phenotypic plasticity in human cells in response to environmental selective pressures and suggest that natural selection may play out through the action of retro-elements in human cells. PMID:27082860

  3. Cardiac sodium channel mutations: why so many phenotypes?

    Science.gov (United States)

    Liu, Man; Yang, Kai-Chien; Dudley, Samuel C.

    2016-01-01

    Mutations of the cardiac sodium channel (Nav1.5) can induce gain or loss of channel function. Gain-of-function mutations can cause long QT syndrome type 3 and possibly atrial fibrillation, whereas loss-of-function mutations are associated with a variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, sick sinus syndrome, and possibly dilated cardiomyopathy. The phenotypes produced by Nav1.5 mutations vary according to the direct effect of the mutation on channel biophysics, but also with age, sex, body temperature, and between regions of the heart. This phenotypic variability makes genotype–phenotype correlations difficult. In this Perspectives article, we propose that phenotypic variability not ascribed to mutation-dependent changes in channel function might be the result of additional modifiers of channel behaviour, such as other genetic variation and alterations in transcription, RNA processing, translation, post-translational modifications, and protein degradation. Consideration of these modifiers might help to improve genotype–phenotype correlations and lead to new therapeutic strategies. PMID:24958080

  4. The Effect of Selection on the Phenotypic Variance

    OpenAIRE

    Shnol, E.E.; Kondrashov, A S

    1993-01-01

    We consider the within-generation changes of phenotypic variance caused by selection w(x) which acts on a quantitative trait x. If before selection the trait has Gaussian distribution, its variance decreases if the second derivative of the logarithm of w(x) is negative for all x, while if it is positive for all x, the variance increases.

  5. Phenotype enhancement screen of a regulatory spx mutant unveils a role for the ytpQ gene in the control of iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Peter Zuber

    Full Text Available Spx is a global regulator of genes that are induced by disulfide stress in Bacillus subtilis. The regulon that it governs is comprised of over 120 genes based on microarray analysis, although it is not known how many of these are under direct Spx control. Most of the Spx-regulated genes (SRGs are of unknown function, but many encode products that are conserved in low %GC Gram-positive bacteria. Using a gene-disruption library of B. subtilis genomic mutations, the SRGs were screened for phenotypes related to Spx-controlled activities, such as poor growth in minimal medium and sensitivity to methyglyoxal, but nearly all of the SRG mutations showed little if any phenotype. To uncover SRG function, the mutations were rescreened in an spx mutant background to determine which mutant SRG allele would enhance the spx mutant phenotype. One of the SRGs, ytpQ was the site of a mutation that, when combined with an spx null mutation, elevated the severity of the Spx mutant phenotype, as shown by reduced growth in a minimal medium and by hypersensitivity to methyglyoxal. The ytpQ mutant showed elevated oxidative protein damage when exposed to methylglyoxal, and reduced growth rate in liquid culture. Proteomic and transcriptomic data indicated that the ytpQ mutation caused the derepression of the Fur and PerR regulons of B. subtilis. Our study suggests that the ytpQ gene, encoding a conserved DUF1444 protein, functions directly or indirectly in iron homeostasis. The ytpQ mutant phenotype mimics that of a fur mutation, suggesting a condition of low cellular iron. In vitro transcription analysis indicated that Spx stimulates transcription from the ytpPQR operon within which the ytpQ gene resides. The work uncovers a link between Spx and control of iron homeostasis.

  6. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  7. Interference cancellation technique under imperfect synchronization in cellular systems

    Institute of Scientific and Technical Information of China (English)

    WANG; Xin; WU; Zhuo

    2009-01-01

    In this paper, an asynchronous cooperative cellular system applied with space-time block coding(STBC)is investigated. A signal detector is proposed based on parallel interference cancellation(PIC), to cancel the inter-symbol interference(ISI)caused by the imperfect synchronization. Simulation results show that the proposed PIC detector can effectively suppress the ISI, but there is still a comparatively high error floor, due to the co-channel interference(CCI)of the cellular system.

  8. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Erica S. Lovelace

    2015-11-01

    Full Text Available Chronic viral infections like those caused by hepatitis C virus (HCV and human immunodeficiency virus (HIV cause disease that establishes an ongoing state of chronic inflammation. While there have been tremendous improvements towards curing HCV with directly acting antiviral agents (DAA and keeping HIV viral loads below detection with antiretroviral therapy (ART, there is still a need to control inflammation in these diseases. Recent studies indicate that many natural products like curcumin, resveratrol and silymarin alter cellular metabolism and signal transduction pathways via enzymes such as adenosine monophosphate kinase (AMPK and mechanistic target of rapamycin (mTOR, and these pathways directly influence cellular inflammatory status (such as NF-κB and immune function. Natural products represent a vast toolkit to dissect and define how cellular metabolism controls cellular immune and inflammatory function.

  9. Using Mouse Models to Explore Genotype-Phenotype Relationship in Down Syndrome

    Science.gov (United States)

    Salehi, Ahmad; Faizi, Mehrdad; Belichenko, Pavel V.; Mobley, William C.

    2007-01-01

    Down Syndrome (DS) caused by trisomy 21 is characterized by a variety of phenotypes and involves multiple organs. Sequencing of human chromosome 21 (HSA21) and subsequently of its orthologues on mouse chromosome 16 have created an unprecedented opportunity to explore the complex relationship between various DS phenotypes and the extra copy of…

  10. Influences of tumor stroma on the malignant phenotype

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Dau; Moeslund, Mette; Wandall, Hans H;

    2008-01-01

    , fibronectin and laminin 5 are all characteristics of the tumor stroma. Less is, however, known of the significance of the biophysical properties of the tumor stroma. The purpose of the present study was to investigate how cellular and mechanical properties of the three-dimensional collagen matrix may...... and laminin 5 was investigated. RESULTS: We found that expression of glycosylated oncofetal fibronectin was increased in the invasive phenotype of oral carcinoma cell lines. Furthermore we demonstrated that certain concentrations of collagen in the connective tissue equivalent, appears to stimulate...

  11. Interrogating cellular fate decisions with high-throughput arrays of multiplexed cellular communities.

    Science.gov (United States)

    Chen, Sisi; Bremer, Andrew W; Scheideler, Olivia J; Na, Yun Suk; Todhunter, Michael E; Hsiao, Sonny; Bomdica, Prithvi R; Maharbiz, Michel M; Gartner, Zev J; Schaffer, David V

    2016-01-01

    Recreating heterotypic cell-cell interactions in vitro is key to dissecting the role of cellular communication during a variety of biological processes. This is especially relevant for stem cell niches, where neighbouring cells provide instructive inputs that govern cell fate decisions. To investigate the logic and dynamics of cell-cell signalling networks, we prepared heterotypic cell-cell interaction arrays using DNA-programmed adhesion. Our platform specifies the number and initial position of up to four distinct cell types within each array and offers tunable control over cell-contact time during long-term culture. Here, we use the platform to study the dynamics of single adult neural stem cell fate decisions in response to competing juxtacrine signals. Our results suggest a potential signalling hierarchy between Delta-like 1 and ephrin-B2 ligands, as neural stem cells adopt the Delta-like 1 phenotype of stem cell maintenance on simultaneous presentation of both signals. PMID:26754526

  12. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology.

    Science.gov (United States)

    Akdis, Cezmi A; Bachert, Claus; Cingi, Cemal; Dykewicz, Mark S; Hellings, Peter W; Naclerio, Robert M; Schleimer, Robert P; Ledford, Dennis

    2013-06-01

    Chronic rhinosinusitis (CRS) is a complex disease consisting of several disease variants with different underlying pathophysiologies. Limited knowledge of the mechanisms of these disease subgroups is possibly the greatest obstacle in understanding the causes of CRS and improving treatment. It is generally agreed that there are clinically relevant CRS phenotypes defined by an observable characteristic or trait, such as the presence or absence of nasal polyps. Defining the phenotype of the patient is useful in making therapeutic decisions. However, clinical phenotypes do not provide full insight into all underlying cellular and molecular pathophysiologic mechanisms of CRS. Recognition of the heterogeneity of CRS has promoted the concept that CRS consists of multiple groups of biological subtypes, or "endotypes," which are defined by distinct pathophysiologic mechanisms that might be identified by corresponding biomarkers. Different CRS endotypes can be characterized by differences in responsiveness to different treatments, including topical intranasal corticosteroids and biological agents, such as anti-IL-5 and anti-IgE mAb, and can be based on different biomarkers that are linked to underlying mechanisms. CRS has been regarded as a single disease entity in clinical and genetic studies in the past, which can explain the failure to identify consistent genetic and environmental correlations. In addition, better identification of endotypes might permit individualization of therapy that can be targeted against the pathophysiologic processes of a patient's endotype, with potential for more effective treatment and better patient outcomes. PMID:23587334

  13. Cellular responses of A549 alveolar epithelial cells to serially collected Pseudomonas aeruginosa from cystic fibrosis patients at different stages of pulmonary infection

    DEFF Research Database (Denmark)

    Hawdon, Nicole A; Aval, Pouya Sadeghi; Barnes, Rebecca J;

    2010-01-01

    Pseudomonas aeruginosa is the major cause of chronic pulmonary disease in cystic fibrosis (CF) patients. During chronic infection, P. aeruginosa lose certain virulence factors, transform into a mucoid phenotype, and develop antibiotic resistance. We hypothesized that these genetic and phenotypic...

  14. Leaf segmentation in plant phenotyping

    NARCIS (Netherlands)

    Scharr, Hanno; Minervini, Massimo; French, Andrew P.; Klukas, Christian; Kramer, David M.; Liu, Xiaoming; Luengo, Imanol; Pape, Jean Michel; Polder, Gerrit; Vukadinovic, Danijela; Yin, Xi; Tsaftaris, Sotirios A.

    2016-01-01

    Image-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape cha

  15. Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize

    Directory of Open Access Journals (Sweden)

    Fazhan Qiu

    2014-08-01

    DATA: The link refers to the raw data from: Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize. Current Plant Biology. Raw data for phenotype, maker sequence and cytology could be directly downloaded by the link: http://dx.doi.org/10.5061/dryad.bt963

  16. Actual problems of cellular cardiomyoplasty

    Directory of Open Access Journals (Sweden)

    Bulat Kaupov

    2010-04-01

    Full Text Available The paper provides review of cellular technologies used incardiology, describes types of cellular preparations depending onsources of cells and types of compounding cells. The generalmechanisms of therapies with stem cells applications are described.Use of cellular preparations for treatment of cardiovascular diseasesand is improvement of the forecast at patients with heartinsufficiency of various genesis is considered as alternative topractice with organ transplantations. Efforts of biotechnologicallaboratories are directed on search of optimum population of cellsfor application in cardiology and studying of mechanisms andfactors regulating function of cardiac stem cells.

  17. Increased B Regulatory Phenotype in Non-Metastatic Lymph Nodes of Node-Positive Breast Cancer Patients.

    Science.gov (United States)

    Mehdipour, F; Razmkhah, M; Hosseini, A; Bagheri, M; Safaei, A; Talei, A-R; Ghaderi, A

    2016-03-01

    Tumour-draining lymph nodes (TDLNs) are centre in orchestrating the immune responses against cancer. The cellularity and lymphocyte subpopulations change in the process of cancer progression and lymph node involvement. B lymphocyte subsets and their function in breast cancer-draining lymph nodes have not been well elucidated. Here, we studied the influence of tumour metastasis on the frequencies of different B cell subsets including naïve and memory B cells as well as those which are known to be enriched in the regulatory pool in TDLNs of 30 patients with breast cancer. Lymphocytes were obtained from a fresh piece of each lymph node and stained for CD19 and other B cell-associated markers and subjected to flow cytometry. Our investigation revealed that metastatic TDLN showed a significant decrease in active, memory and class-switched B cells while the frequencies of B cells with regulatory phenotypes were not changed. However, CD27(hi) CD25(+) and CD1d(hi) CD5(+) B regulatory subsets significantly increased in non-metastatic lymph nodes (nMLNs) of node-positive patients compared with node-negative patients. Our data provided evidence that in breast cancer, metastasis of tumour to axillary lymph nodes altered B cell populations in favour of resting, inactive and unswitched phenotypes. We assume that the lymphatic involvement may cause an increase in a subset of regulatory B cells in non-metastatic lymph nodes. PMID:26708831

  18. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    Science.gov (United States)

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  19. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    Directory of Open Access Journals (Sweden)

    Girolamo Pelaia

    2015-01-01

    Full Text Available Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments.

  20. Influence of electric field on cellular migration

    Science.gov (United States)

    Guido, Isabella; Bodenschatz, Eberhard

    Cells have the ability to detect continuous current electric fields (EFs) and respond to them with a directed migratory movement. Dictyostelium discoideum (D.d.) cells, a key model organism for the study of eukaryotic chemotaxis, orient and migrate toward the cathode under the influence of an EF. The underlying sensing mechanism and whether it is shared by the chemotactic response pathway remains unknown. Whereas genes and proteins that mediate the electric sensing as well as that define the migration direction have been previously investigated in D.d. cells, a deeper knowledge about the cellular kinematic effects caused by the EF is still lacking. Here we show that besides triggering a directional bias the electric field influences the cellular kinematics by accelerating the movement of cells along their path. We found that the migratory velocity of the cells in an EF increases linearly with the exposure time. Through the analysis of the PI3K and Phg2 distribution in the cytosol and of the cellular adherence to the substrate we aim at elucidating whereas this speed up effect in the electric field is due to either a molecular signalling or the interaction with the substrate. This work is part of the MaxSynBio Consortium which is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society.

  1. Origami interleaved tube cellular materials

    International Nuclear Information System (INIS)

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)

  2. The puzzle of immune phenotypes of childhood asthma.

    Science.gov (United States)

    Landgraf-Rauf, Katja; Anselm, Bettina; Schaub, Bianca

    2016-12-01

    Asthma represents the most common chronic childhood disease worldwide. Whereas preschool children present with wheezing triggered by different factors (multitrigger and viral wheeze), clinical asthma manifestation in school children has previously been classified as allergic and non-allergic asthma. For both, the underlying immunological mechanisms are not yet understood in depth in children. Treatment is still prescribed regardless of underlying mechanisms, and children are not always treated successfully. This review summarizes recent key findings on the complex mechanisms of the development and manifestation of childhood asthma. Whereas traditional classification of childhood asthma is primarily based on clinical symptoms like wheezing and atopy, novel approaches to specify asthma phenotypes are under way and face challenges such as including the stability of phenotypes over time and transition into adulthood. Epidemiological studies enclose more information on the patient's disease history and environmental influences. Latest studies define endotypes based on molecular and cellular mechanisms, for example defining risk and protective single nucleotide polymorphisms (SNPs) and new immune phenotypes, showing promising results. Also, regulatory T cells and recently discovered T helper cell subtypes such as Th9 and Th17 cells were shown to be important for the development of asthma. Innate lymphoid cells (ILC) could play a critical role in asthma patients as they produce different cytokines associated with asthma. Epigenetic findings showed different acetylation and methylation patterns for children with allergic and non-allergic asthma. On a posttranscriptional level, miRNAs are regulating factors identified to differ between asthma patients and healthy controls and also indicate differences within asthma phenotypes. Metabolomics is another exciting chapter important for endotyping asthmatic children. Despite the development of new biomarkers and the discovery of

  3. Phenotypic constraints and phenotypic hitchhiking in a promiscuous enzyme

    OpenAIRE

    Wagner, Andreas; Weikert, Christian

    2012-01-01

    Covarying phenotypic traits can limit natural selection’s ability to modify these traits. Most evolutionary studies on trait covariation use the comparative method to study complex traits of multicellular organisms. Simpler traits have the advantage of being amenable to experimental evolution. Here we study such a simple molecular system, the TEM-1 beta-lactamase protein, a promiscuous enzyme that hydrolyses antibiotics, and thus confers antibiotic resistance to bacteria. We mutagenized large...

  4. Cellular mechanisms during vascular development

    OpenAIRE

    Blum, Yannick

    2012-01-01

    The vascular system is an essential organ in vertebrate animals and provides the organism with enough oxygen and nutrients. It is composed of an interconnected network of blood vessels, which form using a number of different morphogenetic mechanisms. Angiogenesis describes the formation of new blood vessels from preexisting vessels. A number of molecular pathways have been shown to be essential during angiogenesis. However, cellular architecture of blood vessels as well as cellular mechanisms...

  5. Predictive Modelling of Cellular Load

    OpenAIRE

    Carolan, Emmett; McLoone, Seamus; Farrell, Ronan

    2015-01-01

    This work examines the temporal dynamics of cellular load in four Irish regions. Large scale underutilisation of network resources is identified both at the regional level and at the level of individual cells. Cellular load is modeled and prediction intervals are generated. These prediction intervals are used to put an upper bound on usage in a particular cell at a particular time. Opportunities for improvements in network utilization by incorporating these upper bounds on usage are identifie...

  6. Cellular automaton for chimera states

    OpenAIRE

    García-Morales, Vladimir

    2016-01-01

    A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the...

  7. Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy

    Science.gov (United States)

    Qian, Hong; Elson, Elliot L.

    Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.

  8. Molecular basis of D-negative phenotype (literature review and case reports

    Directory of Open Access Journals (Sweden)

    L. L. Golovkina

    2015-10-01

    Full Text Available The molecular basis of the D-negative phenotype formation in humans is presented in this article. Causes of true and false D-negative phenotype appearance are described. The basis of true D-negative phenotype are changes in the genome, that lead to complete lack of RhD antigen expression on the red blood cells surface, or defective expression of RhD antigen, not detectable by serological methods. The reason for the false D-negative phenotype is the insufficient sensitivity of routine serological methods. Cases of true and false D-negative phenotype identified during the examination of the Russia residents are described. We were able to identify one case of true (RHDψ and five cases of false D-negative phenotype (RHD weak type 2 – two cases, RHD weak type 15 – one case and RHD weak type 20 – two cases by molecular method.

  9. X-Linked Dilated Cardiomyopathy: A Cardiospecific Phenotype of Dystrophinopathy

    Directory of Open Access Journals (Sweden)

    Akinori Nakamura

    2015-06-01

    Full Text Available X-linked dilated cardiomyopathy (XLDCM is a distinct phenotype of dystrophinopathy characterized by preferential cardiac involvement without any overt skeletal myopathy. XLDCM is caused by mutations of the Duchenne muscular dystrophy (DMD gene and results in lethal heart failure in individuals between 10 and 20 years. Patients with Becker muscular dystrophy, an allelic disorder, have a milder phenotype of skeletal muscle involvement compared to Duchenne muscular dystrophy (DMD and sometimes present with dilated cardiomyopathy. The precise relationship between mutations in the DMD gene and cardiomyopathy remain unclear. However, some hypothetical mechanisms are being considered to be associated with the presence of some several dystrophin isoforms, certain reported mutations, and an unknown dystrophin-related pathophysiological mechanism. Recent therapy for Duchenne muscular dystrophy, the severe dystrophinopathy phenotype, appears promising, but the presence of XLDCM highlights the importance of focusing on cardiomyopathy while elucidating the pathomechanism and developing treatment.

  10. Association of erythrocyte acid phosphatase phenotypes with myopia

    Directory of Open Access Journals (Sweden)

    Himabindu P

    2005-01-01

    Full Text Available Acid phosphatase is a polymorphic nonspecific orthophosphate monoesterase which catalyses the cleaving of phosphoric acid and subsequent breakdown of several monophosphoric esters under acidic pH conditions. Acid phosphatase has a physiologic function as a flavin mononucleotide phosphatase (FMN and regulates the intracellular concentrations of flavin coenzymes that are electron carriers in the oxidative phosphorylation pathway. Myopia or nearsightedness is caused by both environmental and genetic factors. Myopic eyes when subjected to excessive oxidative stress results in retinal detachments .In the present study there is a significant elevation of AA phenotype in myopes when compared to controls. The AA phenotype is more susceptible to oxidative stress and its lower enzyme activity is known to be associated with increased intrauterine growth that further results in increased axial length in progressive myopia. The AA phenotype also confers risk for myopia development in males, early age group and cases with parental consanguinity.

  11. Separate Respiratory Phenotypes in Methyl-CpG-Binding Protein 2 (Mecp2) Deficient Mice

    OpenAIRE

    Bissonnette, John M.; Knopp, Sharon J.

    2006-01-01

    Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2) that encodes a DNA binding protein involved in gene silencing. Selective deletion of Mecp2 in post-mitotic neurons in mice results in a Rettlike phenotype characterized by disturbances in motor activity and body weight, suggesting that these symptoms are exclusively caused by neuronal deficiency. Included in the RTT phenotype are episodes of respiratory depression...

  12. Phenotype standardization for drug-induced kidney disease.

    Science.gov (United States)

    Mehta, Ravindra L; Awdishu, Linda; Davenport, Andrew; Murray, Patrick T; Macedo, Etienne; Cerda, Jorge; Chakaravarthi, Raj; Holden, Arthur L; Goldstein, Stuart L

    2015-08-01

    Drug-induced kidney disease is a frequent cause of renal dysfunction; however, there are no standards to identify and characterize the spectrum of these disorders. We convened a panel of international, adult and pediatric, nephrologists and pharmacists to develop standardized phenotypes for drug-induced kidney disease as part of the phenotype standardization project initiated by the International Serious Adverse Events Consortium. We propose four phenotypes of drug-induced kidney disease based on clinical presentation: acute kidney injury, glomerular, tubular, and nephrolithiasis, along with the primary and secondary clinical criteria to support the phenotype definition, and a time course based on the KDIGO/AKIN definitions of acute kidney injury, acute kidney disease, and chronic kidney disease. Establishing causality in drug-induced kidney disease is challenging and requires knowledge of the biological plausibility for the specific drug, mechanism of injury, time course, and assessment of competing risk factors. These phenotypes provide a consistent framework for clinicians, investigators, industry, and regulatory agencies to evaluate drug nephrotoxicity across various settings. We believe that this is the first step to recognizing drug-induced kidney disease and developing strategies to prevent and manage this condition. PMID:25853333

  13. Refining mimicry: phenotypic variation tracks the local optimum.

    Science.gov (United States)

    Mérot, Claire; Le Poul, Yann; Théry, Marc; Joron, Mathieu

    2016-07-01

    Müllerian mimicry between chemically defended preys is a textbook example of natural selection favouring phenotypic convergence onto a shared warning signal. Studies of mimicry have concentrated on deciphering the ecological and genetic underpinnings of dramatic switches in mimicry association, producing a well-known mosaic distribution of mimicry patterns across geography. However, little is known about the accuracy of resemblance between natural comimics when the local phenotypic optimum varies. In this study, using analyses of wing shape, pattern and hue, we quantify multimodal phenotypic similarity between butterfly comimics sharing the so-called postman pattern in different localities with varying species composition. We show that subtle but consistent variation between populations of the localized species, Heliconius timareta thelxinoe, enhance resemblance to the abundant comimics which drive the mimicry in each locality. Those results suggest that rarer comimics track the changes in the phenotypic optimum caused by gradual changes in the composition of the mimicry community, providing insights into the process by which intraspecific diversity of mimetic pattern may arise. Furthermore, our results suggest a multimodal evolution of similarity, with coordinated convergence in different features of the phenotype such as wing outline, pattern and hue. Finally, multilocus genotyping allows estimating local hybridization rates between H. timareta and comimic H. melpomene in different populations, raising the hypothesis that mimicry refinement between closely related comimics may be enhanced by adaptive introgression at loci modifying the accuracy of resemblance. PMID:27003742

  14. In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line

    OpenAIRE

    Dharmawardhane Suranganie F; Wall Kristin M; Hoffmeyer Michaela R

    2005-01-01

    Abstract Background Inflammatory breast cancer (IBC) is the most lethal form of locally invasive breast cancer known. However, very little information is available on the cellular mechanisms responsible for manifestation of the IBC phenotype. To understand the unique phenotype of IBC, we compared the motile and adhesive interactions of an IBC cell line, SUM 149, to the non-IBC cell line SUM 102. Results Our results demonstrate that both IBC and non-IBC cell lines exhibit similar adhesive prop...

  15. Deciphering the Galaxy Guppy phenotype

    Directory of Open Access Journals (Sweden)

    Philip Shaddock

    2011-01-01

    Full Text Available Animal breeding hobbyists have been useful to science because they identify and isolate colorcoat mutations that geneticists can in turn use in their studies of the development and differentiation ofcolor cells. This paper discusses a very interesting color mutant, the Japanese Galaxy, tracing its creationfrom back to a self-educated genetics hobbyist, Hoskiki Tsutsui. The paper discusses a constituent genepreviously studied by Dr. Violet Phang, the snakeskin gene (the linked body and fin genes Ssb and Sst.And it discusses a gene previously unknown to science, the Schimmelpfennig Platinum gene (Sc.Through crossing experiments, the author determines that the combination of these two genes producesan intermediate phenotype, the Medusa. Incorporating the Grass (Gr, another gene unknown to sciencegene into the Medusa through a crossover produces the Galaxy phenotype. Microscope studies of thesnakeskin pattern in Galaxies and snakeskins reveals some parallels with similar studies made of theZebrafish Danio.

  16. Phenotypic variability in Meesmann's dystrophy

    DEFF Research Database (Denmark)

    Ehlers, Niels; Hjortdal, Jesper; Nielsen, Kim;

    2008-01-01

    symptoms often include blurred vision and ocular irritation. Typical cases may be entirely free of complaints. Intermittent pain episodes, such as occur in recurrent erosion syndrome, are not the rule. Genetic sequencing indicated a familial relationship with the originally described Meesmann family......'s dystrophy occurs worldwide. The largest family described is the original German one, now supplemented with a Danish branch. Despite the presence of an identical genetic defect, the clinical phenotype varies. This suggests that non-KRT12-related mechanisms are responsible for the variation.......PURPOSE: To describe the phenotypic variability in Meesmann's microcystic dystrophy of the corneal epithelium based on a review of the literature and the presentation of a Danish family. METHODS: We carried out a clinical examination of the family and genetic sequencing of DNA. RESULTS: Subjective...

  17. Phenotypic and immunohistochemical characterization of sarcoglycanopathies

    Directory of Open Access Journals (Sweden)

    Ana F. B. Ferreira

    2011-01-01

    Full Text Available INTRODUCTION: Limb-girdle muscular dystrophy presents with heterogeneous clinical and molecular features. The primary characteristic of this disorder is proximal muscular weakness with variable age of onset, speed of progression, and intensity of symptoms. Sarcoglycanopathies, which are a subgroup of the limb-girdle muscular dystrophies, are caused by mutations in sarcoglycan genes. Mutations in these genes cause secondary deficiencies in other proteins, due to the instability of the dystrophin-glycoprotein complex. Therefore, determining the etiology of a given sarcoglycanopathy requires costly and occasionally inaccessible molecular methods. OBJECTIVE: The aim of this study was to identify phenotypic differences among limb-girdle muscular dystrophy patients who were grouped according to the immunohistochemical phenotypes for the four sarcoglycans. METHODS: To identify phenotypic differences among patients with different types of sarcoglycanopathies, a questionnaire was used and the muscle strength and range of motion of nine joints in 45 patients recruited from the Department of Neurology - HC-FMUSP (Clinics Hospital of the Faculty of Medicine of the University of São Paulo were evaluated. The findings obtained from these analyses were compared with the results of the immunohistochemical findings. RESULTS: The patients were divided into the following groups based on the immunohistochemical findings: a-sarcoglycanopathies (16 patients, b-sarcoglycanopathies (1 patient, y-sarcoglycanopathies (5 patients, and nonsarcoglycanopathies (23 patients. The muscle strength analysis revealed significant differences for both upper and lower limb muscles, particularly the shoulder and hip muscles, as expected. No pattern of joint contractures was found among the four groups analyzed, even within the same family. However, a high frequency of tiptoe gait was observed in patients with a-sarcoglycanopathies, while calf pseudo-hypertrophy was most common in

  18. Phenotypic expression in mucopolysaccharidosis VII.

    OpenAIRE

    Bernsen, P L; Wevers, R. A.; Gabreëls, F J; Lamers, K J; Sonnen, A E; Stekhoven, J H

    1987-01-01

    beta-glucuronidase deficiency is an extremely rare disorder which is known to have a considerable phenotypic variation. A survey of the clinical findings in 19 previously reported patients with mucopolysaccharidosis VII is presented together with the results of clinical and biochemical studies in two further patients. Because a similar clinical picture is present in a heterozygotic sister it is doubted whether all signs and symptoms can be attributed to the beta-glucuronidase deficiency. The ...

  19. Wine Expertise Predicts Taste Phenotype

    OpenAIRE

    Hayes, John E.; Pickering, Gary J

    2012-01-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance – with appropriate caveats about populations tested, outcomes measured and psychophysical methods used – an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but a...

  20. Statistical models for trisomic phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, N.E.; Sherman, S.L.; Feingold, E. [Emory Univ., Atlanta, GA (United States)

    1996-01-01

    Certain genetic disorders are rare in the general population but more common in individuals with specific trisomies, which suggests that the genes involved in the etiology of these disorders may be located on the trisomic chromosome. As with all aneuploid syndromes, however, a considerable degree of variation exists within each phenotype so that any given trait is present only among a subset of the trisomic population. We have previously presented a simple gene-dosage model to explain this phenotypic variation and developed a strategy to map genes for such traits. The mapping strategy does not depend on the simple model but works in theory under any model that predicts that affected individuals have an increased likelihood of disomic homozygosity at the trait locus. This paper explores the robustness of our mapping method by investigating what kinds of models give an expected increase in disomic homozygosity. We describe a number of basic statistical models for trisomic phenotypes. Some of these are logical extensions of standard models for disomic phenotypes, and some are more specific to trisomy. Where possible, we discuss genetic mechanisms applicable to each model. We investigate which models and which parameter values give an expected increase in disomic homozygosity in individuals with the trait. Finally, we determine the sample sizes required to identify the increased disomic homozygosity under each model. Most of the models we explore yield detectable increases in disomic homozygosity for some reasonable range of parameter values, usually corresponding to smaller trait frequencies. It therefore appears that our mapping method should be effective for a wide variety of moderately infrequent traits, even though the exact mode of inheritance is unlikely to be known. 21 refs., 8 figs., 1 tab.

  1. Genetic background of phenotypic variation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A noteworthy feature of the living world is its bewildering variability. A key issue in several biological disciplines is the achievement of an understanding of the hereditary basis of this variability. Two opposing, but not necessarily irreconcilable conceptions attempt to explain the underlying mechanism. The gene function paradigm postulates that phenotypic variance is generated by the polymorphism in the coding sequences of genes. However, comparisons of a great number of homologous gene and protein sequences have revealed that they predominantly remained functionally conserved even across distantly related phylogenic taxa. Alternatively, the gene regulation paradigm assumes that differences in the cis-regulatory region of genes do account for phenotype variation within species. An extension of this latter concept is that phenotypic variability is generated by the polyrnorphism in the overall gene expression profiles of gene networks.In other words, the activity of a particular gene is a system property determined both by the cis-regulatory sequences of the given genes and by the other genes of a gene network, whose expressions vary among individuals, too. Novel proponents of gene function paradigm claim that functional genetic variance within the coding sequences of regulatory genes is critical for the generation of morphological polymorphism. Note, however, that these developmental genes play direct regulatory roles in the control of gene expression.

  2. ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Katherine M. Aird

    2015-05-01

    Full Text Available Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor-suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in the cellular response to replication stress has been little explored. Here, we report that ataxia telangiectasia mutated (ATM plays a central role in regulating the cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of deoxyribonucleotide triphosphate (dNTP levels through both upregulation of the pentose phosphate pathway via increased glucose-6-phosphate dehydrogenase (G6PD activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence.

  3. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Wei, Miaoyan; Lü, Lisheng; Lin, Peiyi; Chen, Zhisheng; Quan, Zhiwei; Tang, Zhaohui

    2016-09-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy associated with unfavorable prognosis and for which no effective treatments are available. Its molecular pathogenesis is poorly understood. Genome-wide sequencing and high-throughput technologies have provided critical insights into the molecular basis of ICC while sparking a heated debate on the cellular origin. Cancer exhibits variabilities in origin, progression and cell biology. Recent evidence suggests that ICC has multiple cellular origins, including differentiated hepatocytes; intrahepatic biliary epithelial cells (IBECs)/cholangiocytes; pluripotent stem cells, such as hepatic stem/progenitor cells (HPCs) and biliary tree stem/progenitor cells (BTSCs); and peribiliary gland (PBG). However, both somatic mutagenesis and epigenomic features are highly cell type-specific. Multiple cellular origins may have profoundly different genomic landscapes and key signaling pathways, driving phenotypic variation and thereby posing significant challenges to personalized medicine in terms of achieving the optimal drug response and patient outcome. Considering this information, we have summarized the latest experimental evidence and relevant literature to provide an up-to-date view of the cellular origin of ICC, which will contribute to establishment of a hierarchical model of carcinogenesis and allow for improvement of the anatomical-based classification of ICC. These new insights have important implications for both the diagnosis and treatment of ICC patients. PMID:26940139

  4. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  5. A new description of cellular quiescence.

    Directory of Open Access Journals (Sweden)

    Hilary A Coller

    2006-03-01

    Full Text Available Cellular quiescence, defined as reversible growth/proliferation arrest, is thought to represent a homogenous state induced by diverse anti-mitogenic signals. We used transcriptional profiling to characterize human diploid fibroblasts that exited the cell cycle after exposure to three independent signals--mitogen withdrawal, contact inhibition, and loss of adhesion. We show here that each signal caused regulation of a unique set of genes known to be important for cessation of growth and division. Therefore, contrary to expectation, cells enter different quiescent states that are determined by the initiating signal. However, underlying this diversity we discovered a set of genes whose specific expression in non-dividing cells was signal-independent, and therefore representative of quiescence per se, rather than the signal that induced it. This fibroblast "quiescence program" contained genes that enforced the non-dividing state, and ensured the reversibility of the cell cycle arrest. We further demonstrate that one mechanism by which the reversibility of quiescence is insured is the suppression of terminal differentiation. Expression of the quiescence program was not simply a downstream consequence of exit from the cell cycle, because key parts, including those involved in suppressing differentiation, were not recapitulated during the cell cycle arrest caused by direct inhibition of cyclin-dependent kinases. These studies form a basis for understanding the normal biology of cellular quiescence.

  6. Multivariate Analysis of Genotype-Phenotype Association.

    Science.gov (United States)

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map

  7. Multistructural biomimetic substrates for controlled cellular differentiation

    International Nuclear Information System (INIS)

    Multidimensional scaffolds are considered to be ideal candidates for regenerative medicine and tissue engineering based on their potential to provide an excellent microenvironment and direct the fate of the cultured cells. More recently, the use of stem cells in medicine has opened a new technological opportunity for controlled tissue formation. However, the mechanism through which the substrate directs the differentiation of stem cells is still rather unclear. Data concerning its specific surface chemistry, topology, and its signaling ability need to be further understood and analyzed. In our study, atomic force microscopy was used to study the stiffness, roughness, and topology of the collagen (Coll) and metallized collagen (MC) substrates, proposed as an excellent substrate for regenerative medicine. The importance of signaling molecules was studied by constructing a new hybrid signaling substrate that contains both collagen and laminin extracellular matrix (ECM) proteins. The cellular response—such as attachment capability, proliferation and cardiac and neuronal phenotype expression on the metallized and non-metallized hybrid substrates (collagen + laminin)—was studied using MTT viability assay and immunohistochemistry studies. Our findings indicate that such hybrid materials could play an important role in the regeneration of complex tissues. (paper)

  8. Phenotypic dichotomy in mitochondrial complex II genetic disorders.

    Science.gov (United States)

    Baysal, B E; Rubinstein, W S; Taschner, P E

    2001-09-01

    This review presents our current knowledge on the genetic and phenotypic aspects of mitochondrial complex II gene defects. The mutations of the complex II subunits cause two strikingly different group of disorders, revealing a phenotypic dichotomy. Genetic disorders of the mitochondrial respiratory chain are often characterized by hypotonia, growth retardation, cardiomyopathy, myopathy, neuropathy, organ failure, and metabolic derangement. These disorders are transmitted through maternal lineage if the defective gene is located in the mitochondrial genome or may follow a Mendelian pattern if it is in the nucleus. Mitochondrial complex II (succinate:ubiquinone oxidoreductase) is the smallest complex in the respiratory chain and is composed of four subunits encoded by nuclear genes SDHA, SDHB, SDHC, and SDHD. Complex II oxidizes succinate to fumarate in the Krebs cycle and is involved in the mitochondrial electron transport chain. SDHA and SDHB encode the flavoprotein and iron-sulfur proteins, respectively, and SDHC and SDHD encode the two hydrophobic membrane-spanning subunits. While mutations in SDHA display a phenotype resembling other mitochondrial and Krebs cycle gene defects, those in SDHB, SDHC and SDHD cause hereditary paraganglioma. Paraganglioma is characterized by slow-growing vascular tumors of the paraganglionic tissue (i.e., adrenal and extra-adrenal paragangliomas, including those in the head and neck, mediastinum, abdomen, and pheochromocytomas). Paraganglioma caused by SDHD mutations occurs exclusively after paternal transmission, suggesting that genomic imprinting influences gene expression. Association of a mitochondrial gene defect with tumorigenesis expands the phenotypic spectrum of mitochondrial diseases and adds genomic imprinting as a new transmission mode in mitochondrial genetics. The phenotypic features of complex II gene mutations suggest that whereas the catalytic subunit SDHA mutations may compromise the Krebs cycle, those in other

  9. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  10. Prognosis of Different Cellular Generations

    Directory of Open Access Journals (Sweden)

    Preetish Ranjan

    2013-04-01

    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  11. HDACs and the senescent phenotype of WI-38 cells

    Directory of Open Access Journals (Sweden)

    Noonan Emily J

    2005-10-01

    Full Text Available Abstract Background Normal cells possess a limited proliferative life span after which they enter a state of irreversible growth arrest. This process, known as replicative senescence, is accompanied by changes in gene expression that give rise to a variety of senescence-associated phenotypes. It has been suggested that these gene expression changes result in part from alterations in the histone acetylation machinery. Here we examine the influence of HDAC inhibitors on the expression of senescent markers in pre- and post-senescent WI-38 cells. Results Pre- and post-senescent WI-38 cells were treated with the HDAC inhibitors butyrate or trichostatin A (TSA. Following HDAC inhibitor treatment, pre-senescent cells increased p21WAF1 and β-galactosidase expression, assumed a flattened senescence-associated morphology, and maintained a lower level of proteasome activity. These alterations also occurred during normal replicative senescence of WI-38 cells, but were not accentuated further by HDAC inhibitors. We also found that HDAC1 levels decline during normal replicative senescence. Conclusion Our findings indicate that HDACs impact numerous phenotypic changes associated with cellular senescence. Reduced HDAC1 expression levels in senescent cells may be an important event in mediating the transition to a senescent phenotype.

  12. RPTOR, a novel target of miR-155, elicits a fibrotic phenotype of cystic fibrosis lung epithelium by upregulating CTGF.

    Science.gov (United States)

    Tsuchiya, Motohiro; Kalurupalle, Swathi; Kumar, Parameet; Ghoshal, Sarani; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Gorospe, Myriam; Biswas, Roopa

    2016-09-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, the most frequent of which is F508del-CFTR. CF is characterized by excessive secretion of pro-inflammatory mediators into the airway lumen, inducing a highly inflammatory cellular phenotype. This process triggers fibrosis, causing airway destruction and leading to high morbidity and mortality. We previously reported that miR-155 is upregulated in CF lung epithelial cells, but the molecular mechanisms by which miR-155 affects the disease phenotype is not understood. Here we report that RPTOR (regulatory associated protein of mTOR, complex 1) is a novel target of miR-155 in CF lung epithelial cells. The suppression of RPTOR expression and subsequent activation of TGF-β signaling resulted in the induction of fibrosis by elevating connective tissue growth factor (CTGF) abundance in CF lung epithelial cells. Thus, we propose that miR-155 might regulate fibrosis of CF lungs through the increased CTGF expression, highlighting its potential value in CF therapy. PMID:27284727

  13. Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Kumar, Manish; Seeger, Werner; Voswinckel, Robert

    2014-09-01

    Chronic obstructive pulmonary disease (COPD) is a major disease of the lungs. It primarily occurs after a prolonged period of cigarette smoking. Chronic inflammation of airways and the alveolar space as well as lung tissue destruction are the hallmarks of COPD. Recently it has been shown that cellular senescence might play a role in the pathogenesis of COPD. Cellular senescence comprises signal transduction program, leading to irreversible cell cycle arrest. The growth arrest in senescence can be triggered by many different mechanisms, including DNA damage and its recognition by cellular sensors, leading to the activation of cell cycle checkpoint responses and activation of DNA repair machinery. Senescence can be induced by several genotoxic factors apart from telomere attrition. When senescence induction is based on DNA damage, senescent cells display a unique phenotype, which has been termed "senescence-associated secretory phenotype" (SASP). SASP may be an important driver of chronic inflammation and therefore may be part of a vicious cycle of inflammation, DNA damage, and senescence. This research perspective aims to showcase cellular senescence with relevance to COPD and the striking similarities between the mediators and secretory phenotype in COPD and SASP. PMID:25171460

  14. Caloric restriction delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle

    OpenAIRE

    McKiernan, Susan H.; Colman, Ricki J; Lopez, Marisol; Beasley, T. Mark; Aiken, Judd M.; Anderson, Rozalyn M; Weindruch, Richard

    2010-01-01

    Sarcopenia is the age-related loss of skeletal muscle mass and function and is characterized by a reduction in muscle mass and fiber cross-sectional area, alterations in muscle fiber type and mitochondrial functional changes. In rhesus monkeys, calorie restriction (CR) without malnutrition improves survival and delays the onset of age-associated diseases and disorders including sarcopenia. We present a longitudinal study on the impact of CR on early stage sarcopenia in the upper leg of monkey...

  15. Green Cellular Network Deployment To Reduce RF Pollution

    CERN Document Server

    Katiyar, Sumit; Agrawal, N K

    2012-01-01

    As the mobile telecommunication systems are growing tremendously all over the world, the numbers of handheld and base stations are also rapidly growing and it became very popular to see these base stations distributed everywhere in the neighborhood and on roof tops which has caused a considerable amount of panic to the public in Palestine concerning wither the radiated electromagnetic fields from these base stations may cause any health effect or hazard. Recently UP High Court in India ordered for removal of BTS towers from residential area, it has created panic among cellular communication network designers too. Green cellular networks could be a solution for the above problem. This paper deals with green cellular networks with the help of multi-layer overlaid hierarchical structure (macro / micro / pico / femto cells). Macrocell for area coverage, micro for pedestrian and a slow moving traffic while pico for indoor use and femto for individual high capacity users. This could be the answer of the problem of ...

  16. Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis

    Science.gov (United States)

    Huang, Bin; Jolly, Mohit Kumar; Lu, Mingyang; Tsarfaty, Ilan; Ben-Jacob, Eshel; Onuchic, Jose' N.

    2015-12-01

    Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) - have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).

  17. Aging, cellular senescence, and cancer.

    Science.gov (United States)

    Campisi, Judith

    2013-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyperplastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. PMID:23140366

  18. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics by...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were...

  19. Cellular-based preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  20. 1,4-Naphthoquinones: From Oxidative Damage to Cellular and Inter-Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Lars-Oliver Klotz

    2014-09-01

    Full Text Available Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others to cellular and inter-cellular signaling processes are discussed: (i naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.

  1. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype

    Directory of Open Access Journals (Sweden)

    Pluk Helma

    2009-07-01

    Full Text Available Abstract Background The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression. Results Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability. In contrast, H-RasV12/E1A transformation initially caused a steep increase in oxygen consumption and superoxide production, accompanied by massive cell death. During prolonged culture in vitro, cell growth rate increased gradually, along with tumor forming potential in in vitro anchorage-independent growth assays and in vivo tumor formation assays in immuno-deficient mice. Notably, glucose-to-lactic acid flux increased with passage number, while cellular oxygen consumption decreased. This conversion in metabolic properties was associated with a change in mitochondrial NAD+/NADH redox, indicative of decreased mitochondrial tricarboxic acid cycle and OXPHOS activity. Conclusion The high rate of oxidative metabolism in newly transformed cells is in marked contrast with the high glycolytic rate in cells in the later tumor stage. In our experimental system, with cells growing under ambient oxygen conditions in nutrient-rich media, the shift towards this Warburg phenotype occurred as a step-wise adaptation process associated with augmented tumorigenic capacity and improved survival characteristics of the transformed cells. We hypothesize that early-transformed cells, which potentially serve as founders for new tumor masses may escape therapies aimed at metabolic inhibition of tumors with a fully developed Warburg phenotype.

  2. Knowledge-based analysis of phenotypes

    KAUST Repository

    Hoendorf, Robert

    2016-01-27

    Phenotypes are the observable characteristics of an organism, and they are widely recorded in biology and medicine. To facilitate data integration, ontologies that formally describe phenotypes are being developed in several domains. I will describe a formal framework to describe phenotypes. A formalized theory of phenotypes is not only useful for domain analysis, but can also be applied to assist in the diagnosis of rare genetic diseases, and I will show how our results on the ontology of phenotypes is now applied in biomedical research.

  3. Adaptive stochastic cellular automata: Applications

    Science.gov (United States)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  4. Cellular senescence in aging primates.

    Science.gov (United States)

    Herbig, Utz; Ferreira, Mark; Condel, Laura; Carey, Dee; Sedivy, John M

    2006-03-01

    The aging of organisms is characterized by a gradual functional decline of all organ systems. Mammalian somatic cells in culture display a limited proliferative life span, at the end of which they undergo an irreversible cell cycle arrest known as replicative senescence. Whether cellular senescence contributes to organismal aging has been controversial. We investigated telomere dysfunction, a recently discovered biomarker of cellular senescence, and found that the number of senescent fibroblasts increases exponentially in the skin of aging baboons, reaching >15% of all cells in very old individuals. In addition, the same cells contain activated ataxia-telangiectasia mutated kinase and heterochromatinized nuclei, confirming their senescent status. PMID:16456035

  5. Cellular automaton for chimera states

    Science.gov (United States)

    García-Morales, Vladimir

    2016-04-01

    A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, some synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent structures with different periodicities are formed.

  6. Prognosis of Different Cellular Generations

    OpenAIRE

    Preetish Ranjan; Prabhat Kumar

    2013-01-01

    Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequen...

  7. The other side of phenotypic plasticity: a developmental system that generates an invariant phenotype despite environmental variation

    Indian Academy of Sciences (India)

    Christian Braendle; Marie-Anne Félix

    2009-10-01

    Understanding how the environment impacts development is of central interest in developmental and evolutionary biology. On the one hand, we would like to understand how the environment induces phenotypic changes (the study of phenotypic plasticity). On the other hand, we may ask how a development system maintains a stable and precise phenotypic output despite the presence of environmental variation. We study such developmental robustness to environmental variation using vulval cell fate patterning in the nematode Caenorhabditis elegans as a study system. Here we review both mechanistic and evolutionary aspects of these studies, focusing on recently obtained experimental results. First, we present evidence indicating that vulval formation is under stabilizing selection. Second, we discusss quantitative data on the precision and variability in the output of the vulval developmental system in different environments and different genetic backgrounds. Third, we illustrate how environmental and genetic variation modulate the cellular and molecular processes underlying the formation of the vulva. Fourth, we discuss the evolutionary significance of environmental sensitivity of this developmental system.

  8. Targeted silver nanoparticles for ratiometric cell phenotyping

    Science.gov (United States)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  9. Caveolar vesicles generate DNA damage and perpetuate cellular aging

    Institute of Scientific and Technical Information of China (English)

    Keith Wheaton

    2011-01-01

    @@ The replicative limit of human fibroblasts has long provided a model to assess the molecular mechanisms underlying cellular aging [1].In culture, fibroblasts which reach the end of their proliferative lifespan acquire profound molecular changes that limit their response to growth factors, and cause permanent exit from the cell cycle [2].

  10. Mutations in LMNA modulate the lamin A--Nesprin-2 interaction and cause LINC complex alterations.

    Directory of Open Access Journals (Sweden)

    Liu Yang

    Full Text Available BACKGROUND: In eukaryotes the genetic material is enclosed by a continuous membrane system, the nuclear envelope (NE. Along the NE specific proteins assemble to form meshworks and mutations in these proteins have been described in a group of human diseases called laminopathies. Laminopathies include lipodystrophies, muscle and cardiac diseases as well as metabolic or progeroid syndromes. Most laminopathies are caused by mutations in the LMNAgene encoding lamins A/C. Together with Nesprins (Nuclear Envelope Spectrin Repeat Proteins they are core components of the LINC complex (Linker of Nucleoskeleton and Cytoskeleton. The LINC complex connects the nucleoskeleton and the cytoskeleton and plays a role in the transfer of mechanically induced signals along the NE into the nucleus, and its components have been attributed functions in maintaining nuclear and cellular organization as well as signal transduction. RESULTS: Here we narrowed down the interaction sites between lamin A and Nesprin-2 to aa 403-425 in lamin A and aa 6146-6347 in Nesprin-2. Laminopathic mutations in and around the involved region of lamin A (R401C, G411D, G413C, V415I, R419C, L421P, R427G, Q432X modulate the interaction with Nesprin-2 and this may contribute to the disease phenotype. The most notable mutation is the lamin A mutation Q432X that alters LINC complex protein assemblies and causes chromosomal and transcription factor rearrangements. CONCLUSION: Mutations in Nesprin-2 and lamin A are characterised by complex genotype phenotype relations. Our data show that each mutation in LMNAanalysed here has a distinct impact on the interaction among both proteins that substantially explains how distinct mutations in widely expressed genes lead to the formation of phenotypically different diseases.

  11. Phenotyping bananas for drought resistance

    OpenAIRE

    IyyakuttyRavi

    2013-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with ‘B’ genome are more tolerant to abiotic stresses than those solely based on ‘A’ genome. In particular, bananas with ‘ABB’ genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite f...

  12. Phenotyping bananas for drought resistance

    OpenAIRE

    Ravi, Iyyakkutty; Uma, Subbaraya; Vaganan, Muthu Mayil; Mustaffa, Mohamed M.

    2013-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite f...

  13. Hemogoblin phenotypes in Murgese horse

    OpenAIRE

    Carmela Bottiglieri; Rosario Rullo; Aldo Di Luccia; Elisa Pieragostini

    2010-01-01

    In this note we describe two new equine hemoglobin phenotypes found during a survey of the Murgese horse, a rare  Apulian native breed, among whose ancestors the Arabian surely plays an important role. To date we have analysed about  300 individual hemolysates by different chromatographic analyses (PAGIF, IPG, CMC). The results pointed out two unusu-  al patterns where the ratio of the α24Phe60Gln band to the α24Phe60Lys band was 93:7 and 70:30 rather than 60:40&nbs...

  14. Mucopolysaccharidosis IVA: correlation between genotype, phenotype and keratan sulfate levels

    OpenAIRE

    Dũng, Vu Chi; Tomatsu, Shunji; Adriana M. Montaño; Gottesman, Gary; Bober, Michael B.; Mackenzie, William; Maeda, Miho; Mitchell, Grant A.; Suzuki, Yasuyuki; Orii, Tadao

    2013-01-01

    Mucopolysaccharidosis IVA (MPS IVA) is caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to systemic skeletal dysplasia because of excessive storage of keratan sulfate (KS) in chondrocytes. In an effort to determine a precise prognosis and personalized treatment, we aim to characterize clinical, biochemical, and molecular findings in MPS IVA patients, and to seek correlations between genotype, phenotype, and blood and urine KS levels. Mutation screening of GAL...

  15. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype

    OpenAIRE

    Mathey, Emily K; Susanna B Park; Hughes, Richard A C; Pollard, John D.; Armati, Patricia J; Barnett, Michael H.; Taylor, Bruce V; Dyck, P. James B.; Kiernan, Matthew C; Lin, Cindy S-Y.

    2015-01-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory neuropathy, classically characterised by a slowly progressive onset and symmetrical, sensorimotor involvement. However, there are many phenotypic variants, suggesting that CIDP may not be a discrete disease entity but rather a spectrum of related conditions. While the abiding theory of CIDP pathogenesis is that cell-mediated and humoral mechanisms act together in an aberrant immune response to cause damage to ...

  16. Structural Modeling Insights into Human VKORC1 Phenotypes

    OpenAIRE

    Czogalla, Katrin J.; Matthias Watzka; Johannes Oldenburg

    2015-01-01

    Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) catalyses the reduction of vitamin K and its 2,3-epoxide essential to sustain γ-carboxylation of vitamin K-dependent proteins. Two different phenotypes are associated with mutations in human VKORC1. The majority of mutations cause resistance to 4-hydroxycoumarin- and indandione-based vitamin K antagonists (VKA) used in the prevention and therapy of thromboembolism. Patients with these mutations require greater doses of VKA for stable ...

  17. Further studies of the engrailed phenotype in Drosophila.

    OpenAIRE

    Lawrence, P. A.; Struhl, G

    1982-01-01

    Although most mutations at the engrailed locus of Drosophila cause embryonic death when homozygous, they are viable in clones of cells. We describe the phenotype of such clones in the eye-antenna, proboscis, humerus, wing, legs, and terminalia. When in anterior compartments the clones are normal, but in most posterior compartments they are abnormal and fail to respect the anteroposterior compartment boundary. We find that the yield of engrailed-lethal clones in posterior compartments is often...

  18. Analysis of Genotype-Phenotype Correlations in Human Holoprosencephaly

    OpenAIRE

    Solomon, Benjamin D.; Mercier, Sandra; Vélez, Jorge I.; Pineda-Alvarez, Daniel E.; Wyllie, Adrian; Zhou, Nan; Dubourg, Christèle; David, Veronique; Odent, Sylvie; Roessler, Erich; Muenke, Maximilian

    2010-01-01

    Since the discovery of the first gene causing holoprosencephaly (HPE), over 500 patients with mutations in genes associated with non-chromosomal, non-syndromic HPE have been described, with detailed descriptions available in over 300. Comprehensive clinical analysis of these individuals allows examination for the presence of genotype-phenotype correlations. These correlations allow a degree of differentiation between patients with mutations in different HPE-associated genes and for the applic...

  19. Correlated Mutations: A Hallmark of Phenotypic Amino Acid Substitutions

    OpenAIRE

    Kowarsch, Andreas; Fuchs, Angelika; Frishman, Dmitrij; Pagel, Philipp

    2010-01-01

    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance an...

  20. Infectious and Immunologic Phenotype of MECP2 Duplication Syndrome

    OpenAIRE

    Bauer, Michael; Kölsch, Uwe; Krüger, Renate; Unterwalder, Nadine; Hameister, Karin; Kaiser, Fabian Marc; Vignoli, Aglaia; Rossi, Rainer; Botella, Maria Pilar; Budisteanu, Magdalena; Rosello, Monica; Orellana, Carmen; Tejada, Maria Isabel; Papuc, Sorina Mihaela; Patat, Oliver

    2015-01-01

    MECP2 (methyl CpG binding protein 2) duplication causes syndromic intellectual disability. Patients often suffer from life-threatening infections, suggesting an additional immunodeficiency. We describe for the first time the detailed infectious and immunological phenotype of MECP2 duplication syndrome. 17/27 analyzed patients suffered from pneumonia, 5/27 from at least one episode of sepsis. Encapsulated bacteria (S.pneumoniae, H.influenzae) were frequently isolated. T-cell immunity showed no...

  1. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M;

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...

  2. Cellular signalling properties in microcircuits

    DEFF Research Database (Denmark)

    Toledo-Rodriguez, Maria; El Manira, Abdeljabbar; Wallén, Peter; Svirskis, Gytis; Hounsgaard, Jørn

    2005-01-01

    Molecules and cells are the signalling elements in microcircuits. Recent studies have uncovered bewildering diversity in postsynaptic signalling properties in all areas of the vertebrate nervous system. Major effort is now being invested in establishing the specialized signalling properties at th...... cellular and molecular levels in microcircuits in specific brain regions. This review is part of the TINS Microcircuits Special Feature....

  3. Quantum Cloning by Cellular Automata

    OpenAIRE

    D'Ariano, G. M.; Macchiavello, C.; M. Rossi

    2012-01-01

    We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.

  4. Analysis of cellular manufacturing systems

    NARCIS (Netherlands)

    Heragu, Sunderesh; Meng, Gang; Zijm, Henk; Ommeren, van Jan-Kees

    2001-01-01

    In this paper, we present an open queuing network modeling approach to estimate performance measures of a cellular manufacturing layout. It is assumed a layout and production data for a planning period of specified length are available. The production data takes into account, processing and handli

  5. CtIP Mutations Cause Seckel and Jawad Syndromes.

    Directory of Open Access Journals (Sweden)

    Per Qvist

    2011-10-01

    Full Text Available Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5 but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2. Here, we report two mutations in the CtIP (RBBP8 gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.

  6. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Directory of Open Access Journals (Sweden)

    Xingsheng Hou

    Full Text Available FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7 and a flcA deletion mutant (Sp7-flcAΔ revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot. The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase, nitrogen metabolism (Glutamine synthetase and nitric oxide synthase, stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit and morphological transformation (transducer coupling protein. The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  7. Temporal phenotypic features distinguish polarized macrophages in vitro.

    Science.gov (United States)

    Melton, David W; McManus, Linda M; Gelfond, Jonathan A L; Shireman, Paula K

    2015-05-01

    Macrophages are important in vascular inflammation and environmental factors influence macrophage plasticity. Macrophage transitions into pro-inflammatory (M1) or anti-inflammatory (M2) states have been defined predominately by measuring cytokines in culture media (CM). However, temporal relationships between cellular and secreted cytokines have not been established. We measured phenotypic markers and cytokines in cellular and CM of murine bone marrow-derived macrophages at multiple time points following stimulation with IFN-γ + LPS (M1), IL-4 (M2a) or IL-10 (M2c). Cytokines/proteins in M1-polarized macrophages exhibited two distinct temporal patterns; an early (0.5-3 h), transient increase in cellular cytokines (GM-CSF, KC-GRO, MIP-2, IP-10 and MIP-1β) and a delayed (3-6 h) response that was more sustained [IL-3, regulated on activation normal T cell expressed and secreted (RANTES), and tissue inhibitor of metalloproteinases 1 (TIMP-1)]. M2a-related cytokine/cell markers (IGF-1, Fizz1 and Ym1) were progressively (3-24 h) increased post-stimulation. In addition, novel patterns were observed. First, and unexpectedly, cellular pro-inflammatory chemokines, MCP-1 and MCP-3 but not MCP-5, were comparably increased in M1 and M2a macrophages. Second, Vegfr1 mRNA was decreased in M1 and increased in M2a macrophages. Finally, VEGF-A was increased in the CM of M1 cultures and strikingly reduced in M2a coinciding with increased Vegfr1 expression, suggesting decreased VEGF-A in M2a CM was secondary to increased soluble VEGFR1. In conclusion, macrophage cytokine production and marker expression were temporally regulated and relative levels compared across polarizing conditions were highly dependent upon the timing and location (cellular versus CM) of the sample collection. For most cytokines, cellular production preceded increases in the CM suggesting that cellular regulatory pathways should be studied within 6 h of stimulation. The divergent polarization-dependent expression

  8. Regulation of autophagy in oxygen-dependent cellular stress.

    Science.gov (United States)

    Ryter, Stefan W; Choi, Augustine M K

    2013-01-01

    Oxidative stress caused by supraphysiological production of reactive oxygen species (ROS), can cause cellular injury associated with protein and lipid oxidation, DNA damage, and mitochondrial dysfunction. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of cell survival or cell death pathways. Recent studies suggest that autophagy, a cellular homeostatic process that governs the turnover of damaged organelles and proteins, may represent a general cellular and tissue response to oxidative stress. The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy may play multifunctional roles in cellular adaptation to stress, by maintaining mitochondrial integrity, and removing damaged proteins. Additionally, autophagy may play important roles in the regulation of inflammation and immune function. Modulation of the autophagic pathway has been reported in cell culture models of oxidative stress, including altered states of oxygen tension (i.e., hypoxia, hyperoxia), and exposure to oxidants. Furthermore, proteins that regulate autophagy may be subject to redox regulation. The heme oxygenase- 1 (HO)-1 enzyme system may have a role in the regulation of autophagy. Recent studies suggest that carbon monoxide (CO), a reaction product of HO activity which can alter mitochondrial function, may induce autophagy in cultured epithelial cells. In conclusion, current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. PMID:23092322

  9. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  10. RRM2 induces NF-κB-dependent MMP-9 activation and enhances cellular invasiveness

    International Nuclear Information System (INIS)

    Ribonucleotide reductase is a dimeric enzyme that catalyzes conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotide forms, a rate-limiting step in the production of 2'-deoxyribonucleoside 5'-triphosphates required for DNA synthesis. The ribonucleotide reductase M2 subunit (RRM2) is a determinant of malignant cellular behavior in a range of human cancers. We examined the effect of RRM2 overexpression on pancreatic adenocarcinoma cellular invasiveness and nuclear factor-κB (NF-κB) transcription factor activity. RRM2 overexpression increases pancreatic adenocarcinoma cellular invasiveness and MMP-9 expression in a NF-κB-dependent manner. RNA interference (RNAi)-mediated silencing of RRM2 expression attenuates cellular invasiveness and NF-κB activity. NF-κB is a key mediator of the invasive phenotypic changes induced by RRM2 overexpression

  11. Cellular contractility requires ubiquitin mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Yuval Cinnamon

    Full Text Available BACKGROUND: Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA remains, a major missing link in understanding contractility. PRINCIPAL FINDINGS: We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation. CONCLUSIONS: Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis, either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING ubiquitin ligase and is required for cellular contractions.

  12. Single-Molecule Imaging of Cellular Signaling

    Science.gov (United States)

    De Keijzer, Sandra; Snaar-Jagalska, B. Ewa; Spaink, Herman P.; Schmidt, Thomas

    Single-molecule microscopy is an emerging technique to understand the function of a protein in the context of its natural environment. In our laboratory this technique has been used to study the dynamics of signal transduction in vivo. A multitude of signal transduction cascades are initiated by interactions between proteins in the plasma membrane. These cascades start by binding a ligand to its receptor, thereby activating downstream signaling pathways which finally result in complex cellular responses. To fully understand these processes it is important to study the initial steps of the signaling cascades. Standard biological assays mostly call for overexpression of the proteins and high concentrations of ligand. This sets severe limits to the interpretation of, for instance, the time-course of the observations, given the large temporal spread caused by the diffusion-limited binding processes. Methods and limitations of single-molecule microscopy for the study of cell signaling are discussed on the example of the chemotactic signaling of the slime-mold Dictyostelium discoideum. Single-molecule studies, as reviewed in this chapter, appear to be one of the essential methodologies for the full spatiotemporal clarification of cellular signaling, one of the ultimate goals in cell biology.

  13. Cellular Prion Protein: From Physiology to Pathology

    Directory of Open Access Journals (Sweden)

    Yutaka Kikuchi

    2012-11-01

    Full Text Available The human cellular prion protein (PrPC is a glycosylphosphatidylinositol (GPI anchored membrane glycoprotein with two N-glycosylation sites at residues 181 and 197. This protein migrates in several bands by Western blot analysis (WB. Interestingly, PNGase F treatment of human brain homogenates prior to the WB, which is known to remove the N-glycosylations, unexpectedly gives rise to two dominant bands, which are now known as C-terminal (C1 and N-terminal (N1 fragments. This resembles the β-amyloid precursor protein (APP in Alzheimer disease (AD, which can be physiologically processed by α-, β-, and γ-secretases. The processing of APP has been extensively studied, while the identity of the cellular proteases involved in the proteolysis of PrPC and their possible role in prion biology has remained limited and controversial. Nevertheless, there is a strong correlation between the neurotoxicity caused by prion proteins and the blockade of their normal proteolysis. For example, expression of non-cleavable PrPC mutants in transgenic mice generates neurotoxicity, even in the absence of infectious prions, suggesting that PrPC proteolysis is physiologically and pathologically important. As many mouse models of prion diseases have recently been developed and the knowledge about the proteases responsible for the PrPC proteolysis is accumulating, we examine the historical experimental evidence and highlight recent studies that shed new light on this issue.

  14. Cellular factors implicated in filovirus entry.

    Science.gov (United States)

    Bhattacharyya, Suchita; Hope, Thomas J

    2013-01-01

    Although filoviral infections are still occurring in different parts of the world, there are no effective preventive or treatment strategies currently available against them. Not only do filoviruses cause a deadly infection, but they also have the potential of being used as biological weapons. This makes it imperative to comprehensively study these viruses in order to devise effective strategies to prevent the occurrence of these infections. Entry is the foremost step in the filoviral replication cycle and different studies have reported the involvement of a myriad of cellular factors including plasma membrane components, cytoskeletal proteins, endosomal components, and cytosolic factors in this process. Signaling molecules such as the TAM family of receptor tyrosine kinases comprising of Tyro3, Axl, and Mer have also been implicated as putative entry factors. Additionally, filoviruses are suggested to bind to a common receptor and recent studies have proposed T-cell immunoglobulin and mucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) as potential receptor candidates. This paper summarizes the existing literature on filoviral entry with a special focus on cellular factors involved in this process and also highlights some fundamental questions. Future research aimed at answering these questions could be very useful in designing novel antiviral therapeutics. PMID:23365575

  15. Cellular Factors Implicated in Filovirus Entry

    Directory of Open Access Journals (Sweden)

    Suchita Bhattacharyya

    2013-01-01

    Full Text Available Although filoviral infections are still occurring in different parts of the world, there are no effective preventive or treatment strategies currently available against them. Not only do filoviruses cause a deadly infection, but they also have the potential of being used as biological weapons. This makes it imperative to comprehensively study these viruses in order to devise effective strategies to prevent the occurrence of these infections. Entry is the foremost step in the filoviral replication cycle and different studies have reported the involvement of a myriad of cellular factors including plasma membrane components, cytoskeletal proteins, endosomal components, and cytosolic factors in this process. Signaling molecules such as the TAM family of receptor tyrosine kinases comprising of Tyro3, Axl, and Mer have also been implicated as putative entry factors. Additionally, filoviruses are suggested to bind to a common receptor and recent studies have proposed T-cell immunoglobulin and mucin domain 1 (TIM-1 and Niemann-Pick C1 (NPC1 as potential receptor candidates. This paper summarizes the existing literature on filoviral entry with a special focus on cellular factors involved in this process and also highlights some fundamental questions. Future research aimed at answering these questions could be very useful in designing novel antiviral therapeutics.

  16. Diet-induced phenotypic plasticity in European eel (Anguilla anguilla).

    Science.gov (United States)

    De Meyer, Jens; Christiaens, Joachim; Adriaens, Dominique

    2016-02-01

    Two phenotypes are present within the European eel population: broad-heads and narrow-heads. The expression of these phenotypes has been linked to several factors, such as diet and differential growth. The exact factors causing this dimorphism, however, are still unknown. In this study, we performed a feeding experiment on glass eels from the moment they start to feed. Eels were either fed a hard diet, which required biting and spinning behavior, or a soft diet, which required suction feeding. We found that the hard feeders develop a broader head and a larger adductor mandibulae region than eels that were fed a soft diet, implying that the hard feeders are capable of larger bite forces. Next to this, soft feeders develop a sharper and narrower head, which could reduce hydrodynamic drag, allowing more rapid strikes towards their prey. Both phenotypes were found in a control group, which were given a combination of both diets. These phenotypes were, however, not as extreme as the hard or the soft feeding group, indicating that some specimens are more likely to consume hard prey and others soft prey, but that they do not selectively eat one of both diets. In conclusion, we found that diet is a major factor influencing head shape in European eel and this ability to specialize in feeding on hard or soft prey could decrease intra-specific competition in European eel populations. PMID:26847560

  17. Pathologic Cellular Events in Smoking-Related Pancreatitis

    International Nuclear Information System (INIS)

    Pancreatitis, a debilitating inflammatory disorder, results from pancreatic injury. Alcohol abuse is the foremost cause, although cigarette smoking has recently surfaced as a distinct risk factor. The mechanisms by which cigarette smoke and its toxins initiate pathological cellular events leading to pancreatitis, have not been clearly defined. Although cigarette smoke is composed of more than 4000 compounds, it is mainly nicotine and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which have been extensively studied with respect to pancreatic diseases. This review summarizes these research findings and highlights cellular pathways which may be of relevance in initiation and progression of smoking-related pancreatitis

  18. Pathologic Cellular Events in Smoking-Related Pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, Edwin [Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520 (United States); Veterans Affairs Connecticut Healthcare, West Haven, CT 06516 (United States)

    2015-04-29

    Pancreatitis, a debilitating inflammatory disorder, results from pancreatic injury. Alcohol abuse is the foremost cause, although cigarette smoking has recently surfaced as a distinct risk factor. The mechanisms by which cigarette smoke and its toxins initiate pathological cellular events leading to pancreatitis, have not been clearly defined. Although cigarette smoke is composed of more than 4000 compounds, it is mainly nicotine and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which have been extensively studied with respect to pancreatic diseases. This review summarizes these research findings and highlights cellular pathways which may be of relevance in initiation and progression of smoking-related pancreatitis.

  19. Down syndrome phenotypes: The consequences of chromosomal imbalance

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.; Chen, X.N.; Schipper, R.; Sun, Z.; Gonsky, R.; Gerwehr, S.; Graham, J.M. Jr. (Univ. of California, Los Angeles, CA (United States)); Carpenter, N.; Say, B. (H.A. Chapman Institute of Medical Genetics, Tulsa, OK (United States)); Daumer, C. (Univ. of Munich (Germany)) (and others)

    1994-05-24

    Down syndrome (DS) is a major cause of mental retardation and congenital heart disease. Besides a characteristic set of facial and physical features, DS is associated with congenital anomalies of the gastrointestinal tract, an increased risk of leukemia, immune system defects, and an Alzheimer-like dementia. Moreover, DS is a model for the study of human aneuploidy. Although usually caused by the presence of an extra chromosome 21, subsets of the phenotypic features of DS may be caused by the duplication of small regions of the chromosome. The physical map of chromosome 21 allows the molecular definition of the regions duplicated in these rare cases of partial trisomy. As a first step in identifying the genes responsible for individual DS features and their pathophysiology, a panel of cell lines derived from 16 such individuals has been established and the molecular break points have been determined using fluorescence in situ hybridization and Southern blot dosage analysis of 32 markers unique to human chromosome 21. Combining this information with detailed clinical evaluations of these patients, the authors have now constructed a [open quotes]phenotypic map[close quotes] that includes 25 features and assigns regions of 2-20 megabases as likely to contain the genes responsible. This study provides evidence for a significant contribution of genes outside the D21S55 region to the DS phenotypes, including the facies, microcephaly, short stature, hypotonia, abnormal dermatoglyphics, and mental retardation. This strongly suggests DS is a contiguous gene syndrome and augurs against a single DS chromosomal region responsible for most of the DS phenotypic features.

  20. Cellular and molecular mechanisms underlying radiation carcinogenesis

    International Nuclear Information System (INIS)

    When considering and analyzing experimental material concerning cellular aspects of the problem of radiation carcinogenesis, the following conclusions can be made: neoplastic transformation of cells in a culture is caused already by small radiation doses, under the effect of which the level of DNA injury is quite insignificant; the frequency of cell transformation depends on the type of radiation, it is particularly pronounced under the effect of radiations with a high linear energy transfer; a correlation between the processes of postradiation recovery and radiogenic transformation of cells is detected, nonrepairable injures of DNA playing the most important role in radiation carcinogenesis; tumour promoters and anticarcinogenic agens produce a modifying effect on the transformation of irradiated cells. Molecular mechanisms of oncogene activation are thoroughly studied using the model of virus carcinogenesis, the problem of the nature of chemical and, in particular, radiation cell transformation remains scantily investigated

  1. HIV-Specific ADCC Improves After Antiretroviral Therapy and Correlates With Normalization of the NK Cell Phenotype

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Hartling, Hans J; Tingstedt, Jeanette L;

    2015-01-01

    BACKGROUND: Natural killer (NK) cell phenotype and function have recently gained much attention as playing crucial roles in antibody-dependent cellular cytotoxicity (ADCC). We investigated NK cell function, as measured by ADCC, in HIV-1-positive individuals before and 6 months after highly active...

  2. A Turner syndrome neurocognitive phenotype maps to Xp22.3

    Directory of Open Access Journals (Sweden)

    Elder Frederick F

    2007-05-01

    Full Text Available Abstract Background Turner syndrome (TS is associated with a neurocognitive phenotype that includes selective nonverbal deficits, e.g., impaired visual-spatial abilities. We previously reported evidence that this phenotype results from haploinsufficiency of one or more genes on distal Xp. This inference was based on genotype/phenotype comparisons of individual girls and women with partial Xp deletions, with the neurocognitive phenotype considered a dichotomous trait. We sought to confirm our findings in a large cohort (n = 47 of adult women with partial deletions of Xp or Xq, enriched for subjects with distal Xp deletions. Methods Subjects were recruited from North American genetics and endocrinology clinics. Phenotype assessment included measures of stature, ovarian function, and detailed neurocognitive testing. The neurocognitive phenotype was measured as a quantitative trait, the Turner Syndrome Cognitive Summary (TSCS score, derived from discriminant function analysis. Genetic analysis included karyotyping, X inactivation studies, fluorescent in situ hybridization, microsatellite marker genotyping, and array comparative genomic hybridization. Results We report statistical evidence that deletion of Xp22.3, an interval containing 31 annotated genes, is sufficient to cause the neurocognitive phenotype described by the TSCS score. Two other cardinal TS features, ovarian failure and short stature, as well as X chromosome inactivation pattern and subject's age, were unrelated to the TSCS score. Conclusion Detailed mapping suggests that haploinsufficiency of one or more genes in Xp22.3, the distal 8.3 megabases (Mb of the X chromosome, is responsible for a TS neurocognitive phenotype. This interval includes the 2.6 Mb Xp-Yp pseudoautosomal region (PAR1. Haploinsufficiency of the short stature gene SHOX in PAR1 probably does not cause this TS neurocognitive phenotype. Two genes proximal to PAR1 within the 8.3 Mb critical region, STS and NLGN4X, are

  3. Cellular Mechanism of Inner Ear Genetic Disease, roles of Kv7.1 (KCNQ1) Channel

    Science.gov (United States)

    Mousavi Nik, Atefeh

    Potassium channels are the most diverse and widely distributed membrane protein in all living organisms. They have various roles in the body such as controlling membrane potential, cell volume, and cell migration. Many studies have shown that mutation in these channels is associated with different diseases for example: Hearing Defect, Cardiac Arrhythmia, Episodic Ataxia, Seizure and Neuromyotonia. One of the most important diseases associated with K+ channel mutations is called Jervell and Lange-Nielsen syndrome (JLNS). This disease causes bilateral congenital deafness and the patients also suffer from Long QT and they usually experience syncopal episodes in their life and eventually die as a result of cardiac arrest. The gene KCNQ1 encodes the Kv7.1 voltage gated potassium channel. This channel expresses in apical membrane of marginal cell in stria vasularis of cochlea and secret K+ ion to endolymp to keep the endocochlear potential stable, which is necessary for the inner ear to function properly. Kv7.1 channel also expresses in cardiac myocytes and mutation in this gene is associated with another syndrome called Romano-Ward syndrome (RWS). Although Romano-Ward patients have mutation in KCNQ1, similar to Jervell and Lange-Nielsen patients, they only suffer from cardiac defect, and their hearing is completely normal. Several studies identified that mutations in Kv7.1 gene is associated with JLNS and RWS, but the biophysical and cellular mechanisms of these mutations are still unknown. To determine the cellular mechanisms of JLNS and RWS, and to provide mechanistic insight on the functional outputs of JLNS versus RWS mutations, we generated several mutant forms of the human Kv7.1 ( KCNQ1) clone, using site-directed mutagenesis to define their sub-cellular localization and examined their electrophysiological properties. We identified JLNS and RWS mutations at the S4-S5-linker, the pore loop (P-loop) and the C-terminus of hKv7.1 which have been found to control

  4. Hemogoblin phenotypes in Murgese horse

    Directory of Open Access Journals (Sweden)

    Carmela Bottiglieri

    2010-01-01

    Full Text Available In this note we describe two new equine hemoglobin phenotypes found during a survey of the Murgese horse, a rare  Apulian native breed, among whose ancestors the Arabian surely plays an important role. To date we have analysed about  300 individual hemolysates by different chromatographic analyses (PAGIF, IPG, CMC. The results pointed out two unusu-  al patterns where the ratio of the α24Phe60Gln band to the α24Phe60Lys band was 93:7 and 70:30 rather than 60:40  which would have been expected of BII homozygote. Given that the three horses exhibiting the unusual patterns shared  a common ancestor and that none of the possible combinations of the known haplotypes can account for 7-8%  α24Phe60Lys, reasonably a triplicated arrangement has to be postulated. 

  5. Cellular solidification of transparent monotectics

    Science.gov (United States)

    Kaulker, W. F.

    1986-01-01

    Understanding how liquid phase particles are engulfed or pushed during freezing of a monotectic is addressed. The additional complication is that the solid-liquid interface is nonplanar due to constitutional undercooling. Some evidence of particle pushing where the particles are the liquid phase of the montectic was already observed. Cellular freezing of the succinonitrile-glycerol system also occurred. Only a few compositions were tested at that time. The starting materials were not especially pure so that cellular interface observed was likely due to the presence of unkown impurities, the major portion of which was water. Topics addressed include: the effort of modeling the particle pushing process using the computer, establishing an apparatus for the determination of phase diagrams, and the measurement of the temperature gradients with a specimen which will solidify on the temperature gradient microscope stage.

  6. Cellular ceramics in combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Fuessel, Alexander; Boettge, Daniela; Adler, Joerg; Marschallek, Felix; Michaelis, Alexander [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden (Germany)

    2011-11-15

    Cellular materials have become increasingly interesting for applications in combustion environments. Improvements like high power efficiency and low emissions are the main targets of technological development in combustion processes. However, despite scientific and technical success in developing new or improved burner concepts over recent years, a lot of problems remain to be solved in the field of materials science: due to the high power density of the burners the materials are subjected to high loads in terms of thermal shock, temperature and corrosion, especially in so-called porous burner technology. This article shows some examples of research and development strategies and results in developing improved cellular ceramics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Designing Underwater Cellular Networks Parameters

    Directory of Open Access Journals (Sweden)

    Pejman Khadivi

    2008-09-01

    Full Text Available Oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance are some of the applications of underwater networks. Underwater networks should send the gathered information to other users or an offshore station via a base station in the sea. Since the available bandwidth in underwater is severely limited, frequency reuse and cellular networks concepts are very important. In this paper, after driving the ratio of signal to interference for underwater acoustic channels, the constraints for the cell radius are determined. One of the important results of this work is that, for special parameters like bandwidth, it may be impossible to provide the required signal to interference ratio and bandwidth for the network users. Furthermore, in this paper, number of supportable users, per-user bandwidth, and the user capacity for a cellular underwater network are determined.

  8. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    BACKGROUND: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. RESULTS: Water migration in cellular solid foods invo

  9. Clinical Asthma Phenotypes and Therapeutic Responses

    OpenAIRE

    Zedan, M.; Attia, G.; Zedan, M. M.; Osman, A; Abo-Elkheir, N.; Maysara, N.; Barakat, T.; Gamil, N.

    2013-01-01

    Asthma is a heterogeneous disease that means not all asthmatics respond to the same treatment. We hypothesize an approach to characterize asthma phenotypes based on symptomatology (shortness of breath (SOB), cough, and wheezy phenotypes) in correlation with airway inflammatory biomarkers and FEV1. We aimed to detect whether those clinical phenotypes have an impact on the response to asthma medications. Two hundred three asthmatic children were allocated randomly to receive either montelukast ...

  10. Latent phenotypes pervade gene regulatory circuits.

    OpenAIRE

    Payne, Joshua L.; Wagner, Andreas

    2014-01-01

    BACKGROUND Latent phenotypes are non-adaptive byproducts of adaptive phenotypes. They exist in biological systems as different as promiscuous enzymes and genome-scale metabolic reaction networks, and can give rise to evolutionary adaptations and innovations. We know little about their prevalence in the gene expression phenotypes of regulatory circuits, important sources of evolutionary innovations. RESULTS Here, we study a space of more than sixteen million three-gene model regulatory circ...

  11. Latent phenotypes pervade gene regulatory circuits

    OpenAIRE

    Payne, Joshua L.; Wagner, Andreas

    2014-01-01

    Background Latent phenotypes are non-adaptive byproducts of adaptive phenotypes. They exist in biological systems as different as promiscuous enzymes and genome-scale metabolic reaction networks, and can give rise to evolutionary adaptations and innovations. We know little about their prevalence in the gene expression phenotypes of regulatory circuits, important sources of evolutionary innovations. Results Here, we study a space of more than sixteen million three-gene model regulatory circuit...

  12. Phenotype Information Retrieval for Existing GWAS Studies

    OpenAIRE

    Alipanah, Neda; Lin, Ko-Wei; Venkatesh, Vinay; Farzaneh, Seena; Kim, Hyeon-eui

    2013-01-01

    The database of Genotypes and Phenotypes (dbGaP) is archiving the results of different Genome Wide Association Studies (GWAS). dbGaP has a multitude of phenotype variables, but they are not harmonized across studies. We proposed a method to standardize phenotype variables by classifying similar variables based on semantic distances. We first extracted variables description, enriched them using domain knowledge, and computed the distances among them. We used clustering techniques to classify t...

  13. Phenotypes and Survival of Hatchling Lizards

    OpenAIRE

    Warner, Daniel Augustus

    2001-01-01

    The phenotypes of hatchling reptiles are influenced by the environmental conditions that embryos experience during incubation, by yolk invested into the egg, and by the genetic contributions of the parents. Phenotypic traits are influenced by these factors in ways that potentially affect the fitness of hatchlings. The physical conditions that embryos experience within the nest affects development, hatching success, and hatchling phenotypes. Thus, the nest site that a female selects can inf...

  14. Stochastic Nature in Cellular Processes

    Institute of Scientific and Technical Information of China (English)

    刘波; 刘圣君; 王祺; 晏世伟; 耿轶钊; SAKATA Fumihiko; GAO Xing-Fa

    2011-01-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  15. Xtoys cellular automata on xwindows

    CERN Document Server

    Creutz, M

    1995-01-01

    Xtoys is a collection of xwindow programs for demonstrating simulations of various statistical models. Included are xising, for the two dimensional Ising model, xpotts, for the q-state Potts model, xautomalab, for a fairly general class of totalistic cellular automata, xsand, for the Bak-Tang-Wiesenfield model of self organized criticality, and xfires, a simple forest fire simulation. The programs should compile on any machine supporting xwindows.

  16. Cellular reactions to patterned biointerfaces

    OpenAIRE

    Schulte, Vera Antonie

    2012-01-01

    The subject of this thesis is to study cellular reactions to topographically, mechanically and biochemically tunable polymeric biomaterials. Different aspects of in vitro cell-biomaterial interactions were systematically studied with the murine fibroblast cell line NIH L929 and primary human dermal fibroblasts (HDFs). Besides a general cytocompatibility assessment of the applied materials and the quantification of cell adhesion per se, cell morphological changes (e.g. cell spreading) and intr...

  17. Signal processing in cellular clocks

    OpenAIRE

    Forger, Daniel B.

    2011-01-01

    Many biochemical events within a cell need to be timed properly to occur at specific times of day, after other events have happened within the cell or in response to environmental signals. The cellular biochemical feedback loops that time these events have already received much recent attention in the experimental and modeling communities. Here, we show how ideas from signal processing can be applied to understand the function of these clocks. Consider two signals from the network s(t) and r(...

  18. Analysis of cellular manufacturing systems

    OpenAIRE

    Heragu, Sunderesh; Meng, Gang; Zijm, Henk; Ommeren, van, J.C.

    2001-01-01

    In this paper, we present an open queuing network modeling approach to estimate performance measures of a cellular manufacturing layout. It is assumed a layout and production data for a planning period of specified length are available. The production data takes into account, processing and handling set-up times as well as transfer and process batch size information of multiple products that flow through the system. It is assumed that two sets of discrete material handling devices are used fo...

  19. Cellular Dynamics of RNA Modification

    OpenAIRE

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characteri...

  20. Cellular Dynamics of RNA Modification

    Science.gov (United States)

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Conspectus Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characterized protein and DNA modifications, many RNA modifications are not essential for life. Instead, increasingly more evidence indicates that RNA modifications can play regulatory roles in cells, especially in response to stress conditions. In this Account, we review some known examples of RNA modifications that are dynamically controlled in cells and introduce some contemporary technologies and methods that enhance the studies of cellular dynamics of RNA modifications. Examples of RNA modifications discussed in this Account include (Figure 1): (1) 4-thio uridine (s4U) which can act as a cellular sensor of near UV-light; (2) queuosine (Q) which is a potential biomarker for malignancy; (3) N6-methyl adenine (m6A) which is the prevalent modification in eukaryotic mRNAs; and (4) pseudouridine (ψ) which are inducible by nutrient deprivation. Two recent technical advances that stimulated the studies of cellular dynamics of modified ribonucleosides are also described. First, a genome-wide method combines primer extension and microarray to study N1-methyl adenine (m1A) hypomodification in human tRNA. Second, a quantitative mass spectrometric method investigates dynamic changes of a wide range of tRNA modifications under stress conditions in yeast. In addition, we discuss potential mechanisms that control dynamic regulation of RNA modifications, and hypotheses for discovering potential RNA de-modification enzymes. We conclude the Account by highlighting the need to develop new

  1. CELLULAR FETAL MICROCHIMERISM IN PREECLAMPSIA

    OpenAIRE

    Gammill, Hilary S; Aydelotte, Tessa M.; Guthrie, Katherine A.; Nkwopara, Evangelyn C.; Nelson, J. Lee

    2013-01-01

    Previous studies have shown elevated concentrations of free fetal deoxyribonucleic acid and erythroblasts in maternal circulation in preeclampsia compared with normal pregnancy. Pluripotent and immunocompetent fetal cells also transfer to the maternal circulation during pregnancy, but whether concentrations of fetal mononuclear cells also differed in preeclampsia was unknown. We sought to quantify cellular fetal microchimerism in maternal circulation in women with preeclampsia and healthy con...

  2. The Origins of Cellular Life

    OpenAIRE

    Schrum, Jason P.; Zhu, Ting F.; SZOSTAK, JACK W.

    2010-01-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of fun...

  3. The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease

    OpenAIRE

    Shin, Rick; Kobayashi, Katsunori; Hagihara, Hideo; Kogan, Jeffrey H.; Miyake, Shinichi; Tajinda, Katsunori; Walton, Noah M.; Gross, Adam K; Heusner, Carrie L.; Chen, Qian; Tamura, Kouichi; Miyakawa, Tsuyoshi; Matsumoto, Mitsuyuki

    2013-01-01

    Objectives There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in ...

  4. Novel Phenotypic Fluorescent Three-Dimensional Platforms for High-throughput Drug Screening and Personalized Chemotherapy

    OpenAIRE

    Fang, Changge; Avis, Ingalill; Salomon, David; Cuttitta, Frank

    2013-01-01

    We have developed novel phenotypic fluorescent three-dimensional co-culture platforms that efficiently and economically screen anti-angiogenic/anti-metastatic drugs on a high-throughput scale. Individual cell populations can be identified and isolated for protein/gene expression profiling studies and cellular movement/interactions can be tracked by time-lapse cinematography. More importantly, these platforms closely parallel the in vivo angiogenic and metastatic outcomes of a given tumor xeno...

  5. Progress of cellular dedifferentiation research

    Institute of Scientific and Technical Information of China (English)

    LIU Hu-xian; HU Da-hai; JIA Chi-yu; FU Xiao-bing

    2006-01-01

    Differentiation, the stepwise specialization of cells, and transdifferentiation, the apparent switching of one cell type into another, capture much of the stem cell spotlight. But dedifferentiation, the developmental reversal of a cell before it reinvents itself, is an important process too. In multicellular organisms, cellular dedifferentiation is the major process underlying totipotency, regeneration and formation of new stem cell lineages. In humans,dedifferentiation is often associated with carcinogenesis.The study of cellular dedifferentiation in animals,particularly early events related to cell fate-switch and determination, is limited by the lack of a suitable,convenient experimental system. The classic example of dedifferentiation is limb and tail regeneration in urodele amphibians, such as salamanders. Recently, several investigators have shown that certain mammalian cell types can be induced to dedifferentiate to progenitor cells when stimulated with the appropriate signals or materials. These discoveries open the possibility that researchers might enhance the endogenous regenerative capacity of mammals by inducing cellular dedifferentiation in vivo.

  6. Immunogenetic phenotypes in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Marla C Dubinsky; Kent Taylor; Stephan R Targan; Jerome I Rotter

    2006-01-01

    The currently accepted etiopathogenic hypothesis suggests that the chronic intestinal inflammation and related systemic manifestations characteristic of inflammatory bowel disease (IBD) are due to an overly aggressive or pathologic immune response to resident luminal bacterial constituents. Predisposing factors are genetic dysregulation of mucosal immune responses and/or barrier function, with onset triggered by environmental stimuli. These factors and their interactions may also be important determinants of disease phenotype and disease progression. The emergence of immunogenetic phenotypes lends support to the proposed hypothesis that susceptibility genes regulate distinct immune processes, driven by luminal antigens, expressed as specific immune phenotypes which in turn influence clinical phenotypes in IBD patient

  7. Phenotypic heterogeneity of Streptococcus mutans in dentin.

    Science.gov (United States)

    Rupf, S; Hannig, M; Breitung, K; Schellenberger, W; Eschrich, K; Remmerbach, T; Kneist, S

    2008-12-01

    Information concerning phenotypic heterogeneity of Streptococcus mutans in carious dentin is sparse. Matrix-assisted laser-desorption/ionization-time-of-flight mass-spectrometry (MALDI-TOF-MS) facilitates the phenotypic differentiation of bacteria to the subspecies level. To verify a supposed influence of restorative treatment on the phenotypic heterogeneity of S. mutans, we isolated and compared a total of 222 S. mutans strains from dentin samples of 21 human deciduous molars during caries excavation (T(1)) and 8 wks (T(2)) after removal of the temporary restoration. Phenotypic heterogeneity was determined by MALDI-TOF-MS and hierarchical clustering. Thirty-six distinct S. mutans phenotypes could be identified. Although indistinguishable phenotypes were found in the same teeth at T(1) and T(2), as well as in different teeth of individual participants, the phenotypic heterogeneity increased significantly, from 1.4 phenotypes per S. mutans-positive dentin sample at T(1) to 2.2 phenotypes at T(2). We attribute this to an adaptation of S. mutans to the modified environment under the restoration following caries excavation. PMID:19029088

  8. Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance

    DEFF Research Database (Denmark)

    D’Andrea, Filippo P.; Safwat, Akmal; Kassem, Moustapha; Gautier, Laurent; Overgaard, Jens; Horsman, Michael R.

    2011-01-01

    BackgroundCancer stem cells are thought to be a radioresistant population and may be the seeds for recurrence after radiotherapy. Using tumorigenic clones of retroviral immortalized human mesenchymal stem cell with small differences in their phenotype, we investigated possible genetic expression...... analysis found the genes involved in cancer, proliferation, DNA repair and cell death. ConclusionsThe higher radiation resistance in clone CE8 is likely due to NNMT overexpression. The higher levels of NNMT could affect the cellular damage resistance through depletion of the accessible amounts of...... nicotinamide, which is a known inhibitor of cellular DNA repair mechanisms....

  9. The Genetic Inheritance of the Blue-eyed White Phenotype in Alpacas (Vicugna pacos)

    OpenAIRE

    Jackling, Felicity C.; Warren E. Johnson; Appleton, Belinda R

    2012-01-01

    White-spotting patterns in mammals can be caused by mutations in the gene KIT, whose protein is necessary for the normal migration and survival of melanocytes from the neural crest. The alpaca (Vicugna pacos) blue-eyed white (BEW) phenotype is characterized by 2 blue eyes and a solid white coat over the whole body. Breeders hypothesize that the BEW phenotype in alpacas is caused by the combination of the gene causing gray fleece and a white-spotting gene. We performed an association study usi...

  10. Dynamic properties of cellular neural networks

    Directory of Open Access Journals (Sweden)

    Angela Slavova

    1993-01-01

    Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.

  11. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  12. Genotype-phenotype correlation in 21 patients with Wolf-Hirschhorn syndrome using high resolution array comparative genome hybridisation (CGH)

    NARCIS (Netherlands)

    Maas, N. M. C.; Van Buggenhout, G.; Hannes, F.; Thienpont, B.; Sanlaville, D.; Kok, K.; Midro, A.; Andrieux, J.; Anderlid, B-M; Schoumans, J.; Hordijk, R.; Devriendt, K.; Fryns, J-P; Vermeesch, J. R.

    2008-01-01

    Background: The Wolf-Hirschhorn syndrome (WHS) is usually caused by terminal deletions of the short arm of chromosome 4 and is phenotypically defined by growth and mental retardation, seizures, and specific craniofacial manifestations. Large variation is observed in phenotypic expression of these fe

  13. Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice

    OpenAIRE

    Littlefield, Alyssa M.; Setti, Sharay E.; Priester, Carolina; Kohman, Rachel A.

    2015-01-01

    Background Microglia can acquire various phenotypes of activation that mediate their inflammatory and neuroprotective effects. Aging causes microglia to become partially activated towards an inflammatory phenotype. As a result, aged animals display a prolonged neuroinflammatory response following an immune challenge. Currently unknown is whether this persistent neuroinflammation leads to greater reductions in hippocampal neurogenesis. Exercise has been shown to alter microglia activation in a...

  14. Heterogeneity of phenotype in two cystic fibrosis patients homozygous for the CFTR exon 11 mutation G551D.

    OpenAIRE

    Parad, R B

    1996-01-01

    In the heterozygous state, the cystic fibrosis transmembrane conductance regulator (CFTR) exon 11 mutation G551D has been described as "severe," causing pancreatic insufficiency. Two cystic fibrosis (CF) patients homozygous for this mutation showed a mild rather than severe pancreatic phenotype and a variable pulmonary phenotype.

  15. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    DEFF Research Database (Denmark)

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E;

    2016-01-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We ident...

  16. Discordant phenotypes in monozygotic twins with identical de novo WT1 mutation

    OpenAIRE

    Yu, Zihua; Yang, Yonghui; Feng, Dongning

    2012-01-01

    Mutations in the WT1 gene, leading to Denys-Drash syndrome and Frasier syndrome, can also cause isolated steroid-resistant nephrotic syndrome (ISRNS). Previous studies have reported six pairs of monozygotic twins with WT1 mutations, including one presenting with discordant phenotypes with identical WT1 mutations being of paternal origin and five pairs of monozygotic twins presenting the same phenotype with identical WT1 mutations. In this study, we report on female monozygotic twins showing d...

  17. Divergence between phenotypic and genetic variation within populations of a common herb across Europe

    OpenAIRE

    Villellas, Jesús; Berjano, Enrique Regina; Terrab, Anass; García González, María Begoña

    2014-01-01

    Analyzing the pattern and causes of phenotypic and genetic variation within and among populations might help to understand life history variability in plants, and to predict their responses to changing environmental conditions. Here we compare phenotypic variation and genetic diversity of the widespread herb Plantago coronopus across Europe, and evaluate their relationship with environmental and geographical factors. Genetic diversity was estimated in 18 populations from molecular markers wit...

  18. The Y141C knockin mutation in RDS leads to complex phenotypes in the mouse

    OpenAIRE

    Stuck, Michael W.; Conley, Shannon M.; Naash, Muna I.

    2014-01-01

    Mutations in the photoreceptor-specific gene peripherin-2 (PRPH-2, also known as retinal degeneration slow/RDS) cause incurable retinal degeneration with a high degree of phenotypic variability. Patient phenotypes range from retinitis pigmentosa to various forms of macular and pattern dystrophy. Macular and pattern dystrophy in particular are associated with complex, poorly understood disease mechanisms, as severe vision loss is often associated both with defects in the photoreceptors, as wel...

  19. Unusual phenotype of glucose transport protein type 1 deficiency syndrome: A case report and literature review

    OpenAIRE

    Annio Posar; Margherita Santucci

    2014-01-01

    The glucose transport protein type 1 (GLUT1) deficit causes a chronic brain energy failure. The classic phenotype of GLUT1 deficiency syndrome is characterized by: Mild to severe motor delay and mental retardation; infantile-onset epilepsy; head growth deceleration; movement disorders (ataxia, dystonia, spasticity); and non-epileptic paroxysmal events (intermittent ataxia, periodic confusion, recurrent headaches). During last years the classic phenotype of this syndrome, as originally reporte...

  20. Metabolic phenotyping by 1H-NMR spectroscopy detects lung cancer via a simple blood sample

    OpenAIRE

    Louis,Evelyne; MESOTTEN, Liesbet; Thomeer, Michiel; Vandeurzen, Kurt; Darquennes, Karen; Vanhove, Karolien; Reekmans, Gunter; Adriaensens, Peter

    2013-01-01

    Introduction: Lung cancer is the leading cause of cancer death worldwide. There is an urgent need of effective methods to detect lung cancer. Accumulating evidence shows that the metabolism of cancer cells differs from that of normal cells. Disturbances in biochemical pathways which occur during the development of cancer provoke changes in the metabolic phenotype. Objective: To determine the metabolic phenotype of lung cancer by 1H-NMR spectroscopy. Methods: Fasting venous blood samples of 78...

  1. Metabolic phenotyping of blood plasma by 1H-NMR spectroscopy to detect lung cancer?

    OpenAIRE

    Louis,Evelyne; MESOTTEN, Liesbet; Thomeer, Michiel; Vanhove, Karolien; Vandeurzen, K.; Sadowska, A.; Reekmans, Gunter; Adriaensens, Peter

    2013-01-01

    Introduction. Lung cancer is the leading cause of cancer death worldwide. An effective method which allows to detect lung cancer is urgently needed. Accumulating evidence shows that the metabolism of cancer cells differs from that of normal cells(1). Disturbances in biochemical pathways which occur during the development of cancer provoke changes in the metabolic phenotype(2). Objective. To determine the metabolic phenotype of lung cancer by means of proton nuclear magnetic resonance (1H-...

  2. Characterization of a flocculation-like phenotype in Cryptococcus neoformans and its effects on pathogenesis.

    Science.gov (United States)

    Li, Li; Zaragoza, Oscar; Casadevall, Arturo; Fries, Bettina C

    2006-11-01

    We investigated the phenomenon of cell-cell aggregation (flocculation) in a serotype D strain of Cryptococcus neoformans (ATCC 24067, isolate RC-2). Cell aggregation into clumps of 5-40 cells (clump+ cells) occurred during the early log phase and disappeared in the beginning of the stationary phase (clump- cells). The cell aggregation phenomenon was medium dependent. Clump+ cells could be dispersed by either vortexing or proteinase K digestion. Most importantly, the transient change in cellular phenotype changed several important host-pathogen interactions. Adherence of clump+ cells to murine macrophage-like cells J774.16 was significantly (P phenotype undergoes significant changes that result in a transient flocculation-like phenotype. We hypothesize that this cell-cell aggregation is the result of changes in protein content in the polysaccharide capsule. We conclude from our data that the change in cellular phenotype has a dramatic effect on cell adherence, and on complement-mediated phagocytosis, both of which can affect the pathogenesis of the disease in the host. Our results underscore the complexity of studies that investigate host pathogen interactions and may explain differences and inconsistencies observed in in vitro and in vivo assays. PMID:16759224

  3. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences

    Indian Academy of Sciences (India)

    Günter Vogt

    2015-03-01

    This article reviews the production of different phenotypes from the same genotype in the same environment by stochastic cellular events, nonlinear mechanisms during patterning and morphogenesis, and probabilistic self-reinforcing circuitries in the adult life. These aspects of phenotypic variation are summarized under the term‘stochastic developmental variation’ (SDV) in the following. In the past, SDV has been viewed primarily as a nuisance, impairing laboratory experiments, pharmaceutical testing, and true-to-type breeding. This article also emphasizes the positive biological effects of SDV and discusses implications for genotype-to-phenotype mapping, biological individuation, ecology, evolution, and applied biology. There is strong evidence from experiments with genetically identical organisms performed in narrowly standardized laboratory set-ups that SDV is a source of phenotypic variation in its own right aside from genetic variation and environmental variation. It is obviouslymediated bymolecular and higher-order epigeneticmechanisms. Comparison of SDV in animals, plants, fungi, protists, bacteria, archaeans, and viruses suggests that it is a ubiquitous and phylogenetically old phenomenon. In animals, it is usually smallest for morphometric traits and highest for life history traits and behaviour. SDV is thought to contribute to phenotypic diversity in all populations but is particularly relevant for asexually reproducing and genetically impoverished populations, where it generates individuality despite genetic uniformity. In each generation, SDV produces a range of phenotypes around a well-adapted target phenotype, which is interpreted as a bet-hedging strategy to cope with the unpredictability of dynamic environments. At least some manifestations of SDV are heritable, adaptable, selectable, and evolvable, and therefore, SDV may be seen as a hitherto overlooked evolution factor. SDV is also relevant for husbandry, agriculture, and medicine because most

  4. Characterization and differential gene expression between two phenotypic phase variants in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Patterson, Sheila K; Borewicz, Klaudyna; Johnson, Timothy; Xu, Wayne; Isaacson, Richard E

    2012-01-01

    Salmonella enterica serovar Typhimurium strain 798 has previously been shown to undergo phenotypic phase variation. One of the phenotypes expresses virulence traits such as adhesion, while the other phenotype does not. Phenotypic phase variation appears to correlate with the ability of this strain to cause persistent, asymptomatic infections of swine. A new method to detect cells in either phenotypic phase was developed using Evans Blue-Uranine agar plates. Using this new assay, rates of phenotypic phase variation were obtained. The rate of phase variation from non-adhesive to adhesive phenotype was approximately 10(-4) per cell per generation while phase variation from the adhesive to the non-adhesive phenotype was approximately 10(-6) per cell per generation. Two highly virulent S. Typhimurium strains, SL1344 and ATCC 14028, were also shown to undergo phase variation. However, while the rate from adhesive to non-adhesive phenotype was approximately the same as for strain 798, the non-adhesive to adhesive phenotype shift was 37-fold higher. Differential gene expression was measured using RNA-Seq. Eighty-three genes were more highly expressed by 798 cells in the adhesive phenotype compared to the non-adhesive cells. Most of the up-regulated genes were in virulence genes and in particular all genes in the Salmonella pathogenicity island 1 were up-regulated. When compared to the virulent strain SL1344, expression of the virulence genes was approximately equal to those up-regulated in the adhesive phenotype of strain 798. A comparison of invasive ability demonstrated that strain SL1344 was the most invasive followed by the adhesive phenotype of strain 798, then the non-adhesive phenotype of strain 798. The least invasive strain was ATCC 14028. The genome of strain 798 was sequenced and compared to SL1344. Both strains had very similar genome sequences and gene deletions could not readily explain differences in the rates of phase variation from non-adhesive to the

  5. Characterization and differential gene expression between two phenotypic phase variants in Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Sheila K Patterson

    Full Text Available Salmonella enterica serovar Typhimurium strain 798 has previously been shown to undergo phenotypic phase variation. One of the phenotypes expresses virulence traits such as adhesion, while the other phenotype does not. Phenotypic phase variation appears to correlate with the ability of this strain to cause persistent, asymptomatic infections of swine. A new method to detect cells in either phenotypic phase was developed using Evans Blue-Uranine agar plates. Using this new assay, rates of phenotypic phase variation were obtained. The rate of phase variation from non-adhesive to adhesive phenotype was approximately 10(-4 per cell per generation while phase variation from the adhesive to the non-adhesive phenotype was approximately 10(-6 per cell per generation. Two highly virulent S. Typhimurium strains, SL1344 and ATCC 14028, were also shown to undergo phase variation. However, while the rate from adhesive to non-adhesive phenotype was approximately the same as for strain 798, the non-adhesive to adhesive phenotype shift was 37-fold higher. Differential gene expression was measured using RNA-Seq. Eighty-three genes were more highly expressed by 798 cells in the adhesive phenotype compared to the non-adhesive cells. Most of the up-regulated genes were in virulence genes and in particular all genes in the Salmonella pathogenicity island 1 were up-regulated. When compared to the virulent strain SL1344, expression of the virulence genes was approximately equal to those up-regulated in the adhesive phenotype of strain 798. A comparison of invasive ability demonstrated that strain SL1344 was the most invasive followed by the adhesive phenotype of strain 798, then the non-adhesive phenotype of strain 798. The least invasive strain was ATCC 14028. The genome of strain 798 was sequenced and compared to SL1344. Both strains had very similar genome sequences and gene deletions could not readily explain differences in the rates of phase variation from non

  6. Phenotypic robustness can increase phenotypic variability after non-genetic perturbations in gene regulatory circuits

    OpenAIRE

    Espinosa-Soto, C.; Martin, O. C.; Wagner, A

    2010-01-01

    Non-genetic perturbations, such as environmental change or developmental noise, can induce novel phenotypes. If an induced phenotype confers a fitness advantage, selection may promote its genetic stabilization. Non-genetic perturbations can thus initiate evolutionary innovation. Genetic variation that is not usually phenotypically visible may play an important role in this process. Populations under stabilizing selection on a phenotype that is robust to mutations can accumulate such variation...

  7. The use of whole-exome sequencing to disentangle complex phenotypes.

    Science.gov (United States)

    Williams, Hywel J; Hurst, John R; Ocaka, Louise; James, Chela; Pao, Caroline; Chanudet, Estelle; Lescai, Francesco; Stanescu, Horia C; Kleta, Robert; Rosser, Elisabeth; Bacchelli, Chiara; Beales, Philip

    2016-02-01

    The success of whole-exome sequencing to identify mutations causing single-gene disorders has been well documented. In contrast whole-exome sequencing has so far had limited success in the identification of variants causing more complex phenotypes that seem unlikely to be due to the disruption of a single gene. We describe a family where two male offspring of healthy first cousin parents present a complex phenotype consisting of peripheral neuropathy and bronchiectasis that has not been described previously in the literature. Due to the fact that both children had the same problems in the context of parental consanguinity we hypothesised illness resulted from either X-linked or autosomal recessive inheritance. Through the use of whole-exome sequencing we were able to simplify this complex phenotype and identified a causative mutation (p.R1070*) in the gene periaxin (PRX), a gene previously shown to cause peripheral neuropathy (Dejerine-Sottas syndrome) when this mutation is present. For the bronchiectasis phenotype we were unable to identify a causal single mutation or compound heterozygote, reflecting the heterogeneous nature of this phenotype. In conclusion, in this study we show that whole-exome sequencing has the power to disentangle complex phenotypes through the identification of causative genetic mutations for distinct clinical disorders that were previously masked. PMID:26059842

  8. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences

    Science.gov (United States)

    McElvaney, Noel G.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF. PMID:27340661

  9. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences

    Directory of Open Access Journals (Sweden)

    Gillian M. Lavelle

    2016-01-01

    Full Text Available Cystic fibrosis (CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF.

  10. Endocrine Flexibility: Optimizing Phenotypes in a Dynamic World?

    Science.gov (United States)

    Taff, Conor C; Vitousek, Maren N

    2016-06-01

    Responding appropriately to changing conditions is crucial in dynamic environments. Individual variation in the flexibility of physiological mediators of phenotype may influence the capacity to mount an integrated response to unpredictable changes in social or ecological context. We propose here a conceptual framework of rapid endocrine flexibility that integrates ecological endocrinology with theoretical and empirical studies of phenotypic plasticity and behavioral syndromes. We highlight the need for research addressing variation in the scope and speed of flexibility, and provide suggestions for future studies of these potentially evolving traits. Elucidating the causes and consequences of variation in endocrine flexibility may have important implications for the evolution of behavior, and for predicting the response of individuals and populations to rapidly changing environments. PMID:27055729

  11. Jagged 1 Rescues the Duchenne Muscular Dystrophy Phenotype.

    Science.gov (United States)

    Vieira, Natassia M; Elvers, Ingegerd; Alexander, Matthew S; Moreira, Yuri B; Eran, Alal; Gomes, Juliana P; Marshall, Jamie L; Karlsson, Elinor K; Verjovski-Almeida, Sergio; Lindblad-Toh, Kerstin; Kunkel, Louis M; Zatz, Mayana

    2015-11-19

    Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. Previously, we identified two exceptional Golden Retriever muscular dystrophy (GRMD) dogs that are mildly affected, have functional muscle, and normal lifespan despite the complete absence of dystrophin. Now, our data on linkage, whole-genome sequencing, and transcriptome analyses of these dogs compared to severely affected GRMD and control animals reveals that increased expression of Jagged1 gene, a known regulator of the Notch signaling pathway, is a hallmark of the mild phenotype. Functional analyses demonstrate that Jagged1 overexpression ameliorates the dystrophic phenotype, suggesting that Jagged1 may represent a target for DMD therapy in a dystrophin-independent manner. PAPERCLIP. PMID:26582133

  12. A side effect resource to capture phenotypic effects of drugs

    DEFF Research Database (Denmark)

    Kuhn, Michael; Campillos, Monica; Letunic, Ivica; Jensen, Lars Juhl; Bork, Peer

    2010-01-01

    The molecular understanding of phenotypes caused by drugs in humans is essential for elucidating mechanisms of action and for developing personalized medicines. Side effects of drugs (also known as adverse drug reactions) are an important source of human phenotypic information, but so far research...... on this topic has been hampered by insufficient accessibility of data. Consequently, we have developed a public, computer-readable side effect resource (SIDER) that connects 888 drugs to 1450 side effect terms. It contains information on frequency in patients for one-third of the drug-side effect...... pairs. For 199 drugs, the side effect frequency of placebo administration could also be extracted. We illustrate the potential of SIDER with a number of analyses. The resource is freely available for academic research at http://sideeffects.embl.de....

  13. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    NARCIS (Netherlands)

    Kohler, S.; Doelken, S.C.; Mungall, C.J.; Bauer, S.; Firth, H.V.; Bailleul-Forestier, I.; Black, G.C.M.; Brown, D.L.; Brudno, M.; Campbell, J.; FitzPatrick, D.R.; Eppig, J.T.; Jackson, A.P.; Freson, K.; Girdea, M.; Helbig, I.; Hurst, J.A.; Jahn, J.; Jackson, L.G.; Kelly, A.M.; Ledbetter, D.H.; Mansour, S.; Martin, C.L.; Moss, C.; Mumford, A.; Ouwehand, W.H.; Park, S.M.; Riggs, E.R.; Scott, R.H.; Sisodiya, S.; Vooren, S. van der; Wapner, R.J.; Wilkie, A.O.; Wright, C.F.; Silfhout, A.T. van; Leeuw, N. de; Vries, B. de; Washingthon, N.L.; Smith, C.L.; Westerfield, M.; Schofield, P.; Ruef, B.J.; Gkoutos, G.V.; Haendel, M.; Smedley, D.; Lewis, S.E.; Robinson, P.N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have d

  14. Interconnectivity of human cellular metabolism and disease prevalence

    International Nuclear Information System (INIS)

    Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease–gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery

  15. Numerical simulation of Mach reflection of cellular detonations

    Science.gov (United States)

    Li, J.; Lee, J. H. S.

    2016-07-01

    The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.

  16. PROGRESSION TO ANDROGEN-INDEPENDENT LNCAP HUMAN PROSTATE TUMORS: CELLULAR AND MOLECULAR ALTERATIONS

    OpenAIRE

    Zhou, Jin-Rong; Yu, Lunyin; Zerbini, Luiz F.; Libermann, Towia A.; Blackburn, George L.

    2004-01-01

    Lethal phenotypes of human prostate cancer are characterized by progression to androgen-independence and metastasis. For want of a clinically relevant animal model, mechanisms behind this progression remain unclear. Our study used an in vivo model of androgen-sensitive LNCaP human prostate cancer cell xenografts in male SCID mice to study the cellular and molecular biology of tumor progression. Primary tumors were established orthotopically, and the mice were then surgically castrated to with...

  17. Functional evaluation of DNA repair in human biopsies and their relation to other cellular biomarkers

    OpenAIRE

    Slyskova, Jana; Langie, Sabine A. S.; Collins, Andrew R.; Vodicka, Pavel

    2014-01-01

    Thousands of DNA lesions are estimated to occur in each cell every day and almost all are recognized and repaired. DNA repair is an essential system that prevents accumulation of mutations which can lead to serious cellular malfunctions. Phenotypic evaluation of DNA repair activity of individuals is a relatively new approach. Methods to assess base and nucleotide excision repair pathways (BER and NER) in peripheral blood cells based on modified comet assay protocols have been widely applied i...

  18. The Cognitive Phenotype of Spina Bifida Meningomyelocele

    Science.gov (United States)

    Dennis, Maureen; Barnes, Marcia A.

    2010-01-01

    A cognitive phenotype is a product of both assets and deficits that specifies what individuals with spina bifida meningomyelocele (SBM) can and cannot do and why they can or cannot do it. In this article, we review the cognitive phenotype of SBM and describe the processing assets and deficits that cut within and across content domains, sensory…

  19. Distribution of phenotypes among Bacillus thuringiensis strains

    Science.gov (United States)

    An extensive collection of Bacillus thuringiensis isolates from around the world were phenotypically profiled using standard biochemical tests. Six phenotypic traits occurred in 20-86% of the isolates and were useful in distinguishing isolates: production of urease (U; 20.5% of isolates), hydrolysis...

  20. Microglial Aging in the Healthy CNS: Phenotypes, Drivers, and Rejuvenation

    Directory of Open Access Journals (Sweden)

    Wai T Wong

    2013-03-01

    Full Text Available Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and age-related macular degeneration, share two characteristics in common: 1 a disease prevalence that increases markedly with advancing age, and 2 neuroinflammatory changes in which microglia, the primary resident immune cell of the CNS, feature prominently. These characteristics have led to the hypothesis that pathogenic mechanisms underlying age-related neurodegenerative disease involve aging changes in microglia. If correct, targeting features of microglial senescence may constitute a feasible therapeutic strategy. This review explores this hypothesis and its implications by considering the current knowledge on how microglia undergo change during aging and how the emergence of these aging phenotypes relate to significant alterations in microglial function. Evidence and theories on cellular mechanisms implicated in driving senescence in microglia are reviewed, as are rejuvenative measures and strategies that aim to reverse or ameliorate the aging microglial phenotype. Understanding and controlling microglial aging may represent an opportunity for elucidating disease mechanisms and for formulating novel therapies.

  1. Game of Life Cellular Automata

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  2. Cellular automata a parallel model

    CERN Document Server

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  3. Mathematical Physics of Cellular Automata

    CERN Document Server

    Garcia-Morales, Vladimir

    2012-01-01

    A universal map is derived for all deterministic 1D cellular automata (CA) containing no freely adjustable parameters. The map can be extended to an arbitrary number of dimensions and topologies and its invariances allow to classify all CA rules into equivalence classes. Complexity in 1D systems is then shown to emerge from the weak symmetry breaking of the addition modulo an integer number p. The latter symmetry is possessed by certain rules that produce Pascal simplices in their time evolution. These results elucidate Wolfram's classification of CA dynamics.

  4. Estimation in Cellular Radio Systems

    OpenAIRE

    Blom, Jonas; Gunnarsson, Fredrik; Gustafsson, Fredrik

    1999-01-01

    The problem to track time-varying parameters in cellular radio systems is studied, and the focus is on estimation based only on the signals that are readily available. Previous work have demonstrated very good performance, but were relying on analog measurement that are not available. Most of the information is lost due to quantization and sampling at a rate that might be as low as 2 Hz (GSM case). For that matter a maximum likelihood estimator have been designed and exemplified in the case o...

  5. 'Biomoleculas': cellular metabolism didactic software

    International Nuclear Information System (INIS)

    'Biomoleculas' is a software that deals with topics such as the digestion, cellular metabolism and excretion of nutrients. It is a pleasant, simple and didactic guide, made by and for students. In this program, each biomolecule (carbohydrates, lipids and proteins) is accompanied until its degradation and assimilation by crossing and interrelating the different metabolic channels to finally show the destination of the different metabolites formed and the way in which these are excreted. It is used at present as a teaching-learning process tool by the chair of Physiology and Biophysics at the Facultad de Ingenieria - Universidad Nacional de Entre Rios

  6. Protein accounting in the cellular economy

    Science.gov (United States)

    Vázquez-Laslop, Nora; Mankin, Alexander S.

    2014-01-01

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. (2014) gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the needs. PMID:24766801

  7. Cellular Functions of Transient Receptor Potential channels

    OpenAIRE

    Dadon, Daniela; Minke, Baruch

    2010-01-01

    Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca2+. In this review we focus on the roles of these channels in: i) cell death ii) proliferation and differentiation and iii) synaptic vesicle release.

  8. Metabolomic phenotyping of af cloned pig model

    DEFF Research Database (Denmark)

    Clausen, Morten Rahr; Christensen, Kirstine Lykke; Hedemann, Mette Skou;

    2011-01-01

    Background Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and...... possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal...... outbred pigs. Results The metabolic phenotype of cloned pigs (n = 5) was for the first time elucidated by nuclear magnetic resonance (NMR)-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n...

  9. Mobile telephony (cellular) and public health

    International Nuclear Information System (INIS)

    One third of the world population uses mobile phones or cellular (TM), as possible repercussions on health has resulted in numerous studies. TM and their bases (antennae) exchange information through microwaves, which are non-ionizing electromagnetic radiations. Microwaves have thermal effects, which are avoided by current safety standards. However, there are lingering doubts about possible adverse health consequences of non-thermal effects of microwaves. As a whole, basic and epidemiological research on TM and cancer indicates a very low or nonexistent risk, although longer prospective studies are needed. In the nervous system, TM microwaves cause electrophysiological changes and modifications of blood flow, with little effect on performance. Possible effects on the thyroid gland, the reproductive system, and oxidative stress demand additional research. Some TM users complain of unspecific symptoms, but no causal relationship has been proved either in normal subjects or those self-characterized as hypersensitive to electromagnetic fields. Epidemiological research on populations living close to base stations suggests adverse effects from exposition, but experimental work has yielded contradictory results. The effects on children have just begun to be explored. TM may interfere with medical equipment when the phones are operated very close to the devices. Ironically, the clearest adverse effect of TM has no direct relationship with microwaves. The use of TM while driving causes a decrease in performance comparable to moderate consumption of alcohol and quadruples the risk of accidents. (author)

  10. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Ivanova

    2016-01-01

    Full Text Available Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient’s bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization.

  11. Two Phase Flow Simulation Using Cellular Automata

    International Nuclear Information System (INIS)

    The classical mathematical treatment of two-phase flows is based on the average of the conservation equations for each phase.In this work, a complementary approach to the modeling of these systems based on statistical population balances of aut omata sets is presented.Automata are entities defined by mathematical states that change following iterative rules representing interactions with the neighborhood.A model of automata for two-phase flow simulation is presented.This model consists of fie lds of virtual spheres that change their volumes and move around a certain environment.The model is more general than the classical cellular automata in two respects: the grid of cellular automata is dismissed in favor of a trajectory generator, and the rules of interaction involve parameters representing the actual physical interactions between phases.Automata simulation was used to study unsolved two-phase flow problems involving high heat flux rates. One system described in this work consists of a vertical channel with saturated water at normal pressure heated from the lower surface.The heater causes water to boil and starts the bubble production.We used cellular automata to describe two-phase flows and the interaction with the heater.General rule s for such cellular automata representing bubbles moving in stagnant liquid were used, with special attention to correct modeling of different mechanisms of heat transfer.The results of the model were compared to previous experiments and correlations finding good agreement.One of the most important findings is the confirmation of Kutateladze's idea about a close relation between the start of critical heat flux and a change in the flow's topology.This was analyzed using a control volume located in the upper surface of the heater.A strong decrease in the interfacial surface just before the CHF start was encountered.The automata describe quite well some characteristic parameters such as the shape of the local void fraction in the

  12. Universal map for cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    García-Morales, V., E-mail: vmorales@ph.tum.de [Institute for Advanced Study – Technische Universität München, Lichtenbergstr. 2a, D-85748 Garching (Germany)

    2012-08-20

    A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived. -- Highlights: ► A universal map is derived for all deterministic 1D cellular automata (CA). ► The map is generalized to 2D for Von Neumann, Moore and hexagonal neighborhoods. ► A map for all Wolfram's 256 elementary CAs is derived. ► A map for Conway's “Game of Life” is obtained.

  13. Cellular Therapy for Heart Failure.

    Science.gov (United States)

    Psaltis, Peter J; Schwarz, Nisha; Toledo-Flores, Deborah; Nicholls, Stephen J

    2016-01-01

    The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management. PMID:27280304

  14. Air Pollution Stress and the Aging Phenotype: The Telomere Connection.

    Science.gov (United States)

    Martens, Dries S; Nawrot, Tim S

    2016-09-01

    Aging is a complex physiological phenomenon. The question why some subjects grow old while remaining free from disease whereas others prematurely die remains largely unanswered. We focus here on the role of air pollution in biological aging. Hallmarks of aging can be grouped into three main categories: genomic instability, telomere attrition, and epigenetic alterations leading to altered mitochondrial function and cellular senescence. At birth, the initial telomere length of a person is largely determined by environmental factors. Telomere length shortens with each cell division and exposure to air pollution as well as low residential greens space exposure is associated with shorter telomere length. Recent studies show that the estimated effects of particulate air pollution exposure on the telomere mitochondrial axis of aging may play an important role in chronic health effects of air pollution. The exposome encompasses all exposures over an entire life. As telomeres can be considered as the cellular memories of exposure to oxidative stress and inflammation, telomere maintenance may be a proxy for assessing the "exposome". If telomeres are causally related to the aging phenotype and environmental air pollution is an important determinant of telomere length, this might provide new avenues for future preventive strategies. PMID:27357566

  15. Molecular and cellular constraints on proteins

    Science.gov (United States)

    Kortemme, Tanja

    Engineering proteins with new sequences, structures and functions has many exciting practical applications, and provides new ways to dissect design principles for function. Recent successes in computational protein design provide a cause for optimism. Yet many functions are currently too complex to engineer predictively, and successful design of new biological activities also requires an understanding of the functional pressures acting on proteins in the context of cells and organisms. I will present two vignettes describing our progress with dissecting both molecular and cellular constraints on protein function. In the first, we characterized the cost and benefit of protein production upon sequence perturbations in a classic system for gene regulation, the lac operon. Our results were unexpected in light of the common assumption that the dominant fitness costs are due to protein expression. Instead, we discovered a direct linear relationship between cost and lacpermease activity, not protein or mRNA production. The magnitude of the cost of permease activity, relative to protein production, has consequences for regulation. Our model predicts an advantage of direct regulation of protein activity (not just expression), providing a new explanation for the long-known mechanism of ``inducer exclusion'' that inhibits transport through the permease. Similar pressures and cost/benefit tradeoffs may be key to engineering synthetic systems with improved fitness. In the second vignette, I will describe our recent efforts to develop computational approaches that predict protein sequences consistent with multiple functional conformations. We expect such ``multi-constraint'' models to improve predictions of functional sequences determined by deep mutational scanning in bacteria, to provide insights into how the balance between functional conformations shapes sequence space, and to highlight molecular and cellular constraints that cannot be captured by the model.

  16. Molecular chaperones: The modular evolution of cellular networks

    Indian Academy of Sciences (India)

    Tamás Korcsmáros; István A Kovács; Máté S Szalay; Péter Csermely

    2007-04-01

    Molecular chaperones play a prominent role in signaling and transcriptional regulatory networks of the cell. Recent advances uncovered that chaperones act as genetic buffers stabilizing the phenotype of various cells and organisms and may serve as potential regulators of evolvability. Chaperones have weak links, connect hubs, are in the overlaps of network modules and may uncouple these modules during stress, which gives an additional protection for the cell at the network-level. Moreover, after stress chaperones are essential to re-build inter-modular contacts by their low affinity sampling of the potential interaction partners in different modules. This opens the way to the chaperone-regulated modular evolution of cellular networks, and helps us to design novel therapeutic and anti-aging strategies.

  17. CANCELLED EMT and back again: does cellular plasticity fuelneoplasticprogressi on?

    Energy Technology Data Exchange (ETDEWEB)

    Turley, Eva A.; Veiseh, Mandana; Radisky, Derek C.; Bissell, MinaJ.

    2007-02-24

    Epithelial-mesenchymal transition (EMT) is a cellular transdifferentiation program that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. However, a similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, in which it is associated with disease progression. EMT in cancer epithelial cells often appears to be an incomplete and bi-directional process. Here we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the Ras-controlled signaling mediators, ERK1, ERK2 and PI3-kinase, as microenvironmental responsive regulators of EMT.

  18. Phenotypic and Molecular Convergence of 2q23.1 Deletion Syndrome with Other Neurodevelopmental Syndromes Associated with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Sureni V. Mullegama

    2015-04-01

    Full Text Available Roughly 20% of autism spectrum disorders (ASD are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5 is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention.

  19. PHENOTYPIC TRAITS IN ZAGORJE TURKEY

    Directory of Open Access Journals (Sweden)

    Z. Janječić

    2007-06-01

    Full Text Available Production of turkeys in the region of Hrvatsko zagorje began in second half of 16th century, when there was a little influence of other turkey breeds from other region. Recently, interest for protection and preservation of autochthonous poultry breeds in Croatia is growing and in that sense this investigation was set to determine the phenotypic traits of Zagorje turkey. One hundred 10-month old turkeys (5 males and 20 females of four strains (bronze, black, grey and pale were measured, while egg production data were collected by a poll among the breeders. Average body weight of bronze, black, grey and pale strain males were 7.08, 6.88, 6.10 and 6.09 kg, respectively, while in females the average values were 4.02, 4.07, 3.63, and 3.68 kg. Generally, according to body measures of male birds, other than body weight, of all of the strains of Zagorje turkey, the black one is the biggest, as it had the highest values for body length, length of sternum, length of drumstick, length of shank, depth of chest and head measures. At the same time, the bronze strain had the highest value for carcass width. Body measures mentioned previously were not so different in females. Number of reared chicks was lowest in the pale strain. From the body measures assessed it is possible to conclude that Zagorje turkeys are rather uniform within the strain but differences in most of the breed traits are present between the strains, especially in males of bronze and black strain, when compared to gray and pale strain.

  20. CD44+/CD24- breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold

    Directory of Open Access Journals (Sweden)

    Mi K

    2015-04-01

    Full Text Available Kun Mi,1 Zhihua Xing2 1Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, 2Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Self-assembling peptide nanofiber scaffolds have been shown to be a ­permissive biological material for tissue repair, cell proliferation, differentiation, etc. Recently, a subpopulation (CD44+/CD24- of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells have different phenotypes in self-assembling COCH3-RADARADARADARADA-CONH2 (RADA16 peptide nanofiber scaffold compared with Matrigel® (BD Biosciences, Two Oak Park, Bedford, MA, USA and collagen I.Methods: CD44 and CD24 expression was determined by flow cytometry. Cell proliferation was measured by 5-bromo-2'-deoxyuridine assay and DNA content measurement. Immunostaining was used to indicate the morphologies of cells in three-dimensional (3D cultures of different scaffolds and the localization of β-catenin in the colonies. Western blot was used to determine the expression of signaling proteins. In vitro migration assay and inoculation into nude mice were used to evaluate invasion and tumorigenesis in vivo.Results: The breast cancer cell line MDA-MB-435S contained a high percentage (>99% of CD44+/CD24- cells, which exhibited phenotypic reversion in 3D RADA16 nanofiber scaffold compared with collagen I and Matrigel. The newly formed reverted acini-like colonies reassembled a basement membrane and reorganized their cytoskeletons. At the same time, cells cultured and embedded in RADA16 peptide scaffold exhibited growth arrest. Also, they exhibited different migration potential, which links their migration ability with their cellular morphology. Consistent with studies in vitro, the in vivo tumor

  1. Traffic Convexity Aware Cellular Networks: A Vehicular Heavy User Perspective

    OpenAIRE

    Shim, Taehyoung; Park, Jihong; Ko, Seung-Woo; Kim, Seong-Lyun; Lee, Beom Hee; Choi, Jin Gu

    2015-01-01

    Rampant mobile traffic increase in modern cellular networks is mostly caused by large-sized multimedia contents. Recent advancements in smart devices as well as radio access technologies promote the consumption of bulky content, even for people in moving vehicles, referred to as vehicular heavy users. In this article the emergence of vehicular heavy user traffic is observed by field experiments conducted in 2012 and 2015 in Seoul, Korea. The experiments reveal that such traffic is becoming do...

  2. Metabolomic phenotyping of a cloned pig model

    Directory of Open Access Journals (Sweden)

    Callesen Henrik

    2011-08-01

    Full Text Available Abstract Background Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal outbred pigs. Results The metabolic phenotype of cloned pigs (n = 5 was for the first time elucidated by nuclear magnetic resonance (NMR-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n = 6 by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could not be established. Conclusions From the present study we conclude that cloned and normal outbred pigs are phenotypically different. However, it cannot be concluded that the use of cloned animals will reduce the inter-individual variation in intervention studies, though this is based on a limited number of animals.

  3. Evaluation of drug-metabolizing enzyme hydroxylation phenotypes in Hispanic populations: the CEIBA cocktail.

    Science.gov (United States)

    de Andrés, Fernando; Sosa-Macías, Martha; Lazalde-Ramos, Blanca P; Naranjo, María Eugenia G; Tarazona-Santos, Eduardo; Llerena, Adrián

    2013-01-01

    Interindividual differences in response to drug treatments are mainly caused by differences in drug metabolism, in which cytochrome P450 (CYP450) enzymes are involved. Genetic polymorphisms of these enzymes have a key role in this variability. However, environmental factors, endogenous metabolism and disease states also have a great influence on the actual drug metabolism rate (metabolic phenotype). Consequently, the genotype does not always correlate with the actual drug hydroxylation phenotype. In this sense, in vivo phenotyping strategies represent an alternative to evaluate the interindividual variability in drug metabolism. Therefore, the 'cocktail' approach is considered as an advantageous strategy to obtain actual and reliable information on several CYP activities in just one experiment. As reviewed, phenotyping studies on Latin-American populations, which comprise about 400 million people, are scarce, and only selective phenotyping methods were applied. Therefore, a novel cocktail approach is here proposed as a phenotyping tool to evaluate the relationship between genotype and phenotype of major CYP enzymes in Hispanic populations. This determination will allow adaptation of drug therapies to these populations and consequently to benefit from the application of pharmacogenetics in the reduction of drug adverse effects and in the improvement of therapeutic responses. PMID:23787463

  4. An expanded model of HIV cell entry phenotype based on multi-parameter single-cell data

    Directory of Open Access Journals (Sweden)

    Bozek Katarzyna

    2012-07-01

    Full Text Available Abstract Background Entry of human immunodeficiency virus type 1 (HIV-1 into the host cell involves interactions between the viral envelope glycoproteins (Env and the cellular receptor CD4 as well as a coreceptor molecule (most importantly CCR5 or CXCR4. Viral preference for a specific coreceptor (tropism is in particular determined by the third variable loop (V3 of the Env glycoprotein gp120. The approval and use of a coreceptor antagonist for antiretroviral therapy make detailed understanding of tropism and its accurate prediction from patient derived virus isolates essential. The aim of the present study is the development of an extended description of the HIV entry phenotype reflecting its co-dependence on several key determinants as the basis for a more accurate prediction of HIV-1 entry phenotype from genotypic data. Results Here, we established a new protocol of quantitation and computational analysis of the dependence of HIV entry efficiency on receptor and coreceptor cell surface levels as well as viral V3 loop sequence and the presence of two prototypic coreceptor antagonists in varying concentrations. Based on data collected at the single-cell level, we constructed regression models of the HIV-1 entry phenotype integrating the measured determinants. We developed a multivariate phenotype descriptor, termed phenotype vector, which facilitates a more detailed characterization of HIV entry phenotypes than currently used binary tropism classifications. For some of the tested virus variants, the multivariant phenotype vector revealed substantial divergences from existing tropism predictions. We also developed methods for computational prediction of the entry phenotypes based on the V3 sequence and performed an extrapolating calculation of the effectiveness of this computational procedure. Conclusions Our study of the HIV cell entry phenotype and the novel multivariate representation developed here contributes to a more detailed

  5. Tumor cell phenotype is sustained by selective MAPK oxidation in mitochondria.

    Directory of Open Access Journals (Sweden)

    Soledad Galli

    Full Text Available Mitochondria are major cellular sources of hydrogen peroxide (H(2O(2, the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H(2O(2 concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H(2O(2 due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H(2O(2 yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 microM H(2O(2 increased cell proliferation in ERK1/2-dependent manner whereas high 50 microM H(2O(2 arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei, the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H(2O(2 level. Like this, high H(2O(2 or directed mutation of redox-sensitive ERK2 Cys(214 impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to

  6. High-throughput phenotypic profiling of gene-environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Weiss, Andrew; Delproposto, James; Giroux, Craig N

    2004-04-01

    Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene-environment interactions, quantitative assays are required both for gene expression and for the phenotypic responses to environmental challenge. To address this need, we describe an automated high-throughput methodology that provides phenotypic profiling of the cellular responses to environmental stress in Saccharomyces cerevisiae. Standardized assay conditions enable the use of a single metric value to quantify yeast microculture growth curves. This assay format allows precise control of both genetic and environmental determinants of the cellular responses to oxidative stress, a common mechanism of environmental insult. These yeast-cell-based assays are validated with hydrogen peroxide, a simple direct-acting oxidant. Phenotypic profiling of the oxidative stress response of a yap1 mutant strain demonstrates the mechanistic analysis of genetic susceptibility to oxidative stress. As a proof of concept for analysis of more complex gene-environment interactions, we describe a combinatorial assay design for phenotypic profiling of the cellular responses to tert-butyl hydroperoxide, a complex oxidant that is actively metabolized by its target cells. Thus, the yeast microculture assay format supports comprehensive applications in toxicogenomics. PMID:15033507

  7. Elevated oxidative membrane damage associated with genetic modifiers of Lyst-mutant phenotypes.

    Directory of Open Access Journals (Sweden)

    Colleen M Trantow

    2010-07-01

    Full Text Available LYST is a large cytosolic protein that influences the biogenesis of lysosome-related organelles, and mutation of the encoding gene, LYST, can cause Chediak-Higashi syndrome. Recently, Lyst-mutant mice were recognized to also exhibit an iris disease resembling exfoliation syndrome, a common cause of glaucoma in humans. Here, Lyst-mutant iris phenotypes were used in a search for genes that influence Lyst pathways. In a candidate gene-driven approach, albino Lyst-mutant mice homozygous for a mutation in Tyr, whose product is key to melanin synthesis within melanosomes, exhibited complete rescue of Lyst-mutant iris phenotypes. In a genetic background-driven approach using a DBA/2J strain of congenic mice, an interval containing Tyrp1 enhanced Lyst-dependent iris phenotypes. Thus, both experimental approaches implicated the melanosome, an organelle that is a potential source of oxidative stress, as contributing to the disease phenotype. Confirming an association with oxidative damage, Lyst mutation resulted in genetic context-sensitive changes in iris lipid hydroperoxide levels, being lowest in albino and highest in DBA/2J mice. Surprisingly, the DBA/2J genetic background also exposed a late-onset neurodegenerative phenotype involving cerebellar Purkinje-cell degeneration. These results identify an association between oxidative damage to lipid membranes and the severity of Lyst-mutant phenotypes, revealing a new mechanism that contributes to pathophysiology involving LYST.

  8. Thermomechanical characterisation of cellular rubber

    Science.gov (United States)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-01-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  9. Discrete geodesics and cellular automata

    CERN Document Server

    Arrighi, Pablo

    2015-01-01

    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  10. Cellular compartmentalization of secondary metabolism

    Directory of Open Access Journals (Sweden)

    H. Corby eKistler

    2015-02-01

    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  11. Cellular tolerance to pulsed heating

    Science.gov (United States)

    Simanovski, Dimitrii; Sarkar, M.; Irani, A.; O'Connell-Rodwell, C.; Contag, C.; Schwettman, H. Alan; Palanker, D.

    2005-04-01

    Many laser therapies involve significant heating of tissue with pulses varying from picoseconds to minutes in duration. In some of the applications heating is a primary goal, while in others it is an undesirable side effect. In both cases, if a hyperthermia is involved, the knowledge about the threshold temperature leading to irreversible cellular damage is critically important. We study the dependence of the threshold temperature on duration of the heat exposure in the range of 0.3 ms to 5 seconds. Thin layer of cells cultured in a Petri dish was exposed to a pulsed CO2 laser radiation. Laser beam was focused onto sample providing Gaussian intensity distribution in the focal plane with a beam diameter (2w) 2-10 mm. Surface temperature in the central part of the focal spot (1mm in diameter) was measured by thermal infrared (IR) emission from the sample, recorded with a fast IR detector. For pulses shorter than 1 s the temperature profile across the focal spot was found to closely correspond to the radial distribution of the laser beam intensity, thus allowing for accurate determination of temperature at any given distance from the center of the spot. Immediate cellular damage was assessed using vital staining with the live/dead fluorescent assay. Threshold temperatures were found to vary from 65 °C at 5 s of heating to 160 °C at pulses of 0.3 ms in duration. The shorter end of this range was limited by vaporization, which occurs during the laser pulse and results in mechanical damage to cells. Dependence of the maximal temperature on pulse duration could be approximated by Arrhenius law with activation energy being about 1 eV.

  12. Estimating the variation, autocorrelation, and environmental sensitivity of phenotypic selection.

    Science.gov (United States)

    Chevin, Luis-Miguel; Visser, Marcel E; Tufto, Jarle

    2015-09-01

    Despite considerable interest in temporal and spatial variation of phenotypic selection, very few methods allow quantifying this variation while correctly accounting for the error variance of each individual estimate. Furthermore, the available methods do not estimate the autocorrelation of phenotypic selection, which is a major determinant of eco-evolutionary dynamics in changing environments. We introduce a new method for measuring variable phenotypic selection using random regression. We rely on model selection to assess the support for stabilizing selection, and for a moving optimum that may include a trend plus (possibly autocorrelated) fluctuations. The environmental sensitivity of selection also can be estimated by including an environmental covariate. After testing our method on extensive simulations, we apply it to breeding time in a great tit population in the Netherlands. Our analysis finds support for an optimum that is well predicted by spring temperature, and occurs about 33 days before a peak in food biomass, consistent with what is known from the biology of this species. We also detect autocorrelated fluctuations in the optimum, beyond those caused by temperature and the food peak. Because our approach directly estimates parameters that appear in theoretical models, it should be particularly useful for predicting eco-evolutionary responses to environmental change. PMID:26227394

  13. Profibrotic Phenotype of Conjunctival Fibroblasts from Mucous Membrane Pemphigoid

    Science.gov (United States)

    Saw, Valerie P.J.; Schmidt, Enno; Offiah, Ifeoma; Galatowicz, Grazyna; Zillikens, Detlef; Dart, John K.G.; Calder, Virginia L.; Daniels, Julie T.

    2011-01-01

    Ocular mucous membrane pemphigoid is an immunobullous disease in which excessive conjunctival fibrosis causes blindness, and the pathogenesis of scarring is incompletely understood. To establish whether profibrotic fibroblasts with an altered phenotype exist in ocular mucous membrane pemphigoid, we compared the functional characteristics of pemphigoid conjunctival fibroblasts to normal conjunctival fibroblasts with respect to cell division; migration; collagen contraction; matrix metalloproteinase, secretion of collagen and chemokines; and myofibroblast differentiation. We found that pemphigoid fibroblasts showed increased cell division (P = 0.01), increased migration in serum-free medium (72 ± 18 migrated cells versus 33 ± 11, P = 0.04), increased collagen contraction in the presence of 10 ng/ml tumor necrosis factor-α, increased collagen type I secretion (P = 0.03), increased secretion of matrix metalloproteinase-3 (P = 0.03), and increased secretion of eotaxin in response to interleukin-13 (P = 0.04). Differences between pemphigoid and normal conjunctival fibroblasts with respect to collagen contraction and MMP secretion in the presence of interleukin-13 were also observed. Together, these findings indicate that pemphigoid conjunctival fibroblasts have a profibrotic phenotype that is maintained in vitro. No differences between pemphigoid fibroblasts obtained from acutely inflamed versus clinically uninflamed conjunctiva were observed. Developing effective antifibrotic therapies will require understanding of the mechanisms that both induce and maintain the profibrotic phenotype. PMID:21224056

  14. The cardiac phenotype in patients with a CHD7 mutation

    DEFF Research Database (Denmark)

    Corsten-Janssen, Nicole; Kerstjens-Frederikse, Wilhelmina S; du Marchie Sarvaas, Gideon J;

    2013-01-01

    Loss-of-function mutations in CHD7 cause Coloboma, Heart Disease, Atresia of Choanae, Retardation of Growth and/or Development, Genital Hypoplasia, and Ear Abnormalities With or Without Deafness (CHARGE) syndrome, a variable combination of multiple congenital malformations including heart defects....... Heart defects are reported in 70% to 92% of patients with a CHD7 mutation, but most studies are small and do not provide a detailed classification of the defects. We present the first, detailed, descriptive study on the cardiac phenotype of 299 patients with a CHD7 mutation and discuss the role of CHD7...

  15. DNA methylation: conducting the orchestra from exposure to phenotype?

    Science.gov (United States)

    Leenen, Fleur A D; Muller, Claude P; Turner, Jonathan D

    2016-01-01

    DNA methylation, through 5-methyl- and 5-hydroxymethylcytosine (5mC and 5hmC), is considered to be one of the principal interfaces between the genome and our environment, and it helps explain phenotypic variations in human populations. Initial reports of large differences in methylation level in genomic regulatory regions, coupled with clear gene expression data in both imprinted genes and malignant diseases, provided easily dissected molecular mechanisms for switching genes on or off. However, a more subtle process is becoming evident, where small (disease phenotypes. This has resulted in two clear methylation paradigms. The latter "subtle change" paradigm is rapidly becoming the epigenetic hallmark of complex disease phenotypes, although we are currently hampered by a lack of data addressing the true biological significance and meaning of these small differences. Our initial expectation of rapidly identifying mechanisms linking environmental exposure to a disease phenotype led to numerous observational/association studies being performed. Although this expectation remains unmet, there is now a growing body of literature on specific genes, suggesting wide ranging transcriptional and translational consequences of such subtle methylation changes. Data from the glucocorticoid receptor (NR3C1) has shown that a complex interplay between DNA methylation, extensive 5'UTR splicing, and microvariability gives rise to the overall level and relative distribution of total and N-terminal protein isoforms generated. Additionally, the presence of multiple AUG translation initiation codons throughout the complete, processed mRNA enables translation variability, hereby enhancing the translational isoforms and the resulting protein isoform diversity, providing a clear link between small changes in DNA methylation and significant changes in protein isoforms and cellular locations. Methylation changes in the NR3C1 CpG island alters the NR3C1 transcription and eventually protein

  16. What Causes Angina?

    Science.gov (United States)

    ... this page from the NHLBI on Twitter. What Causes Angina? Underlying Causes Angina usually is a symptom of coronary heart ... and cause angina or a heart attack . Immediate Causes Many factors can trigger angina pain, depending on ...

  17. What Causes Lymphocytopenia?

    Science.gov (United States)

    ... low lymphocyte counts with no underlying cause. Acquired Causes Many acquired diseases, conditions, and factors can cause ... anemia . Radiation and chemotherapy (treatments for cancer). Inherited Causes Certain inherited diseases and conditions can lead to ...

  18. What Causes Cardiogenic Shock?

    Science.gov (United States)

    ... this page from the NHLBI on Twitter. What Causes Cardiogenic Shock? Immediate Causes Cardiogenic shock occurs if the heart suddenly can' ... reason why emergency treatment is so important. Underlying Causes The underlying causes of cardiogenic shock are conditions ...

  19. Endocarditis caused by Abiotrophia defectiva

    Directory of Open Access Journals (Sweden)

    Asma M Al-Jasser

    2007-01-01

    Full Text Available A 35-year–old man with pre-existing rheumatic heart disease and aortic regurgitation (AR presented with intermittent fever, ankle swelling and clinical evidence of endocarditis. Transoesophageal echocardiogram (TEE revealed vegetations and destruction of the aortic valve (AV. Blood cultures grew a gram positive coccobacillus which was phenotypically identified as Abiotrophia defectvia (A.defectiva. A diagnosis of infective endocarditis (IE due to A.defectiva was made. Treatment, with penicillin and gentamicin, was administered for 4 weeks. Mechanical valve replacement was required few days after starting the antibiotic therapy. The patient had a favorable outcome on follow up.Although A.defectiva is an uncommon cause of endocarditis, early and correct identification of this pathogen is important to improve the outcome and the prognosis of patients with IE due to this organism.

  20. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.