WorldWideScience

Sample records for cellular neural networks

  1. Global stability analysis on a class of cellular neural networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yi

    2001-01-01

    [1]Chua, L. O., Yang, L., Cellular neural networks: Theory, IEEE Trans. CAS, 1988, (10): 1257.[2]Chua, L. O., Yang, L., Cellular neural networks: Applications, IEEE Trans. CAS, 1988, (10): 1273.[3]Chua, L. O., Roska, T., The CNN paradigm, IEEE Trans. CAS-I, 1993, (3): 147.[4]Matsumoto, T. Chua, L. O., Suzuki, H., CNN cloning template: Connected component detector, IEEE Trans. CAS, 1990, (8): 633.[5]Cao, L, Sun, Y, Yu, J., A CNN-based signature verification system,Proc. ICONIP′95, Beijing, 1995, 913—916.[6]Roska, T., Chua, L. O., The CNN universal machine: An analogic array computer, IEEE Trans. CAS Ⅱ, 1993, (3): 163.[7]Chua, L. O., Roska, T., Stability of a class of nonreciprocal cellular neural networks, IEEE Trans. CAS, 1990, (3): 1520.[8]Roska, T., Wu, C. W., Balsi, M. Et al., Stability and dynamics of delay type general and cellular neural networks, IEEE Trans. CAS, 1992, (6): 487.[9]Roska, T., Wu, C. W., Chua, L. O., Stability of cellular neural networks with dominant nonlinear and delaytype templates, IEEE Trans. CAS, 1993, (4): 270.[10]Civalleri, P. P., On stability of cellular neural networks with delay, IEEE Trans. CAS-I, 1993, (3): 157.[11]Gilli, G., Stability of cellular neural network and delayed cellular neural networks with nonpositive templates and nonmonotonic output functions, IEEE Trans CAS-I, 1994, (8): 518.[12]Baldi, P., Atiya, A. F., How delays affect neural dynamics and learning, IEEE Trans. On Neural Networks, 1994, (4): 612.[13]Liao, X. X., Mathematic foundation of cellular neural networks (Ⅰ), Science in China, Ser. A, 1994, 37(9): 902.[14]Liao, X. X., Mathematic foundation of cellular neural networks (Ⅱ), Science in China, Ser. A, 1994, 37(9): 1037.[15]Zhang, Y., Global exponential stability and periodic solutions of delay Hopfild neural networks, International J. Sys. Sci., 1996, (2): 227.[16]Zhang Yi, Zhong, S. M., Li, Z. L., Periodic solutions and global

  2. Cellular neural networks for the stereo matching problem

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Zanela, A. [Rome Univ. `La Sapienza` (Italy). Dipt. di Fisica

    1997-03-01

    The applicability of the Cellular Neural Network (CNN) paradigm to the problem of recovering information on the tridimensional structure of the environment is investigated. The approach proposed is the stereo matching of video images. The starting point of this work is the Zhou-Chellappa neural network implementation for the same problem. The CNN based system we present here yields the same results as the previous approach, but without the many existing drawbacks.

  3. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...... by unsupervised adaptation of an image segmentation cellular network. The learning rule is applied to adaptive segmentation of satellite imagery...

  4. Widrow-cellular neural network and optoelectronic implementation

    Science.gov (United States)

    Bal, Abdullah

    A new type of optoelectronic cellular neural network has been developed by providing the capability of coefficients adjusment of cellular neural network (CNN) using Widrow based perceptron learning algorithm. The new supervised cellular neural network is called Widrow-CNN. Despite the unsupervised CNN, the proposed learning algorithm allows to use the Widrow-CNN for various image processing applications easily. Also, the capability of CNN for image processing and feature extraction has been improved using basic joint transform correlation architecture. This hardware application presents high speed processing capability compared to digital applications. The optoelectronic Widrow-CNN has been tested for classic CNN feature extraction problems. It yields the best results even in case of hard feature extraction problems such as diagonal line detection and vertical line determination.

  5. Template learning of cellular neural network using genetic programming.

    Science.gov (United States)

    Radwan, Elsayed; Tazaki, Eiichiro

    2004-08-01

    A new learning algorithm for space invariant Uncoupled Cellular Neural Network is introduced. Learning is formulated as an optimization problem. Genetic Programming has been selected for creating new knowledge because they allow the system to find new rules both near to good ones and far from them, looking for unknown good control actions. According to the lattice Cellular Neural Network architecture, Genetic Programming will be used in deriving the Cloning Template. Exploration of any stable domain is possible by the current approach. Details of the algorithm are discussed and several application results are shown.

  6. Global asymptotic stability of cellular neural networks with multiple delays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Global asymptotic stability (GAS) is discussed for cellular neural networks (CNN) with multiple time delays. Several criteria are proposed to ascertain the uniqueness and global asymptotic stability of the equilibrium point for the CNN with delays. These criteria can eliminate the difference between the neuronal excitatory and inhibitory effects. Two examples are presented to demonstrate the effectiveness of the criteria.

  7. Integration of Neural Networks and Cellular Automata for Urban Planning

    Institute of Scientific and Technical Information of China (English)

    Anthony Gar-on Yeh; LI Xia

    2004-01-01

    This paper presents a new type of cellular automata (CA) model for the simulation of alternative land development using neural networks for urban planning. CA models can be regarded as a planning tool because they can generate alternative urban growth. Alternative development patterns can be formed by using different sets of parameter values in CA simulation. A critical issue is how to define parameter values for realistic and idealized simulation. This paper demonstrates that neural networks can simplify CA models but generate more plausible results. The simulation is based on a simple three-layer network with an output neuron to generate conversion probability. No transition rules are required for the simulation. Parameter values are automatically obtained from the training of network by using satellite remote sensing data. Original training data can be assessed and modified according to planning objectives. Alternative urban patterns can be easily formulated by using the modified training data sets rather than changing the model.

  8. Digital implementation of shunting-inhibitory cellular neural network

    Science.gov (United States)

    Hammadou, Tarik; Bouzerdoum, Abdesselam; Bermak, Amine

    2000-05-01

    Shunting inhibition is a model of early visual processing which can provide contrast and edge enhancement, and dynamic range compression. An architecture of digital Shunting Inhibitory Cellular Neural Network for real time image processing is presented. The proposed architecture is intended to be used in a complete vision system for edge detection and image enhancement. The present hardware architecture, is modeled and simulated in VHDL. Simulation results show the functional validity of the proposed architecture.

  9. Behavior of impulsive fuzzy cellular neural networks with distributed delays

    Directory of Open Access Journals (Sweden)

    Kelin Li

    2007-04-01

    Full Text Available In this paper, we investigate a generalized model of fuzzy cellular neural networks with distributed delays and impulses. By employing the theory of topological degree, M-matrix and Lypunov functional, we find sufficient conditions for the existence, uniqueness and global exponential stability of both the equilibrium point and the periodic solution. Two examples are given to illustrate the results obtained here.

  10. Chaotic phenomena in Josephson circuits coupled quantum cellular neural networks

    Institute of Scientific and Technical Information of China (English)

    Wang Sen; Cai Li; Li Qin; Wu Gang

    2007-01-01

    In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators.

  11. Controllability of time-varying cellular neural networks

    Directory of Open Access Journals (Sweden)

    Wadie Aziz

    2005-11-01

    Full Text Available In this work, we consider the model of Cellular Neural Network (CNN introduced by Chua and Yang in 1988, but with the cloning templates $omega$-periodic in time. By imposing periodic boundary conditions the matrices involved in the system become circulant and $omega$-periodic. We show some results on the controllability of the linear model using a Theorem by Brunovsky for the case of linear and $omega$-periodic system. Also we use this approach in image detection, specifically foreground, background and contours of figures in different scales of grey.

  12. ON THE STABILITY OF THE CELLULAR NEURAL NETWORKS WITH TIME LAGS

    OpenAIRE

    Vladimir RASVAN; Daniela DANCIU

    2004-01-01

    Cellular neural networks (CNNs) are recurrent artificial neural networks. Due to their cyclic connections and to the neurons’ nonlinear activation functions, recurrent neural networks are nonlinear dynamic systems, which display stable and unstable fixed points, limit cycles and chaotic behavior. Since the field of neural networks is still a young one, improving the stability conditions for such systems is an obvious and quasipermanent task. This paper focuses on CNNs affected by time delays....

  13. Separation of Bouguer anomaly map using cellular neural network

    Science.gov (United States)

    Albora, A. Muhittin; Ucan, Osman N.; Ozmen, Atilla; Ozkan, Tulay

    2001-02-01

    In this paper, a modern image-processing technique, the Cellular Neural Network (CNN) has been firstly applied to Bouguer anomaly map of synthetic examples and then to data from the Sivas-Divrigi Akdag region. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behaviour of the CNN is defined by two template matrices and a template vector. We have optimised the weight coefficients of these templates using the Recurrent Perceptron Learning Algorithm (RPLA). After testing CNN performance on synthetic examples, the CNN approach has been applied to the Bouguer anomaly of Sivas-Divrigi Akdag region and the results match drilling logs done by Mineral Research and Exploration (MTA).

  14. Medical image segmentation based on cellular neural network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The application of cellular neural network (CNN) has made great progress in image processing. When the selected objects extraction (SOE) CNN is applied to gray scale images, its effects depend on the choice of initial points. In this paper, we take medical images as an example to analyze this limitation. Then an improved algorithm is proposed in which we can segment any gray level objects regardless of the limitation stated above. We also use the gradient information and contour detection CNN to determine the contour and ensure the veracity of segmentation effectively. Finally, we apply the improved algorithm to tumor segmentation of the human brain MR image. The experimental results show that the algorithm is practical and effective.

  15. Cellular Neural Networks for NP-Hard Optimization

    Directory of Open Access Journals (Sweden)

    Mária Ercsey-Ravasz

    2009-02-01

    Full Text Available A cellular neural/nonlinear network (CNN is used for NP-hard optimization. We prove that a CNN in which the parameters of all cells can be separately controlled is the analog correspondent of a two-dimensional Ising-type (Edwards-Anderson spin-glass system. Using the properties of CNN, we show that one single operation (template always yields a local minimum of the spin-glass energy function. This way, a very fast optimization method, similar to simulated annealing, can be built. Estimating the simulation time needed on CNN-based computers, and comparing it with the time needed on normal digital computers using the simulated annealing algorithm, the results are astonishing. CNN computers could be faster than digital computers already at 10×10 lattice sizes. The local control of the template parameters was already partially realized on some of the hardwares, we think this study could further motivate their development in this direction.

  16. On the Global Dissipativity of a Class of Cellular Neural Networks with Multipantograph Delays

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2011-01-01

    Full Text Available For the first time the global dissipativity of a class of cellular neural networks with multipantograph delays is studied. On the one hand, some delay-dependent sufficient conditions are obtained by directly constructing suitable Lyapunov functionals; on the other hand, firstly the transformation transforms the cellular neural networks with multipantograph delays into the cellular neural networks with constant delays and variable coefficients, and then constructing Lyapunov functionals, some delay-independent sufficient conditions are given. These new sufficient conditions can ensure global dissipativity together with their sets of attraction and can be applied to design global dissipative cellular neural networks with multipantograph delays and easily checked in practice by simple algebraic methods. An example is given to illustrate the correctness of the results.

  17. Global exponential stability of mixed discrete and distributively delayed cellular neural network

    Institute of Scientific and Technical Information of China (English)

    Yao Hong-Xing; Zhou Jia-Yan

    2011-01-01

    This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.

  18. Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

    Institute of Scientific and Technical Information of China (English)

    P. Balasubramaniam; M. Kalpana; R. Rakkiyappan

    2012-01-01

    Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs).Each cell in an FCNN contains fuzzy operating abilities.The entire network is governed by cellular computing laws.The design of FCNNs is based on fuzzy local rules.In this paper,a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated.Mixed delays include discrete time-varying delays and unbounded distributed delays.A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network.By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs.The controller can be easily obtained by solving the derived LMIs.A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.

  19. GLOBAL STABILITY ANALYSIS IN CELLULAR NEURAL NETWORKS WITH UNBOUNDED TIME DELAYS

    Institute of Scientific and Technical Information of China (English)

    张继业

    2004-01-01

    Without assuming the boundedness and differentiability of the activation functions,the conditions ensuring existence,uniqueness,and global asymptotical stability of the equilibrium point of cellular neural networks with unbounded time delays and variable delays were studied.Using the idea of vector Liapunov method,the intero-differential inequalities with unbounded delay and variable delays were constructed.By the stability analysis of the intero-differential inequalities,the sufficient conditions for global asymptotic stability of cellular neural networks were obtained.

  20. Almost periodic solution of shunting inhibitory cellular neural networks with time-varying delay

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xia; Cao Jinde

    2003-07-28

    Several sufficient conditions are obtained for the existence of almost periodic solution and its attractivity of shunting inhibitory cellular neural networks with time-varying delay based on the fixed point method and Halanay inequality technique. Some previous results are improved and extended in this Letter and two examples are given to illustrate the effectiveness of the new results.

  1. One-way hash function based on hyper-chaotic cellular neural network

    Institute of Scientific and Technical Information of China (English)

    Yang Qun-Ting; Gao Tie-Gang

    2008-01-01

    The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge-Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corresponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability.

  2. Existence and stability of traveling wave solutions for multilayer cellular neural networks

    Science.gov (United States)

    Hsu, Cheng-Hsiung; Lin, Jian-Jhong; Yang, Tzi-Sheng

    2015-08-01

    The purpose of this article is to investigate the existence and stability of traveling wave solutions for one-dimensional multilayer cellular neural networks. We first establish the existence of traveling wave solutions using the truncated technique. Then we study the asymptotic behaviors of solutions for the Cauchy problem of the neural model. Applying two kinds of comparison principles and the weighed energy method, we show that all solutions of the Cauchy problem converge exponentially to the traveling wave solutions provided that the initial data belong to a suitable weighted space.

  3. Cellular neural network implementation using a phase-only joint transform correlator

    Science.gov (United States)

    Zhang, Shuqun; Karim, Mohammad A.

    1999-04-01

    A phase-only joint transform correlator (JTC) is used to realize cellular neural networks (CNNs). The operation of summing cross-correlations of bipolar data in CNNs can be realized in parallel by phase-encoding bipolar data. Compared to other optical systems for implementing CNNs, the proposed method offers the advantages of easier implementation and robustness in terms of system alignment, and requires neither electronic precalculation nor data rearrangement. Simulation results of the proposed optical CNNs for edge detection are provided.

  4. Global Exponential Stability of Almost Periodic Solution of Cellular Neural Networks with Time-Varying Delays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generalized Halanay inequality, a few new applicable criteria are established for the existence and global exponential stability of almost periodic solution. Some previous results are improved and extended in this letter and one example is given to illustrate the effectiveness of the new results.

  5. A Proposal for Energy-Efficient Cellular Neural Network based on Spintronic Devices

    OpenAIRE

    2016-01-01

    Due to the massive parallel computing capability and outstanding image and signal processing performance, cellular neural network (CNN) is one promising type of non-Boolean computing system that can outperform the traditional digital logic computation and mitigate the physical scaling limit of the conventional CMOS technology. The CNN was originally implemented by VLSI analog technologies with operational amplifiers and operational transconductance amplifiers as neurons and synapses, respecti...

  6. Exponential stability of cellular neural networks with multiple time delays and impulsive effects

    Institute of Scientific and Technical Information of China (English)

    Li Dong; Wang Hui; Yang Dan; Zhang Xiao-Hong; Wang Shi-Long

    2008-01-01

    In this work,the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated.Based on the stability theory of Lyapunov-Krasovskii,the method of linear matrix inequality (LMI) and parametrized first-order model transformation,several novel conditions guaranteeing the delaydependent and the delay-independent exponential stabilities are obtained.A numerical example is given to illustrate the effectiveness of our results.

  7. Cellular pulse-coupled neural network with adaptive weights for image segmentation and its VLSI implementation

    Science.gov (United States)

    Schreiter, Juerg; Ramacher, Ulrich; Heittmann, Arne; Matolin, Daniel; Schuffny, Rene

    2004-05-01

    We present a cellular pulse coupled neural network with adaptive weights and its analog VLSI implementation. The neural network operates on a scalar image feature, such as grey scale or the output of a spatial filter. It detects segments and marks them with synchronous pulses of the corresponding neurons. The network consists of integrate-and-fire neurons, which are coupled to their nearest neighbors via adaptive synaptic weights. Adaptation follows either one of two empirical rules. Both rules lead to spike grouping in wave like patterns. This synchronous activity binds groups of neurons and labels the corresponding image segments. Applications of the network also include feature preserving noise removal, image smoothing, and detection of bright and dark spots. The adaptation rules are insensitive for parameter deviations, mismatch and non-ideal approximation of the implied functions. That makes an analog VLSI implementation feasible. Simulations showed no significant differences in the synchronization properties between networks using the ideal adaptation rules and networks resembling implementation properties such as randomly distributed parameters and roughly implemented adaptation functions. A prototype is currently being designed and fabricated using an Infineon 130nm technology. It comprises a 128 × 128 neuron array, analog image memory, and an address event representation pulse output.

  8. New Results on Almost Periodic Solution of Shunting Inhibitory Cellular Neural Networks with Continuously Distributed Delays

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Pei-Yong Zhu

    2008-01-01

    In this paper, the existence, uniqueness and global attractivity are discussed on almost periodic solution of SICNNs (shunting inhibitory cellular neural networks) with continuously distributed delays. By using the fixed point theorem, differential inequality technique and Lyapunov functional method, giving the new ranges of parameters, several sufficient conditions are obtained to ensure the existence, uniqueness and global attractivity of almost periodic solution. Compared with the previous studies, our methods are more effective for almost periodic solution analysis of SICNNs with continuously distributed delays. Some existing results have been improved and extended. In order to show the effectiveness of the obtained results, an example is given in this paper.

  9. New color image encryption algorithm based on compound chaos mapping and hyperchaotic cellular neural network

    Science.gov (United States)

    Li, Jinqing; Bai, Fengming; Di, Xiaoqiang

    2013-01-01

    We propose an image encryption/decryption algorithm based on chaotic control parameter and hyperchaotic system with the composite permutation-diffusion structure. Compound chaos mapping is used to generate control parameters in the permutation stage. The high correlation between pixels is shuffled. In the diffusion stage, compound chaos mapping of different initial condition and control parameter generates the diffusion parameters, which are applied to hyperchaotic cellular neural networks. The diffusion key stream is obtained by this process and implements the pixels' diffusion. Compared with the existing methods, both simulation and statistical analysis of our proposed algorithm show that the algorithm has a good performance against attacks and meets the corresponding security level.

  10. Stability analysis of delayed cellular neural networks with and without noise perturbation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-juan; WANG Guan-xiang; LIU Hua

    2008-01-01

    The stability of a class of delayed cellular neural networks (DCNN) with or without noise perturbation is studied.After presenting a simple and easily checkable condition for the global exponential stability of a deterministic system,we further investigate the case with noise perturbation.When DCNN is perturbed by external noise,the system is globally stable.An important fact is that,when the system is perturbed by internal noise,it is globally exponentially stable only if the total noise strength is within a certain bound.This is significant since the stochastic resonance phenomena have been found to exist in many nonlinear systems.

  11. Electric Energy Demand Forecast of Nanchang based on Cellular Genetic Algorithm and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Cheng Yugui

    2013-07-01

    Full Text Available A kind of power forecast model combined cellular genetic algorithm with BP neural network was established in this article. Mid-long term power demand in urban areas was done load forecasting and analysis based on material object of the actual power consumption in urban areas of Nanchang. The results show that this method has the characteristic of the minimum training times, the shortest consumption time, the minimum error and the shortest operation time to obtain the best fitting effect.  

  12. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, M P; Guo, S; Kalinin, S V; Jesse, S [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 (United States); Reukov, V V; Thompson, G L; Vertegel, A A, E-mail: sergei2@ornl.go [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)

    2009-10-07

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  13. A synthesis procedure for associative memories based on space-varying cellular neural networks.

    Science.gov (United States)

    Park, J; Kim, H Y; Park, Y; Lee, S W

    2001-01-01

    In this paper, we consider the problem of realizing associative memories via space-varying CNNs (cellular neural networks). Based on some known results and a newly derived theorem for the CNN model, we propose a synthesis procedure for obtaining a space-varying CNN that can store given bipolar vectors with certain desirable properties. The major part of our synthesis procedure consists of solving generalized eigenvalue problems and/or linear matrix inequality problems, which can be efficiently solved by recently developed interior point methods. The validity of the proposed approach is illustrated by a design example.

  14. A new method for the re-implementation of threshold logic functions with cellular neural networks.

    Science.gov (United States)

    Bénédic, Y; Wira, P; Mercklé, J

    2008-08-01

    A new strategy is presented for the implementation of threshold logic functions with binary-output Cellular Neural Networks (CNNs). The objective is to optimize the CNNs weights to develop a robust implementation. Hence, the concept of generative set is introduced as a convenient representation of any linearly separable Boolean function. Our analysis of threshold logic functions leads to a complete algorithm that automatically provides an optimized generative set. New weights are deduced and a more robust CNN template assuming the same function can thus be implemented. The strategy is illustrated by a detailed example.

  15. Initial Object Segmentation for Video Object Plane GenerationUsing Cellular Neural Networks

    Institute of Scientific and Technical Information of China (English)

    王慧; 杨高波; 张兆杨

    2003-01-01

    MPEG-4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial object segmentation and object tracking. In this paper, an initial object segmentation method for video object plane(VOP) generation using color information is proposed. Based on 3 by 3 linear templates, a cellular neural network (CNN) is used to implemented object segmentation. The Experimental results arepresented to verify the efficiency and robustness of this approach.

  16. Segmentation algorithm via Cellular Neural/Nonlinear Network: implementation on Bio-inspired hardware platform

    Science.gov (United States)

    Karabiber, Fethullah; Vecchio, Pietro; Grassi, Giuseppe

    2011-12-01

    The Bio-inspired (Bi-i) Cellular Vision System is a computing platform consisting of sensing, array sensing-processing, and digital signal processing. The platform is based on the Cellular Neural/Nonlinear Network (CNN) paradigm. This article presents the implementation of a novel CNN-based segmentation algorithm onto the Bi-i system. Each part of the algorithm, along with the corresponding implementation on the hardware platform, is carefully described through the article. The experimental results, carried out for Foreman and Car-phone video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frames/s. Comparisons with existing CNN-based methods show that the conceived approach is more accurate, thus representing a good trade-off between real-time requirements and accuracy.

  17. Uniqueness and stability of traveling waves for cellular neural networks with multiple delays

    Science.gov (United States)

    Yu, Zhi-Xian; Mei, Ming

    2016-01-01

    In this paper, we investigate the properties of traveling waves to a class of lattice differential equations for cellular neural networks with multiple delays. Following the previous study [38] on the existence of the traveling waves, here we focus on the uniqueness and the stability of these traveling waves. First of all, by establishing the a priori asymptotic behavior of traveling waves and applying Ikehara's theorem, we prove the uniqueness (up to translation) of traveling waves ϕ (n - ct) with c ≤c* for the cellular neural networks with multiple delays, where c* < 0 is the critical wave speed. Then, by the weighted energy method together with the squeezing technique, we further show the global stability of all non-critical traveling waves for this model, that is, for all monotone waves with the speed c

  18. Condition monitoring of 3G cellular networks through competitive neural models.

    Science.gov (United States)

    Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo

    2005-09-01

    We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

  19. EXISTENCE AND ATTRACTIVITY OF k-ALMOST AUTOMORPHIC SEQUENCE SOLUTION OF A MODEL OF CELLULAR NEURAL NETWORKS WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    Syed ABBAS; Yonghui XIA

    2013-01-01

    In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks.We consider the corresponding difference equation analogue of the model system using suitable discretization method and obtain certain conditions for the existence of solution.Almost automorphic function is a good generalization of almost periodic function.This is the first paper considering such solutions of the neural networks.

  20. Stability analysis of switched cellular neural networks: A mode-dependent average dwell time approach.

    Science.gov (United States)

    Huang, Chuangxia; Cao, Jie; Cao, Jinde

    2016-10-01

    This paper addresses the exponential stability of switched cellular neural networks by using the mode-dependent average dwell time (MDADT) approach. This method is quite different from the traditional average dwell time (ADT) method in permitting each subsystem to have its own average dwell time. Detailed investigations have been carried out for two cases. One is that all subsystems are stable and the other is that stable subsystems coexist with unstable subsystems. By employing Lyapunov functionals, linear matrix inequalities (LMIs), Jessen-type inequality, Wirtinger-based inequality, reciprocally convex approach, we derived some novel and less conservative conditions on exponential stability of the networks. Comparing to ADT, the proposed MDADT show that the minimal dwell time of each subsystem is smaller and the switched system stabilizes faster. The obtained results extend and improve some existing ones. Moreover, the validness and effectiveness of these results are demonstrated through numerical simulations.

  1. Application of neural networks to channel assignment for cellular CDMA networks with multiple services and mobile base stations

    Science.gov (United States)

    Hortos, William S.

    1996-03-01

    The use of artificial neural networks to the channel assignment problem for cellular code- division multiple access (CDMA) telecommunications systems is considered. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth limited. Any reduction in interference in CDMA translates linearly into increased capacity. FDMA and TDMA use a frequency reuse pattern as a method to increase capacity, while CDMA reuses the same frequency for all cells and gains a reuse efficiency by means of orthogonal codes. The latter method can improve system capacity by factors of four to six over digital TDMA or FDMA. Cellular carriers are planning to provide multiple communication services using CDMA in the next generation cellular system infrastructure. The approach of this study is the use of neural network methods for automatic and local network control, based on traffic behavior in specific cell cites and demand history. The goal is to address certain problems associated with the management of mobile and personal communication services in a cellular radio communications environment. In planning a cellular radio network, the operator assigns channels to the radio cells so that the probability of the processed carrier-to-interference ratio, CII, exceeding a predefined value is sufficiently low. The RF propagation, determined from the topography and infrastructure in the operating area, is used in conjunction with the densities of expected communications traffic to formulate interference constraints. These constraints state which radio cells may use the same code (channel) or adjacent channels at a time. The traffic loading and the number of service grades can also be used to calculate the number of required channels (codes) for each cell. The general assignment problem is the task of assigning the required number

  2. Attractors and the attraction basins of discrete-time cellular neural networks

    Institute of Scientific and Technical Information of China (English)

    Ma Runnian; Xi Youmin

    2005-01-01

    The dynamic behavior of discrete-time cellular neural networks(DTCNN), which is strict with zero threshold value, is mainly studied in asynchronous mode and in synchronous mode. In general, a k-attractor of DTCNN is not a convergent point.But in this paper, it is proved that a k-attractor is a convergent point if the strict DTCNN satisfies some conditions. The attraction basin of the strict DTCNN is studied, one example is given to illustrate the previous conclusions to be wrong, and several results are presented. The obtained results on k-attractor and attraction basin not only correct the previous results, but also provide a theoretical foundation of performance analysis and new applications of the DTCNN.

  3. Modeling of trophospheric ozone concentrations using genetically trained multi-level cellular neural networks

    Science.gov (United States)

    Ozcan, H. Kurtulus; Bilgili, Erdem; Sahin, Ulku; Ucan, O. Nuri; Bayat, Cuma

    2007-09-01

    Tropospheric ozone concentrations, which are an important air pollutant, are modeled by the use of an artificial intelligence structure. Data obtained from air pollution measurement stations in the city of Istanbul are utilized in constituting the model. A supervised algorithm for the evaluation of ozone concentration using a genetically trained multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. A genetic algorithm is used in the optimization of CNN templates. The model results and the actual measurement results are compared and statistically evaluated. It is observed that seasonal changes in ozone concentrations are reflected effectively by the concentrations estimated by the multilevel-CNN model structure, with a correlation value of 0.57 ascertained between actual and model results. It is shown that the multilevel-CNN modeling technique is as satisfactory as other modeling techniques in associating the data in a complex medium in air pollution applications.

  4. Modeling of Trophospheric Ozone Concentrations Using Genetically Trained Multi-Level Cellular Neural Networks

    Institute of Scientific and Technical Information of China (English)

    H. Kurtulus OZCAN; Erdem BILGILI; Ulku SAHIN; O. Nuri UCAN; Cuma BAYAT

    2007-01-01

    Tropospheric ozone concentrations, which are an important air pollutant, are modeled by the use of an artificial intelligence structure. Data obtained from air pollution measurement stations in the city of Istanbul are utilized in constituting the model. A supervised algorithm for the evaluation of ozone concentration using a genetically trained multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. A genetic algorithm is used in the optimization of CNN templates. The model results and the actual measurement results are compared and statistically evaluated. It is observed that seasonal changes in ozone concentrations are reflected effectively by the concentrations estimated by the multilevel-CNN model structure, with a correlation value of 0.57 ascertained between actual and model results. It is shown that the multilevel-CNN modeling technique is as satisfactory as other modeling techniques in associating the data in a complex medium in air pollution applications.

  5. Global exponential stability analysis of cellular neural networks with multiple time delays

    Institute of Scientific and Technical Information of China (English)

    Zhanshan WANG; Huaguang ZHANG

    2007-01-01

    Global exponential stability problems are investigated for cellular neural networks (CNN) with multiple time-varying delays. Several new criteria in linear matrix inequality form or in algebraic form are presented to ascertain the uniqueness and global exponential stability of the equilibrium point for CNN with multiple time-varying delays and with constant time delays. The proposed method has the advantage of considering the difference of neuronal excitatory and inhibitory effects, which is also computationally efficient as it can be solved numerically using the recently developed interior-point algorithm or be checked using simple algebraic calculation. In addition, the proposed results generalize and improve upon some previous works. Two numerical examples are used to show the effectiveness of the obtained results.

  6. A novel memristive cellular neural network with time-variant templates

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2016-03-01

    Full Text Available A cellular neural network (CNN is a massively parallel analog array processor capable of solving various complex processing problems by using specific templates that characterize the synaptic connections. The hardware implementation and applications of CNN have attracted a great deal of attention. Recently, memristors with nanometer-scale and variable gradual conductance have been exploited to make compact and programmable electric synapses. This paper proposes and studies a novel memristive CNN (Mt-CNN with time-variant templates realized by memristor crossbar synaptic circuits. The template parameters are estimated analytically. The Mt-CNN provides a promising solution to hardware realization of real-time template updating processes, which can be used to effectively deal with various complicated problems of cascaded processing. Its effectiveness and advantages are demonstrated by practical examples of edge detection on noisy images.

  7. Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2014-01-01

    Full Text Available In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM migration detection algorithm based on the cellular neural networks (CNNs, is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation allowing the VM migration detection to be performed better.

  8. Global detection of live virtual machine migration based on cellular neural networks.

    Science.gov (United States)

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.

  9. An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities.

    Science.gov (United States)

    Matsubara, Takashi; Torikai, Hiroyuki

    2016-04-01

    Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources.

  10. Residual Separation of Magnetic Fields Using a Cellular Neural Network Approach

    Science.gov (United States)

    Albora, A. M.; Özmen, A.; Uçan, O. N.

    - In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined by the template matrices A, B and the template vector I. We have optimized weight coefficients of these templates using Recurrent Perceptron Learning Algorithm (RPLA). The advantages of CNN as a real-time stochastic method are that it introduces little distortion to the shape of the original image and that it is not effected significantly by factors such as the overlap of power spectra of residual fields. The proposed method is tested using synthetic examples and the average depth of the buried objects has been estimated by power spectrum analysis. Next the CNN approach is applied to magnetic data over the Golalan chromite mine in Elazig which lies East of Turkey. This area is among the largest and richest chromite masses of the world. We compared the performance of CNN to classical derivative approaches.

  11. Memristor-based cellular nonlinear/neural network: design, analysis, and applications.

    Science.gov (United States)

    Duan, Shukai; Hu, Xiaofang; Dong, Zhekang; Wang, Lidan; Mazumder, Pinaki

    2015-06-01

    Cellular nonlinear/neural network (CNN) has been recognized as a powerful massively parallel architecture capable of solving complex engineering problems by performing trillions of analog operations per second. The memristor was theoretically predicted in the late seventies, but it garnered nascent research interest due to the recent much-acclaimed discovery of nanocrossbar memories by engineers at the Hewlett-Packard Laboratory. The memristor is expected to be co-integrated with nanoscale CMOS technology to revolutionize conventional von Neumann as well as neuromorphic computing. In this paper, a compact CNN model based on memristors is presented along with its performance analysis and applications. In the new CNN design, the memristor bridge circuit acts as the synaptic circuit element and substitutes the complex multiplication circuit used in traditional CNN architectures. In addition, the negative differential resistance and nonlinear current-voltage characteristics of the memristor have been leveraged to replace the linear resistor in conventional CNNs. The proposed CNN design has several merits, for example, high density, nonvolatility, and programmability of synaptic weights. The proposed memristor-based CNN design operations for implementing several image processing functions are illustrated through simulation and contrasted with conventional CNNs. Monte-Carlo simulation has been used to demonstrate the behavior of the proposed CNN due to the variations in memristor synaptic weights.

  12. A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations.

    Science.gov (United States)

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

    2015-04-01

    This paper develops and validates a comprehensive and universally applicable computational concept for solving nonlinear differential equations (NDEs) through a neurocomputing concept based on cellular neural networks (CNNs). High-precision, stability, convergence, and lowest-possible memory requirements are ensured by the CNN processor architecture. A significant challenge solved in this paper is that all these cited computing features are ensured in all system-states (regular or chaotic ones) and in all bifurcation conditions that may be experienced by NDEs.One particular quintessence of this paper is to develop and demonstrate a solver concept that shows and ensures that CNN processors (realized either in hardware or in software) are universal solvers of NDE models. The solving logic or algorithm of given NDEs (possible examples are: Duffing, Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers, and the transport equations) through a CNN processor system is provided by a set of templates that are computed by our comprehensive templates calculation technique that we call nonlinear adaptive optimization. This paper is therefore a significant contribution and represents a cutting-edge real-time computational engineering approach, especially while considering the various scientific and engineering applications of this ultrafast, energy-and-memory-efficient, and high-precise NDE solver concept. For illustration purposes, three NDE models are demonstratively solved, and related CNN templates are derived and used: the periodically excited Duffing equation, the Mathieu equation, and the transport equation.

  13. An Evaluation of Cellular Neural Networks for the Automatic Identification of Cephalometric Landmarks on Digital Images

    Directory of Open Access Journals (Sweden)

    Rosalia Leonardi

    2009-01-01

    Full Text Available Several efforts have been made to completely automate cephalometric analysis by automatic landmark search. However, accuracy obtained was worse than manual identification in every study. The analogue-to-digital conversion of X-ray has been claimed to be the main problem. Therefore the aim of this investigation was to evaluate the accuracy of the Cellular Neural Networks approach for automatic location of cephalometric landmarks on softcopy of direct digital cephalometric X-rays. Forty-one, direct-digital lateral cephalometric radiographs were obtained by a Siemens Orthophos DS Ceph and were used in this study and 10 landmarks (N, A Point, Ba, Po, Pt, B Point, Pg, PM, UIE, LIE were the object of automatic landmark identification. The mean errors and standard deviations from the best estimate of cephalometric points were calculated for each landmark. Differences in the mean errors of automatic and manual landmarking were compared with a 1-way analysis of variance. The analyses indicated that the differences were very small, and they were found at most within 0.59 mm. Furthermore, only few of these differences were statistically significant, but differences were so small to be in most instances clinically meaningless. Therefore the use of X-ray files with respect to scanned X-ray improved landmark accuracy of automatic detection. Investigations on softcopy of digital cephalometric X-rays, to search more landmarks in order to enable a complete automatic cephalometric analysis, are strongly encouraged.

  14. Associative memories based on continuous-time cellular neural networks designed using space-invariant cloning templates.

    Science.gov (United States)

    Zeng, Zhigang; Wang, Jun

    2009-01-01

    Associative memories are brain-style devices designed to store a set of patterns as stable equilibria such that the stored patterns can be reliably retrieved with the initial probes containing sufficient information about the patterns. This paper presents a new design procedure for synthesizing associative memories based on continuous-time cellular neural networks with time delays characterized by input and output matrices obtained using two-dimensional space-invariant cloning templates. The design procedure enables hetero-associative or auto-associative memories to be synthesized by solving a set of linear inequalities with few design parameters and retrieval probes feeding from external inputs instead of initial states. The designed associative memories are robust in terms of design parameter selection. In addition, the hosting cellular neural networks are guaranteed to be globally exponentially stable. Simulation and experimental results of illustrative examples and Monte Carlo tests demonstrate the applicability and superiority of the methodology.

  15. Application of Local Activity Theory of Cellular Neural Network with Two Ports to the Coupled Lorenz-Cell Model

    Institute of Scientific and Technical Information of China (English)

    MIN LeQuan; YU Na

    2002-01-01

    Some criteria for the local activity theory in two-port cellular neural network cells with three local state variables are applied to a coupled Lorenz-cell model. The numerical simulation exhibited that emergence may exist if the selected cell parameters are nearby or on the edge of chaos domain. The local activity theory has provided a new tool of studying the complexity of high dimensional coupled nonlinear physical systems.

  16. Implementation of a cellular neural network-based segmentation algorithm on the bio-inspired vision system

    Science.gov (United States)

    Karabiber, Fethullah; Grassi, Giuseppe; Vecchio, Pietro; Arik, Sabri; Yalcin, M. Erhan

    2011-01-01

    Based on the cellular neural network (CNN) paradigm, the bio-inspired (bi-i) cellular vision system is a computing platform consisting of state-of-the-art sensing, cellular sensing-processing and digital signal processing. This paper presents the implementation of a novel CNN-based segmentation algorithm onto the bi-i system. The experimental results, carried out for different benchmark video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frame/sec. Comparisons with existing CNN-based methods show that, even though these methods are from two to six times faster than the proposed one, the conceived approach is more accurate and, consequently, represents a satisfying trade-off between real-time requirements and accuracy.

  17. Discrimination of liver cancer in cellular level based on backscatter micro-spectrum with PCA algorithm and BP neural network

    Science.gov (United States)

    Yang, Jing; Wang, Cheng; Cai, Gan; Dong, Xiaona

    2016-10-01

    The incidence and mortality rate of the primary liver cancer are very high and its postoperative metastasis and recurrence have become important factors to the prognosis of patients. Circulating tumor cells (CTC), as a new tumor marker, play important roles in the early diagnosis and individualized treatment. This paper presents an effective method to distinguish liver cancer based on the cellular scattering spectrum, which is a non-fluorescence technique based on the fiber confocal microscopic spectrometer. Combining the principal component analysis (PCA) with back propagation (BP) neural network were utilized to establish an automatic recognition model for backscatter spectrum of the liver cancer cells from blood cell. PCA was applied to reduce the dimension of the scattering spectral data which obtained by the fiber confocal microscopic spectrometer. After dimensionality reduction by PCA, a neural network pattern recognition model with 2 input layer nodes, 11 hidden layer nodes, 3 output nodes was established. We trained the network with 66 samples and also tested it. Results showed that the recognition rate of the three types of cells is more than 90%, the relative standard deviation is only 2.36%. The experimental results showed that the fiber confocal microscopic spectrometer combining with the algorithm of PCA and BP neural network can automatically identify the liver cancer cell from the blood cells. This will provide a better tool for investigating the metastasis of liver cancers in vivo, the biology metabolic characteristics of liver cancers and drug transportation. Additionally, it is obviously referential in practical application.

  18. Doubly Periodic Traveling Waves in a Cellular Neural Network with Linear Reaction

    Directory of Open Access Journals (Sweden)

    Lin JianJhong

    2009-01-01

    Full Text Available Szekeley observed that the dynamic pattern of the locomotion of salamanders can be explained by periodic vector sequences generated by logical neural networks. Such sequences can mathematically be described by "doubly periodic traveling waves" and therefore it is of interest to propose dynamic models that may produce such waves. One such dynamic network model is built here based on reaction-diffusion principles and a complete discussion is given for the existence of doubly periodic waves as outputs. Since there are 2 parameters in our model and 4 a priori unknown parameters involved in our search of solutions, our results are nontrivial. The reaction term in our model is a linear function and hence our results can also be interpreted as existence criteria for solutions of a nontrivial linear problem depending on 6 parameters.

  19. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  20. Robust Template Decomposition without Weight Restriction for Cellular Neural Networks Implementing Arbitrary Boolean Functions Using Support Vector Classifiers

    Directory of Open Access Journals (Sweden)

    Yih-Lon Lin

    2013-01-01

    Full Text Available If the given Boolean function is linearly separable, a robust uncoupled cellular neural network can be designed as a maximal margin classifier. On the other hand, if the given Boolean function is linearly separable but has a small geometric margin or it is not linearly separable, a popular approach is to find a sequence of robust uncoupled cellular neural networks implementing the given Boolean function. In the past research works using this approach, the control template parameters and thresholds are restricted to assume only a given finite set of integers, and this is certainly unnecessary for the template design. In this study, we try to remove this restriction. Minterm- and maxterm-based decomposition algorithms utilizing the soft margin and maximal margin support vector classifiers are proposed to design a sequence of robust templates implementing an arbitrary Boolean function. Several illustrative examples are simulated to demonstrate the efficiency of the proposed method by comparing our results with those produced by other decomposition methods with restricted weights.

  1. Stability Analysis of a Class of Three-Neuron Delayed Cellular Neural Network

    Directory of Open Access Journals (Sweden)

    Poulami D. Gupta

    2010-01-01

    Full Text Available Problem statement: In this study linear stability of a class of three neuron cellular network with transmission delay had been studied. Approach: The model for the problem was first presented. The problem is then formulated analytically and numerical simulations pertaining to the model are carried out. Results: A necessary and sufficient condition for asymptotic stability of trivial steady state in the absence of delay is derived. Then a delay dependent sufficient condition for local asymptotic stability of trivial, steady state and sufficient condition for no stability switching of trivial steady for such a network are derived. Numerical simulation results of the model were presented. Conclusion/Recommendations: From numerical simulation, it appears that there may be a possibility of multiple steady states of the model. It may be possible to investigate the condition for the existence of periodic solutions of the non-linear model analytically.

  2. Neural Network Applications

    NARCIS (Netherlands)

    Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.

    1995-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  3. The characteristics of nonlinear chaotic dynamics in quantum cellular neural networks

    Institute of Scientific and Technical Information of China (English)

    Wang Sen; Cai Li; Kang Qiang; Wu Gang; Li Qin

    2008-01-01

    With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Quantum Cel- lular Neural Network (QCNN), including equilibrium points, bifurcation and chaotic behaviour. Different phenomena, such as quasi-periodic, chaotic and hyper-chaotic states as well as bifurcations are revealed. The system's bifurcation and chaotic behaviour under the influence of the different coupling parameters are analysed. And it finds that the unbalanced ceils coupled QCNN is easy to cause chaotic oscillation and the system response enters into chaotic state from quasi-periodic state by quasi-period bifurcation; however, the balanced cells coupled QCNN also can be chaotic when coupling parameters is in some region. Additionally, both the unbalanced and balanced cells coupled QCNNs can possess hyper-chaotic behaviour. It provides valuable information about QCNNs for future application in high-parallel signal processing and novel ultra-small chaotic generators.

  4. Guaranteed Cost Control for Exponential Synchronization of Cellular Neural Networks with Mixed Time-Varying Delays via Hybrid Feedback Control

    Directory of Open Access Journals (Sweden)

    T. Botmart

    2013-01-01

    Full Text Available The problem of guaranteed cost control for exponential synchronization of cellular neural networks with interval nondifferentiable and distributed time-varying delays via hybrid feedback control is considered. The interval time-varying delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals is combined with Leibniz-Newton's formula and the technique of dealing with some integral terms. New delay-dependent sufficient conditions for the exponential synchronization of the error systems with memoryless hybrid feedback control are first established in terms of LMIs without introducing any free-weighting matrices. The optimal guaranteed cost control with linear error hybrid feedback is turned into the solvable problem of a set of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.

  5. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.

    2007-01-01

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  6. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  7. A 181 GOPS AKAZE Accelerator Employing Discrete-Time Cellular Neural Networks for Real-Time Feature Extraction

    Directory of Open Access Journals (Sweden)

    Guangli Jiang

    2015-09-01

    Full Text Available This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures.

  8. A 181 GOPS AKAZE Accelerator Employing Discrete-Time Cellular Neural Networks for Real-Time Feature Extraction.

    Science.gov (United States)

    Jiang, Guangli; Liu, Leibo; Zhu, Wenping; Yin, Shouyi; Wei, Shaojun

    2015-09-04

    This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network) that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures.

  9. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  10. Hierarchical random cellular neural networks for system-level brain-like signal processing.

    Science.gov (United States)

    Kozma, Robert; Puljic, Marko

    2013-09-01

    Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms.

  11. Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow

    CERN Document Server

    Buibas, Marius; Nizar, Krystal; Silva, Gabriel A

    2009-01-01

    An optical flow gradient algorithm was applied to spontaneously forming networks of neurons and glia in culture imaged by fluorescence optical microscopy in order to map functional calcium signaling with single pixel resolution. Optical flow estimates the direction and speed of motion of objects in an image between subsequent frames in a recorded digital sequence of images (i.e. a movie). Computed vector field outputs by the algorithm were able to track the spatiotemporal dynamics of calcium signaling patterns. We begin by briefly reviewing the mathematics of the optical flow algorithm, describe how to solve for the displacement vectors, and how to measure their reliability. We then compare computed flow vectors with manually estimated vectors for the progression of a calcium signal recorded from representative astrocyte cultures. Finally, we applied the algorithm to preparations of primary astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in order to illustrate the capability of the ...

  12. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  13. Generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2013-03-01

    In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.

  14. Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata.

    Science.gov (United States)

    Qiang, Yi; Lam, Nina S N

    2015-03-01

    As one of the most vulnerable coasts in the continental USA, the Lower Mississippi River Basin (LMRB) region has endured numerous hazards over the past decades. The sustainability of this region has drawn great attention from the international, national, and local communities, wanting to understand how the region as a system develops under intense interplay between the natural and human factors. A major problem in this deltaic region is significant land loss over the years due to a combination of natural and human factors. The main scientific and management questions are what factors contribute to the land use land cover (LULC) changes in this region, can we model the changes, and how would the LULC look like in the future given the current factors? This study analyzed the LULC changes of the region between 1996 and 2006 by utilizing an artificial neural network (ANN) to derive the LULC change rules from 15 human and natural variables. The rules were then used to simulate future scenarios in a cellular automation model. A stochastic element was added in the model to represent factors that were not included in the current model. The analysis was conducted for two sub-regions in the study area for comparison. The results show that the derived ANN models could simulate the LULC changes with a high degree of accuracy (above 92 % on average). A total loss of 263 km(2) in wetlands from 2006 to 2016 was projected, whereas the trend of forest loss will cease. These scenarios provide useful information to decision makers for better planning and management of the region.

  15. Chaotic diagonal recurrent neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.

  16. Artificial Neural Networks

    OpenAIRE

    Chung-Ming Kuan

    2006-01-01

    Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods.

  17. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  18. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    OpenAIRE

    Ozekes, Serhat; Osman, Onur; UCAN, Osman N.

    2008-01-01

    Objective The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Materials and Methods Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lu...

  19. Global Exponential Stability of Almost Periodic Solution for Neutral-Type Cohen-Grossberg Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses.

    Science.gov (United States)

    Xu, Lijun; Jiang, Qi; Gu, Guodong

    2016-01-01

    A kind of neutral-type Cohen-Grossberg shunting inhibitory cellular neural networks with distributed delays and impulses is considered. Firstly, by using the theory of impulsive differential equations and the contracting mapping principle, the existence and uniqueness of the almost periodic solution for the above system are obtained. Secondly, by constructing a suitable Lyapunov functional, the global exponential stability of the unique almost periodic solution is also investigated. The work in this paper improves and extends some results in recent years. As an application, an example and numerical simulations are presented to demonstrate the feasibility and effectiveness of the main results.

  20. Global Exponential Stability of Almost Periodic Solution for Neutral-Type Cohen-Grossberg Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses

    Directory of Open Access Journals (Sweden)

    Lijun Xu

    2016-01-01

    Full Text Available A kind of neutral-type Cohen-Grossberg shunting inhibitory cellular neural networks with distributed delays and impulses is considered. Firstly, by using the theory of impulsive differential equations and the contracting mapping principle, the existence and uniqueness of the almost periodic solution for the above system are obtained. Secondly, by constructing a suitable Lyapunov functional, the global exponential stability of the unique almost periodic solution is also investigated. The work in this paper improves and extends some results in recent years. As an application, an example and numerical simulations are presented to demonstrate the feasibility and effectiveness of the main results.

  1. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  2. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  3. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  4. Neural networks and graph theory

    Institute of Scientific and Technical Information of China (English)

    许进; 保铮

    2002-01-01

    The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.

  5. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  6. Study of bridge crack diagnosis based on cellular neural network%基于细胞神经网络的桥梁裂痕诊断研究

    Institute of Scientific and Technical Information of China (English)

    张福新; 李国东

    2014-01-01

    In order to detecting the bridge crack, we come up with a fixed way of bridge rift image detection by using cellular neural networks. By image processing, building rift networks and details networks and adding the model of similarity rift networks. It can avoid the problem that can not accurately detect crack by only taking the crack feature value. The experiment proved that fixed crack detect computing is easy to do, more accurate to detect the cracks on the road and can reach the standard level of current detect technique.%为了更好的监测桥梁裂痕,文章提出了一种改进的细胞神经网络桥梁裂痕图像识别方法。该方法通过一定的图像处理,建立裂痕网络和细节网络,同时增加了裂痕相似网络模型,避免了仅对裂痕特征提取信息不能准确识别裂痕的问题。实验证明,改进的裂痕识别算法实现简单,识别桥梁裂痕准确率高,达到了实时识别技术的要求。

  7. Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and the Wiener process based on sampled-data control

    Institute of Scientific and Technical Information of China (English)

    M.Kalpana; P.Balasubramaniam

    2013-01-01

    We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete,unbounded distributed delays,and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach.The Lyapunov-Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous.Restrictions (e.g.,time derivative is smaller than one) are removed to obtain a proposed sampled-data controller.Finally,a numerical example is provided to demonstrate the reliability of the derived results.

  8. 0.8 /spl mu/m CMOS implementation of weighted-order statistic image filter based on cellular neural network architecture.

    Science.gov (United States)

    Kowalski, J

    2003-01-01

    In this paper, a very large scale integration chip of an analog image weighted-order statistic (WOS) filter based on cellular neural network (CNN) architecture for real-time applications is described. The chip has been implemented in CMOS AMS 0.8 /spl mu/m technology. CNN-based filter consists of feedforward nonlinear template B operating within the window of 3 /spl times/ 3 pixels around the central pixel being filtered. The feedforward nonlinear CNN coefficients have been realized using programmable nonlinear coupler circuits. The WOS filter chip allows for processing of images with 300 pixels horizontal resolution. The resolution can be increased by cascading of the chips. Experimental results of basic circuit building blocks measurements are presented. Functional tests of the chip have been performed using a special test setup for PAL composite video signal processing. Using the setup real images have been filtered by WOS filter chip under test.

  9. Neural networks in seismic discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  10. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...

  11. Energy Landscape of Cellular Networks

    Science.gov (United States)

    Wang, Jin

    2008-03-01

    Cellular Networks are in general quite robust and perform their biological functions against the environmental perturbations. Progresses have been made from experimental global screenings, topological and engineering studies. However, there are so far few studies of why the network should be robust and perform biological functions from global physical perspectives. In this work, we will explore the global properties of the network from physical perspectives. The aim of this work is to develop a conceptual framework and quantitative physical methods to study the global nature of the cellular network. The main conclusion of this presentation is that we uncovered the underlying energy landscape for several small cellular networks such as MAPK signal transduction network and gene regulatory networks, from the experimentally measured or inferred inherent chemical reaction rates. The underlying dynamics of these networks can show bi-stable as well as oscillatory behavior. The global shapes of the energy landscapes of the underlying cellular networks we have studied are robust against perturbations of the kinetic rates and environmental disturbances through noise. We derived a quantitative criterion for robustness of the network function from the underlying landscape. It provides a natural explanation of the robustness and stability of the network for performing biological functions. We believe the robust landscape is a global universal property for cellular networks. We believe the robust landscape is a quantitative realization of Darwinian principle of natural selection at the cellular network level. It may provide a novel algorithm for optimizing the network connections, which is crucial for the cellular network design and synthetic biology. Our approach is general and can be applied to other cellular networks.

  12. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  13. Processing the Bouguer anomaly map of Biga and the surrounding area by the cellular neural network: application to the southwestern Marmara region

    Science.gov (United States)

    Aydogan, D.

    2007-04-01

    An image processing technique called the cellular neural network (CNN) approach is used in this study to locate geological features giving rise to gravity anomalies such as faults or the boundary of two geologic zones. CNN is a stochastic image processing technique based on template optimization using the neighborhood relationships of cells. These cells can be characterized by a functional block diagram that is typical of neural network theory. The functionality of CNN is described in its entirety by a number of small matrices (A, B and I) called the cloning template. CNN can also be considered to be a nonlinear convolution of these matrices. This template describes the strength of the nearest neighbor interconnections in the network. The recurrent perceptron learning algorithm (RPLA) is used in optimization of cloning template. The CNN and standard Canny algorithms were first tested on two sets of synthetic gravity data with the aim of checking the reliability of the proposed approach. The CNN method was compared with classical derivative techniques by applying the cross-correlation method (CC) to the same anomaly map as this latter approach can detect some features that are difficult to identify on the Bouguer anomaly maps. This approach was then applied to the Bouguer anomaly map of Biga and its surrounding area, in Turkey. Structural features in the area between Bandirma, Biga, Yenice and Gonen in the southwest Marmara region are investigated by applying the CNN and CC to the Bouguer anomaly map. Faults identified by these algorithms are generally in accordance with previously mapped surface faults. These examples show that the geologic boundaries can be detected from Bouguer anomaly maps using the cloning template approach. A visual evaluation of the outputs of the CNN and CC approaches is carried out, and the results are compared with each other. This approach provides quantitative solutions based on just a few assumptions, which makes the method more

  14. Fuzzy Multiresolution Neural Networks

    Science.gov (United States)

    Ying, Li; Qigang, Shang; Na, Lei

    A fuzzy multi-resolution neural network (FMRANN) based on particle swarm algorithm is proposed to approximate arbitrary nonlinear function. The active function of the FMRANN consists of not only the wavelet functions, but also the scaling functions, whose translation parameters and dilation parameters are adjustable. A set of fuzzy rules are involved in the FMRANN. Each rule either corresponding to a subset consists of scaling functions, or corresponding to a sub-wavelet neural network consists of wavelets with same dilation parameters. Incorporating the time-frequency localization and multi-resolution properties of wavelets with the ability of self-learning of fuzzy neural network, the approximation ability of FMRANN can be remarkable improved. A particle swarm algorithm is adopted to learn the translation and dilation parameters of the wavelets and adjusting the shape of membership functions. Simulation examples are presented to validate the effectiveness of FMRANN.

  15. Rule Extraction:Using Neural Networks or for Neural Networks?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Zhou

    2004-01-01

    In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.

  16. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  17. Critical branching neural networks.

    Science.gov (United States)

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  18. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  19. Compressing Convolutional Neural Networks

    OpenAIRE

    Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin

    2015-01-01

    Convolutional neural networks (CNN) are increasingly used in many areas of computer vision. They are particularly attractive because of their ability to "absorb" great quantities of labeled data through millions of parameters. However, as model sizes increase, so do the storage and memory requirements of the classifiers. We present a novel network architecture, Frequency-Sensitive Hashed Nets (FreshNets), which exploits inherent redundancy in both convolutional layers and fully-connected laye...

  20. Generalized Adaptive Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  1. Quantum Neural Networks

    CERN Document Server

    Gupta, S; Gupta, Sanjay

    2002-01-01

    This paper initiates the study of quantum computing within the constraints of using a polylogarithmic ($O(\\log^k n), k\\geq 1$) number of qubits and a polylogarithmic number of computation steps. The current research in the literature has focussed on using a polynomial number of qubits. A new mathematical model of computation called \\emph{Quantum Neural Networks (QNNs)} is defined, building on Deutsch's model of quantum computational network. The model introduces a nonlinear and irreversible gate, similar to the speculative operator defined by Abrams and Lloyd. The precise dynamics of this operator are defined and while giving examples in which nonlinear Schr\\"{o}dinger's equations are applied, we speculate on its possible implementation. The many practical problems associated with the current model of quantum computing are alleviated in the new model. It is shown that QNNs of logarithmic size and constant depth have the same computational power as threshold circuits, which are used for modeling neural network...

  2. Integrating cellular automata, artificial neural network and fuzzy set theory to simulate threatened orchards: Application to Maragheh, Iran

    NARCIS (Netherlands)

    Azari, M; Tayyebi, A; Helbich, M; Ahadnejad Reveshty, M

    2016-01-01

    Urbanization processes challenge the growth of orchards areas in many cities in Iran. In Maragheh orchards are crucial ecological, economical, and tourist sources. To explore orchards threatened by urban expansion, this study aims, first, to develop a new model by coupling cellular automata and arti

  3. A study of asymptotic behavior of cellular neural networks%细胞神经网络渐进行为的研究

    Institute of Scientific and Technical Information of China (English)

    张强; 马润年; 许进

    2001-01-01

    Based on LaSalle's invariance principle, a study has been made ofthe asymptotic behavior of the cellular neural networks (CNN's). Global asymptotic stability is compared with complete stability, both of which have been widely studied in the stability of CNN's. Some faults in the literature are discussed. Two conditions for stability are obtained, which extends some results available. Specially, our results may provide an important guide to the physical CNN's designs.%基于稳定性理论中的LaSalle不变原理研究了细胞神经网络解的渐进行为,定义了解轨线稳定的概念,给出了判定系统解轨线稳定的两个充分条件,并对有关文献中存在的不妥之处进行了讨论,比较了细胞神经网络稳定性研究中广泛使用的全局渐近稳定与完全稳定这两种稳定性的差别,所得结果推广了目前已有的一些结论并对网络的硬件实现具有一定的指导作用.

  4. Application of Cellular Neural Networks in Real Life%应用细胞神经网络预测冰雹研究

    Institute of Scientific and Technical Information of China (English)

    崔金蕾; 李国东

    2015-01-01

    通过对气象雷达图像的内部信息进行挖掘与分析,进行冰雹预测。采用细胞神经网络进行边缘探测提取,结合小波变换进行数据挖掘的方法,找寻其规律,得到五种系数的规律,并且验证规律的可行性,为冰雹预测提供一个较有效的方法。%Through the data mining and analysis of weather radar images of internal information, hail forecast was conducted. Edge detection was extracted by using cellular neural networks, combining wavelet transform with data mining method to find the rules; we obtain five coefficients of the rules, and verify the feasibility of the law, providing a more effective method for hail forecast.

  5. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information.The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems.Ann’s, like people, learn by example.

  6. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems. Ann’s, like people, learn by example.

  7. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  8. Trimaran Resistance Artificial Neural Network

    Science.gov (United States)

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  9. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  10. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    Energy Technology Data Exchange (ETDEWEB)

    Ozekes, Serhat; Osman, Onur; Ucan, N. [Istanbul Commerce University, Ragip Gumuspala Cad. No: 84 34378 Eminonu, Istanbul (Turkmenistan)

    2008-02-15

    The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer aided detection of lung nodules.

  11. via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    J. Reyes-Reyes

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  12. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  13. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  14. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  15. Neural networks in astronomy.

    Science.gov (United States)

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  16. Logic Mining Using Neural Networks

    CERN Document Server

    Sathasivam, Saratha

    2008-01-01

    Knowledge could be gained from experts, specialists in the area of interest, or it can be gained by induction from sets of data. Automatic induction of knowledge from data sets, usually stored in large databases, is called data mining. Data mining methods are important in the management of complex systems. There are many technologies available to data mining practitioners, including Artificial Neural Networks, Regression, and Decision Trees. Neural networks have been successfully applied in wide range of supervised and unsupervised learning applications. Neural network methods are not commonly used for data mining tasks, because they often produce incomprehensible models, and require long training times. One way in which the collective properties of a neural network may be used to implement a computational task is by way of the concept of energy minimization. The Hopfield network is well-known example of such an approach. The Hopfield network is useful as content addressable memory or an analog computer for s...

  17. Medical diagnosis using neural network

    CERN Document Server

    Kamruzzaman, S M; Siddiquee, Abu Bakar; Mazumder, Md Ehsanul Hoque

    2010-01-01

    This research is to search for alternatives to the resolution of complex medical diagnosis where human knowledge should be apprehended in a general fashion. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic system. This paper describes a modified feedforward neural network constructive algorithm (MFNNCA), a new algorithm for medical diagnosis. The new constructive algorithm with backpropagation; offer an approach for the incremental construction of near-minimal neural network architectures for pattern classification. The algorithm starts with minimal number of hidden units in the single hidden layer; additional units are added to the hidden layer one at a time to improve the accuracy of the network and to get an optimal size of a neural network. The MFNNCA was tested on several benchmarking classification problems including the cancer, heart disease and diabetes. Experimental results show that the MFNNCA can produce optimal neural networ...

  18. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.

    Science.gov (United States)

    Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto

    2012-01-21

    Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction

  19. Artificial Neural Network Analysis System

    Science.gov (United States)

    2007-11-02

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  20. Modular, Hierarchical Learning By Artificial Neural Networks

    Science.gov (United States)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  1. Initial Object Segmentation for Video Object Plane Generation Using Cellular Neural Networks%在视频对象平面生成中使用细胞神经网络进行初始对象的分割

    Institute of Scientific and Technical Information of China (English)

    王慧; 杨高波; 张兆扬

    2003-01-01

    MPEG-4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue indefining the content of any video sequence, which is often divided into two steps: initial object segmentation and object tracking. Inthis paper, an initial object segmentation method for video object plane(VOP) generation using color information is proposed. Based on3 by 3 linear templates, a cellular neural network (CNN) is used to implemented object segmentation, The Experimental results arepresented to verify the efficiency and robustness of this approach.

  2. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  3. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models....... - Control concepts including parameter estimation - Control concepts including inverse modelling - Control concepts including optimal control For each of the three groups, different control concepts and specific training methods are detailed described.Further, all control concepts are tested on the same......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  4. The holographic neural network: Performance comparison with other neural networks

    Science.gov (United States)

    Klepko, Robert

    1991-10-01

    The artificial neural network shows promise for use in recognition of high resolution radar images of ships. The holographic neural network (HNN) promises a very large data storage capacity and excellent generalization capability, both of which can be achieved with only a few learning trials, unlike most neural networks which require on the order of thousands of learning trials. The HNN is specially designed for pattern association storage, and mathematically realizes the storage and retrieval mechanisms of holograms. The pattern recognition capability of the HNN was studied, and its performance was compared with five other commonly used neural networks: the Adaline, Hamming, bidirectional associative memory, recirculation, and back propagation networks. The patterns used for testing represented artificial high resolution radar images of ships, and appear as a two dimensional topology of peaks with various amplitudes. The performance comparisons showed that the HNN does not perform as well as the other neural networks when using the same test data. However, modification of the data to make it appear more Gaussian distributed, improved the performance of the network. The HNN performs best if the data is completely Gaussian distributed.

  5. Proceedings of International Workshop on Cellular Neural Networks and their Applications (2nd) held in Munich, Germany, October 14 -16, 1992.

    Science.gov (United States)

    1992-10-16

    Italy 94 10.00 Two Causes of Instability of Celular Neural Networks P. Thiran, EPFL, Lausanne, Switzerland 100 10.20 Convergence of Reciprocal rime...devices. Finite R0 /Rin ratio causes current gain error due to spurious current division at the mirror input and output nodes. The error is especially...SzTAKI) Research Division , Hungarian Academy of Sciences Kende u. 13, H- 1111 Budapest XI, Hungary; H- 1518 Bp, POB 63; E-mail: h 189rad@ella.hu Abstract

  6. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  7. Neural Network Communications Signal Processing

    Science.gov (United States)

    1994-08-01

    Technical Information Report for the Neural Network Communications Signal Processing Program, CDRL A003, 31 March 1993. Software Development Plan for...track changing jamming conditions to provide the decoder with the best log- likelihood ratio metrics at a given time. As part of our development plan we...Artificial Neural Networks (ICANN-91) Volume 2, June 24-28, 1991, pp. 1677-1680. Kohonen, Teuvo, Raivio, Kimmo, Simula, Oli, Venta , 011i, Henriksson

  8. Cellular recurrent deep network for image registration

    Science.gov (United States)

    Alam, M.; Vidyaratne, L.; Iftekharuddin, Khan M.

    2015-09-01

    Image registration using Artificial Neural Network (ANN) remains a challenging learning task. Registration can be posed as a two-step problem: parameter estimation and actual alignment/transformation using the estimated parameters. To date ANN based image registration techniques only perform the parameter estimation, while affine equations are used to perform the actual transformation. In this paper, we propose a novel deep ANN based image rigid registration that combines parameter estimation and transformation as a simultaneous learning task. Our previous work shows that a complex universal approximator known as Cellular Simultaneous Recurrent Network (CSRN) can successfully approximate affine transformations with known transformation parameters. This study introduces a deep ANN that combines a feed forward network with a CSRN to perform full rigid registration. Layer wise training is used to pre-train feed forward network for parameter estimation and followed by a CSRN for image transformation respectively. The deep network is then fine-tuned to perform the final registration task. Our result shows that the proposed deep ANN architecture achieves comparable registration accuracy to that of image affine transformation using CSRN with known parameters. We also demonstrate the efficacy of our novel deep architecture by a performance comparison with a deep clustered MLP.

  9. VLSI implementation of neural networks.

    Science.gov (United States)

    Wilamowski, B M; Binfet, J; Kaynak, M O

    2000-06-01

    Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.

  10. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  11. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2016-07-14

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  12. 随机时滞反应扩散广义细胞神经网络的均值指数稳定性%Exponential Stability of Stochastic Reaction-Diffusion General Cellular Neural Network with Time-Delays

    Institute of Scientific and Technical Information of China (English)

    周凤燕

    2012-01-01

    研究了一类反应扩散广义时滞细胞神经网络在噪声干扰下的指数稳定性.利用Ito公式,Holder不等式,M矩阵性质和微分不等式技巧,给出了系统均值指数稳定的充分条件,并且判断方法简单易操作.最后给出了主要定理的两个应用实例,表明结论的有效性.%The exponential stability of a class of reaction-diffusion general cellular neural network with time delay and noise perturbation is studied. Using the Ito formula, Holder inequality, M-matric properties and a skill of differential inequality, some sufficient conditions are given to guarantee the mean value exponential stability of the equilibrium for the stochastic reaction-diffusion general cellular neural network with time delay and the sufficient conditions are easier to operate. In the end, two examples are given to illustrate the main theoretical results.

  13. Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    Wu Wei; Cui Bao-Tong

    2007-01-01

    In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented.This class of chaotic neural networks covers several well-known neural network, such a Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.

  14. Pattern Recognition Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Santaji Ghorpade

    2010-12-01

    Full Text Available Face Recognition has been identified as one of the attracting research areas and it has drawn the attention of many researchers due to its varying applications such as security systems, medical systems,entertainment, etc. Face recognition is the preferred mode of identification by humans: it is natural,robust and non-intrusive. A wide variety of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that the rendered services are accessed only by a legitimate user and no one else.Examples of such applications include secure access to buildings, computer systems, laptops, cellular phones, and ATMs. In the absence of robust personal recognition schemes, these systems are vulnerable to the wiles of an impostor.In this paper we have developed and illustrated a recognition system for human faces using a novel Kohonen self-organizing map (SOM or Self-Organizing Feature Map (SOFM based retrieval system.SOM has good feature extracting property due to its topological ordering. The Facial Analytics results for the 400 images of AT&T database reflects that the face recognition rate using one of the neural network algorithm SOM is 85.5% for 40 persons.

  15. Multigradient for Neural Networks for Equalizers

    Directory of Open Access Journals (Sweden)

    Chulhee Lee

    2003-06-01

    Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.

  16. Relations Between Wavelet Network and Feedforward Neural Network

    Institute of Scientific and Technical Information of China (English)

    刘志刚; 何正友; 钱清泉

    2002-01-01

    A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.

  17. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  18. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  19. Application of neural networks in coastal engineering

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    the neural network attractive. A neural network is an information processing system modeled on the structure of the dynamic process. It can solve the complex/nonlinear problems quickly once trained by operating on problems using an interconnected number...

  20. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  1. Neural Network for Sparse Reconstruction

    Directory of Open Access Journals (Sweden)

    Qingfa Li

    2014-01-01

    Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.

  2. The Physics of Neural Networks

    Science.gov (United States)

    Gutfreund, Hanoch; Toulouse, Gerard

    The following sections are included: * Introduction * Historical Perspective * Why Statistical Physics? * Purpose and Outline of the Paper * Basic Elements of Neural Network Models * The Biological Neuron * From the Biological to the Formal Neuron * The Formal Neuron * Network Architecture * Network Dynamics * Basic Functions of Neural Network Models * Associative Memory * Learning * Categorization * Generalization * Optimization * The Hopfield Model * Solution of the Model * The Merit of the Hopfield Model * Beyond the Standard Model * The Gardner Approach * A Microcanonical Formulation * The Case of Biased Patterns * A Canonical Formulation * Constraints on the Synaptic Weights * Learning with Errors * Learning with Noise * Hierarchically Correlated Data and Categorization * Hierarchical Data Structures * Storage of Hierarchical Data Structures * Categorization * Generalization * Learning a Classification Task * The Reference Perceptron Problem * The Contiguity Problem * Discussion - Issues of Relevance * The Notion of Attractors and Modes of Computation * The Nature of Attractors * Temporal versus Spatial Coding * Acknowledgements * References

  3. Building a Chaotic Proved Neural Network

    CERN Document Server

    Bahi, Jacques M; Salomon, Michel

    2011-01-01

    Chaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior.

  4. Meta-Learning Evolutionary Artificial Neural Networks

    OpenAIRE

    Abraham, Ajith

    2004-01-01

    In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic computational framework for the adaptive optimization of artificial neural networks wherein the neural network architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the problem. We explored the performance of MLEANN and conventionally designed artificial neural networks for function approximation problems. To evaluate the compara...

  5. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  6. Aphasia Classification Using Neural Networks

    DEFF Research Database (Denmark)

    Axer, H.; Jantzen, Jan; Berks, G.

    2000-01-01

    A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...

  7. Spin glasses and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Parga, N. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche; Universidad Nacional de Cuyo, San Carlos de Bariloche (Argentina). Inst. Balseiro)

    1989-07-01

    The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.).

  8. Artificial neural networks in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  9. Move Ordering using Neural Networks

    NARCIS (Netherlands)

    Kocsis, L.; Uiterwijk, J.; Van Den Herik, J.

    2001-01-01

    © Springer-Verlag Berlin Heidelberg 2001. The efficiency of alpha-beta search algorithms heavily depends on the order in which the moves are examined. This paper focuses on using neural networks to estimate the likelihood of a move being the best in a certain position. The moves considered more like

  10. Neural Network based Consumption Forecasting

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2016-01-01

    This paper describe a Neural Network based method for consumption forecasting. This work has been financed by the The ENCOURAGE project. The aims of The ENCOURAGE project is to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable...

  11. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  12. Analysis of Neural Networks through Base Functions

    NARCIS (Netherlands)

    Zwaag, van der B.J.; Slump, C.H.; Spaanenburg, L.

    2002-01-01

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  13. Competition Based Neural Networks for Assignment Problems

    Institute of Scientific and Technical Information of China (English)

    李涛; LuyuanFang

    1991-01-01

    Competition based neural networks have been used to solve the generalized assignment problem and the quadratic assignment problem.Both problems are very difficult and are ε approximation complete.The neural network approach has yielded highly competitive performance and good performance for the quadratic assignment problem.These neural networks are guaranteed to produce feasible solutions.

  14. 具分布时滞和脉冲的Cohen-Grossberg SICNNs的概周期解%Almost Periodic Solutions for Cohen-Grossberg Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses

    Institute of Scientific and Technical Information of China (English)

    农秀丽; 杨莉

    2014-01-01

    研究一类具分布时滞和脉冲的Cohen-Grossberg SICNNs模型。利用不动点定理,得到一些保证所考虑模型存在概周期解的充分条件,并举例说明了所得结果的可行性。%In this paper, a class of Cohen-Grossberg Shunting Inhibitory cellular neural net-works with distributed delays and impulses are considered. Some criteria for the exis-tence of nonzero almost period⁃ic solutions are established by Banach fixed point theorem.Moreover, an example is employed to illus⁃trate our feasible results.

  15. Exponential Stability of a Class of Cellular Neural Networks with Multi-Pantograph Delays%一类具多比例延时的细胞神经网络的指数稳定性

    Institute of Scientific and Technical Information of China (English)

    张迎迎; 周立群

    2012-01-01

    The exponential stability of a class of cellular neural networks with multi-pantograph delays is studied. In view of nonlinear measure,a sufficient condition is derived for the existence,uniqueness and exponential stability of the equilibrium point. And the method gains the exponential convergent velocity of the solutions. Finally,an example is provided to illustrate effectiveness of the method.%讨论了一类具多比例延时的细胞神经网络的指数稳定性.利用非线性测度得到了一个保证平衡点存在唯一且指数稳定的充分条件,并给出了解的指数收敛速度.最后验证了结论的正确性并进行了模拟仿真.

  16. Exponential Stability of High-order Fuzzy Cellular Neural Networks with Time-Varying Delays%带有变时滞的高阶模糊细胞神经网络的指数稳定性

    Institute of Scientific and Technical Information of China (English)

    郭汴京; 滕志东; 蒋海军

    2008-01-01

    研究了带有变时滞的高阶模糊细胞神经网络(HFCNNs)的全局指数稳定性.通过引入非奇异M-矩阵和使用Lyapunov泛函方法,得到了带有常时滞和变时滞的高阶模糊细胞神经网络全局指数稳定性的充分条件.%In this paper,the global exponential stability of high-order fuzzy cellular neural networks (HFCNNs) with time-varying delays is proposed.Employing nonsingular M-matrix and Lyapunov functional method,some new sufficient conditions are derived for checking global exponential stability of the HFCNNs with constant and time-varying delays.

  17. Software-Defined Cellular Mobile Network Solutions

    Institute of Scientific and Technical Information of China (English)

    Jiandong Li; Peng Liu; Hongyan Li

    2014-01-01

    The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, pro-vides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solu-tions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only software-defined cellular network solutions and specifications in order to provide possible research directions.

  18. 基于神经网络模型的双混沌 Hash 函数构造%A Dual Chaotic Hash Function Based on Cellular Neural Network

    Institute of Scientific and Technical Information of China (English)

    刘慧; 赵耿; 白健

    2014-01-01

    高效快速的单向Hash函数是当前安全技术研究的热点。文章采用神经网络结构构造了一种Hash函数,由Logistic映射和Chebyshev映射结合起来的双混沌系统产生该神经网络的参数,将明文信息逐块进行处理,并最终通过异或产生128 bit的Hash值。经实验数据和仿真分析可知:文章提出的方案满足单向Hash函数所要求的混乱和置换特性,并且具有很好的弱碰撞性和初值敏感性;另外,该方案结构简单容易实现。%The Hash function with high speed and efifciency has been a hotspot of security. In this paper, a new Hash function based on cellular neural network was proposed. The parameters of the cellular neural network were produced by a unique system which combined the Logistic map with the Chebyshev map. The function can handle the plaintext by the block, and the ifnal 128 Hash value is the xor of every block’s Hash value. The experimental data and simulated analysis show that the proposed algorithm can satisfy the requirements of a secure hash function, and it has some good properties such as diffusion, confusion, weak collision and sensitivity to initial conditions. What’s more, the construction of the scheme can be achieved easily.

  19. Neural tube closure: cellular, molecular and biomechanical mechanisms.

    Science.gov (United States)

    Nikolopoulou, Evanthia; Galea, Gabriel L; Rolo, Ana; Greene, Nicholas D E; Copp, Andrew J

    2017-02-15

    Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field.

  20. Quantum computing in neural networks

    CERN Document Server

    Gralewicz, P

    2004-01-01

    According to the statistical interpretation of quantum theory, quantum computers form a distinguished class of probabilistic machines (PMs) by encoding n qubits in 2n pbits. This raises the possibility of a large-scale quantum computing using PMs, especially with neural networks which have the innate capability for probabilistic information processing. Restricting ourselves to a particular model, we construct and numerically examine the performance of neural circuits implementing universal quantum gates. A discussion on the physiological plausibility of proposed coding scheme is also provided.

  1. Cellular mechanisms of posterior neural tube morphogenesis in the zebrafish.

    Science.gov (United States)

    Harrington, Michael J; Chalasani, Kavita; Brewster, Rachel

    2010-03-01

    The zebrafish is a well established model system for studying neural development, yet neurulation remains poorly understood in this organism. In particular, the morphogenetic movements that shape the posterior neural tube (PNT) have not been described. Using tools for imaging neural tissue and tracking the behavior of cells in real time, we provide the first comprehensive analysis of the cellular events shaping the PNT. We observe that this tissue is formed in a stepwise manner, beginning with merging of presumptive neural domains in the tailbud (Stage 1); followed by neural convergence and infolding to shape the neural rod (Stage 2); and continued elongation of the PNT, in absence of further convergence (Stage 3). We further demonstrate that cell proliferation plays only a minimal role in PNT elongation. Overall, these mechanisms resemble those previously described in anterior regions, suggesting that, in contrast to amniotes, neurulation is a fairly uniform process in zebrafish.

  2. Discontinuities in recurrent neural networks.

    Science.gov (United States)

    Gavaldá, R; Siegelmann, H T

    1999-04-01

    This article studies the computational power of various discontinuous real computational models that are based on the classical analog recurrent neural network (ARNN). This ARNN consists of finite number of neurons; each neuron computes a polynomial net function and a sigmoid-like continuous activation function. We introduce arithmetic networks as ARNN augmented with a few simple discontinuous (e.g., threshold or zero test) neurons. We argue that even with weights restricted to polynomial time computable reals, arithmetic networks are able to compute arbitrarily complex recursive functions. We identify many types of neural networks that are at least as powerful as arithmetic nets, some of which are not in fact discontinuous, but they boost other arithmetic operations in the net function (e.g., neurons that can use divisions and polynomial net functions inside sigmoid-like continuous activation functions). These arithmetic networks are equivalent to the Blum-Shub-Smale model, when the latter is restricted to a bounded number of registers. With respect to implementation on digital computers, we show that arithmetic networks with rational weights can be simulated with exponential precision, but even with polynomial-time computable real weights, arithmetic networks are not subject to any fixed precision bounds. This is in contrast with the ARNN that are known to demand precision that is linear in the computation time. When nontrivial periodic functions (e.g., fractional part, sine, tangent) are added to arithmetic networks, the resulting networks are computationally equivalent to a massively parallel machine. Thus, these highly discontinuous networks can solve the presumably intractable class of PSPACE-complete problems in polynomial time.

  3. Fuzzy logic systems are equivalent to feedforward neural networks

    Institute of Scientific and Technical Information of China (English)

    李洪兴

    2000-01-01

    Fuzzy logic systems and feedforward neural networks are equivalent in essence. First, interpolation representations of fuzzy logic systems are introduced and several important conclusions are given. Then three important kinds of neural networks are defined, i.e. linear neural networks, rectangle wave neural networks and nonlinear neural networks. Then it is proved that nonlinear neural networks can be represented by rectangle wave neural networks. Based on the results mentioned above, the equivalence between fuzzy logic systems and feedforward neural networks is proved, which will be very useful for theoretical research or applications on fuzzy logic systems or neural networks by means of combining fuzzy logic systems with neural networks.

  4. 时滞依赖的变延时细胞神经网络的指数稳定性%Delay-dependent Exponential Stability for Cellular Neural Networks with Time-varying Delays

    Institute of Scientific and Technical Information of China (English)

    梁金玲; 黄霞

    2005-01-01

    Stability analysis of cellular neural networks (CNNs)has been an important topic in the neuralnetwork field since it has great significance for many applications. The qualitative analysis of the neurodynamics has attracted considerable attention thus far[1~7]. In electronic implementation of neural networks,many problems such as switching delays, integration, and communication delays have arisen. In such a case, a delay parameter must be introduced into the system model. Study of neural dynamics with consideration of delays becomes particularly important in manufacturing high quality microelectronic neural networks. Global stability of delayed cellular neural networks (DCNNs) has been extensively studied[1~11]. Sufficient conditions[5,9,12,13] for global stability of DCNNs have been proposed, but the output of the cell is a piecewise linear function and the time-delay is constant. A wider adaptive range without assuming the output of the cell to be piecewise linear function[10,13] is introduced and the time-delay terms of DCNNs are also constant.Based on the Lyapunov stability theorem as well as some facts about the negative definiteness and inequality of matrices, a new sufficient condition is presented for the existence of a unique equilibrium point and its global exponential stability of the delayed CNNs. This condition imposes constraints on the size of the delay parameter. An illustrative example and its numerical simulation is also given to show the effectiveness of our results.%细胞神经网络(CNNs)由于有许多重要的应用价值,所以它的稳定性分析一直是神经网络领域里的一个重要课题.近年来,神经动力系统的定性分析吸引了众多学者的关注[1-7].在神经网络的电子器件实现中,出现了许多问题,诸如:转换延时,积分器,连接延时等.在这种情况下,在系统模型中一定要引进一个延时参数.要制造高质量的微电子神经网络,研究带有延时的神经动

  5. Neural Networks Methodology and Applications

    CERN Document Server

    Dreyfus, Gérard

    2005-01-01

    Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...

  6. Fiber optic Adaline neural networks

    Science.gov (United States)

    Ghosh, Anjan K.; Trepka, Jim; Paparao, Palacharla

    1993-02-01

    Optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators has been discussed recently. We describe the design of a single layer fiber optic Adaline neural network which can be used as a bit pattern classifier. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The new optical neural network described in this paper is designed for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the optically implemented Adaline in the presence of errors in the hardware, and we studied methods for improving the convergence rate of the Adaline.

  7. Analog electronic neural network circuits

    Energy Technology Data Exchange (ETDEWEB)

    Graf, H.P.; Jackel, L.D. (AT and T Bell Labs., Holmdel, NJ (USA))

    1989-07-01

    The large interconnectivity and moderate precision required in neural network models present new opportunities for analog computing. This paper discusses analog circuits for a variety of problems such as pattern matching, optimization, and learning. Most of the circuits build so far are relatively small, exploratory designs. The most mature circuits are those for template matching. Chips performing this function are now being applied to pattern recognition problems.

  8. Neural Networks for Speech Application.

    Science.gov (United States)

    1987-11-01

    operation and neurocrience theories of how neurons process information in the brain. design. Early studies by McCulloch and Pitts dunng the forties led to...developed the commercially available Mark III and Mark IV neurocom- established by McCulloch and Pits. puters that model neural networks and run...ORGANIZERS Infonuiaonienes (1986) FOR Lashley, K. Brain Mehaius and Cblali (129)SPEECHOTECH 󈨜 McCullch. W and Pitts . W, ’A Logical Calculusof the

  9. Process Neural Networks Theory and Applications

    CERN Document Server

    He, Xingui

    2010-01-01

    "Process Neural Networks - Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks, and enhancing the expression capability for practical problems, with broad applicability to solving problems relating to process in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are strictly proved. The application methods, network construction principles, and optimization alg

  10. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  11. Virtual networks in the cellular domain

    OpenAIRE

    Söderström, Gustav

    2003-01-01

     Data connectivity between cellular devices can be achieved in different ways. It is possible to enable full IPconnectivity in the cellular networks. However this connectivity is combined with a lot of issues such as security problems and the IPv4 address space being depleted. As a result of this many operators use Network Address Translation in their packet data networks, preventing users in different networks from being able to contact each other. Even if a transition to IPv6 takes place an...

  12. Practical neural network recipies in C++

    CERN Document Server

    Masters

    2014-01-01

    This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum

  13. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  14. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  15. Optimal Band Allocation for Cognitive Cellular Networks

    CERN Document Server

    Liu, Tingting

    2011-01-01

    FCC new regulation for cognitive use of the TV white space spectrum provides a new means for improving traditional cellular network performance. But it also introduces a number of technical challenges. This letter studies one of the challenges, that is, given the significant differences in the propagation property and the transmit power limitations between the cellular band and the TV white space, how to jointly utilize both bands such that the benefit from the TV white space for improving cellular network performance is maximized. Both analytical and simulation results are provided.

  16. Salience-Affected Neural Networks

    CERN Document Server

    Remmelzwaal, Leendert A; Ellis, George F R

    2010-01-01

    We present a simple neural network model which combines a locally-connected feedforward structure, as is traditionally used to model inter-neuron connectivity, with a layer of undifferentiated connections which model the diffuse projections from the human limbic system to the cortex. This new layer makes it possible to model global effects such as salience, at the same time as the local network processes task-specific or local information. This simple combination network displays interactions between salience and regular processing which correspond to known effects in the developing brain, such as enhanced learning as a result of heightened affect. The cortex biases neuronal responses to affect both learning and memory, through the use of diffuse projections from the limbic system to the cortex. Standard ANNs do not model this non-local flow of information represented by the ascending systems, which are a significant feature of the structure of the brain, and although they do allow associational learning with...

  17. Dynamic Analysis of Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    N. Ahmadi

    2008-01-01

    Full Text Available In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time consuming process. We employed two kinds of neural networks: Generalized Regression neural network (GR and Back-Propagation Wavenet neural network (BPW, for approximating of dynamic time history response of frame structures. GR is a traditional radial basis function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are substituted with wavelets and weights training are achieved using Scaled Conjugate Gradient (SCG algorithm. Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate dynamic analysis of structures.

  18. Rule Extraction using Artificial Neural Networks

    OpenAIRE

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can...

  19. Feature Weight Tuning for Recursive Neural Networks

    OpenAIRE

    2014-01-01

    This paper addresses how a recursive neural network model can automatically leave out useless information and emphasize important evidence, in other words, to perform "weight tuning" for higher-level representation acquisition. We propose two models, Weighted Neural Network (WNN) and Binary-Expectation Neural Network (BENN), which automatically control how much one specific unit contributes to the higher-level representation. The proposed model can be viewed as incorporating a more powerful c...

  20. Modelling Microwave Devices Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Andrius Katkevičius

    2012-04-01

    Full Text Available Artificial neural networks (ANN have recently gained attention as fast and flexible equipment for modelling and designing microwave devices. The paper reviews the opportunities to use them for undertaking the tasks on the analysis and synthesis. The article focuses on what tasks might be solved using neural networks, what challenges might rise when using artificial neural networks for carrying out tasks on microwave devices and discusses problem-solving techniques for microwave devices with intermittent characteristics.Article in Lithuanian

  1. Fast Algorithms for Convolutional Neural Networks

    OpenAIRE

    Lavin, Andrew; Gray, Scott

    2015-01-01

    Deep convolutional neural networks take GPU days of compute time to train on large data sets. Pedestrian detection for self driving cars requires very low latency. Image recognition for mobile phones is constrained by limited processing resources. The success of convolutional neural networks in these situations is limited by how fast we can compute them. Conventional FFT based convolution is fast for large filters, but state of the art convolutional neural networks use small, 3x3 filters. We ...

  2. Semantic Interpretation of An Artificial Neural Network

    Science.gov (United States)

    1995-12-01

    ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of

  3. Forecasting Exchange Rate Using Neural Networks

    OpenAIRE

    Raksaseree, Sukhita

    2009-01-01

    The artificial neural network models become increasingly popular among researchers and investors since many studies have shown that it has superior performance over the traditional statistical model. This paper aims to investigate the neural network performance in forecasting foreign exchange rates based on backpropagation algorithm. The forecast of Thai Baht against seven currencies are conducted to observe the performance of the neural network models using the performance criteria for both ...

  4. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  5. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  6. Neural Networks for Rapid Design and Analysis

    Science.gov (United States)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  7. Neural networks for nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  8. The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhenkun [Department of Mathematics, School of Sciences, Zhejiang University, Hangzhou, Zhejiang 310027 (China) and School of Sciences, Jimei University, Xiamen, Fujian 361021 (China)]. E-mail: huangdoc@tom.com; Wang Xinghua [Department of Mathematics, School of Sciences, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Gao Feng [School of Sciences, Jimei University, Xiamen, Fujian 361021 (China)

    2006-02-06

    In this Letter, we discuss discrete-time analogue of a continuous-time cellular neural network. Sufficient conditions are obtained for the existence of a unique almost periodic sequence solution which is globally attractive. Our results demonstrate dynamics of the formulated discrete-time analogue as mathematical models for the continuous-time cellular neural network in almost periodic case. Finally, a computer simulation illustrates the suitability of our discrete-time analogue as numerical algorithms in simulating the continuous-time cellular neural network conveniently.

  9. Systolic implementation of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, A.J.; Parker, S.R.

    1989-01-01

    The backpropagation algorithm for error gradient calculations in multilayer, feed-forward neural networks is derived in matrix form involving inner and outer products. It is demonstrated that these calculations can be carried out efficiently using systolic processing techniques, particularly using the SPRINT, a 64-element systolic processor developed at Lawrence Livermore National Laboratory. This machine contains one million synapses, and forward-propagates 12 million connections per second, using 100 watts of power. When executing the algorithm, each SPRINT processor performs useful work 97% of the time. The theory and applications are confirmed by some nontrivial examples involving seismic signal recognition. 4 refs., 7 figs.

  10. Magnitude Sensitive Competitive Neural Networks

    OpenAIRE

    Pelayo Campillos, Enrique; Buldain Pérez, David; Orrite Uruñuela, Carlos

    2014-01-01

    En esta Tesis se presentan un conjunto de redes neuronales llamadas Magnitude Sensitive Competitive Neural Networks (MSCNNs). Se trata de un conjunto de algoritmos de Competitive Learning que incluyen un término de magnitud como un factor de modulación de la distancia usada en la competición. Al igual que otros métodos competitivos, MSCNNs realizan la cuantización vectorial de los datos, pero el término de magnitud guía el entrenamiento de los centroides de modo que se representan con alto de...

  11. Complexity, dynamic cellular network, and tumorigenesis.

    Science.gov (United States)

    Waliszewski, P

    1997-01-01

    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  12. The Laplacian spectrum of neural networks.

    Science.gov (United States)

    de Lange, Siemon C; de Reus, Marcel A; van den Heuvel, Martijn P

    2014-01-13

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these "conventional" graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks.

  13. Neural Network Controlled Visual Saccades

    Science.gov (United States)

    Johnson, Jeffrey D.; Grogan, Timothy A.

    1989-03-01

    The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.

  14. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  15. Video Traffic Prediction Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Miloš Oravec

    2008-10-01

    Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].

  16. Cellular computational networks--a scalable architecture for learning the dynamics of large networked systems.

    Science.gov (United States)

    Luitel, Bipul; Venayagamoorthy, Ganesh Kumar

    2014-02-01

    Neural networks for implementing large networked systems such as smart electric power grids consist of multiple inputs and outputs. Many outputs lead to a greater number of parameters to be adapted. Each additional variable increases the dimensionality of the problem and hence learning becomes a challenge. Cellular computational networks (CCNs) are a class of sparsely connected dynamic recurrent networks (DRNs). By proper selection of a set of input elements for each output variable in a given application, a DRN can be modified into a CCN which significantly reduces the complexity of the neural network and allows use of simple training methods for independent learning in each cell thus making it scalable. This article demonstrates this concept of developing a CCN using dimensionality reduction in a DRN for scalability and better performance. The concept has been analytically explained and empirically verified through application.

  17. Optimising the topology of complex neural networks

    CERN Document Server

    Jiang, Fei; Schoenauer, Marc

    2007-01-01

    In this paper, we study instances of complex neural networks, i.e. neural netwo rks with complex topologies. We use Self-Organizing Map neural networks whose n eighbourhood relationships are defined by a complex network, to classify handwr itten digits. We show that topology has a small impact on performance and robus tness to neuron failures, at least at long learning times. Performance may howe ver be increased (by almost 10%) by artificial evolution of the network topo logy. In our experimental conditions, the evolved networks are more random than their parents, but display a more heterogeneous degree distribution.

  18. Optimizing neural network forecast by immune algorithm

    Institute of Scientific and Technical Information of China (English)

    YANG Shu-xia; LI Xiang; LI Ning; YANG Shang-dong

    2006-01-01

    Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.

  19. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  20. Artificial neural networks in neurosurgery.

    Science.gov (United States)

    Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali

    2015-03-01

    Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery.

  1. Neural Networks for Emotion Classification

    CERN Document Server

    Sun, Yafei

    2011-01-01

    It is argued that for the computer to be able to interact with humans, it needs to have the communication skills of humans. One of these skills is the ability to understand the emotional state of the person. This thesis describes a neural network-based approach for emotion classification. We learn a classifier that can recognize six basic emotions with an average accuracy of 77% over the Cohn-Kanade database. The novelty of this work is that instead of empirically selecting the parameters of the neural network, i.e. the learning rate, activation function parameter, momentum number, the number of nodes in one layer, etc. we developed a strategy that can automatically select comparatively better combination of these parameters. We also introduce another way to perform back propagation. Instead of using the partial differential of the error function, we use optimal algorithm; namely Powell's direction set to minimize the error function. We were also interested in construction an authentic emotion databases. This...

  2. The learning problem of multi-layer neural networks.

    Science.gov (United States)

    Ban, Jung-Chao; Chang, Chih-Hung

    2013-10-01

    This manuscript considers the learning problem of multi-layer neural networks (MNNs) with an activation function which comes from cellular neural networks. A systematic investigation of the partition of the parameter space is provided. Furthermore, the recursive formula of the transition matrix of an MNN is obtained. By implementing the well-developed tools in the symbolic dynamical systems, the topological entropy of an MNN can be computed explicitly. A novel phenomenon, the asymmetry of a topological diagram that was seen in Ban, Chang, Lin, and Lin (2009) [J. Differential Equations 246, pp. 552-580, 2009], is revealed.

  3. A new formulation for feedforward neural networks.

    Science.gov (United States)

    Razavi, Saman; Tolson, Bryan A

    2011-10-01

    Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization.

  4. Hindcasting cyclonic waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Chakravarty, N.V.

    network attractive. A neural network (NN) is an information processing system modeled on the structure of the dynamic process. Its merit is the ability to deal with information whose interrelation is ambiguous or whose functional relation is not clear... the backpropagation networks with updated algorithms are used in this paper. A brief description about the working of a back propagation neural network and three updated algorithms is given below. Backpropagation learning: Backpropagation is the most widely used...

  5. Drift chamber tracking with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  6. On noise limited cellular networks

    CERN Document Server

    Decreusefond, Laurent; Vu, Thanh-Tung

    2010-01-01

    This paper introduces a general theoretical framework to analyze noise limited networks. More precisely, we consider two homogenous Poisson point processes of base stations and users. General model of radio signal propagation and effect of fading are also considered. The main difference of our model with respect to other existing models is that a user connects to his best servers but not necessarily the closest one. We provide general formula for the outage probability. We study functionals related to the SNR as well as the sum of these functionals over all users per cell. For the latter, the expectation and bounds on the variance are obtained.

  7. Coherence resonance in bursting neural networks.

    Science.gov (United States)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal-a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  8. Stability of Delayed Cellular Neural Networks Basedon M-matrix Theory%基于 M 矩阵理论的时滞细胞神经网络稳定性分析*

    Institute of Scientific and Technical Information of China (English)

    江梅; 何汉林; 严路

    2015-01-01

    This paper deals with the stability of delayed cellular neural networks .By using the M‐matrix theory with its judgment lemma and applying appropriate linear parameter transformation ,the condition of the stability of the system is de‐duced .Compared with the Lyapunov method ,this paper provides a simpler one which reduces the original conservative con‐clusions and improvement the sufficient condition of origin as globally asymptotical stability equilibrium points .The simula‐tion example demonstrates the method is effective .%研究了时滞细胞神经网络的稳定性问题。通过M‐矩阵理论及其判定引理,运用适当的线性参数变换,推导出时滞细胞神经网络的稳定性条件,相比常用的Lyapunov方法,论文为研究多时滞细胞神经网络的稳定性提供了一个更为简单的新方法,降低了原有结论的保守性,进一步推导完善了全局渐近稳定平衡点为原点时的充分条件。仿真实例证明了文章提供的方法有效可行。

  9. 具有时变时滞的模糊细胞神经网络的指数同步%Exponential Synchronization of Fuzzy Cellular Neural Networks with Time-varying Delays∗

    Institute of Scientific and Technical Information of China (English)

    邢志伟; 彭济根

    2013-01-01

    In this paper, we consider the global exponential synchronization of a class of cou-pled identical fuzzy cellular neural networks (FCNNs) with time-varying delays. By using M-matrix theory, a set of sufficient conditions are developed to guarantee the synchronization of the coupled time delayed FCNNs under less restrictive condi-tions. Our results do not require differentiability of varying-time delays. Therefore a more extensive application domain for the chaotic synchronization of FCNNs is provided. Finally, simulation examples are presented to verify the effectiveness of the obtained conditions.%  我们考虑一类耦合时变时滞模糊细胞神经网络的全局指数同步性问题。利用M-矩阵方法,在较弱的条件下获得耦合时变时滞模糊细胞神经网同步的充分条件。我们的结论去掉了对时变时滞函数可导的限制,因而具有更广的应用范围。最后并通过数值例子验证了我们结论的有效性。

  10. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  11. Creativity in design and artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Neocleous, C.C.; Esat, I.I. [Brunel Univ. Uxbridge (United Kingdom); Schizas, C.N. [Univ. of Cyprus, Nicosia (Cyprus)

    1996-12-31

    The creativity phase is identified as an integral part of the design phase. The characteristics of creative persons which are relevant to designing artificial neural networks manifesting aspects of creativity, are identified. Based on these identifications, a general framework of artificial neural network characteristics to implement such a goal are proposed.

  12. Neural network classification - A Bayesian interpretation

    Science.gov (United States)

    Wan, Eric A.

    1990-01-01

    The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.

  13. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  14. Isolated Speech Recognition Using Artificial Neural Networks

    Science.gov (United States)

    2007-11-02

    In this project Artificial Neural Networks are used as research tool to accomplish Automated Speech Recognition of normal speech. A small size...the first stage of this work are satisfactory and thus the application of artificial neural networks in conjunction with cepstral analysis in isolated word recognition holds promise.

  15. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  16. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  17. Rule Extraction using Artificial Neural Networks

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can gain a better understanding of the solution. This paper presents an efficient algorithm to extract rules from artificial neural networks. We use two-phase training algorithm for backpropagation learning. In the first phase, the number of hidden nodes of the network is determined automatically in a constructive fashion by adding nodes one after another based on the performance of the network on training data. In the second phase, the number of relevant input units of the network is determined using pruning algorithm. The ...

  18. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  19. Neural network for sonogram gap filling

    DEFF Research Database (Denmark)

    Klebæk, Henrik; Jensen, Jørgen Arendt; Hansen, Lars Kai

    1995-01-01

    a neural network for predicting mean frequency of the velocity signal and its variance. The neural network then predicts the evolution of the mean and variance in the gaps, and the sonogram and audio signal are reconstructed from these. The technique is applied on in-vivo data from the carotid artery....... The neural network is trained on part of the data and the network is pruned by the optimal brain damage procedure in order to reduce the number of parameters in the network, and thereby reduce the risk of overfitting. The neural predictor is compared to using a linear filter for the mean and variance time...... series, and is shown to yield better results, i.e., the variances of the predictions are lower. The ability of the neural predictor to reconstruct both the sonogram and the audio signal, when only 50% of the time is used for velocity data acquisition, is demonstrated for the in-vivo data...

  20. Cognitive resource management for heterogeneous cellular networks

    CERN Document Server

    Liu, Yongkang

    2014-01-01

    This Springer Brief focuses on cognitive resource management in heterogeneous cellular networks (Het Net) with small cell deployment for the LTE-Advanced system. It introduces the Het Net features, presents practical approaches using cognitive radio technology in accommodating small cell data relay and optimizing resource allocation and examines the effectiveness of resource management among small cells given limited coordination bandwidth and wireless channel uncertainty. The authors introduce different network characteristics of small cell, investigate the mesh of small cell access points in

  1. Exponential synchronization of general chaotic delayed neural networks via hybrid feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, and covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, recurrent multilayer perceptrons (RMLPs). By virtue of LyapunovKrasovskii stability theory and linear matrix inequality (LMI) technique, some exponential synchronization criteria are derived.Using the drive-response concept, hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria. Finally, detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  2. Wavelet Neural Networks for Adaptive Equalization

    Institute of Scientific and Technical Information of China (English)

    JIANGMinghu; DENGBeixing; GIELENGeorges; ZHANGBo

    2003-01-01

    A structure based on the Wavelet neural networks (WNNs) is proposed for nonlinear channel equalization in a digital communication system. The construction algorithm of the Minimum error probability (MEP) is presented and applied as a performance criterion to update the parameter matrix of wavelet networks. Our experimental results show that performance of the proposed wavelet networks based on equalizer can significantly improve the neural modeling accuracy, perform quite well in compensating the nonlinear distortion introduced by the channel, and outperform the conventional neural networks in signal to noise ratio and channel non-llnearity.

  3. Subspace learning of neural networks

    CERN Document Server

    Cheng Lv, Jian; Zhou, Jiliu

    2010-01-01

    PrefaceChapter 1. Introduction1.1 Introduction1.1.1 Linear Neural Networks1.1.2 Subspace Learning1.2 Subspace Learning Algorithms1.2.1 PCA Learning Algorithms1.2.2 MCA Learning Algorithms1.2.3 ICA Learning Algorithms1.3 Methods for Convergence Analysis1.3.1 SDT Method1.3.2 DCT Method1.3.3 DDT Method1.4 Block Algorithms1.5 Simulation Data Set and Notation1.6 ConclusionsChapter 2. PCA Learning Algorithms with Constants Learning Rates2.1 Oja's PCA Learning Algorithms2.1.1 The Algorithms2.1.2 Convergence Issue2.2 Invariant Sets2.2.1 Properties of Invariant Sets2.2.2 Conditions for Invariant Sets2.

  4. Neural networks for damage identification

    Energy Technology Data Exchange (ETDEWEB)

    Paez, T.L.; Klenke, S.E.

    1997-11-01

    Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the durations of use cycles establish a need for in-service health monitoring. Numerous studies have proposed measures of structural response for the identification of structural damage, but few have suggested systematic techniques to guide the decision as to whether or not damage has occurred based on real data. Such techniques are necessary because in field applications the environments in which systems operate and the measurements that characterize system behavior are random. This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.

  5. Linear programming for learning in neural networks

    Science.gov (United States)

    Raghavan, Raghu

    1991-08-01

    The authors have previously proposed a network of probabilistic cellular automata (PCAs) as part of an image recognition system designed to integrate model-based and data-driven approaches in a connectionist framework. The PCA arises from some natural requirements on the system which include incorporation of prior knowledge such as in inference rules, locality of inferences, and full parallelism. This network has been applied to recognize objects in both synthetic and in real data. This approach achieves recognition through the short-, rather than the long-time behavior of the dynamics of the PCA. In this paper, some methods are developed for learning the connection strengths by solving linear inequalities: the figures of merit are tendencies or directions of movement of the dynamical system. These 'dynamical' figures of merit result in inequality constraints on the connection strengths which are solved by linear (LP) or quadratic programs (QP). An algorithm is described for processing a large number of samples to determine weights for the PCA. The work may be regarded as either pointing out another application for constrained optimization, or as pointing out the need to extend the perceptron and similar methods for learning. The extension is needed because the neural network operates on a different principle from that for which the perceptron method was devised.

  6. Neural network regulation driven by autonomous neural firings

    Science.gov (United States)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  7. Mobility Prediction in Wireless Ad Hoc Networks using Neural Networks

    CERN Document Server

    Kaaniche, Heni

    2010-01-01

    Mobility prediction allows estimating the stability of paths in a mobile wireless Ad Hoc networks. Identifying stable paths helps to improve routing by reducing the overhead and the number of connection interruptions. In this paper, we introduce a neural network based method for mobility prediction in Ad Hoc networks. This method consists of a multi-layer and recurrent neural network using back propagation through time algorithm for training.

  8. Estimation of Conditional Quantile using Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1999-01-01

    The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....

  9. Assessing Landslide Hazard Using Artificial Neural Network

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin

    2011-01-01

    neural network has been developed for use in the stability evaluation of slopes under various geological conditions and engineering requirements. The Artificial neural network model of this research uses slope characteristics as input and leads to the output in form of the probability of failure...... and factor of safety. It can be stated that the trained neural networks are capable of predicting the stability of slopes and safety factor of landslide hazard in study area with an acceptable level of confidence. Landslide hazard analysis and mapping can provide useful information for catastrophic loss...

  10. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  11. Convolutional Neural Network for Image Recognition

    CERN Document Server

    Seifnashri, Sahand

    2015-01-01

    The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.

  12. Threshold control of chaotic neural network.

    Science.gov (United States)

    He, Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2008-01-01

    The chaotic neural network constructed with chaotic neurons exhibits rich dynamic behaviour with a nonperiodic associative memory. In the chaotic neural network, however, it is difficult to distinguish the stored patterns in the output patterns because of the chaotic state of the network. In order to apply the nonperiodic associative memory into information search, pattern recognition etc. it is necessary to control chaos in the chaotic neural network. We have studied the chaotic neural network with threshold activated coupling, which provides a controlled network with associative memory dynamics. The network converges to one of its stored patterns or/and reverse patterns which has the smallest Hamming distance from the initial state of the network. The range of the threshold applied to control the neurons in the network depends on the noise level in the initial pattern and decreases with the increase of noise. The chaos control in the chaotic neural network by threshold activated coupling at varying time interval provides controlled output patterns with different temporal periods which depend upon the control parameters.

  13. Nonequilibrium landscape theory of neural networks.

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  14. 基于细胞神经网络的快速手语视频分割方法%Fast segmentation of sign language video based on cellular neural network

    Institute of Scientific and Technical Information of China (English)

    张爱华; 雷小亚; 陈晓雷; 陈莉莉

    2013-01-01

    To achieve sign language video coding of region of interest, and improve call efficiency, a fast segmentation methodology of sign language video based on Cellular Neural Network (CNN) was proposed. Firstly, the skin regions of sign language video were detected through corresponding CNN templates by using the skin color information characteristics. Secondly, CNN based motion detection was carried out on the skin detection results by using inter-frame difference algorithm, and then the initial gesture region could be obtained. Finally, morphological processing methods were employed to fill small holes and smooth the boundaries of regions, and eventually the segmentation of the face and hands regions of sign language video image sequence was realized. The results show that the method can rapidly and accurately segment sign language video.%为实现感兴趣区手语视频编码,提高通话效率,提出一种基于细胞神经网络(CNN)的快速手语视频分割方法.该方法首先利用肤色信息特征进行基于CNN的肤色检测,检测出手语视频中的肤色区域;然后对肤色检测结果,;利用帧差法进行基于CNN的运动检测,获得初始的手势区域;最后采用形态学处理方法进行空洞填充和边界平滑,实现了手语视频图像序列中的面部和手部区域的分割.研究结果表明,该方法能够快速准确地进行手语视频分割.

  15. Nonlinear System Control Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Jaroslava Žilková

    2006-10-01

    Full Text Available The paper is focused especially on presenting possibilities of applying off-linetrained artificial neural networks at creating the system inverse models that are used atdesigning control algorithm for non-linear dynamic system. The ability of cascadefeedforward neural networks to model arbitrary non-linear functions and their inverses isexploited. This paper presents a quasi-inverse neural model, which works as a speedcontroller of an induction motor. The neural speed controller consists of two cascadefeedforward neural networks subsystems. The first subsystem provides desired statorcurrent components for control algorithm and the second subsystem providescorresponding voltage components for PWM converter. The availability of the proposedcontroller is verified through the MATLAB simulation. The effectiveness of the controller isdemonstrated for different operating conditions of the drive system.

  16. Neural Network for Estimating Conditional Distribution

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Kulczycki, P.

    Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...

  17. Character Recognition Using Novel Optoelectronic Neural Network

    Science.gov (United States)

    1993-04-01

    17 2.3.7. Learning rule ................................................................... 18 3. ADALINE ... ADALINE neuron and linear separability which provides a justification for multilayer networks. The MADALINE (many ADALINE ) multi layer network is also...element used In many neural networks (Figure 3.1). The ADALINE functions as an adaptive threshold logic element. In digital Implementation, an input

  18. Wireless traffic steering for green cellular networks

    CERN Document Server

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)

    2016-01-01

    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  19. An Introduction to Neural Networks for Hearing Aid Noise Recognition.

    Science.gov (United States)

    Kim, Jun W.; Tyler, Richard S.

    1995-01-01

    This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…

  20. Mobile node localization in cellular networks

    CERN Document Server

    Malik, Yasir; Abdulrazak, Bessam; Tariq, Usman; 10.5121/ijwmn.2011.3607

    2012-01-01

    Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In this paper, we are interested in outdoor localization particularly in cellular networks of mobile nodes and presented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time) and coordinate information of Base Transceiver Station (BTSs). To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  1. Mobile Node Localization in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yasir Malik

    2012-01-01

    Full Text Available Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In thispaper, we are interested in outdoor localization particularly in cellular networks of mobile nodes andpresented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time and coordinate information of Base Transceiver Station (BTSs. To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  2. WD40 proteins propel cellular networks.

    Science.gov (United States)

    Stirnimann, Christian U; Petsalaki, Evangelia; Russell, Robert B; Müller, Christoph W

    2010-10-01

    Recent findings indicate that WD40 domains play central roles in biological processes by acting as hubs in cellular networks; however, they have been studied less intensely than other common domains, such as the kinase, PDZ or SH3 domains. As suggested by various interactome studies, they are among the most promiscuous interactors. Structural studies suggest that this property stems from their ability, as scaffolds, to interact with diverse proteins, peptides or nucleic acids using multiple surfaces or modes of interaction. A general scaffolding role is supported by the fact that no WD40 domain has been found with intrinsic enzymatic activity despite often being part of large molecular machines. We discuss the WD40 domain distributions in protein networks and structures of WD40-containing assemblies to demonstrate their versatility in mediating critical cellular functions.

  3. Recognition of Telugu characters using neural networks.

    Science.gov (United States)

    Sukhaswami, M B; Seetharamulu, P; Pujari, A K

    1995-09-01

    The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.

  4. Virtualized cognitive network architecture for 5G cellular networks

    KAUST Repository

    Elsawy, Hesham

    2015-07-17

    Cellular networks have preserved an application agnostic and base station (BS) centric architecture1 for decades. Network functionalities (e.g. user association) are decided and performed regardless of the underlying application (e.g. automation, tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural ossification. Then the article proposes a virtualized and cognitive network architecture, wherein network functionalities are implemented via software instances in the cloud, and the underlying architecture can adapt to the application of interest as well as to changes in channels and traffic conditions. The adaptation is done in terms of the network topology by manipulating connectivities and steering traffic via different paths, so as to attain the applications\\' requirements and network design objectives. The article presents cognitive strategies to implement some of the classical network functionalities, along with their related implementation challenges. The article further presents a case study illustrating the performance improvement of the proposed architecture as compared to conventional cellular networks, both in terms of outage probability and handover rate.

  5. Neural Networks for Dynamic Flight Control

    Science.gov (United States)

    1993-12-01

    uses the Adaline (22) model for development of the neural networks. Neural Graphics and other AFIT applications use a slightly different model. The...primary difference in the Nguyen application is that the Adaline uses the nonlinear function .f(a) = tanh(a) where standard backprop uses the sigmoid

  6. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  7. Neural Network Based 3D Surface Reconstruction

    Directory of Open Access Journals (Sweden)

    Vincy Joseph

    2009-11-01

    Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  8. Neural networks convergence using physicochemical data.

    Science.gov (United States)

    Karelson, Mati; Dobchev, Dimitar A; Kulshyn, Oleksandr V; Katritzky, Alan R

    2006-01-01

    An investigation of the neural network convergence and prediction based on three optimization algorithms, namely, Levenberg-Marquardt, conjugate gradient, and delta rule, is described. Several simulated neural networks built using the above three algorithms indicated that the Levenberg-Marquardt optimizer implemented as a back-propagation neural network converged faster than the other two algorithms and provides in most of the cases better prediction. These conclusions are based on eight physicochemical data sets, each with a significant number of compounds comparable to that usually used in the QSAR/QSPR modeling. The superiority of the Levenberg-Marquardt algorithm is revealed in terms of functional dependence of the change of the neural network weights with respect to the gradient of the error propagation as well as distribution of the weight values. The prediction of the models is assessed by the error of the validation sets not used in the training process.

  9. TIME SERIES FORECASTING USING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    BOGDAN OANCEA

    2013-05-01

    Full Text Available Recent studies have shown the classification and prediction power of the Neural Networks. It has been demonstrated that a NN can approximate any continuous function. Neural networks have been successfully used for forecasting of financial data series. The classical methods used for time series prediction like Box-Jenkins or ARIMA assumes that there is a linear relationship between inputs and outputs. Neural Networks have the advantage that can approximate nonlinear functions. In this paper we compared the performances of different feed forward and recurrent neural networks and training algorithms for predicting the exchange rate EUR/RON and USD/RON. We used data series with daily exchange rates starting from 2005 until 2013.

  10. Artificial neural networks a practical course

    CERN Document Server

    da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco

    2017-01-01

    This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

  11. Hindcasting of storm waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.

    Cyclone generated waves play a significant role in the design of coastal and offshore structures. Instead of conventional numerical models, neural network approach is used in the present study to estimate the wave parameters from cyclone generated...

  12. Cellular computational platform and neurally inspired elements thereof

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat

    2016-11-22

    A cellular computational platform is disclosed that includes a multiplicity of functionally identical, repeating computational hardware units that are interconnected electrically and optically. Each computational hardware unit includes a reprogrammable local memory and has interconnections to other such units that have reconfigurable weights. Each computational hardware unit is configured to transmit signals into the network for broadcast in a protocol-less manner to other such units in the network, and to respond to protocol-less broadcast messages that it receives from the network. Each computational hardware unit is further configured to reprogram the local memory in response to incoming electrical and/or optical signals.

  13. Density functional and neural network analysis

    DEFF Research Database (Denmark)

    Jalkanen, K. J.; Bohr, Henrik

    1997-01-01

    dichroism (VCD) intensities. The large changes due to hydration on the structures, relative stability of conformers, and in the VA and VCD spectra observed experimentally are reproduced by the DFT calculations. Furthermore a neural network was constructed for reproducing the inverse scattering data (infer...... the structural coordinates from spectroscopic data) that the DFT method could produce. Finally the neural network performances are used to monitor a sensitivity or dependence analysis of the importance of secondary structures....

  14. Neural network models of protein domain evolution

    OpenAIRE

    Sylvia Nagl

    2000-01-01

    Protein domains are complex adaptive systems, and here a novel procedure is presented that models the evolution of new functional sites within stable domain folds using neural networks. Neural networks, which were originally developed in cognitive science for the modeling of brain functions, can provide a fruitful methodology for the study of complex systems in general. Ethical implications of developing complex systems models of biomolecules are discussed, with particular reference to molecu...

  15. Applications of Pulse-Coupled Neural Networks

    CERN Document Server

    Ma, Yide; Wang, Zhaobin

    2011-01-01

    "Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Sci

  16. Neural network for image segmentation

    Science.gov (United States)

    Skourikhine, Alexei N.; Prasad, Lakshman; Schlei, Bernd R.

    2000-10-01

    Image analysis is an important requirement of many artificial intelligence systems. Though great effort has been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is natural to turn to mammalian vision systems for guidance because they are the best known performers of visual tasks. The pulse- coupled neural network (PCNN) model of the cat visual cortex has proven to have interesting properties for image processing. This article describes the PCNN application to the processing of images of heterogeneous materials; specifically PCNN is applied to image denoising and image segmentation. Our results show that PCNNs do well at segmentation if we perform image smoothing prior to segmentation. We use PCNN for obth smoothing and segmentation. Combining smoothing and segmentation enable us to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose optimal selection can be difficult and can vary even for the same problem. This approach makes image processing based on PCNN more automatic in our application and also results in better segmentation.

  17. Artificial neural network and medicine.

    Science.gov (United States)

    Khan, Z H; Mohapatra, S K; Khodiar, P K; Ragu Kumar, S N

    1998-07-01

    The introduction of human brain functions such as perception and cognition into the computer has been made possible by the use of Artificial Neural Network (ANN). ANN are computer models inspired by the structure and behavior of neurons. Like the brain, ANN can recognize patterns, manage data and most significantly, learn. This learning ability, not seen in other computer models simulating human intelligence, constantly improves its functional accuracy as it keeps on performing. Experience is as important for an ANN as it is for man. It is being increasingly used to supplement and even (may be) replace experts, in medicine. However, there is still scope for improvement in some areas. Its ability to classify and interpret various forms of medical data comes as a helping hand to clinical decision making in both diagnosis and treatment. Treatment planning in medicine, radiotherapy, rehabilitation, etc. is being done using ANN. Morbidity and mortality prediction by ANN in different medical situations can be very helpful for hospital management. ANN has a promising future in fundamental research, medical education and surgical robotics.

  18. Neural network segmentation of magnetic resonance images

    Science.gov (United States)

    Frederick, Blaise

    1990-07-01

    Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover once trained they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network by varying imaging parameters MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. A neural network classifier for image segmentation was implemented on a Sun 4/60 and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter white matter cerebrospinal fluid bone and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities and the image was subsequently segmented by the classifier. The classifier''s performance was evaluated as a function of network size number of network layers and length of training. A single layer neural network performed quite well at

  19. Neural networks for segmentation, tracking, and identification

    Science.gov (United States)

    Rogers, Steven K.; Ruck, Dennis W.; Priddy, Kevin L.; Tarr, Gregory L.

    1992-09-01

    The main thrust of this paper is to encourage the use of neural networks to process raw data for subsequent classification. This article addresses neural network techniques for processing raw pixel information. For this paper the definition of neural networks includes the conventional artificial neural networks such as the multilayer perceptrons and also biologically inspired processing techniques. Previously, we have successfully used the biologically inspired Gabor transform to process raw pixel information and segment images. In this paper we extend those ideas to both segment and track objects in multiframe sequences. It is also desirable for the neural network processing data to learn features for subsequent recognition. A common first step for processing raw data is to transform the data and use the transform coefficients as features for recognition. For example, handwritten English characters become linearly separable in the feature space of the low frequency Fourier coefficients. Much of human visual perception can be modelled by assuming low frequency Fourier as the feature space used by the human visual system. The optimum linear transform, with respect to reconstruction, is the Karhunen-Loeve transform (KLT). It has been shown that some neural network architectures can compute approximations to the KLT. The KLT coefficients can be used for recognition as well as for compression. We tested the use of the KLT on the problem of interfacing a nonverbal patient to a computer. The KLT uses an optimal basis set for object reconstruction. For object recognition, the KLT may not be optimal.

  20. Logarithmic learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2014-12-01

    Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network.

  1. Hopfield neural network based on ant system

    Institute of Scientific and Technical Information of China (English)

    洪炳镕; 金飞虎; 郭琦

    2004-01-01

    Hopfield neural network is a single layer feedforward neural network. Hopfield network requires some control parameters to be carefully selected, else the network is apt to converge to local minimum. An ant system is a nature inspired meta heuristic algorithm. It has been applied to several combinatorial optimization problems such as Traveling Salesman Problem, Scheduling Problems, etc. This paper will show an ant system may be used in tuning the network control parameters by a group of cooperated ants. The major advantage of this network is to adjust the network parameters automatically, avoiding a blind search for the set of control parameters.This network was tested on two TSP problems, 5 cities and 10 cities. The results have shown an obvious improvement.

  2. Hidden neural networks: application to speech recognition

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1998-01-01

    We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...... (HNNs) with much fewer parameters than conventional HMMs and other hybrids can obtain comparable performance, and for the broad class task it is illustrated how the HNN can be applied as a purely transition based system, where acoustic context dependent transition probabilities are estimated by neural...

  3. Neural-Network Object-Recognition Program

    Science.gov (United States)

    Spirkovska, L.; Reid, M. B.

    1993-01-01

    HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.

  4. Application of Partially Connected Neural Network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper focuses mainly on application of Partially Connected Backpropagation Neural Network (PCBP) instead of typical Fully Connected Neural Network (FCBP). The initial neural network is fully connected, after training with sample data using cross-entropy as error function, a clustering method is employed to cluster weights between inputs to hidden layer and from hidden to output layer, and connections that are relatively unnecessary are deleted, thus the initial network becomes a PCBP network.Then PCBP can be used in prediction or data mining by training PCBP with data that comes from database. At the end of this paper, several experiments are conducted to illustrate the effects of PCBP using Iris data set.

  5. On neural networks that design neural associative memories.

    Science.gov (United States)

    Chan, H Y; Zak, S H

    1997-01-01

    The design problem of generalized brain-state-in-a-box (GBSB) type associative memories is formulated as a constrained optimization program, and "designer" neural networks for solving the program in real time are proposed. The stability of the designer networks is analyzed using Barbalat's lemma. The analyzed and synthesized neural associative memories do not require symmetric weight matrices. Two types of the GBSB-based associative memories are analyzed, one when the network trajectories are constrained to reside in the hypercube [-1, 1](n) and the other type when the network trajectories are confined to stay in the hypercube [0, 1](n). Numerical examples and simulations are presented to illustrate the results obtained.

  6. Lambda and the edge of chaos in recurrent neural networks.

    Science.gov (United States)

    Seifter, Jared; Reggia, James A

    2015-01-01

    The idea that there is an edge of chaos, a region in the space of dynamical systems having special meaning for complex living entities, has a long history in artificial life. The significance of this region was first emphasized in cellular automata models when a single simple measure, λCA, identified it as a transitional region between order and chaos. Here we introduce a parameter λNN that is inspired by λCA but is defined for recurrent neural networks. We show through a series of systematic computational experiments that λNN generally orders the dynamical behaviors of randomly connected/weighted recurrent neural networks in the same way that λCA does for cellular automata. By extending this ordering to larger values of λNN than has typically been done with λCA and cellular automata, we find that a second edge-of-chaos region exists on the opposite side of the chaotic region. These basic results are found to hold under different assumptions about network connectivity, but vary substantially in their details. The results show that the basic concept underlying the lambda parameter can usefully be extended to other types of complex dynamical systems than just cellular automata.

  7. Hardware implementation of stochastic spiking neural networks.

    Science.gov (United States)

    Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni

    2012-08-01

    Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.

  8. Pattern Classification using Simplified Neural Networks

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    In recent years, many neural network models have been proposed for pattern classification, function approximation and regression problems. This paper presents an approach for classifying patterns from simplified NNs. Although the predictive accuracy of ANNs is often higher than that of other methods or human experts, it is often said that ANNs are practically "black boxes", due to the complexity of the networks. In this paper, we have an attempted to open up these black boxes by reducing the complexity of the network. The factor makes this possible is the pruning algorithm. By eliminating redundant weights, redundant input and hidden units are identified and removed from the network. Using the pruning algorithm, we have been able to prune networks such that only a few input units, hidden units and connections left yield a simplified network. Experimental results on several benchmarks problems in neural networks show the effectiveness of the proposed approach with good generalization ability.

  9. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  10. Learning drifting concepts with neural networks

    NARCIS (Netherlands)

    Biehl, Michael; Schwarze, Holm

    1993-01-01

    The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using differ

  11. Estimating Conditional Distributions by Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1998-01-01

    Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...

  12. Artificial Neural Networks and Instructional Technology.

    Science.gov (United States)

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  13. Neural networks as perpetual information generators

    Science.gov (United States)

    Englisch, Harald; Xiao, Yegao; Yao, Kailun

    1991-07-01

    The information gain in a neural network cannot be larger than the bit capacity of the synapses. It is shown that the equation derived by Engel et al. [Phys. Rev. A 42, 4998 (1990)] for the strongly diluted network with persistent stimuli contradicts this condition. Furthermore, for any time step the correct equation is derived by taking the correlation between random variables into account.

  14. GLOBAL ASYMPTOTIC STABILITY CONDITIONS OF DELAYED NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-ming; CAO Jin-de; ZHANG Li-ming

    2005-01-01

    Utilizing the Liapunov functional method and combining the inequality of matrices technique to analyze the existence of a unique equilibrium point and the global asymptotic stability for delayed cellular neural networks (DCNNs), a new sufficient criterion ensuring the global stability of DCNNs is obtained. Our criteria provide some parameters to appropriately compensate for the tradeoff between the matrix definite condition on feedback matrix and delayed feedback matrix. The criteria can easily be used to design and verify globally stable networks. Furthermore, the condition presented here is independent of the delay parameter and is less restrictive than that given in the references.

  15. Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations.

  16. Stability analysis of discrete-time BAM neural networks based on standard neural network models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sen-lin; LIU Mei-qin

    2005-01-01

    To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.

  17. Neural Network Approaches to Visual Motion Perception

    Institute of Scientific and Technical Information of China (English)

    郭爱克; 杨先一

    1994-01-01

    This paper concerns certain difficult problems in image processing and perception: neuro-computation of visual motion information. The first part of this paper deals with the spatial physiological integration by the figure-ground discrimination neural network in the visual system of the fly. We have outlined the fundamental organization and algorithms of this neural network, and mainly concentrated on the results of computer simulations of spatial physiological integration. It has been shown that the gain control mechanism , the nonlinearity of synaptic transmission characteristic , the interaction between the two eyes , and the directional selectivity of the pool cells play decisive roles in the spatial physiological integration. In the second part, we have presented a self-organizing neural network for the perception of visual motion by using a retinotopic array of Reichardt’s motion detectors and Kohonen’s self-organizing maps. It .has been demonstrated by computer simulations that the network is abl

  18. Improving neural network performance on SIMD architectures

    Science.gov (United States)

    Limonova, Elena; Ilin, Dmitry; Nikolaev, Dmitry

    2015-12-01

    Neural network calculations for the image recognition problems can be very time consuming. In this paper we propose three methods of increasing neural network performance on SIMD architectures. The usage of SIMD extensions is a way to speed up neural network processing available for a number of modern CPUs. In our experiments, we use ARM NEON as SIMD architecture example. The first method deals with half float data type for matrix computations. The second method describes fixed-point data type for the same purpose. The third method considers vectorized activation functions implementation. For each method we set up a series of experiments for convolutional and fully connected networks designed for image recognition task.

  19. Novel image encryption algorithm based TLM hyperchaotic cellular neural network%一种基于TLM超混沌细胞神经网络图像加密新算法

    Institute of Scientific and Technical Information of China (English)

    底晓强; 母一宁; 李锦青; 杨华民

    2014-01-01

    Since chaos is sensitive for initial values, it is very suitable for data encryption. An image encryption algorithm based on hyper- chaotic control parameters and mixed scrambling diffusion structure of higher- order chaotic system was presented. The encryption algorithm included scrambling step and diffusion step. In the scrambling step, the composite chaotic map was used to generate the alignment phase control parameters and scramble for the high- level image cross- correlation between the adjacent pixels. In the diffusion step, the composite chaotic map with the different initial states and parameters was used to generate the initial conditions for hyper- chaotic cellular neural networks in order to generate the key stream. This method was evaluated by known plaintext attack and chosen plaintext attack, key space, image histogram, and simulations show good results. Compared with several other related algorithms, it has better anti- aggressive and key sensitivity is high. It can be applied to the image encryption.%混沌对初值敏感的特性使得它适合于数据加密。以4阶CNN模型为基础,提出了一种新的超混沌细胞神经网络图像加密算法。算法分为置乱和扩散二个阶段,复合混沌映射用于生成置乱阶段控制参数,用以置乱图像行列之间的高度互相关像素。在扩散阶段,使用不同初始状态和参数的复合混沌映射生成高阶混沌细胞神经网络的初始条件,以生成扩散阶段的密钥流。算法的已知明文和选择明文攻击、密钥空间和直方图的仿真实验均取得了良好的结果。与其他相关算法相比,该算法具有密钥敏感性和抗攻击性强的优点,适用于图像加密。

  20. Call Admission Control in Mobile Cellular Networks

    CERN Document Server

    Ghosh, Sanchita

    2013-01-01

    Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently.      CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators.  The second approach is concerned with formulation of CAC ...

  1. Dynamic pricing by hopfield neural network

    Institute of Scientific and Technical Information of China (English)

    Lusajo M Minga; FENG Yu-qiang(冯玉强); LI Yi-jun(李一军); LU Yang(路杨); Kimutai Kimeli

    2004-01-01

    The increase in the number of shopbots users in e-commerce has triggered flexibility of sellers in their pricing strategies. Sellers see the importance of automated price setting which provides efficient services to a large number of buyers who are using shopbots. This paper studies the characteristic of decreasing energy with time in a continuous model of a Hopfield neural network that is the decreasing of errors in the network with respect to time. The characteristic shows that it is possible to use Hopfield neural network to get the main factor of dynamic pricing; the least variable cost, from production function principles. The least variable cost is obtained by reducing or increasing the input combination factors, and then making the comparison of the network output with the desired output, where the difference between the network output and desired output will be decreasing in the same manner as in the Hopfield neural network energy. Hopfield neural network will simplify the rapid change of prices in e-commerce during transaction that depends on the demand quantity for demand sensitive model of pricing.

  2. Neutron spectrometry with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx

    2005-07-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  3. Using neural networks to describe tracer correlations

    Directory of Open Access Journals (Sweden)

    D. J. Lary

    2004-01-01

    Full Text Available Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and methane volume mixing ratio (v.m.r.. In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE which has continuously observed CH4  (but not N2O from 1991 till the present. The neural network Fortran code used is available for download.

  4. Neural network technologies for image classification

    Science.gov (United States)

    Korikov, A. M.; Tungusova, A. V.

    2015-11-01

    We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification.

  5. Asymptotical stability of stochastic neural networks with multiple time-varying delays

    Science.gov (United States)

    Zhou, Xianghui; Zhou, Wuneng; Dai, Anding; Yang, Jun; Xie, Lili

    2015-03-01

    The stochastic neural networks can be considered as an expansion of cellular neural networks and Hopfield neural networks. In real world, the neural networks are prone to be instable due to time delay and external disturbance. In this paper, we consider the asymptotic stability for the stochastic neural networks with multiple time-varying delays. By employing a Lyapunov-Krasovskii function, a sufficient condition which guarantees the asymptotic stability of the state trajectory in the mean square is obtained. The criteria proposed can be verified readily by utilising the linear matrix inequality toolbox in Matlab, and no parameters to be tuned. In the end, two numerical examples are provided to demonstrate the effectiveness of the proposed method.

  6. Estimates on compressed neural networks regression.

    Science.gov (United States)

    Zhang, Yongquan; Li, Youmei; Sun, Jianyong; Ji, Jiabing

    2015-03-01

    When the neural element number n of neural networks is larger than the sample size m, the overfitting problem arises since there are more parameters than actual data (more variable than constraints). In order to overcome the overfitting problem, we propose to reduce the number of neural elements by using compressed projection A which does not need to satisfy the condition of Restricted Isometric Property (RIP). By applying probability inequalities and approximation properties of the feedforward neural networks (FNNs), we prove that solving the FNNs regression learning algorithm in the compressed domain instead of the original domain reduces the sample error at the price of an increased (but controlled) approximation error, where the covering number theory is used to estimate the excess error, and an upper bound of the excess error is given.

  7. Identification and Position Control of Marine Helm using Artificial Neural Network Neural Network

    Directory of Open Access Journals (Sweden)

    Hui ZHU

    2008-02-01

    Full Text Available If nonlinearities such as saturation of the amplifier gain and motor torque, gear backlash, and shaft compliances- just to name a few - are considered in the position control system of marine helm, traditional control methods are no longer sufficient to be used to improve the performance of the system. In this paper an alternative approach to traditional control methods - a neural network reference controller - is proposed to establish an adaptive control of the position of the marine helm to achieve the controlled variable at the command position. This neural network controller comprises of two neural networks. One is the plant model network used to identify the nonlinear system and the other the controller network used to control the output to follow the reference model. The experimental results demonstrate that this adaptive neural network reference controller has much better control performance than is obtained with traditional controllers.

  8. Digital systems for artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, L.E. (Interactive Systems Design Lab., Univ. of Washington, WA (US)); Suzuki, Y. (NTT Human Interface Labs. (US))

    1989-11-01

    A tremendous flurry of research activity has developed around artificial neural systems. These systems have also been tested in many applications, often with positive results. Most of this work has taken place as digital simulations on general-purpose serial or parallel digital computers. Specialized neural network emulation systems have also been developed for more efficient learning and use. The authors discussed how dedicated digital VLSI integrated circuits offer the highest near-term future potential for this technology.

  9. Equivalence of Conventional and Modified Network of Generalized Neural Elements

    Directory of Open Access Journals (Sweden)

    E. V. Konovalov

    2016-01-01

    Full Text Available The article is devoted to the analysis of neural networks consisting of generalized neural elements. The first part of the article proposes a new neural network model — a modified network of generalized neural elements (MGNE-network. This network developes the model of generalized neural element, whose formal description contains some flaws. In the model of the MGNE-network these drawbacks are overcome. A neural network is introduced all at once, without preliminary description of the model of a single neural element and method of such elements interaction. The description of neural network mathematical model is simplified and makes it relatively easy to construct on its basis a simulation model to conduct numerical experiments. The model of the MGNE-network is universal, uniting properties of networks consisting of neurons-oscillators and neurons-detectors. In the second part of the article we prove the equivalence of the dynamics of the two considered neural networks: the network, consisting of classical generalized neural elements, and MGNE-network. We introduce the definition of equivalence in the functioning of the generalized neural element and the MGNE-network consisting of a single element. Then we introduce the definition of the equivalence of the dynamics of the two neural networks in general. It is determined the correlation of different parameters of the two considered neural network models. We discuss the issue of matching the initial conditions of the two considered neural network models. We prove the theorem about the equivalence of the dynamics of the two considered neural networks. This theorem allows us to apply all previously obtained results for the networks, consisting of classical generalized neural elements, to the MGNE-network.

  10. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  11. Implementing Signature Neural Networks with Spiking Neurons

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the

  12. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  13. Foreign currency rate forecasting using neural networks

    Science.gov (United States)

    Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad

    2000-03-01

    Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.

  14. Recurrent Neural Network for Computing Outer Inverse.

    Science.gov (United States)

    Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin

    2016-05-01

    Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.

  15. Parameter estimation using compensatory neural networks

    Indian Academy of Sciences (India)

    M Sinha; P K Kalra; K Kumar

    2000-04-01

    Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher neuron model (multiplicative aggregation function). It can adapt to standard neuron and higher order neuron, as well as a combination of the two. This approach is found to estimate the orbit with accuracy significantly better than Kalman Filter (KF) and Feedforward Multilayer Neural Network (FMNN) (also simply referred to as Artificial Neural Network, ANN) with lambda-gamma learning. The typical simulation runs also bring out the superiority of the proposed scheme over Kalman filter from the standpoint of computation time and the amount of data needed for the desired degree of estimated accuracy for the specific problem of orbit determination.

  16. Classification of radar clutter using neural networks.

    Science.gov (United States)

    Haykin, S; Deng, C

    1991-01-01

    A classifier that incorporates both preprocessing and postprocessing procedures as well as a multilayer feedforward network (based on the back-propagation algorithm) in its design to distinguish between several major classes of radar returns including weather, birds, and aircraft is described. The classifier achieves an average classification accuracy of 89% on generalization for data collected during a single scan of the radar antenna. The procedures of feature selection for neural network training, the classifier design considerations, the learning algorithm development, the implementation, and the experimental results of the neural clutter classifier, which is simulated on a Warp systolic computer, are discussed. A comparative evaluation of the multilayer neural network with a traditional Bayes classifier is presented.

  17. Network Traffic Prediction based on Particle Swarm BP Neural Network

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2013-11-01

    Full Text Available The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and strong robust. In this paper, a new BP neural network based on Artificial Bee Colony algorithm and particle swarm optimization algorithm is proposed to optimize the weight and threshold value of BP neural network. After network traffic prediction experiment, we can conclude that optimized BP network traffic prediction based on PSO-ABC has high prediction accuracy and has stable prediction performance.

  18. Power Control in Multi-Layer Cellular Networks

    CERN Document Server

    Davaslioglu, Kemal

    2012-01-01

    We investigate the possible performance gains of power control in multi-layer cellular systems where microcells and picocells are distributed within macrocells. Although multilayers in cellular networks help increase system capacity and coverage, and can reduce total energy consumption; they cause interference, reducing the performance of the network. Therefore, downlink transmit power levels of multi-layer hierarchical cellular networks need to be controlled in order to fully exploit their benefits. In this work, we present an analytical derivation to determine optimum power levels for two-layer cellular networks and generalize our solution to multi-layer cellular networks. We also simulate our results in a typical multi-layer network setup and observe significant power savings compared to single-layer cellular networks.

  19. Green Cellular Networks: A Survey, Some Research Issues and Challenges

    CERN Document Server

    Hasan, Ziaul; Bhargava, Vijay K

    2011-01-01

    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogenous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative rela...

  20. A neural network model of attention-modulated neurodynamics.

    Science.gov (United States)

    Gu, Yuqiao; Liljenström, Hans

    2007-12-01

    Visual attention appears to modulate cortical neurodynamics and synchronization through various cholinergic mechanisms. In order to study these mechanisms, we have developed a neural network model of visual cortex area V4, based on psychophysical, anatomical and physiological data. With this model, we want to link selective visual information processing to neural circuits within V4, bottom-up sensory input pathways, top-down attention input pathways, and to cholinergic modulation from the prefrontal lobe. We investigate cellular and network mechanisms underlying some recent analytical results from visual attention experimental data. Our model can reproduce the experimental findings that attention to a stimulus causes increased gamma-frequency synchronization in the superficial layers. Computer simulations and STA power analysis also demonstrate different effects of the different cholinergic attention modulation action mechanisms.

  1. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  2. Cooperative Handover Management in Dense Cellular Networks

    KAUST Repository

    Arshad, Rabe

    2017-02-07

    Network densification has always been an important factor to cope with the ever increasing capacity demand. Deploying more base stations (BSs) improves the spatial frequency utilization, which increases the network capacity. However, such improvement comes at the expense of shrinking the BSs\\' footprints, which increases the handover (HO) rate and may diminish the foreseen capacity gains. In this paper, we propose a cooperative HO management scheme to mitigate the HO effect on throughput gains achieved via cellular network densification. The proposed HO scheme relies on skipping HO to the nearest BS at some instances along the user\\'s trajectory while enabling cooperative BS service during HO execution at other instances. To this end, we develop a mathematical model, via stochastic geometry, to quantify the performance of the proposed HO scheme in terms of coverage probability and user throughput. The results show that the proposed cooperative HO scheme outperforms the always best connected based association at high mobility. Also, the value of BS cooperation along with handover skipping is quantified with respect to the HO skipping only that has recently appeared in the literature. Particularly, the proposed cooperative HO scheme shows throughput gains of 12% to 27% and 17% on average, when compared to the always best connected and HO skipping only schemes at user velocity ranging from 80 km/h to 160 Km/h, respectively.

  3. Neural networks and particle physics

    CERN Document Server

    Peterson, Carsten

    1993-01-01

    1. Introduction : Structure of the Central Nervous System Generics2. Feed-forward networks, Perceptions, Function approximators3. Self-organisation, Feature Maps4. Feed-back Networks, The Hopfield model, Optimization problems, Feed-back, Networks, Deformable templates, Graph bisection

  4. Speech Recognition Method Based on Multilayer Chaotic Neural Network

    Institute of Scientific and Technical Information of China (English)

    REN Xiaolin; HU Guangrui

    2001-01-01

    In this paper,speech recognitionusing neural networks is investigated.Especially,chaotic dynamics is introduced to neurons,and a mul-tilayer chaotic neural network (MLCNN) architectureis built.A learning algorithm is also derived to trainthe weights of the network.We apply the MLCNNto speech recognition and compare the performanceof the network with those of recurrent neural net-work (RNN) and time-delay neural network (TDNN).Experimental results show that the MLCNN methodoutperforms the other neural networks methods withrespect to average recognition rate.

  5. Implementation aspects of Graph Neural Networks

    Science.gov (United States)

    Barcz, A.; Szymański, Z.; Jankowski, S.

    2013-10-01

    This article summarises the results of implementation of a Graph Neural Network classi er. The Graph Neural Network model is a connectionist model, capable of processing various types of structured data, including non- positional and cyclic graphs. In order to operate correctly, the GNN model must implement a transition function being a contraction map, which is assured by imposing a penalty on model weights. This article presents research results concerning the impact of the penalty parameter on the model training process and the practical decisions that were made during the GNN implementation process.

  6. Human Face Recognition Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Răzvan-Daniel Albu

    2009-10-01

    Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.

  7. Intelligent neural network classifier for automatic testing

    Science.gov (United States)

    Bai, Baoxing; Yu, Heping

    1996-10-01

    This paper is concerned with an application of a multilayer feedforward neural network for the vision detection of industrial pictures, and introduces a high characteristics image processing and recognizing system which can be used for real-time testing blemishes, streaks and cracks, etc. on the inner walls of high-accuracy pipes. To take full advantage of the functions of the artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerance ability, this system uses a multilayer perceptron as a regular detector to extract features of the images to be inspected and classify them.

  8. Livermore Big Artificial Neural Network Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  9. SAR ATR Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tian Zhuangzhuang

    2016-06-01

    Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.

  10. Simulation of photosynthetic production using neural network

    Science.gov (United States)

    Kmet, Tibor; Kmetova, Maria

    2013-10-01

    This paper deals with neural network based optimal control synthesis for solving optimal control problems with control and state constraints and discrete time delay. The optimal control problem is transcribed into nonlinear programming problem which is implemented with adaptive critic neural network. This approach is applicable to a wide class of nonlinear systems. The proposed simulation methods is illustrated by the optimal control problem of photosynthetic production described by discrete time delay differential equations. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  11. Contractor Prequalification Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-long; YANG Lan-rong

    2002-01-01

    Contractor Prequalification involves the screening of contractors by a project owner, according to a given set of criteria, in order to determine their competence to perform the work if awarded the construction contract. This paper introduces the capabilities of neural networks in solving problems related to contractor prequalification. The neural network systems for contractor prequalification has an input vector of 8 components and an output vector of 1 component. The output vector represents whether a contractor is qualified or not qualified to submit a bid on a project.

  12. Spectral classification using convolutional neural networks

    CERN Document Server

    Hála, Pavel

    2014-01-01

    There is a great need for accurate and autonomous spectral classification methods in astrophysics. This thesis is about training a convolutional neural network (ConvNet) to recognize an object class (quasar, star or galaxy) from one-dimension spectra only. Author developed several scripts and C programs for datasets preparation, preprocessing and postprocessing of the data. EBLearn library (developed by Pierre Sermanet and Yann LeCun) was used to create ConvNets. Application on dataset of more than 60000 spectra yielded success rate of nearly 95%. This thesis conclusively proved great potential of convolutional neural networks and deep learning methods in astrophysics.

  13. Top tagging with deep neural networks [Vidyo

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the calculation of high level features. We also propose new preprocessing methods that do not alter key physical quantities such as jet mass. We compare the performance of this approach to standard tagging techniques and present results evaluating the robustness of the neural network to pileup.

  14. Neural networks advances and applications 2

    CERN Document Server

    Gelenbe, E

    1992-01-01

    The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret

  15. Porosity Log Prediction Using Artificial Neural Network

    Science.gov (United States)

    Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier

    2016-08-01

    Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.

  16. Multiprocessor Realization of Neural Networks

    Science.gov (United States)

    1990-04-01

    the unique capabilities of receiving, processing, and transmitting electo-chemical signals. These signals are sent over neural pathways that make up...these switching nodes and a clever arrangement of internode links to guaranteee at least one’ path between each processor and memory. These types of

  17. Neutron spectrum unfolding using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: rvega@cantera.reduaz.mx

    2004-07-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)

  18. Parameter Identification by Bayes Decision and Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1994-01-01

    The problem of parameter identification by Bayes point estimation using neural networks is investigated.......The problem of parameter identification by Bayes point estimation using neural networks is investigated....

  19. Wave transmission prediction of multilayer floating breakwater using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Patil, S.G.; Hegde, A.V.

    In the present study, an artificial neural network method has been applied for wave transmission prediction of multilayer floating breakwater. Two neural network models are constructed based on the parameters which influence the wave transmission...

  20. Analysis of Recurrent Analog Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    1998-06-01

    Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.

  1. Travel Mode Detection Exploiting Cellular Network Data

    Directory of Open Access Journals (Sweden)

    Kalatian Arash

    2016-01-01

    Full Text Available There has been growing interest in exploiting cellular network data for transportation planning purposes in recent years. In this paper, we utilize these data for determining mode of travel in the city of Shiraz, Iran. Cellular data records -including location updates in 5minute time intervals- of 300,000 users from the city of Shiraz has been collected for 40 hours in three consecutive days in a cooperation with the major telecommunications service provider of the country. Depending on the density of mobile BTS’s in different zones of the city, the user location can be located within an average of 200 meters. Considering data filtering and smoothing, data preparation and converting them to comprehensible traces is a large portion of the work. A novel approach to identify stay locations is proposed and implemented in this paper. Origin-Destination matrices are then created based on trips detected, which shows acceptable consistency with current O-D matrices. Finally, Travel times for all trips of a user is estimated as the main attribute for clustering. Trips between same origin and destination zones are combined together in a group. Using K-means algorithm, records within each group are the portioned in two or three clusters, based on their travel speeds. Each cluster represents a certain mode of travel; walking, public transportation or driving a private car.

  2. Sparse neural networks with large learning diversity

    CERN Document Server

    Gripon, Vincent

    2011-01-01

    Coded recurrent neural networks with three levels of sparsity are introduced. The first level is related to the size of messages, much smaller than the number of available neurons. The second one is provided by a particular coding rule, acting as a local constraint in the neural activity. The third one is a characteristic of the low final connection density of the network after the learning phase. Though the proposed network is very simple since it is based on binary neurons and binary connections, it is able to learn a large number of messages and recall them, even in presence of strong erasures. The performance of the network is assessed as a classifier and as an associative memory.

  3. Development of programmable artificial neural networks

    Science.gov (United States)

    Meade, Andrew J.

    1993-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  4. The labeled systems of multiple neural networks.

    Science.gov (United States)

    Nemissi, M; Seridi, H; Akdag, H

    2008-08-01

    This paper proposes an implementation scheme of K-class classification problem using systems of multiple neural networks. Usually, a multi-class problem is decomposed into simple sub-problems solved independently using similar single neural networks. For the reason that these sub-problems are not equivalent in their complexity, we propose a system that includes reinforced networks destined to solve complicated parts of the entire problem. Our approach is inspired from principles of the multi-classifiers systems and the labeled classification, which aims to improve performances of the networks trained by the Back-Propagation algorithm. We propose two implementation schemes based on both OAO (one-against-all) and OAA (one-against-one). The proposed models are evaluated using iris and human thigh databases.

  5. Performance Comparison of Neural Networks for HRTFs Approximation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to approach to head-related transfer functions (HRTFs), this paper employs and compares three kinds of one-input neural network models, namely, multi-layer perceptron (MLP) networks, radial basis function (RBF) networks and wavelet neural networks (WNN) so as to select the best network model for further HRTFs approximation. Experimental results demonstrate that wavelet neural networks are more efficient and useful.

  6. Implementing Signature Neural Networks with Spiking Neurons

    Directory of Open Access Journals (Sweden)

    José Luis Carrillo-Medina

    2016-12-01

    Full Text Available Spiking Neural Networks constitute the most promising approach to develop realistic ArtificialNeural Networks (ANNs. Unlike traditional firing rate-based paradigms, information coding inspiking models is based on the precise timing of individual spikes. Spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition. In recent years, majorbreakthroughs in neuroscience research have discovered new relevant computational principles indifferent living neural systems. Could ANNs benefit from some of these recent findings providingnovel elements of inspiration? This is an intriguing question and the development of spiking ANNsincluding novel bio-inspired information coding and processing strategies is gaining attention. Fromthis perspective, in this work, we adapt the core concepts of the recently proposed SignatureNeural Network paradigm – i.e., neural signatures to identify each unit in the network, localinformation contextualization during the processing and multicoding strategies for informationpropagation regarding the origin and the content of the data – to be employed in a spiking neuralnetwork. To the best of our knowledge, none of these mechanisms have been used yet in thecontext of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicabilityin such networks. Computer simulations show that a simple network model like the discussed hereexhibits complex self-organizing properties. The combination of multiple simultaneous encodingschemes allows the network to generate coexisting spatio-temporal patterns of activity encodinginformation in different spatio-temporal spaces. As a function of the network and/or intra-unitparameters shaping the corresponding encoding modality, different forms of competition amongthe evoked patterns can emerge even in the absence of inhibitory connections. These parametersalso

  7. Remote Sensing Image Segmentation with Probabilistic Neural Networks

    Institute of Scientific and Technical Information of China (English)

    LIU Gang

    2005-01-01

    This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especially, this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN. The comparison between image segmentations with PNNs and with other neural networks is given. The experimental results show that PNNs can be successfully applied to image segmentation for good results.

  8. Combining logistic regression and neural networks to create predictive models.

    OpenAIRE

    Spackman, K. A.

    1992-01-01

    Neural networks are being used widely in medicine and other areas to create predictive models from data. The statistical method that most closely parallels neural networks is logistic regression. This paper outlines some ways in which neural networks and logistic regression are similar, shows how a small modification of logistic regression can be used in the training of neural network models, and illustrates the use of this modification for variable selection and predictive model building wit...

  9. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.

  10. Neural network method for solving elastoplastic finite element problems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A basic optimization principle of Artificial Neural Network-the Lagrange Programming Neural Network (LPNN) model for solving elastoplastic finite element problems is presented. The nonlinear problems of mechanics are represented as a neural network based optimization problem by adopting the nonlinear function as nerve cell transfer function. Finally, two simple elastoplastic problems are numerically simulated. LPNN optimization results for elastoplastic problem are found to be comparable to traditional Hopfield neural network optimization model.

  11. Analysis of Wideband Beamformers Designed with Artificial Neural Networks

    Science.gov (United States)

    1990-12-01

    TECHNICAL REPORT 0-90-1 ANALYSIS OF WIDEBAND BEAMFORMERS DESIGNED WITH ARTIFICIAL NEURAL NETWORKS by Cary Cox Instrumentation Services Division...included. A briel tutorial on beamformers and neural networks is also provided. 14. SUBJECT TERMS 15, NUMBER OF PAGES Artificial neural networks Fecdforwa:,l...Beamformers Designed with Artificial Neural Networks ". The study was conducted under the general supervision of Messrs. George P. Bonner, Chief

  12. Estimation of concrete compressive strength using artificial neural network

    OpenAIRE

    Kostić, Srđan; Vasović, Dejan

    2015-01-01

    In present paper, concrete compressive strength is evaluated using back propagation feed-forward artificial neural network. Training of neural network is performed using Levenberg-Marquardt learning algorithm for four architectures of artificial neural networks, one, three, eight and twelve nodes in a hidden layer in order to avoid the occurrence of overfitting. Training, validation and testing of neural network is conducted for 75 concrete samples with distinct w/c ratio and amount of superp...

  13. Optimizing neural network models: motivation and case studies

    OpenAIRE

    Harp, S A; T. Samad

    2012-01-01

    Practical successes have been achieved  with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally  rem...

  14. Auto-associative nanoelectronic neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, C. P. S. M.; Guimarães, J. G. [Departamento de Engenharia Elétrica - Laboratório de Dispositivos e Circuito Integrado, Universidade de Brasília, CP 4386, CEP 70904-970 Brasília DF (Brazil)

    2014-05-15

    In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns.

  15. Compressing Neural Networks with the Hashing Trick

    OpenAIRE

    Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin

    2015-01-01

    As deep nets are increasingly used in applications suited for mobile devices, a fundamental dilemma becomes apparent: the trend in deep learning is to grow models to absorb ever-increasing data set sizes; however mobile devices are designed with very little memory and cannot store such large models. We present a novel network architecture, HashedNets, that exploits inherent redundancy in neural networks to achieve drastic reductions in model sizes. HashedNets uses a low-cost hash function to ...

  16. Stability and Adaptation of Neural Networks

    Science.gov (United States)

    1990-11-02

    Feature discovery by competitive works.-~ IEEE Trans- Si’st.. Man. Cybern.. vol. SMC-13. pp. 815- learning.- Cogniive Science , vol. 9. pp. 75-112. 1985...include Electronic Engineering Times, the Los Angeles Times, Popular Science , the Economist, and Breakthroughs. As program chairman of the first...feedback neural networks.*’ Science . vol. 235. pp. 1226-1227. Mar. 6. 1987. networks.- submitted for publication. 141 G. A. Carpenter and S. Grossberg

  17. Neural networks of human nature and nurture

    Directory of Open Access Journals (Sweden)

    Daniel S. Levine

    2008-06-01

    Full Text Available Neural network methods have facilitated the unifi - cation of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.

  18. Incremental construction of LSTM recurrent neural network

    OpenAIRE

    Ribeiro, Evandsa Sabrine Lopes-Lima; Alquézar Mancho, René

    2002-01-01

    Long Short--Term Memory (LSTM) is a recurrent neural network that uses structures called memory blocks to allow the net remember significant events distant in the past input sequence in order to solve long time lag tasks, where other RNN approaches fail. Throughout this work we have performed experiments using LSTM networks extended with growing abilities, which we call GLSTM. Four methods of training growing LSTM has been compared. These methods include cascade and ...

  19. Applications of Neural Networks in Spinning Prediction

    Institute of Scientific and Technical Information of China (English)

    程文红; 陆凯

    2003-01-01

    The neural network spinning prediction model (BP and RBF Networks) trained by data from the mill can predict yarn qualities and spinning performance. The input parameters of the model are as follows: yarn count, diameter, hauteur, bundle strength, spinning draft, spinning speed, traveler number and twist.And the output parameters are: yarn evenness, thin places, tenacity and elongation, ends-down.Predicting results match the testing data well.

  20. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  1. Applying Artificial Neural Networks for Face Recognition

    Directory of Open Access Journals (Sweden)

    Thai Hoang Le

    2011-01-01

    Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.

  2. Learning chaotic attractors by neural networks

    NARCIS (Netherlands)

    Bakker, R; Schouten, JC; Giles, CL; Takens, F; van den Bleek, CM

    2000-01-01

    An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured time series. During training, the algorithm learns to short-term predict the time series. At the same time a criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is monitored th

  3. A Modified Algorithm for Feedforward Neural Networks

    Institute of Scientific and Technical Information of China (English)

    夏战国; 管红杰; 李政伟; 孟斌

    2002-01-01

    As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.

  4. Artificial neural networks in neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2005-07-01

    An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  5. Visualization of neural networks using saliency maps

    DEFF Research Database (Denmark)

    Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai

    1995-01-01

    The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...

  6. Towards semen quality assessment using neural networks

    DEFF Research Database (Denmark)

    Linneberg, Christian; Salamon, P.; Svarer, C.

    1994-01-01

    The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...

  7. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  8. Psychometric Measurement Models and Artificial Neural Networks

    Science.gov (United States)

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  9. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  10. Binaural Sound Localization Using Neural Networks

    Science.gov (United States)

    1991-12-12

    by Brennan, involved the implementation of a neural network to model the ability of a bat to discriminate between a mealworm and an inedible object...locate, identify and capture airborne prey (6:2). The sonar returns were collected from the mealworms , spheres and disks at various rotations (90 to

  11. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designe...... is better than most secondary structure prediction methods based on single sequences even though this model contains much fewer parameters...

  12. A Direct Feedback Control Based on Fuzzy Recurrent Neural Network

    Institute of Scientific and Technical Information of China (English)

    李明; 马小平

    2002-01-01

    A direct feedback control system based on fuzzy-recurrent neural network is proposed, and a method of training weights of fuzzy-recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simul ation results indicate that fuzzy-recurrent neural network controller has perfect dynamic and static performances .

  13. [Application of artificial neural networks in infectious diseases].

    Science.gov (United States)

    Xu, Jun-fang; Zhou, Xiao-nong

    2011-02-28

    With the development of information technology, artificial neural networks has been applied to many research fields. Due to the special features such as nonlinearity, self-adaptation, and parallel processing, artificial neural networks are applied in medicine and biology. This review summarizes the application of artificial neural networks in the relative factors, prediction and diagnosis of infectious diseases in recent years.

  14. Recognition of Continuous Digits by Quantum Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper describes a new kind of neural network-Quantum Neural Network (QNN) and its application to recognition of continuous digits. QNN combines the advantages of neural modeling and fuzzy theoretic principles. Experiment results show that more than 15 percent error reduction is achieved on a speaker-independent continuous digits recognition task compared with BP networks.

  15. SOLVING INVERSE KINEMATICS OF REDUNDANT MANIPULATOR BASED ON NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    For the redundant manipulators, neural network is used to tackle the velocity inverse kinematics of robot manipulators. The neural networks utilized are multi-layered perceptions with a back-propagation training algorithm. The weight table is used to save the weights solving the inverse kinematics based on the different optimization performance criteria. Simulations verify the effectiveness of using neural network.

  16. A Fuzzy Neural Network for Fault Pattern Recognition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper combines fuzzy set theory with AR T neural network, and demonstrates some important properties of the fuzzy ART neural network algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural network has an effect of fast stable recognition for fuzzy patterns.

  17. Extracting Knowledge from Supervised Neural Networks in Image Procsssing

    NARCIS (Netherlands)

    Zwaag, van der Berend Jan; Slump, Kees; Spaanenburg, Lambert; Jain, R.; Abraham, A.; Faucher, C.; Zwaag, van der B.J.

    2003-01-01

    Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a ¿magic tool¿ but possibly even more as a my

  18. Analysis of Neural Networks in Terms of Domain Functions

    NARCIS (Netherlands)

    Zwaag, van der Berend Jan; Slump, Cees; Spaanenburg, Lambert

    2002-01-01

    Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more as a my

  19. Neural networks in economic modelling : An empirical study

    NARCIS (Netherlands)

    Verkooijen, W.J.H.

    1996-01-01

    This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a sta

  20. Prediction based chaos control via a new neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen Liqun [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: liqunshen@gmail.com; Wang Mao [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Liu Wanyu [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China); Sun Guanghui [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)

    2008-11-17

    In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network.

  1. Brain tumor grading based on Neural Networks and Convolutional Neural Networks.

    Science.gov (United States)

    Yuehao Pan; Weimin Huang; Zhiping Lin; Wanzheng Zhu; Jiayin Zhou; Wong, Jocelyn; Zhongxiang Ding

    2015-08-01

    This paper studies brain tumor grading using multiphase MRI images and compares the results with various configurations of deep learning structure and baseline Neural Networks. The MRI images are used directly into the learning machine, with some combination operations between multiphase MRIs. Compared to other researches, which involve additional effort to design and choose feature sets, the approach used in this paper leverages the learning capability of deep learning machine. We present the grading performance on the testing data measured by the sensitivity and specificity. The results show a maximum improvement of 18% on grading performance of Convolutional Neural Networks based on sensitivity and specificity compared to Neural Networks. We also visualize the kernels trained in different layers and display some self-learned features obtained from Convolutional Neural Networks.

  2. Stability analysis of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time varying delays

    Science.gov (United States)

    M. Syed, Ali

    2014-06-01

    In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen—Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples.

  3. Hopfield Neural Network Approach to Clustering in Mobile Radio Networks

    Institute of Scientific and Technical Information of China (English)

    JiangYan; LiChengshu

    1995-01-01

    In this paper ,the Hopfield neural network(NN) algorithm is developed for selecting gateways in cluster linkage.The linked cluster(LC) architecture is assumed to achieve distributed network control in multihop radio networks throrgh the local controllers,called clusterheads and the nodes connecting these clusterheads are defined to be gateways.In Hopfield NN models ,the most critical issue being the determination of connection weights,we use the approach of Lagrange multipliers(LM) for its dynamic nature.

  4. From Designing A Single Neural Network to Designing Neural Network Ensembles

    Institute of Scientific and Technical Information of China (English)

    Liu Yong; Zou Xiu-fer

    2003-01-01

    This paper introduces supervised learning model,and surveys related research work. The paper is organised as follows. A supervised learning model is firstly described. The bias variance trade-off is then discussed for the supervised learning model. Based on the bias variance trade-off, both the single neural network approaches and the neural network en semble approaches are overviewed, and problems with the existing approaches are indicated. Finally, the paper concludes with specifying potential future research directions.

  5. A Fuzzy Quantum Neural Network and Its Application in Pattern Recognition

    Institute of Scientific and Technical Information of China (English)

    MIAOFuyou; XIONGYan; CHENHuanhuan; WANGXingfu

    2005-01-01

    This paper proposes a fuzzy quantum neural network model combining quantum neural network and fuzzy logic, which applies the fuzzy logic to design the collapse rules of the quantum neural network, and solves the character recognition problem. Theoretical analysis and experimental results show that fuzzy quantum neural network improves recognizing veracity than the traditional neural network and quantum neural network.

  6. Global Asymplotic Stability of Neural Networks with Time Delay

    Institute of Scientific and Technical Information of China (English)

    肖晓丹; 张洁

    2008-01-01

    The global asymptotic stability problem of Cellular neural networks with delay is investigated.A new stability condition is presented based on Lyapunov-Krasovskii method,which is dependent On the size of delay.The result is given in the form of LMI.and the admitted upper bound of the delay can be obtained easily.The time delay dependent and independent results can be obtained,which include some results in the former literature.Finally,a numerical example is siven to illustrate the effectiveness of the main results.

  7. Optical implementation of neural networks

    Science.gov (United States)

    Yu, Francis T. S.; Guo, Ruyan

    2002-12-01

    An adaptive optical neuro-computing (ONC) using inexpensive pocket size liquid crystal televisions (LCTVs) had been developed by the graduate students in the Electro-Optics Laboratory at The Pennsylvania State University. Although this neuro-computing has only 8×8=64 neurons, it can be easily extended to 16×20=320 neurons. The major advantages of this LCTV architecture as compared with other reported ONCs, are low cost and the flexibility to operate. To test the performance, several neural net models are used. These models are Interpattern Association, Hetero-association and unsupervised learning algorithms. The system design considerations and experimental demonstrations are also included.

  8. Color control of printers by neural networks

    Science.gov (United States)

    Tominaga, Shoji

    1998-07-01

    A method is proposed for solving the mapping problem from the 3D color space to the 4D CMYK space of printer ink signals by means of a neural network. The CIE-L*a*b* color system is used as the device-independent color space. The color reproduction problem is considered as the problem of controlling an unknown static system with four inputs and three outputs. A controller determines the CMYK signals necessary to produce the desired L*a*b* values with a given printer. Our solution method for this control problem is based on a two-phase procedure which eliminates the need for UCR and GCR. The first phase determines a neural network as a model of the given printer, and the second phase determines the combined neural network system by combining the printer model and the controller in such a way that it represents an identity mapping in the L*a*b* color space. Then the network of the controller part realizes the mapping from the L*a*b* space to the CMYK space. Practical algorithms are presented in the form of multilayer feedforward networks. The feasibility of the proposed method is shown in experiments using a dye sublimation printer and an ink jet printer.

  9. Neural networks in windprofiler data processing

    Science.gov (United States)

    Weber, H.; Richner, H.; Kretzschmar, R.; Ruffieux, D.

    2003-04-01

    Wind profilers are basically Doppler radars yielding 3-dimensional wind profiles that are deduced from the Doppler shift caused by turbulent elements in the atmosphere. These signals can be contaminated by other airborne elements such as birds or hydrometeors. Using a feed-forward neural network with one hidden layer and one output unit, birds and hydrometeors can be successfully identified in non-averaged single spectra; theses are subsequently removed in the wind computation. An infrared camera was used to identify birds in one of the beams of the wind profiler. After training the network with about 6000 contaminated data sets, it was able to identify contaminated data in a test data set with a reliability of 96 percent. The assumption was made that the neural network parameters obtained in the beam for which bird data was collected can be transferred to the other beams (at least three beams are needed for computing wind vectors). Comparing the evolution of a wind field with and without the neural network shows a significant improvement of wind data quality. Current work concentrates on training the network also for hydrometeors. It is hoped that the instrument's capability can thus be expanded to measure not only correct winds, but also observe bird migration, estimate precipitation and -- by combining precipitation information with vertical velocity measurement -- the monitoring of the height of the melting layer.

  10. Neural networks: Application to medical imaging

    Science.gov (United States)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  11. Fuzzy logic and neural network technologies

    Science.gov (United States)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  12. a Heterosynaptic Learning Rule for Neural Networks

    Science.gov (United States)

    Emmert-Streib, Frank

    In this article we introduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre- and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean learning time increases with the number of patterns to be learned polynomially, indicating efficient learning.

  13. Design of Robust Neural Network Classifiers

    DEFF Research Database (Denmark)

    Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads

    1998-01-01

    a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...... suggest to adapt the outlier probability and regularisation parameters by minimizing the error on a validation set, and a simple gradient descent scheme is derived. In addition, the framework allows for constructing a simple outlier detector. Experiments with artificial data demonstrate the potential......This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...

  14. Distribution network planning algorithm based on Hopfield neural network

    Institute of Scientific and Technical Information of China (English)

    GAO Wei-xin; LUO Xian-jue

    2005-01-01

    This paper presents a new algorithm based on Hopfield neural network to find the optimal solution for an electric distribution network. This algorithm transforms the distribution power network-planning problem into a directed graph-planning problem. The Hopfield neural network is designed to decide the in-degree of each node and is in combined application with an energy function. The new algorithm doesn't need to code city streets and normalize data, so the program is easier to be realized. A case study applying the method to a district of 29 street proved that an optimal solution for the planning of such a power system could be obtained by only 26 iterations. The energy function and algorithm developed in this work have the following advantages over many existing algorithms for electric distribution network planning: fast convergence and unnecessary to code all possible lines.

  15. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  16. The Stellar parametrization using Artificial Neural Network

    CERN Document Server

    Giridhar, Sunetra; Kunder, Andrea; Muneer, S; Kumar, G Selva

    2012-01-01

    An update on recent methods for automated stellar parametrization is given. We present preliminary results of the ongoing program for rapid parametrization of field stars using medium resolution spectra obtained using Vainu Bappu Telescope at VBO, Kavalur, India. We have used Artificial Neural Network for estimating temperature, gravity, metallicity and absolute magnitude of the field stars. The network for each parameter is trained independently using a large number of calibrating stars. The trained network is used for estimating atmospheric parameters of unexplored field stars.

  17. Reconstruction of periodic signals using neural networks

    Directory of Open Access Journals (Sweden)

    José Danilo Rairán Antolines

    2014-01-01

    Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.

  18. The importance of artificial neural networks in biomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Burke, H.B. [New York Medical College, Valhalla, NY (United States)

    1995-12-31

    The future explanatory power in biomedicine will be at the molecular-genetic level of analysis (rather than the epidemiologic-demographic or anatomic-cellular levels). This is the level of complex systems. Complex systems are characterized by nonlinearity and complex interactions. It is difficult for traditional statistical methods to capture complex systems because traditional methods attempt to find the model that best fits the statistician`s understanding of the phenomenon; complex systems are difficult to understand and therefore difficult to fit with a simple model. Artificial neural networks are nonparametric regression models. They can capture any phenomena, to any degree of accuracy (depending on the adequacy of the data and the power of the predictors), without prior knowledge of the phenomena. Further, artificial neural networks can be represented, not only as formulae, but also as graphical models. Graphical models can increase analytic power and flexibility. Artificial neural networks are a powerful method for capturing complex phenomena, but their use requires a paradigm shift, from exploratory analysis of the data to exploratory analysis of the model.

  19. Inference and contradictory analysis for binary neural networks

    Institute of Scientific and Technical Information of China (English)

    郭宝龙; 郭雷

    1996-01-01

    A weak-inference theory and a contradictory analysis for binary neural networks (BNNs).are presented.The analysis indicates that the essential reason why a neural network is changing its slates is the existence of superior contradiction inside the network,and that the process by which a neural network seeks a solution corresponds to eliminating the superior contradiction.Different from general constraint satisfaction networks,the solutions found by BNNs may contain inferior contradiction but not superior contradiction.

  20. The loading problem for recursive neural networks.

    Science.gov (United States)

    Gori, Marco; Sperduti, Alessandro

    2005-10-01

    The present work deals with one of the major and not yet completely understood topics of supervised connectionist models. Namely, it investigates the relationships between the difficulty of a given learning task and the chosen neural network architecture. These relationships have been investigated and nicely established for some interesting problems in the case of neural networks used for processing vectors and sequences, but only a few studies have dealt with loading problems involving graphical inputs. In this paper, we present sufficient conditions which guarantee the absence of local minima of the error function in the case of learning directed acyclic graphs with recursive neural networks. We introduce topological indices which can be directly calculated from the given training set and that allows us to design the neural architecture with local minima free error function. In particular, we conceive a reduction algorithm that involves both the information attached to the nodes and the topology, which enlarges significantly the class of the problems with unimodal error function previously proposed in the literature.

  1. Fuzzy logic and neural networks basic concepts & application

    CERN Document Server

    Alavala, Chennakesava R

    2008-01-01

    About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank

  2. Cancer classification based on gene expression using neural networks.

    Science.gov (United States)

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  3. Pruning Neural Networks with Distribution Estimation Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Cantu-Paz, E

    2003-01-15

    This paper describes the application of four evolutionary algorithms to the pruning of neural networks used in classification problems. Besides of a simple genetic algorithm (GA), the paper considers three distribution estimation algorithms (DEAs): a compact GA, an extended compact GA, and the Bayesian Optimization Algorithm. The objective is to determine if the DEAs present advantages over the simple GA in terms of accuracy or speed in this problem. The experiments used a feed forward neural network trained with standard back propagation and public-domain and artificial data sets. The pruned networks seemed to have better or equal accuracy than the original fully-connected networks. Only in a few cases, pruning resulted in less accurate networks. We found few differences in the accuracy of the networks pruned by the four EAs, but found important differences in the execution time. The results suggest that a simple GA with a small population might be the best algorithm for pruning networks on the data sets we tested.

  4. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  5. Clustering in mobile ad hoc network based on neural network

    Institute of Scientific and Technical Information of China (English)

    CHEN Ai-bin; CAI Zi-xing; HU De-wen

    2006-01-01

    An on-demand distributed clustering algorithm based on neural network was proposed. The system parameters and the combined weight for each node were computed, and cluster-heads were chosen using the weighted clustering algorithm, then a training set was created and a neural network was trained. In this algorithm, several system parameters were taken into account, such as the ideal node-degree, the transmission power, the mobility and the battery power of the nodes. The algorithm can be used directly to test whether a node is a cluster-head or not. Moreover, the clusters recreation can be speeded up.

  6. Analytical Modeling of Uplink Cellular Networks

    CERN Document Server

    Novlan, Thomas D; Andrews, Jeffrey G

    2012-01-01

    Cellular uplink analysis has typically been undertaken by either a simple approach that lumps all interference into a single deterministic or random parameter in a Wyner-type model, or via complex system level simulations that often do not provide insight into why various trends are observed. This paper proposes a novel middle way that is both accurate and also results in easy-to-evaluate integral expressions based on the Laplace transform of the interference. We assume mobiles and base stations are randomly placed in the network with each mobile pairing up to its closest base station. The model requires two important changes compared to related recent work on the downlink. First, dependence is introduced between the user and base station point processes to make sure each base station serves a single mobile in the given resource block. Second, per-mobile power control is included, which further couples the locations of the mobiles and their receiving base stations. Nevertheless, we succeed in deriving the cov...

  7. Toward implementation of artificial neural networks that "really work".

    Science.gov (United States)

    Leon, M. A.; Keller, J.

    1997-01-01

    Artificial neural networks are established analytical methods in bio-medical research. They have repeatedly outperformed traditional tools for pattern recognition and clinical outcome prediction while assuring continued adaptation and learning. However, successful experimental neural networks systems seldom reach a production state. That is, they are not incorporated into clinical information systems. It could be speculated that neural networks simply must undergo a lengthy acceptance process before they become part of the day to day operations of health care systems. However, our experience trying to incorporate experimental neural networks into information systems lead us to believe that there are technical and operational barriers that greatly difficult neural network implementation. A solution for these problems may be the delineation of policies and procedures for neural network implementation and the development a new class of neural network client/server applications that fit the needs of current clinical information systems. PMID:9357613

  8. A Projection Neural Network for Constrained Quadratic Minimax Optimization.

    Science.gov (United States)

    Liu, Qingshan; Wang, Jun

    2015-11-01

    This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.

  9. Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents

    CERN Document Server

    Sher, Gene I

    2011-01-01

    Though machine learning has been applied to the foreign exchange market for quiet some time now, and neural networks have been shown to yield good results, in modern approaches neural network systems are optimized through the traditional methods, and their input signals are vectors containing prices and other indicator elements. The aim of this paper is twofold, the presentation and testing of the application of topology and weight evolving artificial neural network (TWEANN) systems to automated currency trading, and the use of chart images as input to a geometrical regularity aware indirectly encoded neural network systems. This paper presents the benchmark results of neural network based automated currency trading systems evolved using TWEANNs, and compares the generalization capabilities of these direct encoded neural networks which use the standard price vector inputs, and the indirect (substrate) encoded neural networks which use chart images as input. The TWEANN algorithm used to evolve these currency t...

  10. Convolutional Neural Network Based dem Super Resolution

    Science.gov (United States)

    Chen, Zixuan; Wang, Xuewen; Xu, Zekai; Hou, Wenguang

    2016-06-01

    DEM super resolution is proposed in our previous publication to improve the resolution for a DEM on basis of some learning examples. Meanwhile, the nonlocal algorithm is introduced to deal with it and lots of experiments show that the strategy is feasible. In our publication, the learning examples are defined as the partial original DEM and their related high measurements due to this way can avoid the incompatibility between the data to be processed and the learning examples. To further extent the applications of this new strategy, the learning examples should be diverse and easy to obtain. Yet, it may cause the problem of incompatibility and unrobustness. To overcome it, we intend to investigate a convolutional neural network based method. The input of the convolutional neural network is a low resolution DEM and the output is expected to be its high resolution one. A three layers model will be adopted. The first layer is used to detect some features from the input, the second integrates the detected features to some compressed ones and the final step transforms the compressed features as a new DEM. According to this designed structure, some learning DEMs will be taken to train it. Specifically, the designed network will be optimized by minimizing the error of the output and its expected high resolution DEM. In practical applications, a testing DEM will be input to the convolutional neural network and a super resolution will be obtained. Many experiments show that the CNN based method can obtain better reconstructions than many classic interpolation methods.

  11. Functional expansion representations of artificial neural networks

    Science.gov (United States)

    Gray, W. Steven

    1992-01-01

    In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.

  12. Neural network models of categorical perception.

    Science.gov (United States)

    Damper, R I; Harnad, S R

    2000-05-01

    Studies of the categorical perception (CP) of sensory continua have a long and rich history in psychophysics. In 1977, Macmillan, Kaplan, and Creelman introduced the use of signal detection theory to CP studies. Anderson and colleagues simultaneously proposed the first neural model for CP, yet this line of research has been less well explored. In this paper, we assess the ability of neural-network models of CP to predict the psychophysical performance of real observers with speech sounds and artificial/novel stimuli. We show that a variety of neural mechanisms are capable of generating the characteristics of CP. Hence, CP may not be a special model of perception but an emergent property of any sufficiently powerful general learning system.

  13. Development of Polymer Resins using Neural Networks

    Directory of Open Access Journals (Sweden)

    Fabiano A. N. Fernandes

    2002-01-01

    Full Text Available The development of polymer resins can benefit from the application of neural networks, using its great ability to correlate inputs and outputs. In this work we have developed a procedure that uses neural networks to correlate the end-user properties of a polymer with the polymerization reactor's operational condition that will produce that desired polymer. This procedure is aimed at speeding up the development of new resins and help finding the appropriate operational conditions to produce a given polymer resin; reducing experimentation, pilot plant tests and therefore time and money spent on development. The procedure shown in this paper can predict the reactor's operational condition with an error lower than 5%.

  14. Multi-Dimensional Recurrent Neural Networks

    CERN Document Server

    Graves, Alex; Schmidhuber, Juergen

    2007-01-01

    Recurrent neural networks (RNNs) have proved effective at one dimensional sequence learning tasks, such as speech and online handwriting recognition. Some of the properties that make RNNs suitable for such tasks, for example robustness to input warping, and the ability to access contextual information, are also desirable in multidimensional domains. However, there has so far been no direct way of applying RNNs to data with more than one spatio-temporal dimension. This paper introduces multi-dimensional recurrent neural networks (MDRNNs), thereby extending the potential applicability of RNNs to vision, video processing, medical imaging and many other areas, while avoiding the scaling problems that have plagued other multi-dimensional models. Experimental results are provided for two image segmentation tasks.

  15. Face Recognition using Eigenfaces and Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohamed Rizon

    2006-01-01

    Full Text Available In this study, we develop a computational model to identify the face of an unknown person’s by applying eigenfaces. The eigenfaces has been applied to extract the basic face of the human face images. The eigenfaces is then projecting onto human faces to identify unique features vectors. This significant features vector can be used to identify an unknown face by using the backpropagation neural network that utilized euclidean distance for classification and recognition. The ORL database for this investigation consists of 40 people with various 400 face images had been used for the learning. The eigenfaces including implemented Jacobi’s method for eigenvalues and eigenvectors has been performed. The classification and recognition using backpropagation neural network showed impressive positive result to classify face images.

  16. On analog implementations of discrete neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.; Moore, K.R.

    1998-12-01

    The paper will show that in order to obtain minimum size neural networks (i.e., size-optimal) for implementing any Boolean function, the nonlinear activation function of the neutrons has to be the identity function. The authors shall shortly present many results dealing with the approximation capabilities of neural networks, and detail several bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions they will show that implementing Boolean functions can be done using neurons having an identity nonlinear function. It follows that size-optimal solutions can be obtained only using analog circuitry. Conclusions, and several comments on the required precision are ending the paper.

  17. Supervised Sequence Labelling with Recurrent Neural Networks

    CERN Document Server

    Graves, Alex

    2012-01-01

    Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary.    The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...

  18. Design of fiber optic adaline neural networks

    Science.gov (United States)

    Ghosh, Anjan K.; Trepka, Jim

    1997-03-01

    Based on possible optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators we describe the design of a single-layer fiber optic Adaline neural network that can be used as a bit pattern classifier. In our design, we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The described new optical neural network design is for optical processing of guided light wave signals, not electronic signals. We analyze the convergence or learning characteristics of the optoelectronic Adaline in the presence of errors in the hardware. We show that with such an optoelectronic Adaline it is possible to detect a desired code word/token/header with good accuracy.

  19. Hierarchical Neural Network Structures for Phoneme Recognition

    CERN Document Server

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  20. Neural networks for aerosol particles characterization

    Science.gov (United States)

    Berdnik, V. V.; Loiko, V. A.

    2016-11-01

    Multilayer perceptron neural networks with one, two and three inputs are built to retrieve parameters of spherical homogeneous nonabsorbing particle. The refractive index ranges from 1.3 to 1.7; particle radius ranges from 0.251 μm to 56.234 μm. The logarithms of the scattered radiation intensity are used as input signals. The problem of the most informative scattering angles selection is elucidated. It is shown that polychromatic illumination helps one to increase significantly the retrieval accuracy. In the absence of measurement errors relative error of radius retrieval by the neural network with three inputs is 0.54%, relative error of the refractive index retrieval is 0.84%. The effect of measurement errors on the result of retrieval is simulated.

  1. Web Page Categorization Using Artificial Neural Networks

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Web page categorization is one of the challenging tasks in the world of ever increasing web technologies. There are many ways of categorization of web pages based on different approach and features. This paper proposes a new dimension in the way of categorization of web pages using artificial neural network (ANN) through extracting the features automatically. Here eight major categories of web pages have been selected for categorization; these are business & economy, education, government, entertainment, sports, news & media, job search, and science. The whole process of the proposed system is done in three successive stages. In the first stage, the features are automatically extracted through analyzing the source of the web pages. The second stage includes fixing the input values of the neural network; all the values remain between 0 and 1. The variations in those values affect the output. Finally the third stage determines the class of a certain web page out of eight predefined classes. This stage i...

  2. Neural network correction of astrometric chromaticity

    CERN Document Server

    Gai, M

    2005-01-01

    In this paper we deal with the problem of chromaticity, i.e. apparent position variation of stellar images with their spectral distribution, using neural networks to analyse and process astronomical images. The goal is to remove this relevant source of systematic error in the data reduction of high precision astrometric experiments, like Gaia. This task can be accomplished thanks to the capability of neural networks to solve a nonlinear approximation problem, i.e. to construct an hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with conveniently chosen moments, evaluated along the y axis. The technique proposed, in the current framework, reduces the initial chromaticity of few milliarcseconds to values of few microarcseconds.

  3. Living ordered neural networks as model systems for signal processing

    Science.gov (United States)

    Villard, C.; Amblard, P. O.; Becq, G.; Gory-Fauré, S.; Brocard, J.; Roth, S.

    2007-06-01

    Neural circuit architecture is a fundamental characteristic of the brain, and how architecture is bound to biological functions is still an open question. Some neuronal geometries seen in the retina or the cochlea are intriguing: information is processed in parallel by several entities like in "pooling" networks which have recently drawn the attention of signal processing scientists. These systems indeed exhibit the noise-enhanced processing effect, which is also actively discussed in the neuroscience community at the neuron scale. The aim of our project is to use in-vitro ordered neuron networks as living paradigms to test ideas coming from the computational science. The different technological bolts that have to be solved are enumerated and the first results are presented. A neuron is a polarised cell, with an excitatory axon and a receiving dendritic tree. We present how soma confinement and axon differentiation can be induced by surface functionalization techniques. The recording of large neuron networks, ordered or not, is also detailed and biological signals shown. The main difficulty to access neural noise in the case of weakly connected networks grown on micro electrode arrays is explained. This open the door to a new detection technology suitable for sub-cellular analysis and stimulation, whose development will constitute the next step of this project.

  4. A Bionic Neural Network for Fish-Robot Locomotion

    Institute of Scientific and Technical Information of China (English)

    Dai-bing Zhang; De-wen Hu; Lin-cheng Shen; Hai-bin Xie

    2006-01-01

    A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural network consists of one high level controller and one chain of central pattern generators (CPGs). Each CPG contains a nonlinear neural Zhang oscillator which shows properties similar to sine-cosine model. Simulation results show that the bionic neural network presents a good performance in controlling the fish-robot to execute various motions such as startup,stop,forward swimming,backward swimming,turn right and turn left.

  5. Learning in Neural Networks: VLSI Implementation Strategies

    Science.gov (United States)

    Duong, Tuan Anh

    1995-01-01

    Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.

  6. Neural Network-Based Hyperspectral Algorithms

    Science.gov (United States)

    2016-06-07

    Neural Network-Based Hyperspectral Algorithms Walter F. Smith, Jr. and Juanita Sandidge Naval Research Laboratory Code 7340, Bldg 1105 Stennis Space...our effort is development of robust numerical inversion algorithms , which will retrieve inherent optical properties of the water column as well as...validate the resulting inversion algorithms with in-situ data and provide estimates of the error bounds associated with the inversion algorithm . APPROACH

  7. Adaptive Filtering Using Recurrent Neural Networks

    Science.gov (United States)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  8. Artificial Neural Networks in Stellar Astronomy

    Directory of Open Access Journals (Sweden)

    R. K. Gulati

    2001-01-01

    Full Text Available Next generation of optical spectroscopic surveys, such as the Sloan Digital Sky Survey and the 2 degree field survey, will provide large stellar databases. New tools will be required to extract useful information from these. We show the applications of artificial neural networks to stellar databases. In another application of this method, we predict spectral and luminosity classes from the catalog of spectral indices. We assess the importance of such methods for stellar populations studies.

  9. Neural Networks with Complex and Quaternion Inputs

    OpenAIRE

    Rishiyur, Adityan

    2006-01-01

    This article investigates Kak neural networks, which can be instantaneously trained, for complex and quaternion inputs. The performance of the basic algorithm has been analyzed and shown how it provides a plausible model of human perception and understanding of images. The motivation for studying quaternion inputs is their use in representing spatial rotations that find applications in computer graphics, robotics, global navigation, computer vision and the spatial orientation of instruments. ...

  10. Applying neural networks to optimize instrumentation performance

    Energy Technology Data Exchange (ETDEWEB)

    Start, S.E.; Peters, G.G.

    1995-06-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate.

  11. Diagnosing process faults using neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, K.L.; Jones, R.D.; Messina, M.J.

    1993-11-01

    In order to be of use for realistic problems, a fault diagnosis method should have the following three features. First, it should apply to nonlinear processes. Second, it should not rely on extensive amounts of data regarding previous faults. Lastly, it should detect faults promptly. The authors present such a scheme for static (i.e., non-dynamic) systems. It involves using a neural network to create an associative memory whose fixed points represent the normal behavior of the system.

  12. Neural Networks in Chemical Reaction Dynamics

    CERN Document Server

    Raff, Lionel; Hagan, Martin

    2011-01-01

    This monograph presents recent advances in neural network (NN) approaches and applications to chemical reaction dynamics. Topics covered include: (i) the development of ab initio potential-energy surfaces (PES) for complex multichannel systems using modified novelty sampling and feedforward NNs; (ii) methods for sampling the configuration space of critical importance, such as trajectory and novelty sampling methods and gradient fitting methods; (iii) parametrization of interatomic potential functions using a genetic algorithm accelerated with a NN; (iv) parametrization of analytic interatomic

  13. Rule Extraction Algorithm for Deep Neural Networks: A Review

    OpenAIRE

    Hailesilassie, Tameru

    2016-01-01

    Despite the highest classification accuracy in wide varieties of application areas, artificial neural network has one disadvantage. The way this Network comes to a decision is not easily comprehensible. The lack of explanation ability reduces the acceptability of neural network in data mining and decision system. This drawback is the reason why researchers have proposed many rule extraction algorithms to solve the problem. Recently, Deep Neural Network (DNN) is achieving a profound result ove...

  14. Classification of Respiratory Sounds by Using An Artificial Neural Network

    Science.gov (United States)

    2007-11-02

    CLASSIFICATION OF RESPIRATORY SOUNDS BY USING AN ARTIFICIAL NEURAL NETWORK M.C. Sezgin, Z. Dokur, T. Ölmez, M. Korürek Department of Electronics and...successfully classified by the GAL network. Keywords-Respiratory Sounds, Classification of Biomedical Signals, Artificial Neural Network . I. INTRODUCTION...process, feature extraction, and classification by the artificial neural network . At first, the RS signal obtained from a real-time measurement equipment is

  15. Fast implementation of neural network classification

    Science.gov (United States)

    Seo, Guiwon; Ok, Jiheon; Lee, Chulhee

    2013-09-01

    Most artificial neural networks use a nonlinear activation function that includes sigmoid and hyperbolic tangent functions. Most artificial networks employ nonlinear functions such as these sigmoid and hyperbolic tangent functions, which incur high complexity costs, particularly during hardware implementation. In this paper, we propose new polynomial approximation methods for nonlinear activation functions that can substantially reduce complexity without sacrificing performance. The proposed approximation methods were applied to pattern classification problems. Experimental results show that the processing time was reduced by up to 50% without any performance degradations in terms of computer simulation.

  16. Deep learning in neural networks: an overview.

    Science.gov (United States)

    Schmidhuber, Jürgen

    2015-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

  17. Multilingual Text Detection with Nonlinear Neural Network

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-01-01

    Full Text Available Multilingual text detection in natural scenes is still a challenging task in computer vision. In this paper, we apply an unsupervised learning algorithm to learn language-independent stroke feature and combine unsupervised stroke feature learning and automatically multilayer feature extraction to improve the representational power of text feature. We also develop a novel nonlinear network based on traditional Convolutional Neural Network that is able to detect multilingual text regions in the images. The proposed method is evaluated on standard benchmarks and multilingual dataset and demonstrates improvement over the previous work.

  18. Efficient implementation of neural network deinterlacing

    Science.gov (United States)

    Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee

    2009-02-01

    Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.

  19. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  20. Phase Transitions in Living Neural Networks

    Science.gov (United States)

    Williams-Garcia, Rashid Vladimir

    Our nervous systems are composed of intricate webs of interconnected neurons interacting in complex ways. These complex interactions result in a wide range of collective behaviors with implications for features of brain function, e.g., information processing. Under certain conditions, such interactions can drive neural network dynamics towards critical phase transitions, where power-law scaling is conjectured to allow optimal behavior. Recent experimental evidence is consistent with this idea and it seems plausible that healthy neural networks would tend towards optimality. This hypothesis, however, is based on two problematic assumptions, which I describe and for which I present alternatives in this thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a sensory stimulus, and so living neural networks may be incapable of achieving "critical" optimality. I develop a framework known as quasicriticality, in which a relative optimality can be achieved depending on the strength of the environmental influence. Second, the power-law scaling supporting this hypothesis is based on statistical analysis of cascades of activity known as neuronal avalanches, which conflate causal and non-causal activity, thus confounding important dynamical information. In this thesis, I present a new method to unveil causal links, known as causal webs, between neuronal activations, thus allowing for experimental tests of the quasicriticality hypothesis and other practical applications.

  1. CALIBRATION OF ONLINE ANALYZERS USING NEURAL NETWORKS

    Energy Technology Data Exchange (ETDEWEB)

    Rajive Ganguli; Daniel E. Walsh; Shaohai Yu

    2003-12-05

    Neural networks were used to calibrate an online ash analyzer at the Usibelli Coal Mine, Healy, Alaska, by relating the Americium and Cesium counts to the ash content. A total of 104 samples were collected from the mine, with 47 being from screened coal, and the rest being from unscreened coal. Each sample corresponded to 20 seconds of coal on the running conveyor belt. Neural network modeling used the quick stop training procedure. Therefore, the samples were split into training, calibration and prediction subsets. Special techniques, using genetic algorithms, were developed to representatively split the sample into the three subsets. Two separate approaches were tried. In one approach, the screened and unscreened coal was modeled separately. In another, a single model was developed for the entire dataset. No advantage was seen from modeling the two subsets separately. The neural network method performed very well on average but not individually, i.e. though each prediction was unreliable, the average of a few predictions was close to the true average. Thus, the method demonstrated that the analyzers were accurate at 2-3 minutes intervals (average of 6-9 samples), but not at 20 seconds (each prediction).

  2. Neural network parameters affecting image classification

    Directory of Open Access Journals (Sweden)

    K.C. Tiwari

    2001-07-01

    Full Text Available The study is to assess the behaviour and impact of various neural network parameters and their effects on the classification accuracy of remotely sensed images which resulted in successful classification of an IRS-1B LISS II image of Roorkee and its surrounding areas using neural network classification techniques. The method can be applied for various defence applications, such as for the identification of enemy troop concentrations and in logistical planning in deserts by identification of suitable areas for vehicular movement. Five parameters, namely training sample size, number of hidden layers, number of hidden nodes, learning rate and momentum factor were selected. In each case, sets of values were decided based on earlier works reported. Neural network-based classifications were carried out for as many as 450 combinations of these parameters. Finally, a graphical analysis of the results obtained was carried out to understand the relationship among these parameters. A table of recommended values for these parameters for achieving 90 per cent and higher classification accuracy was generated and used in classification of an IRS-1B LISS II image. The analysis suggests the existence of an intricate relationship among these parameters and calls for a wider series of classification experiments as also a more intricate analysis of the relationships.

  3. Markovian architectural bias of recurrent neural networks.

    Science.gov (United States)

    Tino, Peter; Cernanský, Michal; Benusková, Lubica

    2004-01-01

    In this paper, we elaborate upon the claim that clustering in the recurrent layer of recurrent neural networks (RNNs) reflects meaningful information processing states even prior to training [1], [2]. By concentrating on activation clusters in RNNs, while not throwing away the continuous state space network dynamics, we extract predictive models that we call neural prediction machines (NPMs). When RNNs with sigmoid activation functions are initialized with small weights (a common technique in the RNN community), the clusters of recurrent activations emerging prior to training are indeed meaningful and correspond to Markov prediction contexts. In this case, the extracted NPMs correspond to a class of Markov models, called variable memory length Markov models (VLMMs). In order to appreciate how much information has really been induced during the training, the RNN performance should always be compared with that of VLMMs and NPMs extracted before training as the "null" base models. Our arguments are supported by experiments on a chaotic symbolic sequence and a context-free language with a deep recursive structure. Index Terms-Complex symbolic sequences, information latching problem, iterative function systems, Markov models, recurrent neural networks (RNNs).

  4. The next generation of neural network chips

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1997-08-01

    There have been many national and international neural networks research initiatives: USA (DARPA, NIBS), Canada (IRIS), Japan (HFSP) and Europe (BRAIN, GALA TEA, NERVES, ELENE NERVES 2) -- just to mention a few. Recent developments in the field of neural networks, cognitive science, bioengineering and electrical engineering have made it possible to understand more about the functioning of large ensembles of identical processing elements. There are more research papers than ever proposing solutions and hardware implementations are by no means an exception. Two fields (computing and neuroscience) are interacting in ways nobody could imagine just several years ago, and -- with the advent of new technologies -- researchers are focusing on trying to copy the Brain. Such an exciting confluence may quite shortly lead to revolutionary new computers and it is the aim of this invited session to bring to light some of the challenging research aspects dealing with the hardware realizability of future intelligent chips. Present-day (conventional) technology is (still) mostly digital and, thus, occupies wider areas and consumes much more power than the solutions envisaged. The innovative algorithmic and architectural ideals should represent important breakthroughs, paving the way towards making neural network chips available to the industry at competitive prices, in relatively small packages and consuming a fraction of the power required by equivalent digital solutions.

  5. File access prediction using neural networks.

    Science.gov (United States)

    Patra, Prashanta Kumar; Sahu, Muktikanta; Mohapatra, Subasish; Samantray, Ronak Kumar

    2010-06-01

    One of the most vexing issues in design of a high-speed computer is the wide gap of access times between the memory and the disk. To solve this problem, static file access predictors have been used. In this paper, we propose dynamic file access predictors using neural networks to significantly improve upon the accuracy, success-per-reference, and effective-success-rate-per-reference by using neural-network-based file access predictor with proper tuning. In particular, we verified that the incorrect prediction has been reduced from 53.11% to 43.63% for the proposed neural network prediction method with a standard configuration than the recent popularity (RP) method. With manual tuning for each trace, we are able to improve upon the misprediction rate and effective-success-rate-per-reference using a standard configuration. Simulations on distributed file system (DFS) traces reveal that exact fit radial basis function (RBF) gives better prediction in high end system whereas multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) backpropagation outperforms in system having good computational capability. Probabilistic and competitive predictors are the most suitable for work stations having limited resources to deal with and the former predictor is more efficient than the latter for servers having maximum system calls. Finally, we conclude that MLP with LM backpropagation algorithm has better success rate of file prediction than those of simple perceptron, last successor, stable successor, and best k out of m predictors.

  6. Neural Network Approach for Eye Detection

    CERN Document Server

    Vijayalaxmi,; Sreehari, S

    2012-01-01

    Driving support systems, such as car navigation systems are becoming common and they support driver in several aspects. Non-intrusive method of detecting Fatigue and drowsiness based on eye-blink count and eye directed instruction controlhelps the driver to prevent from collision caused by drowsy driving. Eye detection and tracking under various conditions such as illumination, background, face alignment and facial expression makes the problem complex.Neural Network based algorithm is proposed in this paper to detect the eyes efficiently. In the proposed algorithm, first the neural Network is trained to reject the non-eye regionbased on images with features of eyes and the images with features of non-eye using Gabor filter and Support Vector Machines to reduce the dimension and classify efficiently. In the algorithm, first the face is segmented using L*a*btransform color space, then eyes are detected using HSV and Neural Network approach. The algorithm is tested on nearly 100 images of different persons under...

  7. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  8. Improved Extension Neural Network and Its Applications

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2014-01-01

    Full Text Available Extension neural network (ENN is a new neural network that is a combination of extension theory and artificial neural network (ANN. The learning algorithm of ENN is based on supervised learning algorithm. One of important issues in the field of classification and recognition of ENN is how to achieve the best possible classifier with a small number of labeled training data. Training data selection is an effective approach to solve this issue. In this work, in order to improve the supervised learning performance and expand the engineering application range of ENN, we use a novel data selection method based on shadowed sets to refine the training data set of ENN. Firstly, we use clustering algorithm to label the data and induce shadowed sets. Then, in the framework of shadowed sets, the samples located around each cluster centers (core data and the borders between clusters (boundary data are selected as training data. Lastly, we use selected data to train ENN. Compared with traditional ENN, the proposed improved ENN (IENN has a better performance. Moreover, IENN is independent of the supervised learning algorithms and initial labeled data. Experimental results verify the effectiveness and applicability of our proposed work.

  9. Artificial neural network applications in ionospheric studies

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    1998-06-01

    Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.

  10. Microscopic instability in recurrent neural networks

    Science.gov (United States)

    Yamanaka, Yuzuru; Amari, Shun-ichi; Shinomoto, Shigeru

    2015-03-01

    In a manner similar to the molecular chaos that underlies the stable thermodynamics of gases, a neuronal system may exhibit microscopic instability in individual neuronal dynamics while a macroscopic order of the entire population possibly remains stable. In this study, we analyze the microscopic stability of a network of neurons whose macroscopic activity obeys stable dynamics, expressing either monostable, bistable, or periodic state. We reveal that the network exhibits a variety of dynamical states for microscopic instability residing in a given stable macroscopic dynamics. The presence of a variety of dynamical states in such a simple random network implies more abundant microscopic fluctuations in real neural networks which consist of more complex and hierarchically structured interactions.

  11. A new approach to artificial neural networks.

    Science.gov (United States)

    Baptista Filho, B D; Cabral, E L; Soares, A J

    1998-01-01

    A novel approach to artificial neural networks is presented. The philosophy of this approach is based on two aspects: the design of task-specific networks, and a new neuron model with multiple synapses. The synapses' connective strengths are modified through selective and cumulative processes conducted by axo-axonic connections from a feedforward circuit. This new concept was applied to the position control of a planar two-link manipulator exhibiting excellent results on learning capability and generalization when compared with a conventional feedforward network. In the present paper, the example shows only a network developed from a neuronal reflexive circuit with some useful artifices, nevertheless without the intention of covering all possibilities devised.

  12. Fuzzy Neural Network Based Traffic Prediction and Congestion Control in High-Speed Networks

    Institute of Scientific and Technical Information of China (English)

    费翔; 何小燕; 罗军舟; 吴介一; 顾冠群

    2000-01-01

    Congestion control is one of the key problems in high-speed networks, such as ATM. In this paper, a kind of traffic prediction and preventive congestion control scheme is proposed using neural network approach. Traditional predictor using BP neural network has suffered from long convergence time and dissatisfying error. Fuzzy neural network developed in this paper can solve these problems satisfactorily. Simulations show the comparison among no-feedback control scheme,reactive control scheme and neural network based control scheme.

  13. Neural networks optimally trained with noisy data

    Science.gov (United States)

    Wong, K. Y. Michael; Sherrington, David

    1993-06-01

    We study the retrieval behaviors of neural networks which are trained to optimize their performance for an ensemble of noisy example patterns. In particular, we consider (1) the performance overlap, which reflects the performance of the network in an operating condition identical to the training condition; (2) the storage overlap, which reflects the ability of the network to merely memorize the stored information; (3) the attractor overlap, which reflects the precision of retrieval for dilute feedback networks; and (4) the boundary overlap, which defines the boundary of the basin of attraction, and hence the associative ability for dilute feedback networks. We find that for sufficiently low training noise, the network optimizes its overall performance by sacrificing the individual performance of a minority of patterns, resulting in a two-band distribution of the aligning fields. For a narrow range of storage level, the network loses and then regains its retrieval capability when the training noise level increases, and we interpret that this reentrant retrieval behavior is related to competing tendencies in structuring the basins of attraction for the stored patterns. Reentrant behavior is also observed in the space of synaptic interactions, in which the replica symmetric solution of the optimal network destabilizes and then restabilizes when the training noise level increases. We summarize these observations by picturing training noises as an instrument for widening the basins of attractions of the stored patterns at the expense of reducing the precision of retrieval.

  14. Models of neural networks with fuzzy activation functions

    Science.gov (United States)

    Nguyen, A. T.; Korikov, A. M.

    2017-02-01

    This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.

  15. PSO optimized Feed Forward Neural Network for offline Signature Classification

    Directory of Open Access Journals (Sweden)

    Pratik R. Hajare

    2015-07-01

    Full Text Available The paper is based on feed forward neural network (FFNN optimization by particle swarm intelligence (PSI used to provide initial weights and biases to train neural network. Once the weights and biases are found using Particle swarm optimization (PSO with neural network used as training algorithm for specified epoch, the same are used to train the neural network for training and classification of benchmark problems. Further the approach is tested for offline signature classifications. A comparison is made between normal FFNN with random weights and biases and FFNN with particle swarm optimized weights and biases. Firstly, the performance is tested on two benchmark databases for neural network, The Breast Cancer Database and the Diabetic Database. Result shows that neural network performs better with initial weights and biases obtained by Particle Swarm optimization. The network converges faster with PSO obtained initial weights and biases for FFNN and classification accuracy is increased.

  16. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    1995-01-01

    network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract......A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  17. Intensity Coding in Two-Dimensional Excitable Neural Networks

    CERN Document Server

    Copelli, Mauro

    2016-01-01

    In the light of recent experimental findings that gap junctions are essential for low level intensity detection in the sensory periphery, the Greenberg-Hastings cellular automaton is employed to model the response of a two-dimensional sensory network to external stimuli. We show that excitable elements (sensory neurons) that have a small dynamical range are shown to give rise to a collective large dynamical range. Therefore the network transfer (gain) function (which is Hill or Stevens law-like) is an emergent property generated from a pool of small dynamical range cells, providing a basis for a "neural psychophysics". The growth of the dynamical range with the system size is approximately logarithmic, suggesting a functional role for electrical coupling. For a fixed number of neurons, the dynamical range displays a maximum as a function of the refractory period, which suggests experimental tests for the model. A biological application to ephaptic interactions in olfactory nerve fascicles is proposed.

  18. Phase Synchronization in Small World Chaotic Neural Networks

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-Yun; LU Qi-Shao

    2005-01-01

    @@ To understand collective motion of realneural networks very well, we investigate collective phase synchronization of small world chaotic Hindmarsh-Rose (HR) neural networks. By numerical simulations, we conclude that small world chaotic HR neural networks can achieve collective phase synchronization. Furthermore, it is shown that phase synchronization of small world chaotic HR neural networks is dependent on the coupling strength,the connection topology (which is determined by the probability p), as well as the coupling number. These phenomena are important to guide us to understand the synchronization of real neural networks.

  19. Detection of Wildfires with Artificial Neural Networks

    Science.gov (United States)

    Umphlett, B.; Leeman, J.; Morrissey, M. L.

    2011-12-01

    Currently fire detection for the National Oceanic and Atmospheric Administration (NOAA) using satellite data is accomplished with algorithms and error checking human analysts. Artificial neural networks (ANNs) have been shown to be more accurate than algorithms or statistical methods for applications dealing with multiple datasets of complex observed data in the natural sciences. ANNs also deal well with multiple data sources that are not all equally reliable or equally informative to the problem. An ANN was tested to evaluate its accuracy in detecting wildfires utilizing polar orbiter numerical data from the Advanced Very High Resolution Radiometer (AVHRR). Datasets containing locations of known fires were gathered from the NOAA's polar orbiting satellites via the Comprehensive Large Array-data Stewardship System (CLASS). The data was then calibrated and navigation corrected using the Environment for Visualizing Images (ENVI). Fires were located with the aid of shapefiles generated via ArcGIS. Afterwards, several smaller ten pixel by ten pixel datasets were created for each fire (using the ENVI corrected data). Several datasets were created for each fire in order to vary fire position and avoid training the ANN to look only at fires in the center of an image. Datasets containing no fires were also created. A basic pattern recognition neural network was established with the MATLAB neural network toolbox. The datasets were then randomly separated into categories used to train, validate, and test the ANN. To prevent over fitting of the data, the mean squared error (MSE) of the network was monitored and training was stopped when the MSE began to rise. Networks were tested using each channel of the AVHRR data independently, channels 3a and 3b combined, and all six channels. The number of hidden neurons for each input set was also varied between 5-350 in steps of 5 neurons. Each configuration was run 10 times, totaling about 4,200 individual network evaluations. Thirty

  20. The effect of the neural activity on topological properties of growing neural networks.

    Science.gov (United States)

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  1. Network traffic anomaly prediction using Artificial Neural Network

    Science.gov (United States)

    Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea

    2017-03-01

    As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.

  2. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster.

  3. Sparse coding for layered neural networks

    Science.gov (United States)

    Katayama, Katsuki; Sakata, Yasuo; Horiguchi, Tsuyoshi

    2002-07-01

    We investigate storage capacity of two types of fully connected layered neural networks with sparse coding when binary patterns are embedded into the networks by a Hebbian learning rule. One of them is a layered network, in which a transfer function of even layers is different from that of odd layers. The other is a layered network with intra-layer connections, in which the transfer function of inter-layer is different from that of intra-layer, and inter-layered neurons and intra-layered neurons are updated alternately. We derive recursion relations for order parameters by means of the signal-to-noise ratio method, and then apply the self-control threshold method proposed by Dominguez and Bollé to both layered networks with monotonic transfer functions. We find that a critical value αC of storage capacity is about 0.11|a ln a| -1 ( a≪1) for both layered networks, where a is a neuronal activity. It turns out that the basin of attraction is larger for both layered networks when the self-control threshold method is applied.

  4. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe

    2016-07-26

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations\\' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users\\' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  5. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  6. Stability of discrete Hopfield neural networks with delay

    Institute of Scientific and Technical Information of China (English)

    Ma Runnian; Lei Sheping; Liu Naigong

    2005-01-01

    Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete Hopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay.

  7. Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network

    DEFF Research Database (Denmark)

    Míguez González, M; López Peña, F.; Díaz Casás, V.

    2011-01-01

    acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...

  8. Solving quadratic programming problems by delayed projection neural network.

    Science.gov (United States)

    Yang, Yongqing; Cao, Jinde

    2006-11-01

    In this letter, the delayed projection neural network for solving convex quadratic programming problems is proposed. The neural network is proved to be globally exponentially stable and can converge to an optimal solution of the optimization problem. Three examples show the effectiveness of the proposed network.

  9. Advances in Artificial Neural Networks - Methodological Development and Application

    Science.gov (United States)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  10. An evolutionary approach to associative memory in recurrent neural networks

    CERN Document Server

    Fujita, Sh; Fujita, Sh; Nishimura, H

    1994-01-01

    Abstract: In this paper, we investigate the associative memory in recurrent neural networks, based on the model of evolving neural networks proposed by Nolfi, Miglino and Parisi. Experimentally developed network has highly asymmetric synaptic weights and dilute connections, quite different from those of the Hopfield model. Some results on the effect of learning efficiency on the evolution are also presented.

  11. Neural network model to control an experimental chaotic pendulum

    NARCIS (Netherlands)

    Bakker, R; Schouten, JC; Takens, F; vandenBleek, CM

    1996-01-01

    A feedforward neural network was trained to predict the motion of an experimental, driven, and damped pendulum operating in a chaotic regime. The network learned the behavior of the pendulum from a time series of the pendulum's angle, the single measured variable. The validity of the neural network,

  12. Explicit neural representations, recursive neural networks and conscious visual perception.

    Science.gov (United States)

    Pollen, Daniel A

    2003-08-01

    The fundamental question as to whether the neural correlates of any given conscious visual experience are expressed locally within a given cortical area or more globally within some widely distributed network remains unresolved. We inquire as to whether recursive processing-by which we mean the combined flow and integrated outcome of afferent and recurrent activity across a series of cortical areas-is essential for the emergence of conscious visual experience. If so, we further inquire as to whether such recursive processing is essential only for loops between extrastriate cortical areas explicitly representing experiences such as color or motion back to V1 or whether it is processing between still higher levels and the areas computing such explicit representations that is exclusively or additionally essential for visual experience. If recursive processing is not essential for the emergence of conscious visual experience, then it should also be possible to determine whether it is only the intracortical sensory processing within areas computing explicit sensory representations that is required for perceptual experience or whether it is the subsequent processing of the output of such areas within more anterior cortical regions that engenders perception. The present analysis suggests that the questions posed here may ultimately become experimentally resolvable. Whatever the outcome, the results will likely open new approaches to identify the neural correlates of conscious visual perception.

  13. Nonlinear system identification and control based on modular neural networks.

    Science.gov (United States)

    Puscasu, Gheorghe; Codres, Bogdan

    2011-08-01

    A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.

  14. Dynamic artificial neural networks with affective systems.

    Science.gov (United States)

    Schuman, Catherine D; Birdwell, J Douglas

    2013-01-01

    Artificial neural networks (ANNs) are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP) and long term depression (LTD), and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.

  15. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.

    Science.gov (United States)

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  16. An introduction to neural network methods for differential equations

    CERN Document Server

    Yadav, Neha; Kumar, Manoj

    2015-01-01

    This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks, and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed...

  17. An introduction to bio-inspired artificial neural network architectures.

    Science.gov (United States)

    Fasel, B

    2003-03-01

    In this introduction to artificial neural networks we attempt to give an overview of the most important types of neural networks employed in engineering and explain shortly how they operate and also how they relate to biological neural networks. The focus will mainly be on bio-inspired artificial neural network architectures and specifically to neo-perceptions. The latter belong to the family of convolutional neural networks. Their topology is somewhat similar to the one of the human visual cortex and they are based on receptive fields that allow, in combination with sub-sampling layers, for an improved robustness with regard to local spatial distortions. We demonstrate the application of artificial neural networks to face analysis--a domain we human beings are particularly good at, yet which poses great difficulties for digital computers running deterministic software programs.

  18. Modeling of Magneto-Rheological Damper with Neural Network

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the revival of magnetorheological technology research in the 1980's, its application in vehicles is increasingly focused on vibration suppression. Based on the importance of magnetorheological damper modeling, nonparametric modeling with neural network, which is a promising development in semi-active online control of vehicles with MR suspension, has been carried out in this study. A two layer neural network with 7 neurons in a hidden layer and 3 inputs and 1 output was established to simulate the behavior of MR damper at different excitation currents. In the neural network modeling, the damping force is a function of displacement, velocity and the applied current. A MR damper for vehicles is fabricated and tested by MTS; the data acquired are utilized for neural network training and validation. The application and validation show that the predicted forces of the neural network match well with the forces tested with a small variance, which demonstrates the effectiveness and precision of neural network modeling.

  19. Three-dimensional thinning by neural networks

    Science.gov (United States)

    Shen, Jun; Shen, Wei

    1995-10-01

    3D thinning is widely used in 3D object representation in computer vision and in trajectory planning in robotics to find the topological structure of the free space. In the present paper, we propose a 3D image thinning method by neural networks. Each voxel in the 3D image corresponds to a set of neurons, called 3D Thinron, in the network. Taking the 3D Thinron as the elementary unit, the global structure of the network is a 3D array in which each Thinron is connected with the 26 neighbors in the neighborhood 3 X 3 X 3. As to the Thinron itself, the set of neurons are organized in multiple layers. In the first layer, we have neurons for boundary analysis, connectivity analysis and connectivity verification, taking as input the voxels in the 3 X 3 X 3 neighborhood and the intermediate outputs of neighboring Thinrons. In the second layer, we have the neurons for synthetical analysis to give the intermediate output of Thinron. In the third layer, we have the decision neurons whose state determines the final output. All neurons in the Thinron are the adaline neurons of Widrow, except the connectivity analysis and verification neurons which are nonlinear neurons. With the 3D Thinron neural network, the state transition of the network will take place automatically, and the network converges to the final steady state, which gives the result medial surface of 3D objects, preserving the connectivity in the initial image. The method presented is simulated and tested for 3D images, experimental results are reported.

  20. Analysis of Heart Diseases Dataset using Neural Network Approach

    CERN Document Server

    Rani, K Usha

    2011-01-01

    One of the important techniques of Data mining is Classification. Many real world problems in various fields such as business, science, industry and medicine can be solved by using classification approach. Neural Networks have emerged as an important tool for classification. The advantages of Neural Networks helps for efficient classification of given data. In this study a Heart diseases dataset is analyzed using Neural Network approach. To increase the efficiency of the classification process parallel approach is also adopted in the training phase.

  1. An Approach to Structural Approximation Analysis by Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    陆金桂; 周济; 王浩; 陈新度; 余俊; 肖世德

    1994-01-01

    This paper theoretically proves that a three-layer neural network can be applied to implementing exactly the function between the stresses and displacements and the design variables of any elastic structure based on the Kolmogorov’s mapping neural network existence theorem. A new approach to the structural approximation analysis with the global characteristic based on artificial neural networks is presented. The computer simulation experiments made by this paper show that the new approach is effective.

  2. Training product unit neural networks with genetic algorithms

    Science.gov (United States)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  3. One pass learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2016-01-01

    Generalized classifier neural network introduced as a kind of radial basis function neural network, uses gradient descent based optimized smoothing parameter value to provide efficient classification. However, optimization consumes quite a long time and may cause a drawback. In this work, one pass learning for generalized classifier neural network is proposed to overcome this disadvantage. Proposed method utilizes standard deviation of each class to calculate corresponding smoothing parameter. Since different datasets may have different standard deviations and data distributions, proposed method tries to handle these differences by defining two functions for smoothing parameter calculation. Thresholding is applied to determine which function will be used. One of these functions is defined for datasets having different range of values. It provides balanced smoothing parameters for these datasets through logarithmic function and changing the operation range to lower boundary. On the other hand, the other function calculates smoothing parameter value for classes having standard deviation smaller than the threshold value. Proposed method is tested on 14 datasets and performance of one pass learning generalized classifier neural network is compared with that of probabilistic neural network, radial basis function neural network, extreme learning machines, and standard and logarithmic learning generalized classifier neural network in MATLAB environment. One pass learning generalized classifier neural network provides more than a thousand times faster classification than standard and logarithmic generalized classifier neural network. Due to its classification accuracy and speed, one pass generalized classifier neural network can be considered as an efficient alternative to probabilistic neural network. Test results show that proposed method overcomes computational drawback of generalized classifier neural network and may increase the classification performance.

  4. Discrete Orthogonal Transforms and Neural Networks for Image Interpolation

    Directory of Open Access Journals (Sweden)

    J. Polec

    1999-09-01

    Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.

  5. Dissipativity Analysis of Neural Networks with Time-varying Delays

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Bao-Tong Cui

    2008-01-01

    A new definition of dissipativity for neural networks is presented in this paper. By constructing proper Lyapunov func- tionals and using some analytic techniques, sufficient conditions are given to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties and the integro-differential neural networks in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the obtained results.

  6. Position Sensorless Driving of BLDCM Using Neural Networks

    Science.gov (United States)

    Guo, Hai-Jiao; Sagawa, Seiji; Ichinokura, Osamu

    A sensorless driving method of brushless DC Motors (BLDCM) using neural network has been studied in this paper. Considering the nonlinear characteristics and the parameter error of the modeling, neural networks are introduced to estimate the electromotive force (EMF). The results of simulation and experiment using offline trained neural networks show the proposed method is useful. In addition, the robustness about the parameters is discussed.

  7. An Artificial Neural Network Control System for Spacecraft Attitude Stabilization

    Science.gov (United States)

    1990-06-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California ’-DTIC 0 ELECT f NMARO 5 191 N S, U, THESIS B . AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR...NO. NO. NO ACCESSION NO 11. TITLE (Include Security Classification) AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR SPACECRAFT ATTITUDE STABILIZATION...obsolete a U.S. G v pi.. iim n P.. oiice! toog-eo.5s43 i Approved for public release; distribution is unlimited. AN ARTIFICIAL NEURAL NETWORK CONTROL

  8. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    Science.gov (United States)

    1994-08-10

    SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC

  9. A C-LSTM Neural Network for Text Classification

    OpenAIRE

    Zhou, Chunting; Sun, Chonglin; Liu, Zhiyuan; Lau, Francis C. M.

    2015-01-01

    Neural network models have been demonstrated to be capable of achieving remarkable performance in sentence and document modeling. Convolutional neural network (CNN) and recurrent neural network (RNN) are two mainstream architectures for such modeling tasks, which adopt totally different ways of understanding natural languages. In this work, we combine the strengths of both architectures and propose a novel and unified model called C-LSTM for sentence representation and text classification. C-...

  10. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  11. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  12. Classification of Chronic Whiplash Associated Disorders With Artificial Neural Networks

    Science.gov (United States)

    2007-11-02

    question is how to analyse a multiple of features in an appropriate way. Different Artificial Neural Networks (ANN) have been developed during the past...sample IR-light, at 60 Hz, reflected by the retro-reflective markers. CLASSIFICATION OF CHRONIC WHIPLASH ASSOCIATED DISORDERS WITH ARTIFICIAL NEURAL NETWORKS F...Associated Disorders With Artificial Neural Networks Contract Number Grant Number Program Element Number Author(s) Project Number Task Number

  13. Improved Landmine Detection by Complex-Valued Artificial Neural Networks

    Science.gov (United States)

    2002-12-04

    IMPROVED LANDMINE DETECTION BY COMPLEX-VALUED ARTIFICIAL NEURAL NETWORKS Research was Sponsored by: U. S. ARMY RESEARCH OFFICE Program Manager... artificial neural networks in conjunction with fuzzy logic for improved system performance over and above the good results already attained are...of detecting mines. One of the more promising avenues of research in this area involves the use of artificial neural networks [3]. More specifically

  14. An Analysis of Stopping Criteria in Artificial Neural Networks

    Science.gov (United States)

    1994-03-01

    ARTIFICIAL NEURAL NETWORKS THESIS Bruce Kostal Captain, USAF AFIT/GST/ENS/94M 07 D I ELECTE APR...ANALYSIS OF STOPPING CRITERIA IN ARTIFICIAL NEURAL NETWORKS THESIS Bruce Kostal Captain, USAF AFIT/GST/ENS/94M-07 ETIC ELECTE 94-12275 APR2 1994 U Approved...for public release; distributi6 unlimited D94󈧮i •6 AFIT/GST/ENS/94M-07 AN ANALYSIS OF STOPPING CRITERIA IN ARTIFICIAL NEURAL NETWORKS

  15. SOFM Neural Network Based Hierarchical Topology Control for Wireless Sensor Networks

    OpenAIRE

    2014-01-01

    Well-designed network topology provides vital support for routing, data fusion, and target tracking in wireless sensor networks (WSNs). Self-organization feature map (SOFM) neural network is a major branch of artificial neural networks, which has self-organizing and self-learning features. In this paper, we propose a cluster-based topology control algorithm for WSNs, named SOFMHTC, which uses SOFM neural network to form a hierarchical network structure, completes cluster head selection by the...

  16. Geophysical phenomena classification by artificial neural networks

    Science.gov (United States)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  17. 一类具有时滞的模糊反应扩散神经网络的自适应同步研究%Adaptive Synchronization for a Class of Fuzzy Cellular Neural Networks with Time Delays and Reaction Diffusion Terms

    Institute of Scientific and Technical Information of China (English)

    秦丽华; 刘艳; 樊小琳

    2012-01-01

    The adaptive synchronization of delayed fuzzy cellular neural networks with reaction diffusion terms has been considered. Under two different kinds of boundary conditions, based on the LaSalle invariant principle of functional differential equations and the adaptive feedback control technique, some sufficient conditions for adaptive synchronization of a system are obtained.%研究了一类具有时滞的模糊反应扩散神经网络的自适应同步,在两种不同的边界条件下,利用泛函微分方稃的LaSalle不峦原王单以及反馈榨制的方法.得到了系缔同步的充分条件.

  18. Uncovering the footprints of malicious traffic in cellular data networks

    OpenAIRE

    Raghuramu, A; Zang, H; Chuah, CN

    2015-01-01

    © Springer International Publishing Switzerland 2015. In this paper, we present a comprehensive characterization of malicious traffic generated by mobile devices using Deep Packet Inspection (DPI) records and security event logs from a large US based cellular provider network. Our analysis reveals that 0.17% of mobile devices in the cellular network are affected by security threats. This proportion, while small, is orders of magnitude higher than the last reported (in 2013) infection rate of ...

  19. Improving Maritime Domain Awareness Using Neural Networks for Target of Interest Classification

    Science.gov (United States)

    2015-03-01

    neural network training performance are presented using mean squared error convergence plots. In all implementations , the SCG learning...the implementation of the feature extraction techniques in MATLAB, implementation of the neural networks using the MATLAB Neural Network Toolbox, and...thesis. The Neural Network Toolbox supports supervised learning neural networks , which were chosen to best implement object classification.

  20. Correlated neural variability in persistent state networks.

    Science.gov (United States)

    Polk, Amber; Litwin-Kumar, Ashok; Doiron, Brent

    2012-04-17

    Neural activity that persists long after stimulus presentation is a biological correlate of short-term memory. Variability in spiking activity causes persistent states to drift over time, ultimately degrading memory. Models of short-term memory often assume that the input fluctuations to neural populations are independent across cells, a feature that attenuates population-level variability and stabilizes persistent activity. However, this assumption is at odds with experimental recordings from pairs of cortical neurons showing that both the input currents and output spike trains are correlated. It remains unclear how correlated variability affects the stability of persistent activity and the performance of cognitive tasks that it supports. We consider the stochastic long-timescale attractor dynamics of pairs of mutually inhibitory populations of spiking neurons. In these networks, persistent activity was less variable when correlated variability was globally distributed across both populations compared with the case when correlations were locally distributed only within each population. Using a reduced firing rate model with a continuum of persistent states, we show that, when input fluctuations are correlated across both populations, they drive firing rate fluctuations orthogonal to the persistent state attractor, thereby causing minimal stochastic drift. Using these insights, we establish that distributing correlated fluctuations globally as opposed to locally improves network's performance on a two-interval, delayed response discrimination task. Our work shows that the correlation structure of input fluctuations to a network is an important factor when determining long-timescale, persistent population spiking activity.

  1. Digital Watermarking Algorithm Based on Wavelet Transform and Neural Network

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenfei; ZHAI Guangqun; WANG Nengchao

    2006-01-01

    An effective blind digital watermarking algorithm based on neural networks in the wavelet domain is presented. Firstly, the host image is decomposed through wavelet transform. The significant coefficients of wavelet are selected according to the human visual system (HVS) characteristics. Watermark bits are added to them. And then effectively cooperates neural networks to learn the characteristics of the embedded watermark related to them. Because of the learning and adaptive capabilities of neural networks, the trained neural networks almost exactly recover the watermark from the watermarked image. Experimental results and comparisons with other techniques prove the effectiveness of the new algorithm.

  2. Liquefaction Microzonation of Babol City Using Artificial Neural Network

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Choobbasti, A.J.; Barari, Amin

    2012-01-01

    that will be less susceptible to damage during earthquakes. The scope of present study is to prepare the liquefaction microzonation map for the Babol city based on Seed and Idriss (1983) method using artificial neural network. Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches...... is proposed in this paper. To meet this objective, an effort is made to introduce a total of 30 boreholes data in an area of 7 km2 which includes the results of field tests into the neural network model and the prediction of artificial neural network is checked in some test boreholes, finally the liquefaction...

  3. Term Structure of Interest Rates Based on Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In light of the nonlinear approaching capability of artificial neural networks ( ANN), the term structure of interest rates is predicted using The generalized regression neural network (GRNN) and back propagation (BP) neural networks models. The prediction performance is measured with US interest rate data. Then, RBF and BP models are compared with Vasicek's model and Cox-Ingersoll-Ross (CIR) model. The comparison reveals that neural network models outperform Vasicek's model and CIR model,which are more precise and closer to the real market situation.

  4. Using neural networks for dynamic light scattering time series processing

    Science.gov (United States)

    Chicea, Dan

    2017-04-01

    A basic experiment to record dynamic light scattering (DLS) time series was assembled using basic components. The DLS time series processing using the Lorentzian function fit was considered as reference. A Neural Network was designed and trained using simulated frequency spectra for spherical particles in the range 0–350 nm, assumed to be scattering centers, and the neural network design and training procedure are described in detail. The neural network output accuracy was tested both on simulated and on experimental time series. The match with the DLS results, considered as reference, was good serving as a proof of concept for using neural networks in fast DLS time series processing.

  5. Neural network approach for differential diagnosis of interstitial lung diseases

    Science.gov (United States)

    Asada, Naoki; Doi, Kunio; MacMahon, Heber; Montner, Steven M.; Giger, Maryellen L.; Abe, Chihiro; Wu, Chris Y.

    1990-07-01

    A neural network approach was applied for the differential diagnosis of interstitial lung diseases. The neural network was designed for distinguishing between 9 types of interstitial lung diseases based on 20 items of clinical and radiographic information. A database for training and testing the neural network was created with 10 hypothetical cases for each of the 9 diseases. The performance of the neural network was evaluated by ROC analysis. The optimal parameters for the current neural network were determined by selecting those yielding the highest ROC curves. In this case the neural network consisted of one hidden layer including 6 units and was trained with 200 learning iterations. When the decision performances of the neural network chest radiologists and senior radiology residents were compared the neural network indicated high performance comparable to that of chest radiologists and superior to that of senior radiology residents. Our preliminary results suggested strongly that the neural network approach had potential utility in the computer-aided differential diagnosis of interstitial lung diseases. 1_

  6. Visual guidance of a pig evisceration robot using neural networks

    DEFF Research Database (Denmark)

    Christensen, S.S.; Andersen, A.W.; Jørgensen, T.M.

    1996-01-01

    The application of a RAM-based neural network to robot vision is demonstrated for the guidance of a pig evisceration robot. Tests of the combined robot-vision system have been performed at an abattoir. The vision system locates a set of feature points on a pig carcass and transmits the 3D...... coordinates of these points to the robot. An active vision strategy taking advantage of the generalisation capabilities of neural networks is used to locate the control points. A neural network PC-expansion board that provides a new classification every 180 mu s is used to speed up the neural network...

  7. Neural networks for function approximation in nonlinear control

    Science.gov (United States)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  8. Neural network for solving convex quadratic bilevel programming problems.

    Science.gov (United States)

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network.

  9. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  10. A hardware implementation of neural network with modified HANNIBAL architecture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bum youb; Chung, Duck Jin [Inha University, Inchon (Korea, Republic of)

    1996-03-01

    A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). 14 refs., 10 figs., 3 tabs.

  11. Neural network and its application to CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  12. Power converters and AC electrical drives with linear neural networks

    CERN Document Server

    Cirrincione, Maurizio

    2012-01-01

    The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts,

  13. Neural network models: Insights and prescriptions from practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Samad, T. [Honeywell Technology Center, Minneapolis, MN (United States)

    1995-12-31

    Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.

  14. NEURAL NETWORK TRAINING WITH PARALLEL PARTICLE SWARM OPTIMIZER

    Institute of Scientific and Technical Information of China (English)

    Qin Zheng; Liu Yu; Wang Yu

    2006-01-01

    Objective To reduce the execution time of neural network training. Methods Parallel particle swarm optimization algorithm based on master-slave model is proposed to train radial basis function neural networks, which is implemented on a cluster using MPI libraries for inter-process communication. Results High speed-up factor is achieved and execution time is reduced greatly. On the other hand, the resulting neural network has good classification accuracy not only on training sets but also on test sets. Conclusion Since the fitness evaluation is intensive, parallel particle swarm optimization shows great advantages to speed up neural network training.

  15. Neural Network Inverse Adaptive Controller Based on Davidon Least Square

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    General neural network inverse adaptive controller haa two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system.These defects limit the scope in which the neural network inverse adaptive controller is used.We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence,and then through constructing the pseudo-plant,a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system.The simulation results show the validity of this scheme.

  16. Advances in Artificial Neural Networks – Methodological Development and Application

    Directory of Open Access Journals (Sweden)

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  17. Designing neural networks that process mean values of random variables

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Michael J. [AIT Austrian Institute of Technology, Innovation Systems Department, 1220 Vienna (Austria); Clark, John W. [Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Centro de Ciências Matemáticas, Universidade de Madeira, 9000-390 Funchal (Portugal)

    2014-06-13

    We develop a class of neural networks derived from probabilistic models posed in the form of Bayesian networks. Making biologically and technically plausible assumptions about the nature of the probabilistic models to be represented in the networks, we derive neural networks exhibiting standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the relevant random variables, that can pool multiple sources of evidence, and that deal appropriately with ambivalent, inconsistent, or contradictory evidence. - Highlights: • High-level neural computations are specified by Bayesian belief networks of random variables. • Probability densities of random variables are encoded in activities of populations of neurons. • Top-down algorithm generates specific neural network implementation of given computation. • Resulting “neural belief networks” process mean values of random variables. • Such networks pool multiple sources of evidence and deal properly with inconsistent evidence.

  18. Parameterizing Stellar Spectra Using Deep Neural Networks

    Science.gov (United States)

    Li, Xiang-Ru; Pan, Ru-Yang; Duan, Fu-Qing

    2017-03-01

    Large-scale sky surveys are observing massive amounts of stellar spectra. The large number of stellar spectra makes it necessary to automatically parameterize spectral data, which in turn helps in statistically exploring properties related to the atmospheric parameters. This work focuses on designing an automatic scheme to estimate effective temperature ({T}{eff}), surface gravity ({log}g) and metallicity [Fe/H] from stellar spectra. A scheme based on three deep neural networks (DNNs) is proposed. This scheme consists of the following three procedures: first, the configuration of a DNN is initialized using a series of autoencoder neural networks; second, the DNN is fine-tuned using a gradient descent scheme; third, three atmospheric parameters {T}{eff}, {log}g and [Fe/H] are estimated using the computed DNNs. The constructed DNN is a neural network with six layers (one input layer, one output layer and four hidden layers), for which the number of nodes in the six layers are 3821, 1000, 500, 100, 30 and 1, respectively. This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz’s new opacity distribution function models. Test errors are measured with mean absolute errors (MAEs). The errors on real spectra from the Sloan Digital Sky Survey (SDSS) are 0.1477, 0.0048 and 0.1129 dex for {log}g, {log}{T}{eff} and [Fe/H] (64.85 K for {T}{eff}), respectively. Regarding theoretical spectra from Kurucz’s new opacity distribution function models, the MAE of the test errors are 0.0182, 0.0011 and 0.0112 dex for {log}g, {log}{T}{eff} and [Fe/H] (14.90 K for {T}{eff}), respectively.

  19. Deep Recurrent Neural Networks for Supernovae Classification

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  20. Cultured Neural Networks: Optimization of Patterned Network Adhesiveness and Characterization of their Neural Activity

    Directory of Open Access Journals (Sweden)

    W. L. C. Rutten

    2006-01-01

    Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.