WorldWideScience

Sample records for cellular membrane affinity

  1. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells

    OpenAIRE

    Bhatia, Prateek A.; Moaddel, Ruin; Wainer, Irving W.

    2010-01-01

    CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodopetra frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp c-DNA, using a baculovirus expression system. The resulting CMAC(Sf9MRP1)...

  2. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells.

    Science.gov (United States)

    Bhatia, Prateek A; Moaddel, Ruin; Wainer, Irving W

    2010-06-15

    CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodoptera frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp cDNA, using a baculovirus expression system. The resulting CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns and a control column produced using membrane fragments from non-transfected Sf9 cells, CMAC(Sf9), were characterized using frontal affinity chromatography using [(3)H]-etoposide as the marker ligand and etoposide, benzbromarone and MK571 as the displacers on the CMAC(Sf9(MRP1)) column, etoposide and furosemide on the CMAC(Sf9(MRP2)) column and etoposide and fumitremorgin C on the CMAC(Sf9(BCPR)) column. The binding affinities (K(i) values) obtained from the chromatographic studies were consistent with the data obtained using non-chromatographic techniques and the results indicate that the immobilized MRP1, MRP2 and BCRP transporters retained their ability to selectively bind known ligands. (S)-verapamil displaced [(3)H]-etoposide on the CMAC(Sf9(MRP1)) column to a greater extent than (R)-verapamil and the relative IC(50) values of the enantiomers were calculated using the changes in the retention times of the marker. The observed enantioselectivity and calculated IC(50) values were consistent with previously reported data. The results indicated that the CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns can be used for the study of binding to the MRP1, MRP2 and BCRP transporters and that membranes from the Sf9 cell line can be used to prepare CMAC columns. This is the first example of the use of membranes from a non-mammalian cell line in an affinity chromatographic system.

  3. Modelling and simulation of affinity membrane adsorption.

    Science.gov (United States)

    Boi, Cristiana; Dimartino, Simone; Sarti, Giulio C

    2007-08-24

    A mathematical model for the adsorption of biomolecules on affinity membranes is presented. The model considers convection, diffusion and adsorption kinetics on the membrane module as well as the influence of dead end volumes and lag times; an analysis of flow distribution on the whole system is also included. The parameters used in the simulations were obtained from equilibrium and dynamic experimental data measured for the adsorption of human IgG on A2P-Sartoepoxy affinity membranes. The identification of a bi-Langmuir kinetic mechanisms for the experimental system investigated was paramount for a correct process description and the simulated breakthrough curves were in good agreement with the experimental data. The proposed model provides a new insight into the phenomena involved in the adsorption on affinity membranes and it is a valuable tool to assess the use of membrane adsorbers in large scale processes.

  4. Polysulfone affinity membranes for the treatment of amino acid mixtures.

    Science.gov (United States)

    Rodemann, K; Staude, E

    1995-06-20

    Affinity membranes for the treatment of solutions containing amino acids were obtained via lithiating polysulfone that was subsequently converted with glycidylether. From this polymer asymmetric ultrafiltration membranes were cast. The membranes were reacted with iminodiacetic acid yielding membranes fitted out with bidentate chelates. The same reaction path was applied to commercially available symmetric microfiltration membranes. The chelate-bearing membranes were complexed with Cu, Ni, and Zn ions. For the experiments with amino acids only the Cu-complexed membranes were used. The complexation constants for histidine and tryptophan for six different membranes were determined. Because of the affinity of these two amino acids for the complexed Cu ions, they could easily be separated from solutions containing amino acids such as alanine, glycine, and valine. Also, concentrating very dilute amino acid solutions was carried out successfully.

  5. Preparation of Chitosan-coated Nylon Membranes and their Application as Affinity Membranes

    Institute of Scientific and Technical Information of China (English)

    Wei SHI; Feng Bao ZHANG; Guo Liang ZHANG

    2005-01-01

    Chitosan-coated nylon membranes which possess a large number of reactive groups of-CH2OH and -NH2 were prepared by coupling chitosan onto the nylon membrane. Then polylysine as ligand was also immobilized onto the composite membranes by 1, l′-carbonyldiimidazole activation to prepare affinity membranes for bilirubin adsorption. The results showed that these membranes exhibited high binding affinity capacities for bilirubin and the adsorption isotherm fitted the Freundlich model well.

  6. Affinity Thresholds for Membrane Fusion Triggering by Viral Glycoproteins▿

    OpenAIRE

    Hasegawa, Kosei; Hu, Chunling; Nakamura, Takafumi; Marks, James D.; Russell, Stephen J.; Peng, Kah-Whye

    2007-01-01

    Enveloped viruses trigger membrane fusion to gain entry into cells. The receptor affinities of their attachment proteins vary greatly, from 10−4 M to 10−9 M, but the significance of this is unknown. Using six retargeted measles viruses that bind to Her-2/neu with a 5-log range in affinity, we show that receptor affinity has little impact on viral attachment but is nevertheless a key determinant of infectivity and intercellular fusion. For a given cell surface receptor density, there is an aff...

  7. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  8. Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane.

    Science.gov (United States)

    Zhao, Yingxin; Zhang, Wei; White, Michael A; Zhao, Yingming

    2003-08-01

    Proteomics analysis of plasma membranes is a potentially powerful strategy for the discovery of proteins involved in membrane remodeling under diverse cellular environments and identification of disease-specific membrane markers. A key factor for successful analysis is the preparation of plasma membrane fractions with low contamination from subcellular organelles. Here we report the characterization of plasma membrane prepared by an affinity-purification method, which involves biotinylation of cell-surface proteins and subsequent affinity enrichment with strepavidin beads. Western blotting analysis showed this method was able to achieve a 1600-fold relative enrichment of plasma membrane versus mitochondria and a 400-fold relative enrichment versus endoplasmic reticulum, two major contaminants in plasma membrane fractions prepared by conventional ultracentrifugation methods. Capillary-HPLC/MS analysis of 30 microg of affinity-purified plasma membrane proteins led to the identification of 918 unique proteins, which include 16.4% integral plasma membrane proteins and 45.5% cytosol proteins (including 8.6% membrane-associated proteins). Notable among the identified membrane proteins include 30 members of ras superfamily, receptors (e.g., EGF receptor, integrins), and signaling molecules. The low number of endoplasmic reticulum and mitochondria proteins (approximately 3.3% of the total) suggests the plasma membrane preparation has minimum contamination from these organelles. Given the importance of integral membrane proteins for drug design and membrane-associated proteins in the regulation cellular behaviors, the described approach will help expedite the characterization of plasma membrane subproteomes, identify signaling molecules, and discover therapeutic membrane-protein targets in diseases.

  9. Affinities and in-plane stress forces between glycopeptide antibiotics and biomimetic bacterial membranes

    Directory of Open Access Journals (Sweden)

    Sisi Bi

    2015-03-01

    Full Text Available Understanding the molecular basis of interactions between antibiotics affecting bacterial cell wall biosynthesis and cellular membranes is important in rational drug design of new drugs to overcome resistance. However, a precise understanding of how bacteriostatic antibiotics effect action often neglects the effect of biophysical forces involved following antibiotic-receptor binding events. We have employed a combination of a label-free binding biosensor (surface plasmon resonance, SPR and a force biosensor (in-plane stress cantilever, together with model membrane systems to study the complex interplay between glycopeptide antibiotics, their cognate ligands and different model membranes. Bacterial cell wall precursor analogue N-α-Docosanoyl-ε-acetyl-Lys-d-Alanine-d-Alanine (doc-KAA was inserted into lipid layers comprised of zwitterionic or anionic lipids then exposed to either vancomycin or the membrane-anchored glycopeptide antibiotic teicoplanin. Binding affinities and kinetics of the antibiotics to these model membranes were influenced by electrostatic interactions with the different lipid backgrounds, in addition to ligand affinities. In addition, cantilever sensors coated with model membranes showed that planar surface stress changes were induced by glycopeptide antibiotics adsorption and caused compressive surface stress generation in a ligand-dependent manner.

  10. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  11. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  12. Cellular membrane collapse by atmospheric-pressure plasma jet

    Science.gov (United States)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  13. Cellular membrane collapse by atmospheric-pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  14. Performance of a new protein A affinity membrane for the primary recovery of antibodies.

    Science.gov (United States)

    Boi, Cristiana; Dimartino, Simone; Sarti, Giulio C

    2008-01-01

    Recovery of antibodies with Protein A affinity chromatography columns has become the standard for the biotechnology industry. Membrane affinity chromatography has not yet experienced extensive application due to the lower capacity of membrane supports compared to chromatographic beads. In this work, new affinity membranes endowed with an interesting binding capacity for human IgG are studied in view of their application in the capturing step of a monoclonal antibody production process. The membranes have been extensively tested with pure IgG solutions and with a cell culture supernatant containing IgG1. The effects of feed flow rate and IgG concentration on the separation performances have been studied in detail, considering in particular binding capacity, selectivity and recovery. These new high capacity affinity membranes appear good candidates to avoid the throughput limitations and other well-known drawbacks of traditional bead-based chromatographic columns.

  15. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-05

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme.

  16. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal.

  17. Affinity of four polar neurotransmitters for lipid bilayer membranes

    DEFF Research Database (Denmark)

    Wang, Chunhua; Ye, Fengbin; Valardez, Gustavo F.

    2011-01-01

    interacts unfavorably with DMPC and is thus preferentially excluded from the membrane's hydration layer. Conversely, the zwitterionic neurotransmitters are attracted to membranes with 10% anionic lipid and their local concentration at the interface is 5-10 times larger than in the aqueous bulk....... The simulations suggest that this attraction mainly relies on electrostatic interactions of the amino group of the neurotransmitter and the lipid phosphate. We conclude that moderate attraction to lipid membranes occurs for some polar neurotransmitters and hence that one premise for a theory of bilayer...

  18. Cellular blebs: pressure-driven, axisymmetric, membrane protrusions

    KAUST Repository

    Woolley, Thomas E.

    2013-07-16

    Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.

  19. Evaluation of drug-muscarinic receptor affinities using cell membrane chromatography and radioligand binding assay in guinea pig jejunum membrane

    Institute of Scientific and Technical Information of China (English)

    Bing-xiang YUAN; Jin HOU; Lang-chong HE; Guang-de YANG

    2005-01-01

    Aim: To study if cell membrane chromatography (CMC) could reflect drug-receptor interaction and evaluate the affinity and competitive binding to muscarinic acetylcholine receptor (mAChR). Methods: The cell membrane stationary phase(CMSP) was prepared by immobilizing guinea pig jejunum cell membrane on the surface of a silica carrier, and was used for the rapid on-line chromatographic evaluation of ligand binding affinities to mAChR. The affinity to mAChR was also evaluated from radioligand binding assays (RBA) using the same jejunum membrane preparation. Results: The capacity factor (k') profiles in guinea pig jejunum CMSP were: (-)QNB (15.4)>(+)QNB (11.5)>atropine (5.35)>pirenzepine(5.26)>4-DAMP (4.45)>AF-DX 116 (4.18)>pilocarpine (3.93)>acetylcholine(1.31). These results compared with the affinity rank orders obtained from radioligand binding assays indicated that there wasa positive correlation (r2=0.8525, P<0.0001) between both data sets. Conclusion: The CMC method can be used to evaluate drug-receptor affinities for drug candidates.

  20. Modification of Nylon Membrane Used for Affinity Adsorption

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nylon membrane was modified by binding with polyhydroxyl-containing materials to increase its hydrophilicity and reduce its nonspecific interaction with proteins. The effect of binding hydrophilic materials on amount of ligand bound--Cibacron Blue F3GA (CBF) was investigated. Experimental data showed that the amount of CBF bound can be increased significantly after binding of hydrophilic materials.

  1. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Pakiza

    2016-12-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural changes induced by proteins such as ARC and Cofilin among others in the case of synaptic modification. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. As expected, NIH3T3 cells have more rigid membrane at earlier stages of their development. On the other hand neurons tend to have the highest membrane fluidity early in their development emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  2. The effect of cellular cholesterol on membrane-cytoskeleton adhesion.

    Science.gov (United States)

    Sun, Mingzhai; Northup, Nathan; Marga, Francoise; Huber, Tamas; Byfield, Fitzroy J; Levitan, Irena; Forgacs, Gabor

    2007-07-01

    Whereas recent studies suggest that cholesterol plays important role in the regulation of membrane proteins, its effect on the interaction of the cell membrane with the underlying cytoskeleton is not well understood. Here, we investigated this by measuring the forces needed to extract nanotubes (tethers) from the plasma membrane, using atomic force microscopy. The magnitude of these forces provided a direct measure of cell stiffness, cell membrane effective surface viscosity and association with the underlying cytoskeleton. Furthermore, we measured the lateral diffusion constant of a lipid analog DiIC12, using fluorescence recovery after photobleaching, which offers additional information on the organization of the membrane. We found that cholesterol depletion significantly increased the adhesion energy between the membrane and the cytoskeleton and decreased the membrane diffusion constant. An increase in cellular cholesterol to a level higher than that in control cells led to a decrease in the adhesion energy and the membrane surface viscosity. Disassembly of the actin network abrogated all the observed effects, suggesting that cholesterol affects the mechanical properties of a cell through the underlying cytoskeleton. The results of these quantitative studies may help to better understand the biomechanical processes accompanying the development of atherosclerosis.

  3. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Wilson, Michael A.

    2003-01-01

    How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.

  4. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids.

    Science.gov (United States)

    Lyakhova, Tatyana A; Knight, Jefferson D

    2014-09-01

    Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.

  5. Understanding ligand-protein interactions in affinity membrane chromatography for antibody purification.

    Science.gov (United States)

    Boi, Cristiana; Busini, Valentina; Salvalaglio, Matteo; Cavallotti, Carlo; Sarti, Giulio C

    2009-12-11

    Affinity chromatography with Protein A beads has become the conventional unit operation for the primary capture of monoclonal antibodies. However, Protein A activated supports are expensive and ligand leakage is an issue to be considered. In addition, the limited production capabilities of the chromatographic process drive the research towards feasible alternatives. The use of synthetic ligands as Protein A substitutes has been considered in this work. Synthetic ligands, that mimic the interaction between Protein A and the constant fragment (Fc) of immunoglobulins, have been immobilized on cellulosic membrane supports. The resulting affinity membranes have been experimentally characterized with pure immunoglobulin G (IgG). The effects of the membrane support and of the spacer arm on the ligand-ligate interaction have been studied in detail. Experimental data have been compared with molecular dynamic simulations with the aim of better understanding the interaction mechanisms. Molecular dynamic simulations were performed in explicit water, modelling the membrane as a matrix of overlapped glucopyranose units. Electrostatic charges of the ligand and spacer were calculated through ab initio methods to complete the force field used to model the membrane. The simulations enabled to elucidate how the interactions of surface, spacer and ligand with IgG, contribute to the formation of the bond between protein and affinity membrane.

  6. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  7. Functionalised ethylene vinyl alcohol copolymer (EVAL) membranes for affinity protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Sager, W.F.C.; Wessling, M.

    2003-01-01

    Hydrophilic microfiltration membranes with functional groups that can be used as coupling sites for ligands are of central interest in affinity separation, especially in view of biomedical applications. In this study we investigate covalent coupling of bovine serum albumin (BSA) as model ligand onto

  8. Direct affinity of dopamine to lipid membranes investigated by Nuclear Magnetic Resonance spectroscopy.

    Science.gov (United States)

    Matam, Yashasvi; Ray, Bruce D; Petrache, Horia I

    2016-04-08

    Dopamine, a naturally occurring neurotransmitter, plays an important role in the brain's reward system and acts on sensory receptors in the brain. Neurotransmitters are contained in lipid membraned vesicles and are released by exocytosis. All neurotransmitters interact with transport and receptor proteins in glial cells, on neuronal dendrites, and at the axonal button, and also must interact with membrane lipids. However, the extent of direct interaction between lipid membranes in the absence of receptors and transport proteins has not been extensively investigated. In this report, we use UV and NMR spectroscopy to determine the affinity and the orientation of dopamine interacting with lipid vesicles made of either phosphatidylcholine (PC) or phosphatidylserine (PS) lipids which are primary lipid components of synaptic vesicles. We quantify the interaction of dopamine's aromatic ring with lipid membranes using our newly developed method that involves reference spectra in hydrophobic environments. Our measurements show that dopamine interacts with lipid membranes primarily through the aromatic side opposite to the hydroxyl groups, with this aromatic side penetrating deeper into the hydrophobic region of the membrane. Since dopamine's activity involves its release into extracellular space, we have used our method to also investigate dopamine's release from lipid vesicles. We find that dopamine trapped inside PC and PS vesicles is released into the external solution despite its affinity to membranes. This result suggests that dopamine's interaction with lipid membranes is complex and involves both binding as well as permeation through lipid bilayers, a combination that could be an effective trigger for apoptosis of dopamine-generating cells.

  9. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  10. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.

    Science.gov (United States)

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D

    2016-03-08

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.

  11. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes.

    Science.gov (United States)

    Antonenko, Yuri N; Kotova, Elena A; Omarova, Elena O; Rokitskaya, Tatyana I; Ol'shevskaya, Valentina A; Kalinin, Valery N; Nikitina, Roza G; Osipchuk, Julia S; Kaplan, Mikhail A; Ramonova, Alla A; Moisenovich, Mikhail M; Agapov, Igor I; Kirpichnikov, Mikhail P

    2014-03-01

    Photodynamic tumor-destroying activity of the boronated chlorin e6 derivative BACE (chlorin e6 13(1)-N-{2-[N-(1-carba-closo-dodecaboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester), previously described in Moisenovich et al. (2010) PLoS ONE 5(9) e12717, was shown here to be enormously higher than that of unsubstituted chlorin e6, being supported by the data on much higher photocytotoxicity of BACE in M-1 sarcoma cell culture. To validate membrane damaging effect as the basis of the enhanced tumoricidal activity, BACE was compared with unsubstituted chlorin e6 in the potency to photosensitize dye leakage from liposomes, transbilayer lipid flip-flop, inactivation of gramicidin A ionic channels in planar lipid membranes and erythrocyte hemolysis. In all the models comprising artificial and cellular membranes, the photodynamic effect of BACE exceeded that of chlorin e6. BACE substantially differed from chlorin e6 in the affinity to liposomes and erythrocytes, as monitored by fluorescence spectroscopy, flow cytometry and centrifugation. The results support the key role of membrane binding in the photodynamic effect of the boronated chlorin e6 amide.

  12. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers.

    Science.gov (United States)

    Sarkar, Bidyut; Das, Anand K; Maiti, Sudipta

    2013-01-01

    Amyloid beta (Aβ) is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer's disease (AD). Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al., 2011). Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of monomers and small oligomers (containing dimers to decamers), providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A) at physiological concentrations (250 nM), while oligomers at the same concentrations show strong binding within 30 min of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T). Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 h of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results (a) provide an explanation for the non-toxic nature of Aβ monomers, (b) suggest that Aβ toxicity emerges at the initial oligomeric phase, and (c) provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  13. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers

    Directory of Open Access Journals (Sweden)

    Bidyut eSarkar

    2013-04-01

    Full Text Available Amyloid beta (Aβ is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer’s disease. Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane-binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al, JBC, 2011. Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of small oligomers (containing dimers to decamers, providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A at physiological concentrations (250 nM, while oligomers at the same concentrations show strong binding within 30 minutes of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T. Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 hours of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results a provide an explanation for the non-toxic nature of Aβ monomers, b suggest that Aβ toxicity emerges at the initial oligomeric phase, and c provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  14. Imaging cellular membrane potential through ionization of quantum dots

    Science.gov (United States)

    Rowland, Clare E.; Susumu, Kimihiro; Stewart, Michael H.; Oh, Eunkeu; Mäkinen, Antti J.; O'Shaughnessy, Thomas J.; Kushto, Gary; Wolak, Mason A.; Erickson, Jeffrey S.; Efros, Alexander L.; Huston, Alan L.; Delehanty, James B.

    2016-03-01

    Recent interest in quantum dots (QDs) stems from the plethora of potential applications that arises from their tunable absorption and emission profiles, high absorption cross sections, resistance to photobleaching, functionalizable surfaces, and physical robustness. The emergent use of QDs in biological imaging exploits these and other intrinsic properties. For example, quantum confined Stark effect (QCSE), which describes changes in the photoluminescence (PL) of QDs driven by the application of an electric field, provides an inherent means of detecting changes in electric fields by monitoring QD emission and thus points to a ready mean of imaging membrane potential (and action potentials) in electrically active cells. Here we examine the changing PL of various QDs subjected to electric fields comparable to those found across a cellular membrane. By pairing static and timeresolved PL measurements, we attempt to understand the mechanism driving electric-field-induced PL quenching and ultimately conclude that ionization plays a substantial role in initiating PL changes in systems where QCSE has traditionally been credited. Expanding on these findings, we explore the rapidity of response of the QD PL to applied electric fields and demonstrate changes amply able to capture the millisecond timescale of cellular action potentials.

  15. Cellular contraction precedes membrane depolarization in Vorticella convallaria

    Science.gov (United States)

    Shiono; Naitoh

    1997-01-01

    Application of a mechanical stimulus to the cell body of the peritrich ciliate Vorticella convallaria evoked an all-or-nothing membrane depolarization, the large pulse. This was always accompanied by an all-or-nothing cellular contraction, and simultaneous recordings of the two events revealed that the large pulse was always preceded by the cellular contraction. A smaller graded membrane depolarization (the medium pulse) was sometimes produced in response to a weaker mechanical stimulus. The medium pulse was accompanied by a small, graded, localized contraction of the cell body and was occasionally followed by a large pulse. When a large pulse occurred during a medium pulse, it reached the same peak level as that of a large pulse evoked without a preceding medium pulse. When a medium pulse occurred during a medium pulse, summation of the two pulses was observed. Sustained contraction causes V. convallaria to become rounded, and in this state a mechanical stimulus stronger than that used to evoke the large pulse evoked a graded depolarizing mechanoreceptor potential in the cell. We conclude that both the large and medium pulses are caused by an inward receptor current that is activated mechanically following contraction of the cell body. A localized contraction evokes a small mechanoreceptor current, causing a medium pulse. An all-or-nothing contraction evokes a saturated, all-or-nothing mechanoreceptor current, causing a large pulse.

  16. Biodynsensing: Sensing Through Dynamics of Hybrid Affinity/Cellular Platforms; Towards Appraisal of Environmental and Biological Risks of Nanobiotechnology

    Science.gov (United States)

    Gheorghiu, E.; Gheorghiu, M.; David, S.; Polonschii, C.

    Chemical cues and nano-topographies present on the surface or in the extracellular medium strongly influence the fate and adhesion of biological cells. Careful tuning of cell—matrix interaction via engineered surfaces, either attractive or repulsive, require non-invasive, long time monitoring capabilities and lay the foundation of sensing platforms for risk assessment. Aiming to assess changes underwent by biointerfaces due to cell—environment interaction (in particular nanotechnology products), we have developed hybrid cellular platforms allowing for time based dual assays, i.e., impedance/dielectric spectroscopy (IS) and Surface Plasmon Resonance (SPR). Such platforms comprising Flow Injection Analysis (FIA) have been advanced to assess the interaction between selected (normal and malignant) cells and nano-patterned and/or chemically modified surfaces, as well as the impact of engineered nanoparticles, revealed by the related changes exhibited by cell membrane, morphology, adhesion and monolayer integrity. Besides experimental aspects dealing with measurement set-up, we will emphasize theoretical aspects related to: dielectric modeling. Aiming for a quantitative approach, microscopic models on dielectric behavior of ensembles of interconnected cells have been developed and their capabilities will be outlined within the presentation. Assessment of affinity reactions as revealed by dielectric/impedance assays of biointerfaces. Modeling the dynamics of the impedance in relation to the “quality” of cell layer and sensor's active surface, this study presents further developments of our approach described in Analytical Chemistry, 2002. Data analysis. This issue is related to the following basic question: Are there “simple” Biosensing Platforms? When coping with cellular platforms, either in suspension or immobilized (on filters, adhered on surfaces or entrapped, e.g., on using set-ups) there is an intrinsic nonlinear behavior of biological systems related

  17. Budded membrane microdomains as regulators for cellular tension

    OpenAIRE

    Sens, Pierre; Turner, Matthew S.

    2005-01-01

    We propose a mechanism for mechanical regulation at the membrane of living cells, based on the exchange of membrane area between the cell membrane and a membrane reservoir. The reservoir is composed of invaginated membrane microdomains which are liable to flatten upon increase of membrane strain, effectively controlling membrane tension. We show that the domain shape transition is first order, allowing for coexistence between flat and invaginated domains. During coexistence, the membrane tens...

  18. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Christopher J Arnusch

    Full Text Available Many cationic antimicrobial peptides (AMPs target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted.

  19. Network modeling of membrane-based artificial cellular systems

    Science.gov (United States)

    Freeman, Eric C.; Philen, Michael K.; Leo, Donald J.

    2013-04-01

    Computational models are derived for predicting the behavior of artificial cellular networks for engineering applications. The systems simulated involve the use of a biomolecular unit cell, a multiphase material that incorporates a lipid bilayer between two hydrophilic compartments. These unit cells may be considered building blocks that enable the fabrication of complex electrochemical networks. These networks can incorporate a variety of stimuli-responsive biomolecules to enable a diverse range of multifunctional behavior. Through the collective properties of these biomolecules, the system demonstrates abilities that recreate natural cellular phenomena such as mechanotransduction, optoelectronic response, and response to chemical gradients. A crucial step to increase the utility of these biomolecular networks is to develop mathematical models of their stimuli-responsive behavior. While models have been constructed deriving from the classical Hodgkin-Huxley model focusing on describing the system as a combination of traditional electrical components (capacitors and resistors), these electrical elements do not sufficiently describe the phenomena seen in experiment as they are not linked to the molecular scale processes. From this realization an advanced model is proposed that links the traditional unit cell parameters such as conductance and capacitance to the molecular structure of the system. Rather than approaching the membrane as an isolated parallel plate capacitor, the model seeks to link the electrical properties to the underlying chemical characteristics. This model is then applied towards experimental cases in order that a more complete picture of the underlying phenomena responsible for the desired sensing mechanisms may be constructed. In this way the stimuli-responsive characteristics may be understood and optimized.

  20. Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification.

    Science.gov (United States)

    Xu, Rong; Kanezashi, Masakoto; Yoshioka, Tomohisa; Okuda, Tetsuji; Ohshita, Joji; Tsuru, Toshinori

    2013-07-10

    Bis(triethoxysilyl)ethylene (BTESEthy) was used as a novel precursor to develop a microporous organosilica membrane via the sol-gel technique. Water sorption measurements confirmed that ethenylene-bridged BTESEthy networks had a higher affinity for water than that of ethane-bridged organosilica materials. High permeance of CO2 with high CO2/N2 selectivity was explained relative to the strong CO2 adsorption on the network with π-bond electrons. The introduction of polarizable and rigid ethenylene bridges in the network structure led to improved water permeability and high NaCl rejection (>98.5%) in reverse osmosis (RO). Moreover, the aqueous ozone modification promoted significant improvement in the water permeability of the membrane. After 60 min of ozone exposure, the water permeability reached 1.1 × 10(-12) m(3)/(m(2) s Pa), which is close to that of a commercial seawater RO membrane. Meanwhile, molecular weight cutoff measurements indicated a gradual increase in the effective pore size with ozone modification, which may present new options for fine-tuning of membrane pore sizes.

  1. Poly(hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma.

    Science.gov (United States)

    Uzun, Lokman; Yavuz, Handan; Osman, Bilgen; Celik, Hamdi; Denizli, Adil

    2010-07-01

    The preparation of polymeric membrane using affinity technology for application in blood filtration devices is described here. DNA attached poly(hydroxyethyl methacrylate) (PHEMA) based microporous affinity membrane was prepared for selective removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma in in vitro. In order to further increase blood-compatibility of affinity membrane, aminoacid based comonomer N-methacryloyl-L-alanine (MAAL) was included in the polymerization recipe. PHEMAAL membrane was produced by a photopolymerization technique and then characterized by swelling tests and scanning electron microscope (SEM) studies. Blood-compatibility tests were also performed. The water swelling ratio of PHEMAAL membrane increased significantly (133.2%) compared with PHEMA (58%). PHEMAAL membrane has large pores around in the range of 5-10 microm. All the clotting times increased when compared with PHEMA membrane. Loss of platelets and leukocytes was very low. DNA loading was 7.8 mg/g. There was a very low anti-dsDNA-antibody adsorption onto the plain PHEMAAL membrane, about 78 IU/g. The PHEMAAL-DNA membrane adsorbed anti-dsDNA-antibody in the range of 10-68 x 10(3)IU/g from SLE plasma. Anti-dsDNA-antibody concentration decreased significantly from 875 to 144 IU/ml with the time. Anti-dsDNA-antibodies could be repeatedly adsorbed and eluted without noticeable loss in the anti-dsDNA-antibody adsorption amount.

  2. Neurotensin decreases high affinity [3H]-ouabain binding to cerebral cortex membranes.

    Science.gov (United States)

    Rosin, Carina; Ordieres, María Graciela López; Arnaiz, Georgina Rodríguez de Lores

    2011-12-10

    Previous work from this laboratory showed the ability of neurotensin to inhibit synaptosomal membrane Na(+), K(+)-ATPase activity, the effect being blocked by SR 48692, a non-peptidic antagonist for high affinity neurotensin receptor (NTS1) [López Ordieres and Rodríguez de Lores Arnaiz 2000; 2001]. To further study neurotensin interaction with Na(+), K(+)-ATPase, peptide effect on high affinity [(3)H]-ouabain binding was studied in cerebral cortex membranes. It was observed that neurotensin modified binding in a dose-dependent manner, leading to 80% decrease with 1 × 10(-4)M concentration. On the other hand, the single addition of 1 × 10(-6)M, 1 × 10(-5)M and 1 × 10(-4)M SR 48692 (Sanofi-Aventis, U.S., Inc.) decreased [(3)H]-ouabain binding (in %) to 87 ± 16; 74 ± 16 and 34 ± 17, respectively. Simultaneous addition of neurotensin and SR 48692 led to additive or synergic effects. Partial NTS2 agonist levocabastine inhibited [(3)H]-ouabain binding likewise. Saturation assays followed by Scatchard analyses showed that neurotensin increased K(d) value whereas failed to modify B(max) value, indicating a competitive type interaction of the peptide at Na(+), K(+)-ATPase ouabain site. At variance, SR 48692 decreased B(max) value whereas it did not modify K(d) value. [(3)H]-ouabain binding was also studied in cerebral cortex membranes obtained from rats injected i. p. 30 min earlier with 100 μg and 250 μg/kg SR 48692. It was observed that the 250 μg/kg SR 48692 dose led to 19% decrease in basal [(3)H]-ouabain binding. After SR 48692 treatments, addition of 1 × 10(-6)M led to additive or synergic effect. Results suggested that [(3)H]-ouabain binding inhibition by neurotensin hardly involves NTS1 receptor.

  3. Preparation and characterization of polysulfone affinity membranes bearing a synthetic peptide ligand for the separation of murine immunoglobulins.

    Science.gov (United States)

    Boi, Cristiana; Algeri, Cristian; Sarti, Giulio C

    2008-01-01

    Affinity membranes have been prepared by immobilizing D-PAM, a synthetic ligand that exhibits affinity for the Fc portion of antibodies, onto poliethersulfone microporous membranes. The ligand density has been measured and the ligand utilization was evaluated and compared with literature data available for chromatographic beads. The resulting new affinity membranes have been experimentally characterized and tested by using pure murine IgG solutions and mouse serum. Equilibrium and kinetic parameters have been obtained in batch experiments using pure protein solutions. The highest binding capacity measured for murine IgG was 45 microg/cm(2) obtained at 1.2 mg/mL protein concentration at equilibrium, while the maximum static binding capacity calculated with the Langmuir model was 81 microg/cm(2). The adsorption of murine IgG on the affinity membranes was described using different isotherms: Freundlich and Temkin models have been considered and critically compared with the Langmuir adsorption model. A dynamic binding capacity of 21 microg/cm(2) was obtained by feeding a solution of 0.3 mg/mL of murine IgG, confirming the results obtained in batch experiments at the same concentration. The affinity membranes considered are endowed with good binding capacity for murine IgG and good selectivity for immunoglobulins and can be considered for the capturing step of an antibody production process.

  4. Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    Science.gov (United States)

    Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne

    2013-01-01

    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response. PMID:23746516

  5. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    Science.gov (United States)

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-02-17

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  6. Scale-up of affinity membrane modules: comparison between lumped and physical models.

    Science.gov (United States)

    Dimartino, Simone; Boi, Cristiana; Sarti, Giulio C

    2015-03-01

    Membrane chromatography represents one of the emerging technologies for downstream processing in the biotechnology industry. This process is currently used in polishing steps for antibody manufacturing, while its application is still under development for the capture step. To promote its employment in large-scale processes, it is crucial to develop a simple, yet reliable, simulation tool able to describe the process performance in a predictive way at all scales. In this work, the physical model for the description of protein purification with affinity membrane chromatography has been used to predict the performance of scaled-up systems and compared with the lumped model, frequently used for its deceptive simplicity. Two commonly used binding kinetics have been implemented in the models, namely the Langmuir and the bi-Langmuir equations. The two models describe equally well experimental data obtained in a lab-scale apparatus, while, on the contrary, important differences are observed in scaled-up systems even at the early stages of breakthrough, which are particularly relevant in industrial-scale operations. It is seen that for both kinetics, the physical model is more appropriate and safer to use for scale-up purposes.

  7. Investigating cellular electroporation using planar membrane models and miniaturized devices

    NARCIS (Netherlands)

    Uitert, van Iris

    2010-01-01

    This thesis focuses on increasing our understanding of the electroporation process. Electroporation is a technique employed to introduce foreign molecules into cells that can normally not pass the cell membrane. By applying a short but high electric field, pores appear in the membrane through which

  8. In vitro auxin binding to cellular membranes of cucumber fruits.

    Science.gov (United States)

    Narayanan, K R; Mudge, K W; Poovaiah, B W

    1981-04-01

    Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s).

  9. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lindsay A. [University of Oxford, Oxford Particle Imaging Centre, The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Nuffield Department of Medicine (United Kingdom); Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-06-15

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.

  10. Function of Membrane Rafts in Viral Lifecycles and Host Cellular Response

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    2011-01-01

    Full Text Available Membrane rafts are small (10–200 nm sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process and the late stage (assembly, budding, and release processes of virus particles. In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.

  11. Interaction of tea tree oil with model and cellular membranes.

    Science.gov (United States)

    Giordani, Cristiano; Molinari, Agnese; Toccacieli, Laura; Calcabrini, Annarica; Stringaro, Annarita; Chistolini, Pietro; Arancia, Giuseppe; Diociaiuti, Marco

    2006-07-27

    Tea tree oil (TTO) is the essential oil steam-distilled from Melaleuca alternifolia, a species of northern New South Wales, Australia. It exhibits a broad-spectrum antimicrobial activity and an antifungal activity. Only recently has TTO been shown to inhibit the in vitro growth of multidrug resistant (MDR) human melanoma cells. It has been suggested that the effect of TTO on tumor cells could be mediated by its interaction with the plasma membrane, most likely by inducing a reorganization of lipid architecture. In this paper we report biophysical and structural results obtained using simplified planar model membranes (Langmuir films) mimicking lipid "rafts". We also used flow cytometry analysis (FCA) and freeze-fracturing transmission electron microscopy to investigate the effects of TTO on actual MDR melanoma cell membranes. Thermodynamic (compression isotherms and adsorption kinetics) and structural (Brewster angle microscopy) investigation of the lipid monolayers clearly indicates that TTO interacts preferentially with the less ordered DPPC "sea" and that it does not alter the more ordered lipid "rafts". Structural observations, performed by freeze fracturing, confirm that TTO interacts with the MDR melanoma cell plasma membrane. Moreover, experiments performed by FCA demonstrate that TTO does not interfere with the function of the MDR drug transporter P-gp. We therefore propose that the effect exerted on MDR melanoma cells is mediated by the interaction with the fluid DPPC phase, rather than with the more organized "rafts" and that this interaction preferentially influences the ATP-independent antiapoptotic activity of P-gp likely localized outside "rafts".

  12. High-productivity membrane adsorbers: Polymer surface-modification studies for ion-exchange and affinity bioseparations

    Science.gov (United States)

    Chenette, Heather C. S.

    This dissertation centers on the surface-modification of macroporous membranes to make them selective adsorbers for different proteins, and the analysis of the performance of these membranes relative to existing technology. The common approach used in these studies, which is using membrane technology for chromatographic applications and using atom transfer radical polymerization (ATRP) as a surface modification technique, will be introduced and supported by a brief review in Chapter 1. The specific approaches to address the unique challenges and motivations of each study system are given in the introduction sections of the respective dissertation chapters. Chapter 2 describes my work to develop cation-exchange membranes. I discuss the polymer growth kinetics and characterization of the membrane surface. I also present an analysis of productivity, which measures the mass of protein that can bind to the stationary phase per volume of stationary phase adsorbing material per time. Surprisingly and despite its importance, this performance measure was not described in previous literature. Because of the significantly shorter residence time necessary for binding to occur, the productivity of these cation-exchange membrane adsorbers (300 mg/mL/min) is nearly two orders of magnitude higher than the productivity of a commercial resin product (4 mg/mL/min). My work studying membrane adsorbers for affinity separations was built on the productivity potential of this approach, as articulated in the conclusion of Chapter 2. Chapter 3 focuses on the chemical formulation work to incorporate glycoligands into the backbone of polymer tentacles grown from the surface of the same membrane stationary phase. Emphasis is given to characterizing and testing the working formulation for ligand incorporation, and details about how I arrived at this formulation are given in Appendix B. The plant protein, or lectin, Concanavalin A (conA) was used as the target protein. The carbohydrate affinity

  13. Cellular transport and membrane dynamics of the glycine receptor

    Directory of Open Access Journals (Sweden)

    Andrea Dumoulin

    2010-02-01

    Full Text Available Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review i proteins and mechanisms involved in GlyR cytoskeletal transport, ii the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and iii adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism.

  14. Cellular recognition of synthetic peptide amphiphiles in supported bioartificial membranes

    Science.gov (United States)

    Pakalns, Teika

    The goal of this study was to demonstrate that lipidated cell adhesion peptides could form well-ordered biomimetic surfaces that were capable of influencing cellular behavior in a controlled and specific manner. The first step taken was to covalently link synthetic dialkyl tails to the amino-termini of the collagen-derived peptide IV-H1 (amino acid sequence GVKGDKGNPGWPGAP) and the well-known tripeptide Arg-Gly-Asp (RGD) to produce amino-coupled peptide amphiphiles. Other spatial orientations of RGD were also generated by coupling tails to the carboxyl-terminus to give carboxyl-coupled RGD amphiphiles and to both the amino- and carboxyl-termini to give looped RGD amphiphiles. The next step taken was to let the peptide amphiphile self-assemble along with methyl ester-capped dialkyl tails into mixed films. It was found that all the peptide amphiphiles formed stable monolayers at the air-water interface in a Langmuir trough. IV-H1 amphiphiles and carboxyl-coupled and looped RGD amphiphiles deposited well as Langmuir-Blodgett mixed films on solid surfaces at all peptide concentrations, but aminocoupled RGD amphiphiles did not deposit well at high RGD concentrations. FT-IR studies of films containing RGD amphiphiles showed that amino-coupled RGD head groups formed the strongest lateral hydrogen bonds. The final step was to study cellular response to mixed films containing IV-H1 or RGD amphiphiles. The spreading of melanoma cells was influenced by both the molar concentration and spatial orientation of the amphiphilic peptides. Cells spread on IV-H1 and looped RGD films in a concentration-dependent manner, but spread indiscriminately on carboxyl-coupled RGD films and did not spread at all on well-deposited amino-coupled RGD films. The specificity of the cellular response to looped RGD amphiphiles was investigated. Control films of looped Arg-Gly-Glu (RGE) amphiphiles inhibited the adhesion and spreading of melanoma and endothelial cells, and antibody inhibition of the

  15. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  16. Passive drug permeation through membranes and cellular distribution.

    Science.gov (United States)

    Scott, D O; Ghosh, A; Di, L; Maurer, T S

    2017-03-01

    Although often overlooked, passive mechanisms can lead to significant accumulation or restriction of drugs to intracellular sites of drug action. These mechanisms include lipoidal diffusion of ionized species and pH partitioning according to the electrochemical potential and to pH gradients that exist across subcellular compartments, respectively. These mechanisms are increasingly being exploited in the design of safe and effective drugs for the treatment of a wide variety of diseases. In this work, the authors review these efforts and the associated passive mechanisms of cellular drug permeation. A generic mathematical model of the cell is provided and used to illustrate concepts relevant to steady-state intracellular distribution. Finally, the authors review methods for estimating determinant parameters and measuring the net effect at the level of unbound intracellular drug concentrations.

  17. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chuan-Ho, E-mail: chtang@nmmba.gov.tw [Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan, ROC (China); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Lin, Ching-Yu [Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan, ROC (China); Lee, Shu-Hui [Center of General Education, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC (China); Wang, Wei-Hsien [National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC (China)

    2014-03-01

    Highlights: • Coral cells alter membrane lipid to accommodate copper-induce oxidative conditions • Coral membrane repair occur due to lipid alterations • Zooxanthellae release results from membrane repair by symbiosome fusion • Copper-induced lipid alterations perturb membrane-related functions in coral cells • Copper chronic effect on coral fitness are related to long-term membrane perturbation - Abstract: Oxidative stress has been associated with copper-induced toxicity in scleractinian corals. To gain insight into the accommodation of the cellular membrane to oxidative conditions, a pocilloporid coral, Seriatopora caliendrum, was exposed to copper at distinct, environmentally relevant dose for various lengths of time. Glycerophosphocholine profiling of the response of the coral to copper exposure was characterized using a validated method. The results indicate that coral lipid metabolism is programmed to induce membrane alterations in response to the cellular deterioration that occurs during the copper exposure period. Decreasing lyso-phosphatidylcholines and exchanging polyunsaturated phosphatidylcholines for polyunsaturated plasmanylcholines were the initial actions taken to prevent membrane permeabilization. To relax/resist the resulting membrane strain caused by cell/organelle swelling, the coral cells inversely exchanged polyunsaturated plasmanylcholines for polyunsaturated phosphatidylcholines and further increased the levels of monounsaturated glycerophosphocholines. At the same time, the levels of saturated phosphatidylcholines were also increased to increase membrane rigidity and protect against oxidative attack. Interestingly, such alterations in lipid metabolism were also required for membrane fusion to repair the deteriorated membranes by repopulating them with proximal lipid reservoirs, similar to symbiosome membranes. Additionally, increasing saturated and monounsaturated plasmanylcholines and inhibiting the suppression of saturated lyso

  18. Removing Endotoxin from Protein Solution by Chitosan Modified Affinity Membrane%壳聚糖亲和膜脱除蛋白质溶液中内毒素

    Institute of Scientific and Technical Information of China (English)

    孙海翔; 张林; 柴红; 陈欢林

    2005-01-01

    Affinity membrane was prepared with chitosan immobilized on the hydrophile- modified poly(vinylidene fluoride) (PVDF) membrane. Fourier transform infrared spectroscopy (FTIR) analysis indicated that the contents of-NH2 and -OH groups increased and fluoride decreased on the membrane surface after modification. Using this kind of affinity membrane, the effects of operation parameters such as pH, ionic strength and flow rate, on the amount of endotoxin removed were investigated. The results showed that the equilibrium adsorption capacity and the dissociation constant of the affinity membrane to endotoxin were 21.4 EU·mg-1 membrane and 0.50 EU·ml-1,respectively, at pH 7.0 and ionic strength 0.2 mol·L-1. Adsorption appeared to follow a typical Langmuir adsorption isotherm. At pH 5.0, ionic strength of 0.2 mol·L-1, the removal rate of endotoxin from BSA solution with the chitosan affinity membrane was up to 88.6% (11.50 EU·mg-1 membrane), and the recovery of BSA was 93.4% (0.187 mg·mg-1 membrane), while at pH 11.0, ionic strength of 0.2 mol·L-1, the removal rate of endotoxin from lysozyme solution was 72.4% (9.92 EU·mg- 1 membrane), and the recovery of lysozyme was 92.3% (0.104 mg·mg- 1 membrane).

  19. Effect of changes in the composition of cellular fatty acids on membrane fluidity of Rhodobacter sphaeroides.

    Science.gov (United States)

    Kim, Eui-Jin; Lee, Jeong K

    2015-02-01

    The cellular fatty acid composition is important for metabolic plasticity in Rhodobacter sphaeroides. We explored the effects of changing the cellular ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs) in R. sphaeroides by overexpressing several key fatty acid biosynthetic enzymes through the use of expression plasmid pRK415. Bacteria containing the plasmid pRKfabI1 with the fabI1 gene that encodes enoyl-acyl carrier protein (ACP) reductase showed a reduction in the cellular UFA to SFA ratio from 4 (80% UFA) to 2 (65% UFA) and had decreased membrane fluidity and reduced cell growth. Additionally, the ratio of UFA to SFA of the chromatophore vesicles from pRKfabI1 -containing cells was similarly lowered, and the cell had decreased levels of light-harvesting complexes, but no change in intracytoplasmic membrane (ICM) content or photosynthetic (PS) gene expression. Both inhibition of enoyl- ACP reductase with diazaborine and addition of exogenous UFA restored membrane fluidity, cell growth, and the UFA to SFA ratio to wild-type levels in this strain. R. sphaeroides containing the pRKfabB plasmid with the fabB gene that encodes the enzyme β-ketoacyl-ACP synthase I exhibited an increased UFA to SFA ratio from 4 (80% UFA) to 9 (90% UFA), but showed no change in membrane fluidity or growth rate relative to control cells. Thus, membrane fluidity in R. sphaeroides remains fairly unchanged when membrane UFA levels are between 80% and 90%, whereas membrane fluidity, cell growth, and cellular composition are affected when UFA levels are below 80%.

  20. Different affinity states of alpha-1 adrenergic receptors defined by agonists and antagonists in bovine aorta plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jagadeesh, G.; Deth, R.C.

    1987-11-01

    Evidence for a nonlinear relationship between alpha-1 adrenergic receptor occupancy and tissue responses, together with the finding of different affinity states for agonist binding, has raised the possibility of functional heterogeneity of alpha-1 adrenergic receptors. We have conducted studies to examine: 1) binding characteristics of (/sup 3/H)prazosin, 2) competition of antagonists at these sites and 3) different affinity states of the receptor for agonists and modulation of these states by 5'-guanylylimidodiphosphate (Gpp(NH)p). A plasma membrane-enriched vesicular fraction (F2; 15%/33% sucrose interphase) was prepared from the muscular medial layer of bovine thoracic aorta. (/sup 3/H)Prazosin binding was characterized by a monophasic saturation isotherm (KD = 0.116 nM, Bmax = 112 fmol/mg of protein). Antagonist displacement studies yielded a relative potency order of prazosin greater than or equal to WB4104 much greater than phentolamine greater than corynanthine greater than yohimbine greater than or equal to idazoxan greater than rauwolscine. Competition curves for unlabeled prazosin, WB4101 (2-(2,6-dimethoxyphenoxyethyl)-aminomethyl-1,4 benzodioxane) and phentolamine were shallow and were best modeled to two binding sites with picomolar and nanomolar KD values. Gpp(NH)p was without effect on antagonist affinity. Agonist (epinephrine, norepinephrine and phenylephrine) competition with (/sup 3/H)prazosin binding was biphasic with pseudo-Hill slopes less than 1.0. Binding was best described by a two-site model in which the average contribution of high affinity sites was 23% of total binding. KD values for the high affinity site ranged from 2.9 to 18 nM, and 3.9 to 5.0 microM for the low affinity site.

  1. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.

    Science.gov (United States)

    Sezgin, Erdinc; Levental, Ilya; Grzybek, Michal; Schwarzmann, Günter; Mueller, Veronika; Honigmann, Alf; Belov, Vladimir N; Eggeling, Christian; Coskun, Unal; Simons, Kai; Schwille, Petra

    2012-07-01

    Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact

  2. Contamination from an affinity column: an encounter with a new villain in the world of membrane-protein crystallization.

    Science.gov (United States)

    Panwar, Pankaj; Deniaud, Aurélien; Pebay-Peyroula, Eva

    2012-10-01

    Attempts to crystallize AtNTT1, a chloroplast ATP/ADP transporter from Arabidopsis thaliana, revealed an unexpected contaminant, Strep-Tactin, a variant of streptavidin that was used during purification of the protein. Although it was present in very small amounts, crystals of Strep-Tactin were reproducibly grown from the AtNTT1 solution. AtNTT1 was overexpressed in Escherichia coli and purified from detergent-solubilized membrane fractions using Strep-Tactin affinity chromatography based on an engineered streptavidin. The contamination of protein solutions purified on Strep-Tactin columns has never been described previously and seems to be specific to membrane proteins solubilized in detergents. Trace amounts of Strep-Tactin were observed to be eluted from a Strep-Tactin column using several routinely used detergents, illustrating their possible role in the contamination. This finding raises an alarm and suggests caution in membrane-protein purification using Strep-Tactin affinity columns, where detergents are essential components. The small crystals of contaminant protein led to the structure at 1.9 Å resolution of Strep-Tactin in complex with desthiobiotin.

  3. Fluorescence studies on radiation oxidative damage to membranes with implications to cellular radiosensitivity

    Indian Academy of Sciences (India)

    K P Mishra

    2002-12-01

    Radiation oxidative damage to plasma membrane and its consequences to cellular radiosensitivity have received increasing attention in the past few years. This review gives a brief account of radiation oxidative damage in model and cellular membranes with particular emphasis on results from our laboratory. Fluorescence and ESR spin probes have been employed to investigate the structural and functional alterations in membranes after g-irradiation. Changes in the lipid bilayer in irradiated unilamellar liposomes prepared from egg yolk lecithin (EYL) were measured by using diphenylhexatriene (DPH) as a probe. The observed increase in DPH polarization and decrease in fluorescence intensity after g-irradiation of liposomes imply radiationinduced decrease in bilayer fluidity. Inclusion of cholesterol in liposome was found to protect lipids against radiation damage, possibly by modulation of bilayer organization e.g. lipid packing. Measurements on dipalmitoyl phosphatidylcholine (DPPC) liposomes loaded with 6-carboxyfluorescein (CF) showed radiation dose-dependent release of the probe indicating radiation-induced increased permeability. Changes in plasma membrane permeability of thymocytes were monitored by fluorescein diacetate (FDA) and induced intracellular reactive oxygen species (ROS) were determined by 2,7-dichlorodihydro fluorescein diacetate (DCH-FDA). Results suggest a correlation between ROS generation and membrane permeability changes induced by radiation within therapeutic doses (0-10 Gy). It is concluded that increase in membrane permeability was the result of ROS-mediated oxidative reactions, which might trigger processes leading to apoptotic cell death after radiation exposure.

  4. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  5. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Directory of Open Access Journals (Sweden)

    Pakiza Noutsi

    Full Text Available Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  6. Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets.

    Science.gov (United States)

    Mao, Jian; Guo, Ruohai; Yan, Li-Tang

    2014-07-01

    Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm(2) membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.

  7. Translocation of annexin Ⅰ from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Xiao-Hang Zhao; Hui-Xin Wang; Ning Lu; You-Sheng Mao; Fang Liu; Ying Wang; Hai-Rong Zhang; Kun Wang; Min Wu

    2003-01-01

    AIM: To investigate the alteration of the annexin I subcellular localization in esophageal squamous cell carcinoma (ESCC)and the correlation between the translocation and the tumorigenesis of ESCC.METHODS: The protein localization of annexin I was detected in both human ESCC tissues and cell line via the indirect immunofiuorescence strategy.RESULTS: In the normal esophageal epithelia the annexin I was mainly located on the plasma membrane and formed a consecutive typical trammels net. Annexin I protein also expressed dispersively in cytoplasm and the nuclei without specific localization on the nuclear membrane. In esophageal cancer annexin I decreased very sharply with scattered disappearance on the cellular membrane, however it translocated and highly expressed on the nuclear membrane,which was never found in normal esophageal epithelia. In cultured esophageal cancer cell line annexin I protein was also focused on the nuclear membrane, which was consistent with the result from esophageal cancer tissues.CONCLUSION: This observation suggests that the translocation of annexin I protein in ESCC may correlate with the tumorigenesis of the esophageal cancer.

  8. Expression of a prokaryotic P-type ATPase in E. coli Plasma Membranes and Purification by Ni2+-affinity chromatography

    Directory of Open Access Journals (Sweden)

    Geisler Markus

    1998-01-01

    Full Text Available In order to characterize the P-type ATPase from Synechocystis 6803 [Geisler (1993 et al. J. Mol. Biol. 234, 1284] and to facilitate its purification, we expressed an N-terminal 6xHis-tagged version of the ATPase in an ATPase deficient E. coli strain. The expressed ATPase was immunodetected as a dominant band of about 97 kDa localized to the E. coli plasma membranes representing about 20-25% of the membrane protein. The purification of the Synecho-cystis 6xHis-ATPase by single-step Ni-affinity chromatography under native and denaturating conditions is described. ATPase activity and the formation of phosphointermediates verify the full function of the enzyme: the ATPase is inhibited by vanadate (IC50= 119 &mgr;M and the formation of phosphorylated enzyme intermediates shown by acidic PAGE depends on calcium, indicating that the Synechocystis P-ATPase functions as a calcium pump.

  9. Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al).

    Science.gov (United States)

    Zhu, Haitao; Wang, Lina; Jie, Xingming; Liu, Dandan; Cao, Yiming

    2016-08-31

    Asymmetric mixed matrix membranes(MMMs) with MOFs hold great application potential for energy-efficient gas separations. However, the particle aggregation and nonselective interfacial microvoids restrict the gas separation performance of asymmetric MMMs. Herein, nanoporous metal-organic framework (MOF) of MIL-53(Al) was modified with aminosilane after solvothermal synthesis. The postfunctionalization by grafting alkyl chains can form hydrogen bonds with polymer chains to enhance the affinity with polymer matrix and facilitate the preferential adsorption of CO2 by dipole-quadrupole interaction with the functional group. Then the postmodified MIL-53(Al) was incorporated as filler into poly(ether imide) Ultem1000 to fabricate high-quality asymmetric MMMs with well dispersed particles in polymer matrix and good adhesion at the MOFs-polymer interface. The Ultem/S-MIL-53(Al) asymmetric MMMs exhibited remarkable combinations of gas permeance and ideal selectivity for CO2/N2 separation at 10 wt % filler loading. The CO2 permeance achieved 24.1 GPU, an increase of 165% compared with pure Ultem membrane. Meanwhile, the ideal CO2/N2 selectivity also increased from 31.0 up to 41.1. The strategy of post covalent modification for MOFs provides an effective way to improve the interfacial affinity and gas separation performance.

  10. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Majuri, R. (Minerva Foundation Institute for Medical Research, Helsinki (Finland))

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of {sup 35}S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with {sup 35}S. The same two bands were observed if the cell surface proteins were labeled with {sup 125}I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author).

  11. A simple detection method for low-affinity membrane protein interactions by baculoviral display.

    Directory of Open Access Journals (Sweden)

    Toshiko Sakihama

    Full Text Available BACKGROUND: Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV. In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. METHODOLOGY/PRINCIPAL FINDINGS: We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA. Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L, and glucocorticoid-induced TNFR family-related protein (GITR-GITR ligand (GITRL. Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displaying BV and anti-gp64 antibody. CONCLUSIONS: We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.

  12. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  13. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall.

    Science.gov (United States)

    Canut, H; Carrasco, A; Galaud, J P; Cassan, C; Bouyssou, H; Vita, N; Ferrara, P; Pont-Lezica, R

    1998-10-01

    The heptapeptide Tyr-Gly-Arg-Gly-Asp-Ser-Pro containing the sequence Arg-Gly-Asp (RGD--the essential structure recognised by animal cells in substrate adhesion molecules) was tested on epidermal cells of onion and cultured cells of Arabidopsis upon plasmolysis. Dramatic changes were observed on both types of cells following treatment: on onion cells, Hechtian strands linking the cell wall to the membrane were lost, while Arabidopsis cells changed from concave to convex plasmolysis. A control heptapeptide Tyr-Gly-Asp-Gly-Arg-Ser-Pro had no effect on the shape of plasmolysed cells. Protoplasts isolated from Arabidopsis cells agglutinate in the presence of ProNectinF, a genetically engineered protein of 72 kDa containing 13 RGD sequences: several protoplasts may adhere to a single molecule of ProNectinF. The addition of the RGD-heptapeptide disrupted the adhesion between the protoplasts. Purified plasma membrane from Arabidopsis cells exhibits specific binding sites for the iodinated RGD-heptapeptide. The binding is saturable, reversible, and two types of high affinity sites (Kd1 approximately 1 nM, and Kd2 approximately 40 nM) can be discerned. Competitive inhibition by several structurally related peptides and proteins noted the specific requirement for the RGD sequence. Thus, the RGD-binding activity of Arabidopsis fulfils the adhesion features of integrins, i.e. peptide specificity, subcellular location, and involvement in plasma membrane-cell wall attachments.

  14. Biomechanics and thermodynamics of nanoparticle interactions with plasma and endosomal membrane lipids in cellular uptake and endosomal escape.

    Science.gov (United States)

    Peetla, Chiranjeevi; Jin, Shihua; Weimer, Jonathan; Elegbede, Adekunle; Labhasetwar, Vinod

    2014-07-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(D,L-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  15. Thermal adaptation of cellular membranes in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Cooper, Brandon S; Hammad, Loubna A; Montooth, Kristi L

    2014-08-01

    Changes in temperature disrupt the fluidity of cellular membranes, which can negatively impact membrane integrity and cellular processes. Many ectotherms, including Drosophila melanogaster (Meigen), adjust the glycerophospholipid composition of their membranes to restore optimal fluidity when temperatures change, a type of trait plasticity termed homeoviscous adaptation.Existing data suggest that plasticity in the relative abundances of the glycerophospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC) underlies cellular adaptation to temporal variability in the thermal environment. For example, laboratory populations of D. melanogaster evolved in the presence of temporally variable temperatures have greater developmental plasticity of the ratio of PE to PC (PE/PC) and greater fecundity than do populations evolved at constant temperatures.Here, we extend this work to natural populations of D. melanogaster by evaluating thermal plasticity of glycerophospholipid composition at different life stages, in genotypes isolated from Vermont, Indiana and North Carolina, USA. We also quantify the covariance between developmental and adult (reversible) plasticity, and between adult responses of the membrane to cool and warm thermal shifts.As predicted by physiological models of homeoviscous adaptation, flies from all populations decrease PE/PC and the degree of lipid unsaturation in response to warm temperatures. Furthermore, these populations have diverged in their degree of membrane plasticity. Flies from the most variable thermal environment (Vermont, USA) decrease PE/PC to a greater extent than do other populations when developed at a warm temperature, a pattern that matches our previous observation in laboratory-evolved populations. We also find that developmental plasticity and adult plasticity of PE/PC covary across genotypes, but that adult responses to cool and warm thermal shifts do not.When combined with our previous observations of laboratory

  16. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.

    Science.gov (United States)

    Vitriol, Eric A; Zheng, James Q

    2012-03-22

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones.

  17. Simian virus 40 late proteins possess lytic properties that render them capable of permeabilizing cellular membranes.

    Science.gov (United States)

    Daniels, Robert; Rusan, Nasser M; Wilbuer, Anne-Kathrin; Norkin, Leonard C; Wadsworth, Patricia; Hebert, Daniel N

    2006-07-01

    Many nonenveloped viruses have evolved an infectious cycle that culminates in the lysis or permeabilization of the host to enable viral release. How these viruses initiate the lytic event is largely unknown. Here, we demonstrated that the simian virus 40 progeny accumulated at the nuclear envelope prior to the permeabilization of the nuclear, endoplasmic reticulum, and plasma membranes at a time which corresponded with the release of the progeny. The permeabilization of these cellular membranes temporally correlated with late protein expression and was not observed upon the inhibition of their synthesis. To address whether one or more of the late proteins possessed an inherent capacity to induce membrane permeabilization, we examined the permeability of Escherichia coli that separately expressed the late proteins. VP2 and VP3, but not VP1, caused the permeabilization of bacterial membranes. Additionally, VP3 expression resulted in bacterial cell lysis. These findings demonstrate that VP3 possesses an inherent lytic property that is independent of eukaryotic signaling or cell death pathways.

  18. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol

    DEFF Research Database (Denmark)

    Ploug, M; Rønne, E; Behrendt, N

    1991-01-01

    analysis of u-PAR after micropurification by affinity chromatography and N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]glycine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of 2-3 mol of ethanolamine/mol protein. 2) Membrane-bound u-PAR is efficiently released from the surface...

  19. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes.

    Science.gov (United States)

    Van Leene, Jelle; Eeckhout, Dominique; Cannoot, Bernard; De Winne, Nancy; Persiau, Geert; Van De Slijke, Eveline; Vercruysse, Leen; Dedecker, Maarten; Verkest, Aurine; Vandepoele, Klaas; Martens, Lennart; Witters, Erwin; Gevaert, Kris; De Jaeger, Geert

    2015-01-01

    Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most advanced methods to characterize protein complexes in plants, giving a comprehensive view on the protein-protein interactions (PPIs) of a certain protein of interest (bait). The bait protein is fused to a double affinity tag, which consists of a protein G tag and a streptavidin-binding peptide separated by a very specific protease cleavage site, allowing highly specific protein complex isolation under near-physiological conditions. Implementation of this optimized TAP tag, combined with ultrasensitive MS, means that these experiments can be performed on small amounts (25 mg of total protein) of protein extracts from Arabidopsis cell suspension cultures. It is also possible to use this approach to isolate low abundant protein complexes from Arabidopsis seedlings, thus opening perspectives for the exploration of protein complexes in a plant developmental context. Next to protocols for efficient biomass generation of seedlings (∼7.5 months), we provide detailed protocols for TAP (1 d), and for sample preparation and liquid chromatography-tandem MS (LC-MS/MS; ∼5 d), either from Arabidopsis seedlings or from cell cultures. For the identification of specific co-purifying proteins, we use an extended protein database and filter against a list of nonspecific proteins on the basis of the occurrence of a co-purified protein among 543 TAP experiments. The value of the provided protocols is illustrated through numerous applications described in recent literature.

  20. Computing membrane-AQP5-phosphatidylserine binding affinities with hybrid steered molecular dynamics approach.

    Science.gov (United States)

    Chen, Liao Y

    2015-01-01

    In order to elucidate how phosphatidylserine (PS6) interacts with AQP5 in a cell membrane, we developed a hybrid steered molecular dynamics (hSMD) method that involved: (1) Simultaneously steering two centers of mass of two selected segments of the ligand, and (2) equilibrating the ligand-protein complex with and without biasing the system. Validating hSMD, we first studied vascular endothelial growth factor receptor 1 (VEGFR1) in complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide (8ST), for which the binding energy is known from in vitro experiments. In this study, our computed binding energy well agreed with the experimental value. Knowing the accuracy of this hSMD method, we applied it to the AQP5-lipid-bilayer system to answer an outstanding question relevant to AQP5's physiological function: Will the PS6, a lipid having a single long hydrocarbon tail that was found in the central pore of the AQP5 tetramer crystal, actually bind to and inhibit AQP5's central pore under near-physiological conditions, namely, when AQP5 tetramer is embedded in a lipid bilayer? We found, in silico, using the CHARMM 36 force field, that binding PS6 to AQP5 was a factor of 3 million weaker than "binding" it in the lipid bilayer. This suggests that AQP5's central pore will not be inhibited by PS6 or a similar lipid in a physiological environment.

  1. Transient electrical field across cellular membranes: pulsed electric field treatment of microbial cells

    Energy Technology Data Exchange (ETDEWEB)

    Timoshkin, I V [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); MacGregor, S J [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Fouracre, R A [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Crichton, B H [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Anderson, J G [Robertson Trust Laboratory for Electronic Sterilization Technologies (ROLEST), Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2006-02-07

    The pulsed electric field (PEF) treatment of liquid and pumpable products contaminated with microorganisms has attracted significant interest from the pulsed power and bioscience research communities particularly because the inactivation mechanism is non-thermal, thereby allowing retention of the original nutritional and flavour characteristics of the product. Although the biological effects of PEF have been studied for several decades, the physical mechanisms of the interaction of the fields with microorganisms is still not fully understood. The present work is a study of the dynamics of the electrical field both in a PEF treatment chamber with dielectric barriers and in the plasma (cell) membrane of a microbial cell. It is shown that the transient process can be divided into three physical phases, and models for these phases are proposed and briefly discussed. The complete dynamics of the time development of the electric field in a spherical dielectric shell representing the cellular membrane is then obtained using an analytical solution of the Ohmic conduction problem. It was found that the field in the membrane reaches a maximum value that could be two orders of magnitude higher than the original Laplacian electrical field in the chamber, and this value was attained in a time comparable to the field relaxation time in the chamber. Thus, the optimal duration of the field during PEF treatment should be equal to such a time.

  2. Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes.

    Science.gov (United States)

    Ribeiro, Mariana Borsoi; Vijayalakshmi, Mookambesvaran; Todorova-Balvay, Daniele; Bueno, Sonia Maria Alves

    2008-01-01

    The purification of IgG from human plasma was studied by comparing two affinity membranes complexed with Ni(II), prepared by coupling iminodiacetic acid (IDA) and Tris(2-aminoethyl)amine (TREN) to poly(ethylenevinyl alcohol), PEVA, hollow fiber membranes. The Ni(II)-TREN-PEVA hollow fiber membrane had lower capacity for human IgG than the complex Ni(II)-IDA-PEVA, but with similar selectivity. The IgG in peak fractions eluted from the Ni(II)-IDA-PEVA with a stepwise concentration gradient of Tris-HCl pH 7.0 (100-700 mM) reached a purity of 98% (based on IgG, IgM, IgA, albumin, and transferrin nephelometric analysis). Adsorption IgG data at different temperatures (4-37 degrees C) were analyzed using Langmuir model resulting in a calculated maximum capacity at 25 degrees C of 204.6 mg of IgG/g of dry membrane. Decrease in Kd with increasing temperature (1.7x10(-5) to 5.3x10(-6) M) indicated an increase in affinity with increased temperature. The positive value of enthalpy change (26.2 kJ/mol) indicated that the adsorption of IgG in affinity membrane is endothermic. Therefore, lower temperature induces adsorption as verified experimentally.

  3. Affinity-purified respiratory syncytial virus antibodies from intravenous immunoglobulin exert potent antibody-dependent cellular cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Nimesh Gupta

    Full Text Available Mixed infections are one of the major therapeutic challenges, as the current strategies have had limited success. One of the most common and widespread conditions of mixed infection is respiratory syncytial virus-mediated pathology of the respiratory tract in children. There is a dire need for the development of novel therapeutic approaches during mixed infections. Therapeutic intravenous immunoglobulin preparations, obtained from plasma pools of healthy donors have been used in immune deficiencies. This study was thus designed to characterize the functional efficacy of RSV-specific antibodies in IVIg. To explore the functional ability of these affinity-purified RSV-specific antibodies, the antibody-dependent and complement dependent cytotoxicity was determined using peripheral cells of healthy donors. This study demonstrates the existence of highly potent RSV-specific antibodies in IVIg preparations and provides the basis for the use of IVIg as broad-spectrum protective shield to RSV-infected children during mixed infections.

  4. Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in Tribolium castaneum.

    Science.gov (United States)

    van der Zee, Maurijn; Benton, Matthew A; Vazquez-Faci, Tania; Lamers, Gerda E M; Jacobs, Chris G C; Rabouille, Catherine

    2015-06-15

    In insects, the fertilized egg undergoes a series of rapid nuclear divisions before the syncytial blastoderm starts to cellularize. Cellularization has been extensively studied in Drosophila melanogaster, but its thick columnar blastoderm is unusual among insects. We therefore set out to describe cellularization in the beetle Tribolium castaneum, the embryos of which exhibit a thin blastoderm of cuboidal cells, like most insects. Using immunohistochemistry, live imaging and transmission electron microscopy, we describe several striking differences to cellularization in Drosophila, including the formation of junctions between the forming basal membrane and the yolk plasmalemma. To identify the nature of this novel junction, we used the parental RNAi technique for a small-scale screen of junction proteins. We find that maternal knockdown of Tribolium innexin7a (Tc-inx7a), an ortholog of the Drosophila gap junction gene Innexin 7, leads to failure of cellularization. In Inx7a-depleted eggs, the invaginated plasma membrane retracts when basal cell closure normally begins. Furthermore, transiently expressed tagged Inx7a localizes to the nascent basal membrane of the forming cells in wild-type eggs. We propose that Inx7a forms the newly identified junctions that stabilize the forming basal membrane and enable basal cell closure. We put forward Tribolium as a model for studying a more ancestral mode of cellularization in insects.

  5. Utilizing biomarker techniques: Cellular membrane potential as a biomarker of subchronic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Fort, D.J.; Stover, E.L.; Burks, S.L.; Atherton, R.A. [The Stover Group, Stillwater, OK (United States); Blankmeyer, J.T. [Oklahoma State Univ., Stillwater, OK (United States)

    1996-12-31

    A biomarker assay designed to monitor the health of Daphnia sp. as well as evaluate sites of toxicant action was used to study the toxic effects of copper, diazinon, and polyacrylamide. The assay used the uptake of a fluorescent cellular membrane-bound dye and corresponding fluorescence measurement as an early potential is an indicator of potential cellular stress. Following short-term exposure to the electrochromic dye, di-4-ANEPPS, and the toxicants, fluorescence readings were collected, stored in a database management system, and output for graphical display and statistical analysis. Median inhibitory concentrations (IC50), No Observed Effect Concentrations (NOEC), and Lowest Observed Effect Concentrations (LOEC) values for copper were approximately 52.6, 35.0, and 50.0 {micro}g/L. The approximate IC50, NOEC, LOEC values for diazinon and polyacrylamide were 0.45, 0.25, and 0.50 {micro}g/L; and 350.0, 300.0, and 500.0 {micro}g/L, respectively. Fluorescence microscopy indicated that copper primarily affected the mouth parts (orofacial) and digestive tract. Diazinon, however, primarily caused an effect on the anterior portion of the nervous system. Polyacrylamide appeared to induce toxicity throughout the entire epithelial layer of the Daphnia. These results suggested this assay may be effectively used to monitor for organism stress or toxicity as well as evaluate potential sites of toxic action.

  6. A critical role of a cellular membrane traffic protein in poliovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    George A Belov

    2008-11-01

    Full Text Available Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA, implicating some components(s of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA.

  7. Cellular entry of nanoparticles via serum sensitive clathrin-mediated endocytosis, and plasma membrane permeabilization

    Directory of Open Access Journals (Sweden)

    Smith PJ

    2012-04-01

    Full Text Available Philip J Smith1, Maude Giroud2, Helen L Wiggins2, Florence Gower2, Jennifer A Thorley2, Bjorn Stolpe3, Julie Mazzolini2, Rosemary J Dyson4, Joshua Z Rappoport21Physical Sciences of Imaging for the Biomedical Sciences (PSIBS Doctoral Training Center, School of Chemistry, 2School of Biosciences, 3School of Geography, Earth, and Environmental Sciences, 4School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United KingdomAbstract: Increasing production and application of nanomaterials raises significant questions regarding the potential for cellular entry and toxicity of nanoparticles. It was observed that the presence of serum reduces the cellular association of 20 nm carboxylate-modified fluorescent polystyrene beads up to 20-fold, relative to cells incubated in serum-free media. Analysis by confocal microscopy demonstrated that the presence of serum greatly reduces the cell surface association of nanoparticles, as well as the potential for internalization. However, both in the presence and absence of serum, nanoparticle entry depends upon clathrin-mediated endocytosis. Finally, experiments performed with cells cooled to 4°C suggest that a proportion of the accumulation of nanoparticles in cells was likely due to direct permeabilization of the plasma membrane.Keywords: nanoparticles, polystyrene beads, serum, endocytosis, dynamin, clathrin, permeabilization

  8. Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc

    Institute of Scientific and Technical Information of China (English)

    Jun-guo YANG; Hai-ning YU; Shi-li SUN; Lan-cui ZHANG; Guo-qing HE; Undurti N. DAS; Hui RUAN; Sheng-rong SHEN

    2009-01-01

    Objective: To evaluate effects of epigallocatechin-3-gallate (EGCG) on the viability, membrane properties, and zinc distribution, with and without the presence of Zn2+, in human prostate carcinoma LNCaP cells. Methods: We examined changes in cellular morphology and membrane fluidity of LNCaP cells, distribution of cellular zinc, and the incorporated portion of EGCG after treatments with EGCG, Zn2+, and EGCG+Zn2+. Results: We observed an alteration in cellular morphology and a decrease in membrane fluidity of LNCaP cells after treatment with EGCG or Zn2+. The proportion of EGCG incorporated into liposomes treated with the mixture of EGCG and Zn2+ at the ratio of 1:l was 90.57%, which was significantly higher than that treated with EGCG alone (30.33%). Electron spin resonance (ESR) studies and determination of fatty acids showed that the effects of EGCG on the membrane fluidity of LNCaP were decreased by Zn2+. EGCG accelerated the accumulation of zinc in the mitochondria and cytosol as observed by atomic absorption spectrometer. Conclusion: These results show that EGCG interacted with cell membrane,decreased the membrane fluidity of LNCaP cells, and accelerated zinc accumulation in the mitochondria and cytosol, which could be the mechanism by which EGCG inhibits proliferation of LNCaP cells. In addition, high concentrations of Zn2+ could attenuate the actions elicited by EGCG.

  9. Chromatography studies on bio-affinity of nine ligands of α1-adrenoceptor to α1D subtypes overexpressed in cell membrane

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Dian; YUAN; Bingxiang; DENG; Xiuling; YANG; Guangd

    2004-01-01

    To improve selectivity and specificity of cell membrane chromatography(CMC),the chromatography affinities of nine ligands of α1-adrenergic receptor(AR)to α1D-AR subtype were investigated.The human embryonic kidney(HEK)293 cells expressed by cDNA of α1D-AR subtypes were cultured and cell membrane stationary phase(CMSP)was prepared.Then the interactions between ligands and α1D-AR in CMSP were investigated using CMC.The affinity rank order to α1D-AR subtype obtained from CMC for the nine α1-adrenoceceptor ligands is:prazosin,BMY7378,phentolamine,oxymetazoline,5-methylurapidil,norepinephrine,phenylephrine,methoxamine,RS-17053.The affinity rank order is similar and correlates well with that obtained from others' radioligand binding assays(RBA).CMSP prepared by transfected HEK293 cells with α1D-adrenoceptor cDNA and CMC method could be used to evaluate affinities of drug-receptor and drug-receptor subtypes and to screen drugs selective to α1D-AR.

  10. Tityus gamma toxin, a high affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane.

    Science.gov (United States)

    Barhanin, J; Ildefonse, M; Rougier, O; Sampaio, S V; Giglio, J R; Lazdunski, M

    1984-01-01

    Toxin gamma from the venom of Tityus serrulatus scorpion produces a partial block of the surface Na+ channel in frog muscle. This block occurs with no change in the voltage-dependence or in the kinetics of the remaining surface Na+ current. The partial blockade of Na+ channel activity occurs with no change in tubular Na+ currents nor in twitch tension. The maximum effect of the toxin is attained at concentrations as low as 3 X 10(-10) M. Hyperpolarization to potentials more negative than the resting potential (E = -90 mV) reduces or abolishes the effect of the toxin. Radioiodinated toxin gamma binds to frog muscle membranes with a very high affinity corresponding to a dissociation constant of about 1 X 10(-11) M. Data obtained with both rabbit and frog muscle indicate that toxin gamma is specific for Na+ channels in surface membranes. Toxin gamma does not seem to bind to Na+ channels in T-tubule membranes. The biochemical data are in good agreement with electrophysiological studies and data on contraction. There is one Tityus gamma toxin binding site per tetrodotoxin binding site in surface membranes. Competition experiments have confirmed that Tityus gamma toxin binds to a new toxin receptor site on the Na+ channel structure. This site is the same that the toxin II from Centruroides suffusus binding site, but this toxin has 100 times less affinity for the Na+ channel than Tityus gamma toxin.

  11. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology.

    Science.gov (United States)

    Hou, Tim Y; Davidson, Laurie A; Kim, Eunjoo; Fan, Yang-Yi; Fuentes, Natividad R; Triff, Karen; Chapkin, Robert S

    2016-07-17

    The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.

  12. The Fingerprint of Anti-Bromodeoxyuridine Antibodies and Its Use for the Assessment of Their Affinity to 5-Bromo-2'-Deoxyuridine in Cellular DNA under Various Conditions

    Science.gov (United States)

    Ligasová, Anna; Liboska, Radek; Rosenberg, Ivan; Koberna, Karel

    2015-01-01

    We have developed a simple system for the analysis of the affinity of anti-bromodeoxyuridine antibodies. The system is based on the anchored oligonucleotides containing 5-bromo-2'-deoxyuridine (BrdU) at three different positions. It allows a reliable estimation of the reactivity of particular clones of monoclonal anti-bromodeoxyuridine antibodies with BrdU in fixed and permeabilized cells. Using oligonucleotide probes and four different protocols for the detection of BrdU incorporated in cellular DNA, we identified two antibody clones that evinced sufficient reactivity to BrdU in all the tested protocols. One of these clones exhibited higher reactivity to 5-iodo-2'-deoxyuridine (IdU) than to BrdU. It allowed us to increase the sensitivity of the used protocols without a negative effect on the cell physiology as the cytotoxicity of IdU was comparable with BrdU and negligible when compared to 5-ethynyl-2'-deoxyuridine. The combination of IdU and the improved protocol for oxidative degradation of DNA provided a sensitive and reliable approach for the situations when the low degradation of DNA and high BrdU signal is a priority. PMID:26161977

  13. Enzyme oscillation can enhance the thermodynamic efficiency of cellular metabolism: consequence of anti-phase coupling between reaction flux and affinity

    Science.gov (United States)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2016-04-01

    Cells generally convert nutrient resources to products via energy transduction. Accordingly, the thermodynamic efficiency of this conversion process is one of the most essential characteristics of living organisms. However, although these processes occur under conditions of dynamic metabolism, most studies of cellular thermodynamic efficiency have been restricted to examining steady states; thus, the relevance of dynamics to this efficiency has not yet been elucidated. Here, we develop a simple model of metabolic reactions with anabolism-catabolism coupling catalyzed by enzymes. Through application of external oscillation in the enzyme abundances, the thermodynamic efficiency of metabolism was found to be improved. This result is in strong contrast with that observed in the oscillatory input, in which the efficiency always decreased with oscillation. This improvement was effectively achieved by separating the anabolic and catabolic reactions, which tend to disequilibrate each other, and taking advantage of the temporal oscillations so that each of the antagonistic reactions could progress near equilibrium. In this case, anti-phase oscillation between the reaction flux and chemical affinity through oscillation of enzyme abundances is essential. This improvement was also confirmed in a model capable of generating autonomous oscillations in enzyme abundances. Finally, the possible relevance of the improvement in thermodynamic efficiency is discussed with respect to the potential for manipulation of metabolic oscillations in microorganisms.

  14. The Fingerprint of Anti-Bromodeoxyuridine Antibodies and Its Use for the Assessment of Their Affinity to 5-Bromo-2'-Deoxyuridine in Cellular DNA under Various Conditions.

    Directory of Open Access Journals (Sweden)

    Anna Ligasová

    Full Text Available We have developed a simple system for the analysis of the affinity of anti-bromodeoxyuridine antibodies. The system is based on the anchored oligonucleotides containing 5-bromo-2'-deoxyuridine (BrdU at three different positions. It allows a reliable estimation of the reactivity of particular clones of monoclonal anti-bromodeoxyuridine antibodies with BrdU in fixed and permeabilized cells. Using oligonucleotide probes and four different protocols for the detection of BrdU incorporated in cellular DNA, we identified two antibody clones that evinced sufficient reactivity to BrdU in all the tested protocols. One of these clones exhibited higher reactivity to 5-iodo-2'-deoxyuridine (IdU than to BrdU. It allowed us to increase the sensitivity of the used protocols without a negative effect on the cell physiology as the cytotoxicity of IdU was comparable with BrdU and negligible when compared to 5-ethynyl-2'-deoxyuridine. The combination of IdU and the improved protocol for oxidative degradation of DNA provided a sensitive and reliable approach for the situations when the low degradation of DNA and high BrdU signal is a priority.

  15. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets

    Science.gov (United States)

    Yue, Tongtao; Zhang, Xianren

    2012-01-01

    One key question in signal transduction is how the signal is relayed from the outer leaflet of a cellular membrane to the inner leaflet. Using a simulation model, a mechanism for the mediation of signal transduction is proposed here in which the coupling between membrane proteins in different leaflets can be achieved by the clustering of anchored proteins, without recruiting transmembrane proteins. Depending on the hydrophobic length of the anchored proteins, three coupling patterns, including face-to-face clustering, interdigitated clustering, and weak-coupled clustering, are observed in this work. This observation provides a possible explanation of how a particular downstream signaling pathway is selected.

  16. Biochemical characterization and cellular imaging of a novel, membrane permeable fluorescent cAMP analog

    Directory of Open Access Journals (Sweden)

    Zaccolo Manuela

    2008-06-01

    Full Text Available Abstract Background A novel fluorescent cAMP analog (8-[Pharos-575]- adenosine-3', 5'-cyclic monophosphate was characterized with respect to its spectral properties, its ability to bind to and activate three main isoenzymes of the cAMP-dependent protein kinase (PKA-Iα, PKA-IIα, PKA-IIβ in vitro, its stability towards phosphodiesterase and its ability to permeate into cultured eukaryotic cells using resonance energy transfer based indicators, and conventional fluorescence imaging. Results The Pharos fluorophore is characterized by a Stokes shift of 42 nm with an absorption maximum at 575 nm and the emission peaking at 617 nm. The quantum yield is 30%. Incubation of the compound to RIIα and RIIβ subunits increases the amplitude of excitation and absorption maxima significantly; no major change was observed with RIα. In vitro binding of the compound to RIα subunit and activation of the PKA-Iα holoenzyme was essentially equivalent to cAMP; RII subunits bound the fluorescent analog up to ten times less efficiently, resulting in about two times reduced apparent activation constants of the holoenzymes compared to cAMP. The cellular uptake of the fluorescent analog was investigated by cAMP indicators. It was estimated that about 7 μM of the fluorescent cAMP analog is available to the indicator after one hour of incubation and that about 600 μM of the compound had to be added to intact cells to half-maximally dissociate a PKA type IIα sensor. Conclusion The novel analog combines good membrane permeability- comparable to 8-Br-cAMP – with superior spectral properties of a modern, red-shifted fluorophore. GFP-tagged regulatory subunits of PKA and the analog co-localized. Furthermore, it is a potent, PDE-resistant activator of PKA-I and -II, suitable for in vitro applications and spatial distribution evaluations in living cells.

  17. Sticholysin II: a pore-forming toxin as a probe to recognize sphingomyelin in artificial and cellular membranes.

    Science.gov (United States)

    Garcia, Paloma Sanchez; Chieppa, Gabriele; Desideri, Alessandro; Cannata, Stefano; Romano, Elena; Luly, Paolo; Rufini, Stefano

    2012-10-01

    Sphingomyelin is a major component of membrane rafts, and also is a precursor of many bioactive molecules. The sphingomyelin plays important biological roles and alterations of its metabolism are the basis of some genetic disorders such as the Niemann Pick disease. A complete understanding of its biological role is frustrated by the lack of efficient tools for its recognition in the cell. Sticholysin II (StnII) is a 20 kDa protein from the sea-anemone Stichodactyla helianthus which shows a cytotoxic activity by forming oligomeric aqueous pores in the cell plasma membrane. A recent NMR analysis indicates that the sticholysin II binds specifically to sphingomyelin by two domains that recognize respectively the hydrophilic (i.e. phosphorylcholine) and the hydrophobic (i.e. ceramide) moieties of the molecule. Aim of our research has been to verify the possible employ of an antibody against the StnII to investigate the localization and the dynamics of sphingomyelin in cell membranes. For this purpose, we developed a monoclonal antibody (named A10) against the toxin and we tested its ability to bind StnII after binding to sphingomyelin. A10 antibody is able to recognize the sticholysin II both in its native form and after SDS treatment, being the protein still suitable for many analytic techniques such as ELISA, western blotting and immunofluorescence. The high affinity of the toxin for the sphingomyelin in cell membranes has been demonstrated by microscopic immuno-localization and western blot analysis; both methods confirmed that sphingomyelin is the molecular acceptor for StnII also in cell membranes. Finally, we studied the specificity of the toxin for sphingomyelin by a cell membrane-double labelling method, using cholera toxin, specific for the ganglioside GM1, and sticholysin II. The results obtained show that there is no cross-reactivity between the two toxins, confirming that sticholysin II is able to discriminate among membrane domains with sphingomyelin with

  18. Changes in the cellular membrane surface coat of lymphocytes and thymocytes after incubation in vitro with cystein as revealed with electronmicroscopy.

    Science.gov (United States)

    Borowicz, J; Olszewska, K; Roszkowski-Sliz, W; Ryzewski, J

    1977-01-01

    Changes in the cellular membrane surface coat of lymphocytes and thymocytes after incubation with cystein in vitro were revealed with electronmicroscope, while performing the reaction with Ruthenium Red and Concanavaline A. Lymphocytes and thymocytes not incubated with cystein to which reaction with Ruthenium red and Cocanavaline A was applied have shown a well developed and preserved surface coat of the cellular membrane. Contrary to this finding when lymphocytes and thymocytes were incubated with cystein and thereafter treated with Ruthenium Red and Concanavaline A no reaction product on the surface of the cellular membrane was observed. The experimental results could indicate on the influence of cystein on the glycoside bonds.

  19. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  20. Composition of cellular membranes in the pancreas of the guinea pig. II. Lipids.

    Science.gov (United States)

    Meldolesi, J; Jamieson, J D; Palade, G E

    1971-04-01

    The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to approximately 20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant.

  1. Large-scale analysis of in Vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N

    2003-01-01

    plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage...... of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane...

  2. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, C.; Vanderbruggen, H.; Hoefte, H.; Van Rie, J.; Jansens, S.; Van Mellaert, H. (J. Plateaustraat, Gent (Belgium))

    1988-11-01

    Binding studies were performed with two {sup 125}I-labeled Bacillus thuringiensis {delta}-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One {delta}-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other {delta}-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis {delta}-endotoxins active against M. sexta compete for binding of {sup 125}I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles.

  3. An azide-insensitive low-affinity ATPase stimulated by Ca2+ or Mg2+ in basal-lateral and brush border membranes of kidney cortex.

    Science.gov (United States)

    Ilsbroux, I; Vanduffel, L; Teuchy, H; De Cuyper, M

    1985-08-15

    Basal-lateral and brush border membranes from pig kidney cortex were prepared by differential centrifugation followed by free-flow electrophoresis. In each type of membrane, azide-insensitive, low-affinity Ca2+-ATPase and Mg2+-ATPase activities are demonstrated. A comparative study for both membranes further reveals the following analogies between these ATPases: (a) they show maximal activity between pH 8 and 8.5; (b) they exhibit Km values for Ca-ATP or Mg-ATP in the millimolar range and have a comparable low substrate specificity; (c) they are insensitive to 10 microM of vanadate, N,N'-dicyclohexylcarbodiimide, e diethylstilbestrol, quercetin, harmaline and amiloride. The partial inhibition by 1 mM of the various compounds is rather aspecific. In view of these similarities it is concluded that only one enzyme entity is responsible for the activity which is measured in both membrane types. The HCO3-stimulated Mg2+-ATPase activity in pig kidney cortex was also studied. This enzyme, however, is clearly of mitochondrial origin since the HCO3-stimulation coincides with the distribution profile of succinate dehydrogenase, a mitochondrial marker; and since it is inhibited by azide.

  4. Mechanics and dynamics of triglyceride-phospholipid model membranes: Implications for cellular properties and function

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Duelund, Lars; Qvortrup, Klaus

    2011-01-01

    We demonstrate here that triolein alters the mechanical properties of phospholipid membranes and induces extraordinary conformational dynamics. Triolein containing membranes exhibit fluctuations up to size range of 100µm and with the help of these are e.g. able to squeeze through narrow passages ...

  5. Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    OpenAIRE

    Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne

    2013-01-01

    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturati...

  6. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Eric Reyes, E-mail: onomaeric@hotmail.com [Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Ave San Claudio, Ciudad Universitaria, Col San Manuel, C.P. 72570 Puebla, Pue (Mexico); Torres, Maykel González, E-mail: mikegcu@fata.unam.mx [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro C.P. 76230 (Mexico); Muñoz, Susana Vargas, E-mail: vmsu@unam.mx [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro C.P. 76230 (Mexico); Rosas, Efraín Rubio, E-mail: efrainrubio@yahoo.com [Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Ave San Claudio, Ciudad Universitaria, Col San Manuel, C.P. 72570 Puebla, Pue (Mexico); and others

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5 ×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). - Highlights: • HAp crystals are grown on the cellular wall of a GP bacteria Bacillus thuringiensis. • The growing was carried out by using a bio-mimetic method. • Hybrid materials were characterized with morphological and spectroscopic techniques. • The reported method allows understanding the mechanisms to produce osseous tissue. • The membrane of Bacillus thuringiensis can grow more HAp than Bacillus halodurans.

  7. A trans-well-based cellular model for the rapid pre-evaluation of tympanic membrane repair materials.

    Science.gov (United States)

    Hung, Shih-Han; Su, Chin-Hui; Tseng, How

    2016-08-01

    It is important to have a standardized tympanic membrane (TM) perforation platform to evaluate the various myringoplasty materials that have been studied and developed extensively during recent years. However, currently there are no cellular models specifically designed for this purpose, and animal models remain unsatisfactory. The purpose of this study is to propose an inexpensive, readily available, well-controlled, and easy-to-create cellular model as a substitute for use in the evaluation of TM repairing materials. A trans-well model was created using a cell culture insert with a round hole created at the center of the polycarbonate membrane. HaCaT cells were cultured on the fenestrated culture insert, and the desired myringoplasty graft was placed at the center of the window for one week and observed by fluorescent microscopy under vital staining. Under this cellular model, there was notable migration of HaCaT cells onto the positive control graft (rabbit fascia), while only a few cell clusters were observed on the negative control graft (paper). Model validation showed that the cell migration ratio for the PLLA + 1% hyaluronic acid (HA) graft is significantly higher than using myringoplasty paper, poly L-lactide (PLLA), or PLLA + 0.5% HA (p model might be a useful pre-evaluation platform for the evaluation of TM repairing materials. The model is inexpensive, readily available, easy to create, and standardized for use.

  8. (/sup 3/H)dihydroergotamine as a high-affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states

    Energy Technology Data Exchange (ETDEWEB)

    Hamblin, M.W.; Ariani, K.; Adriaenssens, P.I.; Ciaranello, R.D.

    1987-12-01

    (/sup 3/H)Dihydroergotamine (DE) labels a population of binding sites in rat brain membranes with an affinity of approximately 70 pM in both hippocampus (maximal binding at saturation (Bmax) = 340 fmol/mg of protein) and cerebral cortex (Bmax = 250 fmol/mg of protein). Specific binding typically comprises about 97% of total binding at the Kd of the radioligand when nonspecific binding is determined in the presence of 100 nM unlabeled DE. Association kinetics at 37 degrees C are consistent with a uniform association rate constant for all sites labeled. Specific binding is completely reversible with addition of excess unlabeled DE, but dissociation does not proceed with simple first-order kinetics, suggesting the presence of more than one discrete binding site. Competition studies with selective drugs reveal alpha adrenergic, 5-HT1A and 5-HT1B components of (/sup 3/H)DE specific binding. When phentolamine (500 nM) is included to block alpha receptors and DPAT (100 nM) or spiroxatrine (500 nM) is included to block 5-HT1A receptors, specific binding is exclusively to sites with drug affinities characteristic of 5-HT1B receptors. Under these 5-HT1B-selective conditions, (/sup 3/H)DE binding is about 90% specific, with a Kd of about 50 to 60 pM and a Bmax of 96 fmol/mg of protein in hippocampus and 77 fmol/mg of protein in cortex. (/sup 3/H)DE binding to 5-HT1B sites is very slowly dissociable, with a T1/2 of greater than 2 h at 37 degrees C. 5-HT1B antagonists and DE itself yield competition curves at (/sup 3/H)DE-labeled 5-HT1B sites that are adequately fit assuming a single site in nonlinear regression analysis. Addition of 100 microM guanylyl 5'-imidodiphosphate appears to convert nearly all 5-HT1B sites to those having low affinity for agonists while having a much smaller effect on the binding of (/sup 3/H)DE.

  9. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials.

    Science.gov (United States)

    Cervantes, Eric Reyes; Torres, Maykel González; Muñoz, Susana Vargas; Rosas, Efraín Rubio; Vázquez, Candelario; Talavera, Rogelio Rodríguez

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).

  10. Comparison of high affinity binding of {sup 3}H-proadifen and {sup 3}H-(-)-cocaine t rat liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S.B. [Astra Arcus AB, Dept. of Neuropharmacology, Soedertaelje (Sweden)

    1995-06-01

    The characteristics of the binding of {sup 3}H-proadifen to rat liver membranes were studied and compared to those of {sup 3}H-cocaine. It was found that {sup 3}H-proadifen was bound reversibly with high affinity (K{sub D}=1.8{+-}0.5 nM) and large capacity (B{sub max}=2010{+-}340 pmol/g wet tissue) to liver membranes. The corresponding values for the {sup 3}H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of {sup 3}H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 {mu}M CdCl{sub 2} in the incubation buffer it was possible to differentiate between two {sup 3}H-cocaine binding sites with K{sub d} values of 1.6 and 7.7 nM and B{sub max} values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of {sup 3}H-proadifen and {sup 3}H-cocaine inhibited the binding of {sup 3}H-proadifen (IC{sub 50}=10 nM) and proadifen that of {sup 3}H-cocaine (IC{sub 50}=1 nM). There was a high correlation coefficient (r{sub r}=0.972; P<0.01; n=12) in the Spearman rank test between the inhibitory potencies of compounds examined in both systems. Beside some potent alaproclate analogues a couple of compounds had moderately high affinity (IC{sub 50}=100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl{sub 2}, ZnCl{sub 2} and CuCl{sub 2} inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd{sup 2+} on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15{mu}M. The similarity of the characteristics of the binding of these ligands with that of {sup 3}H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.).

  11. In Vitro Auxin Binding to Cellular Membranes of Cucumber Fruits 123

    Science.gov (United States)

    Narayanan, Komaratchi R.; Mudge, Kenneth W.; Poovaiah, B. W.

    1981-01-01

    Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s). PMID:16661764

  12. Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation.

    Science.gov (United States)

    Burdman, S; Dulguerova, G; Okon, Y; Jurkevitch, E

    2001-04-01

    The major outer membrane protein (MOMP) of the nitrogen-fixing rhizobacterium Azospirillum brasilense strain Cd was purified and isolated by gel filtration, and antiserum against this protein was obtained. A screening of the binding of outer membrane proteins (OMPs) of A. brasilense to membrane-immobilized root extracts of various plant species revealed different affinities for the MOMP, with a stronger adhesion to extracts of cereals in comparison with legumes and tomatoes. Moreover, this protein was shown to bind to roots of different cereal seedlings in an in vitro adhesion assay. Incubation of A. brasilense cells with MOMP-antiserum led to fast agglutination, indicating that the MOMP is a surface-exposed protein. Cells incubated with Fab fragments obtained from purified MOMP-antiserum immunoglobulin G exhibited significant inhibition of bacterial aggregation as compared with controls. Bacteria preincubated with Fab fragments showed weaker adhesion to corn roots in comparison to controls without Fab fragments. These findings suggest that the A. brasilense MOMP acts as an adhesin involved in root adsorption and cell aggregation of this bacterium.

  13. Two outer membrane proteins contribute to cellular fitness in Caulobacter crescentus by preventing intracellular S-layer protein accumulation.

    Science.gov (United States)

    Overton, K Wesley; Park, Dan M; Yung, Mimi C; Dohnalkova, Alice C; Smit, John; Jiao, Yongqin

    2016-09-23

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport S-layer protein from the cytoplasm to the cell exterior. Caulobacter crescentus is unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFa and RsaFb, that, together with other components, form a type I protein translocation pathway for S-layer export. These proteins have homology to E. coli TolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFa and RsaFb are not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFa and RsaFb are required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFa and RsaFb led to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and RNA-seq, we show that loss of both RsaFa and RsaFb led to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein mis-folding and degradation pathways. These findings provide new insight into the requirement for RsaFa and RsaFb in cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in C. crescentus IMPORTANCE: Decreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell largely due to lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural

  14. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function.

    Science.gov (United States)

    Sarin, Hemant

    2015-11-26

    Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre

  15. Cell membrane-anchored biosensors for real-time monitoring of the cellular microenvironment.

    Science.gov (United States)

    Qiu, Liping; Zhang, Tao; Jiang, Jianhui; Wu, Cuichen; Zhu, Guizhi; You, Mingxu; Chen, Xigao; Zhang, Liqin; Cui, Cheng; Yu, Ruqin; Tan, Weihong

    2014-09-24

    Cell membrane-anchored biochemical sensors that allow real-time monitoring of the interactions of cells with their microenvironment would be powerful tools for studying the mechanisms underlying various biological processes, such as cell metabolism and signaling. Despite the significance of these techniques, unfortunately, their development has lagged far behind due to the lack of a desirable membrane engineering method. Here, we propose a simple, efficient, biocompatible, and universal strategy for one-step self-construction of cell-surface sensors using diacyllipid-DNA conjugates as the building and sensing elements. The sensors exploit the high membrane-insertion capacity of a diacyllipid tail and good sensing performance of the DNA probes. Based on this strategy, we have engineered specific DNAzymes on the cell membrane for metal ion assay in the extracellular microspace. The immobilized DNAzyme showed excellent performance for reporting and semiquantifying both exogenous and cell-extruded target metal ions in real time. This membrane-anchored sensor could also be used for multiple target detection by having different DNA probes inserted, providing potentially useful tools for versatile applications in cell biology, biomedical research, drug discovery, and tissue engineering.

  16. Affinity Capillary Electrophoresis:Study of the Binding of HIV-1 gp41 with a Membrane Protein (P45) on the Human B Cell Line,Raji

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Affinity capillary electrophoresis has been used to study the interaction between a membrane protein (P45) isolated from the Human B cell line, Raji, and rsgp41. P45, rsgp41 and the complexes were well resolved. The entire separation was achieved in less than 3min. Formations of two kinds of stable P45-rsgp41 complexes were confirmed based on migration time comparison; the binding equilibrium was achieved as soon as two proteins were mixed. The results indicate that the interaction between P45 and rsgp41 is strong with a fast association rate and a slow dissociation rate, and there are at least two kinds of binding sites with different binding constants between P45 and rsgp41.

  17. A molecular defect in two families with hemolytic poikilocytic anemia: reduction of high affinity membrane binding sites for ankyrin.

    OpenAIRE

    Agre, P; Orringer, E P; Chui, D H; Bennett, V

    1981-01-01

    Patients from two families with chronic hemolytic anemia have been studied. The erythrocytes are very fragile and appear microcytic with a great variety of shapes. Clinical evaluation failed to identify traditionally recognized causes of hemolysis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed no significant abnormality of the major polypeptide bands. Erythrocytes spectrin-ankyrin and ankyrin-membrane interactions were analyzed with 125I-labeled spectrin, 125I-la...

  18. Extended adsorption transport models for permeation of copper ions through nanocomposite chitosan/polyvinyl alcohol thin affinity membranes

    Institute of Scientific and Technical Information of China (English)

    Ehsan Salehi; Leila Bakhtiari; Mahdi Askari

    2016-01-01

    Transport of copper ions through nanocomposite chitosan/polyvinyl alcohol thin adsorptive membranes has been mathematical y investigated in the current study. Unsteady-state diffusive transport model was coupled with the Freundlich isotherm to predict the concentration of the ions in dialysis permeation operation. Pristine model was not successful in predicting the experimental data based upon its low coefficients of determination (0.1﹤R2﹤0.65). Well-behaved polynomial and exponential functions were used to describe time-dependency of the inlet-concentration in the first extension of the model with a little improvement in the model adjustment (0.4﹤R2﹤0.69). Similar time-dependent functions were employed for tracking the ion diffusivity and then applied in combination with the optimized functions of inlet-concentration in the second extension of the model. A sensible enhancement was obtained in the adjustment of the second extended models as a result of this combination (0.73﹤R2﹤0.93). APRE, AAPRE, RSME, RMSE, STD and R-square statistical analyses were per-formed to verify the agreement of the models with the experimental results. Concentration distribution versus time and location (inside the membrane) was obtained as 3D plots with the help of the optimized models. Modeling results emphasized on the transiency of diffusivity and feed-side concentration in dialysis permeation through chitosan membranes.

  19. Common links in the structure and cellular localization of Rhizobium chitolipooligosaccharides and general Rhizobium membrane phospholipid and glycolipid components.

    Science.gov (United States)

    Cedergren, R A; Lee, J; Ross, K L; Hollingsworth, R I

    1995-04-04

    Several common links between the structural chemistry of the chitolipooligosaccharides of Rhizobium and the general rhizobial membrane lipid and lipopolysaccharide chemistry of these bacteria have been uncovered. Aspects of common chemistry include sulfation, methylation, and the position and extent of fatty acyl chain unsaturation. We find that bacteria which are known to synthesize sulfated chitolipooligosaccharides (such as Rhizobium meliloti strains and the broad-host-range Rhizobium species strain NGR234) also have sulfated lipopolysaccharides. Their common origins of sulfation have been demonstrated by using mutants which are known to be impaired in sulfating their chitolipooligosaccharides. In such cases, there is a corresponding diminution or complete lack of sulfation of the lipopolysaccharides. The structural diversity of the fatty acids observed in the chitolipooligosaccharides is also observed in the other membrane lipids. For instance, the doubly unsaturated fatty acids which are known to be predominant components of R. meliloti chitolipooligosaccharides were also found in the usual phospholipids and glycolipids. Also, the known functionalization of the chitolipooligosaccharides of R. sp. NGR234 by O- and N-methylation was also reflected in the lipopolysaccharide of this organism. The common structural features of chitolipooligosaccharides and membrane components are consistent with a substantial degree of biosynthetic overlap and a large degree of cellular, spatial overlap between these molecules. The latter aspect is clearly demonstrated here since we show that the chitolipooligosaccharides are, in fact, normal membrane components of Rhizobium. This increases the importance of understanding the role of the bacterial cell surface chemistry in the Rhizobium/legume symbiosis and developing a comprehensive understanding of the highly integrated membrane lipid and glycolipid chemistry of Rhizobium.

  20. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection.

    Science.gov (United States)

    Yang, Qian; Zhang, Qiong; Tang, Jun; Feng, Wen-Hai

    2015-10-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) represents a significantly economical challenge to the swine industry worldwide. In this study, we investigated the importance of cellular and viral lipid rafts in PRRSV infection. First, we demonstrated that PRRSV glycoproteins, Gp3 and Gp4, were associated with lipid rafts during viral entry, and disruption of cellular lipid rafts inhibited PRRSV entry. We also showed the raft-location of CD163, which might contribute to the glycoproteins-raft association. Subsequently, raft disruption caused a significant reduction of viral RNA production. Moreover, Nsp9 was shown to be distributed in rafts, suggesting that rafts probably serve as a platform for PRRSV replication. Finally, we confirmed that disassembly of rafts on the virus envelope may affect the integrity of PRRSV particles and cause the leakage of viral proteins, which impaired PRRSV infectivity. These findings might provide insights on our understanding of the mechanism of PRRSV infection.

  1. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  2. Cellular entry of nanoparticles via serum sensitive clathrin-mediated endocytosis, and plasma membrane permeabilization [Corrigendum

    Directory of Open Access Journals (Sweden)

    Smith PJ

    2015-06-01

    Full Text Available Corrigendum  Smith PJ, Giroud M, Wiggins HL, et al. Int J Nanomedicine. 2012;7:2045–2055.Page 2054, Figure 11, the text “Average no of NPs in lumen: Nf =2.1×10-3” should read “Average no of NPs in lumen:Nf =2.1×10-2”. Page 2054, Figure 11, the figure legend “Figure 11 A series of calculations to estimate the number of nanoparticles that could enter a vesicle under the incubation conditions described in materials and methods. It is estimated that nanoparticles are nearly 25,000 times more likely to enter cells when they are bound to the membrane than in the fluid phase.” should read “Figure 11 A series of calculations to estimate the number of nanoparticles that could enter a vesicle under the incubation conditions described in materials and methods. It is estimated that nanoparticles are nearly 2,500 times more likely to enter cells when they are bound to the membrane than in the fluid phase.” Page 2054, first column, line 13, the sentence “Even though the latter might be an overestimation, the current analyses suggest that under these conditions nanoparticles are nearly 25,000 times more likely to enter cells bound to the inner membrane of a vesicle than through the fluid phase.” should read “Even though the latter might be an overestimation, the current analyses suggest that under these conditions nanoparticles are nearly 2,500 times more likely to enter cells bound to the inner membrane of a vesicle than through the fluid phase”.Read the original article

  3. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a concentration-depende

  4. Following the trail of lipids: Signals initiated by PI3K function at multiple cellular membranes.

    Science.gov (United States)

    Naguib, Adam

    2016-05-17

    Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] is the signaling currency of the phosphoinositide 3-kinase (PI3K)/AKT pathway; transduction through this axis depends on this signaling lipid. Formation of PtdIns(3,4,5)P3 is dictated not only by PI3K activation but also by the localization and access of PI3K to its substrate PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate). PI3K/AKT-mediated signaling is antagonized by PtdIns(3,4,5)P3 dephosphorylation. Although previously typically considered an event associated with the plasma membrane, it is now appreciated that the formation and metabolism of PtdIns(3,4,5)P3 occur on multiple membranes with distinct kinetics. Modulated activity of phosphatidylinositol lipid kinases and phosphatases contributes to intricately orchestrated lipid gradients that define the signaling status of the pathway at multiple sites within the cell.

  5. The sleeping beauty kissed awake: new methods in electron microscopy to study cellular membranes.

    Science.gov (United States)

    Chlanda, Petr; Krijnse Locker, Jacomine

    2017-03-07

    Electron microscopy (EM) for biological samples, developed in the 1940-1950s, changed our conception about the architecture of eukaryotic cells. It was followed by a period where EM applied to cell biology had seemingly fallen asleep, even though new methods with important implications for modern EM were developed. Among these was the discovery that samples can be preserved by chemical fixation and most importantly by rapid freezing without the formation of crystalline ice, giving birth to the world of cryo-EM. The past 15-20 years are hallmarked by a tremendous interest in EM, driven by important technological advances. Cryo-EM, in particular, is now capable of revealing structures of proteins at a near-atomic resolution owing to improved sample preparation methods, microscopes and cameras. In this review, we focus on the challenges associated with the imaging of membranes by EM and give examples from the field of host-pathogen interactions, in particular of virus-infected cells. Despite the advantages of imaging membranes under native conditions in cryo-EM, conventional EM will remain an important complementary method, in particular if large volumes need to be imaged.

  6. Interaction of non-aqueous dispersions of silver nanoparticles with cellular membrane models.

    Science.gov (United States)

    Soriano, Gustavo Bonomi; da Silva Oliveira, Roselaine; Camilo, Fernanda Ferraz; Caseli, Luciano

    2017-02-13

    In this work, silver nanoparticles (AgNPs) dispersed in non-aqueous media and stabilized with polyether block polymers amide (PEBA) were incorporated in Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC), which served as a cell membrane model. The AgNPs presented surface activity, disturbing the viscoelastic properties of the floating film. They expanded the monolayers decreasing their surface elasticity as observed with surface pressure-area isotherms. Polarization modulation reflection-absorption spectroscopy showed that the permanence of AgNPs at the air-water interface is favored by PEBA, affecting both the hydrophilic and the hydrophobic groups of the phospholipid. Brewster angle microscopy showed that the AgNPs lead to the formation of aggregates at the air-water interface, establishing domains that shear with each other due to the low lateral viscosity of irregular and non-monomolecular domains. These data can be correlated to the possible toxicity and microbicide effect of AgNPs in lipidic surfaces such as in mammalian and microbial membranes.

  7. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; Dohnalkova, Alice C.; Smit, John; Jiao, Yongqin; Parales, R. E.

    2016-09-23

    ABSTRACT

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFaand RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFaand RsaFbare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFaand RsaFbare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFaand RsaFbled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFaand RsaFbled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFaand RsaFbin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in

  8. A photo-defined membrane for precisely patterned cellular and microparticle arrays

    Directory of Open Access Journals (Sweden)

    A. L. McPherson

    2012-03-01

    Full Text Available The ability to pattern particles in well-defined arrays enhances microfluidic devices. A low-fluorescence optically transparent photo-curable resist (1002F was characterized for use as a mechanical sieve in a microfluidic chip. Films of thickness 10 μm and 25 μm were created containing pores 6–10 μm in diameter with pitches ranging from 5–300 μm. The uniform photo-defined pores had diameters with standard deviations of 3%. Integrated with microfluidic devices, the films were used to trap polystyrene microspheres, and in a different experiment, MCF7 human epithelial adenocarcinoma cells (ATCC HTB-22. A mechanical sieve was used to trap two types of fluorescent particles and, separately MCF7 cells with NIH/3T3 murine fibroblast cells (ATCC CRL-1658 as a proof-of-concept for striated cellular co-culture.

  9. Optical principle of pH measurement for detection of auxin flow through cellular membrane

    Science.gov (United States)

    Podrazky, Ondrej; Mrazek, Jan; Seidl, Miroslav; Kasik, Ivan; Tobiska, Petr; Matejec, Vlastimil; Martan, Tomas; Aubrecht, Jan

    2007-05-01

    The paper shows an approach to the determination of pH changes of solutions with a fine spatial resolution by means of fiber-optic tapers and fluorescence detection. This approach can be adopted for the determination of auxin flow through celluar membranes. Spectral absorption and fluorescence of pH transducers, namely of fluorescein, carboxyfluorescein, 6,8-dihydroxy-1,3-pyrenedisulfonic acid disodium salt and 2',7'-bis(2-carbonylethyl)-5(6)-carboxyfluorescein, were tested. The approach, based on the determination of a shift of the maxima of their fluorescence peaks, was employed for processing the measured fluorescence data in bulk solutions. Suitable tapered fiber probes were prepared and in vitro demonstrated for pH monitoring in a pH range from 6 to 7.

  10. Cellular and subcellular localization of the neuron-specific plasma membrane calcium ATPase PMCA1a in the rat brain.

    Science.gov (United States)

    Kenyon, Katharine A; Bushong, Eric A; Mauer, Amy S; Strehler, Emanuel E; Weinberg, Richard J; Burette, Alain C

    2010-08-15

    Regulation of intracellular calcium is crucial both for proper neuronal function and survival. By coupling ATP hydrolysis with Ca(2+) extrusion from the cell, the plasma membrane calcium-dependent ATPases (PMCAs) play an essential role in controlling intracellular calcium levels in neurons. In contrast to PMCA2 and PMCA3, which are expressed in significant levels only in the brain and a few other tissues, PMCA1 is ubiquitously distributed, and is thus widely believed to play a "housekeeping" function in mammalian cells. Whereas the PMCA1b splice variant is predominant in most tissues, an alternative variant, PMCA1a, is the major form of PMCA1 in the adult brain. Here, we use immunohistochemistry to analyze the cellular and subcellular distribution of PMCA1a in the brain. We show that PMCA1a is not ubiquitously expressed, but rather is confined to neurons, where it concentrates in the plasma membrane of somata, dendrites, and spines. Thus, rather than serving a general housekeeping function, our data suggest that PMCA1a is a calcium pump specialized for neurons, where it may contribute to the modulation of somatic and dendritic Ca(2+) transients.

  11. Adsorption of papain with Cibacron Blue F3GA carrying cellulose affinity membranes%木瓜蛋白酶在染料Cibacron Blue F3GA纤维素亲和膜上的吸附研究

    Institute of Scientific and Technical Information of China (English)

    张海涛; 聂华丽; 陈天翔; 苏赛男; 朱利民

    2009-01-01

    以纤维素滤纸膜为载体,染料Cibacron Blue F3GA为配基,制备了一种新型亲和膜色谱介质.采用扫描电镜、红外光谱、元素分析等方法对亲和膜介质进行鉴定与表征,该膜具有良好的色谱性能.亲和膜对F3GA的键合质量摩尔浓度达93.7 μmol/g.研究了木瓜蛋白酶在亲和膜上的吸附行为,实验表明:在30℃下、酶质量浓度为2 mg/mL、pH=8.0时,吸附质量比可达57.9 mg/g,改变pH值及离子强度等条件对吸附质量比有明显的影响.在最适条件下吸附遵循Langmuir型吸附.可以初步推断,纤维素滤纸膜可以制成性能优良的亲和膜色谱介质,成本低廉,适合工业化分离纯化生物大分子.%Cibacron Blue F3GA (CB F3GA) as a hgand was immobilized onto cellulose membranes to produce a novel affinity membrane. The physical properties and its apphcations of affinity membrane chromatography were examined by means of scanning electron microscope (SEM), infra-red spectrum and elementary analysis, etc. The bonding content of CB F3GA attached on membranes was 93.7 μmol/g. The adsorption behavior of papain on affinity membranes was studied. The result shows that higher papain adsorption capacity (up to 57.9 mg/g membrane) can be achieved under the condition of 2.0 mg/mL papain solution, 30℃, pH=8.0. Changing pH and ionic strength has obvious effects on the adsorption of papain. The adsorption of papain on affinity membranes can be described by the Langmuir isotherm. Therefore, it can prehminarily foresee that the cellulose membrane can become the low-cost but high-efficiency affinity membranes base for papain separation, which is applicable for commercial separating the biological macromolecular.

  12. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1.

    Science.gov (United States)

    Li, Guowei; Tillard, Pascal; Gojon, Alain; Maurel, Christophe

    2016-04-01

    The water status and mineral nutrition of plants critically determine their growth and development. Nitrate (NO3(-)), the primary nitrogen source of higher plants, is known to impact the water transport capacity of roots (root hydraulic conductivity, Lpr). To explore the effects and mode of action of NO3(-) on Lpr, we used an extended set of NO3(-) transport (nrt1.1, nrt1.2, nrt1.5 and nrt2.1), signaling (nrt1.1 and nrt2.1) and metabolism (nia) mutants in Arabidopsis, grown under various NO3(-) conditions. First, a strong positive relationship between Lpr and NO3(-) accumulation, in shoots rather than in roots, was revealed. Secondly, a specific 30% reduction of Lpr in nrt2.1 plants unraveled a major role for the high-affinity NO3(-) transporter NRT2.1 in increasing Lpr These results indicate that NO3(-)signaling rather than nitrogen assimilation products governs Lpr in Arabidopsis. Quantitative real-time reverse transcription-PCR and enzyme-linked immunosorbent assays (ELISAs) were used to investigate the effects of NO3(-) availability on plasma membrane aquaporin (plasma membrane intrinsic protein; PIP) expression. Whereas PIP regulation mostly occurs at the post-translational level in wild-type plants, a regulation of PIPs at both the transcriptional and translational levels was uncovered in nrt2.1 plants. In conclusion, this work reveals that control of Arabidopsis Lpr and PIP functions by NO3(-) involves novel shoot to root signaling and NRT2.1-dependent functions.

  13. Purification of cell culture-derived influenza virus A/Puerto Rico/8/34 by membrane-based immobilized metal affinity chromatography.

    Science.gov (United States)

    Opitz, Lars; Hohlweg, Jonas; Reichl, Udo; Wolff, Michael W

    2009-11-01

    The presented study focuses on the feasibility of immobilized metal affinity chromatography for purification of Madin Darby canine kidney cell culture-derived influenza virus particles. Therefore, influenza virus A/Puerto Rico/8/34 was screened for adsorption to different transition metal ions attached to iminodiacetic acid. Subsequently, capturing of the same virus strain using zinc-modified iminodiacetic acid membrane adsorbers was characterized regarding viral recoveries, host cell nucleic acid and total protein depletion as well as zinc-ion-leaching. In addition, the effect of the imidazole proton pump on virus stability was studied based on the hemagglutination activity. During adsorption in the presence of 1M sodium chloride the majority of virus particles were recovered in the product (64% hemagglutination activity). Host cell nucleic acid and total protein content were reduced to approximately 7 and 26%, respectively. This inexpensive and rapid method was applied reproducibly for influenza virus A/Puerto Rico/8/34 preparations on the laboratory scale. However, preliminary results with other virus strains indicated clearly a strong strain dependency for viral adsorption.

  14. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography.

    Science.gov (United States)

    Sadavarte, Rahul; Spearman, Maureen; Okun, Natalie; Butler, Michael; Ghosh, Raja

    2014-06-01

    Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.

  15. Monoclonal antibody affinity purification of a 78 kDa membrane protein of Leishmania donovani of Indian origin and its role in host–parasite interaction

    Indian Academy of Sciences (India)

    Mandira Mukherjee; Anindita Bhattacharyya; Swadesh Duttagupta

    2002-12-01

    Monoclonal antibodies were raised against pathogenic promastigotes of Leishmania donovani of Indian origin. Among these, one was used for immuno-affinity purification of a 78 kDa membrane protein present in both the amastigote and promastigote forms of the parasite. Results of immunoblot experiments with the anti-78 kDa antibody revealed that the protein was present only in parasites belonging to the L. donovani complex. The expression of the protein was observed to be the same during different phases of growth of the promastigotes. Therefore, the 78 kDa protein is neither stage-specific nor differentially regulated. Surface iodination and subcellular fractionation of the promastigotes indicated that the protein was localized on the cell surface. The 78 kDa protein was found to inhibit the binding of promastigotes to macrophages significantly, suggesting that it may play a role in the process of infection. Thus, here we report the purification of a surface protein of L. donovani of Indian origin, which may play an important role in the process of infection.

  16. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    Science.gov (United States)

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  17. Mgat1-dependent N-glycosylation of membrane components primes Drosophila melanogaster blood cells for the cellular encapsulation response.

    Directory of Open Access Journals (Sweden)

    Nathan T Mortimer

    Full Text Available In nature, larvae of the fruitfly Drosophila melanogaster are commonly infected by parasitoid wasps, and so have evolved a robust immune response to counter wasp infection. In this response, fly immune cells form a multilayered capsule surrounding the wasp egg, leading to death of the parasite. Many of the molecular mechanisms underlying this encapsulation response are conserved with human immune responses. Our findings suggest that protein N-glycosylation, a common protein post-translational modification of human immune proteins, may be one such conserved mechanism. We found that membrane proteins on Drosophila immune cells are N-glycosylated in a temporally specific manner following wasp infection. Furthermore we have identified mutations in eight genes encoding enzymes of the N-glycosylation pathway that decrease fly resistance to wasp infection. More specifically, loss of protein N-glycosylation in immune cells following wasp infection led to the formation of defective capsules, which disintegrated over time and were thereby unsuccessful at preventing wasp development. Interestingly, we also found that one species of Drosophila parasitoid wasp, Leptopilina victoriae, targets protein N-glycosylation as part of its virulence mechanism, and that overexpression of an N-glycosylation enzyme could confer resistance against this wasp species to otherwise susceptible flies. Taken together, these findings demonstrate that protein N-glycosylation is a key player in Drosophila cellular encapsulation and suggest that this response may provide a novel model to study conserved roles of protein glycosylation in immunity.

  18. Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms.

    Science.gov (United States)

    Santi, Simonetta; Locci, Geraldine; Monte, Rossella; Pinton, Roberto; Varanini, Zeno

    2003-08-01

    An investigation was carried out to assess the effect of nitrate supply on the root plasma membrane (PM) H+-ATPase of etiolated maize (Zea mays L.) seedlings grown in hydroponics. The treatment induced higher uptake rates of the anion and the expression of a putative high-affinity nitrate transporter gene (ZmNRT2.1), the first to be identified in maize. Root PM H+-ATPase activity displayed a similar time-course pattern as that of net nitrate uptake and investigations were carried out to determine which of the two isoforms reported to date in maize, MHA1 and 2, responded to the treatment. MHA1 was not expressed under the conditions analysed. Genome analysis revealed that MHA2, described as the most abundant form in all maize tissues, was not present in the maize hybrid investigated, but a similar form was found instead and named MHA3. A second gene (named MHA4) was also identified and partially sequenced. Both genes, classified as members of the PM H+-ATPase subfamily II, responded to nitrate supply, although to different degrees: MHA4, in particular, proved more sensitive than MHA3, with a greater up- and down-regulation in response to the treatment. Increased expression of subfamily II genes resulted in higher steady-state levels of the enzyme in the root tissues and enhanced ATP-hydrolysing activity. The results support the idea that greater proton-pumping activity is required when nitrate inflow increases and suggest that nitrate may be the signal triggering the expression of the two members of PM H+-ATPase subfamily II.

  19. Enzyme oscillation can enhance the thermodynamic efficiency of cellular metabolism: Consequence of anti-phase coupling between reaction flux and affinity

    CERN Document Server

    Himeoka, Yusuke

    2015-01-01

    Cells generally convert nutrient resources to useful products via energy transduction. Accordingly, the thermodynamic efficiency of this conversion process is one of the most essential characteristics of living organisms. However, although these processes occur under conditions of dynamic metabolism, most studies of cellular thermodynamic efficiency have been restricted to examining steady states; thus, the relevance of dynamics to this efficiency has not yet been elucidated. Here, we develop a simple model of metabolic reactions with anabolism-catabolism coupling catalysed by enzymes. Through application of external oscillation in the enzyme abundances, the thermodynamic efficiency of metabolism was found to be improved. This result is in strong contrast with that observed in the oscillatory input, in which the efficiency always decreased with oscillation. This improvement was effectively achieved by separating the anabolic and catabolic reactions, which tend to disequilibrate each other, and taking advantag...

  20. Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Directory of Open Access Journals (Sweden)

    Michael E. Hasselmo

    2008-01-01

    Full Text Available The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.

  1. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  2. The extrinsic PsbO protein modulates the oxidation/reduction rate of the exogenous Mn cation at the high-affinity Mn-binding site of Mn-depleted PSII membranes.

    Science.gov (United States)

    Semin, Boris K; Podkovirina, Tatiana E; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B

    2015-08-01

    The oxidation of exogenous Mn(II) cations at the high-affinity (HA) Mn-binding site in Mn-depleted photosystem II (PSII) membranes with or without the presence of the extrinsic PsbO polypeptide was studied by EPR. The six-lines EPR spectrum of Mn(II) cation disappears in the absence of the PsbO protein in membranes under illumination, but there was no effect when PSII preparations bound the PsbO protein. Our study demonstrates that such effect is determined by significant influence of the PsbO protein on the ratio between the rates of Mn oxidation and reduction at the HA site when the membranes are illuminated.

  3. Comparative study of effects of magnesium and taurine on electrical parameters of natural and artificial membranes. VII. Effects on cellular and paracellular ionic transfer through isolated human amnion.

    Science.gov (United States)

    Bara, M; Guiet-Bara, A; Durlach, J

    1990-12-01

    The comparative effects of 2 mM magnesium and taurine on various components of the human transamniotic conductance, Gt, were observed. The use of both microelectrodes and metabolic inhibitors enables 10 components of Gt to be distinguished: six cellular components (Na-K ATPase, Na-H antiport, Na-K-2Cl cotransport and Na, K, Cl channels), one coupling component, and three paracellular components (Na, K, Cl). Mg increased all components of Gt while taurine only increased five of them (Na and K channels, coupling, Na and K paracellular conductance). A potentiometric effect of taurine on Mg2+ modified membrane, obtained on paracellular components, was not measured on cellular components. There was only a vicarious effect between Mg and taurine on the non-enzymatic cellular and paracellular transfer of Na and K.

  4. Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in Tribolium castaneum

    NARCIS (Netherlands)

    Van Der Zee, Maurijn; Benton, Matthew A.; Vazquez-Faci, Tania; Lamers, Gerda E M; Jacobs, Chris G C; Rabouille, Catherine

    2015-01-01

    In insects thefertilized egg undergoes a series of rapid nuclear divisions before the syncytial blastoderm starts to cellularize. Cellularization has been extensively studied in Drosophila melanogaster but its thick columnar blastoderm is unusual among insects.We therefore set out to describe cellul

  5. Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in Tribolium castaneum

    NARCIS (Netherlands)

    van der Zee, Maurijn; Benton, Matthew A; Vazquez-Faci, Tania; Lamers, Gerda E M; Jacobs, Chris G C; Rabouille, Catherine

    2015-01-01

    In insects, the fertilized egg undergoes a series of rapid nuclear divisions before the syncytial blastoderm starts to cellularize. Cellularization has been extensively studied in Drosophila melanogaster, but its thick columnar blastoderm is unusual among insects. We therefore set out to describe ce

  6. Investigation of cellular constituent in diabetic epiretinal membranes%糖尿病视网膜表面膜细胞成分的研究

    Institute of Scientific and Technical Information of China (English)

    辛晓蓉; 巩天祥

    2013-01-01

    Objective To investigate the main cellular constituent in diabetic epiretinal membranes with intact internal limiting membranes and postulate reasons for proliferation of those cells, and to provide new idea for exploring the pathological mechanism of the shaping of diabetic epiretinal membrane. Methods A total of 12 eyes with intact diabetic epiretinal membranes were selected,among which 10 eyes were collected from retinal-vitreous surgeries,2 eyes were collected from postmortem patients. Then the cellular constituent in the diabetic epiretinal membranes were determined by HE staining, immunohistochemical staining, and electron microscopy. Results Tests results of glial fibrillary acid protein (GFAP), S-100 protein, neural specific enolase (NSE)and vimentin were positive, which suggested the main cellular constituent in the diabetic epiretinal membranes were astrocytes. Astrocytes with regular rounded nuclei and mature mitochondria and Golgi apparatus in the cytoplasm were observed by electron microscopy. Flbrillar collagen was observed in the diabetic epiretinal membranes. Conclusion Astrocytes paly an important role in the shaping of diabetic epiretinal membranes. Astrocytes are the main cellular constituent in diabetic epiretinal membranes with intact internal limiting membranes.%目的 探讨在视网膜内界膜完整的情况下糖尿病视网膜表面膜中的主要细胞成分,推测这些增殖细胞的来源,为糖尿病视网膜表面膜形成的病理机制提供新的思路.方法 视网膜表面膜为糖尿病视网膜表面膜,10眼来自玻璃体视网膜手术眼,2眼取自尸体眼(生前为糖尿病视网膜表面膜眼),这些病例中内界膜都保持完整.通过HE染色、免疫组织化学和电镜检查研究表面膜的细胞成分.结果 神经纤维酸性蛋白、S-100蛋白、神经元特异性烯醇化酶、波形蛋白在视网膜表面膜表达阳性,提示表面膜中的主要细胞成分为星形胶质细胞.电镜观察可见

  7. The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders.

    Science.gov (United States)

    Morris, Gerwyn; Walder, Ken; Puri, Basant K; Berk, Michael; Maes, Michael

    2016-09-01

    Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.

  8. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  9. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  10. Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone

    DEFF Research Database (Denmark)

    Jing, Xiaona; Yang, Mingjun; Kasimova, Marina Robertovna

    2012-01-01

    Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone were studied to ev...

  11. Temperature-mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields.

    Science.gov (United States)

    Wang, Lang-Hong; Wang, Man-Sheng; Zeng, Xin-An; Liu, Zhi-Wei

    2016-08-01

    Effects of growth temperature on cell membrane fatty acid composition, fluidity and lethal and sublethal injury by pulsed electric fields (PEF) in Staphylococcus aureus ATCC 43300 (S. aureus) in the stationary phase were investigated. Analysis of the membrane fatty acids by gas chromatography-mass spectrometry (GC-MS) revealed that branched chain fatty acids (iso C14:0, iso C15:0, anteiso C15:0 and anteiso C17:0) and straight chain fatty acids (C12:0, C14:0, C16:0, C17:0 and C18:0) were primary constituents in the membrane. The S. aureus changed its membrane fatty acid composition and its overall fluidity when exposed to different temperatures. The PEF lethal and sublethal effects were assessed, and results suggested that the degree of inactivation depended on the cell membrane structure, electric field strength and treatment time. The PEF inactivation kinetics including lethal and sublethal injury fractions were fitted with non-linear Weibull distribution, suggesting that inactivation of the first log cycle of S. aureus population was significantly affected by growth temperature, and the membrane of cells became more fluid, and easier to induce electroportion in low temperatures. Moreover, the morphology of S. aureus cells were investigated by electron microscopy, showing that various temperature-modified cells were distorted to differing extents and some even collapsed due to deep irreversible electroporation after PEF treatment.

  12. Imaging Cellular Dynamics with Spectral Relaxation Imaging Microscopy: Distinct Spectral Dynamics in Golgi Membranes of Living Cells

    Science.gov (United States)

    Lajevardipour, Alireza; Chon, James W. M.; Chattopadhyay, Amitabha; Clayton, Andrew H. A.

    2016-11-01

    Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C6-NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.

  13. Cellular processes and pathways that protect Saccharomyces cerevisiae cells against the plasma membrane-perturbing compound chitosan.

    NARCIS (Netherlands)

    Zakrzewska, A.M.; Boorsma, A.; Delneri, D.; Brul, S.; Oliver, S.G.; Klis, F.M.

    2007-01-01

    Global fitness analysis makes use of a genomic library of tagged deletion strains. We used this approach to study the effect of chitosan, which causes plasma membrane stress. The data were analyzed using T-profiler, which was based on determining the sensitivities of groups of deletion strains to ch

  14. On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

    Directory of Open Access Journals (Sweden)

    Claudia Messerschmidt

    2016-09-01

    Full Text Available For any living cell the exchange with its environment is vital. Therefore, many different kinds of cargo are able to enter cells via energy-dependent or -independent routes. Nanoparticles are no exemption. It is known that small silica nanoparticles with a diameter below 50 nm are taken up by cells and that their uptake exerts pronounced toxic effects beyond a certain concentration threshold. However, neither the exact uptake mechanism of these particles nor the actual reason for their toxicity has yet been elucidated. In this study we examined the uptake of silica nanoparticles with a diameter of 7, 12 and 22 nm by means of transmission electron microscopy, accompanied by toxicological assays. We show that for every particle diameter tested a different membrane morphology during uptake can be observed and that the amount of particles entering in one event is different for the three sizes. Silica particles with a diameter of 22 nm show single-particle internalization with a membrane wrapped around the particles in the cytosol, whereas 12 nm particles display row-like multi-particle uptake into elongated membrane structures and those with a diameter of 7 nm or less end up in tubular endocytic structures containing many particles. These membrane morphologies proved to be highly reproducible as we found them in five different cell lines. Additionally, we performed ATP and LDH assays to determine particle toxicity. Exceeding a certain concentration threshold the nanoparticles showed a high toxic potential both in the biochemical assay measurements and from morphological findings. We could not find any hint at the induction of apoptosis, neither morphologically nor biochemically. In this regard we discuss membrane damage and consumption as one possible mechanism of toxicity, linking morphological observations to toxicological findings to bridge the gap in understanding the mechanism of toxicity of small nanoparticles.

  15. The β-subunit of cholera toxin has a high affinity for ganglioside GM1 embedded into solid supported lipid membranes with a lipid raft-like composition.

    Science.gov (United States)

    Margheri, G; D'Agostino, R; Trigari, S; Sottini, S; Del Rosso, M

    2014-02-01

    In this communication, we report on the fabrication of GM1-rich solid-supported bilayer lipid membranes (ssBLM) made of sphingomyelin and cholesterol, the main components of lipid rafts,which are the physiological hosting microenvironment of GM1 on the cell membrane. The functionality of the ganglioside has been checked by measuring the apparent dissociation constant K(D) of the complex formed by the β-subunit of the cholera toxin and GM1. The value found deviates less than one order of magnitude from that measured for in vivo cells, indicating the potential of these ssBLM as optimized in vitro biomimetic platforms.

  16. Neisserial outer membrane vesicles bind the coinhibitory receptor carcinoembryonic antigen-related cellular adhesion molecule 1 and suppress CD4+ T lymphocyte function.

    Science.gov (United States)

    Lee, Hannah S W; Boulton, Ian C; Reddin, Karen; Wong, Henry; Halliwell, Denise; Mandelboim, Ofer; Gorringe, Andrew R; Gray-Owen, Scott D

    2007-09-01

    Pathogenic Neisseria bacteria naturally liberate outer membrane "blebs," which are presumed to contribute to pathology, and the detergent-extracted outer membrane vesicles (OMVs) from Neisseria meningitidis are currently employed as meningococcal vaccines in humans. While the composition of these vesicles reflects the bacteria from which they are derived, the functions of many of their constituent proteins remain unexplored. The neisserial colony opacity-associated Opa proteins function as adhesins, the majority of which mediate bacterial attachment to human carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). Herein, we demonstrate that the Opa proteins within OMV preparations retain the capacity to bind the immunoreceptor tyrosine-based inhibitory motif-containing coinhibitory receptor CEACAM1. When CD4(+) T lymphocytes were exposed to OMVs from Opa-expressing bacteria, their activation and proliferation in response to a variety of stimuli were effectively halted. This potent immunosuppressive effect suggests that localized infection will generate a "zone of inhibition" resulting from the diffusion of membrane blebs into the surrounding tissues. Moreover, it demonstrates that OMV-based vaccines must be developed from strains that lack CEACAM1-binding Opa variants.

  17. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance

    OpenAIRE

    Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2007-01-01

    Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanisti...

  18. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2 Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    Directory of Open Access Journals (Sweden)

    Masaki Kurogochi

    Full Text Available Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain, and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC and complement dependent cytotoxicity (CDC. To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases, one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2, high-mannose type (Man4-9GlcNAc2, and complex type (Man3GlcNAc3-4 N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL, the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1 were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q, and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2 was performed using SKBR-3 and BT-474 as target

  19. Humoral and cellular immune responses to synthetic peptides of the Leishmania donovani kinetoplastid membrane protein-11

    DEFF Research Database (Denmark)

    Jensen, A T; Gasim, S; Ismail, A

    1998-01-01

    Native kinetoplastid membrane protein-11 (KMP-11), purified from crude extracts of Leishmania donovani parasites, activates T cells from individuals who have recovered from visceral leishmaniasis. In this work we used three 38-mer peptides spanning the amino acid sequence of the L. donovani KMP-11...... Sudanese visceral leishmaniasis patients (VL) and the percentage of patients with anti-KMP-11 antibodies in ELISA were 37% (KMP-11-1), 30% (KMP-11-2) and 58% (KMP-11-3). The fraction of VL patients with measurable antibody reactivity in one or more of the three ELISAs was 79%. Cross-reactivity to the KMP...

  20. 尼龙亲和膜的制备条件优化及其表征%Study on optimizing the preparation conditions and characterizing of novel nylon affinity membranes

    Institute of Scientific and Technical Information of China (English)

    聂华丽; 陈天翔; 朱利民

    2011-01-01

    尼龙膜经稀盐酸水解、壳聚糖改性后,以木瓜蛋白酶为亲和膜的配基,通过戊二醛的活化处理后采用共价结合的方法将配基键合在尼龙膜上,从而得到有特异吸附性能的尼龙亲和膜.本实验考察了制备尼龙亲和膜的交联剂戊二醛的质量分数、pH值、温度、反应时间和酶用量对亲和膜上木瓜蛋白酶活力的影响,确定了最适合的制备条件:pH=9.0,质量分数为0.5%的戊二醛,反应温度为45℃,反应时间为6 h,酶用量为10 mg/mL.该优化条件下制备的尼龙亲和膜具备优良的色谱性能,可用于分离纯化半胱氨酸蛋白酶抑制剂.%Nylon membranes are first hydrolyed with dilute HCl and then treated with chitosan before being used as the affinity carrier. Papain as a ligand has been immobilized on the actived membranes with glutaraldehyde as crosslinking agent. The factors involving with the activity of immobilized papain, such as concentration of glutaraldehyde, pH, temperature, reaction time, and the amount of added papain have been studied. The results show that the optimum conditions for papain immobilization are as follows: pH=9.0,0.5% glutaraldehyde solution, the concentration of added papain is 10 mg/mL, the reaction time is 6 h at 45 ℃. The nylon membrane prepared is then used to purify cystatin from potato juice, and showed that they are high efficiency affinity membranes base for cystatin separation.

  1. A High-Affinity Binding Site for the AVR9 Peptide Elicitor of Cladosporium fulvum Is Present on Plasma Membranes of Tomato and Other Solanaceous Plants.

    Science.gov (United States)

    Kooman-Gersmann, M.; Honee, G.; Bonnema, G.; De Wit, PJGM.

    1996-05-01

    The race-specific Cladosporium fulvum peptide elicitor AVR9, which specifically induces a hypersensitive response in tomato genotypes carrying the Cf-9 resistance gene, was labeled with iodine-125 at the N-terminal tyrosine residue and used in binding studies. 125I-AVR9 showed specific, saturable, and reversible binding to plasma membranes isolated from leaves of tomato cultivar Moneymaker without Cf resistance genes (MM-Cf0) or from a near-isogenic genotype with the Cf-9 resistance gene (MM-Cf9). The dissociation constant was found to be 0.07 nM, and the receptor concentration was 0.8 pmol/mg microsomal protein. Binding was highly influenced by pH and the ionic strength of the binding buffer and by temperature, indicating the involvement of both electrostatic and hydrophobic interactions. Binding kinetics and binding capacity were similar for membranes of the MM-Cf0 and MM-Cf9 genotypes. In all solanaceous plant species tested, an AVR9 binding site was present, whereas in the nonsolanaceous species that were analyzed, such a binding site could not be identified. The ability of membranes isolated from different solanaceous plant species to bind AVR9 seems to correlate with the presence of members of the Cf-9 gene family, but whether this correlation is functional remains to be determined.

  2. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    Science.gov (United States)

    Wang, Suhua; Song, Haipeng; Ong, Wei Yi; Han, Ming Yong; Huang, Dejian

    2009-10-01

    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  3. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    Energy Technology Data Exchange (ETDEWEB)

    Wang Suhua; Song Haipeng; Huang Dejian [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Ong Weiyi [Department of Anatomy, National University of Singapore, 119260 (Singapore); Han Mingyong, E-mail: chmhdj@nus.edu.s [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)

    2009-10-21

    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  4. Retinol-binding protein 4 and its membrane receptor STRA6 control adipogenesis by regulating cellular retinoid homeostasis and retinoic acid receptor α activity.

    Science.gov (United States)

    Muenzner, Matthias; Tuvia, Neta; Deutschmann, Claudia; Witte, Nicole; Tolkachov, Alexander; Valai, Atijeh; Henze, Andrea; Sander, Leif E; Raila, Jens; Schupp, Michael

    2013-10-01

    Retinoids are vitamin A (retinol) derivatives and complex regulators of adipogenesis by activating specific nuclear receptors, including the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Circulating retinol-binding protein 4 (RBP4) and its membrane receptor STRA6 coordinate cellular retinol uptake. It is unknown whether retinol levels and the activity of RAR and RXR in adipocyte precursors are linked via RBP4/STRA6. Here, we show that STRA6 is expressed in precursor cells and, dictated by the apo- and holo-RBP4 isoforms, mediates bidirectional retinol transport that controls RARα activity and subsequent adipocyte differentiation. Mobilization of retinoid stores in mice by inducing RBP4 secretion from the liver activated RARα signaling in the precursor cell containing the stromal-vascular fraction of adipose tissue. Retinol-loaded holo-RBP4 blocked adipocyte differentiation of cultured precursors by activating RARα. Remarkably, retinol-free apo-RBP4 triggered retinol efflux that reduced cellular retinoids, RARα activity, and target gene expression and enhanced adipogenesis synergistically with ectopic STRA6. Thus, STRA6 in adipocyte precursor cells links nuclear RARα activity to the circulating RBP4 isoforms, whose ratio in obese mice was shifted toward limiting the adipogenic potential of their precursors. This novel cross talk identifies a retinol-dependent metabolic function of RBP4 that may have important implications for the treatment of obesity.

  5. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  6. Conformational equilibria and intrinsic affinities define integrin activation.

    Science.gov (United States)

    Li, Jing; Su, Yang; Xia, Wei; Qin, Yan; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A

    2017-03-01

    We show that the three conformational states of integrin α5β1 have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000-fold higher affinity of the extended-open state than the bent-closed and extended-closed states demonstrates profound regulation of affinity. Free energy requirements for activation are defined with protein fragments and intact α5β1 On the surface of K562 cells, α5β1 is 99.8% bent-closed. Stabilization of the bent conformation by integrin transmembrane and cytoplasmic domains must be overcome by cellular energy input to stabilize extension. Following extension, headpiece opening is energetically favored. N-glycans and leg domains in each subunit that connect the ligand-binding head to the membrane repel or crowd one another and regulate conformational equilibria in favor of headpiece opening. The results suggest new principles for regulating signaling in the large class of receptors built from extracellular domains in tandem with single-span transmembrane domains.

  7. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Myriam Ermonval

    Full Text Available BACKGROUND: The cellular prion protein, PrP(C, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C, we have described a neuronal specificity pointing to a role of PrP(C in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT or noradrenergic (1C11(NE derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C signaling prompted us to search for PrP(C partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP. This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT and 1C11(NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT and 1C11(NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C-laminin interplay. The partnership between TNAP and PrP(C in neuronal cells may

  8. Report on the 53rd Annual Meeting of the Canadian Society of Biochemistry, Molecular and Cellular Biology: "Membrane Proteins in Health and Disease".

    Science.gov (United States)

    Reithmeier, Reinhart A F; Casey, Joseph R

    2011-04-01

    The meeting "Membrane Proteins in Health and Disease" featured 6 sessions and 2 satellite meetings. At the opening session, Gunnar von Heijne delivered a plenary lecture entitled Insertion of Membrane Proteins into the Endoplasmic Reticulum. The following session topics were Membrane Protein Trafficking and Folding, Regulation of Membrane Proteins, Membrane Protein Structure, Membrane Proteins in Diverse Species, and Membrane Proteins and Diseases. The satellite meetings discussed bicarbonate transporters and Na+/H+ exchangers. Together the 21 lectures and 106 posters presented at the meeting spanned the full spectrum of current research into membrane protein structure and function.

  9. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro.

    Science.gov (United States)

    Ahn, Yeh-Jin; Zimmerman, J Lynn

    2006-01-01

    We have examined the ability of a carrot (Daucus carota L.) heat shock protein gene encoding HSP17.7 (DcHSP17.7) to confer enhanced heat tolerance to potato (Solanum tuberosum L.), a cool-season crop. The DcHSP17.7 gene was fused to a 6XHistidine (His) tag to distinguish the engineered protein from endogenous potato proteins and was introduced into the potato cultivar 'Désirée' under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Western analysis showed that engineered DcHSP17.7 was constitutively, but not abundantly, expressed in transgenic potato lines before heat stress. Leaves from multiple regenerated potato lines that contain the transgene exhibited significantly improved cellular membrane stability at high temperatures, compared with wild-type and vector control plants. Transgenic potato lines also exhibited enhanced tuberization in vitro: under a condition of constant heat stress, at 29 degrees C, nodal sections of the transgenic lines produced larger and heavier microtubers at higher rates, compared to the wild type and vector controls. The dry weight and percentages of microtubers that were longer than 5 mm were up to three times higher in the transgenic lines. Our results suggest that constitutive expression of carrot HSP17.7 can enhance thermotolerance in transgenic potato plants. To our knowledge, this is the first study that shows that the thermotolerance of potato can be enhanced through gene transfer.

  10. Thymic-shared antigen-1 (TSA-1). A lymphostromal cell membrane Ly-6 superfamily molecule with a putative role in cellular adhesion.

    Science.gov (United States)

    Classon, B J; Boyd, R L

    1998-01-01

    The seeding and colonization of the thymus by bone marrow stem cells and the maturation of these cells into mature T lymphocytes are dependent on cell-surface recognition events between different cell lineages within the thymic microenvironment. Positive and negative selection processes within the thymus produce a peripheral T-cell repertoire capable of recognizing peptides derived from foreign antigen bound to self MHCmolecules. In addition to the TCR/MHC-peptide interaction, many other cell-surface molecules act in concert to regulate the kinetics of cellular interactions and intracellular signaling events during thymopoiesis. We have investigated the complexity of the thymic stroma by using monoclonal antibodies to clone cell-membrane molecules of thymic stromal cells. Thymic-shared antigen-1 (TSA-1) is a molecule of interest because it is expressed by both immature thymocytes and stromal cells. We report herein the structural and evolutionary relationships between TSA-1 and molecules of the Ly-6 superfamily (Ly-6SF), and present evidence that TSA-1 functions as a cell-surface receptor by binding a cognate cell target molecule on the surface of a subset of thymocytes.

  11. On affine rigidity

    Directory of Open Access Journals (Sweden)

    Steven J. Gortler

    2013-12-01

    Full Text Available We study the properties of affine rigidity of a hypergraph and prove a variety of fundamental results. First, we show that affine rigidity is a generic property (i.e., depends only on the hypergraph, not the particular embedding. Then we prove that a graph is generically neighborhood affinely rigid in d-dimensional space if it is (d+1-vertex-connected. We also show neighborhood affine rigidity of a graph implies universal rigidity of its squared graph.  Our results, and affine rigidity more generally, have natural applications in point registration and localization, as well as connections to manifold learning.

  12. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...

  13. Comparison of quantitative PCR and flow cytometry as cellular viability methods to study bacterial membrane permeabilization following supercritical CO2 treatment.

    Science.gov (United States)

    Tamburini, Sabrina; Ballarini, Annalisa; Ferrentino, Giovanna; Moro, Albertomaria; Foladori, Paola; Spilimbergo, Sara; Jousson, Olivier

    2013-06-01

    Foodborne illness due to bacterial pathogens is increasing worldwide as a consequence of the higher consumption of fresh and minimally processed food products, which are more easily cross-contaminated. The efficiency of food pasteurization methods is usually measured by c.f.u. plate counts, a method discriminating viable from dead cells on the basis of the ability of cells to replicate and form colonies on standard growth media, thus ignoring viable but not cultivable cells. Supercritical CO2 (SC-CO2) has recently emerged as one of the most promising fresh food pasteurization techniques, as an alternative to traditional, heat-based methods. In the present work, using three SC-CO2-treated foodborne bacteria (Listeria monocytogenes, Salmonella enterica and Escherichia coli) we tested and compared the performance of alternative viability test methods based on membrane permeability: propidium monoazide quantitative PCR (PMA-qPCR) and flow cytometry (FCM). Results were compared based on plate counts and fluorescent microscopy measurements, which showed that the former dramatically reduced the number of cultivable cells by more than 5 log units. Conversely, FCM provided a much more detailed picture of the process, as it directly quantifies the number of total cells and distinguishes among three categories, including intact, partially permeabilized and permeabilized cells. A comparison of both PMA-qPCR and FCM with plate count data indicated that only a fraction of intact cells maintained the ability to replicate in vitro. Following SC-CO2 treatment, FCM analysis revealed a markedly higher level of bacterial membrane permeabilization of L. monocytogenes with respect to E. coli and S. enterica. Furthermore, an intermediate permeabilization state in which the cellular surface was altered and biovolume increased up to 1.5-fold was observed in L. monocytogenes, but not in E. coli or S. enterica. FCM thus compared favourably with other methods and should be considered as an

  14. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    Science.gov (United States)

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  15. Protein purification using PDZ affinity chromatography.

    Science.gov (United States)

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  16. Affine Dynamics with Torsion

    CERN Document Server

    Gultekin, Kemal

    2015-01-01

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schroedinger, we construct and analyze different affine gravities based on determinants of the Ricci tensor, torsion tensor, Riemann tensor and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to construction of the affine connection in terms of curvature and torsion tensors. Our solutions of the dynamical equations show that curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor.

  17. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature

    DEFF Research Database (Denmark)

    Madsen, Kenneth Lindegaard; Bhatia, V K; Gether, U;

    2010-01-01

    The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as "molecular information" to organize cellular...... processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk...... on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology....

  18. Lectin affinity chromatography of glycolipids

    Energy Technology Data Exchange (ETDEWEB)

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  19. The Cutting Edge of Affinity Electrophoresis Technology

    Directory of Open Access Journals (Sweden)

    Eiji Kinoshita

    2015-03-01

    Full Text Available Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  20. The Cutting Edge of Affinity Electrophoresis Technology

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  1. How Membrane-Active Peptides Get into Lipid Membranes.

    Science.gov (United States)

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  2. Affinity in electrophoresis.

    Science.gov (United States)

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  3. The Structural Basis of Cholesterol Activity in Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  4. Affine dynamics with torsion

    Energy Technology Data Exchange (ETDEWEB)

    Gueltekin, Kemal [Izmir Institute of Technology, Department of Physics, Izmir (Turkey)

    2016-03-15

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schroedinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor. (orig.)

  5. Affine and degenerate affine BMW algebras: Actions on tensor space

    CERN Document Server

    Daugherty, Zajj; Virk, Rahbar

    2012-01-01

    The affine and degenerate affine Birman-Murakami-Wenzl (BMW) algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic quantum groups and Lie algebras, respectively. Cyclotomic BMW algebras, affine and cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper we explain how the affine and degenerate affine BMW algebras are tantalizers (tensor power centralizer algebras) by defining actions of the affine braid group and the degenerate affine braid algebra on tensor space and showing that, in important cases, these actions induce actions of the affine and degenerate affine BMW algebras. We then exploit the connection to quantum groups and Lie algebras to determine universal parameters for the affine and degenerate affine BMW algebras. Finally, we show that the universal parameters are central elements--the higher Casimir elements for orthogonal and symplectic enveloping algebras and quantum groups.

  6. Vaccinia virus virion membrane biogenesis protein A11 associates with viral membranes in a manner that requires the expression of another membrane biogenesis protein, A6.

    Science.gov (United States)

    Wu, Xiang; Meng, Xiangzhi; Yan, Bo; Rose, Lloyd; Deng, Junpeng; Xiang, Yan

    2012-10-01

    A group of vaccinia virus (VACV) proteins, including A11, L2, and A6, are required for biogenesis of the primary envelope of VACV, specifically, for the acquisition of viral membrane precursors. However, the interconnection among these proteins is unknown and, with the exception of L2, the connection of these proteins with membranes is also unknown. In this study, prompted by the findings that A6 coprecipitated A11 and that the cellular distribution of A11 was dramatically altered by repression of A6 expression, we studied the localization of A11 in cells by using immunofluorescence and cell fractionation analysis. A11 was found to associate with membranes and colocalize with virion membrane proteins in viral replication factories during normal VACV replication. A11 partitioned almost equally between the detergent and aqueous phases upon Triton X-114 phase separation, demonstrating an intrinsic affinity with lipids. However, in the absence of infection or VACV late protein synthesis, A11 did not associate with cellular membranes. Furthermore, when A6 expression was repressed, A11 did not colocalize with any viral membrane proteins or associate with membranes. In contrast, when virion envelope formation was blocked at a later step by repression of A14 expression or by rifampin treatment, A11 colocalized with virion membrane proteins in the factories. Altogether, our data showed that A11 associates with viral membranes during VACV replication, and this association requires A6 expression. This study provides a physical connection between A11 and viral membranes and suggests that A6 regulates A11 membrane association.

  7. Evaluations of the Absolute and Relative Free Energies for Antidepressant Binding to the Amino Acid Membrane Transporter LeuT with Free Energy Simulations.

    Science.gov (United States)

    Zhao, Chunfeng; Caplan, David A; Noskov, Sergei Yu

    2010-06-08

    The binding of ligands to protein receptors with high affinity and specificity is central to many cellular processes. The quest for the development of computational models capable of accurately evaluating binding affinity remains one of the main goals of modern computational biophysics. In this work, free energy perturbation/molecular dynamics simulations were used to evaluate absolute and relative binding affinity for three different antidepressants to a sodium-dependent membrane transporter, LeuT, a bacterial homologue of human serotonin and dopamine transporters. Dysfunction of these membrane transporters in mammals has been implicated in multiple diseases of the nervous system, including bipolar disorder and depression. Furthermore, these proteins are key targets for antidepressants including fluoxetine (aka Prozac) and tricyclic antidepressants known to block transport activity. In addition to being clinically relevant, this system, where multiple crystal structures are readily available, represents an ideal testing ground for methods used to study the molecular mechanisms of ligand binding to membrane proteins. We discuss possible pitfalls and different levels of approximation required to evaluate binding affinity, such as the dependence of the computed affinities on the strength of constraints and the sensitivity of the computed affinities to the particular partial charges derived from restrained electrostatic potential fitting of quantum mechanics electrostatic potential. Finally, we compare the effects of different constraint schemes on the absolute and relative binding affinities obtained from free energy simulations.

  8. Different Densities of Na-Ca Exchange Current in T-Tubular and Surface Membranes and Their Impact on Cellular Activity in a Model of Rat Ventricular Cardiomyocyte

    Directory of Open Access Journals (Sweden)

    M. Pásek

    2017-01-01

    Full Text Available The ratio of densities of Na-Ca exchanger current (INaCa in the t-tubular and surface membranes (INaCa-ratio computed from the values of INaCa and membrane capacitances (Cm measured in adult rat ventricular cardiomyocytes before and after detubulation ranges between 1.7 and 25 (potentially even 40. Variations of action potential waveform and of calcium turnover within this span of the INaCa-ratio were simulated employing previously developed model of rat ventricular cell incorporating separate description of ion transport systems in the t-tubular and surface membranes. The increase of INaCa-ratio from 1.7 to 25 caused a prolongation of APD (duration of action potential at 90% repolarisation by 12, 9, and 6% and an increase of peak intracellular Ca2+ transient by 45, 19, and 6% at 0.1, 1, and 5 Hz, respectively. The prolonged APD resulted from the increase of INaCa due to the exposure of a larger fraction of Na-Ca exchangers to higher Ca2+ transients under the t-tubular membrane. The accompanying rise of Ca2+ transient was a consequence of a higher Ca2+ load in sarcoplasmic reticulum induced by the increased Ca2+ cycling between the surface and t-tubular membranes. However, the reason for large differences in the INaCa-ratio assessed from measurements in adult rat cardiomyocytes remains to be explained.

  9. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane.

    Science.gov (United States)

    Chiu, C-F; Ho, M-Y; Peng, J-M; Hung, S-W; Lee, W-H; Liang, C-M; Liang, S-M

    2013-02-01

    Prohibitin (PHB) is indispensable for Ras-induced Raf-1 activation, cell migration and growth; however, the exact role of PHB in the molecular pathogenesis of cancer metastasis remains largely unexamined. Here, we found a positive correlation between plasma membrane-associated PHB and the clinical stages of cancer. The level of PHB phosphorylated at threonine 258 (T258) and tyrosine 259 (Y259) in human cancer-cell membranes correlated with the invasiveness of cancer cells. Overexpression of phosphorylated PHB (phospho-PHB) in the lipid-raft domain of the cell membrane enhanced cell migration/invasion through PI3K/Akt and Raf-1/ERK activation. It also enhanced epithelial-mesenchymal transition, matrix metalloproteinase-2 activity and invasiveness of cancer cells in vitro. Immunoprecipitation analysis demonstrated that phospho-PHB associated with Raf-1, Akt and Ras in the membrane and was essential for the activation of Raf-1 signaling by Ras. Mice implanted with cancer cells stably overexpressing PHB in the plasma membrane showed enlarged cervical tumors, enhanced metastasis and shorter survival time compared with mice implanted with cancer cells without PHB overexpression. Dephosphorylation of PHB at T258 by site-directed mutagenesis diminished the in vitro and in vivo effects of PHB. These results suggest that increase in phospho-PHB T258 in the raft domain of the plasma membrane has a role in the Ras-driven activation of PI3K/Akt and Raf-1/ERK-signaling cascades and results in the promotion of cancer metastasis.

  10. Cellular basis of Alzheimer's disease.

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-12-01

    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  11. Affine Sphere Relativity

    Science.gov (United States)

    Minguzzi, E.

    2016-11-01

    We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

  12. Affine stochastic mortality

    NARCIS (Netherlands)

    D.F. Schrager

    2006-01-01

    We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing m

  13. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  14. [Cellular and tissue reactions of the mucous membrane of the maxillary sinus in the patients presenting with odontogenic aspergillous maxillary sinusitis].

    Science.gov (United States)

    Baĭdik, O D; Sysoliatin, P G; Logvinov, S V

    2012-01-01

    The results of this morphological study of the mucous membrane of the maxillary sinuses in the patients presenting with the non-invasive fungal form of odontogenic sinusitis revealed the signs of granulematous inflammation. Epithelium underwent metaplasia into the single-row cubic or prismatic layer. The invasive form of fungal odontogenic sinusitis was characterized by allergic inflammation with intensive infiltration of maxillary sinus mucosa by antigen-representing and effector cells.

  15. Affine and degenerate affine BMW algebras: The center

    CERN Document Server

    Daugherty, Zajj; Virk, Rahbar

    2011-01-01

    The degenerate affine and affine BMW algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic Lie algebras and quantum groups, respectively. Cyclotomic BMW algebras, affine Hecke algebras, cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper the theory is unified by treating the orthogonal and symplectic cases simultaneously; we make an exact parallel between the degenerate affine and affine cases via a new algebra which takes the role of the affine braid group for the degenerate setting. A main result of this paper is an identification of the centers of the affine and degenerate affine BMW algebras in terms of rings of symmetric functions which satisfy a "cancellation property" or "wheel condition" (in the degenerate case, a reformulation of a result of Nazarov). Miraculously, these same rings also arise in Schubert calculus, as the cohomology and K-theory of isotropic Grassmanians and symplectic loop Grassmanians. We also establish new inte...

  16. Carbon membranes precursor, preparation, and funtionalization

    NARCIS (Netherlands)

    Barsema, Jonathan Nathaniel

    2004-01-01

    In this thesis we study the preparation of Carbon Molecular Sieve (CMS) membranes for the separation of gases. The gases are separated based on their size difference and affinity for the membrane material.

  17. Hierarchical Affinity Propagation

    CERN Document Server

    Givoni, Inmar; Frey, Brendan J

    2012-01-01

    Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...

  18. Affinity driven social networks

    Science.gov (United States)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  19. Purely affine Gravity

    CERN Document Server

    Skirzewski, Aureliano

    2014-01-01

    We develop a topological theory of gravity with torsion where metric has a dynamical rather than a kinematical origin. This approach towards gravity resembles pre-geometrical approaches in which a fundamental metric does not exist, but the affine connection gives place to a local inertial structure. Such feature reminds us of Mach's principle, that assumes the inertial forces should have dynamical origin. Additionally, a Newtonian gravitational force is obtained in the non-relativistic limit of the theory.

  20. Affine morphisms at zero level

    CERN Document Server

    Das, Paramita; Gupta, Ved Prakash

    2010-01-01

    Given a finite index subfactor, we show that the {\\em affine morphisms at zero level} in the affine category over the planar algebra associated to the subfactor is isomorphic to the fusion algebra of the subfactor as a *-algebra.

  1. On the Affine Isoperimetric Inequalities

    Indian Academy of Sciences (India)

    Wuyang Yu; Gangsong Leng

    2011-11-01

    We obtain an isoperimetric inequality which estimate the affine invariant -surface area measure on convex bodies. We also establish the reverse version of -Petty projection inequality and an affine isoperimetric inequality of $_{-p}K$.

  2. Cellular rehabilitation of photobiomodulation

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Yuan, Jian-Qin; Wang, Yan-Fang; Xu, Xiao-Yang; Liu, Song-Hao

    2007-05-01

    Homeostasis is a term that refers to constancy in a system. A cell in homeostasis normally functions. There are two kinds of processes in the internal environment and external environment of a cell, the pathogenic processes (PP) which disrupts the old homeostasis (OH), and the sanogenetic processes (SP) which restores OH or establishes a new homeostasis (NH). Photobiomodualtion (PBM), the cell-specific effects of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems, is a kind of modulation on PP or SP so that there is no PBM on a cell in homeostasis. There are two kinds of pathways mediating PBM, the membrane endogenetic chromophores mediating pathways which often act through reactive oxygen species, and membrane proteins mediating pathways which often enhance cellular SP so that it might be called cellular rehabilitation. The cellular rehabilitation of PBM will be discussed in this paper. It is concluded that PBM might modulate the disruption of cellular homeostasis induced by pathogenic factors such as toxin until OH has been restored or NH has been established, but can not change homeostatic processes from one to another one.

  3. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor

    DEFF Research Database (Denmark)

    Rao, C N; Castronovo, V; Schmitt, M C;

    1989-01-01

    The high-affinity cellular receptor for the basement membrane component laminin is differentially expressed during tumor invasion and metastasis. A cDNA clone encoding the murine laminin receptor was isolated and identified on the basis of sequence homology to the human laminin receptor [Wewer et...... al. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 7137-7141]. Primer extension experiments demonstrated that the clone contained the complete 5' sequence of the murine laminin receptor mRNA. RNA blot data demonstrated a single-sized laminin receptor mRNA, approximately 1400 bases long, in human, mouse......, and rat. The nascent laminin receptor predicted from the cDNA sequence is 295 amino acids long, with a molecular weight of 33,000, and contains one intradisulfide bridge, a short putative transmembrane domain, and an extracellular carboxy-terminal region which has abundant glutamic acid residues...

  4. Arabidopsis thaliana Yellow Stripe1-Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis.

    Directory of Open Access Journals (Sweden)

    Heng-Hsuan eChu

    2013-07-01

    Full Text Available Several members of the Yellow Stripe1-Like (YSL family of transporter proteins are able to transport metal-nicotianamine (NA complexes. Substantial progress has been made in understanding the roles of the Arabidopsis YSLs that are most closely related to the founding member of the family, ZmYS1 (e.g., AtYSL1, AtYSL2 and AtYSL3, but there is little information concerning members of the other two well-conserved YSL clades. Here, we provide evidence that AtYSL4 and AtYSL6, which are the only genes in Arabidopsis belong to YSL Group II, are localized to vacuole membranes and to internal membranes resembling endoplasmic reticulum. Both single and double mutants for YSL4 and YSL6 were rigorously analyzed, and have surprisingly mild phenotypes, in spite of the strong and wide-ranging expression of YSL6. However, in the presence of toxic levels of Mn and Ni, plants with mutations in YSL4 and YSL6 and plants overexpressing GFP-tagged YSL6 showed growth defects, indicating a role for these transporters in heavy metal stress responses.

  5. Affine Patches on Positroid Varieties and Affine Pipe Dreams (Thesis)

    CERN Document Server

    Snider, Michelle

    2010-01-01

    The objects of interest in this thesis are positroid varieties in the Grassmannian, which are indexed by juggling patterns. In particular, we study affine patches on these positroid varieties. Our main result corresponds these affine patches to Kazhdan-Lusztig varieties in the affine Grassmannian. We develop a new term order and study how these spaces are related to subword complexes and Stanley-Reisner ideals. We define an extension of pipe dreams to the affine case and conclude by showing how our affine pipe dreams are generalizations of Cauchon and Le diagrams.

  6. Affine and quasi-affine frames for rational dilations

    DEFF Research Database (Denmark)

    Bownik, Marcin; Lemvig, Jakob

    2011-01-01

    , the corresponding family of quasi-affine systems are frames with uniform frame bounds. We also prove a similar equivalence result between pairs of dual affine frames and dual quasi-affine frames. Finally, we uncover some fundamental differences between the integer and rational settings by exhibiting an example......In this paper we extend the investigation of quasi-affine systems, which were originally introduced by Ron and Shen [J. Funct. Anal. 148 (1997), 408-447] for integer, expansive dilations, to the class of rational, expansive dilations. We show that an affine system is a frame if, and only if...

  7. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  8. Self-assembly of polyphosphazene immunoadjuvant with poly(ethylene oxide) enables advanced nanoscale delivery modalities and regulated pH-dependent cellular membrane activity.

    Science.gov (United States)

    Andrianov, Alexander K; Marin, Alexander; Fuerst, Thomas R

    2016-04-01

    Water-soluble polyphosphazene polyacids, such as poly[di(carboxylatophenoxy)phosphazene] (PCPP), have been of significant interest due to their unique immunoadjuvant and vaccine delivery properties. We report that PCPP can spontaneously self-assemble into intermolecular complexes with common formulation excipients - polyethers in aqueous solutions at neutral pH through the establishment of hydrogen bonds. The resulting advanced PCPP delivery modalities can range from macromolecular assemblies at the nanoscale level to physically cross-linked hydrogels and the physical state can be modulated through varying polymer ratios and molecular weight of polyether. It has been demonstrated that such macromolecular complexes maintain protein-binding ability - a key characteristics of the delivery system. Importantly, the non-covalent modification of PCPP immunoadjuvant with polyethers introduces pH dependent membrane disruptive activity, which is not characteristic for PCPP itself, and is typically correlated to the ability of macromolecular carrier to facilitate endosomal escape. This can potentially affect the mechanism of immunoadjuvant action displayed by PCPP, afford means for its fine-tuning, as well as provide important insights for understanding the relationship between fundamental physico-chemical characteristics of polyphosphazene immunoadjuvants and their activity in vivo.

  9. Affinity Purification of Insulin by Peptide-Ligand Affinity Chromatography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The affinity heptapeptide (HWWWPAS) for insulin, selected from phage display library,was coupled to EAH Sepharose 4B gel and packed to a 1-mL column. The column was used for the affinity purification of insulin from protein mixture and commercial insulin preparation. It was observed that the minor impurity in the commercial insulin was removed by the affinity chromatography. Nearly 40 mg of insulin could be purified with the 1-mL affinity column. The results revealed the high specificity and capacity of the affinity column for insulin purification. Moreover, based on the analysis of the amino acids in the peptide sequence, shorter peptides were designed and synthesized for insulin chromatography. As a result, HWWPS was found to be a good alternative to HWWWPAS, while the other two peptides with three or four amino acids showed weak affinity for insulin. The results indicated that the peptide sequence of HWWWPAS was quite conservative for specific binding of insulin.

  10. Jacobi Structures on Affine Bundles

    Institute of Scientific and Technical Information of China (English)

    J. GRABOWSKI; D. IGLESIAS; J. C. MARRERO; E. PADR(O)N; P. URBA(N)SKI

    2007-01-01

    We study affine Jacobi structures (brackets) on an affine bundle π: A→M, i.e. Jacobi brackets that close on affine functions. We prove that if the rank of A is non-zero, there is a one-to- one correspondence between affine Jacobi structures on A and Lie algebroid structures on the vector bundle A+=∪p∈M Aff(Ap, R) of affine functionals. In the case rank A = 0, it is shown that there is a one-to-one correspondence between affins Jacobi structures on A and local Lie algebras on A+. Some examples and applications, also for the linear case, are discussed. For a special type of affine Jacobi structures which are canonically exhibited (strongly-affine or affine-homogeneous Jacobi structures) over a real vector space of finite dimension, we describe the leaves of its characteristic foliation as the orbits of an affine representation. These afline Jacobi structures can be viewed as an analog of the Kostant-Arnold-LiouviUe linear Poisson structure on the dual space of a real finite-dimensional Lie algebra.

  11. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects.

    Directory of Open Access Journals (Sweden)

    Malgorzata Tokarska-Schlattner

    Full Text Available A broad spectrum of beneficial effects has been ascribed to creatine (Cr, phosphocreatine (PCr and their cyclic analogues cyclo-(cCr and phospho-cyclocreatine (PcCr. Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i chemical binding assay, (ii surface plasmon resonance spectroscopy (SPR, (iii solid-state (31P-NMR, and (iv differential scanning calorimetry (DSC. SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults

  12. Kernel Affine Projection Algorithms

    Directory of Open Access Journals (Sweden)

    José C. Príncipe

    2008-05-01

    Full Text Available The combination of the famed kernel trick and affine projection algorithms (APAs yields powerful nonlinear extensions, named collectively here, KAPA. This paper is a follow-up study of the recently introduced kernel least-mean-square algorithm (KLMS. KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least squares (KRLS, and regularization networks. Therefore, many insights can be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several simulations illustrate its wide applicability.

  13. Kernel Affine Projection Algorithms

    Science.gov (United States)

    Liu, Weifeng; Príncipe, José C.

    2008-12-01

    The combination of the famed kernel trick and affine projection algorithms (APAs) yields powerful nonlinear extensions, named collectively here, KAPA. This paper is a follow-up study of the recently introduced kernel least-mean-square algorithm (KLMS). KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least squares (KRLS), and regularization networks. Therefore, many insights can be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several simulations illustrate its wide applicability.

  14. Effect of membrane curvature on lateral distribution of membrane proteins

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Several membrane proteins exhibit interesting shapes that increases their preference for certain membrane curvatures. Both peripheral and transmembrane proteins are tested with respect to their affinity for a spectrum of high membrane curvatures. We generate high membrane curvatures by pulling...... membrane tubes out of Giant Unilamellar lipid Vesicles (GUVs). The tube diameter can be tuned by aspirating the GUV into a micropipette for controlling the membrane tension. By using fluorescently labled proteins we have shown that sorting of proteins like e.g. FBAR onto tubes is significantly increased...

  15. Adjoint affine fusion and tadpoles

    Science.gov (United States)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  16. Adjoint affine fusion and tadpoles

    CERN Document Server

    Urichuk, Andrew

    2016-01-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows, and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  17. EFFECT OF DESTRUCTION OF NTS AND PVN ON NEIGUAN (PC 6)ELECTROACUPUNCTURE-INDUCED IMPROVEMENT OF ISCHEMIC MYOCARDIAL CELLULAR MEMBRANE POTENTIALS IN RABBITS

    Institute of Scientific and Technical Information of China (English)

    CHEN Ze-bin; WANG Shu-ju; WANG Ya-wen; WU Xu-ping; WANG Hua

    2005-01-01

    Objective:To observe the influence of electrolytic destruction of nucleus solitary tract (NTS) and hypothalamic paraventricular nucleus (PVN) on the effect of electroacupuncture (EA) in improving ischemic myocardia cellular transmembrane action potential (TMAP). Methods: 38 Japanese breed big-ear white rabbits (anesthetized with 20% Urethane, 4mL/kg) were randomly divided into acute myocardial ischemia (AMI) group (n=8), PVN destruction group (n=12) and PVN+NTS destruction group (n=18). AMI model was established by occlusion of the descending anterior branch (DAB) of the coronary artery. TMAP of myocytes was recorded by using a glass microelectrode which was fixed to a suspending spring silver wire. Bilateral "Neiguan"(PC 6) in all the 3 groups were punctured and stimulated electrically by using parameters of continuous waves, frequency ECG-ST elevated significantly while APA lowered, APD50 and APD90 shortened of 7 Hz, intensity of 6 mA and duration of 30 minutes. Results: After AMI,clearly in comparison with those of pre-AMI in the 3 groups. Compared with AMI group, ECG-ST values of PVN destruction group and PVN+NTS destruction group were significantly higher (P<0.05~0.01), while APA, APD50 and APD90 all significantly lower in all the recording time courses(P<0.05). The facts displayed that electrolytic destruction of PVN and PVN+NTS could produce ischemic myocardial injury and reduce the protective effect of EA on ischemic myocardial cells. Comparison between PVN destruction and PVN+NTS groups showed that all the 4 indexes of the later group were evidently worse than those of the former group (P<0.05), suggesting after destruction of these two nuclei, the effect of EA was worsened further. Conclusion: Electrolytic destruction of PVN and NTS weakens the protective effect of EA on ischemic myocardial cells, both NTS and PVN take part in the effect of EA of "Neiguan"(PC 6) Point in improving ischemic myocardium.

  18. 亲和膜配基的结构和密度对胆红素吸附的影响%Effect of ligand composition and ligand density of affinity membrane on bilirubin removal

    Institute of Scientific and Technical Information of China (English)

    鞠佳; 聂飞; 段志军; 贺高红

    2013-01-01

    High concentration of bilirubin may cause neurotoxicity, permanent brain damage, and even death in severe cases. It is difficult to remove bilirubin from serum by circulated adsorption, because bilirubin can be tightly bound with albumin as a complex in human serum. The albumin in the complex has a larger volume than that of bilirubin, which results in high steric hindrance of adsorption or displacement of bilirubin. In order to enhance serum bilirubin adsorption capacity, five kinds of amines and eight kinds of amino acids as specific ligands were immobilized on cellulose acetate (CA) /polyethyleneimine (PEI) membrane via the glutaraldehyde modification method. Experimental results indicated that although the primary amine contents of modified membranes were only one third of CA/PEI membrane, bilirubin adsorption capacities of four kinds of modified membranes increased by more than 100%. Moreover, the adsorption selectivity of the four modified membranes for bilirubin/human albumin pair was greater than that of CA/ PEI membrane. Prolongation of the spacer and immobilization of specific ligand could be the cause of such results. Ligand composition had a significant influence on bilirubin adsorption capacity. The ligands containing hydrophobic and primary amino groups could enhance bilirubin adsorption capacity, and the ligands with carboxyl radicals could decrease bilirubin adsorption capacity of the modified membrane. Moreover, ligand density, ligand steric hindrance, and other factors could also influence bilirubin adsorption capacity. In the experiments, the ligands containing high steric hindrance groups, such as phenyl groups had a negative effect on bilirubin adsorption capacity of the modified membrane, and its bilirubin adsorption capacity could not be enhanced via increasing ligand density. However, bilirubin adsorption capacity of the membrane modified with low steric hindrance ligand, for example hexamethylene-diamine (3-HMD) -modified membrane

  19. Cyclage, catabolism, and the affine Hecke algebra

    CERN Document Server

    Blasiak, Jonah

    2010-01-01

    We identify a subalgebra \\pH_n of the extended affine Hecke algebra \\eH_n of type A. The subalgebra \\pH_n is a \\u-analogue of the monoid algebra of \\S_n \\ltimes \\ZZ_{\\geq 0}^n and inherits a canonical basis from that of \\eH_n. We show that its left cells are naturally labeled by tableaux filled with positive integer entries having distinct residues mod n, which we term \\emph{positive affine tableaux} (PAT). We then exhibit a cellular subquotient \\R_{1^n} of \\pH_n that is a \\u-analogue of the ring of coinvariants \\CC[y_1,...,y_n]/(e_1,...,e_n) with left cells labeled by PAT that are essentially standard Young tableaux with cocharge labels. Multiplying canonical basis elements by a certain element \\pi \\in \\pH_n corresponds to rotations of words, and on cells corresponds to cocyclage. We further show that \\R_{1^n} has cellular quotients \\R_\\lambda that are \\u-analogues of the Garsia-Procesi modules R_\\lambda with left cells labeled by (a PAT version of) the \\lambda-catabolizable tableaux. We give a conjectural d...

  20. Ion channel regulation by phosphoinositides analyzed with VSPs-PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility.

    Science.gov (United States)

    Rjasanow, Alexandra; Leitner, Michael G; Thallmair, Veronika; Halaszovich, Christian R; Oliver, Dominik

    2015-01-01

    The activity of many proteins depends on the phosphoinositide (PI) content of the membrane. E.g., dynamic changes of the concentration of PI(4,5)P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5)P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids. Voltage-sensitive phosphatases (VSPs) turn over PI(4,5)P2 to PI(4)P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5)P2. Because cellular PI(4,5)P2 is resynthesized rapidly, steady state PI(4,5)P2 changes with the degree of VSP activation and thus depends on membrane potential. Here we show that titration of endogenous PI(4,5)P2 with Ci-VSP allows for the quantification of relative PI(4,5)P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K(+) channels to Ci-VSP allowed for comparison of PI(4,5)P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5)P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5)P2 and PI(4)P was insensitive to VSP. Surprisingly, despite comparable PI(4,5)P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5)P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5)P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5)P2 that differ in their accessibility to PLC and VSPs.

  1. Ion channel regulation by phosphoinositides analyzed with VSPs – PI(4,5P2 affinity, phosphoinositide selectivity, and PI(4,5P2 pool accessibility

    Directory of Open Access Journals (Sweden)

    Alexandra eRjasanow

    2015-06-01

    Full Text Available The activity of many proteins depends on the phosphoinositide (PI content of the membrane. E.g., dynamic changes of the concentration of PI(4,5P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids.Voltage-sensitive phosphatases (VSPs turn over PI(4,5P2 to PI(4P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5P2. Because cellular PI(4,5P2 is resynthesized rapidly, steady state PI(4,5P2 changes with the degree of VSP activation and thus depends on membrane potential.Here we show that titration of endogenous PI(4,5P2 with Ci-VSP allows for the quantification of relative PI(4,5P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5P2 and PI(4P was insensitive to VSP.Surprisingly, despite comparable PI(4,5P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5P2 that differ in their accessibility to PLC and VSPs.

  2. Membrane Cholesterol Modulates Superwarfarin Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  3. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  4. Biomimetic membranes and methods of making biomimetic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  5. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  6. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  7. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    Science.gov (United States)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  8. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.

    Science.gov (United States)

    Straub, Daniel; Ludewig, Uwe; Neuhäuser, Benjamin

    2014-11-01

    Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger (15)N-ammonium uptake than MtAMT2;1, but NH4 (+) currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at -80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.

  9. Glycosylation regulates prestin cellular activity.

    Science.gov (United States)

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  10. A Flow Cytometric and Computational Approaches to Carbapenems Affinity to the Different Types of Carbapenemases

    Science.gov (United States)

    Pina-Vaz, Cidália; Silva, Ana P.; Faria-Ramos, Isabel; Teixeira-Santos, Rita; Moura, Daniel; Vieira, Tatiana F.; Sousa, Sérgio F.; Costa-de-Oliveira, Sofia; Cantón, Rafael; Rodrigues, Acácio G.

    2016-01-01

    The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable. PMID:27555844

  11. A flow cytometric and computational approaches to carbapenems affinity to the different types of carbapenemases

    Directory of Open Access Journals (Sweden)

    Cidália Pina-Vaz

    2016-08-01

    Full Text Available The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computa-tional analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem or doripenem and killing kinetic curves performed with and without reinforments of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3, a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incuba-tion. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for car-bapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable.

  12. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    Science.gov (United States)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration protein, ˜ 60 å away from the bilayer surface, in a rather compact

  13. Cellular senescence induced by prolonged subculture adversely affects glutamate uptake in C6 lineage.

    Science.gov (United States)

    Pereira, Mery Stéfani Leivas; Zenki, Kamila; Cavalheiro, Marcela Mendonça; Thomé, Chairini Cássia; Filippi-Chiela, Eduardo Cremonese; Lenz, Guido; de Souza, Diogo Onofre Gomes; de Oliveira, Diogo Losch

    2014-05-01

    Several researchers have recently used C6 cells to evaluate functional properties of high-affinity glutamate transporters. However, it has been demonstrated that this lineage suffers several morphological and biochemical alterations according to the number of passages in culture. Currently, there are no reports showing whether functional properties of high-affinity glutamate transporters comply with these sub culturing-dependent modifications. The present study aimed to compare the functional properties of high-affinity glutamate transporters expressed in early (EPC6) and late (LPC6) passage C6 cells through a detailed pharmacological and biochemical characterization. Between 60-180 min of L-[(3)H]glu incubation, LPC6 presented an intracellular [(3)H] 55% lower than EPC6. Both cultures showed a time-dependent increase of intracellular [(3)H] reaching maximal levels at 120 min. Cultures incubated with D-[(3)H]asp showed a time-dependent increase of [(3)H] until 180 min. Moreover, LPC6 have a D-[(3)H]asp-derived intracellular [(3)H] 30-45% lower than EPC6 until 120 min. Only EAAT3 was immunodetected in cultures and its total content was equal between them. PMA-stimulated EAAT3 trafficking to membrane increased 50% of L-[(3)H]glu-derived intracellular [(3)H] in EPC6 and had no effect in LPC6. LPC6 displayed characteristics that resemble senescence, such as high β-Gal staining, cell enlargement and increase of large and regular nuclei. Our results demonstrated that LPC6 exhibited glutamate uptake impairment, which may have occurred due to its inability to mobilize EAAT3 to cell membrane. This profile might be related to senescent process observed in this culture. Our results suggest that LPC6 cells are an inappropriate glial cellular model to investigate the functional properties of high-affinity glutamate transporters.

  14. Realization of Fractal Affine Transformation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper gives the definition of fractal affine transformation and presents a specific method for its realization and its cor responding mathematical equations which are essential in fractal image construction.

  15. Affinity chromatography of phosphorylated proteins.

    Science.gov (United States)

    Tchaga, Grigoriy S

    2008-01-01

    This chapter covers the use of immobilized metal ion affinity chromatography (IMAC) for enrichment of phosphorylated proteins. Some requirements for successful enrichment of these types of proteins are discussed. An experimental protocol and a set of application data are included to enable the scientist to obtain high-yield results in a very short time with pre-packed phospho-specific metal ion affinity resin (PMAC).

  16. Oriented angles in affine space

    Directory of Open Access Journals (Sweden)

    Włodzimierz Waliszewski

    2004-05-01

    Full Text Available The concept of a smooth oriented angle in an arbitrary affine space is introduced. This concept is based on a kinematics concept of a run. Also, a concept of an oriented angle in such a space is considered. Next, it is shown that the adequacy of these concepts holds if and only if the affine space, in question, is of dimension 2 or 1.

  17. Molecular probes for nonlinear optical imaging of biological membranes

    Science.gov (United States)

    Blanchard-Desce, Mireille H.; Ventelon, Lionel; Charier, Sandrine; Moreaux, Laurent; Mertz, Jerome

    2001-12-01

    Second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) are nonlinear optical (NLO) phenomena that scale with excitation intensity squared, and hence give rise to an intrinsic 3-dimensional resolution when used in microscopic imaging. TPEF microscopy has gained widespread popularity in the biology community whereas SHG microscopy promises to be a powerful tool because of its sensitivity to local asymmetry. We have implemented an approach toward the design of NLO-probes specifically adapted for SHG and/or TPEF imaging of biological membranes. Our strategy is based on the design of nanoscale amphiphilic NLO-phores. We have prepared symmetrical bolaamphiphilic fluorophores combining very high two-photon absorption (TPA) cross-sections in the visible red region and affinity for cellular membranes. Their incorporation and orientation in lipid membranes can be monitored via TPEF anisotropy. We have also prepared amphiphilic push-pull chromophores exhibiting both large TPA cross-sections and very large first hyperpolarizabilities in the near-IR region. These NLO-probes have proved to be particularly useful for imaging of biological membranes by simultaneous SHG and TPEF microscopy and offer attractive prospects for real-time imaging of fundamental biological processes such as adhesion, fusion or reporting of membrane potentials.

  18. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  19. Cellular mechanotransduction

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Goldmann

    2016-01-01

    Full Text Available Cell adhesion and cell–cell contacts are pre-requisites for proper metabolism, protein synthesis, cell survival, and cancer metastasis. Major transmembrane receptors are the integrins, which are responsible for cell matrix adhesions, and the cadherins, which are important for cell-cell adhesions.  Adherent cells are anchored via focal adhesions (FAs to the extracellular matrix, while cell-cell contacts are connected via focal adherens junctions (FAJs. Force transmission over considerable distances and stress focusing at these adhesion sites make them prime candidates for mechanosensors. Exactly which protein(s within FAs and FAJs or which membrane component of ion channels sense, transmit, and respond to mechano-chemical signaling is currently strongly debated and numerous candidates have been proposed.

  20. Cellular basis of Alzheimer′s disease

    Directory of Open Access Journals (Sweden)

    Bali Jitin

    2010-10-01

    Full Text Available Alzheimer′s disease (AD is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  1. Cellular basis of Alzheimer’s disease

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-01-01

    Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD. PMID:21369424

  2. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  3. Binding of Neurotransmitters to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Werge, Mikkel; Elf-Lind, Maria Northved

    2014-01-01

    that dependent on the nature of NTs, some of the NTs penetrate into the bilayer. We found that membrane affinity can be ranked with increasing affinity as follows: ACH ~ GLU glycerol...... for the different NTs, this attraction is not an inherent property of all neurotransmitters....

  4. Quantitative analysis of molecular partition towards lipid membranes using surface plasmon resonance

    Science.gov (United States)

    Figueira, Tiago N.; Freire, João M.; Cunha-Santos, Catarina; Heras, Montserrat; Gonçalves, João; Moscona, Anne; Porotto, Matteo; Salomé Veiga, Ana; Castanho, Miguel A. R. B.

    2017-01-01

    Understanding the interplay between molecules and lipid membranes is fundamental when studying cellular and biotechnological phenomena. Partition between aqueous media and lipid membranes is key to the mechanism of action of many biomolecules and drugs. Quantifying membrane partition, through adequate and robust parameters, is thus essential. Surface Plasmon Resonance (SPR) is a powerful technique for studying 1:1 stoichiometric interactions but has limited application to lipid membrane partition data. We have developed and applied a novel mathematical model for SPR data treatment that enables determination of kinetic and equilibrium partition constants. The method uses two complementary fitting models for association and dissociation sensorgram data. The SPR partition data obtained for the antibody fragment F63, the HIV fusion inhibitor enfuvirtide, and the endogenous drug kyotorphin towards POPC membranes were compared against data from independent techniques. The comprehensive kinetic and partition models were applied to the membrane interaction data of HRC4, a measles virus entry inhibitor peptide, revealing its increased affinity for, and retention in, cholesterol-rich membranes. Overall, our work extends the application of SPR beyond the realm of 1:1 stoichiometric ligand-receptor binding into a new and immense field of applications: the interaction of solutes such as biomolecules and drugs with lipids. PMID:28358389

  5. Mathematical Modeling of Cellular Metabolism.

    Science.gov (United States)

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  6. Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner.

    Science.gov (United States)

    Prevette, Lisa E; Benish, Nicolas C; Schoenecker, Amber R; Braden, Kristin J

    2015-12-01

    Cell-penetrating compounds (CPCs) are often conjugated to drugs and genes to facilitate cellular uptake. We hypothesize that the electrostatic interaction between the positively charged amines of the cell-penetrating compounds and the negatively charged glycosaminoglycans (GAGs) extending from cell surfaces is the initiating step in the internalization process. The interactions of generation 5 PAMAM dendrimer, Tat peptide and 25 kDa linear PEI with four different GAGs have been studied using isothermal titration calorimetry to elucidate structure-function relationships that could lead to improved drug and gene delivery methods to a wide variety of cell types. Detailed thermodynamic analysis has determined that CPC-GAG binding constants range from 8.7×10(3) to 2.4×10(6)M(-1) and that affinity is dependent upon GAG charge density and stereochemistry and CPC molecular weight. The effect of GAG composition on affinity is likely due to hydrogen bonding between CPC amines and amides and GAG hydroxyl and amine groups. These results were compared to the association of CPCs with lipid vesicles of varying composition as model plasma membranes to finally clarify the relative importance of each cell surface component in initial cell recognition. CPC-lipid affinity increases with anionic lipid content, but GAG affinity is higher for all cell-penetrating compounds, confirming the role these heterogeneous polysaccharides play in cellular association and clustering.

  7. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  8. Affine Contractions on the Plane

    Science.gov (United States)

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  9. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Directory of Open Access Journals (Sweden)

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  10. [Separation and purification of cellulase using affinity membrane].

    Science.gov (United States)

    Shi, Xiang-zhu; Guo, Chun-teng; Zhou, Jian-wu; Wang, Zhong-lai; Rao, Ping-fan

    2002-07-01

    The importance of cellulase as a means for the efficient utilization of abundant cellulose resources in the world has been well recognized. Many researchers devote themselves to studying the mechanism of the action of cellulase to cellulose so that such expensive enzyme can be used much more widely. The first step is to obtain cellulase of high purity. So purification of cellulase is the key point in this field. However, the major problem in isolation is that cellulase is a complicated enzyme system and needs too many steps for separation, and that every cellulase needs special purification processing which cannot be used for the others. A novel method for the separation of the cellulase from crude extraction of Aspergillus niger with normal qualitative filter paper processed by 5 mol/L sodium hydroxide without precipitation and desalting steps was developed. Further purification of the cellulase was achieved by using an anion-exchange column of POROS 20HQ. The cellulase purified was identified as a new endoglucanase that had relatively high endurance to pH and temperature. Its relative molecular mass was estimated to be 60,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This enzyme exhibited very high activity towards carboxymethyl cellulose (CMC) with specific activity of 350 U.mg-1 and the recovery of activity of 9.7%. Its optimum pH and temperature were 4.0 and 70 degrees C, respectively. This is a simple, rapid and efficient method for purifying cellulase with high activity.

  11. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane.

    Science.gov (United States)

    Chopin, Franck; Wirth, Judith; Dorbe, Marie-France; Lejay, Laurence; Krapp, Anne; Gojon, Alain; Daniel-Vedele, Françoise

    2007-08-01

    Arabidopsis AtNRT2.1 protein is the best characterized high affinity nitrate transporter in higher plants. However, nothing is known about its sub-cellular localization. In this work, we used GFP imaging to follow the targeting of the AtNRT2.1 protein to the different cell membranes. A polyclonal antibody was also raised against a peptide derived from the AtNRT2.1 sequence. Comparison of wild type and mutant plant extracts showed that this antibody recognized specifically the AtNRT2.1 protein. Microsomal membranes were fractionated on sucrose gradients and immunological detections were performed on the different fractions. Altogether, our results demonstrate that the AtNRT2.1 protein is located in the plasma membrane of the root cells.

  12. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    Science.gov (United States)

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems.

  13. Membrane topology and insertion of membrane proteins : Search for topogenic signals

    NARCIS (Netherlands)

    Geest, Marleen van; Lolkema, Juke S.

    2000-01-01

    Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain s

  14. Aptamers provide superior stainings of cellular receptors studied under super-resolution microscopy

    Science.gov (United States)

    Höbartner, Claudia

    2017-01-01

    Continuous improvements in imaging techniques are challenging biologists to search for more accurate methods to label cellular elements. This is particularly relevant for diffraction-unlimited fluorescence imaging, where the perceived resolution is affected by the size of the affinity probes. This is evident when antibodies, which are 10–15 nm in size, are used. Previously it has been suggested that RNA aptamers (~3 nm) can be used to detect cellular proteins under super-resolution imaging. However, a direct comparison between several aptamers and antibodies is needed, to clearly show the advantages and/or disadvantages of the different probes. Here we have conducted such a comparative study, by testing several aptamers and antibodies using stimulated emission depletion microscopy (STED). We have targeted three membrane receptors, EGFR, ErbB2 and Epha2, which are relevant to human health, and recycle between plasma membrane and intracellular organelles. Our results suggest that the aptamers can reveal more epitopes than most antibodies, thus providing a denser labeling of the stained structures. Moreover, this improves the overall quality of the information that can be extracted from the images. We conclude that aptamers could become useful fluorescent labeling tools for light microscopy and super-resolution imaging, and that their development for novel targets is imperative. PMID:28235049

  15. Electron affinity of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, L.M.; Pentecost, T.; Koppenol, W.H. (Louisiana State Univ., Baton Rouge (USA))

    1989-12-14

    The flowing afterglow technique was used to determine the electron affinity of chlorine dioxide. A value of 2.37 {plus minus} 0.10 eV was found by bracketing between the electron affinities of HS* and SF{sub 4} as a lower limit and that of NO{sub 2} as an upper limit. This value is in excellent agreement with 2.32 eV predicted from a simple thermodynamic cycle involving the reduction potential of the ClO{sub 2}/ClO{sub 2}{sup {minus}} couple and a Gibbs hydration energy identical with that of SO{sub 2}{sup {sm bullet}{minus}}.

  16. Affine density in wavelet analysis

    CERN Document Server

    Kutyniok, Gitta

    2007-01-01

    In wavelet analysis, irregular wavelet frames have recently come to the forefront of current research due to questions concerning the robustness and stability of wavelet algorithms. A major difficulty in the study of these systems is the highly sensitive interplay between geometric properties of a sequence of time-scale indices and frame properties of the associated wavelet systems. This volume provides the first thorough and comprehensive treatment of irregular wavelet frames by introducing and employing a new notion of affine density as a highly effective tool for examining the geometry of sequences of time-scale indices. Many of the results are new and published for the first time. Topics include: qualitative and quantitative density conditions for existence of irregular wavelet frames, non-existence of irregular co-affine frames, the Nyquist phenomenon for wavelet systems, and approximation properties of irregular wavelet frames.

  17. Dynamics of membrane nanotubes coated with I-BAR

    DEFF Research Database (Denmark)

    Barooji, Younes F; Rørvig-Lund, Andreas; Semsey, Szabolcs

    2016-01-01

    Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping...

  18. Desired alteration of protein affinities: competitive selection of protein variants using yeast signal transduction machinery.

    Directory of Open Access Journals (Sweden)

    Misato Kaishima

    Full Text Available Molecules that can control protein-protein interactions (PPIs have recently drawn attention as new drug pipeline compounds. Here, we report a technique to screen desirable affinity-altered (affinity-enhanced and affinity-attenuated protein variants. We previously constructed a screening system based on a target protein fused to a mutated G-protein γ subunit (Gγcyto lacking membrane localization ability. This ability, required for signal transmission, is restored by recruiting Gγcyto into the membrane only when the target protein interacts with an artificially membrane-anchored candidate protein, thereby allowing interacting partners (Gγ recruitment system to be searched and identified. In the present study, the Gγ recruitment system was altered by integrating the cytosolic expression of a third protein as a competitor to set a desirable affinity threshold. This enabled the reliable selection of both affinity-enhanced and affinity-attenuated protein variants. The presented approach may facilitate the development of therapeutic proteins that allow the control of PPIs.

  19. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  20. Controlled cellular fusion using optically trapped plasmonic nano-heaters

    Science.gov (United States)

    Bahadori, Azra; Lund, Andreas R.; Semsey, Szabolcs; Oddershede, Lene B.; Bendix, Poul M.

    2016-09-01

    Optically trapped plasmonic nano-heaters are used to mediate efficient and controlled fusion of biological membranes. The fusion method is demonstrated by optically trapping plasmonic nanoparticles located in between vesicle membranes leading to rapid lipid and content mixing. As an interesting application we show how direct control over fusion can be used for studying diffusion of peripheral membrane proteins and their interactions with membranes and for studying protein reactions. Membrane proteins encapsulated in an inert vesicle can be transferred to a vesicle composed of negative lipids by optically induced fusion. Mixing of the two membranes results in a fused vesicle with a high affinity for the protein and we observe immediate membrane tubulation due to the activity of the protein. Fusion of distinct membrane compartments also has applications in small scale chemistry for realizing pico-liter reactions and offers many exciting applications within biology which are discussed here.

  1. Plesiomonas shigelloides exports a lethal cytotoxic-enterotoxin (LCE) by membrane vesicles.

    Science.gov (United States)

    Ludovico, Marilucia Santos; Martins, Luciano Moura; Bianco, Juares Ednaldo Romero; Andrade, Célia Guadalupe Tardelli de Jesus; Falcon, Rosabel; Joazeiro, Paulo Pinto; Gatti, Maria Silvia Viccari; Yano, Tomomasa

    Plesiomonas shigelloides isolated from water in Brazil was previously described as a hemorrhagic heat-labile cytotoxic-enterotoxin producer. We purified this toxin from culture supernatants using ion metallic affinity chromatography (IMAC) followed by molecular exclusion chromatography. The pure toxin presented molecular mass of 50kDa and isoelectric point (pI) around 6.9 by 2D electrophoresis. When injected intravenously, the purified cytotoxic-enterotoxin induced also severe spasms followed by sudden death of mice. Hence, we entitled it as lethal cytotoxic-enterotoxin (LCE). The presence of membrane vesicles (MVs) on cell surfaces of P. shigelloides was observed by scan electron microscopy (SEM). From these MVs the LCE toxin was extracted and confirmed by biological and serological assays. These data suggest that P. shigelloides also exports this cytotoxic-enterotoxin by membrane vesicles, a different mechanism of delivering extra cellular virulence factors, so far not described in this bacterium.

  2. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    Science.gov (United States)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  3. The Quasi—affine Maps and Fractals

    Institute of Scientific and Technical Information of China (English)

    LunhaiLONG; GangCHEN

    1997-01-01

    In this paper,we discuss the discretization of the affine maps in R2,that is ,we consider a class of maps in Z2,which are induced by affine maps and called the quasi-affine maps.We investigate the properties and the dynamical behaviour of such maps,and give a sort of construction of complicated fractals by using quasi-affine maps.

  4. Affine connections on involutive G-structures

    OpenAIRE

    Merkulov, Sergey A.

    1995-01-01

    This paper is a review of the twistor theory of irreducible G-structures and affine connections. Long ago, Berger presented a very restricted list of possible irreducibly acting holonomies of torsion-free affine connections. His list was complete in the part of metric connections, while the situation with holonomies of non-metric torsion-free affine connections was and remains rather unclear. One of the results discussed in this review asserts that any torsion-free holomorphic affine connecti...

  5. Manifolds with integrable affine shape operator

    Directory of Open Access Journals (Sweden)

    Daniel A. Joaquín

    2005-05-01

    Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.

  6. Self-assembly and function of primitive cell membranes.

    Science.gov (United States)

    Pohorille, Andrew; Deamer, David

    2009-09-01

    We describe possible pathways for separating amphiphilic molecules from organic material on the early earth to form membrane-bound structures required for the start of cellular life. We review properties of the first membranes and their function as permeability barriers. Finally, we discuss the emergence of protein-mediated ion transport across membranes, which facilitated many other cellular functions.

  7. Topological conjugacy classes of affine maps

    OpenAIRE

    2008-01-01

    A map $f: \\ff^n \\to \\ff^n$ over a field $\\ff$ is called affine if it is of the form $f(x)=Ax+b$, where the matrix $A \\in \\ff^{n\\times n}$ is called the linear part of affine map and $b \\in \\ff^n$. The affine maps over $\\ff=\\rr$ or $\\cc$ are investigated. We prove that affine maps having fixed points are topologically conjugate if and only if their linear parts are topologically conjugate. If affine maps have no fixed points and $n=1$ or 2, then they are topologically conjugate if and only if ...

  8. Using Affinity Diagrams to Evaluate Interactive Prototypes

    DEFF Research Database (Denmark)

    Lucero, Andrés

    2015-01-01

    Affinity diagramming is a technique used to externalize, make sense of, and organize large amounts of unstructured, far-ranging, and seemingly dissimilar qualitative data. HCI and interaction design practitioners have adopted and used affinity diagrams for different purposes. This paper discusses...... our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in industry and academia. Our affinity diagramming process in interaction design has been tailored and consists of four stages: creating...

  9. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...... including [Cbl-OH2](+), [{Co}-CN-{cis-PtCl(NH3)2}](+), [{Re}-{Co}-CN-{cis-PtCl(NH3)2}](+), and [{Co}-CN-{trans-Pt(Cyt)(NH3)2}](2+) (Cyt = cytarabin) was high compared to neutral B12, which implied the existence of an additional internalization pathway for charged B12 vitamin analogs. The affinities...

  10. Lipid organization of the plasma membrane

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Melo, Manuel N; van Eerden, Floris J; Arnarez, Clément; Lopez, Cesar A; Wassenaar, Tsjerk A; Periole, Xavier; de Vries, Alex H; Tieleman, D Peter; Marrink, Siewert J

    2014-01-01

    The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different li

  11. Pollen viability and membrane lipid composition.

    NARCIS (Netherlands)

    Bilsen, van D.G.J.L.

    1993-01-01

    In this thesis membrane lipid composition is studied in relation to pollen viability during storage. Chapter 1 reviews pollen viability, membranes in the dry state and membrane changes associated with cellular aging. This chapter is followed by a study of age-related changes in phospholipid composit

  12. Cellular neurothekeoma with melanocytosis.

    Science.gov (United States)

    Wu, Ren-Chin; Hsieh, Yi-Yueh; Chang, Yi-Chin; Kuo, Tseng-Tong

    2008-02-01

    Cellular neurothekeoma (CNT) is a benign dermal tumor mainly affecting the head and neck and the upper extremities. It is characterized histologically by interconnecting fascicles of plump spindle or epithelioid cells with ample cytoplasm infiltrating in the reticular dermis. The histogenesis of CNT has been controversial, although it is generally regarded as an immature counterpart of classic/myxoid neurothekeoma, a tumor with nerve sheath differentiation. Two rare cases of CNT containing melanin-laden cells were described. Immunohistochemical study with NKI/C3, vimentin, epithelial membrane antigen, smooth muscle antigen, CD34, factor XIIIa, collagen type IV, S100 protein and HMB-45 was performed. Both cases showed typical growth pattern of CNT with interconnecting fascicles of epithelioid cells infiltrating in collagenous stroma. One of the nodules contained areas exhibiting atypical cytological features. Melanin-laden epithelioid or dendritic cells were diffusely scattered throughout one nodule, and focally present in the peripheral portion of the other nodule. Both nodules were strongly immunoreactive to NKI/C3 and vimentin, but negative to all the other markers employed. CNT harboring melanin-laden cells may pose diagnostic problems because of their close resemblance to nevomelanocytic lesions and other dermal mesenchymal tumors. These peculiar cases may also provide further clues to the histogenesis of CNT.

  13. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in rat...... pancreatic alpha-cells and somatotrophs. We found a pharmacological dissociation between the actions on KATP channels and exocytosis and suggest that compounds that, unlike repaglinide, have direct stimulatory effects on exocytosis in somatotrophs and alpha- and beta-cells, such as sulphonylureas...

  14. Corneal cellular proliferation and wound healing

    OpenAIRE

    Gan, Lisha

    2000-01-01

    Background. Cellular proliferation plays an important role in both physiological and pathological processes. Epithelial hyperplasia in the epithelium, excessive scar formation in retrocorneal membrane formation and neovascularization are examples of excessive proliferation of cornea cells. Lack of proliferative ability causes corneal degeneration. The degree of proliferative and metabolic activity will directly influence corneal transparency and very evidently refractive res...

  15. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots.

    Science.gov (United States)

    Rizzardo, Cecilia; Tomasi, Nicola; Monte, Rossella; Varanini, Zeno; Nocito, Fabio F; Cesco, Stefano; Pinton, Roberto

    2012-12-01

    Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.

  16. Insights into the physiological function of cellular prion protein

    Directory of Open Access Journals (Sweden)

    Martins V.R.

    2001-01-01

    Full Text Available Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie, appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction.

  17. Changes of cellular fatty acids of soil Actinobacteria producing antibiotics

    OpenAIRE

    LIPENSKÁ, Ivana

    2010-01-01

    Changes of cellular fatty acids in membrane of Actinobacteria. Changes of fatty acids are significant biomarkers of changing conditions of surroundings. This can also indicate production of antibiotics along with production of atypical fatty acids.

  18. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    Science.gov (United States)

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  19. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena;

    2014-01-01

    Plasma membrane Ca2+-ATPase (PMCA) by extruding Ca2+ outside the cell, actively participates in the regulation of intracellular Ca2+ concentration. Acting as Ca2+/H+ counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four is...

  20. Collective motor dynamics in membrane transport in vitro

    NARCIS (Netherlands)

    Shaklee, Paige Marie

    2009-01-01

    Key cellular processes such as cell division, internal cellular organization, membrane compartmentalization and intracellular transport rely on motor proteins. Motor proteins, ATP-based mechanoenzymes, actively transport cargo throughout the cell by walking on cytoskeletal filaments. Motors have bee

  1. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  2. Lipid-lipid and lipid-drug interactions in biological membranes

    Science.gov (United States)

    Martynowycz, Michael W.

    Interactions between lipids and drug molecules in biological membranes help govern proper biological function in organisms. The mechanisms responsible for hydrophobic drug permeation remain elusive. Many small molecule drugs are hydrophobic. These drugs inhibit proteins in the cellular interior. The rise of antibiotic resistance in bacteria is thought to be caused by mutations in protein structure, changing drug kinetics to favor growth. However, small molecule drugs have been shown to have different mechanisms depending in the structure of the lipid membrane of the target cell. Biological membranes are investigated using Langmuir monolayers at the air-liquid interface. These offer the highest level of control in the mimetic system and allow them to be investigated using complementary techniques. Langmuir isotherms and insertion assays are used to determine the area occupied by each lipid in the membrane and the change in area caused by the introduction of a drug molecule, respectively. Specular X-ray reflectivity is used to determine the electron density of the monolayer, and grazing incidence X-ray diffraction is used to determine the in-plane order of the monolayer. These methods determine the affinity of the drug and the mechanism of action. Studies are presented on hydrophobic drugs with mammalian membrane mimics using warfarin along with modified analogues, called superwarfarins. Data shows that toxicity of these modified drugs are modulated by the membrane cholesterol content in cells; explaining several previously unexplained effects of the drugs. Membrane mimics of bacteria are investigated along with their interactions with a hydrophobic antibiotic, novobiocin. Data suggests that permeation of the drug is mediated by modifications to the membrane lipids, and completely ceases translocation under certain circumstances. Circumventing deficiencies in small, hydrophobic drugs is approached by using biologically mimetic oligomers. Peptoids, mimetic of host

  3. Ordinary differential equations in affine geometry

    Directory of Open Access Journals (Sweden)

    Salvador Gigena

    1996-05-01

    Full Text Available The method of qualitative analysis is used, as applied to a class of fourth order, nonlinear ordinary differential equations, in order to classify, both locally and globally, two classes of hypersurfaces of decomposable type in affine geometry: those with constant unimodular affine mean curvature L , and those with constant Riemannian scalar curvature R. This allows to provide a large number of new examples of hypersurfaces in affine geometry.

  4. Ordinary differential equations in affine geometry

    OpenAIRE

    Salvador Gigena

    1996-01-01

    The method of qualitative analysis is used, as applied to a class of fourth order, nonlinear ordinary differential equations, in order to classify, both locally and globally, two classes of hypersurfaces of decomposable type in affine geometry: those with constant unimodular affine mean curvature L , and those with constant Riemannian scalar curvature R. This allows to provide a large number of new examples of hypersurfaces in affine geometry.

  5. Multipole solutions in metric-affine gravity

    CERN Document Server

    Socorro, J; Macías, A; Mielke, E W; Socorro, José; Lämmerzahl, Claus; Macías, Alfredo; Mielke, Eckehard W.

    1998-01-01

    Above Planck energies, the spacetime might become non--Riemannian, as it is known fron string theory and inflation. Then geometries arise in which nonmetricity and torsion appear as field strengths, side by side with curvature. By gauging the affine group, a metric affine gauge theory emerges as dynamical framework. Here, by using the harmonic map ansatz, a new class of multipole like solutions in the metric affine gravity theory (MAG) is obtained.

  6. Specificity and Affinity Quantification of Flexible Recognition from Underlying Energy Landscape Topography

    Science.gov (United States)

    Chu, Xiakun; Wang, Jin

    2014-01-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525

  7. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.

    2007-01-01

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  8. Measurement of the electron affinity of lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Covington, A.M.; Calabrese, D.; Thompson, J.S. [Department of Physics and Chemical Physics Programme, University of Nevada, Reno, NV 89557-0058 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, OH 43606-3390 (United States)

    1998-10-28

    The electron affinity of lanthanum has been measured using laser photoelectron energy spectroscopy. This is the first electron affinity measurement for lanthanum and one of the first measurements of an electron affinity of a rare-earth series element. The electron affinity of lanthanum was measured to be 0.47{+-}0.02 eV. At least one bound excited state of La{sup -} was also observed in the photoelectron spectra, and the binding energy relative to the ground state of lanthanum was measured as 0.17{+-}0.02 eV. The present experimental measurements are compared to a recent calculation. (author). Letter-to-the-editor.

  9. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  10. Affine connections, midpoint formation, and point reflection

    DEFF Research Database (Denmark)

    Kock, Anders

    2011-01-01

    We describe some differential-geometric structures in combinatorial terms: namely affine connections and their torsion and curvature, and we show that torsion free affine connections may equivalently be presented in terms of some simpler combinatorial structure: midpoint formation, and point refl...... reflection (geodesic symmetry). The method employed is that of synthetic differential geometry, which is briefly explained.......We describe some differential-geometric structures in combinatorial terms: namely affine connections and their torsion and curvature, and we show that torsion free affine connections may equivalently be presented in terms of some simpler combinatorial structure: midpoint formation, and point...

  11. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    Energy Technology Data Exchange (ETDEWEB)

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  12. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  13. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various pu

  14. Biophysics of α-synuclein membrane interactions.

    Science.gov (United States)

    Pfefferkorn, Candace M; Jiang, Zhiping; Lee, Jennifer C

    2012-02-01

    Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function.

  15. Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1.

    Science.gov (United States)

    Douthwaite, Julie A; Sridharan, Sudharsan; Huntington, Catherine; Hammersley, Jayne; Marwood, Rose; Hakulinen, Jonna K; Ek, Margareta; Sjögren, Tove; Rider, David; Privezentzev, Cyril; Seaman, Jonathan C; Cariuk, Peter; Knights, Vikki; Young, Joyce; Wilkinson, Trevor; Sleeman, Matthew; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2015-01-01

    Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.

  16. Structure of classical affine and classical affine fractional W-algebras

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr [Department of Mathematical Sciences, Seoul National University, GwanAkRo 1, Gwanak-Gu, Seoul 151-747 (Korea, Republic of)

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  17. The origins of cellular life.

    Science.gov (United States)

    Schrum, Jason P; Zhu, Ting F; Szostak, Jack W

    2010-09-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.

  18. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  19. Dyes with high affinity for polylactide

    Institute of Scientific and Technical Information of China (English)

    Liang He; Shu Fen Zhang; Bing Tao Tang; Li Li Wang; Jin Zong Yang

    2007-01-01

    Attempts were made to develop dyes with high affinity for polylactide as an alternative to the existent commercial disperse dyes.The dyes synthesized according to the affinity concept of dye to polylactide exhibited excellent dyeing properties on polylactide compared with the commercial disperse dyes.

  20. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...

  1. Porosity of Self-affine Sets

    Institute of Scientific and Technical Information of China (English)

    Lifeng XI

    2008-01-01

    In this paper,it is proved that any self-affine set satisfying the strong separation condition is uniformly porous.The author constructs a self-affine set which is not porous,although the open set condition holds.Besides,the author also gives a C1 iterated function system such that its invariant set is not porous.

  2. On affine non-negative matrix factorization

    DEFF Research Database (Denmark)

    Laurberg, Hans; Hansen, Lars Kai

    2007-01-01

    We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate...

  3. Affine processes on positive semidefinite matrices

    CERN Document Server

    Cuchiero, Christa; Mayerhofer, Eberhard; Teichmann, Josef

    2009-01-01

    This paper provides the mathematical foundation for stochastically continuous affine processes on the cone of positive semidefinite symmetric matrices. These matrix-valued affine processes have arisen from a large and growing range of useful applications in finance, including multi-asset option pricing with stochastic volatility and correlation structures, and fixed-income models with stochastically correlated risk factors and default intensities.

  4. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  5. Reflectable bases for affine reflection systems

    CERN Document Server

    Azam, Saeid; Yousofzadeh, Malihe

    2011-01-01

    The notion of a "root base" together with its geometry plays a crucial role in the theory of finite and affine Lie theory. However, it is known that such a notion does not exist for the recent generalizations of finite and affine root systems such as extended affine root systems and affine reflection systems. As an alternative, we introduce the notion of a "reflectable base", a minimal subset $\\Pi$ of roots such that the non-isotropic part of the root system can be recovered by reflecting roots of $\\Pi$ relative to the hyperplanes determined by $\\Pi$. We give a full characterization of reflectable bases for tame irreducible affine reflection systems of reduced types, excluding types $E_{6,7,8}$. As a byproduct of our results, we show that if the root system under consideration is locally finite then any reflectable base is an integral base.

  6. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  7. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  8. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  9. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues.

    Directory of Open Access Journals (Sweden)

    Helene J Bustad

    Full Text Available Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.

  10. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...... interactions between proteins and lipids. First, interactions of soluble proteins with membranes and specific lipids were studied, using two proteins: Annexin V and Tma1. The protein was first subjected to a lipid/protein overlay assay to identify candidate interaction partners in a fast and efficient way...

  11. 分枝杆菌膜锚定表达载体的构建与亚细胞定位分析%The construction and sub-cellular localization analysis of novel mycobacterial membrane-anchored expression vector

    Institute of Scientific and Technical Information of China (English)

    王鑫; 范小勇; 马辉; 曲勍; 朱越雄

    2011-01-01

    Objective To construct mycobacterial membrane-anchored expression vector and to analyze expression level and sub-cellualr localization of exogenous target protein. Methods Based on the mycobacterial intracellular expression vector pMFA42 which contained a strong promoter of pfurAma mutant, the signal sequence of Mycobacterium tuberculosis(Mtb) 19×103 lipoprotein (19SS) was synthesized and was then cloned into the downstream of pfurAma mutant to generate the mycobacterial membrane-anchored expression vector pMFA42M. The coding gene of enhanced green fluorescent protein(EGFP) was amplified by PCR, and then sub-cloned into these two vectors described above to construct recombinant EGFP fused and membrane-anchored strains, respectively. The coding genes of Mtb immuno-dominant antigens Ag85A and its chimera Ag856A2 were then sub-cloned intothe membrane-anchored construct pMFA42MG to produce recombinant Mtb antigen EGFP fused-expression strains. After that, expression levels and sub-cellualr localization of exogenous target protein were further analyzed by Western blot and flow cytometry sorting(FCS), and the fluorescence intensities of recombinant EGFP- expressed strains were observed in vitro directly and after transfection of murine macrophage cell line RAW264.7. Results The novel mycobacterial membrane-anchored expression vector was constructed successfully by introduction of signal sequence of Mtb 19×103 lipoprotein. Using of EGFP as model antigen, exogenous target protein was demonstrated to be expressed with high level and could be anchored into cell membrane of recombinant mycobaterial strains. Conclusion A novel mycobacterial membrane-anchored expression vector was constructed successfully to research recombinant BCG and functions of mycobacterial membrane proteins, and the constructed EGFP-expressed recombinant strains could also be used to research cytophagy in cell model and mycobacterial colony and translocation in animal immunization as model indicator

  12. Non-Zenoness of piecewise affine dynamical systems and affine complementarity systems with inputs

    Institute of Scientific and Technical Information of China (English)

    Le Quang THUAN

    2014-01-01

    In the context of continuous piecewise affine dynamical systems and affine complementarity systems with inputs, we study the existence of Zeno behavior, i.e., infinite number of mode transitions in a finite-length time interval, in this paper. The main result reveals that continuous piecewise affine dynamical systems with piecewise real-analytic inputs do not exhibit Zeno behavior. Applied the achieved result to affine complementarity systems with inputs, we also obtained a similar conclusion. A direct benefit of the main result is that one can apply smooth ordinary differential equations theory in a local manner for the analysis of continuous piecewise affine dynamical systems with inputs.

  13. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, T.; Semler, B.L.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have also revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9.

  14. Membrane Interactions of the Mason-Pfizer Monkey Virus Matrix Protein and Its Budding Deficient Mutants.

    Science.gov (United States)

    Kroupa, Tomáš; Langerová, Hana; Doležal, Michal; Prchal, Jan; Spiwok, Vojtěch; Hunter, Eric; Rumlová, Michaela; Hrabal, Richard; Ruml, Tomáš

    2016-11-20

    Matrix proteins (MAs) play a key role in the transport of retroviral proteins inside infected cells and in the interaction with cellular membranes. In most retroviruses, retroviral MAs are N-terminally myristoylated. This modification serves as a membrane targeting signal and also as an anchor for membrane interaction. The aim of this work was to characterize the interactions anchoring retroviral MA at the plasma membrane of infected cell. To address this issue, we compared the structures and membrane affinity of the Mason-Pfizer monkey virus (M-PMV) wild-type MA with its two budding deficient double mutants, that is, T41I/T78I and Y28F/Y67F. The structures of the mutants were determined using solution NMR spectroscopy, and their interactions with water-soluble phospholipids were studied. Water-soluble phospholipids are widely used models for studying membrane interactions by solution NMR spectroscopy. However, this approach might lead to artificial results due to unnatural hydrophobic interactions. Therefore, we used a new approach based on the measurement of the loss of the (1)H NMR signal intensity of the protein sample induced by the addition of the liposomes containing phospholipids with naturally long fatty acids. HIV-1 MA was used as a positive control because its ability to interact with liposomes has already been described. We found that in contrast to HIV-1, the M-PMV MA interacted with the liposomes differently and much weaker. In our invivo experiments, the M-PMV MA did not co-localize with lipid rafts. Therefore, we concluded that M-PMV might adopt a different membrane binding mechanism than HIV-1.

  15. Free energy landscapes of sodium ions bound to DMPC-cholesterol membrane surfaces at infinite dilution.

    Science.gov (United States)

    Yang, Jing; Bonomi, Massimiliano; Calero, Carles; Martí, Jordi

    2016-04-07

    Exploring the free energy landscapes of metal cations on phospholipid membrane surfaces is important for the understanding of chemical and biological processes in cellular environments. Using metadynamics simulations we have performed systematic free energy calculations of sodium cations bound to DMPC phospholipid membranes with cholesterol concentration varying between 0% (cholesterol-free) and 50% (cholesterol-rich) at infinite dilution. The resulting free energy landscapes reveal the competition between binding of sodium to water and to lipid head groups. Moreover, the binding competitiveness of lipid head groups is diminished by cholesterol contents. As cholesterol concentration increases, the ionic affinity to membranes decreases. When cholesterol concentration is greater than 30%, the ionic binding is significantly reduced, which coincides with the phase transition point of DMPC-cholesterol membranes from a liquid-disordered phase to a liquid-ordered phase. We have also evaluated the contributions of different lipid head groups to the binding free energy separately. The DMPC's carbonyl group is the most favorable binding site for sodium, followed by DMPC's phosphate group and then the hydroxyl group of cholesterol.

  16. Membranous nephropathy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000472.htm Membranous nephropathy To use the sharing features on this page, please enable JavaScript. Membranous nephropathy is a kidney disorder that leads to changes ...

  17. Corner Transfer Matrices and Quantum Affine Algebras

    CERN Document Server

    Foda, O E; Foda, Omar; Miwa, Tetsuji

    1992-01-01

    Let H be the corner-transfer-matrix Hamiltonian for the six-vertex model in the anti-ferroelectric regime. It acts on the infinite tensor product W = V . V . V ....., where is the 2-dimensional irreducible representation of the quantum affine sl(2). We observe that H is the derivation of quantum affine sl(2), and conjecture that the eigenvectors of H form the level-1 vacuum representation of quantum affine sl(2). We report on checks in support of our conjecture.

  18. Affinization of category O for quantum groups

    CERN Document Server

    Young, C A S

    2012-01-01

    Let g be a simple Lie algebra. We consider the category O-hat of those modules over the affine quantum group Uq(g-hat) whose Uq(g)-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category O-hat. In particular, we develop the theory of q-characters and define the minimal affinizations of parabolic Verma modules. In types ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula for their characters.

  19. INTERACTION BETWEEN THE SURFACE GLYCOSYLATED POLYPROPYLENE MEMBRANE AND LECTIN

    Institute of Scientific and Technical Information of China (English)

    Qian Yang; Ling-shu Wan; Zhi-kang Xu

    2008-01-01

    A glycopolymer bearing glucose residues was tethered onto the surface of polypropylene microporous membrane by UV-induced graft polymerization of α-allyl glucoside. Concanavalin A (Con A), a glucose recognizing lectin, could be specifically adsorbed to the membrane surface. On the other hand, the membrane surface showed no recognition ability to another lectin peanut agglutinin. Moreover, the recognition complex between the glycosylated membrane surface and Con Acould be inhibited by glucose and mannose solution. This surface glycosylated membrane could be used as affinity membrane for protein separation and purification.

  20. Preparation and Chiral Selectivity of BSA-Modified Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    Cai Lian SU; Rong Ji DAI; Bin TONG; Yu Lin DENG

    2006-01-01

    An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carried out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.

  1. Incomplete bone regeneration of rabbit calvarial defects using different membranes

    DEFF Research Database (Denmark)

    Aaboe, M; Pinholt, E M; Schou, S

    1998-01-01

    of the membrane. The calvarial defects of 2 groups were covered by an outer expanded polytetrafluoroethylene (ePTFE) membrane respectively by a Polyglactin 910 membrane. Bicortical ePTFE membranes or Polyglactin 910 membranes were used in 2 other groups. The defects were not covered by membranes in the control...... herniation into the defects. Subsequently, bone regeneration was impaired. The cellular reactions due to degradation of the material were minor and did not interfere with bone healing. Defects covered bicortically by ePTFE membranes revealed the largest amount of regenerated bone. The ePTFE membrane induced...

  2. Firing membranes

    NARCIS (Netherlands)

    Kappert, Emiel Jan

    2015-01-01

    Thermal processing is commonly employed to alter the chemistry and microstructure of membrane layers. It can shape, strengthen, and give functionality to a membrane. A good understanding of the processes taking place during the thermal processing of a membrane material allows for optimization and tu

  3. Mechanisms of Membrane Curvature Generation in Membrane Traffic

    Directory of Open Access Journals (Sweden)

    Hye-Won Shin

    2012-02-01

    Full Text Available During the vesicular trafficking process, cellular membranes undergo dynamic morphological changes, in particular at the vesicle generation and fusion steps. Changes in membrane shape are regulated by small GTPases, coat proteins and other accessory proteins, such as BAR domain-containing proteins. In addition, membrane deformation entails changes in the lipid composition as well as asymmetric distribution of lipids over the two leaflets of the membrane bilayer. Given that P4-ATPases, which catalyze unidirectional flipping of lipid molecules from the exoplasmic to the cytoplasmic leaflets of the bilayer, are crucial for the trafficking of proteins in the secretory and endocytic pathways, changes in the lipid composition are involved in the vesicular trafficking process. Membrane remodeling is under complex regulation that involves the composition and distribution of lipids as well as assembly of proteins.

  4. Scaffolding proteins in membrane trafficking : the role of ELKS

    NARCIS (Netherlands)

    Yu, K.L.

    2015-01-01

    Intracellular membrane trafficking is an essential cellular process that involves cooperation of many factors such as scaffolding proteins, GTPases and SNAREs. These proteins work together to ensure proper delivery of different membrane-enclosed cargoes to specific cellular destinations. In this the

  5. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  6. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...

  7. [3H]ATPA: a high affinity ligand for GluR5 kainate receptors.

    Science.gov (United States)

    Hoo, K; Legutko, B; Rizkalla, G; Deverill, M; Hawes, C R; Ellis, G J; Stensbol, T B; Krogsgaard-Larsen, P; Skolnick, P; Bleakman, D

    1999-12-01

    The pharmacological properties of [3H]ATPA ((RS)-2-amino-3(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid) are described. ATPA is a tert-butyl analogue of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid) that has been shown to possess high affinity for the GluR5 subunit of kainate receptors. [3H]ATPA exhibits saturable, high affinity binding to membranes expressing human GluR5 (GluR5) kainate receptors (Kd approximately 13 nM). No specific binding was observed in membranes expressing GluR2 and GluR6 receptors. Several compounds known to interact with the GluR5 kainate receptor inhibited [3H]ATPA binding with potencies similar to those obtained for competition of [3H]kainate binding to GluR5. Saturable, high affinity [3H]ATPA binding (Kd approximately 4 nM) was also observed in DRG neuron (DRG) membranes isolated from neonatal rats. The rank order potency of compounds to inhibit [3H]ATPA binding in rat DRG and GluR5 membranes were in agreement. These finding demonstrate that [3H]ATPA can be used as a radioligand to examine the pharmacological properties of GluR5 containing kainate receptors.

  8. Removal of Endotoxin from Human Serum Albumin Solutions by Hydrophobic and Cationic Charged Membrane

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane can be used for the removal of endotoxin from human serum albumin (HSA) solutions. With a cartridge of 20 sheets affinity membrane of 47 mm diameter, the endotoxin level in HSA solution can be reduced to 0.027 eu/mL. Recovery of HSA was over 95%.

  9. Scaling laws in phytoplankton nutrient uptake affinity

    DEFF Research Database (Denmark)

    Lindemann, Christian; Fiksen, Øyvind; Andersen, Ken Haste

    2016-01-01

    Nutrient uptake affinity affects the competitive ability of microbial organisms at low nutrient concentrations. From the theory of diffusion limitation it follows that uptake affinity scales linearly with the cell radius. This is in conflict with some observations suggesting that uptake affinity...... scales to a quantity that is closer to the square of the radius, i.e. to cell surface area. We show that this apparent conflict can be resolved by nutrient uptake theory. Pure diffusion limitation assumes that the cell is a perfect sink which means that it is able to absorb all encountered nutrients...... to volume ratio. We show that there are two reasons for this. First, because the small cells need a higher transporter density in order to maximize their affinity, and second because the relative cost of a transporter is higher for a small than for a large cell. We suggest that this might explain why...

  10. Bioengineering of bacteria to assemble custom-made polyester affinity resins.

    Science.gov (United States)

    Hay, Iain D; Du, Jinping; Burr, Natalie; Rehm, Bernd H A

    2015-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.

  11. Cellular recurrent deep network for image registration

    Science.gov (United States)

    Alam, M.; Vidyaratne, L.; Iftekharuddin, Khan M.

    2015-09-01

    Image registration using Artificial Neural Network (ANN) remains a challenging learning task. Registration can be posed as a two-step problem: parameter estimation and actual alignment/transformation using the estimated parameters. To date ANN based image registration techniques only perform the parameter estimation, while affine equations are used to perform the actual transformation. In this paper, we propose a novel deep ANN based image rigid registration that combines parameter estimation and transformation as a simultaneous learning task. Our previous work shows that a complex universal approximator known as Cellular Simultaneous Recurrent Network (CSRN) can successfully approximate affine transformations with known transformation parameters. This study introduces a deep ANN that combines a feed forward network with a CSRN to perform full rigid registration. Layer wise training is used to pre-train feed forward network for parameter estimation and followed by a CSRN for image transformation respectively. The deep network is then fine-tuned to perform the final registration task. Our result shows that the proposed deep ANN architecture achieves comparable registration accuracy to that of image affine transformation using CSRN with known parameters. We also demonstrate the efficacy of our novel deep architecture by a performance comparison with a deep clustered MLP.

  12. 依达拉奉对深低温冻存大鼠断肢再植后缺血再灌注损伤骨骼肌细胞膜及线粒体的保护效应%Protective influence of edaravone on cellular membrane and mitochondria of replanted rat extremities following ischemia/reperfusion injury due to cryopreservation and rewarming

    Institute of Scientific and Technical Information of China (English)

    段永壮; 钟世镇; 王增涛; 徐达传; 丁自海; 付庆林; 郝丽文; 何波

    2007-01-01

    肌缺血再灌注损伤,对骨骼肌细胞膜及线粒体有保护作用.其作用可能与依达拉奉直接抑制羟自由基、提高骨骼肌超氧化物歧化酶活性、减少丙二醛的产生,使细胞进行正常的氧化磷酸化有关.%BACKGROUND: A lot of important organs are worthless for clinical application because they are hard to store for a long time. In addition, tissues or organs which are dealt with cryopreservation also attack ischemia/reperfusion injury with the recovery of blood flow; especially, skeletal muscle is the most involved tissue.OBJECTIVE: To observe the protective influence of edaravone on cellular membrane and mitochondria of replanted rat extremities following ischemia/reperfusion injury due to cryopreservation and rewarming.DESIGN: Randomized contrast animal study.SETTING: Basic Medical College of Southern Medical University; Department of Hand and Foot Surgery, Shandong Provincial Hospital.MATERIALS: The experiment was carried out in the Cryopreservation Laboratory, Shandong Provincial Hospital from April to November 2006. A total of 36 healthy adult male Wistar rats were provided by Experimental Animal Center of Medical College of Shandong University. All rats were randomly divided into control group, cryopreservation group and edaravone group with 12 in each group.METHODS: Femoral artery and vein of rats in control group were exposured, but extremities were not blocked. Rats in other two groups were used to establish ischemia/reperfusion injury models of replanted extremities. Before cryopreservation, their right hindlimbs were cut off and maintained in liquid nitrogen container for 1 month. After the operation mentioned above, the broken limbs were rewarmed, perfused with routine eluant and replanted. Four hours later, blood supply of extremities was recirculated and the samples were selected. Eluant in edaravone group contained 0.5 mg/kg edaravone. Samples of skeletal muscle were selected at the same time point to

  13. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  14. Lipids, lipid droplets and lipoproteins in their cellular context; an ultrastructural approach

    NARCIS (Netherlands)

    Mesman, R.J.

    2013-01-01

    Lipids are essential for cellular life, functioning either organized as bilayer membranes to compartmentalize cellular processes, as signaling molecules or as metabolic energy storage. Our current knowledge on lipid organization and cellular lipid homeostasis is mainly based on biochemical data. How

  15. APPROXIMATE OUTPUT REGULATION FOR AFFINE NONLINEAR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yali DONG; Daizhan CHENG; Huashu QIN

    2003-01-01

    Output regulation for affine nonlinear systems driven by an exogenous signal is investigated in this paper. In the absence of the standard exosystem hypothesis, we assume availability of the instantaneous values of the exogenous signal and its first time-derivative for use in the control law.For affine nonlinear systems, the necessary and sufficient conditions of the solvability of approximate output regulation problem are obtained. The precise form of the control law is presented under some suitable assumptions.

  16. Applications of new affine invariant for polytopes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To study the Schneider's projection problem,Lutwak,Yang and Zhang recently introduced a new .affine invariant functional U(P) for convex polytopes in Rn.In the paper,we obtain the analytic expression of the affine-invariant U(P) defined on a specific subclass of origin-symmetric convex polytopes in Rn and give an application of U(P) to the Lp-Minkowski problem.

  17. Fan affinity laws from a collision model

    CERN Document Server

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated from hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this work we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour of air is incorporated. Our calculations prove the affinity laws and provide numerical estimates of the air delivery, thrust and drag on a rotating fan.

  18. A new series of emodin derivatives with bone affinity

    Institute of Scientific and Technical Information of China (English)

    Hong Chen; Ying Wang; Ling Leng; Mao Sheng Cheng; Peng Fei Yu; Jing Ze Zhang

    2007-01-01

    A new series of bone affinity compounds were synthesized by linking emodin with 5-fluorouracil derivatives. Their bone affinities were established by hydroxyapative (HA) affinity experiment in vitro, and their cytostatic effects were shown by the MTT assay.

  19. Synthesis of a New Series of Bone Affinity Compounds

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new series of bone affinity compounds were synthesized by linking chrysophanol with 5-fluorouracil derivatives. Their bone affinity was established by hydroxyapafive (HA)affinity experiment in vitro, and their cytostatic effects were shown by the MTT assay.

  20. Solid-supported polymer bilayers as membrane mimics

    OpenAIRE

    Belegrinou, Serena

    2010-01-01

    Membranes are one of Nature’s most remarkable designs. Due to their importance in numerous cellular processes, they are prominent subjects of biochemical and biophysical fundamental research. In particular, it is crucial to understand the membrane morphology, the role of individual membrane components, and also to correlate the membrane structure to its various functions. Besides, systems inspired by natural membranes are of high interest for technological applications, such as water purifica...

  1. Allosteric inhibitors of plasma membrane Ca2+ pumps: Invention and applications of caloxins

    Institute of Scientific and Technical Information of China (English)

    Jyoti; Pande; M; Szewczyk; Ashok; K; Grover

    2011-01-01

    Plasma membrane Ca2+pumps(PMCA)play a major role in Ca2+homeostasis and signaling by extruding cellular Ca2+with high affinity.PMCA isoforms are encoded by four genes which are expressed differentially in various cell types in normal and disease states.Therefore, PMCA isoform selective inhibitors would aid in delineating their role in physiology and pathophysiology.We are testing the hypothesis that extracellular domains of PMCA can be used as allosteric targets to obtain a novel class of PMCA-specific inhibitors termed caloxins. This review presents the concepts behind the invention of caloxins and our progress in this area.A section is also devoted to the applications of caloxins in literature. We anticipate that isoform-selective caloxins will aid in understanding PMCA physiology in health and disease. With strategies to develop therapeutics from bioactive peptides,caloxins may become clinically useful in car diovascular diseases,neurological disorders,retinopathy,cancer and contraception.

  2. The connection between metal ion affinity and ligand affinity in integrin I domains

    DEFF Research Database (Denmark)

    Vorup-Jensen, Thomas; Waldron, TT; Astrof, N;

    2007-01-01

    Integrins are cell-surface heterodimeric proteins that mediate cell-cell, cell-matrix, and cell-pathogen interactions. Half of the known integrin alpha subunits contain inserted domains (I domains) that coordinate ligand through a metal ion. Although the importance of conformational changes within...... isolated I domains in regulating ligand binding has been reported, the relationship between metal ion binding affinity and ligand binding affinity has not been elucidated. Metal and ligand binding by several I domain mutants that are stabilized in different conformations are investigated using isothermal...... titration calorimetry and surface plasmon resonance studies. This work suggests an inverse relationship between metal ion affinity and ligand binding affinity (i.e. constructs with a high affinity for ligand exhibit a low affinity for metal). This trend is discussed in the context of structural studies...

  3. Functionalized Carbon Molecular Sieve membranes containing Ag-nanoclusters

    NARCIS (Netherlands)

    Barsema, J.N.; Balster, J.; Jordan, V.; Vegt, van der N.F.A.; Wessling, M.

    2003-01-01

    In Carbon Molecular Sieve (CMS) membranes, the separation of O2 and N2 is primarily based on the difference in size between the gas molecules. To enhance the separation properties of these CMS membranes it is necessary to functionalize the carbon matrix with materials that show a high affinity to on

  4. Circulating (CD3−CD19+CD20−IgD−CD27highCD38high) Plasmablasts: A Promising Cellular Biomarker for Immune Activity for Anti-PLA2R1 Related Membranous Nephropathy?

    Science.gov (United States)

    Beukinga, Ingrid; Willard-Gallo, Karen; Nortier, Joëlle; Pradier, Olivier

    2016-01-01

    Membranous nephropathy (MN) is a kidney specific autoimmune disease mainly mediated by anti-phospholipase A2 receptor 1 autoantibody (PLA2R1 Ab). The adequate assessment of chimeric anti-CD20 monoclonal antibody, rituximab (RTX), efficacy is still needed to improve clinical outcome of patient with MN. We evaluated the modification of plasmablasts (CD3−CD19+CD20−IgD−CD27highCD38high), a useful biomarker of RTX response in other autoimmune diseases, and memory (CD3−CD19+CD20+IgD−CD27+CD38−) and naive (CD3−CD19+CD20+IgD+CD27−CD38low) B cells by fluorescence-activated cell sorter analysis in PLA2R1 related MN in one patient during the 4 years of follow-up after RTX. RTX induced complete disappearance of CD19+ B cells, plasmablasts, and memory B cells as soon as day 15. Despite severe CD19+ lymphopenia, plasmablasts and memory B cells reemerged early before naive B cells (days 45, 90, and 120, resp.). During the follow-up, plasmablasts decreased more rapidly than memory B cells but still remained elevated as compared to day 0 of RTX. Concomitantly, anti-PLA2R1 Ab increased progressively. Our single case report suggests that, besides monitoring of serum anti-PLA2R1 Ab level, enumeration of circulating plasmablasts and memory B cells represents an attractive and complementary tool to assess immunological activity and efficacy of RTX induced B cells depletion in anti-PLA2R1 Ab related MN. PMID:27493452

  5. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  6. Stimuli-responsive smart gating membranes.

    Science.gov (United States)

    Liu, Zhuang; Wang, Wei; Xie, Rui; Ju, Xiao-Jie; Chu, Liang-Yin

    2016-02-07

    Membranes are playing paramount roles in the sustainable development of myriad fields such as energy, environmental and resource management, and human health. However, the unalterable pore size and surface properties of traditional porous membranes restrict their efficient applications. The performances of traditional membranes will be weakened upon unavoidable membrane fouling, and they cannot be applied to cases where self-regulated permeability and selectivity are required. Inspired by natural cell membranes with stimuli-responsive channels, artificial stimuli-responsive smart gating membranes are developed by chemically/physically incorporating stimuli-responsive materials as functional gates into traditional porous membranes, to provide advanced functions and enhanced performances for breaking the bottlenecks of traditional membrane technologies. Smart gating membranes, integrating the advantages of traditional porous membrane substrates and smart functional gates, can self-regulate their permeability and selectivity via the flexible adjustment of pore sizes and surface properties based on the "open/close" switch of the smart gates in response to environmental stimuli. This tutorial review summarizes the recent developments in stimuli-responsive smart gating membranes, including the design strategies and the fabrication strategies that are based on the introduction of the stimuli-responsive gates after or during membrane formation, and the positively and negatively responsive gating models of versatile stimuli-responsive smart gating membranes, as well as the advanced applications of smart gating membranes for regulating substance concentration in reactors, controlling the release rate of drugs, separating active molecules based on size or affinity, and the self-cleaning of membrane surfaces. With self-regulated membrane performances, smart gating membranes show great power for use in global sustainable development.

  7. Determinants of benzodiazepine brain uptake: lipophilicity versus binding affinity.

    Science.gov (United States)

    Arendt, R M; Greenblatt, D J; Liebisch, D C; Luu, M D; Paul, S M

    1987-01-01

    Factors influencing brain uptake of benzodiazepine derivatives were evaluated in adult Sprague Dawley rats (n = 8-10 per drug). Animals received single intraperitoneal doses of alprazolam, triazolam, lorazepam, flunitrazepam, diazepam, midazolam, desmethyldiazepam, or clobazam. Concentrations of each drug (and metabolites) in whole brain and serum 1 h after dosage were determined by gas chromatography. Serum free fraction was measured by equilibrium dialysis. In vitro binding affinity (apparent Ki) of each compound was estimated based on displacement of tritiated flunitrazepam in washed membrane preparations from rat cerebral cortex. Lipid solubility of each benzodiazepine was estimated using the reverse-phase liquid chromatographic (HPLC) retention index at physiologic pH. There was no significant relation between brain:total serum concentration ratio and either HPLC retention (r = 0.18) or binding Ki (r = -0.34). Correction of uptake ratios for free as opposed to total serum concentration yielded a highly significant correlation with HPLC retention (r = 0.78, P less than 0.005). However, even the corrected ratio was not correlated with binding Ki (r = -0.22). Thus a benzodiazepine's capacity to diffuse from systemic blood into brain tissue is much more closely associated with the physicochemical property of lipid solubility than with specific affinity. Unbound rather than total serum or plasma concentration most accurately reflects the quantity of drug available for diffusion.

  8. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  9. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  10. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  11. Intermediate affinity and potency of clozapine and low affinity of other neuroleptics and of antidepressants at H3 receptors.

    Science.gov (United States)

    Kathmann, M; Schlicker, E; Göthert, M

    1994-12-01

    It was the aim of the present study to determine the affinities of four neuroleptics and five antidepressants for histamine H3 receptors. In rat brain cortex membranes, the specifically bound [3H]-N alpha-methylhistamine was monophasically displaced by clozapine (pKi 6.15). The other drugs did not completely displace the radioligand even at 100 microM; the pKi values were: haloperidol (4.91); sulpiride (4.73); amitriptyline (4.56); desipramine (4.15); levomepromazine (4.14); fluovoxamine (4.13); maprotiline (4.09); moclobemide (H3 receptor model, i.e., in superfused mouse brain cortex slices preincubated with [3H]-noradrenaline. The electrically evoked tritium overflow was not affected by clozapine 0.5-32 microM. However, clozapine shifted the concentration-response curve of histamine for its inhibitory effect on the evoked overflow to the right, but did not affect the maximum effect of histamine. The Schild plot yielded a pA2 value of 6.33. In conclusion, clozapine shows an intermediate affinity and potency (as a competitive antagonist) at H3 receptors. The Ki value of clozapine at H3 receptors resembles its Ki value at D2 receptors (the target of the classical neuroleptics), but is higher than its Ki values at D4, 5-HT2 or muscarinic acetylcholine receptors, which according to current hypotheses, might be involved in the atypical profile of clozapine.

  12. Multicomponent membranes

    Science.gov (United States)

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  13. Classification of neocortical interneurons using affinity propagation

    Science.gov (United States)

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  14. Classification of neocortical interneurons using affinity propagation.

    Science.gov (United States)

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  15. Proton Affinity Calculations with High Level Methods.

    Science.gov (United States)

    Kolboe, Stein

    2014-08-12

    Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.

  16. Identification of protein interacting partners using tandem affinity purification.

    Science.gov (United States)

    Bailey, Dalan; Urena, Luis; Thorne, Lucy; Goodfellow, Ian

    2012-02-25

    A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification(1). Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast(2,3) but more recently has been adapted to use in mammalian cells(4-8). As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E(9,10).The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation(10). The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence(8). To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous

  17. Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding.

    Science.gov (United States)

    Seidel, Susanne A I; Wienken, Christoph J; Geissler, Sandra; Jerabek-Willemsen, Moran; Duhr, Stefan; Reiter, Alwin; Trauner, Dirk; Braun, Dieter; Baaske, Philipp

    2012-10-15

    Look, no label! Microscale thermophoresis makes use of the intrinsic fluorescence of proteins to quantify the binding affinities of ligands and discriminate between binding sites. This method is suitable for studying binding interactions of very small amounts of protein in solution. The binding of ligands to iGluR membrane receptors, small-molecule inhibitorss to kinase p38, aptamers to thrombin, and Ca(2+) ions to synaptotagmin was quantified.

  18. Stepparents' Affinity-Seeking and Affinity-Maintaining Strategies with Stepchildren.

    Science.gov (United States)

    Ganong, Lawrence; Coleman, Marilyn; Fine, Mark; Martin, Patricia

    1999-01-01

    Examines the strategies that stepparents use to develop and maintain affinity with stepchildren and the effects that these strategies have on the development of stepparent-stepchildren relationships. Thirty-one affinity-seeking strategies are identified. Results show that dyadic activities worked best, but it is important that stepchildren…

  19. Increase in amount and affinity of adenosine receptor in rat hippocampal cellular membranes induced by cerebral ischemic preconditioning and its protective effects on the neurons%脑预缺血引起大鼠海马细胞膜腺苷受体数量和 亲和力升高及其对神经元的保护作用

    Institute of Scientific and Technical Information of China (English)

    周爱民; 李清君; 陈晓玲; 李文斌

    2001-01-01

    采用放射性配基结合法,测定大鼠全脑缺血后海马细胞膜腺苷(adenosine,ADO)受体数量及亲和力的变化,以探讨其与脑缺血耐受形成之间的关系。发现缺血6min即可导致海马组织明显的神经元延迟性死亡(delayedneuron death,DND),缺血3min不足以引起海马组织明显的DND;而经过3min预缺血处理,可明显减轻间隔1d后6min缺血引起的海马DND(P<0.01)。与此相对应,缺血3min再灌1和3d时,ADO受体数量及亲和力明显高于sham组(P<0.05),而缺血6min再灌1和3d时,ADO受体数量明显低于sham组(P<0.05),但亲和力高于sham组(P<0.05)。与单纯6min缺血再灌4h、1和3d时相比,3min预缺血+6min缺血(间隔1d)再灌后,ADO受体数量及亲和力均显著升高(P<0.05)。这些结果表明,脑预缺血处理可使大鼠海马细胞膜ADO受体数量增多,亲和力增强,并能对抗损伤性缺血引起的ADO受体数量减少,提示腺苷受体数量及亲和力的变化在脑缺血耐受形成过程中发挥了重要的作用。

  20. Nature of the charged headgroup determines the fusogenic potential and membrane properties of lithocholic acid phospholipids.

    Science.gov (United States)

    Bhargava, Priyanshu; Singh, Manish; Sreekanth, Vedagopuram; Bajaj, Avinash

    2014-08-07

    Phospholipids play a crucial role in many cellular processes ranging from selective membrane permeability, to membrane fission and fusion, to cellular signaling. Headgroups of phospholipids determine the membrane properties and fusogenicity of these lipids with target cell membranes. We studied the fusogenic and membrane properties of phospholipids possessing unnatural charged headgroups with model membranes using laurdan based membrane hydration studies, DPH based membrane fluidity, and differential scanning calorimetry. We unravel that fusogenicity, membrane hydration, and fluidity of membranes are strongly contingent on the nature of the phospholipid charged headgroup. Our studies unraveled that introduction of bulky headgroups like dimethylamino pyridine induces maximum membrane hydration and perturbations with high fusogenicity as compared to small headgroup based phospholipids. These phospholipids also have the capability of high retention in DPPC membranes. Hydration and fluidity of these phospholipid-doped DPPC membranes are contingent on the nature of the charged headgroup. This study would help in future design of phospholipid based nanomaterials for effective drug delivery.

  1. New opioid affinity labels containing maleoyl moiety.

    Science.gov (United States)

    Szatmári, I; Orosz, G; Rónai, A Z; Makó, E; Medzihradszky, K; Borsodi, A

    1999-01-01

    Opioid receptor binding properties and pharmacological profiles of novel peptides containing maleoyl function were determined in order to develop new affinity labels. Based on the enkephalin structure peptide ligands were synthesized and tested. Both in in vitro receptor binding experiments and pharmacological studies, all ligands showed agonist character with relatively high affinity (Ki values in the nanomolar range) and good to moderate selectivity. Replacement of Gly2 in the enkephalin frame with D-Ala led to higher affinities with a small decrease in selectivity. The longer peptide chains resulted in compounds with high percentage (up to 86%) of irreversible binding. The selectivity pattern of the ligands is in good agreement with the data obtained from the pharmacological assays (guinea pig ileum and mouse vas deferens bioassays). The newly synthesized peptides could be used in further studies in order to determine more detailed characteristics of the ligand-receptor interaction.

  2. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton

    2012-11-01

    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  3. The S2 Cu(I) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance†

    Science.gov (United States)

    Fu, Yue; Bruce, Kevin E.; Wu, Hongwei; Giedroc, David P.

    2015-01-01

    Pathogenic bacteria have evolved copper homeostasis and resistance systems for fighting copper toxicity imposed by the human immune system. Streptococcus pneumoniae is a respiratory pathogen that encodes an obligatorily membrane-anchored Cu(I) binding protein, CupA, and a P1B-type ATPase efflux transporter, CopA. The soluble, cytoplasmic domain of CupA (sCupA) contains a binuclear Cu(I) cluster consisting of S1 and S2 Cu(I) ions. The NMR solution structure of apo-sCupA reveals the same cupredoxin fold of Cu2-sCupA, except that the Cu(I) binding loop (residues 112–116, harboring S2 Cu ligands M113 and M115) is highly dynamic as documented by both backbone and side chain methionine methyl order parameters. In contrast to the more solvent exposed, lower affinity S2 Cu site, the high affinity S1 Cu-coordinating cysteines (C74, C111) are pre-organized in the apo-sCupA structure. Biological experiments reveal that the S1 site is largely dispensable for cellular Cu resistance and may be involved in buffering low cytoplasmic Cu(I). In contrast, the S2 site is essential for Cu resistance. Expression of a chimeric CopZ chaperone fused to the CupA transmembrane helix does not protect S. pneumoniae from copper toxicity and substitution of a predicted cytoplasm-facing Cu(I) entry metal-binding site (MBS) on CopA also gives rise to a Cu-sensitivity phenotype. These findings suggest that CupA and CopA may interact and filling of the CupA S2 site with Cu(I) results in stimulation of cellular copper efflux by CopA. PMID:26346139

  4. A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase.

    Science.gov (United States)

    Piel, Robert B; Shiferaw, Mesafint T; Vashisht, Ajay A; Marcero, Jason R; Praissman, Jeremy L; Phillips, John D; Wohlschlegel, James A; Medlock, Amy E

    2016-09-20

    Heme is an iron-containing cofactor essential for multiple cellular processes and fundamental activities such as oxygen transport. To better understand the means by which heme synthesis is regulated during erythropoiesis, affinity purification coupled with mass spectrometry (MS) was performed to identify putative protein partners interacting with ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Both progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) were identified in these experiments. These interactions were validated by reciprocal affinity purification followed by MS analysis and immunoblotting. The interaction between PGRMC1 and FECH was confirmed in vitro and in HEK 293T cells, a non-erythroid cell line. When cells that are recognized models for erythroid differentiation were treated with a small molecule inhibitor of PGRMC1, AG-205, there was an observed decrease in the level of hemoglobinization relative to that of untreated cells. In vitro heme transfer experiments showed that purified PGRMC1 was able to donate heme to apo-cytochrome b5. In the presence of PGRMC1, in vitro measured FECH activity decreased in a dose-dependent manner. Interactions between FECH and PGRMC1 were strongest for the conformation of FECH associated with product release, suggesting that PGRMC1 may regulate FECH activity by controlling heme release. Overall, the data illustrate a role for PGRMC1 in regulating heme synthesis via interactions with FECH and suggest that PGRMC1 may be a heme chaperone or sensor.

  5. Poisson Morphisms and Reduced Affine Poisson Group Actions

    Institute of Scientific and Technical Information of China (English)

    YANG Qi Lin

    2002-01-01

    We establish the concept of a quotient affine Poisson group, and study the reduced Poisson action of the quotient of an affine Poisson group G on the quotient of an affine Poisson G-variety V. The Poisson morphisms (including equivariant cases) between Poisson affine varieties are also discussed.

  6. Biophysical Tools to Study Cellular Mechanotransduction

    Directory of Open Access Journals (Sweden)

    Ismaeel Muhamed

    2017-02-01

    Full Text Available The cell membrane is the interface that volumetrically isolates cellular components from the cell’s environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane’s bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na+, Ca2+, K+ channels. The membrane’s biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM, vascular endothelial (VE-cadherin, epithelial (E-cadherin, integrin embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.

  7. Periodic cyclic homology of affine Hecke algebras

    CERN Document Server

    Solleveld, Maarten

    2009-01-01

    This is the author's PhD-thesis, which was written in 2006. The version posted here is identical to the printed one. Instead of an abstract, the short list of contents: Preface 5 1 Introduction 9 2 K-theory and cyclic type homology theories 13 3 Affine Hecke algebras 61 4 Reductive p-adic groups 103 5 Parameter deformations in affine Hecke algebras 129 6 Examples and calculations 169 A Crossed products 223 Bibliography 227 Index 237 Samenvatting 245 Curriculum vitae 253

  8. Control and estimation of piecewise affine systems

    CERN Document Server

    Xu, Jun

    2014-01-01

    As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are

  9. Einstein's gravity from an affine model

    CERN Document Server

    Castillo-Felisola, Oscar

    2015-01-01

    We show that the effective field equations for a recently formulated affine model of gravity, in the sector of a metric (torsion-free) connection, accept general Einstein manifolds --- with or without cosmological constant --- as solutions. Moreover, these effective field equations coincide with the ones obtained from a gravitational Yang--Mills theory known as Stephenson--Kilmister--Yang theory. Additionally, we find an equivalence between a minimally coupled massless scalar field in General Relativity with a "minimally" coupled scalar field in this affine model.

  10. Separation of Proteins by Electrophoretic Affinity Chromatography

    Institute of Scientific and Technical Information of China (English)

    邺韶骅; 刘铮; 丁富新; 袁乃驹

    1999-01-01

    A new kind of electrophoretic affinity chromatography (EAC) for bioseparation was proposed,Separation by EAC was conducted in a multicompartment electrolyzer in which the affinity gel media were packed in one of the central compartments.The presence of an electric field accelerated the migration of proteins inside the gel matrix during adsorption and descrption processes,This led to the increase of the overall speed of separation,The present study was focused on the effect of the strength of the electric field on adsorption and desorption processes.

  11. Adsorption affinity of anions on metal oxyhydroxides

    Science.gov (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  12. Affine Invariant Character Recognition by Progressive Removing

    Science.gov (United States)

    Iwamura, Masakazu; Horimatsu, Akira; Niwa, Ryo; Kise, Koichi; Uchida, Seiichi; Omachi, Shinichiro

    Recognizing characters in scene images suffering from perspective distortion is a challenge. Although there are some methods to overcome this difficulty, they are time-consuming. In this paper, we propose a set of affine invariant features and a new recognition scheme called “progressive removing” that can help reduce the processing time. Progressive removing gradually removes less feasible categories and skew angles by using multiple classifiers. We observed that progressive removing and the use of the affine invariant features reduced the processing time by about 60% in comparison to a trivial one without decreasing the recognition rate.

  13. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...... charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from...

  14. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity

    NARCIS (Netherlands)

    Martin, Brent R; Giepmans, Ben N G; Adams, Stephen R; Tsien, Roger Y

    2005-01-01

    Membrane-permeant biarsenical dyes such as FlAsH and ReAsH fluoresce upon binding to genetically encoded tetracysteine motifs expressed in living cells, yet spontaneous nonspecific background staining can prevent detection of weakly expressed or dilute proteins. If the affinity of the tetracysteine

  15. Evidence of multi-affinity in the Japanese stock market

    Science.gov (United States)

    Katsuragi, Hiroaki

    2000-04-01

    Fluctuations of the Japanese stock market (Tokyo Stock Price Index: TOPIX) are analyzed using a multi-affine analysis method. In the research to date, only some simulated self-affine models have shown multi-affinity. In most experiments using observations of self-affine fractal profiles, multi-affinity has not been found. However, we find evidence of multi-affinity in fluctuations of the Japanese stock market (TOPIX). The qth-order Hurst exponent Hq varies with changes in q. This multi-affinity indicates that there are plural mechanisms that affect the same time scale as stock market price fluctuation dynamics.

  16. Crossing Chris: Some Markerian Affinities

    Directory of Open Access Journals (Sweden)

    Adrian Martin

    2010-01-01

    -pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Abstract (E: This essay creatively explores a group of artists, writers, and other special individuals whose work or life story can be described as having an intriguing affinity with the protean career of Chris Marker. Avoiding the ‘usual suspects’ (such as Godard or Sebald, it discusses gossip columnist Milt Machlin, record collector Harry Smith, painter Gianfranco Baruchello, writer-filmmaker Edgardo Cozarinsky, and several others. From this constellation, a particular view of Markerian poetics emerges, touching upon the meanings of anonymity, storytelling, history and archiving.

     

    Abstract (F: Cet essai brosse de manière créative le portrait d’un groupe d'artistes, d'écrivains et d'autres personnes particulières dont le travail ou la biographie peuvent être décrits comme montrant une étrange mais certaine connivence avec la carrière protéiforme de Chris Marker. Evitant les lieux communs (comme Godard ou Sebald, cet article trace des références moins attendues :

  17. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  18. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  19. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  20. Investigating Membranes: Using Artificial Membranes to Convey Chemistry and Biology Concepts

    Science.gov (United States)

    Zrelak, Yoshi; McCallister, Gary

    2009-01-01

    While not organic in nature, quick-"growing" artificial membranes can be a profound visual aid when teaching students about cellular processes and the chemical nature of membranes. Students are often intrigued when they see biological and chemical concepts come to life before their eyes. In this article, the authors share their approach to growing…

  1. Cellular arsenic transport pathways in mammals.

    Science.gov (United States)

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.

  2. Cellular blue naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    2001-01-01

    Full Text Available A 31-year-old man had asymptomatic, stationary, 1.5X2 cm, shiny, smooth, dark blue nodule on dorsum of right hand since 12-14 years. In addition he had developed extensive eruption of yellow to orange papulonodular lesions on extensors of limbs and buttocks since one and half months. Investigations confirmed that yellow papules were xanthomatosis and he had associated diabetes mellitus and hyperlipidaemia. Biopsy of blue nodule confirmed the clinical diagnosis of cellular blue naevus. Cellular blue naevus is rare and its association with xanthomatosis and diabetes mellitus were interesting features of above patients which is being reported for its rarity.

  3. Differential ligand binding affinities of human estrogen receptor-α isoforms.

    Directory of Open Access Journals (Sweden)

    Amanda H Y Lin

    Full Text Available Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66 and the truncated isoforms, estrogen receptor-α46 (ER46 and estrogen receptor-α36 (ER36. However, the binding affinities of the membrane estrogen receptors (mERs remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [³H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.

  4. Fan Affinity Laws from a Collision Model

    Science.gov (United States)

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  5. Colliding waves in metric-affine gravity

    CERN Document Server

    García, A; Macías, A; Mielke, E W; Socorro, J; García, Alberto; Lämmerzahl, Claus; Macías, Alfredo; Mielke, Eckehard W.; Socorro, José

    1998-01-01

    We generalize the formulation of the colliding gravitational waves to metric-affine theories and present an example of such kind of exact solutions. The plane waves are equipped with five symmetries and the resulting geometry after the collision possesses two spacelike Killing vectors.

  6. Classification of neocortical interneurons using affinity propagation

    Directory of Open Access Journals (Sweden)

    Roberto eSantana

    2013-12-01

    Full Text Available In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. Neuronal classification has been a difficult problem because it is unclear what a neuronal cell class actually is and what are the best characteristics are to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological or molecular characteristics, when applied to selected datasets, have provided quantitative and unbiased identification of distinct neuronal subtypes. However, better and more robust classification methods are needed for increasingly complex and larger datasets. We explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. In fact, using a combined anatomical/physiological dataset, our algorithm differentiated parvalbumin from somatostatin interneurons in 49 out of 50 cases. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  7. Recombinant Dengue virus protein NS2B alters membrane permeability in different membrane models

    OpenAIRE

    León-Juárez, Moisés; Martínez-Castillo, Macario; Shrivastava, Gaurav; García-Cordero, Julio; Villegas-Sepulveda, Nicolás; Mondragón-Castelán, Mónica; Mondragón-Flores, Ricardo; Cedillo-Barrón, Leticia

    2016-01-01

    Background One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investiga...

  8. The Preliminary Report of Pathological Changes of Epiretinal Membranes and Internal Limiting Membrane Removed during Idiopathic Macular Hole Surgery

    Institute of Scientific and Technical Information of China (English)

    Jiaqing Li; Shibo Tang; Yan Luo; Jie Zhang; Shaofen Lin

    2002-01-01

    Purpose:To investigate the pathological changes of epiretinal membranes(ERM)and internal limiting membrane (ILM) removed during idiopathic macular hole surgery.Methods:Ten consecutive patients with a unilateral idiopathic macular hole underwent pars plana vitrectomy(PPV) with the surgical removal of the ERMs overlying the hole and ILM surrounding the hole. The pathological features of the excised tissues were examined under the microscope. Results:According to the morphological changes, four ERMs showed cellular elements which looked like glia cells, macrophages, plasma cells, lymphocytes and fibroblast cells. Two of the ILM appeared as transparent membranes without cellular elements. The other eight ILM showed cellular elements on the transparent membranes.Conclusion: Our study supports the hypothesis that the tangential traction of vitreous and proliferative cellular elements on the inner surface of ILM causes idiopathic macular holes. Removal of the posterior cortical vitreous, ILM and proliferative cellular tissue is a valid treatment for IMH.

  9. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1976-01-01

    Progress in Surface and Membrane Science, Volume 10 covers the advances in surface and membrane science. The book discusses the selective changes of cellular particles influencing sedimentation properties; and the rotating disk and ring-disk electrodes in investigations of surface phenomena at the metal-electrolyte interface. The text also describes the membrane potential of phospholipid bilayer and biological membranes; the adsorption of surfactant monolayers at gas/liquid and liquid/liquid interfaces; and the enzymes immobilized on glass. Chemists and people involved in electrochemistry will

  10. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    David L. Springer

    2004-01-01

    Full Text Available To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap. Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  11. Congophilicity (Congo red affinity) of different beta2-microglobulin conformations characterized by dye affinity capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, N H; Sen, J W; Nissen, Mogens Holst

    2000-01-01

    The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red-affinities of......The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red...

  12. Purification to homogeneity of an active opioid receptor from rat brain by affinity chromatography.

    Science.gov (United States)

    Loukas, S; Mercouris, M; Panetsos, F; Zioudrou, C

    1994-05-10

    Active opioid binding proteins were solubilized from rat brain membranes in high yield with sodium deoxycholate in the presence of NaCl. Purification of opioid binding proteins was accomplished by opioid antagonist affinity chromatography. Chromatography using the delta-opioid antagonist N,N-diallyl-Tyr-D-Leu-Gly-Tyr-Leu attached to omega-aminododecyl-agarose (Affi-G) (procedure A) yielded a partially purified protein that binds selectively the delta-opioid agonist [3H]Tyr-D-Ser-Gly-Phe-Leu-Thr ([3H]DSLET), with a Kd of 19 +/- 3 nM and a Bmax of 5.1 +/- 0.4 nmol/mg of protein. Subsequently, Lens culinaris agglutinin-Sepharose 4B chromatography of the Affi-G eluate resulted in isolation of an electrophoretically homogeneous protein of 58 kDa that binds selectively [3H]DSLET with a Kd of 21 +/- 3 nM and a Bmax of 16.5 +/- 1.0 nmol/mg of protein. Chromatography using the nonselective antagonist 6-aminonaloxone coupled to 6-aminohexanoic acid-Sepharose 4B (Affi-NAL) (procedure B) resulted in isolation of a protein that binds selectively [3H]DSLET with a Kd of 32 +/- 2 nM and a Bmax of 12.4 +/- 0.5 nmol/mg of protein, and NaDodSO4/PAGE revealed a major band of apparent molecular mass 58 kDa. Polyclonal antibodies (Anti-R IgG) raised against the Affi-NAL protein inhibit the specific [3H]DSLET binding to the Affi-NAL eluate and to the solubilized membranes. Moreover, the Anti-R IgG inhibits the specific binding of radiolabeled Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO; mu-agonist), DSLET (delta-agonist), and naloxone to homogenates of rat brain membranes with equal potency. Furthermore, immunoaffinity chromatography of solubilized membranes resulted in the retention of a major protein of apparent molecular mass 58 kDa. In addition, immunoblotting of solubilized membranes and purified proteins from the Affi-G and Affi-NAL matrices revealed that the Anti-R IgG interacts with a protein of 58 kDa.

  13. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  14. Accessible Mannitol-Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation

    DEFF Research Database (Denmark)

    Hussain, Hazrat; Du, Yang; Scull, Nicola J.;

    2016-01-01

    Integral membrane proteins are amphipathic molecules crucial for all cellular life. The structural study of these macromolecules starts with protein extraction from the native membranes, followed by purification and crystallisation. Detergents are essential tools for these processes, but detergent...

  15. Designing beauty the art of cellular automata

    CERN Document Server

    Martínez, Genaro

    2016-01-01

    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  16. Prodrug Approach for Increasing Cellular Glutathione Levels

    Directory of Open Access Journals (Sweden)

    Ivana Cacciatore

    2010-03-01

    Full Text Available Reduced glutathione (GSH is the most abundant non-protein thiol in mammalian cells and the preferred substrate for several enzymes in xenobiotic metabolism and antioxidant defense. It plays an important role in many cellular processes, such as cell differentiation, proliferation and apoptosis. GSH deficiency has been observed in aging and in a wide range of pathologies, including neurodegenerative disorders and cystic fibrosis (CF, as well as in several viral infections. Use of GSH as a therapeutic agent is limited because of its unfavorable biochemical and pharmacokinetic properties. Several reports have provided evidence for the use of GSH prodrugs able to replenish intracellular GSH levels. This review discusses different strategies for increasing GSH levels by supplying reversible bioconjugates able to cross the cellular membrane more easily than GSH and to provide a source of thiols for GSH synthesis.

  17. Cellular Dynamics Revealed by Digital Holographic Microscopy☆

    KAUST Repository

    Marquet, P.

    2016-11-22

    Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.

  18. Boronic acid lectin affinity chromatography (BLAC). 2. Affinity micropartitioning-mediated comparative glycosylation profiling.

    Science.gov (United States)

    Monzo, Alex; Olajos, Marcell; De Benedictis, Lorenzo; Rivera, Zuly; Bonn, Guenther K; Guttman, András

    2008-09-01

    As a continuation of our work on boronic acid lectin affinity chromatography (BLAC), in this paper we introduce an automated affinity micropartitioning approach using combined boronic acid and concanavalin A (BLAC/Con A) resin-filled micropipette tips to isolate and enrich human serum glycoproteins. The N-linked oligosaccharides of the partitioned glycoproteins were removed by PNGase F enzyme digestion, followed by 8-aminopyrene-1,3,6-trisulfonic acid labeling. Capillary gel electrophoresis with blue LED-induced fluorescence detection was applied in a multiplexed format for comparative glycan profiling. The efficiency of BLAC affinity micropartitioning was compared with that of the individual lectin and pseudolectin affinity enrichment. Finally, we report on our findings in glycosylation differences in human serum samples from healthy and prostate cancer patients by applying BLAC/Con A micropipette tip-based enrichment and comparative multicapillary gel electrophoresis analysis of the released and labeled glycans.

  19. Monte Carlo study of receptor-lipid raft formation on a cell membrane

    Science.gov (United States)

    Yu-Yang, Paul; Srinivas Reddy, A.; Raychaudhuri, Subhadip

    2012-02-01

    Receptors are cell surface molecules that bind with extracellular ligand molecules leading to propagation of downstream signals and cellular activation. Even though ligand binding-induced formation of receptor-lipid rafts has been implicated in such a process, the formation mechanism of such large stable rafts is not understood. We present findings from our Monte Carlo (MC) simulations involving (i) receptor interaction with the membrane lipids and (ii) lipid-lipid interactions between raft forming lipids. We have developed a hybrid MC simulation method that combines a probabilistic MC simulation with an explicit free energy-based MC scheme. Some of the lipid-mediated interactions, such as the cholesterol-lipid interactions, are simulated in an implicit way. We examine the effect of varying attractive interactions between raft forming lipids and ligand-bound receptors and show that strong coupling between receptor-receptor and receptor-sphingolipid molecules generate raft formation similar to that observed in recent biological experiments. We study the effect of variation of receptor affinity for ligands (as happens in adaptive immune cells) on raft formation. Such affinity dependence in receptor-lipid raft formation provides insight into important problems in B cell biology.

  20. Domain 4 (D4 of Perfringolysin O to Visualize Cholesterol in Cellular Membranes—The Update

    Directory of Open Access Journals (Sweden)

    Masashi Maekawa

    2017-03-01

    Full Text Available The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine. Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4 of Perfringolysin O (PFO, theta toxin, a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  1. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes—The Update

    Science.gov (United States)

    Maekawa, Masashi

    2017-01-01

    The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes. PMID:28273804

  2. A pipeline for determining protein-protein interactions and proximities in the cellular milieu.

    Science.gov (United States)

    Subbotin, Roman I; Chait, Brian T

    2014-11-01

    It remains extraordinarily challenging to elucidate endogenous protein-protein interactions and proximities within the cellular milieu. The dynamic nature and the large range of affinities of these interactions augment the difficulty of this undertaking. Among the most useful tools for extracting such information are those based on affinity capture of target bait proteins in combination with mass spectrometric readout of the co-isolated species. Although highly enabling, the utility of affinity-based methods is generally limited by difficulties in distinguishing specific from nonspecific interactors, preserving and isolating all unique interactions including those that are weak, transient, or rapidly exchanging, and differentiating proximal interactions from those that are more distal. Here, we have devised and optimized a set of methods to address these challenges. The resulting pipeline involves flash-freezing cells in liquid nitrogen to preserve the cellular environment at the moment of freezing; cryomilling to fracture the frozen cells into intact micron chunks to allow for rapid access of a chemical reagent and to stabilize the intact endogenous subcellular assemblies and interactors upon thawing; and utilizing the high reactivity of glutaraldehyde to achieve sufficiently rapid stabilization at low temperatures to preserve native cellular interactions. In the course of this work, we determined that relatively low molar ratios of glutaraldehyde to reactive amines within the cellular milieu were sufficient to preserve even labile and transient interactions. This mild treatment enables efficient and rapid affinity capture of the protein assemblies of interest under nondenaturing conditions, followed by bottom-up MS to identify and quantify the protein constituents. For convenience, we have termed this approach Stabilized Affinity Capture Mass Spectrometry. Here, we demonstrate that Stabilized Affinity Capture Mass Spectrometry allows us to stabilize and elucidate

  3. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  4. High-affinity binding of fungal beta-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts.

    Science.gov (United States)

    Cosio, E G; Pöpperl, H; Schmidt, W E; Ebel, J

    1988-08-01

    We have recently reported the existence of binding sites in soybean membranes for a beta-glucan fraction derived from the fungal pathogen Phytophthora megasperma f. sp. glycinea, which may play a role in the elicitor-mediated phytoalexin response of this plant [Schmidt, W. E. & Ebel, J. (1987) Proc. Natl Acad. Sci. USA 84, 4117-4121]. The specificity of beta-glucan binding to soybean membranes has now been investigated using a variety of competing polyglucans and oligoglucans of fungal origin. P. megasperma beta-glucan binding showed high apparent affinity for branched glucans with degrees of polymerization greater than 12. Binding affinity showed good correlation with elicitor activity as measured in a soybean cotyledon bioassay. Modification of the glucans at the reducing end with phenylalkylamine reagents had no effect on binding affinity. This characteristic was used to synthesize an oligoglucosyl tyramine derivative suitable for radioiodination. The 125I-glucan (15-30 Ci/mmol) provided higher sensitivity and lower detection limits for the binding assays while behaving in a manner identical to the [3H]glucan used previously. More accurate determinations of the Kd value for glucan binding indicated a higher affinity than previously shown (37 nM versus 200 nM). The 125I-glucan was used to provide the first reported evidence of specific binding of a fungal beta-glucan fraction in vivo to soybean protoplasts. The binding affinity to protoplasts proved identical to that found in microsomal fractions.

  5. Artificial Affinity Proteins as Ligands of Immunoglobulins

    Directory of Open Access Journals (Sweden)

    Barbara Mouratou

    2015-01-01

    Full Text Available A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized.

  6. Local structure of self-affine sets

    CERN Document Server

    Bandt, Christoph

    2011-01-01

    The structure of a self-similar set with open set condition does not change under magnification. For self-affine sets the situation is completely different. We consider planar self-affine Cantor sets E of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that within small square neighborhoods of almost each point x in E, with respect to many product measures on address space, E is well approximated by product sets of an interval and a Cantor set. Even though E is totally disconnected, the limit sets have the product structure with interval fibres, reminiscent to the view of attractors of chaotic differentiable dynamical systems.

  7. Thermodynamics. Using Affinities to define reversible processes

    CERN Document Server

    Ritacco, Hernán A

    2016-01-01

    In this article a definition of reversible processes in terms of differences in intensive Thermodynamics properties (Affinities) is proposed. This definition makes it possible to both define reversible processes before introducing the concept of entropy and avoid the circularity problem that follows from the Clausius definition of entropy changes. The convenience of this new definition compared to those commonly found in textbooks is demonstrated with examples.

  8. Couplings in Affine Toda Field Theories

    OpenAIRE

    1992-01-01

    We present a systematic derivation for a general formula for the n-point coupling constant valid for affine Toda theories related to any simple Lie algebra {\\bf g}. All n-point couplings with $n \\geq 4$ are completely determined in terms of the masses and the three-point couplings. A general fusing rule, formulated in the root space of the Lie algebra, is derived for all n-point couplings.

  9. Mepanipyrim haptens and antibodies with nanomolar affinity

    OpenAIRE

    Esteve Turrillas, Francesc Albert; Mercader Badia, Josep Vicent; Agulló, Consuelo; Abad Somovilla, Antonio; Abad Fuentes, Antonio

    2013-01-01

    Mepanipyrim is an anilinopyrimidine fungicide used worldwide for crop protection. With the aim of developing useful immunoreagents for mepanipyrim immunoanalysis, two new functionalized derivatives were prepared and antibodies were generated. Affinity and specificity were assessed by direct and indirect competitive ELISA using homologous and heterologous conjugates. Although all antibodies were selective for the target analyte, the immunizing hapten structure was revealed as a determinant for...

  10. Folding defect affine Toda field theories

    CERN Document Server

    Robertson, C

    2013-01-01

    A folding process is applied to fused a^(1)_r defects to construct defects for the non-simply laced affi?ne Toda ?field theories of c^(1)_n, d^(2)_n and a^(2)_n at the classical level. Support for the hypothesis that these defects are integrable in the folded theories is provided by the observation that transmitted solitons retain their form. Further support is given by the demonstration that energy and momentum are conserved.

  11. AFFINE TRANSFORMATION IN RANDOM ITERATED FUNCTION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    熊勇; 史定华

    2001-01-01

    Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, that the figure reconstructed by the new random IFS is the image of the origin figure reconstructed by old IFS under a given affine transformation. Two particular examples are used to show this approach.

  12. Irreversible blockade of the high and low affinity ( sup 3 H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    Energy Technology Data Exchange (ETDEWEB)

    Krizsan, D. (EGIS Pharmaceutical Works, Budapest (Hungary)); Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A. (Biological Research Center of the Hungarian Academy of Sciences, Szeged (Hungary)); Hosztafi, S. (Alkaloida Chemical Works, Tiszavasvari (Hungary))

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ({sup 3}H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na{sup +}-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ({sup 3}H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested.

  13. On constructing purely affine theories with matter

    Science.gov (United States)

    Cervantes-Cota, Jorge L.; Liebscher, D.-E.

    2016-08-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schrödinger's purely affine theory (Schrödinger in Space-time structure. Cambridge UP, Cambridge, 1950), where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  14. On constructing purely affine theories with matter

    CERN Document Server

    Cervantes-Cota, Jorge L

    2016-01-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schroedinger's purely affine theory [21], where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  15. Overview of affinity biosensors in food analysis.

    Science.gov (United States)

    Patel, Pradip D

    2006-01-01

    The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field.

  16. Peptide Membranes in Chemical Evolution*

    OpenAIRE

    2009-01-01

    Simple surfactants achieve remarkable long-range order in aqueous environments. This organizing potential is seen most dramatically in biological membranes where phospholipid assemblies both define cell boundaries and provide a ubiquitous structural scaffold for controlling cellular chemistry. Here we consider simple peptides that also spontaneously assemble into exceptionally ordered scaffolds, and review early data suggesting that these structures maintain the functional diversity of protei...

  17. The Monitoring and Affinity Purification of Proteins Using Dual-Tags with Tetracysteine Motifs

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, Richard J [ORNL; Liu, Yie [ORNL; Wang, Yisong [ORNL

    2009-01-01

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter we describe a comprehensive methodology that utilizes our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we have demonstrated the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  18. The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs

    Science.gov (United States)

    Giannone, Richard J.; Liu, Yie; Wang, Yisong

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  19. Affinity reagent technology development and application to rapid immunochromatographic pathogen detection

    Science.gov (United States)

    Sooter, Letha J.; Stratis-Cullum, Dimitra N.; Zhang, Yanting; Daugherty, Patrick S.; Soh, H. Tom; Pellegrino, Paul; Stagliano, Nancy

    2007-09-01

    Immunochromatography is a rapid, reliable, and cost effective method of detecting biowarfare agents. The format is similar to that of an over-the-counter pregnancy test. A sample is applied to one end of a cassette and then a control line, and possibly a sample line, are visualized at the other end of the cassette. The test is based upon a sandwich assay. For the control, a line of Protein A is immobilized on the membrane. Gold nanoparticle bound IgG flows through the membrane and binds the Protein A, creating a visible line on the membrane. For the sample, one epitope is immobilized on the membrane and another epitope is attached to gold nanoparticles. The sample binds gold bound epitope, travels through the membrane, and binds membrane bound epitope. The two epitopes are not cross-reactive, therefore a sample line is only visible if the sample is present. In order to efficiently screen for binders to a sample target, a novel, Continuous Magnetic Activated Cell Sorter (CMACS) has been developed on a disposable, microfluidic platform. The CMACS chip quickly sorts E. coli peptide libraries for target binders with high affinity. Peptide libraries, are composed of approximately ten million bacteria, each displaying a different peptide on their surface. The target of interest is conjugated to a micrometer sized magnetic particle. After the library and the target are incubated together to allow binding, the mixture is applied to the CMACS chip. In the presence of patterned nickel and an external magnet, separation occurs of the bead-bound bacteria from the bulk material. The bead fraction is added to bacterial growth media where any attached E. coli grow and divide. These cells are cloned, sequenced, and the peptides are assayed for target binding affinity. As a proof-of-principle, assays were developed for human C-reactive protein. More defense relevant targets are currently being pursued.

  20. Mapping of cellular iron using hyperspectral fluorescence imaging in a cellular model of Parkinson's disease

    Science.gov (United States)

    Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min

    2013-05-01

    Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.

  1. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  2. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  3. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.

    Science.gov (United States)

    Johnson, Rachel M; Rath, Arianna; Deber, Charles M

    2006-12-01

    Although the intrinsic low solubility of membrane proteins presents challenges to their high-resolution structure determination, insight into the amino acid sequence features and forces that stabilize their folds has been provided through study of sequence-dependent helix-helix interactions between single transmembrane (TM) helices. While the stability of helix-helix partnerships mediated by the Gly-xxx-Gly (GG4) motif is known to be generally modulated by distal interfacial residues, it has not been established whether the position of this motif, with respect to the ends of a given TM segment, affects dimer affinity. Here we examine the relationship between motif position and affinity in the homodimers of 2 single-spanning membrane protein TM sequences: glycophorin A (GpA) and bacteriophage M13 coat protein (MCP). Using the TOXCAT assay for dimer affinity on a series of GpA and MCP TM segments that have been modified with either 4 Leu residues at each end or with 8 Leu residues at the N-terminal end, we show that in each protein, centrally located GG4 motifs are capable of stronger helix-helix interactions than those proximal to TM helix ends, even when surrounding interfacial residues are maintained. The relative importance of GG4 motifs in stabilizing helix-helix interactions therefore must be considered not only in its specific residue context but also in terms of the location of the interactive surface relative to the N and C termini of alpha-helical TM segments.

  4. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands.

    Science.gov (United States)

    Shinya, Tomonori; Osada, Tomohiko; Desaki, Yoshitake; Hatamoto, Masahiro; Yamanaka, Yuko; Hirano, Hisashi; Takai, Ryota; Che, Fang-Sik; Kaku, Hanae; Shibuya, Naoto

    2010-02-01

    The plant genome encodes a wide range of receptor-like proteins but the function of most of these proteins is unknown. We propose the use of affinity cross-linking of biotinylated ligands for a ligand-based survey of the corresponding receptor molecules. Biotinylated ligands not only enable the analysis of receptor-ligand interactions without the use of radioactive compounds but also the isolation and identification of receptor molecules by a simple affinity trapping method. We successfully applied this method for the characterization, isolation and identification of the chitin elicitor binding protein (CEBiP). A biocytin hydrazide conjugate of N-acetylchitooctaose (GN8-Bio) was synthesized and used for the detection of CEBiP in the plasma or microsomal membrane preparations from rice and carrot cells. Binding characteristics of CEBiP analyzed by inhibition studies were in good agreement with the previous results obtained with the use of a radiolabeled ligand. The biotin-tagged CEBiP could be purified by avidin affinity chromatography and identified by LC-MALDI-MS/MS after tryptic digestion. We also used this method to detect OsFLS2, a rice receptor-like kinase for the perception of the peptide elicitor flg22, in membrane preparations from rice cells overexpressing OsFLS2. This work demonstrates the applicability of this method to the purification and identification of plant receptor proteins.

  5. New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Directory of Open Access Journals (Sweden)

    Stroncek David F

    2012-03-01

    Full Text Available Abstract A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL, are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs, chimeric antibody-T cell receptors (CARs and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies.

  6. Stochastic Models of Vesicular Sorting in Cellular Organelles

    CERN Document Server

    Vagne, Quentin

    2016-01-01

    The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intra-cellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values leads to fast sorting, but results in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well defined sorted compartments but is exponentially slow. Our results suggests an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components, and highlight the importance of stochastic effects for the steady-state organizati...

  7. Biophysical studies of membrane channel polypeptides

    CERN Document Server

    Galbraith, T P

    2001-01-01

    Membrane channels facilitate the flow of ions across biological membranes, a process which is important in numerous cellular functions. The study of large integral membrane proteins is made difficult by identification, production and purification problems, and detailed knowledge of their three-dimensional structures is relatively scarce. The study of simple 'model' membrane proteins has given valuable insight into the structures and dynamics of membrane proteins in general. The bacterial peptide gramicidin has been the subject of intense study for many years, and has provided important information into the structural basis of channel function. Peptaibols, a class of fungal membrane peptides which includes alamethicin and antiamoebin, have also been useful in relating structural details to molecular ion transport processes. Gramicidin crystals were grown in the presence of phospholipids with various headgroups and acyl chains. The diffraction patterns of the crystals obtained were processed, but found to be in...

  8. Experimental investigation of streamer affinity for dielectric surfaces

    NARCIS (Netherlands)

    Trienekens, D.J.M.; Nijdam, S.; Akkermans, G.; Plompen, I.; Christen, T.; Ebert, U.

    2015-01-01

    We have experimentally investigated the affinity of streamers for dielectric surfaces using stroboscopic imaging and stereo photography. Affinity of streamers for dielectric surfaces was found to depend on a wide set of parameters, including pressure, voltage, dielectric material and di

  9. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  10. Mechanisms of influenza viral membrane fusion.

    Science.gov (United States)

    Blijleven, Jelle S; Boonstra, Sander; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M

    2016-12-01

    Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.

  11. Ganglioside embedded in reconstituted lipoprotein binds cholera toxin with elevated affinity.

    Science.gov (United States)

    Bricarello, Daniel A; Mills, Emily J; Petrlova, Jitka; Voss, John C; Parikh, Atul N

    2010-09-01

    The ability to exogenously present cell-surface receptors in high-affinity conformations in a synthetic system offers an opportunity to provide host cells with protection from pathogenic toxins. This strategy requires improvement of the synthetic receptor binding affinity against its native counterpart, particularly with polyvalent toxins where clustering of membrane receptors can hinder binding. Here we demonstrate that reconstituted lipoprotein, nanometer-sized discoidal lipid bilayers bounded by apolipoprotein and functionalized by incorporation of pathogen receptors, provides a means to enhance toxin-receptor binding through molecular-level control over the receptor microenvironment (specifically, its rigidity, composition, and heterogeneity). Using a Foerster Resonance Energy Transfer (FRET)-based assay, we found that reconstituted lipoprotein incorporating low concentrations of ganglioside monosialotetrahexosylganglioside (GM1) binds polymeric cholera toxin with significantly higher affinity than liposomes or supported lipid bilayers, most likely a result of the enhanced control over receptor clustering provided by the lipoprotein platform. Using wide-area epifluorescence, we found that this enhanced binding capacity can be effectively utilized to divert cholera toxin away from populations of healthy mammalian cells. In summary, we found that reconstitutions of high-density lipoprotein can be engineered to include specific pathogen receptors; that their pathogen binding affinity is altered, presumably due to attenuation of receptor aggregation; and that these assemblies are effective at protecting cells from biological toxins.

  12. Tandem affinity purification to identify cytosolic and nuclear gβγ-interacting proteins.

    Science.gov (United States)

    Campden, Rhiannon; Pétrin, Darlaine; Robitaille, Mélanie; Audet, Nicolas; Gora, Sarah; Angers, Stéphane; Hébert, Terence E

    2015-01-01

    It has become clear in recent years that the Gβγ subunits of heterotrimeric proteins serve broad roles in the regulation of cellular activity and interact with many proteins in different subcellular locations including the nucleus. Protein affinity purification is a common method to identify and confirm protein interactions. When used in conjugation with mass spectrometry it can be used to identify novel protein interactions with a given bait protein. The tandem affinity purification (TAP) technique identifies partner proteins bound to tagged protein bait. Combined with protocols to enrich the nuclear fraction of whole cell lysate through sucrose cushions, TAP allows for purification of interacting proteins found specifically in the nucleus. Here we describe the use of the TAP technique on cytosolic and nuclear lysates to identify candidate proteins, through mass spectrometry, that bind to Gβ1 subunits.

  13. Target identification of natural products and bioactive compounds using affinity-based probes.

    Science.gov (United States)

    Pan, Sijun; Zhang, Hailong; Wang, Chenyu; Yao, Samantha C L; Yao, Shao Q

    2016-05-04

    Covering: 2010 to 2014.Advances in isolation, synthesis and screening strategies have made many bioactive substances available. However, in most cases their putative biological targets remain unknown. Herein, we highlight recent advances in target identification of natural products and bioactive compounds by using affinity-based probes. Aided by photoaffinity labelling, this strategy can capture potential cellular targets (on and off) of a natural product or bioactive compound in live cells directly, even when the compound-target interaction is reversible with moderate affinity. The knowledge of these targets may help uncover molecular pathways and new therapeutics for currently untreatable diseases. In this highlight, we will introduce the development of various photoactivatable groups, their synthesis and applications in target identification of natural products and bioactive compounds, with a focus on work done in recent years and from our laboratory. We will further discuss the strengths and weaknesses of each group and the outlooks for this novel proteome-wide profiling strategy.

  14. Spatial model of affinity maturation in germinal centers

    NARCIS (Netherlands)

    Kesmir, C.; Boer, R.J. de

    2003-01-01

    Affinity maturation of humoral responses to T-cell-dependent antigens occurs in germinal centers (GC). In GCs antigen-specific B cells undergo rounds of somatic mutations that alter their affinity. High-affinity mutants take over GCs very soon after they appear; the replacement rate is as high as 4

  15. Affine Structures on a Ringed Space and Schemes

    Institute of Scientific and Technical Information of China (English)

    Fengwen AN

    2011-01-01

    The author first introduces the notion of affine structures on a ringed space and then obtains several related properties. Affine structures on a ringed space, arising from complex analytical spaces of algebraic schenes, behave like differential structures on a smooth nanifold.As one does for differential manifolds, pseudogroups of affine transformations are used to define affine atlases on a ringed space. An atlas on a space is said to be an affine structure if it is maximal. An affine structure is said to be admissible if there is a sheaf on the underlying space such that they are coincide on all affine charts, which are in deed affine open sets of a scheme. In a rigour manner, a scheme is defined to be a ringed space with a specified affine structure if the affine structures make a contribution to the cases such as analytical spaces of algebraic schemes. Particularly, by the whole of affine structures on a pace, two necessary and sufficient conditions, that two spaces are homeomorphic and that two schemes are isomorphic, coming from the main theorems of the paper, are obtained respectively. A conclusion is drawn that the whole of affine structures on a space and a scheme, as local data, encode and reflect the global properties of the space and the scheme,respectively.

  16. Local Palmitoylation Cycles and Specialized Membrane Domain Organization

    DEFF Research Database (Denmark)

    Fukata, Yuko; Murakami, Tatsuro; Yokoi, Norihiko

    2016-01-01

    Palmitoylation is an evolutionally conserved lipid modification of proteins. Dynamic and reversible palmitoylation controls a wide range of molecular and cellular properties of proteins including the protein trafficking, protein function, protein stability, and specialized membrane domain organiz...

  17. Glycation of the high affinity NGF-receptor and RAGE leads to reduced ligand affinity.

    Science.gov (United States)

    Bennmann, Dorit; Kannicht, Christoph; Fisseau, Claudine; Jacobs, Kathleen; Navarette-Santos, Alexander; Hofmann, Britt; Horstkorte, Rüdiger

    2015-09-01

    AGEs are posttranslational modifications generated by irreversible non-enzymatic crosslinking reactions between sugars and proteins - a reaction referred to as glycation. Glycation, a feature of ageing, can lead to non-degradable and less functional proteins and enzymes and can additionally induce inflammation and further pathophysiological processes such as neurodegeneration. In this study we investigated the influence of glycation on the high affinity NGF-receptor TrkA and the AGE-receptor RAGE. We quantified the binding affinity of the TrkA-receptor and RAGE to their ligands by surface plasmon resonance (SPR) and compared these to the binding affinity after glycation. At the same time, we established a glycation procedure using SPR. We found that glycation of TrkA reduced the affinity to NGF by a factor of three, which could be shown to lead to a reduction of NGF-dependent neurite outgrowth in PC12 cells. Glycation of RAGE reduced binding affinity of AGEs by 10-fold.

  18. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  19. An affinity-directed protein missile system for targeted proteolysis

    Science.gov (United States)

    Fulcher, Luke J.; Macartney, Thomas; Bozatzi, Polyxeni; Hornberger, Annika; Rojas-Fernandez, Alejandro

    2016-01-01

    The von Hippel–Lindau (VHL) protein serves to recruit the hypoxia-inducible factor alpha (HIF1α) protein under normoxia to the CUL2 E3 ubiquitin ligase for its ubiquitylation and degradation through the proteasome. In this report, we modify VHL to engineer an affinity-directed protein missile (AdPROM) system to direct specific endogenous target proteins for proteolysis in mammalian cells. The proteolytic AdPROM construct harbours a cameloid anti-green fluorescence protein (aGFP) nanobody that is fused to VHL for either constitutive or tetracycline-inducible expression. For target proteins, we exploit CRISPR/Cas9 to rapidly generate human kidney HEK293 and U2OS osteosarcoma homozygous knock-in cells harbouring GFP tags at the VPS34 (vacuolar protein sorting 34) and protein associated with SMAD1 (PAWS1, aka FAM83G) loci, respectively. Using these cells, we demonstrate that the expression of the VHL-aGFP AdPROM system results in near-complete degradation of the endogenous GFP-VPS34 and PAWS1-GFP proteins through the proteasome. Additionally, we show that Tet-inducible destruction of GFP-VPS34 results in the degradation of its associated partner, UVRAG, and reduction in levels of cellular phosphatidylinositol 3-phosphate. PMID:27784791

  20. Affinity purification strategies for proteomic analysis of transcription factor complexes.

    Science.gov (United States)

    Giambruno, Roberto; Grebien, Florian; Stukalov, Alexey; Knoll, Christian; Planyavsky, Melanie; Rudashevskaya, Elena L; Colinge, Jacques; Superti-Furga, Giulio; Bennett, Keiryn L

    2013-09-06

    Affinity purification (AP) coupled to mass spectrometry (MS) has been successful in elucidating protein molecular networks of mammalian cells. These approaches have dramatically increased the knowledge of the interconnectivity present among proteins and highlighted biological functions within different protein complexes. Despite significant technical improvements reached in the past years, it is still challenging to identify the interaction networks and the subsequent associated functions of nuclear proteins such as transcription factors (TFs). A straightforward and robust methodology is therefore required to obtain unbiased and reproducible interaction data. Here we present a new approach for TF AP-MS, exemplified with the CCAAT/enhancer binding protein alpha (C/EBPalpha). Utilizing the advantages of a double tag and three different MS strategies, we conducted a total of six independent AP-MS strategies to analyze the protein-protein interactions of C/EBPalpha. The resultant data were combined to produce a cohesive C/EBPalpha interactome. Our study describes a new methodology that robustly identifies specific molecular complexes associated with transcription factors. Moreover, it emphasizes the existence of TFs as protein complexes essential for cellular biological functions and not as single, static entities.

  1. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  2. Thermostabilisation of membrane proteins for structural studies

    Science.gov (United States)

    Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.

    2017-01-01

    The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713

  3. Cellular automata: structures

    OpenAIRE

    Ollinger, Nicolas

    2002-01-01

    Jury : François Blanchard (Rapporteur), Marianne Delorme (Directeur), Jarkko Kari (Président), Jacques Mazoyer (Directeur), Dominique Perrin, Géraud Sénizergues (Rapporteur); Cellular automata provide a uniform framework to study an important problem of "complex systems" theory: how and why do system with a easily understandable -- local -- microscopic behavior can generate a more complicated -- global -- macroscopic behavior? Since its introduction in the 40s, a lot of work has been done to ...

  4. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  5. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  6. The Use of MALDI-TOF-MS and In Silico Studies for Determination of Antimicrobial Peptides' Affinity to Bacterial Cells

    Science.gov (United States)

    Mandal, Santi M.; Migliolo, Ludovico; Franco, Octavio L.

    2012-11-01

    Several methods have been proposed for determining the binding affinity of antimicrobial peptides (AMPs) to bacterial cells. Here the utilization of MALDI-TOF-MS was proposed as a reliable and efficient method for high throughput AMP screening. The major advantage of the technique consists of finding AMPs that are selective and specific to a wide range of Gram-negative and -positive bacteria, providing a simple reliable screening tool to determine the potential candidates for broad spectrum antimicrobial drugs. As a prototype, amp-1 and -2 were used, showing highest activity toward Gram-negative and -positive membranes respectively. In addition, in silico molecular docking studies with both peptides were carried out for the membranes. In silico results indicated that both peptides presented affinity for DPPG and DPPE phospholipids, constructed in order to emulate an in vivo membrane bilayer. As a result, amp-1 showed a higher complementary surface for Gram-negative while amp-2 showed higher affinity to Gram-positive membranes, corroborating MS analyses. In summary, results here obtained suggested that in vitro methodology using MALDI-TOF-MS in addition to theoretical studies may be able to improve AMP screening quality.

  7. Interactions Mode of Amphoteric Molecules with Ordered Phospholipid Membrane

    Institute of Scientific and Technical Information of China (English)

    SUNJin; CHENGGang; HEZhong-gui; WANGshu-jun; CHENJi-min

    2003-01-01

    Aim:To explore interaction mode between amphoteric molecules with the ordered phospholipid membrane.Methods:Membrane interactions were determined by immobilized artificial membrane(IAM) chromatography and solutes hydroph9obicity was measured by n-octanol/buffer system.Results:The ampholytes,similar to bases,generally exhibited higher membrane affinity than expected from their hydrophobicity,resulting from the attractive polar interaction with phospholipid membrane.Furthermore,the strength of additional polar interaction with membrane(Δlg kLAM) was then calculat ed.The Δlg KIAMvalues were far greater for bases and ampholytes ranging from 0.50-1.39,than those for acids and neutrals with the scope from-0.55-0.44.Conclusion :Considering the microspecies distribution of amphoteric molecules,it was assumed that not only neutral and positive but also zwitterionic microspecies are capable of partitioning into ordered amphoteric lipid membrane with complementarily conformational and energetically favorable interactions.

  8. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj;

    2013-01-01

    dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...... and a prevailing residence between the phosphate and the carbonyl groups of the lipid. The unprotonated form of 5-HT shows the opposite orientation, with the primary amine pointing toward the membrane core. Partitioning of 5-HT was found to decrease lipid chain order. These distinctive interactions of 5-HT...

  9. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  10. Metric-affine gravitation theory and superpotentials

    Energy Technology Data Exchange (ETDEWEB)

    Giachetta, G.; Mangiarotti, L.; Saltarelli, A. [Camerino, Univ. (Italy). Dipt. di Matematica e Fisica

    1997-05-01

    They consider a metric-affine theory of gravity in which the dynamical fields are the Lorentzian metrics and the non-symmetric linear connections on the worked manifold X. Working with a Lagrangian density which is invariant under general covariant transformations and using standard tools of the calculus of variations, they study the corresponding currents. They find that the superpotential takes a nice form involving the torsion of the linear connection in a simple way and generalizing the well-known Komar superpotential. A feature of our approach is the use of the Poincare`-Cartan form in relation to the first variational formula of the calculus of variations.

  11. Affinity chromatography with an immobilized RNA enzyme.

    OpenAIRE

    Vioque, A; Altman, S

    1986-01-01

    M1 RNA, the catalytic subunit of Escherichia coli RNase P, has been covalently linked at its 3' terminus to agarose beads. Unlike M1 RNA, which is active in solution in the absence of the protein component (C5) of RNase P, the RNA linked to the beads is active only in the presence of C5 protein. Affinity chromatography of crude extracts of E. coli on a column prepared from the beads to which the RNA has been crosslinked results in the purification of C5 protein in a single step. The protein h...

  12. Analysis of affinely equivalent Boolean functions

    Institute of Scientific and Technical Information of China (English)

    MENG QingShu; ZHANG HuanGuo; YANG Min; WANG ZhangYi

    2007-01-01

    By some basic transforms and invariant theory, we give two results: 1) an algorithm,which can be used to judge if two Boolean functions are affinely equivalent and to obtain the equivalence relationship if they are equivalent. This is useful in studying Boolean functions and in engineering. For example, we classify all 8-variable homogeneous bent functions of degree 3 into two classes; 2) Reed-Muller codes R(4,6)/R(1,6), R(3,7)/R(1,7) are classified efficiently.

  13. Affine Coherent States in Quantum Cosmology

    CERN Document Server

    Malkiewicz, Przemyslaw

    2015-01-01

    A brief summary of the application of coherent states in the examination of quantum dynamics of cosmological models is given. We discuss quantization maps, phase space probability distributions and semiclassical phase spaces. The implementation of coherent states based on the affine group resolves the hardest singularities, renders self-adjoint Hamiltonians without boundary conditions and provides a completely consistent semi-classical description of the involved quantum dynamics. We consider three examples: the closed Friedmann model, the anisotropic Bianchi Type I model and the deep quantum domain of the Bianchi Type IX model.

  14. Latest European coelacanth shows Gondwanan affinities.

    Science.gov (United States)

    Cavin, Lionel; Forey, Peter L; Buffetaut, Eric; Tong, Haiyan

    2005-06-22

    The last European fossil occurrence of a coelacanth is from the Mid-Cretaceous of the English Chalk (Turonian, 90 million years ago). Here, we report the discovery of a coelacanth from Late Cretaceous non-marine rocks in southern France. It consists of a left angular bone showing structures that imply close phylogenetic affinities with some extinct Mawsoniidae. The closest relatives are otherwise known from Cretaceous continental deposits of southern continents and suggest that the dispersal of freshwater organisms from Africa to Europe occurred in the Late Cretaceous.

  15. The assembly of lipid droplets and its relation to cellular insulin sensitivity

    DEFF Research Database (Denmark)

    Boström, Pontus; Andersson, Linda; Li, Lu;

    2009-01-01

    and VAMP-4 (vesicle-associated protein 4). SNAP-23 is also involved in the insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane. Fatty acids induce a missorting of SNAP-23, from the plasma membrane to the interior of the cell, resulting in cellular insulin resistance...

  16. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  17. Human P-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state.

    Science.gov (United States)

    Ramachandra, M; Ambudkar, S V; Chen, D; Hrycyna, C A; Dey, S; Gottesman, M M; Pastan, I

    1998-04-01

    Human P-glycoprotein (Pgp), a plasma membrane protein that confers multidrug resistance, functions as an ATP-dependent drug efflux pump. Pgp contains two ATP binding/utilization sites and exhibits ATPase activity that is stimulated in the presence of substrates and modulating agents. The mechanism of coupling of ATP hydrolysis to drug transport is not known. To understand the role of ATP hydrolysis in drug binding, it is necessary to develop methods for purifying and reconstituting Pgp that retains properties including stimulation of ATPase activity by known substrates to an extent similar to that in the native membrane. In this study, (His)6-tagged Pgp was expressed in Trichoplusia ni (High Five) cells using the recombinant baculovirus system and purified by metal affinity chromatography. Upon reconstitution into phospholipid vesicles, purified Pgp exhibited specific binding to analogues of substrates and ATP in affinity labeling experiments and displayed a high level of drug-stimulated ATPase activity (specific activity ranging from 4.5 to 6.5 micromol min-1 mg-1). The ATPase activity was inhibited by ADP in a competitive manner, and by vanadate and N-ethylmaleimide at low concentrations. Vanadate which is known to inhibit ATPase activity by trapping MgADP at the catalytic site inhibited photoaffinity labeling of Pgp with substrate analogues, [125I]iodoarylazidoprazosin and [3H]azidopine, only under ATP hydrolysis conditions. Because vanadate-trapped Pgp is known to resemble the ADP and phosphate-bound catalytic transition state, our findings indicate that ATP hydrolysis results in a conformation with reduced affinity for substrates. A catalytic transition conformation with reduced affinity would essentially result in substrate dissociation and supports a model for drug transport in which an ATP hydrolysis-induced conformational change leads to drug release toward the extracellular medium.

  18. Affinity filtration coupled with capillary-based affinity purification for the isolation of protein complexes.

    Science.gov (United States)

    Qureshi, M S; Sheikh, Q I; Hill, R; Brown, P E; Dickman, M J; Tzokov, S B; Rice, D W; Gjerde, D T; Hornby, D P

    2013-08-01

    The isolation of complex macromolecular assemblies at the concentrations required for structural analysis represents a major experimental challenge. Here we present a method that combines the genetic power of site-specific recombination in order to selectively "tag" one or more components of a protein complex with affinity-based rapid filtration and a final step of capillary-based enrichment. This modified form of tandem affinity purification produces highly purified protein complexes at high concentrations in a highly efficient manner. The application of the method is demonstrated for the yeast Arp2/3 heptameric protein complex involved in mediating reorganization of the actin cytoskeleton.

  19. Recombinant production of human Aquaporin-1 to an exceptional high membrane density in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Julie Bomholt

    Full Text Available In the present paper we explored the capacity of yeast Saccharomyces cerevisiae as host for heterologous expression of human Aquaporin-1. Aquaporin-1 cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human Aquaporin-1 was C-terminally tagged with yeast enhanced GFP for quantification of functional expression, determination of sub-cellular localization, estimation of in vivo folding efficiency and establishment of a purification protocol. Aquaporin-1 was found to constitute 8.5 percent of total membrane protein content after expression at 15°C in a yeast host over-producing the Gal4p transcriptional activator and growth in amino acid supplemented minimal medium. In-gel fluorescence combined with western blotting showed that low accumulation of correctly folded recombinant Aquaporin-1 at 30°C was due to in vivo mal-folding. Reduction of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation. A single Ni-affinity chromatography step was used to obtain almost pure Aquaporin-1. Recombinant Aquaporin-1 produced in S. cerevisiae was not N-glycosylated in contrast to the protein found in human erythrocytes.

  20. Membrane-spanning domain of bovine foamy virus transmembrane protein having cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    MA Yonggang; YU Hong; WANG Jinzhong; CHEN Qimin; GENG Yunqi

    2006-01-01

    Foamy viruses (FVs) have broad cellular tropism infecting vertebrates from fish to human being,which indicates that Env protein has a high capability for membrane fusion.Conservative features in all FV transmembrane (TM) proteins include a region of hydrophobic domain called membrane-spanning domain (MSD),which contains several stretches of hydrophobic amino acids.To investigate whether these features were associated with the cytotoxicity effect of TM on Escherichia coli,a series of mutants were constructed and expressed in the E.coli BL21 (DE3) using pET-32a (+) as expressing vector.The results showed that only TM3 without MSD was expressed in E.coli,whereas the other two containing full or part of the MSD (TM1 and TM2) could not be expressed.Furthermore,the bacterial amount and living bacteria analysis revealed that the cytotoxicity of TM was dependent on its MSD,especially on the stretches of hydrophobic amino acids.Western blotting analysis showed that TM3 protein was purified with affinity purification.

  1. Action of human group IIa secreted phospholipase A2 on cell membranes. Vesicle but not heparinoid binding determines rate of fatty acid release by exogenously added enzyme.

    Science.gov (United States)

    Koduri, R S; Baker, S F; Snitko, Y; Han, S K; Cho, W; Wilton, D C; Gelb, M H

    1998-11-27

    Human group IIa phospholipase A2 (hIIa-PLA2) is a highly basic protein that is secreted from a number of cells during inflammation and may play a role in arachidonate liberation and in destruction of invading bacteria. It has been proposed that rodent group IIa PLA2 is anchored to cell surfaces via attachment to heparan sulfate proteoglycan and that this interaction facilitates lipolysis. hIIa-PLA2 contains 13 lysines, 2 histidines, and 10 arginines that fall into 10 clusters. A panel of 26 hIIa-PLA2 mutants were prepared in which 1-4 basic residues in each cluster were changed to glutamate or aspartate (charge reversal). A detailed analysis of the affinities of these mutants for anionic vesicles and for heparin and heparan sulfate in vitro and of the specific activities of these proteins for hydrolysis of vesicles in vitro and of living cell membranes reveal the following trends: 1) the affinity of hIIa-PLA2 for heparin and heparan sulfate is modulated not by a highly localized site of basic residues but by diffuse sites that partially overlap with the interfacial binding site. In contrast, only those residues on the interfacial binding site of hIIa-PLA2 are involved in binding to membranes; 2) the relative ability of these mutants to hydrolyze cellular phospholipids when enzymes were added exogenously to CHO-K1, NIH-3T3, and RAW 264.7 cells correlates with their relative in vitro affinity for vesicles and not with their affinity for heparin and heparan sulfate. 3) The rates of exogenous hIIa-PLA2-catalyzed fatty acid release from wild type CHO-K1 cells and two mutant lines, one lacking glycosaminoglycan and one lacking heparan sulfate, were similar. Thus basic residues that modulate interfacial binding are important for plasma membrane fatty acid release by exogenously added hIIa-PLA2. Binding of hIIa-PLA2 to cell surface heparan sulfate does not modulate plasma membrane phospholipid hydrolysis by exogenously added hIIa-PLA2.

  2. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles

    Science.gov (United States)

    Bewersdorff, Tony; Vonnemann, Jonathan; Kanik, Asiye; Haag, Rainer; Haase, Andrea

    2017-01-01

    Nanoparticles (NPs) have gained huge interest in the medical field, in particular for drug delivery purposes. However, binding of proteins often leads to fast NP uptake and rapid clearance, thereby hampering medical applications. Thus, it is essential to determine and control the bio–nano interface. This study investigated the serum protein interactions of dendritic polyglycerols (dPGs), which are promising drug delivery candidates by means of two dimensional gel electrophoresis (2DE) in combination with mass spectrometry. In order to investigate the influence of surface charge, sulfated (sulfated dendritic polyglycerol [dPGS]) and non-sulfated (dPGOH) surfaces were applied, which were synthesized on a gold core allowing for easier separation from unbound biomolecules through centrifugation. Furthermore, two different sizes for dPGS were included. Although size had only a minor influence, considerable differences were detected in protein affinity for dPGS versus dPGOH surfaces, with dPGOH binding much less proteins. Cellular uptake into human CD14+ monocytes was analyzed by flow cytometry, and dPGOH was taken up to a much lower extent compared to dPGS. By using a pull-down approach, possible cellular interaction partners of serum pre-incubated dPGS-Au20 NPs from the membrane fraction of THP-1 cells could be identified such as for instance the transferrin receptor or an integrin. Clathrin-mediated endocytosis was further investigated using chlorpromazine as an inhibitor, which resulted in a 50% decrease of the cellular uptake of dPGS. This study could confirm the influence of surface charge on protein interactions and cellular uptake of dPGS. Furthermore, the approach allowed for the identification of possible uptake receptors and insights into the uptake mechanism. PMID:28352171

  3. Measuring shape fluctuations in biological membranes

    Science.gov (United States)

    Monzel, C.; Sengupta, K.

    2016-06-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes.

  4. A chirality change in XPC- and Sfi1-derived peptides affects their affinity for centrin.

    Science.gov (United States)

    Grecu, Dora; Irudayaraj, Victor Paul Raj; Martinez-Sanz, Juan; Mallet, Jean-Maurice; Assairi, Liliane

    2016-04-01

    The Ca(2+)-binding protein centrin binds to a hydrophobic motif (W(1)xxL(4)xxxL(8)) included in the sequence of several cellular targets: XPC (xeroderma pigmentosum group C protein), Sfi1 (suppressor of fermentation-induced loss of stress resistance protein1), and Sac3 [the central component of the transcription and mRNA export (TREX-2) complex]. However, centrin binding occurs in a reversed orientation (L(8)xxxL(4)xxW(1)) for Sfi1 and Sac3 compared with XPC. Because D-peptides have been investigated for future therapeutic use, we analyzed their centrin-binding properties. Their affinity for centrin was measured using isothermal titration calorimetry. The chirality change in the target-derived peptides affected their ability to bind centrin in a specific manner depending on the sequence orientation of the centrin-binding motif. In contrast to L-XPC-P10, D-XPC-P10 bound C-HsCen1 in a Ca(2+)-dependent manner and to a lesser extent. D-XPC-P10 exhibited a reduced affinity for C-HsCen1 (Ka=0.064 × 10(6) M(-1)) by a factor of 2000 compared with L-XPC-P10 (Ka=132 × 10(6) M(-1)). D-peptides have a lower affinity than L-peptides for centrin, and the strength of this affinity depends on the sequence orientation of the target-derived peptides. The residual affinity observed for D-XPC suggests that the use of d-peptides represents a promising strategy for inhibiting centrin binding to its targets.

  5. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI)

    OpenAIRE

    1992-01-01

    It has been suggested that epidermal Langerhans cells (LC) bearing immunoglobulin E (IgE) may be involved in the genesis of atopic disease. The identity of the IgE receptor(s) on LC remained unclear, although it represents a crucial point in understanding cellular events linked to the binding of allergens to LC via IgE. In this report, we demonstrate that epidermal LC express the high affinity receptor for the Fc fragment of IgE (Fc epsilon RI) which has, so far, only been described on mast c...

  6. Rapid purification of circular DNA by triplex-mediated affinity capture

    Science.gov (United States)

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  7. Extraction of haemoglobin from human blood by affinity precipitation using a haptoglobin-based stimuli-responsive affinity macroligand.

    Science.gov (United States)

    Stocker-Majd, Gisela; Hilbrig, Frank; Freitag, Ruth

    2008-06-13

    Affinity precipitation was compared to affinity chromatography and batch adsorption as the final purification step in a protocol for the isolation of haemoglobin from human blood. Haptoglobin was the affinity ligand. The first steps on the process were realized by traditional methods (lyses of red blood cells followed by ammonium sulphate precipitation). For affinity chromatography (and batch adsorption) the ligand was linked to Sepharose, for affinity precipitation to a thermoresponsive polymer, namely poly(N-isopropylacrylamide). Five haptoglobin-poly(N-isopropylacrylamide) bioconjugates (affinity macroligands) were constructed with different polymer: haptoglobin-coupling ratios. Conjugation of haptoglobin to the soluble poly(N-isopropylacrylamide) apparently does not change the interaction thermodynamics with haemoglobin, as the haemoglobin binding constants calculated by a Scatchard analysis for the affinity macroligand were of the same order of magnitude as those described in the literature for the haemoglobin-haptoglobin complex in solution. Two elution protocols were used for haemoglobin release from the various affinity materials, one at pH 2, the other with 5 M urea at pH 11. Both affinity chromatography and affinity precipitation yielded a pure haemoglobin of high quality. Compared to the affinity chromatography, affinity precipitation showed a significantly higher ligand efficiency (ratio of the experimental capacity to the theoretical one). The method thus makes better use of the expensive affinity ligands. As affinity precipitation only requires small temperature changes to bring about precipitation/redissolution of the affinity complexes and a centrifugation step for recovery of the precipitate, the method in addition has advantages in term of scalability and simplicity.

  8. Spherical functions on affine Lie groups

    CERN Document Server

    Etingof, P; Kirillov, A A; Pavel Etingof; Igor Frenkel; Alexander Kirillov Jr

    1994-01-01

    We show that the space of holomorphic functions of a fixed degree on an affine Lie group which take values in a finite-dimensional representation of this group and are equivariant with respect to (twisted) conjugacy coin- cides with the space of conformal blocks of the Wess-Zumino-Witten conformal field theory on an elliptic curve with punctures, or, equivalently,with the space of states of the Chern-Simons topological field theory in genus 1. This provides a group-theoretic realization of the Segal modular functor for elliptic curves. We also show that the the radial part of the second order Laplace operator on an affine Lie group acting in the space of equivariant functions coincides with the operator defining the Knizhnik-Zamolodchikov connection on conformal blocks on elliptic curves, and its eigenfunctions coincide with the correlation functions of conformal blocks. At the critical value of the degree (minus the dual Coxeter number of the underlying simple Lie algebra) there exist higher order Laplace op...

  9. Affine Mirkovi\\'c-Vilonen polytopes

    CERN Document Server

    Baumann, Pierre; Tingley, Peter

    2011-01-01

    Each integrable lowest weight representation of a symmetrizable Kac-Moody Lie algebra g has a crystal in the sense of Kashiwara, which describes its combinatorial properties. For a given g, there is a limit crystal, usually denoted by B(-\\infty), which contains all the other crystals. When g is finite dimensional, a convex polytope, called the Mirkovi\\'c-Vilonen polytope, can be associated to each element in B(-\\infty). This polytope sits in the dual space of a Cartan subalgebra of g, and its edges are parallel to the roots of g. In this paper, we generalize this construction to the case where g is a symmetric affine Kac-Moody algebra. The datum of the polytope must however be complemented by partitions attached to the edges parallel to the imaginary root \\delta. We prove that these decorated polytopes are characterized by conditions on their normal fans and on their 2-faces. In addition, we discuss how our polytopes provide an analog of the notion of Lusztig datum for affine Kac-Moody algebras. Our main tool...

  10. Affine conformal vectors in space-time

    Science.gov (United States)

    Coley, A. A.; Tupper, B. O. J.

    1992-05-01

    All space-times admitting a proper affine conformal vector (ACV) are found. By using a theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine vector and a conformal Killing vector or (ii) the space-time is 2+2 decomposable, in which case it is shown that no ACV can exist (unless the space-time decomposes further). Furthermore, it is proved that all space-times admitting an ACV and a null covariantly constant vector (which are necessarily generalized pp-wave space-times) must have Ricci tensor of Segré type {2,(1,1)}. It follows that, among space-times admitting proper ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null Einstein-Maxwell space-times, and only the pp-wave space-times are representative of null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids and viscous heat-conducting fluids, but only with restricted equations of state in each case.

  11. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  12. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  13. Engineering Cellular Metabolism.

    Science.gov (United States)

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.

  14. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides.

    Directory of Open Access Journals (Sweden)

    Sujatha P Koduvayur

    Full Text Available The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.

  15. Cellular localization of adenine receptors in the rat kidney and their functional significance in the inner medullary collecting duct.

    Science.gov (United States)

    Kishore, Bellamkonda K; Zhang, Yue; Gevorgyan, Haykanush; Kohan, Donald E; Schiedel, Anke C; Müller, Christa E; Peti-Peterdi, János

    2013-11-01

    The Gi-coupled adenine receptor (AdeR) binds adenine with high affinity and potentially reduces cellular cAMP levels. Since cAMP is an important second messenger in the renal transport of water and solutes, we localized AdeR in the rat kidney. Real-time RT-PCR showed higher relative expression of AdeR mRNA in the cortex and outer medulla compared with the inner medulla. Immunoblots using a peptide-derived and affinity-purified rabbit polyclonal antibody specific for an 18-amino acid COOH-terminal sequence of rat AdeR, which we generated, detected two bands between ∼30 and 40 kDa (molecular mass of native protein: 37 kDa) in the cortex, outer medulla, and inner medulla. These bands were ablated by preadsorption of the antibody with the immunizing peptide. Immunofluorescence labeling showed expression of AdeR protein in all regions of the kidney. Immunoperoxidase revealed strong labeling of AdeR protein in the cortical vasculature, including the glomerular arterioles, and less intense labeling in the cells of the collecting duct system. Confocal immunofluorescence imaging colocalized AdeR with aquaporin-2 protein to the apical plasma membrane in the collecting duct. Functionally, adenine (10 μM) significantly decreased (P < 0.01) 1-deamino-8-d-arginine vasopressin (10 nM)-induced cAMP production in ex vivo preparations of inner medullary collecting ducts, which was reversed by PSB-08162 (20 μM, P < 0.01), a selective antagonist of AdeR. Thus, we demonstrated the expression of AdeR in the renal vasculature and collecting ducts and its functional relevance. This study may open a new avenue for the exploration of autocrine/paracrine regulation of renal vascular and tubular functions by the nucleobase adenine in health and disease.

  16. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    Science.gov (United States)

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3.

  17. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  18. The correlation between photosensitizers' membrane localization, membrane-residing targets, and photosensitization efficiency

    Science.gov (United States)

    Ytzhak, Shany; Bernstein, Shoshana; Loew, Leslie M.; Ehrenberg, Benjamin

    2009-06-01

    Various tetrapyrroles act as photosensitizers by efficiently generating singlet oxygen. Hydrophobic or amphiphilic photosensitizers are taken up by cells and are usually located in various cellular lipid membranes. Passive uptake by a membrane depends on biophysical properties of the membrane, such as its composition, temperature, phase, fluidity, electric potential etc., as well as on the external solution's properties. Although the intrinsic lifetime of singlet oxygen in the membrane phase is 10-30 μs, depending on lipid composition, it escapes much faster out of the membrane into the external or internal aqueous medium, where its lifetime is <3 μs. Any damage that singlet oxygen might inflict to membrane constituents, i.e. proteins or lipids, must thus occur while it is diffusing in the membrane. As a result, photosensitization efficiency depends, among others, on the location of the sensitizer in the membrane. Singlet oxygen can cause oxidative damage to two classes of targets in the membrane: lipids and proteins. Depolarization of the Nernst electric potential on cells' membranes was observed, but it is not clear whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells' membranes and to their death. We present a study of the effect of membrane lipid composition and the dissipation of the electric potential that is generated across the membrane. We find a clear correlation between the structure and unsaturation of lipids and the leakage of the membrane, which can be caused by their photosensitized oxidization. We demonstrate here that when liposomes are composed of mixtures similar to natural membranes, and photosensitization is being carried out under usual PDT conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which could be a mechanism that leads to cell death.

  19. Differential ligand binding affinities of human estrogen receptor-α isoforms

    OpenAIRE

    Amanda H.Y. Lin; Li, Rachel W. S.; Ho, Eva Y. W.; George P H Leung; Susan W S Leung; Paul M Vanhoutte; Man, Ricky Y K

    2013-01-01

    Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66) and the truncated isoforms, estrogen receptor-α46 (ER46) and estrogen receptor-α36 (ER36). However, the binding affinities of the membrane estrogen receptors (mERs) remain unknown due to the difficulty of developing of stable mER-transfected cel...

  20. Intrinsically disordered proteins drive membrane curvature

    Science.gov (United States)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  1. Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Saha, Rajib; Jacobs, Jon M.; Nguyen, Amelia Y.; Gritsenko, Marina A.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.

    2016-04-07

    Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified in these membrane systems, and a comprehensive catalog of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared to the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared to a more specialized role for the thylakoid membrane in cellular energetics. Overall, the protein composition of the Synechocystis 6803 plasma membrane and thylakoid membrane is quite similar to the E.coli plasma membrane and Arabidopsis thylakoid membrane, respectively. Synechocystis 6803 can therefore be described as a gram-negative bacterium that has an additional internal membrane system that fulfils the energetic requirements of the cell.

  2. Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium.

    Science.gov (United States)

    Liberton, Michelle; Saha, Rajib; Jacobs, Jon M; Nguyen, Amelia Y; Gritsenko, Marina A; Smith, Richard D; Koppenaal, David W; Pakrasi, Himadri B

    2016-06-01

    Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram

  3. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  4. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes

    Science.gov (United States)

    Membrane modification of host subcellular compartments is critical to the replication of many RNA viruses. Enveloped viruses additionally require the ability to requisition cellular membranes during egress for the development of infectious progeny. Porcine reproductive and respiratory syndrome virus...

  5. Affinity chromatography with pseudobiospecific ligands on high-performance supports for purification of proteins of biotechnological interest

    Directory of Open Access Journals (Sweden)

    N.B. Iannucci

    2003-03-01

    Full Text Available High-performance affinity matrices were obtained by attaching pseudobiospecific ligands to hollow-fibre membranes. The neutral protease contained in FlavourzymeTM was purified to homogeneity with Yellow 4R-HE affinity hollow-fibre membranes. Immobilisation of Red HE-3B allowed purification of a milk-clotting enzyme obtained by solid-state culture of Mucor bacilliformis. Copper immobilisation through iminodiacetic acid allowed fractionation of Biocon Bioconcentrated PlusTM to separate the pectinesterase-containing fraction. The productivity of the developed processes - 1900, 94 and 750 U/ml.min, respectively - was 10- to 15-fold higher than that achieved with the same ligands immobilised on agarose-based soft gels, mainly due to the shortening of the purification processes.

  6. Regulation of the Plasma Membrane H+-ATPase

    DEFF Research Database (Denmark)

    Falhof, Janus

    The plasma membrane (PM) H+-ATPase is responsible for generating the electrochemical gradientthat drives the secondary transport of nutrients across the cellular membrane. It belongs to a familyof cation and lipid transporters that are vital to many organisms. PM H+-ATPases are Type P3AATPases...

  7. Concerted diffusion of lipids in raft-like membranes

    NARCIS (Netherlands)

    Apajalahti, Touko; Niemela, Perttu; Govindan, Praveen Nedumpully; Miettinen, Markus S.; Salonen, Emppu; Marrink, Siewert-Jan; Vattulainen, Ilpo

    2010-01-01

    Currently, there is no comprehensive model for the dynamics of cellular membranes. The understanding of even the basic dynamic processes, such as lateral diffusion of lipids, is still quite limited. Recent studies of one-component membrane systems have shown that instead of single-particle motions,

  8. Plasma membrane regulates Ras signaling networks.

    Science.gov (United States)

    Chavan, Tanmay Sanjeev; Muratcioglu, Serena; Marszalek, Richard; Jang, Hyunbum; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.

  9. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane

    Science.gov (United States)

    Fan, Jun; Sammalkorpi, Maria; Haataja, Mikko

    2010-01-01

    Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.

  10. Entropic and enthalpic contributions to annexin V-membrane binding: a comprehensive quantitative model.

    Science.gov (United States)

    Jeppesen, Brian; Smith, Christina; Gibson, Donald F; Tait, Jonathan F

    2008-03-07

    Annexin V binds to membranes with very high affinity, but the factors responsible remain to be quantitatively elucidated. Analysis by isothermal microcalorimetry and calcium titration under conditions of low membrane occupancy showed that there was a strongly positive entropy change upon binding. For vesicles containing 25% phosphatidylserine at 0.15 m ionic strength, the free energy of binding was -53 kcal/mol protein, whereas the enthalpy of binding was -38 kcal/mol. Addition of 4 m urea decreased the free energy of binding by about 30% without denaturing the protein, suggesting that hydrophobic forces make a significant contribution to binding affinity. This was confirmed by mutagenesis studies that showed that binding affinity was modulated by the hydrophobicity of surface residues that are likely to enter the interfacial region upon protein-membrane binding. The change in free energy was quantitatively consistent with predictions from the Wimley-White scale of interfacial hydrophobicity. In contrast, binding affinity was not increased by making the protein surface more positively charged, nor decreased by making it more negatively charged, ruling out general ionic interactions as major contributors to binding affinity. The affinity of annexin V was the same regardless of the head group present on the anionic phospholipids tested (phosphatidylserine, phosphatidylglycerol, phosphatidylmethanol, and cardiolipin), ruling out specific interactions between the protein and non-phosphate moieties of the head group as a significant contributor to binding affinity. Analysis by fluorescence resonance energy transfer showed that multimers did not form on phosphatidylserine membranes at low occupancy, indicating that annexin-annexin interactions did not contribute to binding affinity. In summary, binding of annexin V to membranes is driven by both enthalpic and entropic forces. Dehydration of hydrophobic regions of the protein surface as they enter the interfacial region

  11. Preferential affinity of /sup 3/H-2-oxo-quazepam for type I benzodiazepine recognition sites in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Corda, M.G.; Giorgi, O.; Longoni, B.; Ongini, E.; Montaldo, S.; Biggio, G.

    1988-01-01

    The hypnotic drug quazepam and its active metabolite 2-oxo-quazepam (2-oxo-quaz) are two benzodiazepines (BZ) containing a trifluoroethyl moiety on the ring nitrogen at position 1, characterized by their preferential affinity for Type I BZ recognition sites. In the present study we characterized the binding of /sup 3/H-2-oxo-quaz in discrete areas of the human brain. Saturation analysis demonstrated specific and saturable binding of /sup 3/H-2-oxo-quaz to membrane preparations from human cerebellum. Hill plot analysis of displacement curves of /sup 3/H-flunitrazepam binding by 2-oxo-quaz yielded Hill coefficients of approximately 1 in the cerebellum and significantly less than 1 in the cerebral cortex, hippocampus, caudate nucleus, thalamus and pons. Self and cross displacement curves for /sup 3/H-FNT and /sup 3/H-2-oxo-quaz binding in these brain areas indicated that 2-oxo-quaz binds with different affinities to two populations of binding sites. High affinity binding sites were more abundant in the cerebellum, cerebral cortex, hippocampus and thalamus, whereas low affinity sites were predominant in the caudate nucleus and pons. Competition studies of /sup 3/H-2-oxo-quaz and /sup 3/H-FNT using unlabelled ligands indicated that compounds which preferentially bind to Type I sites are more potent at displacing /sup 3/H-2-oxo-quaz than /sup 3/H-FNT from cerebral cortex membrane preparations. 26 references, 2 figures, 3 tables.

  12. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.

    Science.gov (United States)

    Rebaud, Samuel; Maniti, Ofelia; Girard-Egrot, Agnès P

    2014-12-01

    Biological membranes play a central role in the biology of the cell. They are not only the hydrophobic barrier allowing separation between two water soluble compartments but also a supra-molecular entity that has vital structural functions. Notably, they are involved in many exchange processes between the outside and inside cellular spaces. Accounting for the complexity of cell membranes, reliable models are needed to acquire current knowledge of the molecular processes occurring in membranes. To simplify the investigation of lipid/protein interactions, the use of biomimetic membranes is an approach that allows manipulation of the lipid composition of specific domains and/or the protein composition, and the evaluation of the reciprocal effects. Since the middle of the 80's, lipid bilayer membranes have been constantly developed as models of biological membranes with the ultimate goal to reincorporate membrane proteins for their functional investigation. In this review, after a brief description of the planar lipid bilayers as biomimetic membrane models, we will focus on the construction of the tethered Bilayer Lipid Membranes, the most promising model for efficient membrane protein reconstitution and investigation of molecular processes occurring in cell membranes.

  13. Analysis of allergens in tubeimu saponin extracts by using rat basophilic leukemia 2H3 cell-based affinity chromatography coupled to liquid chromatography and mass spectrometry.

    Science.gov (United States)

    Zhang, Tao; Han, Shengli; Liu, Qi; Guo, Ying; He, Langchong

    2014-11-01

    An affinity two-dimensional chromatography method was developed for the recognition, separation, and identification of allergic components from tubeimu saponin extracts, a preparation often injected to treat various conditions as indicated by traditional Chinese medicine. Rat basophilic leukemia-2H3 cell membranes were used as the stationary phase of a membrane affinity chromatography column to capture components with affinity for mast cells that could be involved in a degranulation reaction. The retained components were enriched and analyzed by membrane affinity chromatography with liquid chromatography and mass spectrometry via a port switch valve. Suitability and reliability of the method was investigated using appropriate standards, and then, the method was applied to identify components retained from tubeimu saponin extracts. Tubeimoside A was identified in this way as a potential allergen, and degranulation assays confirmed that tubeimoside A induces RBL-2H3 cell degranulation in a dose-dependent manner. An increase in Ca(2+) influx indicated that degranulation induced by tubeimoside A is likely Ca(2+) dependent. Coupled with the degranulation assay, RBL-2H3 cell-based affinity chromatography coupled with liquid chromatography and mass spectrometry is an effective method for screening and identifying allergic components from tubeimu saponin extracts.

  14. Copper(II) enhances membrane-bound α-synuclein helix formation.

    Science.gov (United States)

    Lucas, Heather R; Lee, Jennifer C

    2011-03-01

    Interactions of copper and membranes with α-synuclein have been implicated in pathogenic mechanisms of Parkinson's disease, yet work examining both concurrently is scarce. We have examined the effect of copper(ii) on protein/vesicle binding and found that both the copper(ii) affinity and α-helical content are enhanced for the membrane-bound protein.

  15. Copper(II) enhances membrane-bound α-synuclein helix formation

    OpenAIRE

    Lucas, Heather R.; Lee, Jennifer C.

    2011-01-01

    Interactions of copper and membranes with α-synuclein have been implicated in pathogenic mechanisms of Parkinson’s disease, yet work examining both concurrently is scarce. We have examined the effect of copper(II) on protein/vesicle binding and found that both the copper(II) affinity and α-helical content are enhanced for the membrane-bound protein.

  16. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A

    DEFF Research Database (Denmark)

    Lee, Yu-Chen; Block, Gregory; Chen, Huiwen;

    2008-01-01

    We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic bead separation to obtain highly purified plasma membran...

  17. Affinity labeling of the galactose/N-acetylgalactosamine-specific receptor of rat hepatocytes: preferential labeling of one of the subunits

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.T.; Lee, Y.C.

    1987-10-06

    The galactose/N-acetylgalactosamine-specific receptor (also known as asialoglycoprotein receptor) of rat hepatocytes consists of three subunits, one of which (43 kilodalton (kDa)) exists in a greater abundance (up to 70% of total protein) over the two minor species (52 and 60 kDa). When the receptor on the hepatocyte membranes was photoaffinity labeled with an /sup 125/I-labeled high-affinity reagent the labeling occurred mainly (51-80%) on one of the minor bands (52 kDa). Similarly, affinity-bound, N-acetylgalactosamine-modified lactoperoxidase radioiodinated the same 52-kDa band preferentially. In contrast, both the photoaffinity labeling and lactoperoxidase-catalyzed iodination of the purified, detergent-solubilized receptor resulted in a distribution of the label that is comparable to the Coomassie blue staining pattern of the three bands; i.e., the 43-kDa band was the major band labeled. These and other experimental results suggest that the preferential labeling of the minor band and inefficient labeling of the major band on the hepatocyte membrane resulted from a specific topological arrangement of these subunits on the membranes. The authors postulate that in the native, membrane-bound state of the receptor, the 52-kDa minor band is topologically prominent, while the major (43 kDa) band is partially masked. This partial masking may result from a tight packing of the receptor subunits on the membranes to form a lattice work.

  18. Side-by-Side Comparison of Commonly Used Biomolecules That Differ in Size and Affinity on Tumor Uptake and Internalization.

    Directory of Open Access Journals (Sweden)

    Jeerapond Leelawattanachai

    Full Text Available The ability to use a systemically injected agent to image tumor is influenced by tumor characteristics such as permeability and vascularity, and the size, shape, and affinity of the imaging agent. In this study, six different imaging biomolecules, with or without specificity to tumor, were examined for tumor uptake and internalization at the whole body, ex-vivo tissue, and cellular levels: antibodies, antibody fragments (Fab, serum albumin, and streptavidin. The time of peak tumor uptake was dependent solely on the size of molecules, suggesting that molecular size is the major factor that influences tumor uptake by its effect on systemic clearance and diffusion into tumor. Affinity to tumor antigen failed to augment tumor uptake of Fab above non-specific accumulation, which suggests that Fab fragments of typical monoclonal antibodies may fall below an affinity threshold for use as molecular imaging agents. Despite abundant localization into the tumor, albumin and streptavidin were not found on cell surface or inside cells. By comparing biomolecules differing in size and affinity, our study highlights that while pharmacokinetics are a dominant factor in tumor uptake for biomolecules, affinity to tumor antigen is required for tumor binding and internalization.

  19. Protein-protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area.

    Science.gov (United States)

    Chen, Jieming; Sawyer, Nicholas; Regan, Lynne

    2013-04-01

    Protein-protein interactions play key roles in many cellular processes and their affinities and specificities are finely tuned to the functions they perform. Here, we present a study on the relationship between binding affinity and the size and chemical nature of protein-protein interfaces. Our analysis focuses on heterodimers and includes curated structural and thermodynamic data for 113 complexes. We observe a direct correlation between binding affinity and the amount of surface area buried at the interface. For a given amount of surface area buried, the binding affinity spans four orders of magnitude in terms of the dissociation constant (Kd ). Across the entire dataset, we observe no obvious relationship between binding affinity and the chemical composition of the interface. We also calculate the free energy per unit surface area buried, or "surface energy density," of each heterodimer. For interfacial surface areas between 500 and 2000 Å(2) , the surface energy density decreases as the buried surface area increases. As the buried surface area increases beyond about 2000 Å(2) , the surface energy density levels off to a constant value. We believe that these analyses and data will be useful for researchers with an interest in understanding, designing or inhibiting protein-protein interfaces.

  20. Side-by-Side Comparison of Commonly Used Biomolecules That Differ in Size and Affinity on Tumor Uptake and Internalization.

    Science.gov (United States)

    Leelawattanachai, Jeerapond; Kwon, Keon-Woo; Michael, Praveesuda; Ting, Richard; Kim, Ju-Young; Jin, Moonsoo M

    2015-01-01

    The ability to use a systemically injected agent to image tumor is influenced by tumor characteristics such as permeability and vascularity, and the size, shape, and affinity of the imaging agent. In this study, six different imaging biomolecules, with or without specificity to tumor, were examined for tumor uptake and internalization at the whole body, ex-vivo tissue, and cellular levels: antibodies, antibody fragments (Fab), serum albumin, and streptavidin. The time of peak tumor uptake was dependent solely on the size of molecules, suggesting that molecular size is the major factor that influences tumor uptake by its effect on systemic clearance and diffusion into tumor. Affinity to tumor antigen failed to augment tumor uptake of Fab above non-specific accumulation, which suggests that Fab fragments of typical monoclonal antibodies may fall below an affinity threshold for use as molecular imaging agents. Despite abundant localization into the tumor, albumin and streptavidin were not found on cell surface or inside cells. By comparing biomolecules differing in size and affinity, our study highlights that while pharmacokinetics are a dominant factor in tumor uptake for biomolecules, affinity to tumor antigen is required for tumor binding and internalization.