WorldWideScience

Sample records for cellular membrane affinity

  1. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases

    Science.gov (United States)

    Evangelisti, Elisa; Cascella, Roberta; Becatti, Matteo; Marrazza, Giovanna; Dobson, Christopher M.; Chiti, Fabrizio; Stefani, Massimo; Cecchi, Cristina

    2016-01-01

    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca2+ across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane. PMID:27619987

  2. Preparation of Chitosan-coated Nylon Membranes and their Application as Affinity Membranes

    Institute of Scientific and Technical Information of China (English)

    Wei SHI; Feng Bao ZHANG; Guo Liang ZHANG

    2005-01-01

    Chitosan-coated nylon membranes which possess a large number of reactive groups of-CH2OH and -NH2 were prepared by coupling chitosan onto the nylon membrane. Then polylysine as ligand was also immobilized onto the composite membranes by 1, l′-carbonyldiimidazole activation to prepare affinity membranes for bilirubin adsorption. The results showed that these membranes exhibited high binding affinity capacities for bilirubin and the adsorption isotherm fitted the Freundlich model well.

  3. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  4. Probing cellular behaviors through nanopatterned chitosan membranes

    International Nuclear Information System (INIS)

    This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h), they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80%) of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia) showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions. (paper)

  5. Affinities and in-plane stress forces between glycopeptide antibiotics and biomimetic bacterial membranes

    Directory of Open Access Journals (Sweden)

    Sisi Bi

    2015-03-01

    Full Text Available Understanding the molecular basis of interactions between antibiotics affecting bacterial cell wall biosynthesis and cellular membranes is important in rational drug design of new drugs to overcome resistance. However, a precise understanding of how bacteriostatic antibiotics effect action often neglects the effect of biophysical forces involved following antibiotic-receptor binding events. We have employed a combination of a label-free binding biosensor (surface plasmon resonance, SPR and a force biosensor (in-plane stress cantilever, together with model membrane systems to study the complex interplay between glycopeptide antibiotics, their cognate ligands and different model membranes. Bacterial cell wall precursor analogue N-α-Docosanoyl-ε-acetyl-Lys-d-Alanine-d-Alanine (doc-KAA was inserted into lipid layers comprised of zwitterionic or anionic lipids then exposed to either vancomycin or the membrane-anchored glycopeptide antibiotic teicoplanin. Binding affinities and kinetics of the antibiotics to these model membranes were influenced by electrostatic interactions with the different lipid backgrounds, in addition to ligand affinities. In addition, cantilever sensors coated with model membranes showed that planar surface stress changes were induced by glycopeptide antibiotics adsorption and caused compressive surface stress generation in a ligand-dependent manner.

  6. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  7. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  8. Cellular membrane collapse by atmospheric-pressure plasma jet

    Science.gov (United States)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  9. Cellular membrane collapse by atmospheric-pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  10. Membrane potential mediates the cellular binding of nanoparticles

    Science.gov (United States)

    Shin, Edwin H.; Li, Ye; Kumar, Umesh; Sureka, Hursh V.; Zhang, Xianren; Payne, Christine K.

    2013-06-01

    The use of nanoparticles for cellular therapeutic or sensing applications requires nanoparticles to bind, or adhere, to the cell surface. While nanoparticle parameters such as size, shape, charge, and composition are important factors in cellular binding, the cell itself must also be considered. All cells have an electrical potential across the plasma membrane driven by an ion gradient. Under standard conditions the ion gradient will result in a -10 to -100 mV potential across the membrane with a net negative charge on the cytosolic face. Using a combination of flow cytometry and fluorescence microscopy experiments and dissipative particle dynamics simulations, we have found that a decrease in membrane potential leads to decreased cellular binding of anionic nanoparticles. The decreased cellular binding of anionic nanoparticles is a general phenomenon, independent of depolarization method, nanoparticle composition, and cell type. Increased membrane potential reverses this trend resulting in increased binding of anionic nanoparticles. The cellular binding of cationic nanoparticles is minimally affected by membrane potential due to the interaction of cationic nanoparticles with cell surface proteins. The influence of membrane potential on the cellular binding of nanoparticles is especially important when considering the use of nanoparticles in the treatment or detection of diseases, such as cancer, in which the membrane potential is decreased.The use of nanoparticles for cellular therapeutic or sensing applications requires nanoparticles to bind, or adhere, to the cell surface. While nanoparticle parameters such as size, shape, charge, and composition are important factors in cellular binding, the cell itself must also be considered. All cells have an electrical potential across the plasma membrane driven by an ion gradient. Under standard conditions the ion gradient will result in a -10 to -100 mV potential across the membrane with a net negative charge on the

  11. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-01

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme.

  12. Cellular blebs: pressure-driven, axisymmetric, membrane protrusions

    KAUST Repository

    Woolley, Thomas E.

    2013-07-16

    Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Evaluation of drug-muscarinic receptor affinities using cell membrane chromatography and radioligand binding assay in guinea pig jejunum membrane

    Institute of Scientific and Technical Information of China (English)

    Bing-xiang YUAN; Jin HOU; Lang-chong HE; Guang-de YANG

    2005-01-01

    Aim: To study if cell membrane chromatography (CMC) could reflect drug-receptor interaction and evaluate the affinity and competitive binding to muscarinic acetylcholine receptor (mAChR). Methods: The cell membrane stationary phase(CMSP) was prepared by immobilizing guinea pig jejunum cell membrane on the surface of a silica carrier, and was used for the rapid on-line chromatographic evaluation of ligand binding affinities to mAChR. The affinity to mAChR was also evaluated from radioligand binding assays (RBA) using the same jejunum membrane preparation. Results: The capacity factor (k') profiles in guinea pig jejunum CMSP were: (-)QNB (15.4)>(+)QNB (11.5)>atropine (5.35)>pirenzepine(5.26)>4-DAMP (4.45)>AF-DX 116 (4.18)>pilocarpine (3.93)>acetylcholine(1.31). These results compared with the affinity rank orders obtained from radioligand binding assays indicated that there wasa positive correlation (r2=0.8525, P<0.0001) between both data sets. Conclusion: The CMC method can be used to evaluate drug-receptor affinities for drug candidates.

  14. Modification of Nylon Membrane Used for Affinity Adsorption

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nylon membrane was modified by binding with polyhydroxyl-containing materials to increase its hydrophilicity and reduce its nonspecific interaction with proteins. The effect of binding hydrophilic materials on amount of ligand bound--Cibacron Blue F3GA (CBF) was investigated. Experimental data showed that the amount of CBF bound can be increased significantly after binding of hydrophilic materials.

  15. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Wilson, Michael A.

    2003-01-01

    How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.

  16. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids.

    Science.gov (United States)

    Lyakhova, Tatyana A; Knight, Jefferson D

    2014-09-01

    Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.

  17. Affinity of four polar neurotransmitters for lipid bilayer membranes

    DEFF Research Database (Denmark)

    Wang, Chunhua; Ye, Fengbin; Valardez, Gustavo F.;

    2011-01-01

    . The simulations suggest that this attraction mainly relies on electrostatic interactions of the amino group of the neurotransmitter and the lipid phosphate. We conclude that moderate attraction to lipid membranes occurs for some polar neurotransmitters and hence that one premise for a theory of bilayer-mediated...... (dimyristoyl phosphatidylglycerol, DMPG, or dimyristoyl phosphatidylserine, DMPS), or 1:1 mixtures of dipalmitoyl phosphatidylcholine (DPPC) and dilauroyl phosphatidylcholine (DLPC). The results showed a remarkable variability among the investigated systems. For example, the chloride salt of acetylcholine...... modulation of nerve transmission seems to be fulfilled. However, the strong variability in interaction strengths also shows that this attraction is not an inherent property of all neurotransmitters. © 2010 American Chemical Society....

  18. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  19. Dose dependent rearrangement of cellular membranes induced by ionizing radiation

    International Nuclear Information System (INIS)

    The radiation-induced effects at dose rate of 0.35 Gy/min (in vivo) and of ultra-low doses (in vitro) on the cell membranes structural state were shown. The modifications of the membrane protein and lipid components and their dynamic state were revealed at experimental irradiation conditions by fluorescent probe analysis. The principal component analysis of the research data indicates the dose-dependent decrease of plasma membrane structural orderliness of the small intestine enterocytes with the increase of the ionizing irradiation acute dose of 0.5, 1.0, 2.0, 3.0 Gy at dose rate of 0.35 Gy/min. The complex response of the biological structure - the erythrocytes plasma membrane, on the ionizing radiation action at ultra-low doses that occurred through macromolecular structural rearrangements was also demonstrated. The features of the structural rearrangement of the cellular membranes depending on the ionizing radiation dose (dose rate) are found out

  20. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-01

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme. PMID:27516322

  1. Experimental and theoretical characterization of the high-affinity cation binding site of the purple membrane

    OpenAIRE

    Pardo, Leonardo; Sepulcre Sánchez, Francesc; Cladera Cerdà, Josep Bartomeu; Duñach, Mireia; Labarta, A.; Tejada, J.; Padrós Morell, Esteve

    1998-01-01

    Binding of Mn2+ or Mg2+ to the high-affinity site of the purple membrane from Halobacterium salinarium has been studied by superconducting quantum interference device magnetometry or by ab initio quantum mechanical calculations, respectively. The binding of Mn2+ cation, in a low-spin state, to the high-affinity site occurs through a major octahedral local symmetry character with a minor rhombic distortion and a coordination number of six. A molecular model of this binding site in the Schiff b...

  2. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  3. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers

    Directory of Open Access Journals (Sweden)

    Bidyut eSarkar

    2013-04-01

    Full Text Available Amyloid beta (Aβ is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer’s disease. Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane-binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al, JBC, 2011. Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of small oligomers (containing dimers to decamers, providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A at physiological concentrations (250 nM, while oligomers at the same concentrations show strong binding within 30 minutes of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T. Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 hours of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results a provide an explanation for the non-toxic nature of Aβ monomers, b suggest that Aβ toxicity emerges at the initial oligomeric phase, and c provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  4. Does cytotoxicity of metallointercalators correlate with cellular uptake or DNA affinity?

    Science.gov (United States)

    Davis, Kimberley J; Carrall, Judith A; Lai, Barry; Aldrich-Wright, Janice R; Ralph, Stephen F; Dillon, Carolyn T

    2012-08-21

    The cytotoxicity of the metallointercalators, [Pt(5,6-dimethyl-1,10-phenanthroline)(trans-1R,2R-diaminocyclohexane)](2+) ([56MERR]) and [Pt(5,6-dimethyl-1,10-phenanthroline)(trans-1S,2S-diaminocyclohexane)](2+) ([56MESS]), towards A549 human lung cancer cells was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC(50) value obtained following exposure of A549 cells to [56MESS] for 4 h was approximately three times smaller than that obtained when [56MERR] was administered under the same conditions, indicating that the former complex displayed greater cytotoxicity. Both IC(50) values were greater than that obtained after exposure of A549 cells to cisplatin, demonstrating that the latter compound was the most cytotoxic of the three examined. Microprobe synchrotron radiation X-ray fluorescence (SR-XRF) analyses of metallointercalator-treated A549 cells showed that platinum became localised in DNA-rich regions of the nucleus. In contrast, when the same cells were treated with cisplatin the metal became distributed throughout the cell. Determination of the maximum concentration of platinum present inside the cells using graphite furnace atomic absorption spectrophotometry (GFAAS) of platinum-treated cells suggested that there was greater uptake of [56MERR] compared to [56MESS] by the A549 cells, and that platinum uptake did not account for the greater toxicity of [56MESS], as assessed by the MTT assay. Electrospray ionization mass spectrometric (ESI-MS) and circular dichroism (CD) spectroscopic studies of solutions containing either [56MERR] or [56MESS], and a duplex hexadecamer molecule, showed the two metallointercalators displayed very similar affinity towards the nucleic acid. Overall these results indicate that the difference in cytotoxicity of the two platinum metallointercalators is probably the result of variations in their interactions with other cellular components. PMID:22740039

  5. Budded membrane microdomains as regulators for cellular tension

    OpenAIRE

    Sens, Pierre; Turner, Matthew S.

    2005-01-01

    We propose a mechanism for mechanical regulation at the membrane of living cells, based on the exchange of membrane area between the cell membrane and a membrane reservoir. The reservoir is composed of invaginated membrane microdomains which are liable to flatten upon increase of membrane strain, effectively controlling membrane tension. We show that the domain shape transition is first order, allowing for coexistence between flat and invaginated domains. During coexistence, the membrane tens...

  6. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands

    Science.gov (United States)

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  7. The cellular membrane as a mediator for small molecule interaction with membrane proteins.

    Science.gov (United States)

    Mayne, Christopher G; Arcario, Mark J; Mahinthichaichan, Paween; Baylon, Javier L; Vermaas, Josh V; Navidpour, Latifeh; Wen, Po-Chao; Thangapandian, Sundarapandian; Tajkhorshid, Emad

    2016-10-01

    The cellular membrane constitutes the first element that encounters a wide variety of molecular species to which a cell might be exposed. Hosting a large number of structurally and functionally diverse proteins associated with this key metabolic compartment, the membrane not only directly controls the traffic of various molecules in and out of the cell, it also participates in such diverse and important processes as signal transduction and chemical processing of incoming molecular species. In this article, we present a number of cases where details of interaction of small molecular species such as drugs with the membrane, which are often experimentally inaccessible, have been studied using advanced molecular simulation techniques. We have selected systems in which partitioning of the small molecule with the membrane constitutes a key step for its final biological function, often binding to and interacting with a protein associated with the membrane. These examples demonstrate that membrane partitioning is not only important for the overall distribution of drugs and other small molecules into different compartments of the body, it may also play a key role in determining the efficiency and the mode of interaction of the drug with its target protein. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:27163493

  8. Classification of Cells with Membrane Staining and/or Fixation Based on Cellular Specific Membrane Capacitance and Cytoplasm Conductivity

    OpenAIRE

    Song-Bin Huang; Yang Zhao; Deyong Chen; Shing-Lun Liu; Yana Luo; Tzu-Keng Chiu; Junbo Wang; Jian Chen; Min-Hsien Wu

    2015-01-01

    Single-cell electrical properties (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) have been regarded as potential label-free biophysical markers for the evaluation of cellular status. However, whether there exist correlations between these biophysical markers and cellular status (e.g., membrane-associate protein expression) is still unknown. To further validate the utility of single-cell electrical properties in cell type classification, Cspe...

  9. Preparation of a novel Zr(4+)-immobilized metal affinity membrane for selective adsorption of phosphoprotein.

    Science.gov (United States)

    He, Maofang; Wang, Chaozhan; Wei, Yinmao

    2016-09-01

    In this study, a novel phosphate-Zr(4+) immobilized metal affinity membrane (IMAM) was prepared based on the surface initiated-atom transfer radical polymerization technique for the selective adsorption of phosphoprotein. The adsorption capacity and selectivity of the phosphate-Zr(4+) IMAM were evaluated by using the mixture of standard phosphoproteins (β-casein, ovalbumin) and nonphosphoproteins (bovine serum albumin and lysozyme) as model samples. The adsorption isotherms and competitive adsorption results demonstrated that the phosphate-Zr(4+) IMAM had higher binding capacity and selectivity for phosphoproteins over nonphosphoproteins. Moreover, the phosphate-Zr(4+) IMAM exhibited good re-usability and re-productivity. Finally, the phosphate-Zr(4+) IMAM was applied to separate phosphoprotein from real samples with high purity. Therefore, the as-prepared phosphate-Zr(4+) IMAM could be a promising affinity material for the efficient enrichment of phosphoprotein from complex bio-samples. PMID:27433983

  10. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Christopher J Arnusch

    Full Text Available Many cationic antimicrobial peptides (AMPs target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted.

  11. Network modeling of membrane-based artificial cellular systems

    Science.gov (United States)

    Freeman, Eric C.; Philen, Michael K.; Leo, Donald J.

    2013-04-01

    Computational models are derived for predicting the behavior of artificial cellular networks for engineering applications. The systems simulated involve the use of a biomolecular unit cell, a multiphase material that incorporates a lipid bilayer between two hydrophilic compartments. These unit cells may be considered building blocks that enable the fabrication of complex electrochemical networks. These networks can incorporate a variety of stimuli-responsive biomolecules to enable a diverse range of multifunctional behavior. Through the collective properties of these biomolecules, the system demonstrates abilities that recreate natural cellular phenomena such as mechanotransduction, optoelectronic response, and response to chemical gradients. A crucial step to increase the utility of these biomolecular networks is to develop mathematical models of their stimuli-responsive behavior. While models have been constructed deriving from the classical Hodgkin-Huxley model focusing on describing the system as a combination of traditional electrical components (capacitors and resistors), these electrical elements do not sufficiently describe the phenomena seen in experiment as they are not linked to the molecular scale processes. From this realization an advanced model is proposed that links the traditional unit cell parameters such as conductance and capacitance to the molecular structure of the system. Rather than approaching the membrane as an isolated parallel plate capacitor, the model seeks to link the electrical properties to the underlying chemical characteristics. This model is then applied towards experimental cases in order that a more complete picture of the underlying phenomena responsible for the desired sensing mechanisms may be constructed. In this way the stimuli-responsive characteristics may be understood and optimized.

  12. The theoretical advantage of affinity membrane-based immunoadsorption therapy of hypercholesterolemia

    International Nuclear Information System (INIS)

    Full text: Therapy of hypercholesterolemia using immunoadsorption of Low Density Lipoprotein (LDL) to a gel substrate is a current clinical technique (Bosch T., Biomat., Art. Cells and Immob. Biotech, 20: 1165- 1169, 1992). Recently, Affinity Membranes have been proposed as an alternate substrate for immunoadsorption (Brandt S and others, Bio Technology, 6:779-782, 1988). Potentially, the overall rate of adsorption to a membrane may be faster than to a gel because of the different geometry (ibid). This implies that for the same conditions, a membrane-based device will have a higher Number of Transfer Units, more efficient adsorption and a smaller device size than a gel. To test this hypothesis, we calculated two key theoretical design parameters: Separation Factor, R, and the Number of Transfer Units, N, for a functioning clinical-scale affinity membrane device: R=Kd/Kd+C0. Kd: Equilibrium Dissociation Constant (M) and Co: Feed Concentration (M) N=kaQmaxVm/F. ka: Intrinsic reaction rate constant (M-1 min-1), Qmax: Substrate capacity (M), Vm: Membrane volume (m1) and F: Flow Rate (m1 min-1). We assumed 1 hr treatment time during which 1 plasma volume (3L) is treated, hence F=50 (m1 min-1). If we assume 2/3 of LDL is removed from an initial level of 3 g/L, we can calculate an average feed concentration Co = 2 g / L. There is some data available in the literature for typical values of Kd (10-8 M) and ka ( 103 M-1s-1 to 3 x 105 M-1 s-1 ) (Olsen WC and others, Molec. Immun: 26: 129-136, 1989). Since the intrinsic reaction kinetics may vary from very slow (103 M) to very fast (3 x 105 M), the Number of Transfer Units, N may vary from small (2) to large (650). Hence for a membrane device, we must select the antibody with the fastest reaction, ka, and highest capacity (Qmax) otherwise, there may be no advantage in a membrane-based device over a gel-based device

  13. High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lach, E.; Trifilieff, A.; Landry, Y.; Gies, J.P. (Univ. Louis Pasteur, Illkirch (France))

    1991-01-01

    The binding of the radiolabeled bombesin analogue ({sup 125}I-Tyr{sup 4})bombesin to guinea-pig lung membranes was investigated. Binding of ({sup 125}I-Tyr{sup 4})bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B{sub max} = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K{sub D} = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as ({sup 125}I-Tyr{sup 4})bombesin, neuromedin B and neuromedin C inhibited the binding of ({sup 125}I-Tyr{sup 4})bombesin in an order of potencies as follows: ({sup 125}I-Tyr{sup 4})bombesin {gt} bombesin {ge} neuromedin C {much gt} neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B.

  14. Classification of Cells with Membrane Staining and/or Fixation Based on Cellular Specific Membrane Capacitance and Cytoplasm Conductivity

    Directory of Open Access Journals (Sweden)

    Song-Bin Huang

    2015-01-01

    Full Text Available Single-cell electrical properties (e.g., specific membrane capacitance (Cspecific membrane and cytoplasm conductivity (σcytoplasm have been regarded as potential label-free biophysical markers for the evaluation of cellular status. However, whether there exist correlations between these biophysical markers and cellular status (e.g., membrane-associate protein expression is still unknown. To further validate the utility of single-cell electrical properties in cell type classification, Cspecific membrane and σcytoplasm of single PC-3 cells with membrane staining and/or fixation were analyzed and compared in this study. Four subtypes of PC-3 cells were prepared: untreated PC-3 cells, PC-3 cells with anti-EpCAM staining, PC-3 cells with fixation, and fixed PC-3 cells with anti-EpCAM staining. In experiments, suspended single cells were aspirated through microfluidic constriction channels with raw impedance data quantified and translated to Cspecific membrane and σcytoplasm. As to experimental results, significant differences in Cspecific membrane were observed for both live and fixed PC-3 cells with and without membrane staining, indicating that membrane staining proteins can contribute to electrical properties of cellular membranes. In addition, a significant decrease in σcytoplasm was located for PC-3 cells with and without fixation, suggesting that cytoplasm protein crosslinking during the fixation process can alter the cytoplasm conductivity. Overall, we have demonstrated how to classify single cells based on cellular electrical properties.

  15. Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification.

    Science.gov (United States)

    Xu, Rong; Kanezashi, Masakoto; Yoshioka, Tomohisa; Okuda, Tetsuji; Ohshita, Joji; Tsuru, Toshinori

    2013-07-10

    Bis(triethoxysilyl)ethylene (BTESEthy) was used as a novel precursor to develop a microporous organosilica membrane via the sol-gel technique. Water sorption measurements confirmed that ethenylene-bridged BTESEthy networks had a higher affinity for water than that of ethane-bridged organosilica materials. High permeance of CO2 with high CO2/N2 selectivity was explained relative to the strong CO2 adsorption on the network with π-bond electrons. The introduction of polarizable and rigid ethenylene bridges in the network structure led to improved water permeability and high NaCl rejection (>98.5%) in reverse osmosis (RO). Moreover, the aqueous ozone modification promoted significant improvement in the water permeability of the membrane. After 60 min of ozone exposure, the water permeability reached 1.1 × 10(-12) m(3)/(m(2) s Pa), which is close to that of a commercial seawater RO membrane. Meanwhile, molecular weight cutoff measurements indicated a gradual increase in the effective pore size with ozone modification, which may present new options for fine-tuning of membrane pore sizes.

  16. Bioanalytical applications of affinity-based nanotube membranes for sensing and separations

    Science.gov (United States)

    Caicedo, Hector Mario

    2008-11-01

    Nanotechnology has played an important role in the development of research and technology during the last two decades. The contribution of nanotechnology in different fields, along with the versatility of the constructed nanoscale materials, have made nanotechnology one of the most suitable tools to develop particular nanostructures to realize a desired function and application. A nanostructure is simply an entity at the nanometer scale with one, two or three dimensional features. Since nanotechnology covers a broad range of nanoscale materials, to simplify nanotechnology, it can be classified into two categories based on how the nanostructures are prepared: top-down and bottom-up. In the top-down methods, the nanostructures are constructed by chiseling larger bulk materials into entities of smaller size. Conversely, in the bottom-up case, small units are grown or assembled into their desired size and shape. The nanoporous materials specifically have attracted a lot of attention because they can be used for the synthesis of a variety of functional nanostructures of great usefulness in technology. These porous nanostructures usually combine many of the advantages of the top-down and bottom-up methodologies such as flexibility, size controllability, and cost. The research presented in this work utilizes nanoporous membranes to develop porous nanostructured platforms with potential applications in sensing and separations. In particular, this work is centered in fundamental studies for bioanalytical applications of affinity-based nanotube membranes for sensing and separations. A bottom-up methodology like the template synthesis was used to produce silica nanotubes inside of the pores of alumina membrane. The functionalization of the inside walls of these silica nanotube membranes allowed control of the functional behavior and properties of the nanostructured membrane during membrane-based separations and sensing. The general scheme of the work presented here, is

  17. A high affinity Ca2(+)-ATPase on the surface membrane of Leishmania donovani promastigote

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, J.; Ray, M.; Sarkar, S.; Bhaduri, A. (Indian Institute of Chemical Biology, Calcutta (India))

    1990-07-05

    A Ca2(+)-dependent ATP-hydrolytic activity was detected in the crude membrane ghost of the promastigote or vector form of the protozoal parasite Leishmania donovani, the pathogen responsible for kala azar. The Ca2(+)-ATPase was purified to apparent homogeneity after solubilization with deoxycholate. The enzyme consists of two subunits of Mr = 51,000 and 57,000 and has an apparent molecular weight of 215,000 +/- 12,000. The enzyme activity is exclusively dependent on Ca2+, and the pure enzyme can hydrolyze 1.6 mumol of ATP/min/mg of protein. The apparent Km for Ca2+ is 35 nM, which is further reduced to 12 nM in the presence of heterologous calmodulin. The enzyme is sensitive to vanadate, but is insensitive to oligomycin and ouabain. The enzyme is strongly associated with the plasma membrane and has its catalytic site oriented toward the cytoplasmic face. The enzyme spans across the plasma membrane as surface labeling with radioiodine shows considerable radioactivity in the completely purified enzyme. The localization and orientation of this high affinity, calmodulin-sensitive Ca2(+)-ATPase suggest some role of this enzyme in Ca2+ movement in the life cycle of this protozoal parasite.

  18. Investigating cellular electroporation using planar membrane models and miniaturized devices

    NARCIS (Netherlands)

    Uitert, van Iris

    2010-01-01

    This thesis focuses on increasing our understanding of the electroporation process. Electroporation is a technique employed to introduce foreign molecules into cells that can normally not pass the cell membrane. By applying a short but high electric field, pores appear in the membrane through which

  19. In vitro auxin binding to cellular membranes of cucumber fruits.

    Science.gov (United States)

    Narayanan, K R; Mudge, K W; Poovaiah, B W

    1981-04-01

    Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s). PMID:16661764

  20. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lindsay A. [University of Oxford, Oxford Particle Imaging Centre, The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Nuffield Department of Medicine (United Kingdom); Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-06-15

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.

  1. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    International Nuclear Information System (INIS)

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR

  2. Function of Membrane Rafts in Viral Lifecycles and Host Cellular Response

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    2011-01-01

    Full Text Available Membrane rafts are small (10–200 nm sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process and the late stage (assembly, budding, and release processes of virus particles. In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.

  3. Perturbations of cellular membranes with synthetic polymers and ultrafast lasers

    Science.gov (United States)

    Kelly, Christopher Vaughn-Daigneau

    This dissertation examines the response of the plasma membrane to perturbations by synthetic nanoparticles and ultra-fast laser pulses. Both model membranes and living cells were examined in to characterize membrane disruption and the biological response to perturbation. These studies provide a deeper understanding of cell biology and guide the design of effective nanoparticle- or laser-based therapies, as well as warning about unintended exposure. In regards to membrane disruption by pulsed-laser irradiation, irradiation induced giant plasma membrane vesicles (GPMVs) on the surface of the living cell. This process involved the incorporation of material from the extracellular media into both the cytoplasm and the GPMV as the cell responded to the intense pressure and temperature gradients induced by irradiation and the subsequent cavitation. Further, the cell exposed phosphotidylserine to the exterior surface of the plasma membrane and GPMV and initiated caspase activity. Single particle tracking of 20 nm fluorescent beads within the GPMVs demonstrated a complex, gelatinous structure within the GPMV. In regards to nanoparticle-based perturbations, techniques such as isothermal titration calorimetry and molecular dynamics were used to investigate the relationship between nanoparticle properties and membrane disruption. Molecular dynamics simulations examined the binding of third-generation poly(amidoamine) dendrimers to phosphatidylcholine bilayers as a function on nanoparticle termination and membrane phase. A potential of mean force was calculated and demonstrated that the charged dendrimers bound to the zwitterionic phospholipids with approximately 50% more free energy release than uncharged dendrimers. Further, the difference in dendrimer binding to gel and fluid lipids was largely due to the hydrophobic interactions between the lipid tails and the non-polar dendrimer moieties. Isothermal titration calorimetry examined the heat release upon interaction between

  4. High-productivity membrane adsorbers: Polymer surface-modification studies for ion-exchange and affinity bioseparations

    Science.gov (United States)

    Chenette, Heather C. S.

    This dissertation centers on the surface-modification of macroporous membranes to make them selective adsorbers for different proteins, and the analysis of the performance of these membranes relative to existing technology. The common approach used in these studies, which is using membrane technology for chromatographic applications and using atom transfer radical polymerization (ATRP) as a surface modification technique, will be introduced and supported by a brief review in Chapter 1. The specific approaches to address the unique challenges and motivations of each study system are given in the introduction sections of the respective dissertation chapters. Chapter 2 describes my work to develop cation-exchange membranes. I discuss the polymer growth kinetics and characterization of the membrane surface. I also present an analysis of productivity, which measures the mass of protein that can bind to the stationary phase per volume of stationary phase adsorbing material per time. Surprisingly and despite its importance, this performance measure was not described in previous literature. Because of the significantly shorter residence time necessary for binding to occur, the productivity of these cation-exchange membrane adsorbers (300 mg/mL/min) is nearly two orders of magnitude higher than the productivity of a commercial resin product (4 mg/mL/min). My work studying membrane adsorbers for affinity separations was built on the productivity potential of this approach, as articulated in the conclusion of Chapter 2. Chapter 3 focuses on the chemical formulation work to incorporate glycoligands into the backbone of polymer tentacles grown from the surface of the same membrane stationary phase. Emphasis is given to characterizing and testing the working formulation for ligand incorporation, and details about how I arrived at this formulation are given in Appendix B. The plant protein, or lectin, Concanavalin A (conA) was used as the target protein. The carbohydrate affinity

  5. Membrane fouling potentials and cellular properties of bacteria isolated from fouled membranes in a MBR treating municipal wastewater.

    Science.gov (United States)

    Ishizaki, So; Fukushima, Toshikazu; Ishii, Satoshi; Okabe, Satoshi

    2016-09-01

    Membrane fouling remains a major challenge for wider application of membrane bioreactors (MBRs) to wastewater treatment. Membrane fouling is mainly caused by microorganisms and their excreted microbial products. For development of more effective control strategies, it is important to identify and characterize the microorganisms that are responsible for membrane fouling. In this study, 41 bacterial strains were isolated from fouled microfiltration membranes in a pilot-scale MBR treating real municipal wastewater, and their membrane fouling potentials were directly measured using bench-scale cross-flow membrane filtration systems (CFMFSs) and related to their cellular properties. It was found that the fouling potential was highly strain dependent, suggesting that bacterial identification at the strain level is essential to identify key fouling-causing bacteria (FCB). The FCB showed some common cellular properties. The most prominent feature of FCB was that they formed convex colonies having swollen podgy shape and smooth lustrous surfaces with high water, hydrophilic organic matter and carbohydrate content. However, general and rigid biofilm formation potential as determined by microtiter plates and cell surface properties (i.e., hydrophobicity and surface charge) did not correlate with the fouling potential in this study. These results suggest that the fouling potential should be directly evaluated under filtration conditions, and the colony water content could be a useful indicator to identify the FCB. PMID:27232989

  6. Lipid Reconstitution-Enabled Formation of Gold Nanoparticle Clusters for Mimetic Cellular Membrane

    Directory of Open Access Journals (Sweden)

    Jiyoung Nam

    2016-01-01

    Full Text Available Gold nanoparticles (AuNPs encapsulated within reconstituted phospholipid bilayers have been utilized in various bioapplications due to their improved cellular uptake without compromising their advantages. Studies have proved that clustering AuNPs can enhance the efficacy of theranostic effects, but controllable aggregation or oligomerization of AuNPs within lipid membranes is still challenging. Here, we successfully demonstrate the formation of gold nanoparticle clusters (AuCLs, supported by reconstituted phospholipid bilayers with appropriate sizes for facilitating cellular uptake. Modulation of the lipid membrane curvatures influences not only the stability of the oligomeric state of the AuCLs, but also the rate of cellular uptake. Dynamic light scattering (DLS data showed that 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE, with its relatively small head group, is crucial for establishing an effective membrane curvature to encapsulate the AuCLs. The construction of phospholipid bilayers surrounding AuCLs was confirmed by analyzing the secondary structure of M2 proteins incorporated in the lipid membrane surrounding the AuCLs. When AuCLs were incubated with cells, accumulated clusters were found inside the cells without the lipids being removed or exchanged with the cellular membrane. We expect that our approach of clustering gold nanoparticles within lipid membranes can be further developed to design a versatile nanoplatform.

  7. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  8. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    International Nuclear Information System (INIS)

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity

  9. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chuan-Ho, E-mail: chtang@nmmba.gov.tw [Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan, ROC (China); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Lin, Ching-Yu [Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan, ROC (China); Lee, Shu-Hui [Center of General Education, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC (China); Wang, Wei-Hsien [National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC (China)

    2014-03-01

    Highlights: • Coral cells alter membrane lipid to accommodate copper-induce oxidative conditions • Coral membrane repair occur due to lipid alterations • Zooxanthellae release results from membrane repair by symbiosome fusion • Copper-induced lipid alterations perturb membrane-related functions in coral cells • Copper chronic effect on coral fitness are related to long-term membrane perturbation - Abstract: Oxidative stress has been associated with copper-induced toxicity in scleractinian corals. To gain insight into the accommodation of the cellular membrane to oxidative conditions, a pocilloporid coral, Seriatopora caliendrum, was exposed to copper at distinct, environmentally relevant dose for various lengths of time. Glycerophosphocholine profiling of the response of the coral to copper exposure was characterized using a validated method. The results indicate that coral lipid metabolism is programmed to induce membrane alterations in response to the cellular deterioration that occurs during the copper exposure period. Decreasing lyso-phosphatidylcholines and exchanging polyunsaturated phosphatidylcholines for polyunsaturated plasmanylcholines were the initial actions taken to prevent membrane permeabilization. To relax/resist the resulting membrane strain caused by cell/organelle swelling, the coral cells inversely exchanged polyunsaturated plasmanylcholines for polyunsaturated phosphatidylcholines and further increased the levels of monounsaturated glycerophosphocholines. At the same time, the levels of saturated phosphatidylcholines were also increased to increase membrane rigidity and protect against oxidative attack. Interestingly, such alterations in lipid metabolism were also required for membrane fusion to repair the deteriorated membranes by repopulating them with proximal lipid reservoirs, similar to symbiosome membranes. Additionally, increasing saturated and monounsaturated plasmanylcholines and inhibiting the suppression of saturated lyso

  10. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    OpenAIRE

    Su-Myat Khine K; Khan Mohamed A; Ritchie Shawn A; Jayasinghe Dushmanthi; Ma Hong; Ahiahonu Pearson WK; Mankidy Rishikesh; Wood Paul L; Goodenowe Dayan B

    2010-01-01

    Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD), Alzheimer's disease (AD), and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies ...

  11. An association of metabolic syndrome constellation with cellular membrane caveolae

    Directory of Open Access Journals (Sweden)

    Wei-zheng Zhang

    2014-02-01

    Full Text Available Metabolic syndrome (MetS is a cluster of metabolic abnormalities that can predispose an individual to a greater risk of developing type-2 diabetes and cardiovascular diseases. The cluster includes abdominal obesity, dyslipidemia, hypertension, and hyperglycemia – all of which are risk factors to public health. While searching for a link among the aforementioned malaises, clues have been focused on the cell membrane domain caveolae, wherein the MetS-associated active molecules are colocalized and interacted with to carry out designated biological activities. Caveola disarray could induce all of those individual metabolic abnormalities to be present in animal models and humans, providing a new target for therapeutic strategy in the management of MetS.

  12. Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity.

    Science.gov (United States)

    Murashko, Oleg N; Kaberdin, Vladimir R; Lin-Chao, Sue

    2012-05-01

    RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane-protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E-membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1-499) binds specifically to anionic phospholipids through electrostatic interactions. The membrane-binding specificity of NRne was confirmed using circular dichroism difference spectroscopy; the dissociation constant (K(d)) for NRne binding to anionic liposomes was 298 nM. E. coli RNase G and RNase E/G homologs from phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be membrane-binding proteins. Electrostatic potentials of NRne and its homologs were found to be conserved, highly positive, and spread over a large surface area encompassing four putative membrane-binding regions identified in the "large" domain (amino acids 1-400, consisting of the RNase H, S1, 5'-sensor, and DNase I subdomains) of E. coli NRne. In vitro cleavage assay using liposome-free and liposome-bound NRne and RNA substrates BR13 and GGG-RNAI showed that NRne membrane binding altered its enzymatic activity. Circular dichroism spectroscopy showed no obvious thermotropic structural changes in membrane-bound NRne between 10 and 60 °C, and membrane-bound NRne retained its normal cleavage activity after cooling. Thus, NRne membrane binding induced changes in secondary protein structure and enzymatic activation by stabilizing the protein-folding state and increasing its binding affinity for its substrate. Our results demonstrate that RNase E-membrane interaction enhances the rate of RNA processing and decay. PMID:22509045

  13. Removing Endotoxin from Protein Solution by Chitosan Modified Affinity Membrane%壳聚糖亲和膜脱除蛋白质溶液中内毒素

    Institute of Scientific and Technical Information of China (English)

    孙海翔; 张林; 柴红; 陈欢林

    2005-01-01

    Affinity membrane was prepared with chitosan immobilized on the hydrophile- modified poly(vinylidene fluoride) (PVDF) membrane. Fourier transform infrared spectroscopy (FTIR) analysis indicated that the contents of-NH2 and -OH groups increased and fluoride decreased on the membrane surface after modification. Using this kind of affinity membrane, the effects of operation parameters such as pH, ionic strength and flow rate, on the amount of endotoxin removed were investigated. The results showed that the equilibrium adsorption capacity and the dissociation constant of the affinity membrane to endotoxin were 21.4 EU·mg-1 membrane and 0.50 EU·ml-1,respectively, at pH 7.0 and ionic strength 0.2 mol·L-1. Adsorption appeared to follow a typical Langmuir adsorption isotherm. At pH 5.0, ionic strength of 0.2 mol·L-1, the removal rate of endotoxin from BSA solution with the chitosan affinity membrane was up to 88.6% (11.50 EU·mg-1 membrane), and the recovery of BSA was 93.4% (0.187 mg·mg-1 membrane), while at pH 11.0, ionic strength of 0.2 mol·L-1, the removal rate of endotoxin from lysozyme solution was 72.4% (9.92 EU·mg- 1 membrane), and the recovery of lysozyme was 92.3% (0.104 mg·mg- 1 membrane).

  14. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.

    Science.gov (United States)

    Sezgin, Erdinc; Levental, Ilya; Grzybek, Michal; Schwarzmann, Günter; Mueller, Veronika; Honigmann, Alf; Belov, Vladimir N; Eggeling, Christian; Coskun, Unal; Simons, Kai; Schwille, Petra

    2012-07-01

    Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact

  15. Fluorescence studies on radiation oxidative damage to membranes with implications to cellular radiosensitivity

    Indian Academy of Sciences (India)

    K P Mishra

    2002-12-01

    Radiation oxidative damage to plasma membrane and its consequences to cellular radiosensitivity have received increasing attention in the past few years. This review gives a brief account of radiation oxidative damage in model and cellular membranes with particular emphasis on results from our laboratory. Fluorescence and ESR spin probes have been employed to investigate the structural and functional alterations in membranes after g-irradiation. Changes in the lipid bilayer in irradiated unilamellar liposomes prepared from egg yolk lecithin (EYL) were measured by using diphenylhexatriene (DPH) as a probe. The observed increase in DPH polarization and decrease in fluorescence intensity after g-irradiation of liposomes imply radiationinduced decrease in bilayer fluidity. Inclusion of cholesterol in liposome was found to protect lipids against radiation damage, possibly by modulation of bilayer organization e.g. lipid packing. Measurements on dipalmitoyl phosphatidylcholine (DPPC) liposomes loaded with 6-carboxyfluorescein (CF) showed radiation dose-dependent release of the probe indicating radiation-induced increased permeability. Changes in plasma membrane permeability of thymocytes were monitored by fluorescein diacetate (FDA) and induced intracellular reactive oxygen species (ROS) were determined by 2,7-dichlorodihydro fluorescein diacetate (DCH-FDA). Results suggest a correlation between ROS generation and membrane permeability changes induced by radiation within therapeutic doses (0-10 Gy). It is concluded that increase in membrane permeability was the result of ROS-mediated oxidative reactions, which might trigger processes leading to apoptotic cell death after radiation exposure.

  16. Affinity Separation of Lectins Using Porous Membranes Immobilized with Glycopolymer Brushes Containing Mannose or N-Acetyl-D-Glucosamine

    Directory of Open Access Journals (Sweden)

    Yoshiko Miura

    2013-07-01

    Full Text Available Porous membranes with glycopolymer brushes were prepared as biomaterials for affinity separation. Glycopolymer brushes contained acrylic acid and D-mannose or N-acetyl-D-glucosamine, and were formed on substrates by surface-initiated atom transfer radical polymerization. The presence of glycopolymer brush was confirmed by X-ray photoelectron spectroscopy, contact angle, and ellipsometry measurements. The interaction between lectin and the glycopolymer immobilized on glass slides was confirmed using fluorescent-labeled proteins. Glycopolymer-immobilized surfaces exhibited specific adsorption of the corresponding lectin, compared with bovine serum albumin. Lectins were continuously rejected by the glycopolymer-immobilized membranes. When the protein solution was permeated through the glycopolymer-immobilized membrane, bovine serum albumin was not adsorbed on the membrane surface. In contrast, concanavalin A and wheat germ agglutinin were rejected by membranes incorporating D-mannose or N-acetyl-D-glucosamine, respectively. The amounts of adsorbed concanavalin A and wheat germ agglutinin was increased five- and two-fold that of adsorbed bovine serum albumin, respectively.

  17. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  18. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Science.gov (United States)

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines. PMID:27362860

  19. Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets.

    Science.gov (United States)

    Mao, Jian; Guo, Ruohai; Yan, Li-Tang

    2014-07-01

    Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm(2) membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.

  20. Translocation of annexin Ⅰ from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Xiao-Hang Zhao; Hui-Xin Wang; Ning Lu; You-Sheng Mao; Fang Liu; Ying Wang; Hai-Rong Zhang; Kun Wang; Min Wu

    2003-01-01

    AIM: To investigate the alteration of the annexin I subcellular localization in esophageal squamous cell carcinoma (ESCC)and the correlation between the translocation and the tumorigenesis of ESCC.METHODS: The protein localization of annexin I was detected in both human ESCC tissues and cell line via the indirect immunofiuorescence strategy.RESULTS: In the normal esophageal epithelia the annexin I was mainly located on the plasma membrane and formed a consecutive typical trammels net. Annexin I protein also expressed dispersively in cytoplasm and the nuclei without specific localization on the nuclear membrane. In esophageal cancer annexin I decreased very sharply with scattered disappearance on the cellular membrane, however it translocated and highly expressed on the nuclear membrane,which was never found in normal esophageal epithelia. In cultured esophageal cancer cell line annexin I protein was also focused on the nuclear membrane, which was consistent with the result from esophageal cancer tissues.CONCLUSION: This observation suggests that the translocation of annexin I protein in ESCC may correlate with the tumorigenesis of the esophageal cancer.

  1. Expression of a prokaryotic P-type ATPase in E. coli Plasma Membranes and Purification by Ni2+-affinity chromatography

    Directory of Open Access Journals (Sweden)

    Geisler Markus

    1998-01-01

    Full Text Available In order to characterize the P-type ATPase from Synechocystis 6803 [Geisler (1993 et al. J. Mol. Biol. 234, 1284] and to facilitate its purification, we expressed an N-terminal 6xHis-tagged version of the ATPase in an ATPase deficient E. coli strain. The expressed ATPase was immunodetected as a dominant band of about 97 kDa localized to the E. coli plasma membranes representing about 20-25% of the membrane protein. The purification of the Synecho-cystis 6xHis-ATPase by single-step Ni-affinity chromatography under native and denaturating conditions is described. ATPase activity and the formation of phosphointermediates verify the full function of the enzyme: the ATPase is inhibited by vanadate (IC50= 119 &mgr;M and the formation of phosphorylated enzyme intermediates shown by acidic PAGE depends on calcium, indicating that the Synechocystis P-ATPase functions as a calcium pump.

  2. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains.

    Science.gov (United States)

    Kishimoto, Takuma; Ishitsuka, Reiko; Kobayashi, Toshihide

    2016-08-01

    Although sphingomyelin and cholesterol are major lipids of mammalian cells, the detailed distribution of these lipids in cellular membranes remains still obscure. However, the recent development of protein probes that specifically bind sphingomyelin and/or cholesterol provides new information about the landscape of the lipid domains that are enriched with sphingomyelin or cholesterol or both. Here, we critically summarize the tools to study distribution and dynamics of sphingomyelin and cholesterol. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26993577

  3. Cross-linked polymeric nanogel formulations of 5'-triphosphates of nucleoside analogues: role of the cellular membrane in drug release.

    Science.gov (United States)

    Vinogradov, Serguei V; Kohli, Ekta; Zeman, Arin D

    2005-01-01

    Activation of cytotoxic nucleoside analogues in vivo depends primarily on their cell-specific phosphorylation. Anticancer chemotherapy using nucleoside analogues may be significantly enhanced by intracellular administration of active phosphorylated drugs. However, the cellular transport of anionic compounds is very ineffective and restricted by many drug efflux transporters. Recently developed cationic nanogel carriers can encapsulate large amounts of nucleoside 5'-triphosphates that form polyionic complexes with protonated amino groups on the polyethylenimine backbone of the nanogels. In this paper, the 5'-triphosphate of an antiviral nucleoside analogue, 3'-azido-2',3'-dideoxythymidine (AZT), was efficiently synthesized and its complexes with nanogels were obtained and evaluated as potential cytotoxic drug formulations for treatment of human breast carcinoma cells. A selective phosphorylating reagent, tris-imidazolylphosphate, was used to convert AZT into the nucleoside analogue 5'-triphosphate using a one-pot procedure. The corresponding 3'-azido-2',3'-dideoxythymidine 5'-triphosphate (AZTTP) was isolated with high yield (75%). Nanogels encapsulated up to 30% of AZTTP by weight by mixing solutions of the carrier and the drug. The AZTTP/nanogel formulation showed enhanced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB-231, demonstrating IC50 values 130-200 times lower than those values for AZT alone. The exact mechanism of drug release from nanogels remains unclear. One mechanism could involve interaction with negatively charged counterions. A high affinity of nanogels to isolated cellular membranes has been observed, especially for nanogels made of amphiphilic block copolymer, Pluronic P85. Cellular trafficking of nanogel particles, contrasted by polyethylenimine-coordinated copper(II) ions, was studied by transmission electron microscopy (TEM), which revealed membranotropic properties of nanogels. A substantial release of encapsulated drug was

  4. Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al).

    Science.gov (United States)

    Zhu, Haitao; Wang, Lina; Jie, Xingming; Liu, Dandan; Cao, Yiming

    2016-08-31

    Asymmetric mixed matrix membranes(MMMs) with MOFs hold great application potential for energy-efficient gas separations. However, the particle aggregation and nonselective interfacial microvoids restrict the gas separation performance of asymmetric MMMs. Herein, nanoporous metal-organic framework (MOF) of MIL-53(Al) was modified with aminosilane after solvothermal synthesis. The postfunctionalization by grafting alkyl chains can form hydrogen bonds with polymer chains to enhance the affinity with polymer matrix and facilitate the preferential adsorption of CO2 by dipole-quadrupole interaction with the functional group. Then the postmodified MIL-53(Al) was incorporated as filler into poly(ether imide) Ultem1000 to fabricate high-quality asymmetric MMMs with well dispersed particles in polymer matrix and good adhesion at the MOFs-polymer interface. The Ultem/S-MIL-53(Al) asymmetric MMMs exhibited remarkable combinations of gas permeance and ideal selectivity for CO2/N2 separation at 10 wt % filler loading. The CO2 permeance achieved 24.1 GPU, an increase of 165% compared with pure Ultem membrane. Meanwhile, the ideal CO2/N2 selectivity also increased from 31.0 up to 41.1. The strategy of post covalent modification for MOFs provides an effective way to improve the interfacial affinity and gas separation performance. PMID:27505152

  5. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Majuri, R. (Minerva Foundation Institute for Medical Research, Helsinki (Finland))

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of {sup 35}S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with {sup 35}S. The same two bands were observed if the cell surface proteins were labeled with {sup 125}I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author).

  6. Lipid Reconstitution-Enabled Formation of Gold Nanoparticle Clusters for Mimetic Cellular Membrane

    OpenAIRE

    Jiyoung Nam; Yong-Tae Kim; Aeyeon Kang; Kook-Han Kim; KyoRee Lee; Wan Soo Yun; Yong Ho Kim

    2016-01-01

    Gold nanoparticles (AuNPs) encapsulated within reconstituted phospholipid bilayers have been utilized in various bioapplications due to their improved cellular uptake without compromising their advantages. Studies have proved that clustering AuNPs can enhance the efficacy of theranostic effects, but controllable aggregation or oligomerization of AuNPs within lipid membranes is still challenging. Here, we successfully demonstrate the formation of gold nanoparticle clusters (AuCLs), supported b...

  7. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Schmiedeke, T.M.; Stoeckl, F.W.W.; Weber, R.; Sugisaki, Y.; Batsford, S.R.; Vogt, A.

    1989-06-01

    An effort has been made to integrate insights on charge-based interactions in immune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis. Attention was focussed on the histones, a group of highly cationic nuclear constituents, which could be expected to bind to fixed anionic sites present in the glomerular basement membrane (GBM). We demonstrated that all histone subfractions, prepared according to Johns, have a high affinity for GBM and the basement membrane of peritubular capillaries. Tissue uptake of /sup 125/I-labeled histones was measured by injecting 200 micrograms of each fraction into the left kidney via the aorta and measuring organ uptake after 15 min. In glomeruli isolated from the left kidneys, the following quantities of histones were found: f1, 13 micrograms; f2a (f2al + f2a2), 17 micrograms; f2b, 17 micrograms; and f3, 32 micrograms. Kinetic studies of glomerular binding showed that f1 disappeared much more rapidly than f2a. The high affinity of histones (pI between 10.5 and 11.0; mol wt 10,000-22,000) for the GBM correlates well with their ability to form aggregates (mol wt greater than 100,000) for comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontaneously bound poorly (0.4 micrograms in isolated glomeruli). The quantity of histones and lysozyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-Sepharose column (gradient elution studies). This gel matrix contains the sulfated, highly anionic polysaccharide heparin, which is similar to the negatively charged heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with 1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl; 6 M guanidine-HCl was necessary.

  8. Interaction of peptidomimetics with bilayer membranes: biophysical characterization and cellular uptake.

    Science.gov (United States)

    Jing, Xiaona; Kasimova, Marina R; Simonsen, Anders H; Jorgensen, Lene; Malmsten, Martin; Franzyk, Henrik; Foged, Camilla; Nielsen, Hanne M

    2012-03-20

    Enzymatically stable cell-penetrating α-peptide/β-peptoid peptidomimetics constitute promising drug delivery vehicles for the transport of therapeutic biomacromolecules across membrane barriers. The aim of the present study was to elucidate the mechanism of peptidomimetic-lipid bilayer interactions. A series of peptidomimetics consisting of alternating cationic and hydrophobic residues displaying variation in length and N-terminal end group were applied to fluid-phase, anionic lipid bilayers, and their interaction was investigated using isothermal titration calorimetry (ITC) and ellipsometry. Titration of lipid vesicles into solutions of peptidomimetics resulted in exothermic adsorption processes, and the interaction of all studied peptidomimetics with anionic lipid membranes was found to be enthalpy-driven. The enthalpy and Gibbs free energy (ΔG) proved more favorable with increasing chain length. However, not all charges contribute equally to the interaction, as evidenced by the charge-normalized ΔG being inversely correlated to the sequence length. Ellipsometry data suggested that the hydrophobic residues also played an important role in the interaction process. Furthermore, ΔG extracted from ellipsometry data showed good agreement with that obtained with ITC. To further elucidate their interaction with biological membranes, quantitative uptake and cellular distribution were studied in proliferating HeLa cells by flow cytometry and confocal microscopy. The cellular uptake of carboxyfluorescein-labeled peptidomimetics showed a similar ranking as that obtained from the adsorbed amount, and binding energy to model membranes demonstrated that the initial interaction with the membrane is of key importance for the cellular uptake.

  9. A simple detection method for low-affinity membrane protein interactions by baculoviral display.

    Directory of Open Access Journals (Sweden)

    Toshiko Sakihama

    Full Text Available BACKGROUND: Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV. In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. METHODOLOGY/PRINCIPAL FINDINGS: We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA. Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L, and glucocorticoid-induced TNFR family-related protein (GITR-GITR ligand (GITRL. Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displaying BV and anti-gp64 antibody. CONCLUSIONS: We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.

  10. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  11. Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins.

    Directory of Open Access Journals (Sweden)

    Arafath Kaja Najumudeen

    Full Text Available Hundreds of eukaryotic signaling proteins require myristoylation to functionally associate with intracellular membranes. N-myristoyl transferases (NMT responsible for this modification are established drug targets in cancer and infectious diseases. Here we describe NANOMS (NANOclustering and Myristoylation Sensors, biosensors that exploit the FRET resulting from plasma membrane nanoclustering of myristoylated membrane targeting sequences of Gαi2, Yes- or Src-kinases fused to fluorescent proteins. When expressed in mammalian cells, NANOMS report on loss of membrane anchorage due to chemical or genetic inhibition of myristoylation e.g. by blocking NMT and methionine-aminopeptidase (Met-AP. We used Yes-NANOMS to assess inhibitors of NMT and a cherry-picked compound library of putative Met-AP inhibitors. Thus we successfully confirmed the activity of DDD85646 and fumagillin in our cellular assay. The developed assay is unique in its ability to identify modulators of signaling protein nanoclustering, and is amenable to high throughput screening for chemical or genetic inhibitors of functional membrane anchorage of myristoylated proteins in mammalian cells.

  12. Biomechanics and thermodynamics of nanoparticle interactions with plasma and endosomal membrane lipids in cellular uptake and endosomal escape.

    Science.gov (United States)

    Peetla, Chiranjeevi; Jin, Shihua; Weimer, Jonathan; Elegbede, Adekunle; Labhasetwar, Vinod

    2014-07-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(D,L-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  13. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.

    Science.gov (United States)

    Vitriol, Eric A; Zheng, James Q

    2012-03-22

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones.

  14. Simian virus 40 late proteins possess lytic properties that render them capable of permeabilizing cellular membranes.

    Science.gov (United States)

    Daniels, Robert; Rusan, Nasser M; Wilbuer, Anne-Kathrin; Norkin, Leonard C; Wadsworth, Patricia; Hebert, Daniel N

    2006-07-01

    Many nonenveloped viruses have evolved an infectious cycle that culminates in the lysis or permeabilization of the host to enable viral release. How these viruses initiate the lytic event is largely unknown. Here, we demonstrated that the simian virus 40 progeny accumulated at the nuclear envelope prior to the permeabilization of the nuclear, endoplasmic reticulum, and plasma membranes at a time which corresponded with the release of the progeny. The permeabilization of these cellular membranes temporally correlated with late protein expression and was not observed upon the inhibition of their synthesis. To address whether one or more of the late proteins possessed an inherent capacity to induce membrane permeabilization, we examined the permeability of Escherichia coli that separately expressed the late proteins. VP2 and VP3, but not VP1, caused the permeabilization of bacterial membranes. Additionally, VP3 expression resulted in bacterial cell lysis. These findings demonstrate that VP3 possesses an inherent lytic property that is independent of eukaryotic signaling or cell death pathways.

  15. The other membrane is the target of diethylenetriamine pentaacetic acid (DTPA) in cellular injury

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, M.R.; Assis, M.L.B.; De Mattos, J.C.P.; Stunbo, A.C.; Carvalho, L.; Bernardo Filho, M.; Caldeira de Araujo, A. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Dept. de Biofisica e Biometria

    1997-12-31

    Full text. DTPA is the most commonly compound utilized for diagnostic imaging in nuclear medicine. After the conjugation to a radionuclide, such as {sup 99m} Tc, {sup 113m} In or {sup 111} In, DTPA allows satisfactory evaluation of esophageal transit, gastric emptying, glomerular filtration rate (GFR), blood-brain barrier (BBB), liver, and pulmonary system. However, our studies have shown a strong toxic effect in wild type bacterial cells (Escherichia coli AB 1157) caused by this drug, even when assayed in smaller concentration than administered to humans. DNA strand breaks analysis and cellular experiments in different mutant bacterial strain did not reveal any direct or indirect lesion in genetic material, respectively. Electron micrographs of treated E. coli demonstrated an irregular cell wall structure, which may result that some molecules present normally in extracellular environmental could exert their effect on intracellular metabolic processes. Since DTPA carry a chelator agent property, it suggest that DTPA take out Ca {sup +2} and/or other metallic ions present on membrane. Putting together, our results suggest that is essential the pH control of DTPA solution administered to patients. The role o DTPA on cellular membrane is still under investigation

  16. Preparation of oligodeoxynucleotide encapsulated cationic liposomes and release study with models of cellular membranes

    Directory of Open Access Journals (Sweden)

    Tamaddon AM.

    2007-05-01

    Full Text Available Cationic liposomes are used for cellular delivery of antisense oligodeoxynucleotide (AsODN, where release of encapsulated AsODN is mainly controlled by endocytosis and fusion mechanisms. In this investigation, it was tried to model such a release process that is difficult to evaluate in cell culture. For this purpose, an AsODN model (against protein kinase C-α was encapsulated in a DODAP-containing cationic liposome and evaluated for size, zeta-potential, encapsulation and ODN stability. Vesicular models of outer layer and total plasma membranes and early and late endosomal membranes were developed, based on lipid content and pH, using ether injection method. ODN release was determined by the fluorescence dequenching of encapsulated FITC-ODN. Zeta potential, size and ODN encapsulation efficiency of the prepared liposomes were -2.49 ± 7.15 mV, 108.4 nm and 73% respectively. ODN protection was 3-4 times more than that of conventional liposome/ODN complexation method. There was a correlation between model concentration and percent of ODN release. At 7.5 µM, the percent of released ODN was 76% for the cholesterol-free model of the late endosome and 16% for the early endosomal membrane; while the release was less than 11% for the models of plasma membrane. ODN release increased with temperature in the range of 4-37◦C for the late endosomal model, but not for others, possibly due to their high cholesterol contents or acidic pH. The interaction was fast and completed within 5 minutes and didn’t change in the range of 5-60 minutes. Our data are in agreement with published cell culture studies and reveal that cell-liposomes interaction can be modeled by lamellar membranes.

  17. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes.

    Science.gov (United States)

    Van Leene, Jelle; Eeckhout, Dominique; Cannoot, Bernard; De Winne, Nancy; Persiau, Geert; Van De Slijke, Eveline; Vercruysse, Leen; Dedecker, Maarten; Verkest, Aurine; Vandepoele, Klaas; Martens, Lennart; Witters, Erwin; Gevaert, Kris; De Jaeger, Geert

    2015-01-01

    Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most advanced methods to characterize protein complexes in plants, giving a comprehensive view on the protein-protein interactions (PPIs) of a certain protein of interest (bait). The bait protein is fused to a double affinity tag, which consists of a protein G tag and a streptavidin-binding peptide separated by a very specific protease cleavage site, allowing highly specific protein complex isolation under near-physiological conditions. Implementation of this optimized TAP tag, combined with ultrasensitive MS, means that these experiments can be performed on small amounts (25 mg of total protein) of protein extracts from Arabidopsis cell suspension cultures. It is also possible to use this approach to isolate low abundant protein complexes from Arabidopsis seedlings, thus opening perspectives for the exploration of protein complexes in a plant developmental context. Next to protocols for efficient biomass generation of seedlings (∼7.5 months), we provide detailed protocols for TAP (1 d), and for sample preparation and liquid chromatography-tandem MS (LC-MS/MS; ∼5 d), either from Arabidopsis seedlings or from cell cultures. For the identification of specific co-purifying proteins, we use an extended protein database and filter against a list of nonspecific proteins on the basis of the occurrence of a co-purified protein among 543 TAP experiments. The value of the provided protocols is illustrated through numerous applications described in recent literature.

  18. Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology.

    Science.gov (United States)

    Volinsky, Roman; Kinnunen, Paavo K J

    2013-06-01

    The oxidation of lipids has been shown to impact virtually all cellular processes. The paradigm has been that this involvement is due to interference with the functions of membrane-associated proteins. It is only recently that methodological advances in molecular-level detection and identification have begun to provide insights into oxidative lipid modification and its involvement in cell signaling as well as in major diseases and inflammation. Extensive evidence suggests a correlation between lipid peroxidation and degenerative neurological diseases such as Parkinson's and Alzheimer's, as well as type 2 diabetes and cancer. Despite the obvious relevance of understanding the molecular basis of the above ailments, the exact modes of action of oxidized lipids have remained elusive. In this minireview, we summarize recent findings on the biophysical characteristics of biomembranes following oxidative derivatization of their lipids, and how these altered properties are involved in both physiological processes and major pathological conditions. Lipid-bearing, oxidatively truncated and functionalized acyl chains are known to modify membrane bulk physical properties, such as thermal phase behavior, bilayer thickness, hydration and polarity profiles, as manifest in the altered structural dynamics of lipid bilayers, leading to augmented membrane permeability, fast lipid transbilayer diffusion (flip-flop), loss of lipid asymmetry (scrambling) and phase segregation (the formation of 'rafts'). These changes, together with the generated reactive lipid derivatives, can be further expected to interfere with lipid-protein interactions, influencing metabolic pathways, causing inflammation, the execution phase in apoptosis and initiating pathological processes. PMID:23506295

  19. Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in Tribolium castaneum.

    Science.gov (United States)

    van der Zee, Maurijn; Benton, Matthew A; Vazquez-Faci, Tania; Lamers, Gerda E M; Jacobs, Chris G C; Rabouille, Catherine

    2015-06-15

    In insects, the fertilized egg undergoes a series of rapid nuclear divisions before the syncytial blastoderm starts to cellularize. Cellularization has been extensively studied in Drosophila melanogaster, but its thick columnar blastoderm is unusual among insects. We therefore set out to describe cellularization in the beetle Tribolium castaneum, the embryos of which exhibit a thin blastoderm of cuboidal cells, like most insects. Using immunohistochemistry, live imaging and transmission electron microscopy, we describe several striking differences to cellularization in Drosophila, including the formation of junctions between the forming basal membrane and the yolk plasmalemma. To identify the nature of this novel junction, we used the parental RNAi technique for a small-scale screen of junction proteins. We find that maternal knockdown of Tribolium innexin7a (Tc-inx7a), an ortholog of the Drosophila gap junction gene Innexin 7, leads to failure of cellularization. In Inx7a-depleted eggs, the invaginated plasma membrane retracts when basal cell closure normally begins. Furthermore, transiently expressed tagged Inx7a localizes to the nascent basal membrane of the forming cells in wild-type eggs. We propose that Inx7a forms the newly identified junctions that stabilize the forming basal membrane and enable basal cell closure. We put forward Tribolium as a model for studying a more ancestral mode of cellularization in insects.

  20. A critical role of a cellular membrane traffic protein in poliovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    George A Belov

    2008-11-01

    Full Text Available Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA, implicating some components(s of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA.

  1. Membrane topology and cellular dynamics of foot-and-mouth disease virus 3A protein.

    Directory of Open Access Journals (Sweden)

    Mónica González-Magaldi

    Full Text Available Foot-and-mouth disease virus non-structural protein 3A plays important roles in virus replication, virulence and host-range; nevertheless little is known on the interactions that this protein can establish with different cell components. In this work, we have performed in vivo dynamic studies from cells transiently expressing the green fluorescent protein (GFP fused to the complete 3A (GFP3A and versions including different 3A mutations. The results revealed the presence of a mobile fraction of GFP3A, which was found increased in most of the mutants analyzed, and the location of 3A in a continuous compartment in the cytoplasm. A dual behavior was also observed for GFP3A upon cell fractionation, being the protein equally recovered from the cytosolic and membrane fractions, a ratio that was also observed when the insoluble fraction was further fractioned, even in the presence of detergent. Similar results were observed in the fractionation of GFP3ABBB, a 3A protein precursor required for initiating RNA replication. A nonintegral membrane protein topology of FMDV 3A was supported by the lack of glycosylation of versions of 3A in which each of the protein termini was fused to a glycosylation acceptor tag, as well as by their accessibility to degradation by proteases. According to this model 3A would interact with membranes through its central hydrophobic region exposing its N- and C- termini to the cytosol, where interactions between viral and cellular proteins required for virus replication are expected to occur.

  2. Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes.

    Science.gov (United States)

    Park, Joong Yull; Lee, Dae Ho; Lee, Eun Joong; Lee, Sang-Hoon

    2009-07-21

    Cells respond to geometrical cues, as well as to biochemical and mechanical stimuli. Recent progress in micro- and nano-technology has allowed researchers to create microbeads, micro-circular islands, and microposts, that can be used to examine the effect of geometrical cues on cellular behavior. Knowledge of changes in cell mechanics and morphology in response to geometric cues is important for understanding the basic behavior of cells during development and pathological processes. Most previous research in this area has focused on cell responses to two-dimensional planar or rectilinear structures. Very few studies have examined cell responses to three-dimensional curved structures because of the difficulty of fabricating such microstructures. Here we describe a novel method for the fabrication of convex and concave microstructures by use of a thin poly(dimethylsiloxane) (PDMS) membrane, SU-8 shadow mask, and negative air pressure without using any complicated silicon processes. We successfully fabricated concave and convex microstructures, with base diameters of 200-300 microm and depth (or height) of 50-150 microm (aspect ratios up to 1 : 0.5), and used these microstructures to study the responses of cultured L929 mouse fibroblast cells and human mesenchymal stem cells. These cells clearly sensed the three-dimensional microscale curvature and actively "escaped" from concave patterns, but not from those which were convex. Thus, it appears that microscale concave structures suppress cell adhesion and proliferation. We hypothesized that this might relate to deformation of the plasma membrane and subsequent opening of membrane channels. We anticipate that our system will be useful for various bio-MEMS (micro electro mechanical system) applications, including formation of uniformly-sized embryoid bodies, embryonic stem cell differentiation, and the fabrication of cell docking devices, microbioreactors, and microlenses as well as cell mechanics study. PMID:19568673

  3. Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc

    Institute of Scientific and Technical Information of China (English)

    Jun-guo YANG; Hai-ning YU; Shi-li SUN; Lan-cui ZHANG; Guo-qing HE; Undurti N. DAS; Hui RUAN; Sheng-rong SHEN

    2009-01-01

    Objective: To evaluate effects of epigallocatechin-3-gallate (EGCG) on the viability, membrane properties, and zinc distribution, with and without the presence of Zn2+, in human prostate carcinoma LNCaP cells. Methods: We examined changes in cellular morphology and membrane fluidity of LNCaP cells, distribution of cellular zinc, and the incorporated portion of EGCG after treatments with EGCG, Zn2+, and EGCG+Zn2+. Results: We observed an alteration in cellular morphology and a decrease in membrane fluidity of LNCaP cells after treatment with EGCG or Zn2+. The proportion of EGCG incorporated into liposomes treated with the mixture of EGCG and Zn2+ at the ratio of 1:l was 90.57%, which was significantly higher than that treated with EGCG alone (30.33%). Electron spin resonance (ESR) studies and determination of fatty acids showed that the effects of EGCG on the membrane fluidity of LNCaP were decreased by Zn2+. EGCG accelerated the accumulation of zinc in the mitochondria and cytosol as observed by atomic absorption spectrometer. Conclusion: These results show that EGCG interacted with cell membrane,decreased the membrane fluidity of LNCaP cells, and accelerated zinc accumulation in the mitochondria and cytosol, which could be the mechanism by which EGCG inhibits proliferation of LNCaP cells. In addition, high concentrations of Zn2+ could attenuate the actions elicited by EGCG.

  4. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol

    DEFF Research Database (Denmark)

    Ploug, M; Rønne, E; Behrendt, N;

    1991-01-01

    The cellular receptor for human urokinase-type plasminogen activator (u-PAR) is shown by several independent criteria to be a true member of a family of integral membrane proteins, anchored to the plasma membrane exclusively by a COOH-terminal glycosyl-phosphatidylinositol moiety. 1) Amino acid...... acid compositions derived from cDNA sequence and amino acid analysis shows that a polypeptide of medium hydrophobicity is excised from the COOH terminus of the nascent u-PAR. A similar proteolytic processing has been reported for other proteins that are linked to the plasma membrane by a glycosyl...

  5. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology.

    Science.gov (United States)

    Hou, Tim Y; Davidson, Laurie A; Kim, Eunjoo; Fan, Yang-Yi; Fuentes, Natividad R; Triff, Karen; Chapkin, Robert S

    2016-07-17

    The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer. PMID:27431370

  6. Trans-membrane area asymmetry controls the shape of cellular organelles

    NARCIS (Netherlands)

    Beznoussenko, Galina V; Pilyugin, Sergei S; Geerts, Willie J C; Kozlov, Michael M; Burger, Koert N J; Luini, Alberto; Derganc, Jure; Mironov, Alexander A

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle.

  7. The Fingerprint of Anti-Bromodeoxyuridine Antibodies and Its Use for the Assessment of Their Affinity to 5-Bromo-2'-Deoxyuridine in Cellular DNA under Various Conditions.

    Directory of Open Access Journals (Sweden)

    Anna Ligasová

    Full Text Available We have developed a simple system for the analysis of the affinity of anti-bromodeoxyuridine antibodies. The system is based on the anchored oligonucleotides containing 5-bromo-2'-deoxyuridine (BrdU at three different positions. It allows a reliable estimation of the reactivity of particular clones of monoclonal anti-bromodeoxyuridine antibodies with BrdU in fixed and permeabilized cells. Using oligonucleotide probes and four different protocols for the detection of BrdU incorporated in cellular DNA, we identified two antibody clones that evinced sufficient reactivity to BrdU in all the tested protocols. One of these clones exhibited higher reactivity to 5-iodo-2'-deoxyuridine (IdU than to BrdU. It allowed us to increase the sensitivity of the used protocols without a negative effect on the cell physiology as the cytotoxicity of IdU was comparable with BrdU and negligible when compared to 5-ethynyl-2'-deoxyuridine. The combination of IdU and the improved protocol for oxidative degradation of DNA provided a sensitive and reliable approach for the situations when the low degradation of DNA and high BrdU signal is a priority.

  8. The Fingerprint of Anti-Bromodeoxyuridine Antibodies and Its Use for the Assessment of Their Affinity to 5-Bromo-2'-Deoxyuridine in Cellular DNA under Various Conditions

    Science.gov (United States)

    Ligasová, Anna; Liboska, Radek; Rosenberg, Ivan; Koberna, Karel

    2015-01-01

    We have developed a simple system for the analysis of the affinity of anti-bromodeoxyuridine antibodies. The system is based on the anchored oligonucleotides containing 5-bromo-2'-deoxyuridine (BrdU) at three different positions. It allows a reliable estimation of the reactivity of particular clones of monoclonal anti-bromodeoxyuridine antibodies with BrdU in fixed and permeabilized cells. Using oligonucleotide probes and four different protocols for the detection of BrdU incorporated in cellular DNA, we identified two antibody clones that evinced sufficient reactivity to BrdU in all the tested protocols. One of these clones exhibited higher reactivity to 5-iodo-2'-deoxyuridine (IdU) than to BrdU. It allowed us to increase the sensitivity of the used protocols without a negative effect on the cell physiology as the cytotoxicity of IdU was comparable with BrdU and negligible when compared to 5-ethynyl-2'-deoxyuridine. The combination of IdU and the improved protocol for oxidative degradation of DNA provided a sensitive and reliable approach for the situations when the low degradation of DNA and high BrdU signal is a priority. PMID:26161977

  9. Enzyme oscillation can enhance the thermodynamic efficiency of cellular metabolism: consequence of anti-phase coupling between reaction flux and affinity

    Science.gov (United States)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2016-04-01

    Cells generally convert nutrient resources to products via energy transduction. Accordingly, the thermodynamic efficiency of this conversion process is one of the most essential characteristics of living organisms. However, although these processes occur under conditions of dynamic metabolism, most studies of cellular thermodynamic efficiency have been restricted to examining steady states; thus, the relevance of dynamics to this efficiency has not yet been elucidated. Here, we develop a simple model of metabolic reactions with anabolism-catabolism coupling catalyzed by enzymes. Through application of external oscillation in the enzyme abundances, the thermodynamic efficiency of metabolism was found to be improved. This result is in strong contrast with that observed in the oscillatory input, in which the efficiency always decreased with oscillation. This improvement was effectively achieved by separating the anabolic and catabolic reactions, which tend to disequilibrate each other, and taking advantage of the temporal oscillations so that each of the antagonistic reactions could progress near equilibrium. In this case, anti-phase oscillation between the reaction flux and chemical affinity through oscillation of enzyme abundances is essential. This improvement was also confirmed in a model capable of generating autonomous oscillations in enzyme abundances. Finally, the possible relevance of the improvement in thermodynamic efficiency is discussed with respect to the potential for manipulation of metabolic oscillations in microorganisms.

  10. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets

    Science.gov (United States)

    Yue, Tongtao; Zhang, Xianren

    2012-01-01

    One key question in signal transduction is how the signal is relayed from the outer leaflet of a cellular membrane to the inner leaflet. Using a simulation model, a mechanism for the mediation of signal transduction is proposed here in which the coupling between membrane proteins in different leaflets can be achieved by the clustering of anchored proteins, without recruiting transmembrane proteins. Depending on the hydrophobic length of the anchored proteins, three coupling patterns, including face-to-face clustering, interdigitated clustering, and weak-coupled clustering, are observed in this work. This observation provides a possible explanation of how a particular downstream signaling pathway is selected.

  11. Biochemical characterization and cellular imaging of a novel, membrane permeable fluorescent cAMP analog

    Directory of Open Access Journals (Sweden)

    Zaccolo Manuela

    2008-06-01

    Full Text Available Abstract Background A novel fluorescent cAMP analog (8-[Pharos-575]- adenosine-3', 5'-cyclic monophosphate was characterized with respect to its spectral properties, its ability to bind to and activate three main isoenzymes of the cAMP-dependent protein kinase (PKA-Iα, PKA-IIα, PKA-IIβ in vitro, its stability towards phosphodiesterase and its ability to permeate into cultured eukaryotic cells using resonance energy transfer based indicators, and conventional fluorescence imaging. Results The Pharos fluorophore is characterized by a Stokes shift of 42 nm with an absorption maximum at 575 nm and the emission peaking at 617 nm. The quantum yield is 30%. Incubation of the compound to RIIα and RIIβ subunits increases the amplitude of excitation and absorption maxima significantly; no major change was observed with RIα. In vitro binding of the compound to RIα subunit and activation of the PKA-Iα holoenzyme was essentially equivalent to cAMP; RII subunits bound the fluorescent analog up to ten times less efficiently, resulting in about two times reduced apparent activation constants of the holoenzymes compared to cAMP. The cellular uptake of the fluorescent analog was investigated by cAMP indicators. It was estimated that about 7 μM of the fluorescent cAMP analog is available to the indicator after one hour of incubation and that about 600 μM of the compound had to be added to intact cells to half-maximally dissociate a PKA type IIα sensor. Conclusion The novel analog combines good membrane permeability- comparable to 8-Br-cAMP – with superior spectral properties of a modern, red-shifted fluorophore. GFP-tagged regulatory subunits of PKA and the analog co-localized. Furthermore, it is a potent, PDE-resistant activator of PKA-I and -II, suitable for in vitro applications and spatial distribution evaluations in living cells.

  12. Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: Evidence for low-affinity sites and for the involvement of G proteins

    International Nuclear Information System (INIS)

    Detailed kinetic studies of the binding of the calcium channel antagonist (+)-[3H]PN200-110 to membrane preparations form rabbit skeletal muscle have demonstrated that, in addition to the high-affinity sites that are readily measured in equilibrium and kinetic experiments, there are also dihydropyridine binding sites with much lower affinities. These sites were detected by the ability of micromolar concentrations of several dihydropyridines to accelerate the rate of dissociation of (+)-[3H]PN200-110 from its high-affinity sites. The observed increase in rate was dependent on the concentration of competing ligand, and half-maximal effects occurred at approximately 10 μM for the agonist (±)-Bay K8644 and for the antagonists nifedipine, (±)-nitrendipine, and (+)-PN200-110. The low-affinity sites appear to be stereospecific since (-)-PN200-110 (1-200 μM) did not affect the dissociation rate. The possible involvement of guanine nucleotide binding proteins in dihydropyridine binding has been investigated by studying the effects of guanosine 5'-O-(3-thiotriphosphate) (GTPγS) and guanosine 5'-O-(2-thiodiphosphate) (GDPβS) on binding parameters. GTPγS did increase the ability of (±)-[3H]PN200-110. These results suggest that skeletal muscle dihydropyridine receptors have low-affinity binding sites that may be involved in the regulation of calcium channel function and that activation of a guanine nucleotide binding protein may modulate the binding of agonists but not of antagonists to these sites

  13. A trans-well-based cellular model for the rapid pre-evaluation of tympanic membrane repair materials.

    Science.gov (United States)

    Hung, Shih-Han; Su, Chin-Hui; Tseng, How

    2016-08-01

    It is important to have a standardized tympanic membrane (TM) perforation platform to evaluate the various myringoplasty materials that have been studied and developed extensively during recent years. However, currently there are no cellular models specifically designed for this purpose, and animal models remain unsatisfactory. The purpose of this study is to propose an inexpensive, readily available, well-controlled, and easy-to-create cellular model as a substitute for use in the evaluation of TM repairing materials. A trans-well model was created using a cell culture insert with a round hole created at the center of the polycarbonate membrane. HaCaT cells were cultured on the fenestrated culture insert, and the desired myringoplasty graft was placed at the center of the window for one week and observed by fluorescent microscopy under vital staining. Under this cellular model, there was notable migration of HaCaT cells onto the positive control graft (rabbit fascia), while only a few cell clusters were observed on the negative control graft (paper). Model validation showed that the cell migration ratio for the PLLA + 1% hyaluronic acid (HA) graft is significantly higher than using myringoplasty paper, poly L-lactide (PLLA), or PLLA + 0.5% HA (p < 0.05). This trans-well-based cellular model might be a useful pre-evaluation platform for the evaluation of TM repairing materials. The model is inexpensive, readily available, easy to create, and standardized for use. PMID:26335291

  14. Large-scale analysis of in Vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N;

    2003-01-01

    Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poo...

  15. Binding and degradation of /sup 125/I-insulin by isolated rat renal brush border membranes: evidence for low affinity, high capacity insulin recognition sites

    Energy Technology Data Exchange (ETDEWEB)

    Meezan, E.; Pillion, D.J.; Elgavish, A.

    1988-10-01

    The kidney plays a major role in the handling of circulating insulin in the blood, primarily via reuptake of filtered insulin at the luminal brush border membrane. 125I-insulin associated with rat renal brush border membrane vesicles (BBV) in a time- and temperature-dependent manner accompanied by degradation of the hormone to trichloroacetic acid (TCA)-soluble fragments. Both association and degradation of 125I-insulin were linearly proportional to membrane protein concentration with virtually all of the degradative activity being membrane associated. Insulin, proinsulin and desoctapeptide insulin all inhibited the association and degradation of 125I-insulin by BBV, but these processes were not appreciably affected by the insulin-like growth factors IGF-I and IGF-II or by cytochrome c and lysozyme, low molecular weight, filterable, proteins, which are known to be reabsorbed in the renal tubules by luminal endocytosis. When the interaction of 125I-insulin with BBV was studied at various medium osmolarities (300-1100 mosM) to alter intravesicular space, association of the ligand with the vesicles was unaffected, but degradation of the ligand by the vesicles decreased progressively with increasing medium osmolarity. Therefore, association of 125I-insulin to BBV represented binding of the ligand to the membrane surface and not uptake of the hormone or its degradation products into the vesicles. Attempts to crosslink 125I-insulin to a high-affinity insulin receptor using the bifunctional reagent disuccinimidyl suberate revealed only trace amounts of an 125I-insulin-receptor complex in brush border membrane vesicles in contrast to intact renal tubules where this complex was readily observed. Both binding and degradation of 125I-insulin by brush border membranes did not reach saturation even at concentrations of insulin approaching 10(-5) M.

  16. Binding and degradation of 125I-insulin by isolated rat renal brush border membranes: evidence for low affinity, high capacity insulin recognition sites

    International Nuclear Information System (INIS)

    The kidney plays a major role in the handling of circulating insulin in the blood, primarily via reuptake of filtered insulin at the luminal brush border membrane. 125I-insulin associated with rat renal brush border membrane vesicles (BBV) in a time- and temperature-dependent manner accompanied by degradation of the hormone to trichloroacetic acid (TCA)-soluble fragments. Both association and degradation of 125I-insulin were linearly proportional to membrane protein concentration with virtually all of the degradative activity being membrane associated. Insulin, proinsulin and desoctapeptide insulin all inhibited the association and degradation of 125I-insulin by BBV, but these processes were not appreciably affected by the insulin-like growth factors IGF-I and IGF-II or by cytochrome c and lysozyme, low molecular weight, filterable, proteins, which are known to be reabsorbed in the renal tubules by luminal endocytosis. When the interaction of 125I-insulin with BBV was studied at various medium osmolarities (300-1100 mosM) to alter intravesicular space, association of the ligand with the vesicles was unaffected, but degradation of the ligand by the vesicles decreased progressively with increasing medium osmolarity. Therefore, association of 125I-insulin to BBV represented binding of the ligand to the membrane surface and not uptake of the hormone or its degradation products into the vesicles. Attempts to crosslink 125I-insulin to a high-affinity insulin receptor using the bifunctional reagent disuccinimidyl suberate revealed only trace amounts of an 125I-insulin-receptor complex in brush border membrane vesicles in contrast to intact renal tubules where this complex was readily observed. Both binding and degradation of 125I-insulin by brush border membranes did not reach saturation even at concentrations of insulin approaching 10(-5) M

  17. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    International Nuclear Information System (INIS)

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated [3H] uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity. (Author)

  18. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  19. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    International Nuclear Information System (INIS)

    Binding studies were performed with two 125I-labeled Bacillus thuringiensis δ-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One δ-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other δ-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis δ-endotoxins active against M. sexta compete for binding of 125I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles

  20. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, C.; Vanderbruggen, H.; Hoefte, H.; Van Rie, J.; Jansens, S.; Van Mellaert, H. (J. Plateaustraat, Gent (Belgium))

    1988-11-01

    Binding studies were performed with two {sup 125}I-labeled Bacillus thuringiensis {delta}-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One {delta}-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other {delta}-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis {delta}-endotoxins active against M. sexta compete for binding of {sup 125}I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles.

  1. (/sup 3/H)dihydroergotamine as a high-affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states

    Energy Technology Data Exchange (ETDEWEB)

    Hamblin, M.W.; Ariani, K.; Adriaenssens, P.I.; Ciaranello, R.D.

    1987-12-01

    (/sup 3/H)Dihydroergotamine (DE) labels a population of binding sites in rat brain membranes with an affinity of approximately 70 pM in both hippocampus (maximal binding at saturation (Bmax) = 340 fmol/mg of protein) and cerebral cortex (Bmax = 250 fmol/mg of protein). Specific binding typically comprises about 97% of total binding at the Kd of the radioligand when nonspecific binding is determined in the presence of 100 nM unlabeled DE. Association kinetics at 37 degrees C are consistent with a uniform association rate constant for all sites labeled. Specific binding is completely reversible with addition of excess unlabeled DE, but dissociation does not proceed with simple first-order kinetics, suggesting the presence of more than one discrete binding site. Competition studies with selective drugs reveal alpha adrenergic, 5-HT1A and 5-HT1B components of (/sup 3/H)DE specific binding. When phentolamine (500 nM) is included to block alpha receptors and DPAT (100 nM) or spiroxatrine (500 nM) is included to block 5-HT1A receptors, specific binding is exclusively to sites with drug affinities characteristic of 5-HT1B receptors. Under these 5-HT1B-selective conditions, (/sup 3/H)DE binding is about 90% specific, with a Kd of about 50 to 60 pM and a Bmax of 96 fmol/mg of protein in hippocampus and 77 fmol/mg of protein in cortex. (/sup 3/H)DE binding to 5-HT1B sites is very slowly dissociable, with a T1/2 of greater than 2 h at 37 degrees C. 5-HT1B antagonists and DE itself yield competition curves at (/sup 3/H)DE-labeled 5-HT1B sites that are adequately fit assuming a single site in nonlinear regression analysis. Addition of 100 microM guanylyl 5'-imidodiphosphate appears to convert nearly all 5-HT1B sites to those having low affinity for agonists while having a much smaller effect on the binding of (/sup 3/H)DE.

  2. Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation.

    Science.gov (United States)

    Burdman, S; Dulguerova, G; Okon, Y; Jurkevitch, E

    2001-04-01

    The major outer membrane protein (MOMP) of the nitrogen-fixing rhizobacterium Azospirillum brasilense strain Cd was purified and isolated by gel filtration, and antiserum against this protein was obtained. A screening of the binding of outer membrane proteins (OMPs) of A. brasilense to membrane-immobilized root extracts of various plant species revealed different affinities for the MOMP, with a stronger adhesion to extracts of cereals in comparison with legumes and tomatoes. Moreover, this protein was shown to bind to roots of different cereal seedlings in an in vitro adhesion assay. Incubation of A. brasilense cells with MOMP-antiserum led to fast agglutination, indicating that the MOMP is a surface-exposed protein. Cells incubated with Fab fragments obtained from purified MOMP-antiserum immunoglobulin G exhibited significant inhibition of bacterial aggregation as compared with controls. Bacteria preincubated with Fab fragments showed weaker adhesion to corn roots in comparison to controls without Fab fragments. These findings suggest that the A. brasilense MOMP acts as an adhesin involved in root adsorption and cell aggregation of this bacterium.

  3. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function.

    Science.gov (United States)

    Sarin, Hemant

    2015-11-26

    Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre

  4. Affinity Capillary Electrophoresis:Study of the Binding of HIV-1 gp41 with a Membrane Protein (P45) on the Human B Cell Line,Raji

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Affinity capillary electrophoresis has been used to study the interaction between a membrane protein (P45) isolated from the Human B cell line, Raji, and rsgp41. P45, rsgp41 and the complexes were well resolved. The entire separation was achieved in less than 3min. Formations of two kinds of stable P45-rsgp41 complexes were confirmed based on migration time comparison; the binding equilibrium was achieved as soon as two proteins were mixed. The results indicate that the interaction between P45 and rsgp41 is strong with a fast association rate and a slow dissociation rate, and there are at least two kinds of binding sites with different binding constants between P45 and rsgp41.

  5. Identification of a point mutation in type IIB von Willebrand disease illustrating the regulation of von Willebrand factor affinity for the platelet membrane glycoprotein Ib-IX receptor

    International Nuclear Information System (INIS)

    von Willebrand factor (vWF) supports platelet adhesion on thrombogenic surfaces by binding to platelet membrane glycoprotein (GP) Ib in the GP Ib-IX receptor complex. This interaction is physiologically regulated so that it does not occur between circulating vWF and platelets but, rather, only at a site of vascular injury. The abnormal vWF found in type IIB von Willebrand disease, however, has a characteristically increased affinity for GP Ib and binds to circulating platelets. The authors have analyzed the molecular basis of this abnormality by sequence analysis of a type IIB vWF cDNA and have identified a single amino acid change, Trp550 to Cys550, located in the GP IB-binding domain of the molecule comprising residues 449-728. Bacterial expression of recombinant fragments corresponding to this vWF domain yielded molecules that, whether containing a normal Trp550 or a mutant Cys550 residue, bound directly to GP Ib in the absence of modulators and with similar affinity. These results identify a region of vWF that, although not thought to be directly involved in binding to GP Ib, may modulate the interaction through conformational changes

  6. Expression and cellular localisation of chloride intracellular channel 3 in human placenta and fetal membranes

    NARCIS (Netherlands)

    Money, T. T.; King, R. G.; Wong, M.H.; Stevenson, J. L.; Kalionis, B.; Erwich, J. J. H. M.; Huisman, Marcel; Timmer, A.; Hiden, U.; Desoye, G.; Gude, N. M.

    2007-01-01

    Chloride channels regulate the movement of a major cellular anion and are involved in fundamental processes that are critical for cell viability. Regulation of intracellular chloride is achieved by multiple classes of channel proteins. One class of putative channels are the chloride intracellular ch

  7. Insights into cell membrane microdomain organization from live cell single particle tracking of the IgE high affinity receptor FcϵRI of mast cells.

    Science.gov (United States)

    Espinoza, Flor A; Wester, Michael J; Oliver, Janet M; Wilson, Bridget S; Andrews, Nicholas L; Lidke, Diane S; Steinberg, Stanly L

    2012-08-01

    Current models propose that the plasma membrane of animal cells is composed of heterogeneous and dynamic microdomains known variously as cytoskeletal corrals, lipid rafts and protein islands. Much of the experimental evidence for these membrane compartments is indirect. Recently, live cell single particle tracking studies using quantum dot-labeled IgE bound to its high affinity receptor FcϵRI, provided direct evidence for the confinement of receptors within micrometer-scale cytoskeletal corrals. In this study, we show that an innovative time-series analysis of single particle tracking data for the high affinity IgE receptor, FcϵRI, on mast cells provides substantial quantitative information about the submicrometer organization of the membrane. The analysis focuses on the probability distribution function of the lengths of the jumps in the positions of the quantum dots labeling individual IgE FcϵRI complexes between frames in movies of their motion. Our results demonstrate the presence, within the micrometer-scale cytoskeletal corrals, of smaller subdomains that provide an additional level of receptor confinement. There is no characteristic size for these subdomains; their size varies smoothly from a few tens of nanometers to a over a hundred nanometers. In QD-IGE labeled unstimulated cells, jumps of less than 70 nm predominate over longer jumps. Addition of multivalent antigen to crosslink the QD-IgE-FcϵRI complexes causes a rapid slowing of receptor motion followed by a long tail of mostly jumps less than 70 nm. The reduced receptor mobility likely reflects both the membrane heterogeneity revealed by the confined motion of the monomeric receptor complexes and the antigen-induced cross linking of these complexes into dimers and higher oligomers. In both cases, the probability distribution of the jump lengths is well fit, from 10 nm to over 100 nm, by a novel power law. The fit for short jumps suggests that the motion of the quantum dots can be modeled as

  8. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection.

    Science.gov (United States)

    Yang, Qian; Zhang, Qiong; Tang, Jun; Feng, Wen-Hai

    2015-10-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) represents a significantly economical challenge to the swine industry worldwide. In this study, we investigated the importance of cellular and viral lipid rafts in PRRSV infection. First, we demonstrated that PRRSV glycoproteins, Gp3 and Gp4, were associated with lipid rafts during viral entry, and disruption of cellular lipid rafts inhibited PRRSV entry. We also showed the raft-location of CD163, which might contribute to the glycoproteins-raft association. Subsequently, raft disruption caused a significant reduction of viral RNA production. Moreover, Nsp9 was shown to be distributed in rafts, suggesting that rafts probably serve as a platform for PRRSV replication. Finally, we confirmed that disassembly of rafts on the virus envelope may affect the integrity of PRRSV particles and cause the leakage of viral proteins, which impaired PRRSV infectivity. These findings might provide insights on our understanding of the mechanism of PRRSV infection.

  9. Preparation of oligodeoxynucleotide encapsulated cationic liposomes and release study with models of cellular membranes

    OpenAIRE

    Tamaddon AM.; Hosseini-Shirazi F.; Moghimi HR

    2007-01-01

    Cationic liposomes are used for cellular delivery of antisense oligodeoxynucleotide (AsODN), where release of encapsulated AsODN is mainly controlled by endocytosis and fusion mechanisms. In this investigation, it was tried to model such a release process that is difficult to evaluate in cell culture. For this purpose, an AsODN model (against protein kinase C-α) was encapsulated in a DODAP-containing cationic liposome and evaluated for size, zeta-potential, encapsulation and ODN stab...

  10. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX. PMID:24173598

  11. Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator.

    Directory of Open Access Journals (Sweden)

    Walter Arnold

    Full Text Available Polyunsaturated fatty acids (PUFA have a multitude of health effects. Their incorporation into membrane phospholipids (PL is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (T(b, whereas long chain (>C18 n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low T(b. Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of T(b and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic

  12. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a concentration-depende

  13. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121

    International Nuclear Information System (INIS)

    Cholesterol that was assimilated by Lactobacillus acidophilus ATCC 43121 was not metabolically degraded; most of it was recovered with the cells. Cells that were grown in the presence of cholesterol micelles and bile salts were more resistant to lysis by sonication than were those grown in their absence, suggesting a possible alteration of the cell wall or membrane. Cholesterol assimilation occurred during growth at pH 6.0 as well as during growth without pH control. Part of the cholesterol that was assimilated by cells was recovered in the membrane fractions of cells grown under both conditions. There was no difference in the amount taken up from cholesterol micelles that were prepared using dioleoyl L-alpha-phosphatidylcholine or distearoyl L-alpha-phosphatidylcholine. Thus, the type of fatty acid (unsaturated or saturated) in the phospholipid did not influence the assimilation. As the amount of Tween 80 in the growth media increased beyond 0.05%, cholesterol uptake decreased, and the amount of growth remained the same. The higher concentrations of Tween 80 may have adversely affected the permeability of the cells

  14. Following the trail of lipids: Signals initiated by PI3K function at multiple cellular membranes.

    Science.gov (United States)

    Naguib, Adam

    2016-05-17

    Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] is the signaling currency of the phosphoinositide 3-kinase (PI3K)/AKT pathway; transduction through this axis depends on this signaling lipid. Formation of PtdIns(3,4,5)P3 is dictated not only by PI3K activation but also by the localization and access of PI3K to its substrate PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate). PI3K/AKT-mediated signaling is antagonized by PtdIns(3,4,5)P3 dephosphorylation. Although previously typically considered an event associated with the plasma membrane, it is now appreciated that the formation and metabolism of PtdIns(3,4,5)P3 occur on multiple membranes with distinct kinetics. Modulated activity of phosphatidylinositol lipid kinases and phosphatases contributes to intricately orchestrated lipid gradients that define the signaling status of the pathway at multiple sites within the cell.

  15. GST activity and membrane lipid saturation prevents mesotrione-induced cellular damage in Pantoea ananatis.

    Science.gov (United States)

    Prione, Lilian P; Olchanheski, Luiz R; Tullio, Leandro D; Santo, Bruno C E; Reche, Péricles M; Martins, Paula F; Carvalho, Giselle; Demiate, Ivo M; Pileggi, Sônia A V; Dourado, Manuella N; Prestes, Rosilene A; Sadowsky, Michael J; Azevedo, Ricardo A; Pileggi, Marcos

    2016-12-01

    Callisto(®), containing the active ingredient mesotrione (2-[4-methylsulfonyl-2-nitrobenzoyl]1,3-cyclohenanedione), is a selective herbicide that controls weeds in corn crops and is a potential environmental contaminant. The objective of this work was to evaluate enzymatic and structural changes in Pantoea ananatis, a strain isolated from water, in response to exposure to this herbicide. Despite degradation of mesotrione, probably due a glutathione-S-transferase (GST) pathway in Pantoea ananatis, this herbicide induced oxidative stress by increasing hydrogen peroxide production. Thiol fragments, eventually produced after mesotrione degradation, could be involved in increased GST activity. Nevertheless, there was no peroxidation damage related to this production, as malondialdehyde (MDA) synthesis, which is due to lipid peroxidation, was highest in the controls, followed by the mesotrione- and Callisto(®)-treated cultures at log growth phase. Therefore, P. ananatis can tolerate and grow in the presence of the herbicide, probably due an efficient control of oxidative stress by a polymorphic catalase system. MDA rates depend on lipid saturation due to a pattern change to a higher level of saturation. These changes are likely related to the formation of GST-mesotrione conjugates and mesotrione degradation-specific metabolites and to the presence of cytotoxic adjuvants. These features may shift lipid membrane saturation, possibly providing a protective effect to bacteria through an increase in membrane impermeability. This response system in P. ananatis provides a novel model for bacterial herbicide tolerance and adaptation in the environment. PMID:27620734

  16. Protein-Coupled Fluorescent Probe To Visualize Potassium Ion Transition on Cellular Membranes.

    Science.gov (United States)

    Hirata, Tomoya; Terai, Takuya; Yamamura, Hisao; Shimonishi, Manabu; Komatsu, Toru; Hanaoka, Kenjiro; Ueno, Tasuku; Imaizumi, Yuji; Nagano, Tetsuo; Urano, Yasuteru

    2016-03-01

    K(+) is the most abundant metal ion in cells, and changes of [K(+)] around cell membranes play important roles in physiological events. However, there is no practical method to selectively visualize [K(+)] at the surface of cells. To address this issue, we have developed a protein-coupled fluorescent probe for K(+), TLSHalo. TLSHalo is responsive to [K(+)] in the physiological range, with good selectivity over Na(+) and retains its K(+)-sensing properties after covalent conjugation with HaloTag protein. By using cells expressing HaloTag on the plasma membrane, we successfully directed TLSHalo specifically to the outer surface of target cells. This enabled us to visualize localized extracellular [K(+)] change with TLSHalo under a fluorescence microscope in real time. To confirm the experimental value of this system, we used TLSHalo to monitor extracellular [K(+)] change induced by K(+) ionophores or by activation of a native Ca(2+)-dependent K(+) channel (BK channel). Further, we show that K(+) efflux via BK channel induced by electrical stimulation at the bottom surface of the cells can be visualized with TLSHalo by means of total internal reflection fluorescence microscope (TIRFM) imaging. Our methodology should be useful to analyze physiological K(+) dynamics with high spatiotemporal resolution. PMID:26894407

  17. A photo-defined membrane for precisely patterned cellular and microparticle arrays

    Directory of Open Access Journals (Sweden)

    A. L. McPherson

    2012-03-01

    Full Text Available The ability to pattern particles in well-defined arrays enhances microfluidic devices. A low-fluorescence optically transparent photo-curable resist (1002F was characterized for use as a mechanical sieve in a microfluidic chip. Films of thickness 10 μm and 25 μm were created containing pores 6–10 μm in diameter with pitches ranging from 5–300 μm. The uniform photo-defined pores had diameters with standard deviations of 3%. Integrated with microfluidic devices, the films were used to trap polystyrene microspheres, and in a different experiment, MCF7 human epithelial adenocarcinoma cells (ATCC HTB-22. A mechanical sieve was used to trap two types of fluorescent particles and, separately MCF7 cells with NIH/3T3 murine fibroblast cells (ATCC CRL-1658 as a proof-of-concept for striated cellular co-culture.

  18. A photo-defined membrane for precisely patterned cellular and microparticle arrays

    Science.gov (United States)

    McPherson, A. L.; Walker, G. M.

    2012-03-01

    The ability to pattern particles in well-defined arrays enhances microfluidic devices. A low-fluorescence optically transparent photo-curable resist (1002F) was characterized for use as a mechanical sieve in a microfluidic chip. Films of thickness 10 μm and 25 μm were created containing pores 6-10 μm in diameter with pitches ranging from 5-300 μm. The uniform photo-defined pores had diameters with standard deviations of 3%. Integrated with microfluidic devices, the films were used to trap polystyrene microspheres, and in a different experiment, MCF7 human epithelial adenocarcinoma cells (ATCC HTB-22). A mechanical sieve was used to trap two types of fluorescent particles and, separately MCF7 cells with NIH/3T3 murine fibroblast cells (ATCC CRL-1658) as a proof-of-concept for striated cellular co-culture.

  19. Cellular Immune Responses in Humans Induced by Two Serogroup B Meningococcal Outer Membrane Vesicle Vaccines Given Separately and in Combination.

    Science.gov (United States)

    Oftung, Fredrik; Korsvold, Gro Ellen; Aase, Audun; Næss, Lisbeth M

    2016-04-01

    MenBvac and MeNZB are safe and efficacious outer membrane vesicle (OMV) vaccines against serogroup B meningococcal disease. Antibody responses have previously been investigated in a clinical trial with these two OMV vaccines given separately (25 μg/dose) or in combination (12.5 and 12.5 μg/dose) in three doses administered at 6-week intervals. Here, we report the results from analyzing cellular immune responses against MenBvac and MeNZB OMVs in terms of antigen-specific CD4(+)T cell proliferation and secretion of cytokines. The proliferative CD4(+)T cell responses to the combined vaccine were of the same magnitude as the homologous responses observed for each individual vaccine. The results also showed cross-reactivity in the sense that both vaccine groups receiving separate vaccines responded to both homologous and heterologous OMV antigen when assayed for antigen-specific cellular proliferation. In addition, a multiplex bead array assay was used to analyze the presence of Th1 and Th2 cytokines in cell culture supernatants. The results showed that gamma interferon, interleukin-4 (IL-4), and IL-10 responses could be detected as a result of vaccination with both the MenBvac and the MeNZB vaccines given separately, as well as when given in combination. With respect to cross-reactivity, the cytokine results paralleled the observations made for proliferation. In conclusion, the results demonstrate that cross-reactive cellular immune responses involving both Th1 and Th2 cytokines can be induced to the same extent by different tailor-made OMV vaccines given either separately or in combination with half the dose of each vaccine. PMID:26865595

  20. Adsorption of papain with Cibacron Blue F3GA carrying cellulose affinity membranes%木瓜蛋白酶在染料Cibacron Blue F3GA纤维素亲和膜上的吸附研究

    Institute of Scientific and Technical Information of China (English)

    张海涛; 聂华丽; 陈天翔; 苏赛男; 朱利民

    2009-01-01

    以纤维素滤纸膜为载体,染料Cibacron Blue F3GA为配基,制备了一种新型亲和膜色谱介质.采用扫描电镜、红外光谱、元素分析等方法对亲和膜介质进行鉴定与表征,该膜具有良好的色谱性能.亲和膜对F3GA的键合质量摩尔浓度达93.7 μmol/g.研究了木瓜蛋白酶在亲和膜上的吸附行为,实验表明:在30℃下、酶质量浓度为2 mg/mL、pH=8.0时,吸附质量比可达57.9 mg/g,改变pH值及离子强度等条件对吸附质量比有明显的影响.在最适条件下吸附遵循Langmuir型吸附.可以初步推断,纤维素滤纸膜可以制成性能优良的亲和膜色谱介质,成本低廉,适合工业化分离纯化生物大分子.%Cibacron Blue F3GA (CB F3GA) as a hgand was immobilized onto cellulose membranes to produce a novel affinity membrane. The physical properties and its apphcations of affinity membrane chromatography were examined by means of scanning electron microscope (SEM), infra-red spectrum and elementary analysis, etc. The bonding content of CB F3GA attached on membranes was 93.7 μmol/g. The adsorption behavior of papain on affinity membranes was studied. The result shows that higher papain adsorption capacity (up to 57.9 mg/g membrane) can be achieved under the condition of 2.0 mg/mL papain solution, 30℃, pH=8.0. Changing pH and ionic strength has obvious effects on the adsorption of papain. The adsorption of papain on affinity membranes can be described by the Langmuir isotherm. Therefore, it can prehminarily foresee that the cellulose membrane can become the low-cost but high-efficiency affinity membranes base for papain separation, which is applicable for commercial separating the biological macromolecular.

  1. Monoclonal antibody affinity purification of a 78 kDa membrane protein of Leishmania donovani of Indian origin and its role in host–parasite interaction

    Indian Academy of Sciences (India)

    Mandira Mukherjee; Anindita Bhattacharyya; Swadesh Duttagupta

    2002-12-01

    Monoclonal antibodies were raised against pathogenic promastigotes of Leishmania donovani of Indian origin. Among these, one was used for immuno-affinity purification of a 78 kDa membrane protein present in both the amastigote and promastigote forms of the parasite. Results of immunoblot experiments with the anti-78 kDa antibody revealed that the protein was present only in parasites belonging to the L. donovani complex. The expression of the protein was observed to be the same during different phases of growth of the promastigotes. Therefore, the 78 kDa protein is neither stage-specific nor differentially regulated. Surface iodination and subcellular fractionation of the promastigotes indicated that the protein was localized on the cell surface. The 78 kDa protein was found to inhibit the binding of promastigotes to macrophages significantly, suggesting that it may play a role in the process of infection. Thus, here we report the purification of a surface protein of L. donovani of Indian origin, which may play an important role in the process of infection.

  2. High frequency application of nanosecond pulsed electric fields alters cellular membrane disruption and fluorescent dye uptake

    Science.gov (United States)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Beier, Hope T.; Ibey, Bennett L.

    2016-03-01

    Cells exposed to nanosecond-pulsed electric fields (nsPEF) exhibit a wide variety of nonspecific effects, including blebbing, swelling, intracellular calcium bursts, apoptotic and necrotic cell death, formation of nanopores, and depletion of phosphatidylinositol 4,5-biphosphate (PIP2) to induce activation of the inositol trisphosphate/diacylglycerol pathway. While several studies have taken place in which multiple pulses were delivered to cells, the effect of pulse repetition rate (PRR) is not well understood. To better understand the effects of PRR, a laser scanning confocal microscope was used to observe CHO-K1 cells exposed to ten 600ns, 200V pulses at varying repetition rates (5Hz up to 500KHz) in the presence of either FM 1-43, YO-PRO-1, or Propidium Iodide (PI) fluorescent dyes, probes frequently used to indicate nanoporation or permeabilization of the plasma membrane. Dye uptake was monitored for 30 seconds after pulse application at a rate of 1 image/second. In addition, a single long pulse of equivalent energy (200V, 6 μs duration) was applied to test the hypothesis that very fast PRR will approximate the biological effects of a single long pulse of equal energy. Upon examination of the data, we found strong variation in the relationship between PRR and uptake in each of the three dyes. In particular, PI uptake showed little frequency dependence, FM 1-43 showed a strong inverse relationship between frequency and internal cell fluorescence, and YO-PRO-1 exhibited a "threshold" point of around 50 KHz, after which the inverse trend observed in FM 1-43 was seen to reverse itself. Further, a very high PRR of 500 KHz only approximated the biological effects of a single 6 μs pulse in cells stained with YO-PRO-1, suggesting that uptake of different dyes may proceed by different physical mechanisms.

  3. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    Science.gov (United States)

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  4. Enzyme oscillation can enhance the thermodynamic efficiency of cellular metabolism: Consequence of anti-phase coupling between reaction flux and affinity

    CERN Document Server

    Himeoka, Yusuke

    2015-01-01

    Cells generally convert nutrient resources to useful products via energy transduction. Accordingly, the thermodynamic efficiency of this conversion process is one of the most essential characteristics of living organisms. However, although these processes occur under conditions of dynamic metabolism, most studies of cellular thermodynamic efficiency have been restricted to examining steady states; thus, the relevance of dynamics to this efficiency has not yet been elucidated. Here, we develop a simple model of metabolic reactions with anabolism-catabolism coupling catalysed by enzymes. Through application of external oscillation in the enzyme abundances, the thermodynamic efficiency of metabolism was found to be improved. This result is in strong contrast with that observed in the oscillatory input, in which the efficiency always decreased with oscillation. This improvement was effectively achieved by separating the anabolic and catabolic reactions, which tend to disequilibrate each other, and taking advantag...

  5. Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Directory of Open Access Journals (Sweden)

    Michael E. Hasselmo

    2008-01-01

    Full Text Available The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.

  6. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    Science.gov (United States)

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  7. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  8. Nuclear DNA sensor IFI16 as circulating protein in autoimmune diseases is a signal of damage that impairs endothelial cells through high-affinity membrane binding.

    Directory of Open Access Journals (Sweden)

    Francesca Gugliesi

    Full Text Available IFI16, a nuclear pathogenic DNA sensor induced by several pro-inflammatory cytokines, is a multifaceted protein with various functions. It is also a target for autoantibodies as specific antibodies have been demonstrated in the sera of patients affected by systemic autoimmune diseases. Following transfection of virus-derived DNA, or treatment with UVB, IFI16 delocalizes from the nucleus to the cytoplasm and is then eventually released into the extracellular milieu. In this study, using an in-house capture enzyme-linked immunsorbent assay we demonstrate that significant levels of IFI16 protein can also exist as circulating form in the sera of autoimmune patients. We also show that the rIFI16 protein, when added in-vitro to endothelial cells, does not affect cell viability, but severely limits their tubulogenesis and transwell migration activities. These inhibitory effects are fully reversed in the presence of anti-IFI16 N-terminal antibodies, indicating that its extracellular activity resides within the N-terminus. It was further demonstrated that endogenous IFI16 released by apoptotic cells bind neighboring cells in a co-culture. Immunofluorescence assays revealed existence of high-affinity binding sites on the plasma membrane of endothelial cells. Free recombinant IFI16 binds these sites on HUVEC with dissociation constant of 2.7 nM, radioiodinated and unlabeled IFI16 compete for binding sites, with inhibition constant (Ki of 14.43 nM and half maximal inhibitory concentration (IC50 of 67.88 nM; these data allow us to estimate the presence of 250,000 to 450,000 specific binding sites per cell. Corroborating the results from functional assays, this binding could be completely inhibited using anti-IFI16 N-terminal antibody, but not with an antibody raised against the IFI16 C-terminal. Altogether, these data demonstrate that IFI16 may exist as circulating protein in the sera of autoimmune patients which binds endothelial cells causing damage

  9. Comparative study of effects of magnesium and taurine on electrical parameters of natural and artificial membranes. VII. Effects on cellular and paracellular ionic transfer through isolated human amnion.

    Science.gov (United States)

    Bara, M; Guiet-Bara, A; Durlach, J

    1990-12-01

    The comparative effects of 2 mM magnesium and taurine on various components of the human transamniotic conductance, Gt, were observed. The use of both microelectrodes and metabolic inhibitors enables 10 components of Gt to be distinguished: six cellular components (Na-K ATPase, Na-H antiport, Na-K-2Cl cotransport and Na, K, Cl channels), one coupling component, and three paracellular components (Na, K, Cl). Mg increased all components of Gt while taurine only increased five of them (Na and K channels, coupling, Na and K paracellular conductance). A potentiometric effect of taurine on Mg2+ modified membrane, obtained on paracellular components, was not measured on cellular components. There was only a vicarious effect between Mg and taurine on the non-enzymatic cellular and paracellular transfer of Na and K.

  10. Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in Tribolium castaneum

    NARCIS (Netherlands)

    van der Zee, Maurijn; Benton, Matthew A; Vazquez-Faci, Tania; Lamers, Gerda E M; Jacobs, Chris G C; Rabouille, Catherine

    2015-01-01

    In insects, the fertilized egg undergoes a series of rapid nuclear divisions before the syncytial blastoderm starts to cellularize. Cellularization has been extensively studied in Drosophila melanogaster, but its thick columnar blastoderm is unusual among insects. We therefore set out to describe ce

  11. Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in Tribolium castaneum

    NARCIS (Netherlands)

    Van Der Zee, Maurijn; Benton, Matthew A.; Vazquez-Faci, Tania; Lamers, Gerda E M; Jacobs, Chris G C; Rabouille, Catherine

    2015-01-01

    In insects thefertilized egg undergoes a series of rapid nuclear divisions before the syncytial blastoderm starts to cellularize. Cellularization has been extensively studied in Drosophila melanogaster but its thick columnar blastoderm is unusual among insects.We therefore set out to describe cellul

  12. Investigation of cellular constituent in diabetic epiretinal membranes%糖尿病视网膜表面膜细胞成分的研究

    Institute of Scientific and Technical Information of China (English)

    辛晓蓉; 巩天祥

    2013-01-01

    Objective To investigate the main cellular constituent in diabetic epiretinal membranes with intact internal limiting membranes and postulate reasons for proliferation of those cells, and to provide new idea for exploring the pathological mechanism of the shaping of diabetic epiretinal membrane. Methods A total of 12 eyes with intact diabetic epiretinal membranes were selected,among which 10 eyes were collected from retinal-vitreous surgeries,2 eyes were collected from postmortem patients. Then the cellular constituent in the diabetic epiretinal membranes were determined by HE staining, immunohistochemical staining, and electron microscopy. Results Tests results of glial fibrillary acid protein (GFAP), S-100 protein, neural specific enolase (NSE)and vimentin were positive, which suggested the main cellular constituent in the diabetic epiretinal membranes were astrocytes. Astrocytes with regular rounded nuclei and mature mitochondria and Golgi apparatus in the cytoplasm were observed by electron microscopy. Flbrillar collagen was observed in the diabetic epiretinal membranes. Conclusion Astrocytes paly an important role in the shaping of diabetic epiretinal membranes. Astrocytes are the main cellular constituent in diabetic epiretinal membranes with intact internal limiting membranes.%目的 探讨在视网膜内界膜完整的情况下糖尿病视网膜表面膜中的主要细胞成分,推测这些增殖细胞的来源,为糖尿病视网膜表面膜形成的病理机制提供新的思路.方法 视网膜表面膜为糖尿病视网膜表面膜,10眼来自玻璃体视网膜手术眼,2眼取自尸体眼(生前为糖尿病视网膜表面膜眼),这些病例中内界膜都保持完整.通过HE染色、免疫组织化学和电镜检查研究表面膜的细胞成分.结果 神经纤维酸性蛋白、S-100蛋白、神经元特异性烯醇化酶、波形蛋白在视网膜表面膜表达阳性,提示表面膜中的主要细胞成分为星形胶质细胞.电镜观察可见

  13. The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders.

    Science.gov (United States)

    Morris, Gerwyn; Walder, Ken; Puri, Basant K; Berk, Michael; Maes, Michael

    2016-09-01

    Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.

  14. The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders.

    Science.gov (United States)

    Morris, Gerwyn; Walder, Ken; Puri, Basant K; Berk, Michael; Maes, Michael

    2016-09-01

    Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling. PMID:26310971

  15. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  16. Molecular dynamics studies of simple membrane — Water interfaces: Structure and functions in the beginnings of cellular life

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    1995-06-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Bom barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience “interfacial resistance” to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  17. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  18. Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone

    DEFF Research Database (Denmark)

    Jing, Xiaona; Yang, Mingjun; Kasimova, Marina Robertovna;

    2012-01-01

    Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone were studied...

  19. Membrane texture induced by specific protein binding and receptor clustering: active roles for lipids in cellular function

    OpenAIRE

    Watkins, E. B.; Miller, C.E.; Majewski, J.; Kuhl, T L

    2011-01-01

    Biological membranes are complex, self-organized structures that define boundaries and compartmentalize space in living matter. Composed of a wide variety of lipid and protein molecules, these responsive surfaces mediate transmembrane signaling and material transport within the cell and with its environment. It is well known that lipid membrane properties change as a function of composition and phase state, and that protein-lipid interactions can induce changes in the membrane’s properties an...

  20. Temperature-mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields.

    Science.gov (United States)

    Wang, Lang-Hong; Wang, Man-Sheng; Zeng, Xin-An; Liu, Zhi-Wei

    2016-08-01

    Effects of growth temperature on cell membrane fatty acid composition, fluidity and lethal and sublethal injury by pulsed electric fields (PEF) in Staphylococcus aureus ATCC 43300 (S. aureus) in the stationary phase were investigated. Analysis of the membrane fatty acids by gas chromatography-mass spectrometry (GC-MS) revealed that branched chain fatty acids (iso C14:0, iso C15:0, anteiso C15:0 and anteiso C17:0) and straight chain fatty acids (C12:0, C14:0, C16:0, C17:0 and C18:0) were primary constituents in the membrane. The S. aureus changed its membrane fatty acid composition and its overall fluidity when exposed to different temperatures. The PEF lethal and sublethal effects were assessed, and results suggested that the degree of inactivation depended on the cell membrane structure, electric field strength and treatment time. The PEF inactivation kinetics including lethal and sublethal injury fractions were fitted with non-linear Weibull distribution, suggesting that inactivation of the first log cycle of S. aureus population was significantly affected by growth temperature, and the membrane of cells became more fluid, and easier to induce electroportion in low temperatures. Moreover, the morphology of S. aureus cells were investigated by electron microscopy, showing that various temperature-modified cells were distorted to differing extents and some even collapsed due to deep irreversible electroporation after PEF treatment. PMID:27155566

  1. Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab:GTP for membrane binding and to catalyze tethering and fusion

    OpenAIRE

    Orr, Amy; Wickner, William; Rusin, Scott F.; Kettenbach, Arminja N.; Zick, Michael

    2015-01-01

    Fusion of yeast vacuoles requires the Rab GTPase Ypt7p, four SNAREs (soluble N-ethylmaleimide–sensitive factor attachment protein receptors), the SNARE disassembly chaperones Sec17p/Sec18p, vacuolar lipids, and the Rab-effector complex HOPS (homotypic fusion and vacuole protein sorting). Two HOPS subunits have direct affinity for Ypt7p. Although vacuolar fusion has been reconstituted with purified components, the functional relationships between individual lipids and Ypt7p:GTP have remained u...

  2. 等离子体引发聚合固定金属离子亲和膜的制备及其吸附性能%IMMOBOLIZED METAL ION AFFINITY MEMBRANE PREPARED BY PLASMA-INDUCED GRAFT POLYMERIZATION AND ITS ADSORPTION CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    柴红; 陈欢林; 徐立

    2001-01-01

    An immobilized metal ion affinity membrane was prepared byplasma-induced graft polymerization of glycidyl methacrylate (GMA) onto a porous polypropylene(PP),followed by chemical conversion of epoxide group of the GMA grafted membrane into an iminodiacetate(IDA) group,and chelation with copper ion. The effect of plasma discharge condition,GMA monomer concentration and grafting time on the degree of GMA grafting was studied and the optimum condition for plasma treatment of membrane was:10 W for 30 s,and that for grafting is 30 h at a concentration of 1 mol.L-1 GMA.Under this condition,a maximum grafting degree of 13.28% was obtained. The spectra of IR and XPS shows that GMA and IDA had been attached to the PP membrane after grafting and coupling. The nonselective adsorption of PP membrane had been significantly reduced after the H2SO4 treatment of the IDA coupled membrane. Finally,the isotherm adsorption of bovine serum albumin (BSA) on the immobilized metal ion affinity membrane was measured and the adsorption capacity of BSA increased with the degree of grafting. When BSA concentration was 1080 μg·ml-1,the adsorption ability of the affinity membrane with a grafting degree of 5.3% was nearly twice as much as that membrane with a grafting degree of 4.66%.

  3. Cellular processes and pathways that protect Saccharomyces cerevisiae cells against the plasma membrane-perturbing compound chitosan.

    NARCIS (Netherlands)

    A.M. Zakrzewska; A. Boorsma; D. Delneri; S. Brul; S.G. Oliver; F.M. Klis

    2007-01-01

    Global fitness analysis makes use of a genomic library of tagged deletion strains. We used this approach to study the effect of chitosan, which causes plasma membrane stress. The data were analyzed using T-profiler, which was based on determining the sensitivities of groups of deletion strains to ch

  4. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance

    OpenAIRE

    Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2007-01-01

    Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanisti...

  5. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2 Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    Directory of Open Access Journals (Sweden)

    Masaki Kurogochi

    Full Text Available Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain, and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC and complement dependent cytotoxicity (CDC. To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases, one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2, high-mannose type (Man4-9GlcNAc2, and complex type (Man3GlcNAc3-4 N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL, the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1 were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q, and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2 was performed using SKBR-3 and BT-474 as target

  6. Cellular Pathophysiology of an Adrenal Adenoma-Associated Mutant of the Plasma Membrane Ca(2+)-ATPase ATP2B3.

    Science.gov (United States)

    Tauber, Philipp; Aichinger, B; Christ, C; Stindl, J; Rhayem, Y; Beuschlein, F; Warth, R; Bandulik, S

    2016-06-01

    Adrenal aldosterone-producing adenomas (APAs) are a main cause for primary aldosteronism leading to arterial hypertension. Physiologically, aldosterone production in the adrenal gland is stimulated by angiotensin II and high extracellular potassium. These stimuli lead to a depolarization of the plasma membrane and, as a consequence, an increase of intracellular Ca(2+). Mutations of the plasma membrane Ca(2+)-ATPase ATP2B3 have been found in APAs with a prevalence of 0.6%-3.1%. Here, we investigated the effects of the APA-associated ATP2B3(Leu425_Val426del) mutation in adrenocortical NCI-H295R and human embryonic kidney (HEK-293) cells. Ca(2+) measurements revealed a higher basal Ca(2+) level in cells expressing the mutant ATP2B3. This rise in intracellular Ca(2+) was even more pronounced under conditions with high extracellular Ca(2+) pointing to an increased Ca(2+) influx associated with the mutated protein. Furthermore, cells with the mutant ATP2B3 appeared to have a reduced capacity to export Ca(2+) suggesting a loss of the physiological pump function. Surprisingly, expression of the mutant ATP2B3 caused a Na(+)-dependent inward current that strongly depolarized the plasma membrane and compromised the cytosolic cation composition. In parallel to these findings, mRNA expression of the cytochrome P450, family 11, subfamily B, polypeptide 2 (aldosterone synthase) was substantially increased and aldosterone production was enhanced in cells overexpressing mutant ATP2B3. In summary, the APA-associated ATP2B3(Leu425_Val426del) mutant promotes aldosterone production by at least 2 different mechanisms: 1) a reduced Ca(2+) export due to the loss of the physiological pump function; and 2) an increased Ca(2+) influx due to opening of depolarization-activated Ca(2+) channels as well as a possible Ca(2+) leak through the mutated pump. PMID:27035656

  7. 尼龙亲和膜的制备条件优化及其表征%Study on optimizing the preparation conditions and characterizing of novel nylon affinity membranes

    Institute of Scientific and Technical Information of China (English)

    聂华丽; 陈天翔; 朱利民

    2011-01-01

    尼龙膜经稀盐酸水解、壳聚糖改性后,以木瓜蛋白酶为亲和膜的配基,通过戊二醛的活化处理后采用共价结合的方法将配基键合在尼龙膜上,从而得到有特异吸附性能的尼龙亲和膜.本实验考察了制备尼龙亲和膜的交联剂戊二醛的质量分数、pH值、温度、反应时间和酶用量对亲和膜上木瓜蛋白酶活力的影响,确定了最适合的制备条件:pH=9.0,质量分数为0.5%的戊二醛,反应温度为45℃,反应时间为6 h,酶用量为10 mg/mL.该优化条件下制备的尼龙亲和膜具备优良的色谱性能,可用于分离纯化半胱氨酸蛋白酶抑制剂.%Nylon membranes are first hydrolyed with dilute HCl and then treated with chitosan before being used as the affinity carrier. Papain as a ligand has been immobilized on the actived membranes with glutaraldehyde as crosslinking agent. The factors involving with the activity of immobilized papain, such as concentration of glutaraldehyde, pH, temperature, reaction time, and the amount of added papain have been studied. The results show that the optimum conditions for papain immobilization are as follows: pH=9.0,0.5% glutaraldehyde solution, the concentration of added papain is 10 mg/mL, the reaction time is 6 h at 45 ℃. The nylon membrane prepared is then used to purify cystatin from potato juice, and showed that they are high efficiency affinity membranes base for cystatin separation.

  8. Humoral and cellular immune responses to synthetic peptides of the Leishmania donovani kinetoplastid membrane protein-11

    DEFF Research Database (Denmark)

    Jensen, A T; Gasim, S; Ismail, A;

    1998-01-01

    Native kinetoplastid membrane protein-11 (KMP-11), purified from crude extracts of Leishmania donovani parasites, activates T cells from individuals who have recovered from visceral leishmaniasis. In this work we used three 38-mer peptides spanning the amino acid sequence of the L. donovani KMP-11...... Sudanese visceral leishmaniasis patients (VL) and the percentage of patients with anti-KMP-11 antibodies in ELISA were 37% (KMP-11-1), 30% (KMP-11-2) and 58% (KMP-11-3). The fraction of VL patients with measurable antibody reactivity in one or more of the three ELISAs was 79%. Cross-reactivity to the KMP...

  9. Specific cellular incorporation of a pyrene-labelled cholesterol: lipoprotein-mediated delivery toward ordered intracellular membranes.

    Directory of Open Access Journals (Sweden)

    Gérald Gaibelet

    Full Text Available In the aim of testing tools for tracing cell trafficking of exogenous cholesterol, two fluorescent derivatives of cholesterol, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol and 21-methylpyrenyl-cholesterol (Pyr-met-Chol, with distinctive chemico-physical characteristics, have been compared for their cell incorporation properties, using two cell models differently handling cholesterol, with two incorporation routes. In the Caco-2 cell model, the cholesterol probes were delivered in bile salt micelles, as a model of intestinal absorption. The two probes displayed contrasting behaviors for cell uptake characteristics, cell staining, and efflux kinetics. In particular, Pyr-met-Chol cell incorporation involved SR-BI, while that of NBD-Chol appeared purely passive. In the PC-3 cell model, which overexpresses lipoprotein receptors, the cholesterol probes were delivered via the serum components, as a model of systemic delivery. We showed that Pyr-met-Chol-labelled purified LDL or HDL were able to specifically deliver Pyr-met-Chol to the PC-3 cells, while NBD-Chol incorporation was independent of lipoproteins. Observations by fluorescence microscopy evidenced that, while NBD-Chol readily stained the cytosolic lipid droplets, Pyr-met-Chol labelling led to the intense staining of intracellular structures of membranous nature, in agreement with the absence of detectable esterification of Pyr-met-Chol. A 48 h incubation of PC-3 cells with either Pyr-met-Chol-labelled LDL or HDL gave same staining patterns, mainly colocalizing with Lamp1, caveolin-1 and CD63. These data indicated convergent trafficking downwards their respective receptors, LDL-R and SR-BI, toward the cholesterol-rich internal membrane compartments, late endosomes and multivesicular bodies. Interestingly, Pyr-met-Chol staining of these structures exhibited a high excimer fluorescence emission, revealing their ordered membrane environment, and indicating that Pyr-met-Chol behaves as a fair

  10. Specific cellular incorporation of a pyrene-labelled cholesterol: lipoprotein-mediated delivery toward ordered intracellular membranes.

    Science.gov (United States)

    Gaibelet, Gérald; Allart, Sophie; Tercé, François; Azalbert, Vincent; Bertrand-Michel, Justine; Hamdi, Safouane; Collet, Xavier; Orlowski, Stéphane

    2015-01-01

    In the aim of testing tools for tracing cell trafficking of exogenous cholesterol, two fluorescent derivatives of cholesterol, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), with distinctive chemico-physical characteristics, have been compared for their cell incorporation properties, using two cell models differently handling cholesterol, with two incorporation routes. In the Caco-2 cell model, the cholesterol probes were delivered in bile salt micelles, as a model of intestinal absorption. The two probes displayed contrasting behaviors for cell uptake characteristics, cell staining, and efflux kinetics. In particular, Pyr-met-Chol cell incorporation involved SR-BI, while that of NBD-Chol appeared purely passive. In the PC-3 cell model, which overexpresses lipoprotein receptors, the cholesterol probes were delivered via the serum components, as a model of systemic delivery. We showed that Pyr-met-Chol-labelled purified LDL or HDL were able to specifically deliver Pyr-met-Chol to the PC-3 cells, while NBD-Chol incorporation was independent of lipoproteins. Observations by fluorescence microscopy evidenced that, while NBD-Chol readily stained the cytosolic lipid droplets, Pyr-met-Chol labelling led to the intense staining of intracellular structures of membranous nature, in agreement with the absence of detectable esterification of Pyr-met-Chol. A 48 h incubation of PC-3 cells with either Pyr-met-Chol-labelled LDL or HDL gave same staining patterns, mainly colocalizing with Lamp1, caveolin-1 and CD63. These data indicated convergent trafficking downwards their respective receptors, LDL-R and SR-BI, toward the cholesterol-rich internal membrane compartments, late endosomes and multivesicular bodies. Interestingly, Pyr-met-Chol staining of these structures exhibited a high excimer fluorescence emission, revealing their ordered membrane environment, and indicating that Pyr-met-Chol behaves as a fair cholesterol tracer

  11. Photophysical properties and localization of chlorins substituted with methoxy groups, hydroxyl groups and alkyl chains in liposome-like cellular membrane

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, S [Department of Physics, Hashemite University, Zarqa 13115 (Jordan)

    2007-06-01

    Some of the photophysical properties (stationary absorbance and fluorescence, fluorescence decay times and singlet oxygen quantum yields) of chlorins substituted with methoxy groups, hydroxyl groups and hydrocarbonic chains were studied in ethanol and dipalmitoyl-phosphatidylcholine (DPPC) liposomes using steady-state and time-resolved fluorescence spectroscopies. The photophysical behaviors of the chlorins in liposomes like cellular membrane were compared with those obtained from chlorin-liposome systems delivered to Jurkat cells in order to select potent photosensitizers for the photodynamic treatment of cancer. The localization of the studied chlorins inside liposomes was found to depend strongly on the substituents of chlorins. Absorption spectra of chlorins embedded in DPPC-liposomes have been recorded in the temperature range of 20-70 deg. C. It is demonstrated that the location of the chlorin molecules depends on the phase state of the phospholipids. These observations are confirmed by the fluorescence lifetimes, singlet oxygen lifetimes and singlet oxygen quantum yields results.

  12. Photophysical properties and localization of chlorins substituted with methoxy groups, hydroxyl groups and alkyl chains in liposome-like cellular membrane

    International Nuclear Information System (INIS)

    Some of the photophysical properties (stationary absorbance and fluorescence, fluorescence decay times and singlet oxygen quantum yields) of chlorins substituted with methoxy groups, hydroxyl groups and hydrocarbonic chains were studied in ethanol and dipalmitoyl-phosphatidylcholine (DPPC) liposomes using steady-state and time-resolved fluorescence spectroscopies. The photophysical behaviors of the chlorins in liposomes like cellular membrane were compared with those obtained from chlorin-liposome systems delivered to Jurkat cells in order to select potent photosensitizers for the photodynamic treatment of cancer. The localization of the studied chlorins inside liposomes was found to depend strongly on the substituents of chlorins. Absorption spectra of chlorins embedded in DPPC-liposomes have been recorded in the temperature range of 20-70 deg. C. It is demonstrated that the location of the chlorin molecules depends on the phase state of the phospholipids. These observations are confirmed by the fluorescence lifetimes, singlet oxygen lifetimes and singlet oxygen quantum yields results

  13. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    Energy Technology Data Exchange (ETDEWEB)

    Wang Suhua; Song Haipeng; Huang Dejian [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Ong Weiyi [Department of Anatomy, National University of Singapore, 119260 (Singapore); Han Mingyong, E-mail: chmhdj@nus.edu.s [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)

    2009-10-21

    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  14. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    Science.gov (United States)

    Wang, Suhua; Song, Haipeng; Ong, Wei Yi; Han, Ming Yong; Huang, Dejian

    2009-10-01

    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  15. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    International Nuclear Information System (INIS)

    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  16. Preparation of polylactide asymmetric membrane and its osteoblasts affinity%聚乳酸非对称膜的制备及其成骨细胞亲和性

    Institute of Scientific and Technical Information of China (English)

    王歆; 涂松; 陈元维; 罗祥林

    2011-01-01

    采用开环聚合法合成了两种不同分子量的PLLA,并以此为原料采用碳酸氢铵发泡一次成型的方法制备了一体化的有多孔面和致密面的非对称膜.扫描电镜结果证实了其非对称结构:一面疏松多孔,孔间相互连通,孔径在5~300μm之间,一面平整致密,并分布着一些极小的孔洞,孔径约为1~5μm.力学性能测试结果表明,膜的拉伸强度随着PLLA分子量的减小和致孔剂(酸氢铵)量的增大而降低.体外细胞培养的结果证实PLLA非对称膜的多孔面有良好的成骨细胞亲和性,PLLA非对成膜可望用于组织引导隔离.%Poly (L-lactide) (PLLA) with different molecular weight were synthesized by ring-opening polymerization of L-lactide,with which asymmetric porous membrane with a porous side and a dense side were prepared by a molding technology of ammonium bicarbonate foaming. The SEM confirmed the asymmetric structure of the membrane ..one porous side with lots of interconnected pores ranging from 50-500μm and one dense side with some small pores ranging from 1-5μm. Mechanical properties test showed that tensile strength of PLLA membrane reduced with the decrease of molecular weight PLLA and the increase of ammonium bicarbonate content.Culture of osteoblasts in vitro demonstrated that PLLA asymmetric porous membrane had good osteoblasts affinity. These results suggest that the membranes are promising for bone tissue guide membrane application.

  17. Protein isolation using affinity chromatography

    OpenAIRE

    Besselink, T.

    2012-01-01

    Many product or even waste streams in the food industry contain components that may have potential for e.g. functional foods. These streams are typically large in volume and the components of interest are only present at low concentrations. A robust and highly selective separation process should be developed for efficient isolation of the components. Affinity chromatography is such a selective method. Ligands immobilized to a stationary phase (e.g., a resin or membrane) are used to bind the c...

  18. Cellular internalization of a membrane binding two-photon probe by a complex of anionic diblock copolymer and cationic surfactant

    Science.gov (United States)

    Nag, Okhil Kumar; Woo, Han Young; Chen, Wei R.

    2012-03-01

    We report a two-photon (TP) absorbing molecular probe 1,4-bis(4'-(N,N-bis(6''-(N,N,N-trimethylammonium)hexyl)amino)-styryl)benzene tetrabromide (C1) and its interaction with cells upon encapsulation with polymeric vesicles. Two-photon microscopy (TPM) revealed that the free C1 specifically could bind to the plasma membrane and shows bright TP emission. However, C1 encapsulated with polymeric vesicles internalized into the cytosol. In addition, fluorescence quantum efficiency and TP cross section of encapsulated C1 enhanced by 2-fold. These results not only show useful guidelines for the development of efficient TP probes, but also underscore the possibility of using this type of nanostructure for intracellular delivery of the bioactive therapeutics.

  19. Unmasking of magnesium-dependent high-affinity binding sites for [dAla2, dLeu5]enkephalin after pretreatment of brain membranes with guanine nucleotides.

    OpenAIRE

    Chang, K.J.; Blanchard, S G; Cuatrecasas, P

    1983-01-01

    The regulation of mu- and delta-opiate receptors by guanine nucleotides and cations was studied by examining the binding of [3H][DAla2, DLeu5]enkephalin to rat brain membranes. The binding to mu-opiate receptors could be suppressed by 1 microM [DPro4]morphiceptin, a highly specific mu-agonist, thus permitting separate assessment of delta-opiate receptor binding. GTP, GDP, and the nonhydrolyzable analogs 5'-guanylyl imidodiphosphate (Gpp[NH]p) and guanosine 5'-O-(2-thiodiphosphate) (GDP-S) eff...

  20. Dynamic changes of PIP2 on cellular membrane detected by 9 R-GFP-PHD%利用9R-GFP-PHD检测细胞膜上PIP2的动态变化

    Institute of Scientific and Technical Information of China (English)

    韩小建; 万玉英; 危永芳; 杨章坚; 张剑锋

    2014-01-01

    Objective To utilize the purified 9R-GFP-PHD protein to detect the combining capacity with PIP2/IP3 and the dy-namic change of PIP2 on cellular membrane by the expression of the prokaryotic cell and the purificatiojn of 9R-GFP-PHD recombi-nant protein.Methods The molecular cloning technique was adoted to conduct the fusion of pleckstrin homology domain(PHD)of phospholipase C-δ1,fluorescent protein GFP and cell-penetrating peptide 9R for constructing the corresponding protein expression vector.The expression and purification of recombinant protein were conducted by using the prokaryotic system BL2 1 Escherichia coli and nickel column,in which GFP and 9R-GFP were the control protein of 9R-GFP-PHD.After obtaining the recombinant pro-tein,the binding affinities of GFP,9R-GFP and 9R-GFP-PHD with[3H]labeled PIP2 or IP3 were measured and compared by the iso-tope experiment and the liquid scintillation counter.In addition,the MDCK cells were utilized to detect and compare the distribution situation of 3 kinds of recombinant protein in cells after incubating GFP,9R-GFP and 9R-GFP-PHD.The image subtraction pro-cessing and the real-time fluorescent quantitative analysis was used to examine the dynamic change of distribution of 9R-GFP-PHD in the MDCK cell membrane after ATP stimulation,thus indirectly reflected the hydrolysis change of PIP2 in the cell membrane. Results GFP,9R-GFP and 9R-GFP-PHD recombinant proteins were smoothly obtained by the prokaryotic expression and nickel column purification system.The in vitro binding experiments showed that 9R-GFP-PHD had high binding affinity with PIP2 and IP3.After incubation of three kinds of fluorescent fusion protein,the confocal fluorescent microscopic observation found that 9R-GFP was mostly distributed in plasma,while 9R-GFP-PHD was specifically distributed on cellular membrane.The real-time fluores-cence quantitative analysis showed that ATP stimulation activated phospholipase C for hydrolyzing PIP2 by P2y receptor,thus 9R

  1. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Myriam Ermonval

    Full Text Available BACKGROUND: The cellular prion protein, PrP(C, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C, we have described a neuronal specificity pointing to a role of PrP(C in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT or noradrenergic (1C11(NE derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C signaling prompted us to search for PrP(C partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP. This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT and 1C11(NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT and 1C11(NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C-laminin interplay. The partnership between TNAP and PrP(C in neuronal cells may

  2. Techniques to Study Specific Cell-Surface Receptor-Mediated Cellular Vitamin A Uptake

    OpenAIRE

    KAWAGUCHI, RIKI; Sun, Hui

    2010-01-01

    STRA6 is a multitransmembrane domain protein that was recently identified as the cell-surface receptor for plasma retinol binding protein (RBP), the vitamin A carrier protein in the blood. STRA6 binds to RBP with high affinity and mediates cellular uptake of vitamin A from RBP. It is not homologous to any known receptors, transporters, and channels, and it represents a new class of membrane transport protein. Consistent with the diverse physiological functions of vitamin A, STRA6 is widely ex...

  3. Comparison of quantitative PCR and flow cytometry as cellular viability methods to study bacterial membrane permeabilization following supercritical CO2 treatment.

    Science.gov (United States)

    Tamburini, Sabrina; Ballarini, Annalisa; Ferrentino, Giovanna; Moro, Albertomaria; Foladori, Paola; Spilimbergo, Sara; Jousson, Olivier

    2013-06-01

    Foodborne illness due to bacterial pathogens is increasing worldwide as a consequence of the higher consumption of fresh and minimally processed food products, which are more easily cross-contaminated. The efficiency of food pasteurization methods is usually measured by c.f.u. plate counts, a method discriminating viable from dead cells on the basis of the ability of cells to replicate and form colonies on standard growth media, thus ignoring viable but not cultivable cells. Supercritical CO2 (SC-CO2) has recently emerged as one of the most promising fresh food pasteurization techniques, as an alternative to traditional, heat-based methods. In the present work, using three SC-CO2-treated foodborne bacteria (Listeria monocytogenes, Salmonella enterica and Escherichia coli) we tested and compared the performance of alternative viability test methods based on membrane permeability: propidium monoazide quantitative PCR (PMA-qPCR) and flow cytometry (FCM). Results were compared based on plate counts and fluorescent microscopy measurements, which showed that the former dramatically reduced the number of cultivable cells by more than 5 log units. Conversely, FCM provided a much more detailed picture of the process, as it directly quantifies the number of total cells and distinguishes among three categories, including intact, partially permeabilized and permeabilized cells. A comparison of both PMA-qPCR and FCM with plate count data indicated that only a fraction of intact cells maintained the ability to replicate in vitro. Following SC-CO2 treatment, FCM analysis revealed a markedly higher level of bacterial membrane permeabilization of L. monocytogenes with respect to E. coli and S. enterica. Furthermore, an intermediate permeabilization state in which the cellular surface was altered and biovolume increased up to 1.5-fold was observed in L. monocytogenes, but not in E. coli or S. enterica. FCM thus compared favourably with other methods and should be considered as an

  4. Affine Grassmann codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Beelen, Peter; Ghorpade, Sudhir Ramakant

    2010-01-01

    We consider a new class of linear codes, called affine Grassmann codes. These can be viewed as a variant of generalized Reed-Muller codes and are closely related to Grassmann codes.We determine the length, dimension, and the minimum distance of any affine Grassmann code. Moreover, we show that...... affine Grassmann codes have a large automorphism group and determine the number of minimum weight codewords....

  5. Lectin affinity chromatography of glycolipids

    Energy Technology Data Exchange (ETDEWEB)

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  6. How Membrane-Active Peptides Get into Lipid Membranes.

    Science.gov (United States)

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  7. Cellular compatibility of a gamma-irradiated modified siloxane-poly(lactic acid)-calcium carbonate hybrid membrane for guided bone regeneration.

    Science.gov (United States)

    Takeuchi, Naoshi; Machigashira, Miho; Yamashita, Daisuke; Shirakata, Yoshinori; Kasuga, Toshihiro; Noguchi, Kazuyuki; Ban, Seiji

    2011-01-01

    A bi-layered silicon-releasable membrane consisting of a siloxane-poly(lactic acid) (PLA)-vaterite hybrid material (Si-PVH) microfiber mesh and a PLA microfiber mesh has been developed by an electrospinning method for guided bone regeneration (GBR) application. The bi-layered membrane was modified to a three-laminar structure by sandwiching an additional PLA microfiber mesh between the Si-PVH and PLA microfiber meshes (Si-PVH/PLA membrane). In this study, the influence of gamma irradiation, used for sterilization, on biological properties of the Si-PVH/PLA membrane was evaluated with osteoblasts and fibroblasts. After gamma irradiation, while the average molecular weight of the Si-PVH/PLA membrane decreased, the Si-PVH/PLA membrane promoted cell proliferation and differentiation (alkaline phosphatase activity and calcification) of osteoblasts, compared with the poly(lactide-co-glycolide) membrane. These results suggest that the gamma-irradiated Si-PVH/PLA membrane is biocompatible with both fibroblasts and osteoblasts, and may have an application for GBR. PMID:21946495

  8. The Structural Basis of Cholesterol Activity in Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  9. Analysis of detergent-resistant membranes of Helicobacter pylori infected gastric adenocarcinoma cells reveals a role for MARK2/Par1b in CagA-mediated disruption of cellular polarity.

    Science.gov (United States)

    Zeaiter, Zaher; Cohen, David; Müsch, Anne; Bagnoli, Fabio; Covacci, Antonello; Stein, Markus

    2008-03-01

    Detergent-resistant membranes of eukaryotic cells are enriched in many important cellular signalling molecules and frequently targeted by bacterial pathogens. To learn more about pathogenic mechanisms of Helicobacter pylori and to elucidate novel effects on host epithelial cells, we investigated how bacterial co-cultivation changes the protein composition of detergent-resistant membranes of gastric adenocarcinoma (AGS) tissue culture cells. Using iTRAQ (isobaric tags for relative and absolute quantification) analysis we identified several cellular proteins, which are potentially related to H. pylori virulence. One of the proteins, which showed a significant infection-dependent increase in detergent resistance, was the polarity-associated serine/threonine kinase MARK2 (EMK1/Par-1b). We demonstrate that H. pylori causes the recruitment of MARK2 from the cytosol to the plasma membrane, where it colocalizes with the bacteria and interacts with CagA. Using Mardin Darby Canine Kidney (MDCK) monolayers and a three-dimensional MDCK tissue culture model we showed that association of CagA with MARK2 not only causes disruption of apical junctions, but also inhibition of tubulogenesis and cell differentiation. PMID:18005242

  10. Affine dynamics with torsion

    Energy Technology Data Exchange (ETDEWEB)

    Gueltekin, Kemal [Izmir Institute of Technology, Department of Physics, Izmir (Turkey)

    2016-03-15

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schroedinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor. (orig.)

  11. Affine and degenerate affine BMW algebras: Actions on tensor space

    CERN Document Server

    Daugherty, Zajj; Virk, Rahbar

    2012-01-01

    The affine and degenerate affine Birman-Murakami-Wenzl (BMW) algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic quantum groups and Lie algebras, respectively. Cyclotomic BMW algebras, affine and cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper we explain how the affine and degenerate affine BMW algebras are tantalizers (tensor power centralizer algebras) by defining actions of the affine braid group and the degenerate affine braid algebra on tensor space and showing that, in important cases, these actions induce actions of the affine and degenerate affine BMW algebras. We then exploit the connection to quantum groups and Lie algebras to determine universal parameters for the affine and degenerate affine BMW algebras. Finally, we show that the universal parameters are central elements--the higher Casimir elements for orthogonal and symplectic enveloping algebras and quantum groups.

  12. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane.

    Science.gov (United States)

    Chiu, C-F; Ho, M-Y; Peng, J-M; Hung, S-W; Lee, W-H; Liang, C-M; Liang, S-M

    2013-02-01

    Prohibitin (PHB) is indispensable for Ras-induced Raf-1 activation, cell migration and growth; however, the exact role of PHB in the molecular pathogenesis of cancer metastasis remains largely unexamined. Here, we found a positive correlation between plasma membrane-associated PHB and the clinical stages of cancer. The level of PHB phosphorylated at threonine 258 (T258) and tyrosine 259 (Y259) in human cancer-cell membranes correlated with the invasiveness of cancer cells. Overexpression of phosphorylated PHB (phospho-PHB) in the lipid-raft domain of the cell membrane enhanced cell migration/invasion through PI3K/Akt and Raf-1/ERK activation. It also enhanced epithelial-mesenchymal transition, matrix metalloproteinase-2 activity and invasiveness of cancer cells in vitro. Immunoprecipitation analysis demonstrated that phospho-PHB associated with Raf-1, Akt and Ras in the membrane and was essential for the activation of Raf-1 signaling by Ras. Mice implanted with cancer cells stably overexpressing PHB in the plasma membrane showed enlarged cervical tumors, enhanced metastasis and shorter survival time compared with mice implanted with cancer cells without PHB overexpression. Dephosphorylation of PHB at T258 by site-directed mutagenesis diminished the in vitro and in vivo effects of PHB. These results suggest that increase in phospho-PHB T258 in the raft domain of the plasma membrane has a role in the Ras-driven activation of PI3K/Akt and Raf-1/ERK-signaling cascades and results in the promotion of cancer metastasis.

  13. Affine stochastic mortality

    NARCIS (Netherlands)

    D.F. Schrager

    2006-01-01

    We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing m

  14. Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments.

    Science.gov (United States)

    Papini, E; de Bernard, M; Milia, E; Bugnoli, M; Zerial, M; Rappuoli, R; Montecucco, C

    1994-01-01

    Pathogenic strains of Helicobacter pylori cause progressive vacuolation and death of epithelial cells. To identify the nature of vacuoles, the distribution of markers of various membrane traffic compartments was studied. Vacuoles derive from the endocytic pathway since they include the fluid-phase marker Lucifer yellow. Early endosome markers such as rab5, transferrin, and transferrin receptor, as well as the lysosomal hydrolase cathepsin D, are excluded from these structures. In contrast, the vacuolar membrane is specifically stained by affinity-purified antibodies against rab7, a small GTPase, localized to late endosomal compartments. The labeling of rab7 on vacuolar membranes increases as vacuolation progresses, without a concomitant increase of cellular rab7. Cell vacuolation is inhibited by the microtubule-depolymerizing agents nocodazole and colchicine. Taken together, these findings indicate that the vacuoles specifically originate from late endosomal compartments. Images PMID:7937879

  15. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  16. [Cellular and tissue reactions of the mucous membrane of the maxillary sinus in the patients presenting with odontogenic aspergillous maxillary sinusitis].

    Science.gov (United States)

    Baĭdik, O D; Sysoliatin, P G; Logvinov, S V

    2012-01-01

    The results of this morphological study of the mucous membrane of the maxillary sinuses in the patients presenting with the non-invasive fungal form of odontogenic sinusitis revealed the signs of granulematous inflammation. Epithelium underwent metaplasia into the single-row cubic or prismatic layer. The invasive form of fungal odontogenic sinusitis was characterized by allergic inflammation with intensive infiltration of maxillary sinus mucosa by antigen-representing and effector cells.

  17. Affine and degenerate affine BMW algebras: The center

    CERN Document Server

    Daugherty, Zajj; Virk, Rahbar

    2011-01-01

    The degenerate affine and affine BMW algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic Lie algebras and quantum groups, respectively. Cyclotomic BMW algebras, affine Hecke algebras, cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper the theory is unified by treating the orthogonal and symplectic cases simultaneously; we make an exact parallel between the degenerate affine and affine cases via a new algebra which takes the role of the affine braid group for the degenerate setting. A main result of this paper is an identification of the centers of the affine and degenerate affine BMW algebras in terms of rings of symmetric functions which satisfy a "cancellation property" or "wheel condition" (in the degenerate case, a reformulation of a result of Nazarov). Miraculously, these same rings also arise in Schubert calculus, as the cohomology and K-theory of isotropic Grassmanians and symplectic loop Grassmanians. We also establish new inte...

  18. Hierarchical Affinity Propagation

    CERN Document Server

    Givoni, Inmar; Frey, Brendan J

    2012-01-01

    Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...

  19. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    linker for yeast surface display of scFv and scFab fragments, we compared a series of different Gly-Ser-based linkers in display and antigen binding proficiency. We show that these formats of the model antibody can accommodate linkers of different lengths and that introduction of alanine or glutamate......-2. Based on the presented data we suggest that affinity maturation of the model antibody proceeds through multiple incremental steps of subtle improvements. We moreover conclude that the best affinity improved candidates are likely to be obtained through optimization of both the antigen...... fragments by in vivo homologous recombination large combinatorial antibody libraries can easily be generated. We have optimized ordered assembly of three CDR fragments into a gapped vector and observed increased transformation efficiency in a yeast strain carrying a deletion of the SGS1 helicase...

  20. Gaussian Affine Feature Detector

    OpenAIRE

    Xu, Xiaopeng; Zhang, Xiaochun

    2011-01-01

    A new method is proposed to get image features' geometric information. Using Gaussian as an input signal, a theoretical optimal solution to calculate feature's affine shape is proposed. Based on analytic result of a feature model, the method is different from conventional iterative approaches. From the model, feature's parameters such as position, orientation, background luminance, contrast, area and aspect ratio can be extracted. Tested with synthesized and benchmark data, the method achieve...

  1. Affinity driven social networks

    Science.gov (United States)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  2. Affine morphisms at zero level

    CERN Document Server

    Das, Paramita; Gupta, Ved Prakash

    2010-01-01

    Given a finite index subfactor, we show that the {\\em affine morphisms at zero level} in the affine category over the planar algebra associated to the subfactor is isomorphic to the fusion algebra of the subfactor as a *-algebra.

  3. On the Affine Isoperimetric Inequalities

    Indian Academy of Sciences (India)

    Wuyang Yu; Gangsong Leng

    2011-11-01

    We obtain an isoperimetric inequality which estimate the affine invariant -surface area measure on convex bodies. We also establish the reverse version of -Petty projection inequality and an affine isoperimetric inequality of $_{-p}K$.

  4. Adjoint affine fusion and tadpoles

    OpenAIRE

    Urichuk, Andrew; Walton, Mark A.

    2016-01-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-pol...

  5. Affine Patches on Positroid Varieties and Affine Pipe Dreams (Thesis)

    CERN Document Server

    Snider, Michelle

    2010-01-01

    The objects of interest in this thesis are positroid varieties in the Grassmannian, which are indexed by juggling patterns. In particular, we study affine patches on these positroid varieties. Our main result corresponds these affine patches to Kazhdan-Lusztig varieties in the affine Grassmannian. We develop a new term order and study how these spaces are related to subword complexes and Stanley-Reisner ideals. We define an extension of pipe dreams to the affine case and conclude by showing how our affine pipe dreams are generalizations of Cauchon and Le diagrams.

  6. Affine and quasi-affine frames for rational dilations

    DEFF Research Database (Denmark)

    Bownik, Marcin; Lemvig, Jakob

    2011-01-01

    , the corresponding family of quasi-affine systems are frames with uniform frame bounds. We also prove a similar equivalence result between pairs of dual affine frames and dual quasi-affine frames. Finally, we uncover some fundamental differences between the integer and rational settings by exhibiting an example......In this paper we extend the investigation of quasi-affine systems, which were originally introduced by Ron and Shen [J. Funct. Anal. 148 (1997), 408-447] for integer, expansive dilations, to the class of rational, expansive dilations. We show that an affine system is a frame if, and only if...

  7. Arabidopsis thaliana Yellow Stripe1-Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis.

    Directory of Open Access Journals (Sweden)

    Heng-Hsuan eChu

    2013-07-01

    Full Text Available Several members of the Yellow Stripe1-Like (YSL family of transporter proteins are able to transport metal-nicotianamine (NA complexes. Substantial progress has been made in understanding the roles of the Arabidopsis YSLs that are most closely related to the founding member of the family, ZmYS1 (e.g., AtYSL1, AtYSL2 and AtYSL3, but there is little information concerning members of the other two well-conserved YSL clades. Here, we provide evidence that AtYSL4 and AtYSL6, which are the only genes in Arabidopsis belong to YSL Group II, are localized to vacuole membranes and to internal membranes resembling endoplasmic reticulum. Both single and double mutants for YSL4 and YSL6 were rigorously analyzed, and have surprisingly mild phenotypes, in spite of the strong and wide-ranging expression of YSL6. However, in the presence of toxic levels of Mn and Ni, plants with mutations in YSL4 and YSL6 and plants overexpressing GFP-tagged YSL6 showed growth defects, indicating a role for these transporters in heavy metal stress responses.

  8. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...... to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...

  9. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  10. Affinity Purification of Insulin by Peptide-Ligand Affinity Chromatography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The affinity heptapeptide (HWWWPAS) for insulin, selected from phage display library,was coupled to EAH Sepharose 4B gel and packed to a 1-mL column. The column was used for the affinity purification of insulin from protein mixture and commercial insulin preparation. It was observed that the minor impurity in the commercial insulin was removed by the affinity chromatography. Nearly 40 mg of insulin could be purified with the 1-mL affinity column. The results revealed the high specificity and capacity of the affinity column for insulin purification. Moreover, based on the analysis of the amino acids in the peptide sequence, shorter peptides were designed and synthesized for insulin chromatography. As a result, HWWPS was found to be a good alternative to HWWWPAS, while the other two peptides with three or four amino acids showed weak affinity for insulin. The results indicated that the peptide sequence of HWWWPAS was quite conservative for specific binding of insulin.

  11. The Utility of Affine Variables and Affine Coherent States

    CERN Document Server

    Klauder, John R

    2011-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when ap...

  12. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects.

    Directory of Open Access Journals (Sweden)

    Malgorzata Tokarska-Schlattner

    Full Text Available A broad spectrum of beneficial effects has been ascribed to creatine (Cr, phosphocreatine (PCr and their cyclic analogues cyclo-(cCr and phospho-cyclocreatine (PcCr. Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i chemical binding assay, (ii surface plasmon resonance spectroscopy (SPR, (iii solid-state (31P-NMR, and (iv differential scanning calorimetry (DSC. SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults

  13. Jacobi Structures on Affine Bundles

    Institute of Scientific and Technical Information of China (English)

    J. GRABOWSKI; D. IGLESIAS; J. C. MARRERO; E. PADR(O)N; P. URBA(N)SKI

    2007-01-01

    We study affine Jacobi structures (brackets) on an affine bundle π: A→M, i.e. Jacobi brackets that close on affine functions. We prove that if the rank of A is non-zero, there is a one-to- one correspondence between affine Jacobi structures on A and Lie algebroid structures on the vector bundle A+=∪p∈M Aff(Ap, R) of affine functionals. In the case rank A = 0, it is shown that there is a one-to-one correspondence between affins Jacobi structures on A and local Lie algebras on A+. Some examples and applications, also for the linear case, are discussed. For a special type of affine Jacobi structures which are canonically exhibited (strongly-affine or affine-homogeneous Jacobi structures) over a real vector space of finite dimension, we describe the leaves of its characteristic foliation as the orbits of an affine representation. These afline Jacobi structures can be viewed as an analog of the Kostant-Arnold-LiouviUe linear Poisson structure on the dual space of a real finite-dimensional Lie algebra.

  14. Ion channel regulation by phosphoinositides analyzed with VSPs – PI(4,5P2 affinity, phosphoinositide selectivity, and PI(4,5P2 pool accessibility

    Directory of Open Access Journals (Sweden)

    Alexandra eRjasanow

    2015-06-01

    Full Text Available The activity of many proteins depends on the phosphoinositide (PI content of the membrane. E.g., dynamic changes of the concentration of PI(4,5P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids.Voltage-sensitive phosphatases (VSPs turn over PI(4,5P2 to PI(4P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5P2. Because cellular PI(4,5P2 is resynthesized rapidly, steady state PI(4,5P2 changes with the degree of VSP activation and thus depends on membrane potential.Here we show that titration of endogenous PI(4,5P2 with Ci-VSP allows for the quantification of relative PI(4,5P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5P2 and PI(4P was insensitive to VSP.Surprisingly, despite comparable PI(4,5P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5P2 that differ in their accessibility to PLC and VSPs.

  15. Adjoint affine fusion and tadpoles

    Science.gov (United States)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  16. Adjoint affine fusion and tadpoles

    CERN Document Server

    Urichuk, Andrew

    2016-01-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows, and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  17. EFFECT OF DESTRUCTION OF NTS AND PVN ON NEIGUAN (PC 6)ELECTROACUPUNCTURE-INDUCED IMPROVEMENT OF ISCHEMIC MYOCARDIAL CELLULAR MEMBRANE POTENTIALS IN RABBITS

    Institute of Scientific and Technical Information of China (English)

    CHEN Ze-bin; WANG Shu-ju; WANG Ya-wen; WU Xu-ping; WANG Hua

    2005-01-01

    Objective:To observe the influence of electrolytic destruction of nucleus solitary tract (NTS) and hypothalamic paraventricular nucleus (PVN) on the effect of electroacupuncture (EA) in improving ischemic myocardia cellular transmembrane action potential (TMAP). Methods: 38 Japanese breed big-ear white rabbits (anesthetized with 20% Urethane, 4mL/kg) were randomly divided into acute myocardial ischemia (AMI) group (n=8), PVN destruction group (n=12) and PVN+NTS destruction group (n=18). AMI model was established by occlusion of the descending anterior branch (DAB) of the coronary artery. TMAP of myocytes was recorded by using a glass microelectrode which was fixed to a suspending spring silver wire. Bilateral "Neiguan"(PC 6) in all the 3 groups were punctured and stimulated electrically by using parameters of continuous waves, frequency ECG-ST elevated significantly while APA lowered, APD50 and APD90 shortened of 7 Hz, intensity of 6 mA and duration of 30 minutes. Results: After AMI,clearly in comparison with those of pre-AMI in the 3 groups. Compared with AMI group, ECG-ST values of PVN destruction group and PVN+NTS destruction group were significantly higher (P<0.05~0.01), while APA, APD50 and APD90 all significantly lower in all the recording time courses(P<0.05). The facts displayed that electrolytic destruction of PVN and PVN+NTS could produce ischemic myocardial injury and reduce the protective effect of EA on ischemic myocardial cells. Comparison between PVN destruction and PVN+NTS groups showed that all the 4 indexes of the later group were evidently worse than those of the former group (P<0.05), suggesting after destruction of these two nuclei, the effect of EA was worsened further. Conclusion: Electrolytic destruction of PVN and NTS weakens the protective effect of EA on ischemic myocardial cells, both NTS and PVN take part in the effect of EA of "Neiguan"(PC 6) Point in improving ischemic myocardium.

  18. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  19. Membrane Cholesterol Modulates Superwarfarin Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  20. Membrane Cholesterol Modulates Superwarfarin Toxicity.

    Science.gov (United States)

    Marangoni, M Natalia; Martynowycz, Michael W; Kuzmenko, Ivan; Braun, David; Polak, Paul E; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content. PMID:27119638

  1. 亲和膜配基的结构和密度对胆红素吸附的影响%Effect of ligand composition and ligand density of affinity membrane on bilirubin removal

    Institute of Scientific and Technical Information of China (English)

    鞠佳; 聂飞; 段志军; 贺高红

    2013-01-01

    High concentration of bilirubin may cause neurotoxicity, permanent brain damage, and even death in severe cases. It is difficult to remove bilirubin from serum by circulated adsorption, because bilirubin can be tightly bound with albumin as a complex in human serum. The albumin in the complex has a larger volume than that of bilirubin, which results in high steric hindrance of adsorption or displacement of bilirubin. In order to enhance serum bilirubin adsorption capacity, five kinds of amines and eight kinds of amino acids as specific ligands were immobilized on cellulose acetate (CA) /polyethyleneimine (PEI) membrane via the glutaraldehyde modification method. Experimental results indicated that although the primary amine contents of modified membranes were only one third of CA/PEI membrane, bilirubin adsorption capacities of four kinds of modified membranes increased by more than 100%. Moreover, the adsorption selectivity of the four modified membranes for bilirubin/human albumin pair was greater than that of CA/ PEI membrane. Prolongation of the spacer and immobilization of specific ligand could be the cause of such results. Ligand composition had a significant influence on bilirubin adsorption capacity. The ligands containing hydrophobic and primary amino groups could enhance bilirubin adsorption capacity, and the ligands with carboxyl radicals could decrease bilirubin adsorption capacity of the modified membrane. Moreover, ligand density, ligand steric hindrance, and other factors could also influence bilirubin adsorption capacity. In the experiments, the ligands containing high steric hindrance groups, such as phenyl groups had a negative effect on bilirubin adsorption capacity of the modified membrane, and its bilirubin adsorption capacity could not be enhanced via increasing ligand density. However, bilirubin adsorption capacity of the membrane modified with low steric hindrance ligand, for example hexamethylene-diamine (3-HMD) -modified membrane

  2. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  3. Membrane estrogen receptors: genomic actions and post transcriptional regulation.

    Science.gov (United States)

    Jacob, Julie; Sebastian, K S; Devassy, Sony; Priyadarsini, Lakshmi; Farook, Mohamed Febin; Shameem, A; Mathew, Deepa; Sreeja, S; Thampan, Raghava Varman

    2006-02-26

    The primary cellular location of the nuclear estrogen receptor II (nER II) is the plasma membrane. A number of reports that have appeared in the recent past indicate that plasma membrane localized estrogen receptor alpha (ERalpha) also exists. Whether the membrane localized ERalpha represents the receptor that binds to the estrogen responsive element (ERE) remains to be known. The mechanisms that underlie the internalization of nER II (non-activated estrogen receptor, deglycosylated) have been identified to a certain extent. The question remains: is the primary location of the ERalpha also the plasma membrane? If that is the case, it will be a challenging task to identify the molecular events that underlie the plasma membrane-to-nucleus movement of ERalpha. The internalization mechanisms for the two 66kDa plasma membrane ERs, following hormone binding, appear to be distinct and without any overlaps. Interestingly, while the major gene regulatory role for ERalpha appears to be at the level of transcription, the nER II has its major functional role in post transcriptional mechanisms. The endoplasmic reticulum associated anchor protein-55 (ap55) that was recently reported from the author's laboratory needs a closer look. It is a high affinity estrogen binding protein that anchors the estrogen receptor activation factor (E-RAF) in an estrogen-mediated event. It will be interesting to examine whether ap55 bears any structural similarity with either ERalpha or ERbeta. PMID:16423448

  4. Na+,K+-ATPase Na+ affinity in rat skeletal muscle fiber types

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na......(+),K(+)-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na(+) affinity was higher (K(m) lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na......) and alpha(2)beta(2), respectively. The affinity differences and isoform distributions imply that the degree of activation of Na(+),K(+)-ATPase at physiological Na(+) concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different isoform compositions...

  5. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M;

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...

  6. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    Science.gov (United States)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  7. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura;

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma...... membrane include ABC transporters, vacuolar (V-type) H+ pumps, and P-type pumps. These pumps all utilize ATP as a fuel for energizing pumping. This review focuses on the physiological roles of plasma membrane P-type pumps, as they represent the major ATP hydrolytic activity in this membrane....

  8. Development of functionalized nanostructured polymeric membranes for water purification

    OpenAIRE

    Altintas, Zeynep; Chianella, Iva; Da Ponte, Gabriella; Paulussen, Sabine; Gaeta, Soccorso; Tothill, Ibtisam E.

    2016-01-01

    Pharmaceuticals specific molecularly imprinted polymers nanoparticles (MIPNPs) were synthesized and applied onto the polyvinylidene fluoride (PVDF) membranes previously subjected to the plasma treatment. Diclofenac-, metoprolol- and vancomycin-MIPs were applied onto the membranes and scanning electron microscopy was employed to visualize MIPNPs on the membrane. After functionalization of the membranes with target-specific MIPs the molecularly imprinted membranes (MIMs) affinity against their ...

  9. Cellular calcium mobilization

    International Nuclear Information System (INIS)

    In vascular and other smooth muscles, occurrence of intracellular Ca stores which can be mobilized to support contraction may be a general phenomenon. The Ca stores are characterized by the requirement for release by high concentrations of agonists acting on plasma membrane receptors, by the failure of the released Ca2+ to recycle to the store, by the occurrence of rapid refilling of the store from the extracellular space, and by disappearance of the store when the plasma membrane is made leaky by saponin. In contrast to agonist-released Ca stores, those released by caffeine to support contraction in Ca2+-free solutions are more slowly lost and refilled, are not always emptied when the agonist-related store is emptied, and do not disappear after saponin treatment. Stores released by agonists have been suggested to be in the endoplasmic reticulum near the plasma membrane or at the inner aspect of the plasma membrane related to high affinity, pH-dependent Ca-binding sites. Caffeine-released stores are assumed to be in endoplasmic reticulum. Continued exposure of some tissues to Ca2+-free solutions unmasks what is considered to be a recycling Ca store releasable by agonists. Release of Ca2+ and its reaccumulation in this store appear to be slower than at the nonrecycling store. The contractions which persist for many hours in Ca2+-free solution are inhibited temporarily by Ca2+ restoration. Existence of a recycling store of releasable Ca2+ requires occurrence of mechanisms to abolish Ca2+ extrusion or leak-out of the cell and to ensure recycling to the same store

  10. A Flow Cytometric and Computational Approaches to Carbapenems Affinity to the Different Types of Carbapenemases

    Science.gov (United States)

    Pina-Vaz, Cidália; Silva, Ana P.; Faria-Ramos, Isabel; Teixeira-Santos, Rita; Moura, Daniel; Vieira, Tatiana F.; Sousa, Sérgio F.; Costa-de-Oliveira, Sofia; Cantón, Rafael; Rodrigues, Acácio G.

    2016-01-01

    The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable. PMID:27555844

  11. A flow cytometric and computational approaches to carbapenems affinity to the different types of carbapenemases

    Directory of Open Access Journals (Sweden)

    Cidália Pina-Vaz

    2016-08-01

    Full Text Available The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computa-tional analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem or doripenem and killing kinetic curves performed with and without reinforments of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3, a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incuba-tion. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for car-bapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable.

  12. A Flow Cytometric and Computational Approaches to Carbapenems Affinity to the Different Types of Carbapenemases.

    Science.gov (United States)

    Pina-Vaz, Cidália; Silva, Ana P; Faria-Ramos, Isabel; Teixeira-Santos, Rita; Moura, Daniel; Vieira, Tatiana F; Sousa, Sérgio F; Costa-de-Oliveira, Sofia; Cantón, Rafael; Rodrigues, Acácio G

    2016-01-01

    The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases -VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable. PMID:27555844

  13. Lipid Membranes in Poxvirus Replication

    Directory of Open Access Journals (Sweden)

    Jason P. Laliberte

    2010-04-01

    Full Text Available Poxviruses replicate in the cytoplasm, where they acquire multiple lipoprotein membranes. Although a proposal that the initial membrane arises de novo has not been substantiated, there is no accepted explanation for its formation from cellular membranes. A subsequent membrane-wrapping step involving modified trans-Golgi or endosomal cisternae results in a particle with three membranes. These wrapped virions traverse the cytoplasm on microtubules; the outermost membrane is lost during exocytosis, the middle one is lost just prior to cell entry, and the remaining membrane fuses with the cell to allow the virus core to enter the cytoplasm and initiate a new infection.

  14. Cellular senescence induced by prolonged subculture adversely affects glutamate uptake in C6 lineage.

    Science.gov (United States)

    Pereira, Mery Stéfani Leivas; Zenki, Kamila; Cavalheiro, Marcela Mendonça; Thomé, Chairini Cássia; Filippi-Chiela, Eduardo Cremonese; Lenz, Guido; de Souza, Diogo Onofre Gomes; de Oliveira, Diogo Losch

    2014-05-01

    Several researchers have recently used C6 cells to evaluate functional properties of high-affinity glutamate transporters. However, it has been demonstrated that this lineage suffers several morphological and biochemical alterations according to the number of passages in culture. Currently, there are no reports showing whether functional properties of high-affinity glutamate transporters comply with these sub culturing-dependent modifications. The present study aimed to compare the functional properties of high-affinity glutamate transporters expressed in early (EPC6) and late (LPC6) passage C6 cells through a detailed pharmacological and biochemical characterization. Between 60-180 min of L-[(3)H]glu incubation, LPC6 presented an intracellular [(3)H] 55% lower than EPC6. Both cultures showed a time-dependent increase of intracellular [(3)H] reaching maximal levels at 120 min. Cultures incubated with D-[(3)H]asp showed a time-dependent increase of [(3)H] until 180 min. Moreover, LPC6 have a D-[(3)H]asp-derived intracellular [(3)H] 30-45% lower than EPC6 until 120 min. Only EAAT3 was immunodetected in cultures and its total content was equal between them. PMA-stimulated EAAT3 trafficking to membrane increased 50% of L-[(3)H]glu-derived intracellular [(3)H] in EPC6 and had no effect in LPC6. LPC6 displayed characteristics that resemble senescence, such as high β-Gal staining, cell enlargement and increase of large and regular nuclei. Our results demonstrated that LPC6 exhibited glutamate uptake impairment, which may have occurred due to its inability to mobilize EAAT3 to cell membrane. This profile might be related to senescent process observed in this culture. Our results suggest that LPC6 cells are an inappropriate glial cellular model to investigate the functional properties of high-affinity glutamate transporters.

  15. Realization of Fractal Affine Transformation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper gives the definition of fractal affine transformation and presents a specific method for its realization and its cor responding mathematical equations which are essential in fractal image construction.

  16. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  17. Infinite transitivity on affine varieties

    OpenAIRE

    Arzhantsev, Ivan; Flenner, Hubert; Kaliman, Shulim; Kutzschebauch, Frank; ZAIDENBERG, MIKHAIL

    2012-01-01

    In this note we survey recent results on automorphisms of affine algebraic varieties, infinitely transitive group actions and flexibility. We present related constructions and examples, and discuss geometric applications and open problems.

  18. Molecular probes for nonlinear optical imaging of biological membranes

    Science.gov (United States)

    Blanchard-Desce, Mireille H.; Ventelon, Lionel; Charier, Sandrine; Moreaux, Laurent; Mertz, Jerome

    2001-12-01

    Second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) are nonlinear optical (NLO) phenomena that scale with excitation intensity squared, and hence give rise to an intrinsic 3-dimensional resolution when used in microscopic imaging. TPEF microscopy has gained widespread popularity in the biology community whereas SHG microscopy promises to be a powerful tool because of its sensitivity to local asymmetry. We have implemented an approach toward the design of NLO-probes specifically adapted for SHG and/or TPEF imaging of biological membranes. Our strategy is based on the design of nanoscale amphiphilic NLO-phores. We have prepared symmetrical bolaamphiphilic fluorophores combining very high two-photon absorption (TPA) cross-sections in the visible red region and affinity for cellular membranes. Their incorporation and orientation in lipid membranes can be monitored via TPEF anisotropy. We have also prepared amphiphilic push-pull chromophores exhibiting both large TPA cross-sections and very large first hyperpolarizabilities in the near-IR region. These NLO-probes have proved to be particularly useful for imaging of biological membranes by simultaneous SHG and TPEF microscopy and offer attractive prospects for real-time imaging of fundamental biological processes such as adhesion, fusion or reporting of membrane potentials.

  19. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  20. Vaccination of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer membrane protein adjuvanted with poly I:C, a host defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral immune responses.

    Science.gov (United States)

    Khan, Shahneaz Ali; Waugh, Courtney; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2014-10-01

    Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime.

  1. Drugging Membrane Protein Interactions.

    Science.gov (United States)

    Yin, Hang; Flynn, Aaron D

    2016-07-11

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  2. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  3. The Origins of Cellular Life

    OpenAIRE

    Schrum, Jason P.; Zhu, Ting F.; SZOSTAK, JACK W.

    2010-01-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of fun...

  4. Mathematical Modeling of Cellular Metabolism.

    Science.gov (United States)

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  5. Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner.

    Science.gov (United States)

    Prevette, Lisa E; Benish, Nicolas C; Schoenecker, Amber R; Braden, Kristin J

    2015-12-01

    Cell-penetrating compounds (CPCs) are often conjugated to drugs and genes to facilitate cellular uptake. We hypothesize that the electrostatic interaction between the positively charged amines of the cell-penetrating compounds and the negatively charged glycosaminoglycans (GAGs) extending from cell surfaces is the initiating step in the internalization process. The interactions of generation 5 PAMAM dendrimer, Tat peptide and 25 kDa linear PEI with four different GAGs have been studied using isothermal titration calorimetry to elucidate structure-function relationships that could lead to improved drug and gene delivery methods to a wide variety of cell types. Detailed thermodynamic analysis has determined that CPC-GAG binding constants range from 8.7×10(3) to 2.4×10(6)M(-1) and that affinity is dependent upon GAG charge density and stereochemistry and CPC molecular weight. The effect of GAG composition on affinity is likely due to hydrogen bonding between CPC amines and amides and GAG hydroxyl and amine groups. These results were compared to the association of CPCs with lipid vesicles of varying composition as model plasma membranes to finally clarify the relative importance of each cell surface component in initial cell recognition. CPC-lipid affinity increases with anionic lipid content, but GAG affinity is higher for all cell-penetrating compounds, confirming the role these heterogeneous polysaccharides play in cellular association and clustering.

  6. The Role of Lipids in Cellular Architecture and Function

    OpenAIRE

    Lopes Sampaio, Julio

    2011-01-01

    All cells are delimited by membranes that protect the cell from the surrounding environment. In eukaryotic cells the same principle applies at subcellular level where membranes delimit functional cell organelles. The membrane structure, properties and function are defined in part by their lipid composition. Lipidomics is the large‐scale study of pathways and networks of cellular lipids in biological systems. It involves the identification and quantitation of cellular lipid molecular species a...

  7. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  8. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Directory of Open Access Journals (Sweden)

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  9. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane.

    Science.gov (United States)

    Chopin, Franck; Wirth, Judith; Dorbe, Marie-France; Lejay, Laurence; Krapp, Anne; Gojon, Alain; Daniel-Vedele, Françoise

    2007-08-01

    Arabidopsis AtNRT2.1 protein is the best characterized high affinity nitrate transporter in higher plants. However, nothing is known about its sub-cellular localization. In this work, we used GFP imaging to follow the targeting of the AtNRT2.1 protein to the different cell membranes. A polyclonal antibody was also raised against a peptide derived from the AtNRT2.1 sequence. Comparison of wild type and mutant plant extracts showed that this antibody recognized specifically the AtNRT2.1 protein. Microsomal membranes were fractionated on sucrose gradients and immunological detections were performed on the different fractions. Altogether, our results demonstrate that the AtNRT2.1 protein is located in the plasma membrane of the root cells.

  10. Isotope-coded ATP Probe for Quantitative Affinity Profiling of ATP-binding Proteins

    OpenAIRE

    Xiao, Yongsheng; Guo, Lei; Wang, Yinsheng

    2013-01-01

    ATP-binding proteins play significant roles in numerous cellular processes. Here, we introduced a novel isotope-coded ATP-affinity probe (ICAP) as acylating agent to simultaneously enrich and incorporate isotope label to ATP-binding proteins. By taking advantage of the quantitative capability of this isotope-coded probe, we devised an affinity profiling strategy to comprehensively characterize ATP-protein interactions at the entire proteome scale. False-positive identification of ATP-binding ...

  11. Membrane topology and insertion of membrane proteins : Search for topogenic signals

    NARCIS (Netherlands)

    Geest, Marleen van; Lolkema, Juke S.

    2000-01-01

    Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain s

  12. Interaction of nuclease colicins with membranes: insertion depth correlates with bilayer perturbation.

    Directory of Open Access Journals (Sweden)

    Mireille Vankemmelbeke

    Full Text Available BACKGROUND: Protein transport across cellular membranes is an important aspect of toxin biology. Escherichia coli cell killing by nuclease colicins occurs through DNA (DNases or RNA (RNases hydrolysis and to this end their cytotoxic domains require transportation across two sets of membranes. In order to begin to unravel the molecular mechanisms underlying the membrane translocation of colicin nuclease domains, we have analysed the membrane association of four DNase domains (E9, a charge reduction E9 mutant, E8, and E7 and one ribosomal RNase domain (E3 using a biomembrane model system. PRINCIPAL RESULTS: We demonstrate, through the use of large unilamellar vesicles composed of synthetic and E. coli lipids and a membrane surface potential sensor, that the colicin nuclease domains bind anionic membranes only, with micromolar affinity and via a cooperative binding mechanism. The evaluation of the nuclease bilayer insertion depth, through a fluorescence quenching analysis using brominated lipids, indicates that the nucleases locate to differential regions in the bilayer. Colicin DNases target the interfacial region of the lipid bilayer, with the DNase E7 showing the deepest insertion, whereas the ribosomal RNase E3 penetrates into the hydrophobic core region of the bilayer. Furthermore, the membrane association of the DNase E7 and the ribosomal RNase E3 induces vesicle aggregation, lipid mixing and content leakage to a much larger extent than that of the other DNases analysed. CONCLUSIONS/SIGNIFICANCE: Our results show, for the first time, that after the initial electrostatically driven membrane association, the pleiotropic membrane effects induced by colicin nuclease domains relate to their bilayer insertion depth and may be linked to their in vivo membrane translocation.

  13. Interaction of enterocyte FABPs with phospholipid membranes: clues for specific physiological roles.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Franchini, Gisela R; Guerbi, María Ximena; Storch, Judith; Córsico, Betina

    2011-01-01

    Intestinal and liver fatty acid binding proteins (IFABP and LFABP, respectively) are cytosolic soluble proteins with the capacity to bind and transport hydrophobic ligands between different sub-cellular compartments. Their functions are still not clear but they are supposed to be involved in lipid trafficking and metabolism, cell growth, and regulation of several other processes, like cell differentiation. Here we investigated the interaction of these proteins with different models of phospholipid membrane vesicles in order to achieve further insight into their specificity within the enterocyte. A combination of biophysical and biochemical techniques allowed us to determine affinities of these proteins to membranes, the way phospholipid composition and vesicle size and curvature modulate such interaction, as well as the effect of protein binding on the integrity of the membrane structure. We demonstrate here that, besides their apparently opposite ligand transfer mechanisms, both LFABP and IFABP are able to interact with phospholipid membranes, but the factors that modulate such interactions are different for each protein, further implying different roles for IFABP and LFABP in the intracellular context. These results contribute to the proposed central role of intestinal FABPs in the lipid traffic within enterocytes as well as in the regulation of more complex cellular processes. PMID:21539932

  14. Affine density in wavelet analysis

    CERN Document Server

    Kutyniok, Gitta

    2007-01-01

    In wavelet analysis, irregular wavelet frames have recently come to the forefront of current research due to questions concerning the robustness and stability of wavelet algorithms. A major difficulty in the study of these systems is the highly sensitive interplay between geometric properties of a sequence of time-scale indices and frame properties of the associated wavelet systems. This volume provides the first thorough and comprehensive treatment of irregular wavelet frames by introducing and employing a new notion of affine density as a highly effective tool for examining the geometry of sequences of time-scale indices. Many of the results are new and published for the first time. Topics include: qualitative and quantitative density conditions for existence of irregular wavelet frames, non-existence of irregular co-affine frames, the Nyquist phenomenon for wavelet systems, and approximation properties of irregular wavelet frames.

  15. Inhomogeneous self-affine carpets

    OpenAIRE

    Fraser, Jonathan M.

    2013-01-01

    We investigate the dimension theory of inhomogeneous self-affine carpets. Through the work of Olsen, Snigireva and Fraser, the dimension theory of inhomogeneous self-similar sets is now relatively well-understood, however, almost no progress has been made concerning more general non-conformal inhomogeneous attractors. If a dimension is countably stable, then the results are immediate and so we focus on the upper and lower box dimensions and compute these explicitly for large classes of inhomo...

  16. Hydrophobic compounds reshape membrane domains

    NARCIS (Netherlands)

    Barnoud, Jonathan; Rossi, Giulia; Marrink, Siewert J; Monticelli, Luca

    2014-01-01

    Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compou

  17. Alternative affinity tools: more attractive than antibodies?

    NARCIS (Netherlands)

    Ruigrok, V.J.B.; Levisson, M.; Eppink, M.H.M.; Smidt, H.; Oost, van der J.

    2011-01-01

    Antibodies are the most successful affinity tools used today, in both fundamental and applied research (diagnostics, purification and therapeutics). Nonetheless, antibodies do have their limitations, including high production costs and low stability. Alternative affinity tools based on nucleic acids

  18. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  19. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    Science.gov (United States)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  20. Manifolds with integrable affine shape operator

    Directory of Open Access Journals (Sweden)

    Daniel A. Joaquín

    2005-05-01

    Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.

  1. Integrated cellular systems

    Science.gov (United States)

    Harper, Jason C.

    The generation of new three-dimensional (3D) matrices that enable integration of biomolecular components and whole cells into device architectures, without adversely altering their morphology or activity, continues to be an expanding and challenging field of research. This research is driven by the promise that encapsulated biomolecules and cells can significantly impact areas as diverse as biocatalysis, controlled delivery of therapeutics, environmental and industrial process monitoring, early warning of warfare agents, bioelectronics, photonics, smart prosthetics, advanced physiological sensors, portable medical diagnostic devices, and tissue/organ replacement. This work focuses on the development of a fundamental understanding of the biochemical and nanomaterial mechanisms that govern the cell directed assembly and integration process. It was shown that this integration process relies on the ability of cells to actively develop a pH gradient in response to evaporation induced osmotic stress, which catalyzes silica condensation within a thin 3D volume surrounding the cells, creating a functional bio/nano interface. The mechanism responsible for introducing functional foreign membrane-bound proteins via proteoliposome addition to the silica-lipid-cell matrix was also determined. Utilizing this new understanding, 3D cellular immobilization capabilities were extended using sol-gel matrices endowed with glycerol, trehalose, and media components. The effects of these additives, and the metabolic phase of encapsulated S. cerivisiase cells, on long-term viability and the rate of inducible gene expression was studied. This enabled the entrapment of cells within a novel microfluidic platform capable of simultaneous colorimetric, fluorescent, and electrochemical detection of a single analyte, significantly improving confidence in the biosensor output. As a complementary approach, multiphoton protein lithography was utilized to engineer 3D protein matrices in which to

  2. Cellular: Toward personal communications

    Science.gov (United States)

    Heffernan, Stuart

    1991-09-01

    The cellular industry is one of the fastest growing segment of the telecommunications industry. With an estimated penetration rate of 20 percent in the near future, cellular is becoming an ubiquitous telecommunications service in the U.S. In this paper we will examine the major advancements in the cellular industry: customer equipment, cellular networks, engineering tools, customer support, and nationwide seamless service.

  3. Lipid organization of the plasma membrane

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Melo, Manuel N; van Eerden, Floris J; Arnarez, Clément; Lopez, Cesar A; Wassenaar, Tsjerk A; Periole, Xavier; de Vries, Alex H; Tieleman, D Peter; Marrink, Siewert J

    2014-01-01

    The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different li

  4. Pollen viability and membrane lipid composition.

    NARCIS (Netherlands)

    Bilsen, van D.G.J.L.

    1993-01-01

    In this thesis membrane lipid composition is studied in relation to pollen viability during storage. Chapter 1 reviews pollen viability, membranes in the dry state and membrane changes associated with cellular aging. This chapter is followed by a study of age-related changes in phospholipid composit

  5. Rational self-affine tiles

    CERN Document Server

    Steiner, Wolfgang

    2012-01-01

    An integral self-affine tile is the solution of a set equation $\\mathbf{A} \\mathcal{T} = \\bigcup_{d \\in \\mathcal{D}} (\\mathcal{T} + d)$, where $\\mathbf{A}$ is an $n \\times n$ integer matrix and $\\mathcal{D}$ is a finite subset of $\\mathbb{Z}^n$. In the recent decades, these objects and the induced tilings have been studied systematically. We extend this theory to matrices $\\mathbf{A} \\in \\mathbb{Q}^{n \\times n}$. We define rational self-affine tiles as compact subsets of the open subring $\\mathbb{R}^n\\times \\prod_\\mathfrak{p} K_\\mathfrak{p}$ of the ad\\'ele ring $\\mathbb{A}_K$, where the factors of the (finite) product are certain $\\mathfrak{p}$-adic completions of a number field $K$ that is defined in terms of the characteristic polynomial of $\\mathbf{A}$. Employing methods from classical algebraic number theory, Fourier analysis in number fields, and results on zero sets of transfer operators, we establish a general tiling theorem for these tiles. We also associate a second kind of tiles with a rational matr...

  6. Graded electron affinity electron source

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.L.; Gray, H.F.; Jensen, K.L.; Jung, T.M. [Naval Research Laboratory, Washington, DC 20375 (United States)

    1996-05-01

    We describe a new electron source using electric field and low electron affinity semiconductor materials to bring charge to potential energy levels near the vacuum level while still in the solid. The basic idea involves moving some of the potential barrier from the surface to the bulk, and distributing the barrier over a thin layer below the surface. In so doing, the emission physics is changed fundamentally from a quantum mechanical tunneling process largely controlled by surface properties to a classical transport process largely controlled by the band structure of a wide bandgap semiconductor. The composition of the thin layer below the surface would be graded such that the conduction band minimum changes from an energy close to the substrate Fermi level to an energy significantly closer to the vacuum level. Electrons from the substrate would be drawn into the graded composition layer with an electric field produced by a pointed emitter structure and extraction gate similar to that used in field emitter arrays. Relative to a conventional field emitter array, the new source is expected to require lower extraction fields and exhibit improved emission uniformity, stability, and noise. The {ital I}{endash}{ital V} characteristics are not Fowler{endash}Nordheim and may include a saturation effect at high current densities that could be engineered to improve reliability and uniformity. The group III nitrides can be grown with a continuous range of composition that provides the range of electron affinity needed to produce the proposed electronic structure. {copyright} {ital 1996 American Vacuum Society}

  7. The affine quantum gravity programme

    International Nuclear Information System (INIS)

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix { g-hat ab(x)} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination

  8. Insights into the physiological function of cellular prion protein

    Directory of Open Access Journals (Sweden)

    Martins V.R.

    2001-01-01

    Full Text Available Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie, appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction.

  9. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Parhamifar, Ladan; Lange, Marina Krarup;

    2015-01-01

    demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis...

  10. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications for...

  11. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena;

    2014-01-01

    Plasma membrane Ca2+-ATPase (PMCA) by extruding Ca2+ outside the cell, actively participates in the regulation of intracellular Ca2+ concentration. Acting as Ca2+/H+ counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four is...

  12. Collective motor dynamics in membrane transport in vitro

    NARCIS (Netherlands)

    Shaklee, Paige Marie

    2009-01-01

    Key cellular processes such as cell division, internal cellular organization, membrane compartmentalization and intracellular transport rely on motor proteins. Motor proteins, ATP-based mechanoenzymes, actively transport cargo throughout the cell by walking on cytoskeletal filaments. Motors have bee

  13. Cellular uptake of metallated cobalamins.

    Science.gov (United States)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry; Gammelgaard, Bente; Furger, Evelyne; Alberto, Roger

    2016-03-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-) and H2O, respectively), were included as control samples. The results indicated that B12 derivatives delivered cisplatin to both cellular cytosol and nuclei with an efficiency of one third compared to the uptake of free cisplatin cis-[Pt(II)Cl2(NH3)2]. In addition, uptake of charged B12 derivatives including [Cbl-OH2](+), [{Co}-CN-{cis-PtCl(NH3)2}](+), [{Re}-{Co}-CN-{cis-PtCl(NH3)2}](+), and [{Co}-CN-{trans-Pt(Cyt)(NH3)2}](2+) (Cyt = cytarabin) was high compared to neutral B12, which implied the existence of an additional internalization pathway for charged B12 vitamin analogs. The affinities of the charged B12 derivatives to the B12 transporters HC, IF and TC were similar to that of native vitamin B12. PMID:26739575

  14. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-08-01

    Full Text Available Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less flexibility leads to weaker (stronger coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.

  15. Methods for Improving Aptamer Binding Affinity

    OpenAIRE

    Hijiri Hasegawa; Nasa Savory; Koichi Abe; Kazunori Ikebukuro

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of a...

  16. Ordinary differential equations in affine geometry

    Directory of Open Access Journals (Sweden)

    Salvador Gigena

    1996-05-01

    Full Text Available The method of qualitative analysis is used, as applied to a class of fourth order, nonlinear ordinary differential equations, in order to classify, both locally and globally, two classes of hypersurfaces of decomposable type in affine geometry: those with constant unimodular affine mean curvature L , and those with constant Riemannian scalar curvature R. This allows to provide a large number of new examples of hypersurfaces in affine geometry.

  17. Ordinary differential equations in affine geometry

    OpenAIRE

    Salvador Gigena

    1996-01-01

    The method of qualitative analysis is used, as applied to a class of fourth order, nonlinear ordinary differential equations, in order to classify, both locally and globally, two classes of hypersurfaces of decomposable type in affine geometry: those with constant unimodular affine mean curvature L , and those with constant Riemannian scalar curvature R. This allows to provide a large number of new examples of hypersurfaces in affine geometry.

  18. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    Energy Technology Data Exchange (ETDEWEB)

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  19. Affine connections, midpoint formation, and point reflection

    DEFF Research Database (Denmark)

    Kock, Anders

    2011-01-01

    We describe some differential-geometric structures in combinatorial terms: namely affine connections and their torsion and curvature, and we show that torsion free affine connections may equivalently be presented in terms of some simpler combinatorial structure: midpoint formation, and point refl...... reflection (geodesic symmetry). The method employed is that of synthetic differential geometry, which is briefly explained.......We describe some differential-geometric structures in combinatorial terms: namely affine connections and their torsion and curvature, and we show that torsion free affine connections may equivalently be presented in terms of some simpler combinatorial structure: midpoint formation, and point...

  20. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  1. Protein Complex Purification by Affinity Capture.

    Science.gov (United States)

    LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P

    2016-01-01

    Affinity capture has become a powerful technique for consistently purifying endogenous protein complexes, facilitating biochemical and biophysical assays on otherwise inaccessible biological assemblies, and enabling broader interactomic exploration. For this procedure, cells are broken and their contents separated and extracted into a solvent, permitting access to target macromolecular complexes thus released in solution. The complexes are specifically enriched from the extract onto a solid medium coupled with an affinity reagent-usually an antibody-that recognizes the target either directly or through an appended affinity tag, allowing subsequent characterization of the complex. Here, we discuss approaches and considerations for purifying endogenous yeast protein complexes by affinity capture. PMID:27371601

  2. Incorporation of cellular proteins into enveloped virus particles

    OpenAIRE

    Hammarstedt, Maria

    2006-01-01

    This thesis work aimed to investigate the assembly and budding of enveloped virus particles with focus on the fate of cellular proteins, present in or near the plasma membrane (PM) where the budding occurs. It was previously shown that compact viruses, like alphaviruses, with a covering outer protein coat, did not contain any cellular proteins in the envelope. However, cellular proteins were found in purified retroviral preparations and these proteins were thought to be spec...

  3. (+)RNA viruses rewire cellular pathways to build replication organelles

    NARCIS (Netherlands)

    Belov, G.A.; Kuppeveld, F.J.M. van

    2012-01-01

    Positive-strand RNA [(+)RNA] viruses show a significant degree of conservation of their mechanisms of replication. The universal requirement of (+)RNA viruses for cellular membranes for genome replication, and the formation of membranous replication organelles with similar architecture, suggest that

  4. Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1.

    Science.gov (United States)

    Douthwaite, Julie A; Sridharan, Sudharsan; Huntington, Catherine; Hammersley, Jayne; Marwood, Rose; Hakulinen, Jonna K; Ek, Margareta; Sjögren, Tove; Rider, David; Privezentzev, Cyril; Seaman, Jonathan C; Cariuk, Peter; Knights, Vikki; Young, Joyce; Wilkinson, Trevor; Sleeman, Matthew; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2015-01-01

    Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.

  5. 脉冲电场作用下细胞频率特性仿真及窗口效应%Analysis of Frequency-domain and Window Effect for Cellular Inner and Outer Membranes Subjected to Pulsatile Electric Field

    Institute of Scientific and Technical Information of China (English)

    姚陈果; 陈新; 李成祥; 米彦; 孙才新

    2011-01-01

    Based on multi-layer dielectric model of spherical biological cell, a simulating method of frequency characteristics of inner and outer membranes is presented in this paper. Frequency-domain analysis showed that inner and outer membranes subjected to pulsed electric field exhibit band-pass and low-pass filter characteristics, respectively.A calculating method of the transmembrane potential of inner and outer membranes induced by time-varying electric field was introduced, and the window effect between electric field and transmembrane potential was also analyzed.When the duration is reduced from microsecond to sub-microsecond, and to nanosecond, the target induced was from the outer membrane to inner membrane gradually. At the same time, the field intensity should be incrcascd to induce corresponding bioelectric effects. Window effect provides theoretical guidance to choosing reasonable parameters for application of pulsatile electric field in tumor treatment.%本文建立了基于球形单细胞多层介电模型的细胞内外膜电场响应模型,提出了内外膜频率特性的仿真计算方法.频率特性分析表明,细胞内外膜在响应外加电场时分别具有带通和低通滤波性能.给出了任意时变脉冲电场作用下细胞内外膜跨膜电位的计算方法,并分析了方波电场脉宽、场强与细胞内外膜跨膜电位的窗口效应.当外加脉冲电场的脉宽从毫秒级降低到亚微秒级,再到纳秒级,所诱导的作用靶点也由细胞外膜逐渐转移到内膜,同时必须增大脉冲电场的场强,以诱导相应的细胞生物电效应.窗口效应为脉冲电场用于肿瘤治疗的参数合理选择提供了理论依据.

  6. Biophysics of α-synuclein membrane interactions.

    Science.gov (United States)

    Pfefferkorn, Candace M; Jiang, Zhiping; Lee, Jennifer C

    2012-02-01

    Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function.

  7. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  8. Affine processes on positive semidefinite matrices

    CERN Document Server

    Cuchiero, Christa; Mayerhofer, Eberhard; Teichmann, Josef

    2009-01-01

    This paper provides the mathematical foundation for stochastically continuous affine processes on the cone of positive semidefinite symmetric matrices. These matrix-valued affine processes have arisen from a large and growing range of useful applications in finance, including multi-asset option pricing with stochastic volatility and correlation structures, and fixed-income models with stochastically correlated risk factors and default intensities.

  9. Lectures on extended affine Lie algebras

    CERN Document Server

    Neher, Erhard

    2010-01-01

    We give an introduction to the structure theory of extended affine Lie algebras, which provide a common framework for finite-dimensional semisimple, affine and toroidal Lie algebras. The notes are based on a lecture series given during the Fields Institute summer school at the University of Ottawa in June 2009.

  10. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  11. Dyes with high affinity for polylactide

    Institute of Scientific and Technical Information of China (English)

    Liang He; Shu Fen Zhang; Bing Tao Tang; Li Li Wang; Jin Zong Yang

    2007-01-01

    Attempts were made to develop dyes with high affinity for polylactide as an alternative to the existent commercial disperse dyes.The dyes synthesized according to the affinity concept of dye to polylactide exhibited excellent dyeing properties on polylactide compared with the commercial disperse dyes.

  12. Free C+ actions on affine threefolds

    OpenAIRE

    Kraft, H.

    2005-01-01

    We study algebraic actions of the additive group C+ on an affine threefold X and prove a smoothness property for the quotient morphism X -< X//C+. Then, following Shulim Kaliman, we give a proof of the conjecture that every free C+ action on affine 3-space C^3 is a translation.

  13. Porosity of Self-affine Sets

    Institute of Scientific and Technical Information of China (English)

    Lifeng XI

    2008-01-01

    In this paper,it is proved that any self-affine set satisfying the strong separation condition is uniformly porous.The author constructs a self-affine set which is not porous,although the open set condition holds.Besides,the author also gives a C1 iterated function system such that its invariant set is not porous.

  14. On affine non-negative matrix factorization

    DEFF Research Database (Denmark)

    Laurberg, Hans; Hansen, Lars Kai

    2007-01-01

    We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate...

  15. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...

  16. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  17. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues.

    Directory of Open Access Journals (Sweden)

    Helene J Bustad

    Full Text Available Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.

  18. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  19. Epstein-Barr virus/complement fragment C3d receptor (CR2) reacts with p53, a cellular antioncogene-encoded membrane phosphoprotein: detection by polyclonal anti-idiotypic anti-CR2 antibodies.

    OpenAIRE

    Barel, M; Fiandino, A; Lyamani, F; Frade, R

    1989-01-01

    Epstein-Barr virus and the C3d fragment of the third component of complement are specific extracellular ligands for complement receptor type 2 (CR2). However, intracellular proteins that react specifically with CR2 and are involved in post-membrane signals remain unknown. We recently prepared polyclonal anti-idiotypic anti-CR2 antibodies (Ab2) by using the highly purified CR2 molecule as original immunogen. We showed that Ab2 contained anti-idiotypic specificities that mimicked extracellular ...

  20. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  1. Reflectable bases for affine reflection systems

    CERN Document Server

    Azam, Saeid; Yousofzadeh, Malihe

    2011-01-01

    The notion of a "root base" together with its geometry plays a crucial role in the theory of finite and affine Lie theory. However, it is known that such a notion does not exist for the recent generalizations of finite and affine root systems such as extended affine root systems and affine reflection systems. As an alternative, we introduce the notion of a "reflectable base", a minimal subset $\\Pi$ of roots such that the non-isotropic part of the root system can be recovered by reflecting roots of $\\Pi$ relative to the hyperplanes determined by $\\Pi$. We give a full characterization of reflectable bases for tame irreducible affine reflection systems of reduced types, excluding types $E_{6,7,8}$. As a byproduct of our results, we show that if the root system under consideration is locally finite then any reflectable base is an integral base.

  2. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  3. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...... interactions between proteins and lipids. First, interactions of soluble proteins with membranes and specific lipids were studied, using two proteins: Annexin V and Tma1. The protein was first subjected to a lipid/protein overlay assay to identify candidate interaction partners in a fast and efficient way...

  4. 分枝杆菌膜锚定表达载体的构建与亚细胞定位分析%The construction and sub-cellular localization analysis of novel mycobacterial membrane-anchored expression vector

    Institute of Scientific and Technical Information of China (English)

    王鑫; 范小勇; 马辉; 曲勍; 朱越雄

    2011-01-01

    Objective To construct mycobacterial membrane-anchored expression vector and to analyze expression level and sub-cellualr localization of exogenous target protein. Methods Based on the mycobacterial intracellular expression vector pMFA42 which contained a strong promoter of pfurAma mutant, the signal sequence of Mycobacterium tuberculosis(Mtb) 19×103 lipoprotein (19SS) was synthesized and was then cloned into the downstream of pfurAma mutant to generate the mycobacterial membrane-anchored expression vector pMFA42M. The coding gene of enhanced green fluorescent protein(EGFP) was amplified by PCR, and then sub-cloned into these two vectors described above to construct recombinant EGFP fused and membrane-anchored strains, respectively. The coding genes of Mtb immuno-dominant antigens Ag85A and its chimera Ag856A2 were then sub-cloned intothe membrane-anchored construct pMFA42MG to produce recombinant Mtb antigen EGFP fused-expression strains. After that, expression levels and sub-cellualr localization of exogenous target protein were further analyzed by Western blot and flow cytometry sorting(FCS), and the fluorescence intensities of recombinant EGFP- expressed strains were observed in vitro directly and after transfection of murine macrophage cell line RAW264.7. Results The novel mycobacterial membrane-anchored expression vector was constructed successfully by introduction of signal sequence of Mtb 19×103 lipoprotein. Using of EGFP as model antigen, exogenous target protein was demonstrated to be expressed with high level and could be anchored into cell membrane of recombinant mycobaterial strains. Conclusion A novel mycobacterial membrane-anchored expression vector was constructed successfully to research recombinant BCG and functions of mycobacterial membrane proteins, and the constructed EGFP-expressed recombinant strains could also be used to research cytophagy in cell model and mycobacterial colony and translocation in animal immunization as model indicator

  5. Lipids in the structure and functions of biological membranes

    Directory of Open Access Journals (Sweden)

    Kuznetsov V.I.

    2014-06-01

    Full Text Available Lipids are one of the main components of cellular membranes. Lipids make up 30-55% of the cell content depending on the types of cells. Phospholipids, sphingomyelins, cholesterol, etc. are characteristic to cellular membranes. The composition of lipids of the both sides of the membranes differs. This fact determines asymmetry of the structure of bili-pid layer. The reason for many pathologies is the changes in the properties of cellular membranes with the modification of their components. The study of structure and functioning of cellular biomembranes is essential for many researchers. The condition of membranes, their quality, their quantitative composition and modification under the influence of different factors as well as their interaction with carbohydrate and protein component are of great importance for the functioning of both membranes, cells and the body in general. Analysis and structuring of lipids and their functions in biological membranes are studied.

  6. Non-Zenoness of piecewise affine dynamical systems and affine complementarity systems with inputs

    Institute of Scientific and Technical Information of China (English)

    Le Quang THUAN

    2014-01-01

    In the context of continuous piecewise affine dynamical systems and affine complementarity systems with inputs, we study the existence of Zeno behavior, i.e., infinite number of mode transitions in a finite-length time interval, in this paper. The main result reveals that continuous piecewise affine dynamical systems with piecewise real-analytic inputs do not exhibit Zeno behavior. Applied the achieved result to affine complementarity systems with inputs, we also obtained a similar conclusion. A direct benefit of the main result is that one can apply smooth ordinary differential equations theory in a local manner for the analysis of continuous piecewise affine dynamical systems with inputs.

  7. Affinity Proteomics in the mountains: Alpbach 2015.

    Science.gov (United States)

    Taussig, Michael J

    2016-09-25

    The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. PMID:27118167

  8. Optimized Affinity Capture of Yeast Protein Complexes.

    Science.gov (United States)

    LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P

    2016-01-01

    Here, we describe an affinity isolation protocol. It uses cryomilled yeast cell powder for producing cell extracts and antibody-conjugated paramagnetic beads for affinity capture. Guidelines for determining the optimal extraction solvent composition are provided. Captured proteins are eluted in a denaturing solvent (sodium dodecyl sulfate polyacrylamide gel electrophoresis sample buffer) for gel-based proteomic analyses. Although the procedures can be modified to use other sources of cell extract and other forms of affinity media, to date we have consistently obtained the best results with the method presented. PMID:27371596

  9. Affinization of category O for quantum groups

    CERN Document Server

    Young, C A S

    2012-01-01

    Let g be a simple Lie algebra. We consider the category O-hat of those modules over the affine quantum group Uq(g-hat) whose Uq(g)-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category O-hat. In particular, we develop the theory of q-characters and define the minimal affinizations of parabolic Verma modules. In types ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula for their characters.

  10. Corner Transfer Matrices and Quantum Affine Algebras

    CERN Document Server

    Foda, O E; Foda, Omar; Miwa, Tetsuji

    1992-01-01

    Let H be the corner-transfer-matrix Hamiltonian for the six-vertex model in the anti-ferroelectric regime. It acts on the infinite tensor product W = V . V . V ....., where is the 2-dimensional irreducible representation of the quantum affine sl(2). We observe that H is the derivation of quantum affine sl(2), and conjecture that the eigenvectors of H form the level-1 vacuum representation of quantum affine sl(2). We report on checks in support of our conjecture.

  11. Preparation and Chiral Selectivity of BSA-Modified Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    Cai Lian SU; Rong Ji DAI; Bin TONG; Yu Lin DENG

    2006-01-01

    An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carried out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.

  12. INTERACTION BETWEEN THE SURFACE GLYCOSYLATED POLYPROPYLENE MEMBRANE AND LECTIN

    Institute of Scientific and Technical Information of China (English)

    Qian Yang; Ling-shu Wan; Zhi-kang Xu

    2008-01-01

    A glycopolymer bearing glucose residues was tethered onto the surface of polypropylene microporous membrane by UV-induced graft polymerization of α-allyl glucoside. Concanavalin A (Con A), a glucose recognizing lectin, could be specifically adsorbed to the membrane surface. On the other hand, the membrane surface showed no recognition ability to another lectin peanut agglutinin. Moreover, the recognition complex between the glycosylated membrane surface and Con Acould be inhibited by glucose and mannose solution. This surface glycosylated membrane could be used as affinity membrane for protein separation and purification.

  13. Oxidative stress action in cellular aging

    OpenAIRE

    Monique Cristine de Oliveira; João Paulo Ferreira Schoffen

    2010-01-01

    Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the fac...

  14. Important cellular targets for antimicrobial photodynamic therapy.

    Science.gov (United States)

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets. PMID:27221289

  15. Modelling cellular behaviour

    Science.gov (United States)

    Endy, Drew; Brent, Roger

    2001-01-01

    Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.

  16. 胞腔代数和仿射胞腔代数简介%Cellular and Affine Cellular Algebras

    Institute of Scientific and Technical Information of China (English)

    惠昌常

    2010-01-01

    表示论中一个最基本的问题是确定不可约表示的参数集,这个问题至今没有完垒解决.对于Graham和Lehrer引入的有限维胞腔代数,这令问题得到了完满解答,并被成功地应用于数学和物理中出现的许多代数.近来,人们引入仿射胞腔代数,将Graham和Lehrer有限维胞腔代数的表示理论框架推广到一类无限维代数上.仿射胞腔代数不仅包括有限维胞腔代数,也包括无限维的仿射Temperley-Lieb代数和Lusztig的A-型仿射Hecke代数.本文将对胞腔代数的发展历史和主要研究成果做一些综述,同时,对新引入的仿射胞腔代数及其最新成果做一点简介.

  17. Klotho-Dependent Cellular Transport Regulation.

    Science.gov (United States)

    Sopjani, M; Dërmaku-Sopjani, M

    2016-01-01

    Klotho is a transmembrane protein that in humans is encoded by the hKL gene. This protein is known to have aging suppressor effects and is predominantly expressed in the distal convoluted tubule of the kidney, parathyroid glands, and choroid plexus of the brain. The Klotho protein exists in both full-length membrane form and a soluble secreted form, which exerts numerous distinct functions. The extracellular domain of Klotho can be enzymatically cleaved off and released into the systemic circulation where it functions as β-glucuronidase and a hormone. Soluble Klotho is a multifunction protein present in the biological fluids including blood, urine, and cerebrospinal fluid of mammals. Klotho deficiency leads to multiple organ failure accompanied by early appearance of multiple age-related disorders and early death, whereas overexpression of Klotho results in the opposite effects. Klotho, an enzyme and hormone, has been reported to participate in the regulation of cellular transport processes across the plasma membrane either indirectly through inhibiting calcitriol (1,25(OH)2D3) formation or other mechanism, or by directly affecting transporter proteins, including ion channels, cellular carriers, and Na(+)/K(+)-ATPase. Accordingly, Klotho protein serves as a powerful regulator of cellular transport across the plasma membrane. Importantly, Klotho-dependent cellular transport regulation implies stimulatory or inhibitory effects. Klotho has been shown to play a key role in the regulation of multiple calcium and potassium ion channels, and various cellular carriers including the Na(+)-coupled cotransporters such as NaPi-IIa, NaPi-IIb, EAAT3, and EAAT4, CreaT1 as well as Na(+)/K(+)-ATPase. These regulations are parts of the antiaging function of Klotho, which will be discussing throughout this chapter. Clearly, further experimental efforts are required to investigate the effect of Klotho on other transport proteins and underlying molecular mechanisms by which Klotho

  18. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  19. Scaffolding proteins in membrane trafficking : the role of ELKS

    NARCIS (Netherlands)

    Yu, K.L.

    2015-01-01

    Intracellular membrane trafficking is an essential cellular process that involves cooperation of many factors such as scaffolding proteins, GTPases and SNAREs. These proteins work together to ensure proper delivery of different membrane-enclosed cargoes to specific cellular destinations. In this the

  20. 禽流感病毒H5N1血凝素蛋白的细胞膜上提纯和结晶%Purification and crystallization of hemagglutinin expressed on the cellular membrane originated from avian influenza virus H5N1

    Institute of Scientific and Technical Information of China (English)

    谌资; 郑煜煌; Yipu Lin; David J Stevens; Steve A Wharton; Patrick J Collins; Junfeng Liu; Alan J Hay

    2009-01-01

    目的 从细胞膜上提纯禽流感病毒H5N1的血凝素蛋白H5 I151F和H5 I151F+A134V+E186D,并使蛋白结晶.方法 细胞内大量增殖重组牛痘病毒,去垢剂提取细胞膜中的HA蛋白,连续蔗糖密度梯度超速离心,Western印迹检测,菠萝蛋白酶等裂解HA,离子交换层析,SDS-PAGE电泳并染色检测蛋白纯度,坐滴气象扩散法结晶.结果 从细胞膜中提取了高纯度的血凝素蛋白H5 I151F和H5 I151F+A134V+E186D,并得到了H5 I151F蛋白晶体.结论 首次获得了禽流感病毒H5N1的H5 I151F蛋白晶体,为进一步研究禽流感病毒人传人的可能性打下基础.%Objective To purify and crystallize two kinds of H5N1 vires hemagglutinin proteins, H5 I151F and H5 I151F + A134V + E186D, from the cellular membrane. Methods Recombinant vaccinia viruses were massive propagated, hemagglutinin (HA) proteins were extracted from cellular membrane with detergent. HA proteins were concentrated with continuous sucrose gradient ultracentrifugation and detected by Western Blotting. HA proteins were cleavaged with Bromelain, and purified with Ion-exchange chromatography. The protein puri-ty was detected by SDS-PAGE electrophoresis and staining. HA proteins were crystallized by sitting-drop vapour diffusion. Results Hemag-glutinin proteins, H5 I151F and H5 I151F + A134V + E186D, were extensively purified. And the crystal of H5 I151F was obtained. Con-clusion For the first time, the highly purified H5 I151F membrane protein crystal was obtained, which provided the basis for further stud-ying the mechanisms of human to human transmission caused by avian influenza viruses.

  1. Removal of Endotoxin from Human Serum Albumin Solutions by Hydrophobic and Cationic Charged Membrane

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane can be used for the removal of endotoxin from human serum albumin (HSA) solutions. With a cartridge of 20 sheets affinity membrane of 47 mm diameter, the endotoxin level in HSA solution can be reduced to 0.027 eu/mL. Recovery of HSA was over 95%.

  2. Cellular recurrent deep network for image registration

    Science.gov (United States)

    Alam, M.; Vidyaratne, L.; Iftekharuddin, Khan M.

    2015-09-01

    Image registration using Artificial Neural Network (ANN) remains a challenging learning task. Registration can be posed as a two-step problem: parameter estimation and actual alignment/transformation using the estimated parameters. To date ANN based image registration techniques only perform the parameter estimation, while affine equations are used to perform the actual transformation. In this paper, we propose a novel deep ANN based image rigid registration that combines parameter estimation and transformation as a simultaneous learning task. Our previous work shows that a complex universal approximator known as Cellular Simultaneous Recurrent Network (CSRN) can successfully approximate affine transformations with known transformation parameters. This study introduces a deep ANN that combines a feed forward network with a CSRN to perform full rigid registration. Layer wise training is used to pre-train feed forward network for parameter estimation and followed by a CSRN for image transformation respectively. The deep network is then fine-tuned to perform the final registration task. Our result shows that the proposed deep ANN architecture achieves comparable registration accuracy to that of image affine transformation using CSRN with known parameters. We also demonstrate the efficacy of our novel deep architecture by a performance comparison with a deep clustered MLP.

  3. Mechanisms of Membrane Curvature Generation in Membrane Traffic

    Directory of Open Access Journals (Sweden)

    Hye-Won Shin

    2012-02-01

    Full Text Available During the vesicular trafficking process, cellular membranes undergo dynamic morphological changes, in particular at the vesicle generation and fusion steps. Changes in membrane shape are regulated by small GTPases, coat proteins and other accessory proteins, such as BAR domain-containing proteins. In addition, membrane deformation entails changes in the lipid composition as well as asymmetric distribution of lipids over the two leaflets of the membrane bilayer. Given that P4-ATPases, which catalyze unidirectional flipping of lipid molecules from the exoplasmic to the cytoplasmic leaflets of the bilayer, are crucial for the trafficking of proteins in the secretory and endocytic pathways, changes in the lipid composition are involved in the vesicular trafficking process. Membrane remodeling is under complex regulation that involves the composition and distribution of lipids as well as assembly of proteins.

  4. Lipids, lipid droplets and lipoproteins in their cellular context; an ultrastructural approach

    NARCIS (Netherlands)

    Mesman, R.J.

    2013-01-01

    Lipids are essential for cellular life, functioning either organized as bilayer membranes to compartmentalize cellular processes, as signaling molecules or as metabolic energy storage. Our current knowledge on lipid organization and cellular lipid homeostasis is mainly based on biochemical data. How

  5. Automorphisms in Birational and Affine Geometry

    CERN Document Server

    Ciliberto, Ciro; Flenner, Hubert; McKernan, James; Prokhorov, Yuri; Zaidenberg, Mikhail

    2014-01-01

    The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference high...

  6. Micro-structured peptide surfaces for the detection of high-affinity peptide-receptor interactions in living cells.

    Science.gov (United States)

    Lipp, Anna-Maria; Ji, Bozhi; Hager, Roland; Haas, Sandra; Schweiggl, Simone; Sonnleitner, Alois; Haselgrübler, Thomas

    2015-12-15

    Peptide ligands have great potential as selective agents for diagnostic imaging and therapeutic targeting of human cancers. A number of high-throughput assays for screening potential candidate peptides have been developed. Although these screening assays are indispensable for the identification of peptide ligands at a large scale, it is crucial to validate peptide binding and selectivity for targeted receptors in a live-cell context. For testing high-affinity peptide-receptor interactions in the plasma membrane of living cells, we developed cell-resistant, micro-structured glass surfaces with high-density and high-contrast peptide features. Cell adhesion and recruitment of fluorescent receptors to micro-patterned peptides in the live-cell membrane were evaluated by reflection interference contrast (RIC) and total internal reflection (TIRF) microscopy, respectively. To demonstrate both the specificity and modularity of the assay, co-patterning of fluorescent receptors with three different immobilized micro-structured ligands was shown: first, interaction of green fluorescent protein (GFP)-tagged epidermal growth factor (EGF) receptor expressed in Jurkat cells with immobilized EGF was detected and quantified. Second, using Jurkat cells, we demonstrated specific interaction of yellow fluorescent protein (YFP)-tagged β3 integrin with c(RGDfK) peptide. Third, we identified indirect recruitment of GFP-tagged α5 integrin to an 11-mer peptide. In summary, our results show that the developed micro-structured surfaces are a useful tool for the validation and quantification of peptide-receptor interactions in their natural cellular environment. PMID:26210593

  7. Synthesis of a New Series of Bone Affinity Compounds

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new series of bone affinity compounds were synthesized by linking chrysophanol with 5-fluorouracil derivatives. Their bone affinity was established by hydroxyapafive (HA)affinity experiment in vitro, and their cytostatic effects were shown by the MTT assay.

  8. A MEMS Dielectric Affinity Glucose Biosensor

    OpenAIRE

    Xian HUANG; Li, SiQi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao

    2013-01-01

    Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concent...

  9. On Affine Fusion and the Phase Model

    OpenAIRE

    Walton, Mark A.

    2012-01-01

    A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the $su(n)$ Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connec...

  10. Purely affine elementary su(N) fusions

    OpenAIRE

    Rasmussen, Jorgen; Walton, Mark A.

    2001-01-01

    We consider three-point couplings in simple Lie algebras -- singlets in triple tensor products of their integrable highest weight representations. A coupling can be expressed as a linear combination of products of finitely many elementary couplings. This carries over to affine fusion, the fusion of Wess-Zumino-Witten conformal field theories, where the expressions are in terms of elementary fusions. In the case of su(4) it has been observed that there is a purely affine elementary fusion, i.e...

  11. Complete algebraic vector fields on affine surfaces

    OpenAIRE

    Kaliman, Shulim; Kutzschebauch, Frank; Leuenberger, Matthias

    2014-01-01

    Let $\\AAutH (X)$ be the subgroup of the group $\\AutH (X)$ of holomorphic automorphisms of a normal affine algebraic surface $X$ generated by elements of flows associated with complete algebraic vector fields. Our main result is a classification of all normal affine algebraic surfaces $X$ quasi-homogeneous under $\\AAutH (X)$ in terms of the dual graphs of the boundaries $\\bX \\setminus X$ of their SNC-completions $\\bX$.

  12. Fan affinity laws from a collision model

    International Nuclear Information System (INIS)

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour of air is incorporated. Our calculations prove the affinity laws and provide numerical estimates of the air delivery, thrust and drag on a rotating fan. (paper)

  13. Sperm Membrane Behaviour during Cooling and Cryopreservation.

    Science.gov (United States)

    Sieme, H; Oldenhof, H; Wolkers, W F

    2015-09-01

    Native sperm is only marginally stable after collection. Cryopreservation of semen facilitates transport and storage for later use in artificial reproduction technologies, but cryopreservation processing may result in cellular damage compromising sperm function. Membranes are thought to be the primary site of cryopreservation injury. Therefore, insights into the effects of cooling, ice formation and protective agents on sperm membranes may help to rationally design cryopreservation protocols. In this review, we describe membrane phase behaviour of sperm at supra- and subzero temperatures. In addition, factors affecting membrane phase transitions and stability, sperm osmotic tolerance limits and mode of action of cryoprotective agents are discussed. It is shown how cooling only results in minor thermotropic non-cooperative phase transitions, whereas freezing causes sharp lyotropic fluid-to-gel phase transitions. Membrane cholesterol content affects suprazero membrane phase behaviour and osmotic tolerance. The rate and extent of cellular dehydration coinciding with freezing-induced membrane phase transitions are affected by the cooling rate and ice nucleation temperature and can be modulated by cryoprotective agents. Permeating agents such as glycerol can move across cellular membranes, whereas non-permeating agents such as sucrose cannot. Both, permeating and non-permeating protectants preserve biomolecular and cellular structures by forming a protective glassy state during freezing. PMID:26382025

  14. Transport and sorting of membrane lipids

    NARCIS (Netherlands)

    van Meer, G.

    1993-01-01

    The lipid composition of cellular membranes may seem unnecessarily complex. However, the lipid composition of each membrane is carefully regulated by local metabolism and specificity in transport, marking the functional significance for the cell. Recent research has revealed unexpected discoveries c

  15. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian;

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...

  16. Allosteric inhibitors of plasma membrane Ca2+ pumps: Invention and applications of caloxins

    Institute of Scientific and Technical Information of China (English)

    Jyoti; Pande; M; Szewczyk; Ashok; K; Grover

    2011-01-01

    Plasma membrane Ca2+pumps(PMCA)play a major role in Ca2+homeostasis and signaling by extruding cellular Ca2+with high affinity.PMCA isoforms are encoded by four genes which are expressed differentially in various cell types in normal and disease states.Therefore, PMCA isoform selective inhibitors would aid in delineating their role in physiology and pathophysiology.We are testing the hypothesis that extracellular domains of PMCA can be used as allosteric targets to obtain a novel class of PMCA-specific inhibitors termed caloxins. This review presents the concepts behind the invention of caloxins and our progress in this area.A section is also devoted to the applications of caloxins in literature. We anticipate that isoform-selective caloxins will aid in understanding PMCA physiology in health and disease. With strategies to develop therapeutics from bioactive peptides,caloxins may become clinically useful in car diovascular diseases,neurological disorders,retinopathy,cancer and contraception.

  17. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  18. The connection between metal ion affinity and ligand affinity in integrin I domains

    DEFF Research Database (Denmark)

    Vorup-Jensen, Thomas; Waldron, TT; Astrof, N;

    2007-01-01

    Integrins are cell-surface heterodimeric proteins that mediate cell-cell, cell-matrix, and cell-pathogen interactions. Half of the known integrin alpha subunits contain inserted domains (I domains) that coordinate ligand through a metal ion. Although the importance of conformational changes within...... isolated I domains in regulating ligand binding has been reported, the relationship between metal ion binding affinity and ligand binding affinity has not been elucidated. Metal and ligand binding by several I domain mutants that are stabilized in different conformations are investigated using isothermal...... titration calorimetry and surface plasmon resonance studies. This work suggests an inverse relationship between metal ion affinity and ligand binding affinity (i.e. constructs with a high affinity for ligand exhibit a low affinity for metal). This trend is discussed in the context of structural studies...

  19. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  20. Affine modifications and affine hypersurfaces with a very transitive automorphism group

    OpenAIRE

    Kaliman, Shulim; ZAIDENBERG, MIKHAIL

    1998-01-01

    We study a kind of modification of an affine domain which produces another affine domain. First appeared in passing in the basic paper of O. Zariski (1942), it was further considered by E.D. Davis (1967). The first named author applied its geometric counterpart to construct contractible smooth affine varieties non-isomorphic to Euclidean spaces. Here we provide certain conditions which guarantee preservation of the topology under a modification. As an application, we show that the group of bi...

  1. Sphingolipid topology and membrane protein nanoclusters

    NARCIS (Netherlands)

    Hötzl, S.

    2009-01-01

    Sphingolipids are an essential class of membrane lipids in eukaryotic cells. Due to their high packing density and their affinity for cholesterol, sphingolipids are able to promote bilayer rigidity and impermeability. Apart from its ability to maintain biomembrane integrity, sphingomyelin (SM) is al

  2. Circulating (CD3−CD19+CD20−IgD−CD27highCD38high) Plasmablasts: A Promising Cellular Biomarker for Immune Activity for Anti-PLA2R1 Related Membranous Nephropathy?

    Science.gov (United States)

    Beukinga, Ingrid; Willard-Gallo, Karen; Nortier, Joëlle; Pradier, Olivier

    2016-01-01

    Membranous nephropathy (MN) is a kidney specific autoimmune disease mainly mediated by anti-phospholipase A2 receptor 1 autoantibody (PLA2R1 Ab). The adequate assessment of chimeric anti-CD20 monoclonal antibody, rituximab (RTX), efficacy is still needed to improve clinical outcome of patient with MN. We evaluated the modification of plasmablasts (CD3−CD19+CD20−IgD−CD27highCD38high), a useful biomarker of RTX response in other autoimmune diseases, and memory (CD3−CD19+CD20+IgD−CD27+CD38−) and naive (CD3−CD19+CD20+IgD+CD27−CD38low) B cells by fluorescence-activated cell sorter analysis in PLA2R1 related MN in one patient during the 4 years of follow-up after RTX. RTX induced complete disappearance of CD19+ B cells, plasmablasts, and memory B cells as soon as day 15. Despite severe CD19+ lymphopenia, plasmablasts and memory B cells reemerged early before naive B cells (days 45, 90, and 120, resp.). During the follow-up, plasmablasts decreased more rapidly than memory B cells but still remained elevated as compared to day 0 of RTX. Concomitantly, anti-PLA2R1 Ab increased progressively. Our single case report suggests that, besides monitoring of serum anti-PLA2R1 Ab level, enumeration of circulating plasmablasts and memory B cells represents an attractive and complementary tool to assess immunological activity and efficacy of RTX induced B cells depletion in anti-PLA2R1 Ab related MN. PMID:27493452

  3. Determinants of benzodiazepine brain uptake: lipophilicity versus binding affinity.

    Science.gov (United States)

    Arendt, R M; Greenblatt, D J; Liebisch, D C; Luu, M D; Paul, S M

    1987-01-01

    Factors influencing brain uptake of benzodiazepine derivatives were evaluated in adult Sprague Dawley rats (n = 8-10 per drug). Animals received single intraperitoneal doses of alprazolam, triazolam, lorazepam, flunitrazepam, diazepam, midazolam, desmethyldiazepam, or clobazam. Concentrations of each drug (and metabolites) in whole brain and serum 1 h after dosage were determined by gas chromatography. Serum free fraction was measured by equilibrium dialysis. In vitro binding affinity (apparent Ki) of each compound was estimated based on displacement of tritiated flunitrazepam in washed membrane preparations from rat cerebral cortex. Lipid solubility of each benzodiazepine was estimated using the reverse-phase liquid chromatographic (HPLC) retention index at physiologic pH. There was no significant relation between brain:total serum concentration ratio and either HPLC retention (r = 0.18) or binding Ki (r = -0.34). Correction of uptake ratios for free as opposed to total serum concentration yielded a highly significant correlation with HPLC retention (r = 0.78, P less than 0.005). However, even the corrected ratio was not correlated with binding Ki (r = -0.22). Thus a benzodiazepine's capacity to diffuse from systemic blood into brain tissue is much more closely associated with the physicochemical property of lipid solubility than with specific affinity. Unbound rather than total serum or plasma concentration most accurately reflects the quantity of drug available for diffusion. PMID:2888155

  4. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  5. The effect of acute microgravity on mechanically-induced membrane damage and membrane-membrane fusion events

    Science.gov (United States)

    Clarke, M. S.; Vanderburg, C. R.; Feeback, D. L.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". Both membrane rupture and membrane resealing events mediated by membrane-membrane fusion characterize this response. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  6. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  7. Cellular Cardiomyoplasty: Clinical Application

    OpenAIRE

    Chachques, J. (J.); Acar, C; J. Herreros; Trainini, J. (Jorge); Prosper, F.; D’Attellis, N. (N.); Fabiani, J. N.; Carpentier, A

    2004-01-01

    Myocardial regeneration can be induced with the implantation of a variety of myogenic and angiogenic cell types. More than 150 patients have been treated with cellular cardiomyoplasty worldwide, 18 patients have been treated by our group. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit postischemic remodelling, and restore regional myocardial contractility. Techniques for skeletal myoblasts culture and ex vivo expansion using auto...

  8. Mechanosensitive physiology of chlamydomonas reinhardtii under direct membrane distortion

    OpenAIRE

    Seul Ki Min; Gwang Heum Yoon; Jung Hyun Joo; Sang Jun Sim; Hwa Sung Shin

    2014-01-01

    Cellular membrane distortion invokes variations in cellular physiology. However, lack of an appropriate system to control the stress and facilitate molecular analyses has hampered progress of relevant studies. In this study, a microfluidic system that finely manipulates membrane distortion of Chlamydomonas reinhardtii (C. reinhardtii) was developed. The device facilitated a first-time demonstration that directs membrane distortion invokes variations in deflagellation, cell cycle, and lipid me...

  9. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  10. Adsorption of Human Serum Albumin onto PVA-coated Affinity Microporous PTFE Capillary

    Institute of Scientific and Technical Information of China (English)

    JIN Gu; YAO Oi-zhi; ZHANG Lei

    2008-01-01

    Affinity dye-ligand Cibacron Blue F3GA(CB F3GA)was covalently coupled with poly(vinyl alcohol)(PVA) coated on the inner surface of microporous poly(tetra-fluoroethylene)(MPTFE)membranous capillary.The PVA-coated PTFE capillary surface WaS characterized by XPS and FESEM.The grafting degree of PVA and the amount of CB F3GA immobilized onto the membranous capillary were 23.5 mg/g and 89.6 μmol/g,respectively.These dyed membranous capillaries were chemically and mechanically stable,and could be reproducibly prepared.Human serum albumin(HSA)was selected as model protein.The saturation adsorbance of the dye attached membranous capillary was 85.3 mg HSA/g,while the capacity of non-specific adsorption for HSA was less than 0.3 mg/g.

  11. Affinity purification of aprotinin from bovine lung.

    Science.gov (United States)

    Xin, Yu; Liu, Lanhua; Chen, Beizhan; Zhang, Ling; Tong, Yanjun

    2015-05-01

    An affinity protocol for the purification of aprotinin from bovine lung was developed. To simulate the structure of sucrose octasulfate, a natural specific probe for aprotinin, the affinity ligand was composed of an acidic head and a hydrophobic stick, and was then linked with Sepharose. The sorbent was then subjected to adsorption analysis with pure aprotinin. The purification process consisted of one step of affinity chromatography and another step of ultrafiltration. Then purified aprotinin was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, trypsin inhibitor activity, gel-filtration, and thin-layer chromatography analysis. As calculated, the theoretical maximum adsorption (Qmax ) of the affinity sorbent was 25,476.0 ± 184.8 kallikrein inactivator unit/g wet gel; the dissociation constant of the complex "immobilized ligand-aprotinin" (Kd ) was 4.6 ± 0.1 kallikrein inactivator unit/mL. After the affinity separation of bovine lung aprotinin, reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and gel-filtration chromatography revealed that the protein was a single polypeptide, and the purities were ∼ 97 and 100%, respectively; the purified peptide was also confirmed with aprotinin standard by gel-filtration chromatography and thin-layer chromatography. After the whole purification process, protein, and bioactivity recoveries were 2.2 and 92.6%, respectively; and the specific activity was up to 15,907.1 ± 10.2 kallikrein inactivator unit/mg. PMID:25677462

  12. Classification of neocortical interneurons using affinity propagation

    Science.gov (United States)

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  13. Membrane Processes.

    Science.gov (United States)

    Pellegrin, Marie-Laure; Sadler, Mary E; Greiner, Anthony D; Aguinaldo, Jorge; Min, Kyungnan; Zhang, Kai; Arabi, Sara; Burbano, Marie S; Kent, Fraser; Shoaf, Robert

    2015-10-01

    This review, for literature published in 2014, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, fixed film and anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:26420079

  14. Membrane Processes.

    Science.gov (United States)

    Pellegrin, Marie-Laure; Burbano, Marie S; Sadler, Mary E; Diamond, Jason; Baker, Simon; Greiner, Anthony D; Arabi, Sara; Wong, Joseph; Doody, Alexandra; Padhye, Lokesh P; Sears, Keith; Kistenmacher, Peter; Kent, Fraser; Tootchi, Leila; Aguinaldo, Jorge; Saddredini, Sara; Schilling, Bill; Min, Kyungnan; McCandless, Robert; Danker, Bryce; Gamage, Neranga P; Wang, Sunny; Aerts, Peter

    2016-10-01

    This review, for literature published in 2015, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:27620084

  15. Stability of the Neurotensin Receptor NTS1 Free in Detergent Solution and Immobilized to Affinity Resin

    OpenAIRE

    White, Jim F.; Reinhard Grisshammer

    2010-01-01

    BACKGROUND: Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram q...

  16. Synthesis, Characterization, and Biological Affinity of a Near-Infrared-Emitting Conjugated Oligoelectrolyte

    OpenAIRE

    Thomas, Alexander W.; Henson, Zachary B.; Du, Jenny; Vandenberg, Carol A.; Bazan, Guillermo C.

    2014-01-01

    A near-IR-emitting conjugated oligoelectrolyte (COE), ZCOE, was synthesized, and its photophysical features were characterized. The biological affinity of ZCOE is compared to that of an established lipid-membrane-intercalating COE, DSSN+, which has blue-shifted optical properties making it compatible for tracking preferential sites of accumulation. ZCOE exhibits diffuse staining of E. coli cells, whereas it displays internal staining of select yeast cells which also show propidium iodide stai...

  17. Stability of the Neurotensin Receptor NTS1 Free in Detergent Solution and Immobilized to Affinity Resin

    OpenAIRE

    White, Jim F.; Grisshammer, Reinhard

    2010-01-01

    Background Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram qu...

  18. Multicomponent membranes

    Science.gov (United States)

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  19. The S2 Cu(I) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance†

    Science.gov (United States)

    Fu, Yue; Bruce, Kevin E.; Wu, Hongwei; Giedroc, David P.

    2015-01-01

    Pathogenic bacteria have evolved copper homeostasis and resistance systems for fighting copper toxicity imposed by the human immune system. Streptococcus pneumoniae is a respiratory pathogen that encodes an obligatorily membrane-anchored Cu(I) binding protein, CupA, and a P1B-type ATPase efflux transporter, CopA. The soluble, cytoplasmic domain of CupA (sCupA) contains a binuclear Cu(I) cluster consisting of S1 and S2 Cu(I) ions. The NMR solution structure of apo-sCupA reveals the same cupredoxin fold of Cu2-sCupA, except that the Cu(I) binding loop (residues 112–116, harboring S2 Cu ligands M113 and M115) is highly dynamic as documented by both backbone and side chain methionine methyl order parameters. In contrast to the more solvent exposed, lower affinity S2 Cu site, the high affinity S1 Cu-coordinating cysteines (C74, C111) are pre-organized in the apo-sCupA structure. Biological experiments reveal that the S1 site is largely dispensable for cellular Cu resistance and may be involved in buffering low cytoplasmic Cu(I). In contrast, the S2 site is essential for Cu resistance. Expression of a chimeric CopZ chaperone fused to the CupA transmembrane helix does not protect S. pneumoniae from copper toxicity and substitution of a predicted cytoplasm-facing Cu(I) entry metal-binding site (MBS) on CopA also gives rise to a Cu-sensitivity phenotype. These findings suggest that CupA and CopA may interact and filling of the CupA S2 site with Cu(I) results in stimulation of cellular copper efflux by CopA. PMID:26346139

  20. Chemical proteomics strategies for elucidation of cellular steroid hormone targets

    OpenAIRE

    Golkowski, Martin

    2012-01-01

    The aim of the given work was the development and improvement of affinity chromatography-based methodologies as a means to elucidate the cellular target structures of endogenous and synthetic steroid hormones. Steroid hormones are among the most important regulators of physiological processes in mammals. Moreover, pharmacological agents based on or derived from steroid hormones are indispensable for the treatment of diseases related inflammation, the immune defense and the deregulation of the...

  1. Stepparents' Affinity-Seeking and Affinity-Maintaining Strategies with Stepchildren.

    Science.gov (United States)

    Ganong, Lawrence; Coleman, Marilyn; Fine, Mark; Martin, Patricia

    1999-01-01

    Examines the strategies that stepparents use to develop and maintain affinity with stepchildren and the effects that these strategies have on the development of stepparent-stepchildren relationships. Thirty-one affinity-seeking strategies are identified. Results show that dyadic activities worked best, but it is important that stepchildren…

  2. Cellular uptake of steroid carrier proteins – mechanisms and implications

    OpenAIRE

    Willnow, T E; Nykjaer, A

    2009-01-01

    Abstract Steroid hormones are believed to enter cells solely by free diffusion through the plasma membrane. However, recent studies suggest the existence of cellular uptake pathways for carrier-bound steroids. Similar to the clearance of cholesterol via lipoproteins, these pathways involve the recognition of carrier proteins by endocytic receptors on the surface of target cells, followed by internalization and cellular delivery of the bound sterols. Here, we discuss the emerging co...

  3. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton

    2012-11-01

    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  4. Affinity chromatography of bacterial lactate dehydrogenases.

    Science.gov (United States)

    Kelly, N; Delaney, M; O'Carra, P

    1978-06-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  5. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    International Nuclear Information System (INIS)

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced 125I-[Tyr1]somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate [Gpp(NH)p]>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg2+. When pancreatic acini were treated with 1 μg/ml pertussis toxin for 4 h, subsequent 125I-[Tyr1]somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor

  6. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1

    Science.gov (United States)

    Sun, Ji; Bankston, John R.; Payandeh, Jian; Hinds, Thomas R.; Zagotta, William N.; Zheng, Ning

    2014-03-01

    Nitrate is a primary nutrient for plant growth, but its levels in soil can fluctuate by several orders of magnitude. Previous studies have identified Arabidopsis NRT1.1 as a dual-affinity nitrate transporter that can take up nitrate over a wide range of concentrations. The mode of action of NRT1.1 is controlled by phosphorylation of a key residue, Thr 101 however, how this post-translational modification switches the transporter between two affinity states remains unclear. Here we report the crystal structure of unphosphorylated NRT1.1, which reveals an unexpected homodimer in the inward-facing conformation. In this low-affinity state, the Thr 101 phosphorylation site is embedded in a pocket immediately adjacent to the dimer interface, linking the phosphorylation status of the transporter to its oligomeric state. Using a cell-based fluorescence resonance energy transfer assay, we show that functional NRT1.1 dimerizes in the cell membrane and that the phosphomimetic mutation of Thr 101 converts the protein into a monophasic high-affinity transporter by structurally decoupling the dimer. Together with analyses of the substrate transport tunnel, our results establish a phosphorylation-controlled dimerization switch that allows NRT1.1 to uptake nitrate with two distinct affinity modes.

  7. European and international collaboration in affinity proteomics.

    Science.gov (United States)

    Stoevesandt, Oda; Taussig, Michael J

    2012-06-15

    In affinity proteomics, specific protein-binding molecules (a.k.a. binders), principally antibodies, are applied as reagents in proteome analysis. In recent years, advances in binder technologies have created the potential for an unprecedented view on protein expression and distribution patterns in plasma, cells and tissues and increasingly on protein function. Particular strengths of affinity proteomics methods include detecting proteins in their natural environments of cell or tissue, high sensitivity and selectivity for detection of low abundance proteins and exploiting binding actions such as functional interference in living cells. To maximise the use and impact of affinity reagents, it will be essential to create comprehensive, standardised binder collections. With this in mind, the EU FP7 programme AFFINOMICS (http://www.affinomics.org), together with the preceding EU programmes ProteomeBinders and AffinityProteome, aims to extend affinity proteomics research by generating a large-scale resource of validated protein-binding molecules for characterisation of the human proteome. Activity is directed at producing binders to about 1000 protein targets, primarily in signal transduction and cancer, by establishing a high throughput, coordinated production pipeline. An important aspect of AFFINOMICS is the development of highly efficient recombinant selection methods, based on phage, cell and ribosome display, capable of producing high quality binders at greater throughput and lower cost than hitherto. The programme also involves development of innovative and sensitive technologies for specific detection of target proteins and their interactions, and deployment of binders in proteomics studies of clinical relevance. The need for such binder generation programmes is now recognised internationally, with parallel initiatives in the USA for cancer (NCI) and transcription factors (NIH) and within the Human Proteome Organisation (HUPO). The papers in this volume of New

  8. The Affine q-Schur algebra

    OpenAIRE

    Green, R. M.

    1997-01-01

    We introduce an analogue of the $q$-Schur algebra associated to Coxeter systems of type $\\hat A_{n-1}$. We give two constructions of this algebra. The first construction realizes the algebra as a certain endomorphism algebra arising from an affine Hecke algebra of type $\\hat A_{r-1}$, where $n \\geq r$. This generalizes the original $q$-Schur algebra as defined by Dipper and James, and the new algebra contains the ordinary $q$-Schur algebra and the affine Hecke algebra as subalgebras. Using th...

  9. Affine Projection Algorithm Using Regressive Estimated Error

    OpenAIRE

    Zhang, Shu; Zhi, Yongfeng

    2011-01-01

    An affine projection algorithm using regressive estimated error (APA-REE) is presented in this paper. By redefining the iterated error of the affine projection algorithm (APA), a new algorithm is obtained, and it improves the adaptive filtering convergence rate. We analyze the iterated error signal and the stability for the APA-REE algorithm. The steady-state weights of the APA-REE algorithm are proved to be unbiased and consist. The simulation results show that the proposed algorithm has a f...

  10. Control and estimation of piecewise affine systems

    CERN Document Server

    Xu, Jun

    2014-01-01

    As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are

  11. Affine Invariant Character Recognition by Progressive Removing

    Science.gov (United States)

    Iwamura, Masakazu; Horimatsu, Akira; Niwa, Ryo; Kise, Koichi; Uchida, Seiichi; Omachi, Shinichiro

    Recognizing characters in scene images suffering from perspective distortion is a challenge. Although there are some methods to overcome this difficulty, they are time-consuming. In this paper, we propose a set of affine invariant features and a new recognition scheme called “progressive removing” that can help reduce the processing time. Progressive removing gradually removes less feasible categories and skew angles by using multiple classifiers. We observed that progressive removing and the use of the affine invariant features reduced the processing time by about 60% in comparison to a trivial one without decreasing the recognition rate.

  12. Adsorption affinity of anions on metal oxyhydroxides

    Science.gov (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  13. Periodic cyclic homology of affine Hecke algebras

    CERN Document Server

    Solleveld, Maarten

    2009-01-01

    This is the author's PhD-thesis, which was written in 2006. The version posted here is identical to the printed one. Instead of an abstract, the short list of contents: Preface 5 1 Introduction 9 2 K-theory and cyclic type homology theories 13 3 Affine Hecke algebras 61 4 Reductive p-adic groups 103 5 Parameter deformations in affine Hecke algebras 129 6 Examples and calculations 169 A Crossed products 223 Bibliography 227 Index 237 Samenvatting 245 Curriculum vitae 253

  14. High-affinity uranyl-specific antibodies suitable for cellular imaging

    International Nuclear Information System (INIS)

    Monoclonal antibodies (mAbs) have proved to be valuable models for the study of protein-metal interactions, and previous reports have described very specific antibodies to chelated metal ions, including uranyl. We raised specific mAbs against UO22+-DCP-BSA (DCP, 1, 10-phenanthroline-2,9-dicarboxylic acid) to generate new sets of antibodies that might cross-react with various complexed forms of uranyl in different environments for further application in the field of toxicology. Using counter-screening with UO22+-DCP-casein, we selected two highly specific mAbs against uranyl-DCP (KD = 10-100 pM): U04S and U08S. Competitive assays in the presence of different metal ions (UO22+, Fe3+, Zn2+, Cu2+, and Ca2+) showed that uranyl in solution can act as a good competitor, suggesting some antibody ability to cross-react with chelating groups other than DCP in the UO22+ equatorial coordination plane. Interestingly, one of the antibodies could be used for revealing uranyl cations in cell samples. Fluorescence activated cell sorting analyses after immuno-labeling revealed the interaction of uranyl with human kidney cells HK2. The intracellular accumulation of uranyl could be directly visualized by metal-immunostaining using fluorescent-labeled mAb. Our results suggest that U04S mAb epitopes mostly include the uranyl fraction and its para-topes can accommodate a wide variety of chelating groups. (authors)

  15. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  16. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  17. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  18. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  19. Crossing Chris: Some Markerian Affinities

    Directory of Open Access Journals (Sweden)

    Adrian Martin

    2010-01-01

    -pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Abstract (E: This essay creatively explores a group of artists, writers, and other special individuals whose work or life story can be described as having an intriguing affinity with the protean career of Chris Marker. Avoiding the ‘usual suspects’ (such as Godard or Sebald, it discusses gossip columnist Milt Machlin, record collector Harry Smith, painter Gianfranco Baruchello, writer-filmmaker Edgardo Cozarinsky, and several others. From this constellation, a particular view of Markerian poetics emerges, touching upon the meanings of anonymity, storytelling, history and archiving.

     

    Abstract (F: Cet essai brosse de manière créative le portrait d’un groupe d'artistes, d'écrivains et d'autres personnes particulières dont le travail ou la biographie peuvent être décrits comme montrant une étrange mais certaine connivence avec la carrière protéiforme de Chris Marker. Evitant les lieux communs (comme Godard ou Sebald, cet article trace des références moins attendues :

  20. Piezoelectric nanoribbons for monitoring cellular deformations

    Science.gov (United States)

    Nguyen, Thanh D.; Deshmukh, Nikhil; Nagarah, John M.; Kramer, Tal; Purohit, Prashant K.; Berry, Michael J.; McAlpine, Michael C.

    2012-09-01

    Methods for probing mechanical responses of mammalian cells to electrical excitations can improve our understanding of cellular physiology and function. The electrical response of neuronal cells to applied voltages has been studied in detail, but less is known about their mechanical response to electrical excitations. Studies using atomic force microscopes (AFMs) have shown that mammalian cells exhibit voltage-induced mechanical deflections at nanometre scales, but AFM measurements can be invasive and difficult to multiplex. Here we show that mechanical deformations of neuronal cells in response to electrical excitations can be measured using piezoelectric PbZrxTi1-xO3 (PZT) nanoribbons, and we find that cells deflect by 1 nm when 120 mV is applied to the cell membrane. The measured cellular forces agree with a theoretical model in which depolarization caused by an applied voltage induces a change in membrane tension, which results in the cell altering its radius so that the pressure remains constant across the membrane. We also transfer arrays of PZT nanoribbons onto a silicone elastomer and measure mechanical deformations on a cow lung that mimics respiration. The PZT nanoribbons offer a minimally invasive and scalable platform for electromechanical biosensing.

  1. Membrane Domain Formation on Nanostructured Scaffolds

    Science.gov (United States)

    Collier, Charles; Liu, Fangjie; Srijanto, Bernadeta

    The spatial organization of lipids and proteins in biological membranes seems to have a functional role in the life of a cell. Separation of the lipids into distinct domains of greater order and anchoring to the cytoskeleton are two main mechanisms for organizing the membrane in cells. We propose a novel model membrane consisting of a lipid bilayer suspended over a nanostructured scaffold consisting of arrays of fabricated nanopillars. Unlike traditional model membranes, our model will have well-defined lateral structure and distributed substrate attachments that will emulate the connections of cellular membranes to the underlying cytoskeleton. Membranes will be characterized using neutron reflectometry, atomic force microscopy and fluorescence to verify a suspended, planar geometry with restricted diffusion at suspension points, and free diffusion in between. This architecture will allow the controlled study of lipid domain reorganization, viral infection and signal transduction that depend on the lateral structure of the membrane.

  2. Fan Affinity Laws from a Collision Model

    Science.gov (United States)

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  3. Classification of neocortical interneurons using affinity propagation

    Directory of Open Access Journals (Sweden)

    Roberto eSantana

    2013-12-01

    Full Text Available In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. Neuronal classification has been a difficult problem because it is unclear what a neuronal cell class actually is and what are the best characteristics are to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological or molecular characteristics, when applied to selected datasets, have provided quantitative and unbiased identification of distinct neuronal subtypes. However, better and more robust classification methods are needed for increasingly complex and larger datasets. We explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. In fact, using a combined anatomical/physiological dataset, our algorithm differentiated parvalbumin from somatostatin interneurons in 49 out of 50 cases. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  4. The Preliminary Report of Pathological Changes of Epiretinal Membranes and Internal Limiting Membrane Removed during Idiopathic Macular Hole Surgery

    Institute of Scientific and Technical Information of China (English)

    Jiaqing Li; Shibo Tang; Yan Luo; Jie Zhang; Shaofen Lin

    2002-01-01

    Purpose:To investigate the pathological changes of epiretinal membranes(ERM)and internal limiting membrane (ILM) removed during idiopathic macular hole surgery.Methods:Ten consecutive patients with a unilateral idiopathic macular hole underwent pars plana vitrectomy(PPV) with the surgical removal of the ERMs overlying the hole and ILM surrounding the hole. The pathological features of the excised tissues were examined under the microscope. Results:According to the morphological changes, four ERMs showed cellular elements which looked like glia cells, macrophages, plasma cells, lymphocytes and fibroblast cells. Two of the ILM appeared as transparent membranes without cellular elements. The other eight ILM showed cellular elements on the transparent membranes.Conclusion: Our study supports the hypothesis that the tangential traction of vitreous and proliferative cellular elements on the inner surface of ILM causes idiopathic macular holes. Removal of the posterior cortical vitreous, ILM and proliferative cellular tissue is a valid treatment for IMH.

  5. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    David L. Springer

    2004-01-01

    Full Text Available To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap. Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  6. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1976-01-01

    Progress in Surface and Membrane Science, Volume 10 covers the advances in surface and membrane science. The book discusses the selective changes of cellular particles influencing sedimentation properties; and the rotating disk and ring-disk electrodes in investigations of surface phenomena at the metal-electrolyte interface. The text also describes the membrane potential of phospholipid bilayer and biological membranes; the adsorption of surfactant monolayers at gas/liquid and liquid/liquid interfaces; and the enzymes immobilized on glass. Chemists and people involved in electrochemistry will

  7. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  8. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  9. Influence of extra-cellular and intra-cellular acting thiol oxidants on the 45calcium uptake by the islets of Langerhans of the rat

    International Nuclear Information System (INIS)

    The glucose-stimulated calcium uptake by the islets of Langerhans is dependent on the intra-cellular GSH/GSSG ratios. The inhibition of calcium uptake is not the consequence of a direct oxidation of membrane-fixed thiol groups. In contrast, direct oxidation of extra cellular thiols leads to an increase in calcium uptake when intra-cellular oxidation is simultaneously prevented. Since this effect only occurs at high intra-cellular GSH/GSSG ratios it can be assumed that the redox state of extra-cellular thiols is dependent on the redox state of the intra-cellular GSH/GSSG ratios. These findings support the theory that the oxidation of extra-cellular thiols by thiol oxidants leads to an increase in calcium uptake and that the extent of uptake is higher, the more the redox state of the extra-cellular thiols tends towards the reduced state prior to oxidation. (orig./MG)

  10. Total Cellular RNA Modulates Protein Activity.

    Science.gov (United States)

    Majumder, Subhabrata; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2016-08-16

    RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases β-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states. PMID:27456029

  11. Designing beauty the art of cellular automata

    CERN Document Server

    Martínez, Genaro

    2016-01-01

    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  12. Membrane-Assisted Growth of DNA Origami Nanostructure Arrays

    OpenAIRE

    Kocabey, Samet; Kempter, Susanne; List, Jonathan; Xing, Yongzheng; Bae, Wooli; Schiffels, Daniel; Shih, William M.; Friedrich C Simmel; Liedl, Tim

    2015-01-01

    Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors—a three-layered rectangular block and a Y-shaped DNA structure—to m...

  13. The Structural Basis of Cholesterol Accessibility in Membranes

    OpenAIRE

    Olsen, Brett N.; Bielska, Agata A.; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-01-01

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes mo...

  14. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field

    Science.gov (United States)

    Shimizu, Kenta; Nakamura, Hideya; Watano, Satoru

    2016-06-01

    Nanoparticles (NPs) have been attracting much attention for biomedical and pharmaceutical applications. In most of the applications, NPs are required to translocate across the cell membrane and to reach the cell cytosol. Experimental studies have reported that by applying an electric field NPs can directly permeate across the cell membrane without the confinement of NPs by endocytic vesicles. However, damage to the cell can often be a concern. Understanding of the mechanism underlying the direct permeation of NPs under an external electric field can greatly contribute to the realization of a technology for the direct delivery of NPs. Here we investigated the permeation of a cationic gold NP across a phospholipid bilayer under an external electric field using a coarse-grained molecular dynamics simulation. When an external electric field that is equal to the membrane breakdown intensity was applied, a typical NP delivery by electroporation was shown: the cationic gold NP directly permeated across a lipid bilayer without membrane wrapping of the NP, while a persistent transmembrane pore was formed. However, when a specific range of the electric field that is lower than the membrane breakdown intensity was applied, a unique permeation pathway was exhibited: the generated transmembrane pore immediately resealed after the direct permeation of NP. Furthermore, we found that the affinity of the NP for the membrane surface is a key for the self-resealing of the pore. Our finding suggests that by applying an electric field in a suitable range NPs can be directly delivered into the cell with less cellular damage.Nanoparticles (NPs) have been attracting much attention for biomedical and pharmaceutical applications. In most of the applications, NPs are required to translocate across the cell membrane and to reach the cell cytosol. Experimental studies have reported that by applying an electric field NPs can directly permeate across the cell membrane without the confinement of

  15. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    International Nuclear Information System (INIS)

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 μM concentration of either activated [3H]folate or activated [3H]methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labeling of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms

  16. Monte Carlo study of receptor-lipid raft formation on a cell membrane

    Science.gov (United States)

    Yu-Yang, Paul; Srinivas Reddy, A.; Raychaudhuri, Subhadip

    2012-02-01

    Receptors are cell surface molecules that bind with extracellular ligand molecules leading to propagation of downstream signals and cellular activation. Even though ligand binding-induced formation of receptor-lipid rafts has been implicated in such a process, the formation mechanism of such large stable rafts is not understood. We present findings from our Monte Carlo (MC) simulations involving (i) receptor interaction with the membrane lipids and (ii) lipid-lipid interactions between raft forming lipids. We have developed a hybrid MC simulation method that combines a probabilistic MC simulation with an explicit free energy-based MC scheme. Some of the lipid-mediated interactions, such as the cholesterol-lipid interactions, are simulated in an implicit way. We examine the effect of varying attractive interactions between raft forming lipids and ligand-bound receptors and show that strong coupling between receptor-receptor and receptor-sphingolipid molecules generate raft formation similar to that observed in recent biological experiments. We study the effect of variation of receptor affinity for ligands (as happens in adaptive immune cells) on raft formation. Such affinity dependence in receptor-lipid raft formation provides insight into important problems in B cell biology.

  17. Effects of protein crowding on membrane systems.

    Science.gov (United States)

    Guigas, Gernot; Weiss, Matthias

    2016-10-01

    Cellular membranes are typically decorated with a plethora of embedded and adsorbed macromolecules, e.g. proteins, that participate in numerous vital processes. With typical surface densities of 30,000 proteins per μm(2) cellular membranes are indeed crowded places that leave only few nanometers of private space for individual proteins. Here, we review recent advances in our understanding of protein crowding in membrane systems. We first give a brief overview on state-of-the-art approaches in experiment and simulation that are frequently used to study crowded membranes. After that, we review how crowding can affect diffusive transport of proteins and lipids in membrane systems. Next, we discuss lipid and protein sorting in crowded membrane systems, including effects like protein cluster formation, phase segregation, and lipid droplet formation. Subsequently, we highlight recent progress in uncovering crowding-induced conformational changes of membranes, e.g. membrane budding and vesicle formation. Finally, we give a short outlook on potential future developments in the field of crowded membrane systems. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26724385

  18. A Chemical Genetic Approach To The Study Of Cellular Transport

    NARCIS (Netherlands)

    Nieland, T.J.F.

    2005-01-01

    The focus of this thesis is the use of chemical genetics to study two different aspects of membrane biology, (a) the mechanisms underlying cellular lipid transport and (b) the intersection between endocytic and exocytic traffic. The broad goals of chemical genetics are to find novel chemical tool

  19. A pipeline for determining protein-protein interactions and proximities in the cellular milieu.

    Science.gov (United States)

    Subbotin, Roman I; Chait, Brian T

    2014-11-01

    It remains extraordinarily challenging to elucidate endogenous protein-protein interactions and proximities within the cellular milieu. The dynamic nature and the large range of affinities of these interactions augment the difficulty of this undertaking. Among the most useful tools for extracting such information are those based on affinity capture of target bait proteins in combination with mass spectrometric readout of the co-isolated species. Although highly enabling, the utility of affinity-based methods is generally limited by difficulties in distinguishing specific from nonspecific interactors, preserving and isolating all unique interactions including those that are weak, transient, or rapidly exchanging, and differentiating proximal interactions from those that are more distal. Here, we have devised and optimized a set of methods to address these challenges. The resulting pipeline involves flash-freezing cells in liquid nitrogen to preserve the cellular environment at the moment of freezing; cryomilling to fracture the frozen cells into intact micron chunks to allow for rapid access of a chemical reagent and to stabilize the intact endogenous subcellular assemblies and interactors upon thawing; and utilizing the high reactivity of glutaraldehyde to achieve sufficiently rapid stabilization at low temperatures to preserve native cellular interactions. In the course of this work, we determined that relatively low molar ratios of glutaraldehyde to reactive amines within the cellular milieu were sufficient to preserve even labile and transient interactions. This mild treatment enables efficient and rapid affinity capture of the protein assemblies of interest under nondenaturing conditions, followed by bottom-up MS to identify and quantify the protein constituents. For convenience, we have termed this approach Stabilized Affinity Capture Mass Spectrometry. Here, we demonstrate that Stabilized Affinity Capture Mass Spectrometry allows us to stabilize and elucidate

  20. Congophilicity (Congo red affinity) of different beta2-microglobulin conformations characterized by dye affinity capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, N H; Sen, J W; Nissen, Mogens Holst

    2000-01-01

    The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red-affinities of......The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red......-affinities of native and abnormally folded beta2-microglobulin. We find that native beta2-microglobulin has an intermediate affinity for Congo red at pH 7.3 and that binding involves electrostatic interactions. The conformational variant of beta2-microglobulin that appears in acetonitrile solutions binds Congo red...... more strongly. Affinity CE using Congo red as a buffer additive is a new, simple, fast, and quantitative micromethod for the characterization of soluble conformational intermediates of amyloidogenic proteins....

  1. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method.

    Science.gov (United States)

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2016-07-01

    The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional

  2. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  3. Magnetic Cellular Switches

    OpenAIRE

    Overby, Darryl R.; Alenghat, Francis J.; Montoya-Zavala, Martín; Bei, HuCheng; Oh, Philmo; Karavitis, John; Ingber, Donald E.

    2004-01-01

    This paper focuses on the development of magnetic cellular switches to enable magnetic control of intracellular functions in living mammalian cells, including receptor signal transduction and gene transcription. Our approach takes advantage of the mechanosensitivity of adenosine 3′,5′-monophosphate (cAMP) induction and downstream transcription controlled by the cAMP regulatory element (CRE) to engineer gene constructs that optically report gene expression in living cells. We activate transcri...

  4. Removal of adsorbing estrogenic micropollutants by nanofiltration membranes:Part B-Model development

    OpenAIRE

    Semiao, Andrea J. C.; Foucher, Matthieu; Schaefer, AndreaI.

    2013-01-01

    Removal of estrone (E1) and estradiol (E2) by nanofiltration membranes at neutral pH is carried out both by size exclusion and adsorption. Size exclusion is dependent on the solute to pore radius ratio and the hormone-membrane affinity. It has been shown that the higher the affinity between the trace contaminant and the membrane active layer, the more will partition and penetrate inside the membrane and in consequence permeate. Adsorption, on the other hand is dependent on the hormone concent...

  5. Cellular therapy in Tuberculosis

    Directory of Open Access Journals (Sweden)

    Shreemanta K. Parida

    2015-03-01

    Full Text Available Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB. We review here the role of Mesenchymal stromal cells, (MSCs, as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy.

  6. Improved native affinity purification of RNA.

    Science.gov (United States)

    Batey, Robert T; Kieft, Jeffrey S

    2007-08-01

    RNA biochemical or structural studies often require an RNA sample that is chemically pure, and most protocols for its in vitro production use denaturing polyacrylamide gel electrophoresis to achieve this. Unfortunately, many RNAs do not quantitatively refold into an active conformation after denaturation, creating significant problems for downstream characterization or use. In addition, this traditional purification method is not amenable to studies demanding high-throughput RNA production. Recently, we presented the first general method for producing almost any RNA sequence that employs an affinity tag that is removed during the purification process. Because technical difficulties prevented application of this method to many RNAs, we have developed an improved version that utilizes a different activatable ribozyme and affinity tag that are considerably more robust, rapid, and broadly applicable. PMID:17548432

  7. AFFINITY OF LIGNIN PREPARATIONS TOWARDS GENOTOXIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Božena Košíková

    2009-02-01

    Full Text Available The carcinogenicity and mutagenicity of chemicals may be modulated by other chemicals, including those prepared by organic synthesis. Consid-ering the several drawbacks of synthetic compounds vis-a-vis the human organism, the lignin biomass component was examined for this purpose. The binding affinity of lignin samples prepared by chemical and biological modification of lignin products derived from chemical wood treatment towards for N-nitrosodiethylamine (NDA was examined. The protective role of the lignin samples against carcinogenesis was tested on a well-known model carcinogen, N-methyl-N´-nitro-N-nitrosoguanidine (MNNG. The observed ability of a series of lignin preparations to reduce alkylation damage of deoxyribonucleic acid (DNA on hamster cells in vitro could be explained by their affinity to bind N-nitrosoamines. The results indicate that lignin has potential to protect living organisms against damaging effects of different genotoxicants.

  8. Local structure of self-affine sets

    CERN Document Server

    Bandt, Christoph

    2011-01-01

    The structure of a self-similar set with open set condition does not change under magnification. For self-affine sets the situation is completely different. We consider planar self-affine Cantor sets E of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that within small square neighborhoods of almost each point x in E, with respect to many product measures on address space, E is well approximated by product sets of an interval and a Cantor set. Even though E is totally disconnected, the limit sets have the product structure with interval fibres, reminiscent to the view of attractors of chaotic differentiable dynamical systems.

  9. Recent Results Regarding Affine Quantum Gravity

    CERN Document Server

    Klauder, John R

    2012-01-01

    Recent progress in the quantization of nonrenormalizable scalar fields has found that a suitable non-classical modification of the ground state wave function leads to a result that eliminates term-by-term divergences that arise in a conventional perturbation analysis. After a brief review of both the scalar field story and the affine quantum gravity program, examination of the procedures used in the latter surprisingly shows an analogous formulation which already implies that affine quantum gravity is not plagued by divergences that arise in a standard perturbation study. Additionally, guided by the projection operator method to deal with quantum constraints, trial reproducing kernels are introduced that satisfy the diffeomorphism constraints. Furthermore, it is argued that the trial reproducing kernels for the diffeomorphism constraints may also satisfy the Hamiltonian constraint as well.

  10. Irreversible blockade of the high and low affinity (3H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    International Nuclear Information System (INIS)

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the (3H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na+-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of (3H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested

  11. Irreversible blockade of the high and low affinity ( sup 3 H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    Energy Technology Data Exchange (ETDEWEB)

    Krizsan, D. (EGIS Pharmaceutical Works, Budapest (Hungary)); Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A. (Biological Research Center of the Hungarian Academy of Sciences, Szeged (Hungary)); Hosztafi, S. (Alkaloida Chemical Works, Tiszavasvari (Hungary))

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ({sup 3}H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na{sup +}-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ({sup 3}H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested.

  12. Thermodynamics. Using Affinities to define reversible processes

    CERN Document Server

    Ritacco, Hernán A

    2016-01-01

    In this article a definition of reversible processes in terms of differences in intensive Thermodynamics properties (Affinities) is proposed. This definition makes it possible to both define reversible processes before introducing the concept of entropy and avoid the circularity problem that follows from the Clausius definition of entropy changes. The convenience of this new definition compared to those commonly found in textbooks is demonstrated with examples.

  13. AFFINE TRANSFORMATION IN RANDOM ITERATED FUNCTION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    熊勇; 史定华

    2001-01-01

    Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, that the figure reconstructed by the new random IFS is the image of the origin figure reconstructed by old IFS under a given affine transformation. Two particular examples are used to show this approach.

  14. Cellular Dynamic Simulator: An Event Driven Molecular Simulation Environment for Cellular Physiology

    Science.gov (United States)

    Byrne, Michael J.; Waxham, M. Neal; Kubota, Yoshihisa

    2010-01-01

    In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations. PMID:20361275

  15. Mapping of cellular iron using hyperspectral fluorescence imaging in a cellular model of Parkinson's disease

    Science.gov (United States)

    Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min

    2013-05-01

    Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.

  16. The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs

    Science.gov (United States)

    Giannone, Richard J.; Liu, Yie; Wang, Yisong

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  17. The Monitoring and Affinity Purification of Proteins Using Dual-Tags with Tetracysteine Motifs

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, Richard J [ORNL; Liu, Yie [ORNL; Wang, Yisong [ORNL

    2009-01-01

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter we describe a comprehensive methodology that utilizes our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we have demonstrated the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  18. Different promoter affinities account for specificity in MYC-dependent gene regulation

    Science.gov (United States)

    Lorenzin, Francesca; Benary, Uwe; Baluapuri, Apoorva; Walz, Susanne; Jung, Lisa Anna; von Eyss, Björn; Kisker, Caroline; Wolf, Jana; Eilers, Martin; Wolf, Elmar

    2016-01-01

    Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells. DOI: http://dx.doi.org/10.7554/eLife.15161.001 PMID:27460974

  19. A MEMS Dielectric Affinity Glucose Biosensor.

    Science.gov (United States)

    Huang, Xian; Li, Siqi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao

    2013-06-20

    Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concentrations. This sensor features simplicity in sensor design, and possesses high specificity and accuracy in glucose detection. However, lack of glucose diffusion passage, this device is unable to fulfill real-time in-vivo monitoring. As a major improvement to this device, we present in this paper a fully implantable MEMS dielectric affinity glucose biosensor that contains a perforated electrode embedded in a suspended diaphragm. This capacitive-based sensor contains no moving parts, and enables glucose diffusion and real-time monitoring. The experimental results indicate that this sensor can detect glucose solutions at physiological concentrations and possesses good reversibility and reliability. This sensor has a time constant to glucose concentration change at approximately 3 min, which is comparable to commercial systems. The sensor has potential applications in fully implantable CGM that require excellent long-term stability and reliability. PMID:24511215

  20. Overview of affinity biosensors in food analysis.

    Science.gov (United States)

    Patel, Pradip D

    2006-01-01

    The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field. PMID:16792079

  1. Overview of affinity biosensors in food analysis.

    Science.gov (United States)

    Patel, Pradip D

    2006-01-01

    The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field.

  2. On constructing purely affine theories with matter

    CERN Document Server

    Cervantes-Cota, Jorge L

    2016-01-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schroedinger's purely affine theory [21], where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  3. On constructing purely affine theories with matter

    Science.gov (United States)

    Cervantes-Cota, Jorge L.; Liebscher, D.-E.

    2016-08-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schrödinger's purely affine theory (Schrödinger in Space-time structure. Cambridge UP, Cambridge, 1950), where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  4. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  5. Stochastic Models of Vesicular Sorting in Cellular Organelles

    CERN Document Server

    Vagne, Quentin

    2016-01-01

    The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intra-cellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values leads to fast sorting, but results in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well defined sorted compartments but is exponentially slow. Our results suggests an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components, and highlight the importance of stochastic effects for the steady-state organizati...

  6. New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Directory of Open Access Journals (Sweden)

    Stroncek David F

    2012-03-01

    Full Text Available Abstract A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL, are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs, chimeric antibody-T cell receptors (CARs and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies.

  7. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  8. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.

    Science.gov (United States)

    Johnson, Rachel M; Rath, Arianna; Deber, Charles M

    2006-12-01

    Although the intrinsic low solubility of membrane proteins presents challenges to their high-resolution structure determination, insight into the amino acid sequence features and forces that stabilize their folds has been provided through study of sequence-dependent helix-helix interactions between single transmembrane (TM) helices. While the stability of helix-helix partnerships mediated by the Gly-xxx-Gly (GG4) motif is known to be generally modulated by distal interfacial residues, it has not been established whether the position of this motif, with respect to the ends of a given TM segment, affects dimer affinity. Here we examine the relationship between motif position and affinity in the homodimers of 2 single-spanning membrane protein TM sequences: glycophorin A (GpA) and bacteriophage M13 coat protein (MCP). Using the TOXCAT assay for dimer affinity on a series of GpA and MCP TM segments that have been modified with either 4 Leu residues at each end or with 8 Leu residues at the N-terminal end, we show that in each protein, centrally located GG4 motifs are capable of stronger helix-helix interactions than those proximal to TM helix ends, even when surrounding interfacial residues are maintained. The relative importance of GG4 motifs in stabilizing helix-helix interactions therefore must be considered not only in its specific residue context but also in terms of the location of the interactive surface relative to the N and C termini of alpha-helical TM segments.

  9. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  10. Biophysical studies of membrane channel polypeptides

    CERN Document Server

    Galbraith, T P

    2001-01-01

    Membrane channels facilitate the flow of ions across biological membranes, a process which is important in numerous cellular functions. The study of large integral membrane proteins is made difficult by identification, production and purification problems, and detailed knowledge of their three-dimensional structures is relatively scarce. The study of simple 'model' membrane proteins has given valuable insight into the structures and dynamics of membrane proteins in general. The bacterial peptide gramicidin has been the subject of intense study for many years, and has provided important information into the structural basis of channel function. Peptaibols, a class of fungal membrane peptides which includes alamethicin and antiamoebin, have also been useful in relating structural details to molecular ion transport processes. Gramicidin crystals were grown in the presence of phospholipids with various headgroups and acyl chains. The diffraction patterns of the crystals obtained were processed, but found to be in...

  11. Experimental investigation of streamer affinity for dielectric surfaces

    NARCIS (Netherlands)

    Trienekens, D.J.M.; Nijdam, S.; Akkermans, G.; Plompen, I.; Christen, T.; Ebert, U.

    2015-01-01

    We have experimentally investigated the affinity of streamers for dielectric surfaces using stroboscopic imaging and stereo photography. Affinity of streamers for dielectric surfaces was found to depend on a wide set of parameters, including pressure, voltage, dielectric material and di

  12. Quelques remarques sur la notion de modification affine

    OpenAIRE

    Dubouloz, Adrien

    2005-01-01

    in french We construct a global counterpart to the notion of affine modification due to Kaliman and Zaidenberg. This leads to a simple explicit description of the structure of birational affine morphisms between arbitrary quasi-projective varieties.

  13. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  14. Tandem affinity purification to identify cytosolic and nuclear gβγ-interacting proteins.

    Science.gov (United States)

    Campden, Rhiannon; Pétrin, Darlaine; Robitaille, Mélanie; Audet, Nicolas; Gora, Sarah; Angers, Stéphane; Hébert, Terence E

    2015-01-01

    It has become clear in recent years that the Gβγ subunits of heterotrimeric proteins serve broad roles in the regulation of cellular activity and interact with many proteins in different subcellular locations including the nucleus. Protein affinity purification is a common method to identify and confirm protein interactions. When used in conjugation with mass spectrometry it can be used to identify novel protein interactions with a given bait protein. The tandem affinity purification (TAP) technique identifies partner proteins bound to tagged protein bait. Combined with protocols to enrich the nuclear fraction of whole cell lysate through sucrose cushions, TAP allows for purification of interacting proteins found specifically in the nucleus. Here we describe the use of the TAP technique on cytosolic and nuclear lysates to identify candidate proteins, through mass spectrometry, that bind to Gβ1 subunits.

  15. Fractal Homeomorphism for Bi-affine Iterated Function Systems

    CERN Document Server

    Barnsley, Michael

    2011-01-01

    The paper concerns fractal homeomorphism between the attractors of two bi-affine iterated function systems. After a general discussion of bi-affine functions, conditions are provided under which a bi-affine iterated function system is contractive, thus guaranteeing an attractor. After a general discussion of fractal homeomorphism, fractal homeomorphisms are constructed for a specific type of bi-affine iterated function system.

  16. The purification of affinity-labelled active-site peptides

    International Nuclear Information System (INIS)

    The isolation of the labelled peptide from the protein digest, following the affinity labelling of the active sites of enzymes or antibodies, is described. Single-step affinity chromatography utilises the affinity of the native enzymes or antibody for the ligand used to label the same protein. The labelled peptide is the only one in the digest that displays affinity for the immobilised protein and can be released with eluants that dissociate the protein-ligand complex. (Auth.)

  17. Cellular distributions of monocarboxylate transporters: a review.

    Science.gov (United States)

    Iwanaga, Toshihiko; Kishimoto, Ayuko

    2015-01-01

    Lactate and ketone bodies play important roles as alternative energy substrates, especially in conditions with a decreased utility of glucose. Short-chain fatty acids (acetate, propionate, and butyrate), produced by bacterial fermentation, supply most of the energy substrates in ruminants such as the cow and sheep. These monocarboxylates are transfered through the plasma membrane by proton-coupled monocarboxylate transporters (MCTs) and sodium-coupled MCTs (SMCTs). To reveal the metabolism and functional significance of monocarboxylates, the cellular localization of MCTs and SMCTs together with the expressed intensities holds great importance. This paper reviews the immunohistochemical localization of SMCTs and major MCT subtypes throughout the mammalian body. MCTs and SMCTs display a selective membrane-bound localization with porality. In contrast to the limited expression of SMCTs in the intestine and kidney, MCTs display a broader distribution pattern than GLUTs. The brain, kidney, placenta, and male genital tract express multiple subtypes of the MCT family. Determination of the cellular localization of MCTs is most controversial in the brain, possibly due to regional differences and the transcriptional modification of MCT proteins. Information on the localization of MCTs and SMCTs aids in understanding the nutrient absorption and metabolism throughout the mammalian body. In some cases, the body may use monocarboxylates as signal molecules, like hormones. PMID:26522146

  18. Duals of Affine Grassmann Codes and Their Relatives

    DEFF Research Database (Denmark)

    Beelen, P.; Ghorpade, S. R.; Hoholdt, T.

    2012-01-01

    Affine Grassmann codes are a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. These codes were introduced in a recent work by Beelen Here, we consider, more generally, affine Grassmann codes of a given level. We explicitly determine the dual of an affine Grassm...

  19. Local Palmitoylation Cycles and Specialized Membrane Domain Organization

    DEFF Research Database (Denmark)

    Fukata, Yuko; Murakami, Tatsuro; Yokoi, Norihiko;

    2016-01-01

    Palmitoylation is an evolutionally conserved lipid modification of proteins. Dynamic and reversible palmitoylation controls a wide range of molecular and cellular properties of proteins including the protein trafficking, protein function, protein stability, and specialized membrane domain organiz...

  20. The Use of MALDI-TOF-MS and In Silico Studies for Determination of Antimicrobial Peptides' Affinity to Bacterial Cells

    Science.gov (United States)

    Mandal, Santi M.; Migliolo, Ludovico; Franco, Octavio L.

    2012-11-01

    Several methods have been proposed for determining the binding affinity of antimicrobial peptides (AMPs) to bacterial cells. Here the utilization of MALDI-TOF-MS was proposed as a reliable and efficient method for high throughput AMP screening. The major advantage of the technique consists of finding AMPs that are selective and specific to a wide range of Gram-negative and -positive bacteria, providing a simple reliable screening tool to determine the potential candidates for broad spectrum antimicrobial drugs. As a prototype, amp-1 and -2 were used, showing highest activity toward Gram-negative and -positive membranes respectively. In addition, in silico molecular docking studies with both peptides were carried out for the membranes. In silico results indicated that both peptides presented affinity for DPPG and DPPE phospholipids, constructed in order to emulate an in vivo membrane bilayer. As a result, amp-1 showed a higher complementary surface for Gram-negative while amp-2 showed higher affinity to Gram-positive membranes, corroborating MS analyses. In summary, results here obtained suggested that in vitro methodology using MALDI-TOF-MS in addition to theoretical studies may be able to improve AMP screening quality.

  1. An affinity-directed protein missile system for targeted proteolysis

    Science.gov (United States)

    Fulcher, Luke J.; Macartney, Thomas; Bozatzi, Polyxeni; Hornberger, Annika; Rojas-Fernandez, Alejandro

    2016-01-01

    The von Hippel–Lindau (VHL) protein serves to recruit the hypoxia-inducible factor alpha (HIF1α) protein under normoxia to the CUL2 E3 ubiquitin ligase for its ubiquitylation and degradation through the proteasome. In this report, we modify VHL to engineer an affinity-directed protein missile (AdPROM) system to direct specific endogenous target proteins for proteolysis in mammalian cells. The proteolytic AdPROM construct harbours a cameloid anti-green fluorescence protein (aGFP) nanobody that is fused to VHL for either constitutive or tetracycline-inducible expression. For target proteins, we exploit CRISPR/Cas9 to rapidly generate human kidney HEK293 and U2OS osteosarcoma homozygous knock-in cells harbouring GFP tags at the VPS34 (vacuolar protein sorting 34) and protein associated with SMAD1 (PAWS1, aka FAM83G) loci, respectively. Using these cells, we demonstrate that the expression of the VHL-aGFP AdPROM system results in near-complete degradation of the endogenous GFP-VPS34 and PAWS1-GFP proteins through the proteasome. Additionally, we show that Tet-inducible destruction of GFP-VPS34 results in the degradation of its associated partner, UVRAG, and reduction in levels of cellular phosphatidylinositol 3-phosphate. PMID:27784791

  2. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  3. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.......Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...

  4. Interactions Mode of Amphoteric Molecules with Ordered Phospholipid Membrane

    Institute of Scientific and Technical Information of China (English)

    SUNJin; CHENGGang; HEZhong-gui; WANGshu-jun; CHENJi-min

    2003-01-01

    Aim:To explore interaction mode between amphoteric molecules with the ordered phospholipid membrane.Methods:Membrane interactions were determined by immobilized artificial membrane(IAM) chromatography and solutes hydroph9obicity was measured by n-octanol/buffer system.Results:The ampholytes,similar to bases,generally exhibited higher membrane affinity than expected from their hydrophobicity,resulting from the attractive polar interaction with phospholipid membrane.Furthermore,the strength of additional polar interaction with membrane(Δlg kLAM) was then calculat ed.The Δlg KIAMvalues were far greater for bases and ampholytes ranging from 0.50-1.39,than those for acids and neutrals with the scope from-0.55-0.44.Conclusion :Considering the microspecies distribution of amphoteric molecules,it was assumed that not only neutral and positive but also zwitterionic microspecies are capable of partitioning into ordered amphoteric lipid membrane with complementarily conformational and energetically favorable interactions.

  5. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj;

    2013-01-01

    dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...... and a prevailing residence between the phosphate and the carbonyl groups of the lipid. The unprotonated form of 5-HT shows the opposite orientation, with the primary amine pointing toward the membrane core. Partitioning of 5-HT was found to decrease lipid chain order. These distinctive interactions of 5-HT...

  6. Signals for the lysosome: a control center for cellular clearance and energy metabolism

    OpenAIRE

    Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L.; Ballabio, Andrea

    2013-01-01

    For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular p...

  7. The assembly of lipid droplets and its relation to cellular insulin sensitivity

    DEFF Research Database (Denmark)

    Boström, Pontus; Andersson, Linda; Li, Lu;

    2009-01-01

    and VAMP-4 (vesicle-associated protein 4). SNAP-23 is also involved in the insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane. Fatty acids induce a missorting of SNAP-23, from the plasma membrane to the interior of the cell, resulting in cellular insulin resistance...

  8. Skeletal affinity of Tc(V)-DMS is bone cell mediated and pH dependent

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi-Suzuki, Kazuko [Development Bureau, Hamamatsu Photonics K.K., Hirakuchi 500, 434-8601, Hamakita City (Japan); Konno, Aya; Ueda, Mayumi; Fukuda, Yoko; Nishio, Saori; Saji, Hideo [Graduate School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto (Japan); Hashimoto, Kazuyuki [Department of Radioisotope Production, Japan Energy Research Institute, Ibaraki-ken, Tokai-mura (Japan)

    2004-03-01

    In spite of recent advances in bone cellular and molecular biology, there is still a poor correlation between these parameters and data obtained from bone scintigraphy. Diphosphonate derivatives radiolabelled with technetium-99m (Tc-BPs) have long been recognised as bone-seeking agents with an affinity for areas of active mineralisation. However, during clinical trials with a pH-sensitive tumour agent, the pentavalent technetium complex of dimercaptosuccinic acid [Tc(V)-DMS] showed a noticeable osteotropic character only in bone pathologies (bone metastases, Paget's diseases) and lacked accumulation in normal mature bone. To decipher the osteotropic character of Tc(V)-DMS, a study at the cellular level was considered necessary. Moreover, to learn more about the role of Tc bone agents, acid-base regulation by bone tissue or cells was studied. First, biological parameters in body fluid were measured under systemic acidosis, induced by glucose administration, in normal and Ehrlich ascites tumour (EAT)-bearing mice. Then, in vivo biodistribution studies using Tc(V)-DMS or a conventional Tc-BP agent were carried out. The effect of glucose-mediated acidification on the skeletal distribution of the Tc agents in the mice provided valuable hints regarding the differential mediation of bone cells in skeletal tissue affinity for the agents. Thereafter, in vitro studies on osteoblast and osteoclast cells were performed and the comparative affinity of Tc(V)-DMS and Tc-BP was screened under diverse acidification conditions. Moreover, studies were also carried out on acid-base parameters related to the cellular uptake mechanism. Very specific pH-sensitive Tc(V)-DMS accumulation only in the osteoclastic system was detected, and use of Tc(V)-DMS in the differential detection of osteoblastic and osteoclastic metastases is discussed. (orig.)

  9. Cellular proteins in influenza virus particles.

    Directory of Open Access Journals (Sweden)

    Megan L Shaw

    2008-06-01

    Full Text Available Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes.

  10. Human P-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state.

    Science.gov (United States)

    Ramachandra, M; Ambudkar, S V; Chen, D; Hrycyna, C A; Dey, S; Gottesman, M M; Pastan, I

    1998-04-01

    Human P-glycoprotein (Pgp), a plasma membrane protein that confers multidrug resistance, functions as an ATP-dependent drug efflux pump. Pgp contains two ATP binding/utilization sites and exhibits ATPase activity that is stimulated in the presence of substrates and modulating agents. The mechanism of coupling of ATP hydrolysis to drug transport is not known. To understand the role of ATP hydrolysis in drug binding, it is necessary to develop methods for purifying and reconstituting Pgp that retains properties including stimulation of ATPase activity by known substrates to an extent similar to that in the native membrane. In this study, (His)6-tagged Pgp was expressed in Trichoplusia ni (High Five) cells using the recombinant baculovirus system and purified by metal affinity chromatography. Upon reconstitution into phospholipid vesicles, purified Pgp exhibited specific binding to analogues of substrates and ATP in affinity labeling experiments and displayed a high level of drug-stimulated ATPase activity (specific activity ranging from 4.5 to 6.5 micromol min-1 mg-1). The ATPase activity was inhibited by ADP in a competitive manner, and by vanadate and N-ethylmaleimide at low concentrations. Vanadate which is known to inhibit ATPase activity by trapping MgADP at the catalytic site inhibited photoaffinity labeling of Pgp with substrate analogues, [125I]iodoarylazidoprazosin and [3H]azidopine, only under ATP hydrolysis conditions. Because vanadate-trapped Pgp is known to resemble the ADP and phosphate-bound catalytic transition state, our findings indicate that ATP hydrolysis results in a conformation with reduced affinity for substrates. A catalytic transition conformation with reduced affinity would essentially result in substrate dissociation and supports a model for drug transport in which an ATP hydrolysis-induced conformational change leads to drug release toward the extracellular medium.

  11. Analysis of affinely equivalent Boolean functions

    Institute of Scientific and Technical Information of China (English)

    MENG QingShu; ZHANG HuanGuo; YANG Min; WANG ZhangYi

    2007-01-01

    By some basic transforms and invariant theory, we give two results: 1) an algorithm,which can be used to judge if two Boolean functions are affinely equivalent and to obtain the equivalence relationship if they are equivalent. This is useful in studying Boolean functions and in engineering. For example, we classify all 8-variable homogeneous bent functions of degree 3 into two classes; 2) Reed-Muller codes R(4,6)/R(1,6), R(3,7)/R(1,7) are classified efficiently.

  12. On Metrizability of Invariant Affine Connections

    CERN Document Server

    Tanaka, Erico

    2011-01-01

    The metrizability problem for a symmetric affine connection on a manifold, invariant with respect to a group of diffeomorphisms G, is considered. We say that the connection is G-metrizable, if it is expressible as the Levi-Civita connection of a G-invariant metric field. In this paper we analyze the G-metrizability equations for the rotation group G = SO(3), acting canonically on three- and four-dimensional Euclidean spaces. We show that the property of the connection to be SO(3)-invariant allows us to find complete explicit description of all solutions of the SO(3)-metrizability equations.

  13. Latest European coelacanth shows Gondwanan affinities.

    Science.gov (United States)

    Cavin, Lionel; Forey, Peter L; Buffetaut, Eric; Tong, Haiyan

    2005-06-22

    The last European fossil occurrence of a coelacanth is from the Mid-Cretaceous of the English Chalk (Turonian, 90 million years ago). Here, we report the discovery of a coelacanth from Late Cretaceous non-marine rocks in southern France. It consists of a left angular bone showing structures that imply close phylogenetic affinities with some extinct Mawsoniidae. The closest relatives are otherwise known from Cretaceous continental deposits of southern continents and suggest that the dispersal of freshwater organisms from Africa to Europe occurred in the Late Cretaceous.

  14. Affine Coherent States in Quantum Cosmology

    CERN Document Server

    Malkiewicz, Przemyslaw

    2015-01-01

    A brief summary of the application of coherent states in the examination of quantum dynamics of cosmological models is given. We discuss quantization maps, phase space probability distributions and semiclassical phase spaces. The implementation of coherent states based on the affine group resolves the hardest singularities, renders self-adjoint Hamiltonians without boundary conditions and provides a completely consistent semi-classical description of the involved quantum dynamics. We consider three examples: the closed Friedmann model, the anisotropic Bianchi Type I model and the deep quantum domain of the Bianchi Type IX model.

  15. Measuring an antibody affinity distribution molecule by molecule

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Los Alamos National Laboratory; Werner, James H [Los Alamos National Laboratory; Temirov, Jamshid [INVITROGEN

    2008-01-01

    Single molecule fluorescence mIcroscopy was used to observe the binding and unbinding of hapten decorated quantum dots with individual surface immobilized antibodies. The fluorescence time history from an individual antibody site can be used to calculate its binding affinity. While quantum dot blinking occurs during these measurements, we describe a simple empirical method to correct the apparent/observed affinity to account for the blinking contribution. The combination of many single molecule affinity measurements from different antibodies yields not only the average affinity, it directly measures the full shape and character of the surface affinity distribution function.

  16. Recombinant production of human Aquaporin-1 to an exceptional high membrane density in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Julie Bomholt

    Full Text Available In the present paper we explored the capacity of yeast Saccharomyces cerevisiae as host for heterologous expression of human Aquaporin-1. Aquaporin-1 cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human Aquaporin-1 was C-terminally tagged with yeast enhanced GFP for quantification of functional expression, determination of sub-cellular localization, estimation of in vivo folding efficiency and establishment of a purification protocol. Aquaporin-1 was found to constitute 8.5 percent of total membrane protein content after expression at 15°C in a yeast host over-producing the Gal4p transcriptional activator and growth in amino acid supplemented minimal medium. In-gel fluorescence combined with western blotting showed that low accumulation of correctly folded recombinant Aquaporin-1 at 30°C was due to in vivo mal-folding. Reduction of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation. A single Ni-affinity chromatography step was used to obtain almost pure Aquaporin-1. Recombinant Aquaporin-1 produced in S. cerevisiae was not N-glycosylated in contrast to the protein found in human erythrocytes.

  17. Membrane-spanning domain of bovine foamy virus transmembrane protein having cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    MA Yonggang; YU Hong; WANG Jinzhong; CHEN Qimin; GENG Yunqi

    2006-01-01

    Foamy viruses (FVs) have broad cellular tropism infecting vertebrates from fish to human being,which indicates that Env protein has a high capability for membrane fusion.Conservative features in all FV transmembrane (TM) proteins include a region of hydrophobic domain called membrane-spanning domain (MSD),which contains several stretches of hydrophobic amino acids.To investigate whether these features were associated with the cytotoxicity effect of TM on Escherichia coli,a series of mutants were constructed and expressed in the E.coli BL21 (DE3) using pET-32a (+) as expressing vector.The results showed that only TM3 without MSD was expressed in E.coli,whereas the other two containing full or part of the MSD (TM1 and TM2) could not be expressed.Furthermore,the bacterial amount and living bacteria analysis revealed that the cytotoxicity of TM was dependent on its MSD,especially on the stretches of hydrophobic amino acids.Western blotting analysis showed that TM3 protein was purified with affinity purification.

  18. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  19. Connection between the Affine and conformal Affine Toda models and their Hirota's solution

    International Nuclear Information System (INIS)

    It is shown that the Affine Toda models (AT) constitute a gauge fixed version of the Conformal Affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota's τ-function are introduced and soliton solutions for the AT and CAT models associated to SL (r+1) and SP (r) are constructed. (author)

  20. A chirality change in XPC- and Sfi1-derived peptides affects their affinity for centrin.

    Science.gov (United States)

    Grecu, Dora; Irudayaraj, Victor Paul Raj; Martinez-Sanz, Juan; Mallet, Jean-Maurice; Assairi, Liliane

    2016-04-01

    The Ca(2+)-binding protein centrin binds to a hydrophobic motif (W(1)xxL(4)xxxL(8)) included in the sequence of several cellular targets: XPC (xeroderma pigmentosum group C protein), Sfi1 (suppressor of fermentation-induced loss of stress resistance protein1), and Sac3 [the central component of the transcription and mRNA export (TREX-2) complex]. However, centrin binding occurs in a reversed orientation (L(8)xxxL(4)xxW(1)) for Sfi1 and Sac3 compared with XPC. Because D-peptides have been investigated for future therapeutic use, we analyzed their centrin-binding properties. Their affinity for centrin was measured using isothermal titration calorimetry. The chirality change in the target-derived peptides affected their ability to bind centrin in a specific manner depending on the sequence orientation of the centrin-binding motif. In contrast to L-XPC-P10, D-XPC-P10 bound C-HsCen1 in a Ca(2+)-dependent manner and to a lesser extent. D-XPC-P10 exhibited a reduced affinity for C-HsCen1 (Ka=0.064 × 10(6) M(-1)) by a factor of 2000 compared with L-XPC-P10 (Ka=132 × 10(6) M(-1)). D-peptides have a lower affinity than L-peptides for centrin, and the strength of this affinity depends on the sequence orientation of the target-derived peptides. The residual affinity observed for D-XPC suggests that the use of d-peptides represents a promising strategy for inhibiting centrin binding to its targets. PMID:26923803

  1. Accurate determination of the oxidative phosphorylation affinity for ADP in isolated mitochondria.

    Directory of Open Access Journals (Sweden)

    Gilles Gouspillou

    Full Text Available BACKGROUND: Mitochondrial dysfunctions appear strongly implicated in a wide range of pathologies. Therefore, there is a growing need in the determination of the normal and pathological integrated response of oxidative phosphorylation to cellular ATP demand. The present study intends to address this issue by providing a method to investigate mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria. METHODOLOGY/PRINCIPAL FINDINGS: The proposed method is based on the simultaneous monitoring of substrate oxidation (determined polarographically and phosphorylation (determined using the glucose-hexokinase glucose-6-phosphate dehydrogenase-NADP(+ enzymatic system rates, coupled to the determination of actual ADP and ATP concentrations by bioluminescent assay. This enzymatic system allows the study of oxidative phosphorylation during true steady states in a wide range of ADP concentrations. We demonstrate how the application of this method allows an accurate determination of mitochondrial affinity for ADP from both oxidation (K(mVox and phosphorylation (K(mVp rates. We also demonstrate that determination of K(mVox leads to an important overestimation of the mitochondrial affinity for ADP, indicating that mitochondrial affinity for ADP should be determined using phosphorylation rate. Finally, we show how this method allows the direct and precise determination of the mitochondrial coupling efficiency. Data obtained from rat skeletal muscle and liver mitochondria illustrate the discriminating capabilities of this method. CONCLUSIONS/SIGNIFICANCE: Because the proposed method allows the accurate determination of mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria, it also opens the route to a better understanding of functional consequences of mitochondrial adaptations/dysfunctions arising in various physiological/pathophysiological conditions.

  2. A chirality change in XPC- and Sfi1-derived peptides affects their affinity for centrin.

    Science.gov (United States)

    Grecu, Dora; Irudayaraj, Victor Paul Raj; Martinez-Sanz, Juan; Mallet, Jean-Maurice; Assairi, Liliane

    2016-04-01

    The Ca(2+)-binding protein centrin binds to a hydrophobic motif (W(1)xxL(4)xxxL(8)) included in the sequence of several cellular targets: XPC (xeroderma pigmentosum group C protein), Sfi1 (suppressor of fermentation-induced loss of stress resistance protein1), and Sac3 [the central component of the transcription and mRNA export (TREX-2) complex]. However, centrin binding occurs in a reversed orientation (L(8)xxxL(4)xxW(1)) for Sfi1 and Sac3 compared with XPC. Because D-peptides have been investigated for future therapeutic use, we analyzed their centrin-binding properties. Their affinity for centrin was measured using isothermal titration calorimetry. The chirality change in the target-derived peptides affected their ability to bind centrin in a specific manner depending on the sequence orientation of the centrin-binding motif. In contrast to L-XPC-P10, D-XPC-P10 bound C-HsCen1 in a Ca(2+)-dependent manner and to a lesser extent. D-XPC-P10 exhibited a reduced affinity for C-HsCen1 (Ka=0.064 × 10(6) M(-1)) by a factor of 2000 compared with L-XPC-P10 (Ka=132 × 10(6) M(-1)). D-peptides have a lower affinity than L-peptides for centrin, and the strength of this affinity depends on the sequence orientation of the target-derived peptides. The residual affinity observed for D-XPC suggests that the use of d-peptides represents a promising strategy for inhibiting centrin binding to its targets.

  3. Autoradiography of high affinity uptake of catecholamines by primary astrocyte cultures

    International Nuclear Information System (INIS)

    Uptake of D,L-[3H]norepinephrine ([3H]NE) and [3H]dopamine ([3H]DA) by primary astrocyte cultures prepared from neonatal rat brains, was studied by measuring accumulation of tritium label, and localizing such uptake at the cellular level by autoradiography. The results confirm the authors previous findings of the existence of a high affinity uptake process for catecholamines in primary astrocyte cultures based on uptake properties, and in the present study also localizes such uptake to the major, astrocytic cell type. (Auth.)

  4. Rapid purification of circular DNA by triplex-mediated affinity capture

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Huamin (4817 Sheboygan Ave., Madison, WI 53705); Smith, Lloyd M. (1115 Amherst Dr., Madison, WI 53705)

    1997-01-01

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support.

  5. Rapid purification of circular DNA by triplex-mediated affinity capture

    Energy Technology Data Exchange (ETDEWEB)

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  6. Measuring shape fluctuations in biological membranes

    Science.gov (United States)

    Monzel, C.; Sengupta, K.

    2016-06-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes.

  7. Aptamer Affinity Maturation by Resampling and Microarray Selection.

    Science.gov (United States)

    Kinghorn, Andrew B; Dirkzwager, Roderick M; Liang, Shaolin; Cheung, Yee-Wai; Fraser, Lewis A; Shiu, Simon Chi-Chin; Tang, Marco S L; Tanner, Julian A

    2016-07-19

    Aptamers have significant potential as affinity reagents, but better approaches are critically needed to discover higher affinity nucleic acids to widen the scope for their diagnostic, therapeutic, and proteomic application. Here, we report aptamer affinity maturation, a novel aptamer enhancement technique, which combines bioinformatic resampling of aptamer sequence data and microarray selection to navigate the combinatorial chemistry binding landscape. Aptamer affinity maturation is shown to improve aptamer affinity by an order of magnitude in a single round. The novel aptamers exhibited significant adaptation, the complexity of which precludes discovery by other microarray based methods. Honing aptamer sequences using aptamer affinity maturation could help optimize a next generation of nucleic acid affinity reagents. PMID:27346322

  8. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  9. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides.

    Directory of Open Access Journals (Sweden)

    Sujatha P Koduvayur

    Full Text Available The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.

  10. Aspects of affine Toda field theory

    International Nuclear Information System (INIS)

    The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)

  11. Exploring Fluorous Affinity by Liquid Chromatography.

    Science.gov (United States)

    Catani, Martina; Guzzinati, Roberta; Marchetti, Nicola; Pasti, Luisa; Cavazzini, Alberto

    2015-07-01

    Terms such as "fluorous affinity" and "fluorophilicity" have been used to describe the unique partition and sorption properties often exhibited by highly fluorinated organic compounds, that is molecules rich in sp(3) carbon-fluorine bonds. In this work, we made use of a highly fluorinated stationary phase and a series of benzene derivatives to study the effect of one single perfluorinated carbon on the chromatographic behavior and adsorption properties of molecules. For this purpose, the adsorption equilibria of α,α,α-trifluorotoluene, toluene, and other alkylbenzenes have been studied by means of nonlinear chromatography in a variety of acetonitrile/water eluents. Our results reveal that one single perfluorinated carbon is already enough to induce a drastic change in the adsorption properties of molecules on the perfluorinated stationary phase. In particular, it has been found that adsorption is monolayer if the perfluoroalkyl carbon is present but that, when this unit is missing, molecules arrange as multilayer stack structures. These findings can contribute to the understanding of molecular mechanisms of fluorous affinity. PMID:26047527

  12. Affine Mirkovi\\'c-Vilonen polytopes

    CERN Document Server

    Baumann, Pierre; Tingley, Peter

    2011-01-01

    Each integrable lowest weight representation of a symmetrizable Kac-Moody Lie algebra g has a crystal in the sense of Kashiwara, which describes its combinatorial properties. For a given g, there is a limit crystal, usually denoted by B(-\\infty), which contains all the other crystals. When g is finite dimensional, a convex polytope, called the Mirkovi\\'c-Vilonen polytope, can be associated to each element in B(-\\infty). This polytope sits in the dual space of a Cartan subalgebra of g, and its edges are parallel to the roots of g. In this paper, we generalize this construction to the case where g is a symmetric affine Kac-Moody algebra. The datum of the polytope must however be complemented by partitions attached to the edges parallel to the imaginary root \\delta. We prove that these decorated polytopes are characterized by conditions on their normal fans and on their 2-faces. In addition, we discuss how our polytopes provide an analog of the notion of Lusztig datum for affine Kac-Moody algebras. Our main tool...

  13. Affine conformal vectors in space-time

    Science.gov (United States)

    Coley, A. A.; Tupper, B. O. J.

    1992-05-01

    All space-times admitting a proper affine conformal vector (ACV) are found. By using a theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine vector and a conformal Killing vector or (ii) the space-time is 2+2 decomposable, in which case it is shown that no ACV can exist (unless the space-time decomposes further). Furthermore, it is proved that all space-times admitting an ACV and a null covariantly constant vector (which are necessarily generalized pp-wave space-times) must have Ricci tensor of Segré type {2,(1,1)}. It follows that, among space-times admitting proper ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null Einstein-Maxwell space-times, and only the pp-wave space-times are representative of null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids and viscous heat-conducting fluids, but only with restricted equations of state in each case.

  14. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    Science.gov (United States)

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3.

  15. Impaired activation of adenylyl cyclase in lung of the Basenji-greyhound model of airway hyperresponsiveness: decreased numbers of high affinity beta-adrenoceptors.

    OpenAIRE

    Emala, C. W.; Aryana, A.; Hirshman, C. A.

    1996-01-01

    1. To evaluate mechanisms involved in the impaired beta-adrenoceptor stimulation of adenylyl cyclase in tissues from the Basenji-greyhound (BG) dog model of airway hyperresponsiveness, we compared agonist and antagonist binding affinity of beta-adrenoceptors, beta-adrenoceptor subtypes, percentage of beta-adrenoceptors sequestered, and coupling of the beta-adrenoceptor to Gs alpha in lung membranes from BG and control mongrel dogs. We found that lung membranes from the BG dog had higher total...

  16. ISSFAL Early Career Award Lecture. N-3 Fatty Acids and Membrane Microdomains: From Model Membranes to Lymphocyte Function

    OpenAIRE

    Shaikh, Saame Raza; Teague, Heather

    2012-01-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain ...

  17. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  18. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes

    Science.gov (United States)

    Membrane modification of host subcellular compartments is critical to the replication of many RNA viruses. Enveloped viruses additionally require the ability to requisition cellular membranes during egress for the development of infectious progeny. Porcine reproductive and respiratory syndrome virus...

  19. A Shotgun Proteomic Method for the Identification of Membrane-Embedded Proteins and Peptides

    OpenAIRE

    Blackler, Adele R.; Speers, Anna E.; Ladinsky, Mark S.; Wu, Christine C

    2008-01-01

    Integral membrane proteins perform crucial cellular functions and are the targets for the majority of pharmaceutical agents. However, the hydrophobic nature of their membrane-embedded domains makes them difficult to work with. Here, we describe a shotgun proteomic method for the high-throughput analysis of the membrane-embedded transmembrane domains of integral membrane proteins which extends the depth of coverage of the membrane proteome.

  20. Concerted diffusion of lipids in raft-like membranes

    NARCIS (Netherlands)

    Apajalahti, Touko; Niemela, Perttu; Govindan, Praveen Nedumpully; Miettinen, Markus S.; Salonen, Emppu; Marrink, Siewert-Jan; Vattulainen, Ilpo

    2010-01-01

    Currently, there is no comprehensive model for the dynamics of cellular membranes. The understanding of even the basic dynamic processes, such as lateral diffusion of lipids, is still quite limited. Recent studies of one-component membrane systems have shown that instead of single-particle motions,

  1. Solubilization of high affinity corticotropin-releasing factor receptors from rat brain: Characterization of an active digitonin-solubilized receptor complex

    International Nuclear Information System (INIS)

    The binding characteristics of CRF receptors in rat frontal cerebral cortex membranes solubilized in 1% digitonin were determined. The binding of [125I]Tyro-ovine CRF ([125I]oCRF) to solubilized membrane proteins was dependent on incubation time, temperature, and protein concentration, was saturable and of high affinity, and was absent in boiled tissue. The solubilized receptors retained their high affinity for [125I] oCRF in the solubilized state, exhibiting a dissociation constant (KD) of approximately 200 pM, as determined by direct binding saturation isotherms. Solubilized CRF receptors maintained the rank order of potencies for various related and unrelated CRF peptides characteristic of the membrane CRF receptor: rat/human CRF congruent to ovine CRF congruent to Nle21,38-rat CRF greater than alpha-helical oCRF-(9-41) greater than oCRF-(7-41) much greater than vasoactive intestinal peptide, arginine vasopressin, or the substance-P antagonist. Furthermore, the absolute potencies (Ki values) for the various CRF-related peptides in solubilized receptors were almost identical to those observed in the membrane preparations, indicating that the CRF receptor retained its high affinity binding capacity in the digitonin-solubilized state. Chemical affinity cross-linking of digitonin-solubilized rat cortical membrane proteins revealed a specifically labeled protein with an apparent mol wt of 58,000 which was similar to the labeled protein in native membrane homogenates. Although solubilized CRF receptors retained their high affinity for agonists, their sensitivity for guanine nucleotide was lost. Size exclusion chromatography substantiated these results, demonstrating that in the presence or absence of guanine nucleotides, [125I]oCRF labeled the same size receptor complex

  2. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters

    DEFF Research Database (Denmark)

    Sezgin, Erdinc; Betul Can, Fatma; Schneider, Falk;

    2016-01-01

    for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase separated giant unilamellar vesicles (GUVs) and giant plasma membrane vesicles (GPMVs); 2) cellular trafficking, specifically subcellular localization in Niemann-Pick C......Cholesterol is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of cholesterol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently......-labeled cholesterol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction and trafficking in cells, hence it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs...

  3. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane

    Science.gov (United States)

    Fan, Jun; Sammalkorpi, Maria; Haataja, Mikko

    2010-01-01

    Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.

  4. MreB-Dependent Organization of the E. coli Cytoplasmic Membrane Controls Membrane Protein Diffusion.

    Science.gov (United States)

    Oswald, Felix; Varadarajan, Aravindan; Lill, Holger; Peterman, Erwin J G; Bollen, Yves J M

    2016-03-01

    The functional organization of prokaryotic cell membranes, which is essential for many cellular processes, has been challenging to analyze due to the small size and nonflat geometry of bacterial cells. Here, we use single-molecule fluorescence microscopy and three-dimensional quantitative analyses in live Escherichia coli to demonstrate that its cytoplasmic membrane contains microdomains with distinct physical properties. We show that the stability of these microdomains depends on the integrity of the MreB cytoskeletal network underneath the membrane. We explore how the interplay between cytoskeleton and membrane affects trans-membrane protein (TMP) diffusion and reveal that the mobility of the TMPs tested is subdiffusive, most likely caused by confinement of TMP mobility by the submembranous MreB network. Our findings demonstrate that the dynamic architecture of prokaryotic cell membranes is controlled by the MreB cytoskeleton and regulates the mobility of TMPs. PMID:26958890

  5. Molecular dynamics of membrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Thomas B. (Johns Hopkins University School of Medicine, Baltimore, MD); Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  6. Affinity labeling of the galactose/N-acetylgalactosamine-specific receptor of rat hepatocytes: preferential labeling of one of the subunits

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.T.; Lee, Y.C.

    1987-10-06

    The galactose/N-acetylgalactosamine-specific receptor (also known as asialoglycoprotein receptor) of rat hepatocytes consists of three subunits, one of which (43 kilodalton (kDa)) exists in a greater abundance (up to 70% of total protein) over the two minor species (52 and 60 kDa). When the receptor on the hepatocyte membranes was photoaffinity labeled with an /sup 125/I-labeled high-affinity reagent the labeling occurred mainly (51-80%) on one of the minor bands (52 kDa). Similarly, affinity-bound, N-acetylgalactosamine-modified lactoperoxidase radioiodinated the same 52-kDa band preferentially. In contrast, both the photoaffinity labeling and lactoperoxidase-catalyzed iodination of the purified, detergent-solubilized receptor resulted in a distribution of the label that is comparable to the Coomassie blue staining pattern of the three bands; i.e., the 43-kDa band was the major band labeled. These and other experimental results suggest that the preferential labeling of the minor band and inefficient labeling of the major band on the hepatocyte membrane resulted from a specific topological arrangement of these subunits on the membranes. The authors postulate that in the native, membrane-bound state of the receptor, the 52-kDa minor band is topologically prominent, while the major (43 kDa) band is partially masked. This partial masking may result from a tight packing of the receptor subunits on the membranes to form a lattice work.

  7. Selection of a high-affinity and in vivo bioactive ssDNA aptamer against angiotensin II peptide.

    Science.gov (United States)

    Heiat, Mohammad; Ranjbar, Reza; Latifi, Ali Mohammad; Rasaee, Mohammad Javad

    2016-08-01

    Unique features of aptamers have attracted interests for a broad range of applications. Aptamers are able to specifically bind to targets and inhibit their functions. This study, aimed to isolate the high affinity ssDNA aptamers against bio-regulator peptide angiotensin II (Ang II) and investigate their bioactivity in cellular and animal models. To isolate ssDNA aptamers, 12 rounds of affinity chromatography SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure were carried out. The SPR (surface plasmon resonance) and ELONA (enzyme linked oligonucleotide assay) analysis were used to determine the affinity and specificity of aptamers. The ability of selected aptamers to inhibit the proliferative effect of Ang II on human aortic vascular smooth muscle cells (HA-VSMCs) and their performance on Wistar rat urinary system and serum electrolyte levels were investigated. Two full-length aptamers (FLC112 and FLC125) with high affinity of respectively 7.52±2.44E-10 and 5.87±1.3E-9M were isolated against Ang II. The core regions of these aptamers (CRC112 and CRC125) also showed affinity of 5.33±1.15E-9 and 4.11±1.09E-9M. In vitro analysis revealed that FLC112 and FLC125 can inhibit the proliferative effect of Ang II on HA-VSMCs (Psodium level and increased the urine volume (Pbioactive aptamers may lead to excellent results in blocking Ang II activity. PMID:27298205

  8. A role for the intermediate affinity IL-2R in the protection against glucocorticoid-induced apoptosis.

    Science.gov (United States)

    Rebollo, A; Pitton, C; García, A; Gómez, J; Silva, A

    1995-01-01

    Recent work has shown that T lymphocytes undergo apoptosis upon treatment with the glucocorticoid analogue dexamethasone. These cells can be protected from the effect of dexamethasone by interleukin-2 (IL-2) or IL-4. We were interested in analysing whether a transfected cell dependent on three different lymphokines could be protected by them from the effect of dexamethasone. In addition, we took advantage of our cellular system, in which we expressed intermediate- or high-affinity IL-2R independently, to analyse the role of these receptors in the protection from glucocorticoid-induced apoptosis. In this report we show that IL-2 rescues murine T cells expressing exogenous intermediate- (TS1 beta) or high-affinity (TS1 alpha beta) IL-2 receptor (IL-2R) from dexamethasone-induced apoptosis. This result suggests that intermediate-affinity IL-2R alone can replace high-affinity IL-2R for the protection from the effect of dexamethasone. In addition, IL-4 and IL-9 are rescue-factors, as well as IL-2, of glucocorticoid-treated TS1 beta and TS1 alpha beta cells. Our data suggest that the presence of the alpha-chain of the IL-2R is not required for rescue by IL-2 from the effect of dexamethasone. In addition, we show that proliferation is not required for preventing glucocorticoid-induced apoptosis. This result implies a new role for the intermediate-affinity IL-2R. Images Figure 4 Figure 7 PMID:7751021

  9. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.

    Science.gov (United States)

    Rebaud, Samuel; Maniti, Ofelia; Girard-Egrot, Agnès P

    2014-12-01

    Biological membranes play a central role in the biology of the cell. They are not only the hydrophobic barrier allowing separation between two water soluble compartments but also a supra-molecular entity that has vital structural functions. Notably, they are involved in many exchange processes between the outside and inside cellular spaces. Accounting for the complexity of cell membranes, reliable models are needed to acquire current knowledge of the molecular processes occurring in membranes. To simplify the investigation of lipid/protein interactions, the use of biomimetic membranes is an approach that allows manipulation of the lipid composition of specific domains and/or the protein composition, and the evaluation of the reciprocal effects. Since the middle of the 80's, lipid bilayer membranes have been constantly developed as models of biological membranes with the ultimate goal to reincorporate membrane proteins for their functional investigation. In this review, after a brief description of the planar lipid bilayers as biomimetic membrane models, we will focus on the construction of the tethered Bilayer Lipid Membranes, the most promising model for efficient membrane protein reconstitution and investigation of molecular processes occurring in cell membranes.

  10. Higher-order assemblies of BAR domain proteins for shaping membranes.

    Science.gov (United States)

    Suetsugu, Shiro

    2016-06-01

    Most cellular organelles contain lipid bilayer membranes. The earliest characterization of cellular organelles was performed by electron microscopy observation of such membranes. However, the precise mechanisms for shaping the membrane in particular subcellular organelles is poorly understood. Classically, the overall cellular shape, i.e. the shape of the plasma membrane, was thought to be governed by the reorganization of cytoskeletal components such as actin and microtubules. The plasma membrane contains various submicron structures such as clathrin-coated pits, caveolae, filopodia and lamellipodia. These subcellular structures are either invaginations or protrusions and are associated with the cytoskeleton. Therefore, it could be hypothesized that there are membrane-binding proteins that cooperates with cytoskeleton in shaping of plasma membrane organelles. Proteins with the Bin-Amphiphysin-Rvs (BAR) domain connect a variety of membrane shapes to actin filaments. The BAR domains themselves bend the membranes by their rigidity and then mold the membranes into tubules through their assembly as spiral polymers, which are thought to be involved in the various submicron structures. Membrane tubulation by polymeric assembly of the BAR domains is supposed to be regulated by binding proteins, binding lipids and the mechanical properties of the membrane. This review gives an overview of BAR protein assembly, describes the significance of the assembly and discusses how to study the assembly in the context of membrane and cellular morphology. The technical problems encountered in microscopic observation of BAR domain assembly are also discussed. PMID:26884618

  11. Higher-order assemblies of BAR domain proteins for shaping membranes.

    Science.gov (United States)

    Suetsugu, Shiro

    2016-06-01

    Most cellular organelles contain lipid bilayer membranes. The earliest characterization of cellular organelles was performed by electron microscopy observation of such membranes. However, the precise mechanisms for shaping the membrane in particular subcellular organelles is poorly understood. Classically, the overall cellular shape, i.e. the shape of the plasma membrane, was thought to be governed by the reorganization of cytoskeletal components such as actin and microtubules. The plasma membrane contains various submicron structures such as clathrin-coated pits, caveolae, filopodia and lamellipodia. These subcellular structures are either invaginations or protrusions and are associated with the cytoskeleton. Therefore, it could be hypothesized that there are membrane-binding proteins that cooperates with cytoskeleton in shaping of plasma membrane organelles. Proteins with the Bin-Amphiphysin-Rvs (BAR) domain connect a variety of membrane shapes to actin filaments. The BAR domains themselves bend the membranes by their rigidity and then mold the membranes into tubules through their assembly as spiral polymers, which are thought to be involved in the various submicron structures. Membrane tubulation by polymeric assembly of the BAR domains is supposed to be regulated by binding proteins, binding lipids and the mechanical properties of the membrane. This review gives an overview of BAR protein assembly, describes the significance of the assembly and discusses how to study the assembly in the context of membrane and cellular morphology. The technical problems encountered in microscopic observation of BAR domain assembly are also discussed.

  12. On the puzzling distribution of cholesterol in the plasma membrane.

    Science.gov (United States)

    Giang, H; Schick, M

    2016-09-01

    The distribution of cholesterol between the two leaves of the plasma membrane in mammalian cells presents a conundrum; given cholesterol's known affinity for sphingomyelin, which resides predominantly in the exoplasmic leaf, why is it that experiment finds a majority of the cholesterol in the cytoplasmic leaf? This article reviews a recently proposed solution to this puzzle. PMID:26724709

  13. Never-ageing cellular senescence

    OpenAIRE

    Ogrunc, Müge; d’Adda di Fagagna, Fabrizio

    2011-01-01

    Cellular senescence was historically discovered as a form of cellular ageing of in vitro cultured cells. It has been under the spotlight following the evidence of oncogene-induced senescence in vivo and its role as a potent tumour suppressor mechanism. Presently, a PubMed search using keywords ‘cellular senescence and cancer’ reveals 8398 number of references (by April 2011) showing that while our knowledge of senescence keeps expanding, the complexity of the phenomenon keeps us – researchers...

  14. The State of Cellular Probes

    OpenAIRE

    Yim, Youngbin

    2003-01-01

    Cellular probe technology is one of several potentially promising technologies for obtaining accurate travel time information. In 1996, the Federal Communications Commission (FCC) mandated E911 requirements that cellular location be provided when 911 emergency calls come in to emergency management authorities. The E911 requirements allow 50 -300 meters from the emergency call location, depending on the type of cellular phone technology used and whether handset-based or network-based solutions...

  15. Affine connection form of Regge calculus

    CERN Document Server

    Khatsymovsky, V M

    2015-01-01

    Regge action is represented analogously to how the Palatini action for general relativity (GR) as some functional of the metric and a general connection as independent variables represents the Einstein-Hilbert action. The piecewise flat (or simplicial) spacetime of Regge calculus is equipped with some world coordinates and some piecewise affine metric which is completely defined by the set of edge lengths and the world coordinates of the vertices. The conjugate variables are the general nondegenerate matrices on the 3-simplices which play a role of a general discrete connection. Our previous result on some representation of the Regge calculus action in terms of the local Euclidean (Minkowsky) frame vectors and orthogonal connection matrices as independent variables is somewhat modified for the considered case of the general linear group GL(4,R) of the connection matrices. As a result, we have some action invariant w. r. t. arbitrary change of coordinates of the vertices (and related GL(4,R) transformations in...

  16. Affine and Projective Tree Metric Theorems

    CERN Document Server

    Harel, Matan; Pachter, Lior

    2011-01-01

    The tree metric theorem provides a combinatorial four point condition that characterizes dissimilarity maps derived from pairwise compatible split systems. A similar (but weaker) four point condition characterizes dissimilarity maps derived from circular split systems (Kalmanson metrics). The tree metric theorem was first discovered in the context of phylogenetics and forms the basis of many tree reconstruction algorithms, whereas Kalmanson metrics were first considered by computer scientists, and are notable in that they are a non-trivial class of metrics for which the traveling salesman problem is tractable. We present a unifying framework for these theorems based on combinatorial structures that are used for graph planarity testing. These are (projective) PC-trees, and their affine analogs, PQ-trees. In the projective case, we generalize a number of concepts from clustering theory, including hierarchies, pyramids, ultrametrics and Robinsonian matrices, and the theorems that relate them. As with tree metric...

  17. Effectively nonlocal metric-affine gravity

    CERN Document Server

    Golovnev, Alexey; Sandstad, Marit

    2015-01-01

    In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with non-singular and cosmologically interesting properties may be recovered. Relations between different formulations are analysed at both perturbative and nonperturbative levels taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.

  18. Effectively nonlocal metric-affine gravity

    Science.gov (United States)

    Golovnev, Alexey; Koivisto, Tomi; Sandstad, Marit

    2016-03-01

    In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric, and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with nonsingular and cosmologically interesting properties may be recovered. Relations between different formulations are analyzed at both perturbative and nonperturbative levels, taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.

  19. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang

    2014-07-09

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  20. Affine trajectory correction for nonholonomic mobile robots

    CERN Document Server

    Pham, Quang-Cuong

    2011-01-01

    Planning trajectories for nonholonomic systems is difficult and computationally expensive. When facing unexpected events, it may therefore be preferable to deform in some way the initially planned trajectory rather than to re-plan entirely a new one. We suggest here a method based on affine transformations to make such deformations. This method is exact and fast: the deformations and the resulting trajectories can be computed algebraically, in one step, and without any trajectory re-integration. To demonstrate the possibilities offered by this new method, we use it to derive position correction, orientation correction, obstacle avoidance and feedback control algorithms for the general class of planar wheeled robots and for a tridimensional underwater vehicle.

  1. Myoglobin entrapment in poly(vinyl alcohol dense membranes

    Directory of Open Access Journals (Sweden)

    K. C. S. Figueiredo

    2014-09-01

    Full Text Available Our goal in this study was the immobilization of myoglobin in poly(vinyl alcohol dense membranes. Glutaraldehyde was investigated both as the crosslinking agent, aiming to increase the membrane stability in aqueous medium, and as the vehicle to bind myoglobin and PVA. Reaction and membrane synthesis were carried simultaneously in mild operating conditions in order to maintain the native protein folding. Membrane characterization comprised the water swelling degree, DSC, TGA, UV-visible spectroscopy, FTIR analysis and oxygen transport in a dialysis cell. The incorporation of myoglobin in the film decreased the water swelling degree and improved the membrane thermal properties compared to unmodified PVA membrane. The reduction of ferric iron in the prosthetic group of the protein to the ferrous form was observed. The increased affinity between oxygen and the immobilized myoglobin did not favor the release of this solute from the biocarrier.

  2. Cellular bioluminescence imaging.

    Science.gov (United States)

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  3. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    International Nuclear Information System (INIS)

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of 125I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB-125I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein

  4. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S.; Shibuya, K.; Miyazono, K.; Tojo, A.; Oka, Y.; Miyagawa, K.; Takaku, F. (Univ. of Tokyo (Japan))

    1990-11-15

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of {sup 125}I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB-{sup 125}I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein.

  5. Hydrophobic compounds reshape membrane domains.

    Directory of Open Access Journals (Sweden)

    Jonathan Barnoud

    2014-10-01

    Full Text Available Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo.

  6. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    He, Ronghuan; Li, Qingfeng; Jensen, Jens Oluf;

    2007-01-01

    different types of sites in PBI for the acid doping. The protonation constants of PBI by phosphoric acid are found to be 12.7 L mol(-1) (K-1) for acid complexing sites with higher affinity, and 0.19 L mol(-1) (K-2) for the sites with lower affinity. The dissociation constants for the complexing acid onto......Polybenzimidazole (PBI) membranes were doped in phosphoric acid solutions of different concentrations at room temperature. The doping chemistry was studied using the Scatchard method. The energy distribution of the acid complexation in polymer membranes is heterogeneous, that is, there are two...... these two types of PBI sites are found to be 5.4 X 10(-4) and 3.6 X 10(-2), respectively, that is, about 10 times smaller than that of aqueous phosphoric acid in the first case but 5 times higher in the second. The proton conducting mechanism is also discussed....

  7. Radiotracer studies on ion-selective membranes based on poly(vinyl chloride) matrices.

    Science.gov (United States)

    Jaber, A M; Moody, G J; Thomas, J D; Willcox, A

    1977-10-01

    Radiotracer studies with (45)Ca, (89)Sr and (133)Ba have provided evidence that the permeation of magnesium, strontium and barium ions through PVC membranes containing Orion 92-20-02 liquid ion-exchanger is inhibited by their low affinity for the liquid ion-exchanger sites. Experiments with (7)Be indicate a strong affinity of the membrane for beryllium ions with corresponding inhibition of permeation. When acid is present in the solution on one side of the membrane, preferential permeation by protons may lead to transport of ions against their concentration gradient in order to maintain the balance of charge.

  8. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    Science.gov (United States)

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes.

  9. Classical affine W-algebras associated to Lie superalgebras

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr [Department of Mathematical Sciences, Seoul National University, GwanAkRo 1, Gwanak-Gu, Seoul 151-747 (Korea, Republic of)

    2016-02-15

    In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalization of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.

  10. Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2

    Directory of Open Access Journals (Sweden)

    Christine Scharlach

    2009-10-01

    Full Text Available An affine hypersurface M is said to admit a pointwise symmetry, if there exists a subgroup G of Aut(T_pM for all p in M, which preserves (pointwise the affine metric h, the difference tensor K and the affine shape operator S. Here, we consider 3-dimensional indefinite affine hyperspheres, i.e. S = HId (and thus S is trivially preserved. In Part 1 we found the possible symmetry groups G and gave for each G a canonical form of K. We started a classification by showing that hyperspheres admitting a pointwise Z_2 × Z_2 resp. R-symmetry are well-known, they have constant sectional curvature and Pick invariant J < 0 resp. J = 0. Here, we continue with affine hyperspheres admitting a pointwise Z_3- or SO(2-symmetry. They turn out to be warped products of affine spheres (Z_3 or quadrics (SO(2 with a curve.

  11. Transmembrane protein sorting driven by membrane curvature

    Science.gov (United States)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  12. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Science.gov (United States)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  13. Abacus models for parabolic quotients of affine Weyl groups

    CERN Document Server

    Hanusa, Christopher R H

    2011-01-01

    We introduce abacus diagrams that describe minimal length coset representatives in affine Weyl groups of types B, C, and D. These abacus diagrams use a realization of the affine Weyl group of type C due to Eriksson to generalize a construction of James for the symmetric group. We also describe several combinatorial models for these parabolic quotients that generalize classical results in affine type A related to core partitions.

  14. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin

    DEFF Research Database (Denmark)

    Eghorn, Laura Friis; Høstgaard-Jensen, Kirsten; Kongstad, Kenneth Thermann;

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate...... whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive...... conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed...

  15. Graviperception and graviresponse at the cellular level

    Science.gov (United States)

    Bräucker, Richard; Cogoli, Augusto; Hemmersbach, Ruth

    Studies under varied acceleration conditions demonstrated that free living cells such as protists are able to perceive changes of the acceleration conditions. Recent studies favorite the hypothesis that in these systems gravity is perceived either by intracellular receptors (statocyst-like organelles), heavy cell organelles (such as nucleus) and/or by sensing the cell mass by means of ion channels located in the cell membrane. Mammalian cells in microgravity were profoundly influenced. Alteration in the cellular mechanisms and structures in mammalian cells like signal transduction and the cytoskeleton were detected. It can be speculated that the depression of the immune system may become a serious health issue on flights to and from Mars.

  16. Threshold effects and cellular recognition. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Rando, R R

    1980-01-01

    In the first year we focused on developing the techniques required for the successful incorporation of synthetic glycolipids into cells. To these ends a new water-soluble spacer group (8-amino-3-6-dioxaoctanoic acid) was developed and incorporated into the cholesterol based synthetic glycolipids. These glycolipids could be incorporated into liposomes, rendering them susceptible to aggregation by the appropriate lectin. They also allowed us to define the minimal distance between the sugar moiety and membrane required for agglutination. Finally and most importantly, we were able to functionally incorporate these new glycolipids in cells and render them agglutinable with the appropriate lectins. Functional incorporation does not occur with glycolipids bearing hydropholic spacer groups. We are now in a position to begin using the new glycolipids to answer questions about the roles of cell surface sugars in cellular recognition, which is the subject of this renewal proposal.

  17. Mathematical analysis of complex cellular activity

    CERN Document Server

    Bertram, Richard; Teka, Wondimu; Vo, Theodore; Wechselberger, Martin; Kirk, Vivien; Sneyd, James

    2015-01-01

    This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Burst...

  18. Cellular regulation of the dopamine transporter

    DEFF Research Database (Denmark)

    Eriksen, Jacob

    2010-01-01

    -membrane spanning protein Tac, thereby creating an extracellular antibody epitope. Upon expression in HEK293 cells this TacDAT fusion protein displayed functional properties similar to the wild type transporter. In an ELISA based internalization assay, TacDAT intracellular accumulation was increased by inhibitors......The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. DAT and its trafficking...... to natively expressed transporter, DAT was visualized directly in cultured DA neurons using the fluorescent cocaine analog JHC 1-64. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little cololization was observed...

  19. Microfluidic electroporation for cellular analysis and delivery.

    Science.gov (United States)

    Geng, Tao; Lu, Chang

    2013-10-01

    Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.

  20. Radiotracer studies on calcium ion-selective electrode membranes based on poly(vinyl chloride) matrices.

    Science.gov (United States)

    Craggs, A; Moody, G J; Thomas, J D; Willcox, A

    Radiotracer studies with (45)Ca and (36)Cl demonstrate that PVC matrix membranes containing Orion 92-20-02 liquid calcium ion-exchanger are permselective to counter-cations. Diffusion coefficients are quoted for the migration of (45)Ca between pairs of calcium solutions and are discussed in terms of solution concentration, membrane thickness and concentration level of sensor in the membrane. Migration of calcium ions from calcium chloride solution to a Group (II) metal chloride solution through a PVC membrane containing calcium liquid ion-exchanger is discussed in terms of solvent extraction and electrode selectivity coefficient parameters. Thus, magnesium, strontium and barium ions appear to inhibit migration through the membrane by their low affinity for the membrane liquid ion-exchanger sites, while the inhibition by beryllium ions is attributed to site blockage by the strong affinity of dialkylphosphate sites for beryllium.